INTRODUCTION TO FUNCTIONAL ANALYSIS

VLADIMIR V. KISIL

ABSTRACT. This is lecture notes for several courseson Functional Analysis at
School of Mathematics of University of Leeds. They are based on the notes of
Dr. Matt Daws, Prof. Jonathan R. Partington and Dr. David Salinger used in the
previous years. However all misprints, omissions, and erro rs are only my respons-
ibility. 1 am very grateful to Filipa Soares de Almeida, Eric Borgnet, Pasc Gavruta
for pointing out some of them. Please let me know if you nd more.

The notes are available also for download in PDF.

The suggested textbooks are [, 5, 7, 8]. The other nice books with many inter-
esting problems are [2, 6].

Exercises with stars are not a part of mandatory material but are nevertheless
worth to hear about. And they are not necessarily dif cult, t ry to solve them!
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N OTATIONS AND ASSUMPTIONS

Z, , R, denotes non-negative integers and reals.
X,Y,z,...denotes vectors.

, . ,...denotes scalars.
< z,=z stand for real and imaginary parts of a complex number z.

Integrability conditions.  In this course, the functions we consider will be real or
complex valued functions de ned on the real line which are locally Riemann integ-
rable This means that they are Riemann integrable on any nite clo sed interval
[a,b]. (A complex valued function is Riemann integrable iff its re al and imagin-
ary parts are Riemann-integrable.) In practice, we shall be dealing mainly with
bounded functions that have only a nite number of points of d iscontinuity in
any nite interval. We can relax the boundedness condition t o allow improper
Riemann integrals, but we then require the integral of the ab solute value of the
function to converge.

We mention this right at the start to get it out of the way. Ther e are many
fascinating subtleties connected with Fourier analysis, b ut those connected with
technical aspects of integration theory are beyond the scope of the course. It turns
out that one needs a “better” integral than the Riemann integ ral: the Lebesgue
integral, and | commend the module, Linear Analysis 1, which includes an intro-
duction to that topic which is available to MM students (or yo u could look it up
in Real and Complex Analystsy Walter Rudin). Once one has the Lebesgue integ-
ral, one can start thinking about the different classes of fu nctions to which Fourier
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analysis applies: the modern theory (not available to Fouri er himself) can even go
beyond functions and deal with generalized functions (dist ributions) such as the
Dirac delta function which may be familiar to some of you from quantum theory.

From now on, when we say “function”, we shall assume the condi tions of the
rst paragraph, unless anything is stated to the contrary.

1. MOTIVATING EXAMPLE: FOURIER SERIES

1.1. Fourier series: basic notions. Before proceed with an abstract theory we con-
sider a motivating example: Fourier series.

1.1.1. 2 -periodic functions.In this part of the course we deal with functions (as
above) that are periodic.

We say a function f : R'! C is periodicwith periodT > 0if f(x+ T) = f(x) for all
x 2 R. For example, sinx, cosx, €X (= cosx + i sinx) are periodic with period 2 .
For k 2 Rn fOg sinkx, coskx, and € are periodic with period 2 = jkj. Constant
functions are periodic with period T, forany T > 0. We shall specialize to periodic
functions with period 2 : we call them 2 -periodic functions, for short. Note that
cosnx, sinnx and €™ are2 -periodic for n 2 Z. (Of course these are also2 = jnj-
periodic.)

Any half-open interval of length T is afundamental domaiof a periodic function
f of period T. Once you know the values of f on the fundamental domain, you
know them everywhere, because any point x in R can be written uniquely as x =
w + nT where n 2 Z and w is in the fundamental domain. Thus f(x) = f(w+(n -
DT+ T)= = f(w+T)= f(w).

For 2 -periodic functions, we shall usually take the fundamental domain to be
1- , ]. By abuse of language, we shall sometimes refer to[- , ] as the funda-
mental domain. We then have to be aware that f( ) = f(- ).

1.1.2. Integrating the complex exponential functioliVe shall need to calculateRg e dx,
for k 2 R. Note rst that when k = 0, the integrandd'bs the constant function

1, so the resultisb - a. For non-zero k, ek dx = o (coskx + i sinkx) dx =
(1=K)[(sinkx- i coskx)]2 = ( 1=ik)[(coskx+i sinkx)]2 = ( 1=ik)[e** 2 = (1=ik)(e*® -
€@ ). Note that this is exactly the result you would have got by tre ating i as a real
constant and using the usual formula for integrating €* . Note also that the cases

k = 0Oand k 6 0 have to be treated separately: this is typical.

Denition 1.1. Letf :R ! C be a2 -periodic function which is Riemann integ-
rableon[- , ]. Foreachn 2 Z we de ne the Fourier coef cienu‘\(n) by
1 z
f(n) = - fxe ™ dx

Remarkl.2 (i) f(n) is a complex number whose modulus is the amplitude
and whose argument is the phase (of that component of the orig inal func-
tion).

(i) If f and g are Riemann integrable on an interval, then so is their produ ct,
so the integral is well-de ned.

(i) The constant before the integral is to divide by the len gth of the interval.

(iv) We could replace the range of integration by any interva | of length 2 ,
without altering the result, since the integrand is 2 -periodic.

(v) Note the minus sign in the exponent of the exponential. Th e reason for
this will soon become clear.
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Example 1.3. (i) f(x)= cthen f'\(O) = cand f'\(n) = Owhenn 6 0.
(i) f(x)= €%  wherekisaninteger. f(n)= .
(i) fis2 periodicand f(x)= xon]- , ]. (Diagram) Then f'\(O) = Oand, for
neéo,
z - xe” I~ 11 %

1 ; 1 ;
f\ - - inx — + inx —
(n) > xe dx 2in o e™ dx

€ D"
.

Proposition 1.4 (Linearity) . If f andg are2 -periodic functions and andd are complex
constants, then, for ath 2 Z,

(cf + dgf(n) = cf(n) + da(n).
P .
Corollary 1.5. If p(x) = f(k cn €™ ,thenp(n) = c, forjnj 6 k and= 0, forjnj> k.
X :
px)= p(n)e™ .

n2z
This follows immediately from Ex. 1.3(ii) and Prop.1.4.

Remarkl.6. (i) This corollary explains why the minus sign is natural int he
de nition of the Fourier coef cients.
(i) The rst part of the course will be devoted to the questio n of how far this
result can be extended to other 2 -periodic functions, that is, for which
functions, and for which interpretations of in nite sumsis it true that

(1.1) f(x) = f(n)e™ .

n2z

P _
De nition 1.7. a2z f(n)€™ s called the Fourier seriesf the 2 -periodic func-
tion f.

For real-valued functions, the introduction of complex exp onentials seems arti-
cial: indeed they can be avoided as follows. We work with (  1.1) in the case of a
nite sum: then we can rearrange the sum as

X
flo+  (f(ne™ +f- nje ™)

n> 0

X
= flo)+  [(f{n)+ f- n)) cosnx + i(f(n)- f(- n))sinnx]
n> 0
= a_zo + (an cosnx + by sinnx)
n> 0
Here
L Z
an = (fin)+f-n)= = e ™ +e™)dx

z
1 f(x) cosnx dx

forn> Oand
Z

bn = i((f(n)- f(- n)) = 1 f(x) sinnx dx

R
forn> 0.ap= 1  f(x)dx, the constant chosen for consistency.
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The a, and b, are also called Fourier coef cients: if it is necessary to di stin-
guish them, we may call them Fourier cosinend sine coef cientsrespectively.

We note that if f is real-valued, then the a, and b, are real numbers and so
<f(n) = <f(- n), =f(n) = - =f(n): thus f(- n) is the complex conjugate of f(n).
Further, if f is an even function then all the sine coef cients are 0 and if f is an
odd function, all the cosine coef cients are zero. We note fu rther that the sine and
cosine coef cients of the functions coskx and sinkx themselves have a particularly
simple form: ax = linthe rstcase and by = 1inthe second. All the rest are zero.

For example, we should expect the 2 -periodic function whose valueon ]- , ]
is X to have just sine coef cients: indeed this is the case: a, = 0and b, = i(f(n)-
f- n))=(- 1)"*12=nfor n> 0.

The above question can then be reprmulated as “to what extent is f(x) rep-
resented by the, Fourier seriesag=2+ . y(an cosx + b, sinx)?” For instance
how welldoes = (- 1)"**(2=n) sinnx representthe 2 -periodic sawtooth function

f whose value on]- , ]is given by f(x) = x. The easy points arex = 0, x =
where the terms are identically zero. This gives the “wrong' value for x = , but,
if we look at the periodic function near , we see that it jumps from to- , so

perhaps the mean of those values isn't a bad value for the series to converge to.
We could conclude that we had de ned the function incorrectl y to begin with and

that its value at the points (2n + 1) should have been zero anyway. In fact one
can show (ref. ) that the Fourier series converges at all other points to the given

values of f, but | shan't include the proof in this course. The convergen ce is not at
all uniform (it can't be, because the partial sums are contin uous functions, but the

limit is discontinuous.) In particular we get the expansion

2= 2(1- 1=3+ 1=5- )
which can also be deduced from the Taylor series for tan .

1.2. The vibrating string.  In this subsection we shall discuss the formal solutions
of the wave equation in a special case which Fourier dealt wit h in his work.
We discuss the wave equation

@y _ 1@y
(-2 @% K@t
subject to the boundary conditions
(1.3) y(0,t)=y(.,t)=0,
forall t > 0, and the initial conditions
y(x,00 = HXx),
yi(x,0) = 0.

This is a mathematical model of a string on a musical instrume nt (guitar, harp,
violin) which is of length and is plucked, i.e. held in the shape Hx) and re-
leased attimet = 0. The constantK depends on the length, density and tension of
the string. We shall derive the formal solution (that is, a so lution which assumes
existence and ignores questions of convergence or of domain of de nition).

1.2.1. Separation of variablede rst look (as Fourier and others before him did)
for solutions of the form y(x,t) = f(x)g(t). Feeding this into the wave equation
(1.2 we get

00(t) = (g%
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and so, dividing by f(x)g(t), we have

) _ 1 g7

f) K2 g(t)’

The left-hand side is an expression in x alone, the right-hand side in t alone. The
conclusion must be that they are both identically equal to th e same constantC, say.

We have f%x) - Cf(x) = 0 subject to the condition f(0) = f( ) = 0. Working
through the method of solving linear second order different ial equations tells you
that the only solutions occur when C = - n? for some positive integer n and the
corresponding solutions, up to constant multiples, are f(x) = sinnx.

Returning to equation ( 1.4) gives the equation g°{t) + K?n2?g(t) = 0 which has
the general solution g(t) = ap cosKnt + b, sinKnt. Thus the solution we get
through separation of variables, using the boundary condit ions but ignoring the
initial conditions, are

Yn (X,1) = sinnx(a, cosKnt + by sinKnt),

(1.4)

forn > 1.

1.2.2. Principle of SuperpositionTo get the general solution we just add together all
the solutions we have got so far, thus

X
(1.5) y(x,t) = sinnx (a, cosKnt + by, sinKnt)
n=1
ignoring questions of convergence. (We can do this for a nit e sum without dif-
culty because we are dealing with a linear differential equ ation: the iffy bit is to
extend to an in nite sum.)
We now apply the initial condition y(x,0) = KXx) (note Fhas H0) = H ) = 0).
This gives
X
Hx) = an sinnx .
n=1
We apply the re ection trick: the right-hand side is a series of odd functions so if
we extend Fto a function G by re ection in the origin, giving

Hx) ,if06 x6 ;

C= m.x) - <x< o0
we have
G(x) = anp sinnx,
n=1
for- 6 x6
If we multiply through by  sinrx and integrate term by term, we get
Z

ar = 1 G(x) sinrx dx

S0, assuming that this operation is valid, we nd thatthe a, are precisely the sine
coef cients of G. (Those of you who took Real Analysis 2 last year may remember
that a suf cient condition for integrating term-by -term is  that the series which is
integrated is itself uniformly convergent.)
If we now assume, further, that the right-hand side of ( 1.5) is differentiable

(term by term) we differentiate with respectto t, and sett = 0, to get

b
(1.6) 0=vy:(x,0) = b, Kn sinnx.

n=1
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This equation is solved by the choice b, = Ofor all n, so we have the following
result

Proposition 1.8 (Formal). Assuming that the formal manipulations are valid, a solatio
of the differential equatiofi.2) with the given boundary and initial conditions is
b
(2.1 y(x,t) = a, sinnx cosknt ,
1

where the coef cienta,, are the Fourier sine coef cients
1 Z
an = —  G(x) sinnxdx

of the2 periodic functionG, de ned on]- , ]by re ecting the graph ofFin the origin.

Remarkl.9. This leaves us with the questions

(i) For which Fare the manipulations valid?
(ii) Is this the only solution of the differential equation? (which I'm not going
to try to answer.)
(i) Is by, = 0 all n the only solution of ( 1.6)? This is a special case of the
unigueness problem for trigonometric series.

1.3. Historic: Joseph Fourier. Joseph Fourie€ivil Servant, Egyptologist, and math-
ematician, was born in 1768 in Auxerre, France, son of a tailor. Debarred by birth
from a career in the artillery, he was preparing to become a Be nedictine monk (in
order to be a teacher) when the French Revolution violently a Itered the course of
history and Fourier's life. He became president of the local revolutionary commit-
tee, was arrested during the Terror, but released at the fall of Robespierre.

Fourier then became a pupil at the Ecole Normale (the teachers' academy) in
Paris, studying under such great French mathematicians as Laplace and Lagrange.
He became a teacher at the Ecole Polytechnique (the military academy).

He was ordered to serve as a scientist under Napoleon in Egypt . In 1801, Fourier
returned to France to become Prefect of the Grenoble region. Among his most
notable achievements in that of ce were the draining of some 20 thousand acres
of swamps and the building of a new road across the alps.

During that time he wrote an important survey of Egyptian his tory (“a master-
piece and a turning point in the subject”).

In 1804 Fourier started the study of the theory of heat conduc tion, in the course
of which he systematically used the sine-and-cosine serieswhich are named after
him. At the end of 1807, he submitted a memoir on this work to th e Academy of
Science. The memoir proved controversial both in terms of hi s use of Fourier series
and of his derivation of the heat equation and was not accepte d at that stage. He
was able to resubmit a revised version in 1811: this had several important new fea-
tures, including the introduction of the Fourier transform . With this version of his
memoir, he won the Academy's prize in mathematics. In 1817, F ourier was nally
elected to the Academy of Sciences and in 1822 his 1811 memoiwas published as
“Théorie de la Chaleur”.

For more details see Fourier Analysis by T.W. Korner, 475-480 and for even
more, see the biography by J. Herivel Joseph Fourier: the man and the physicist.

What is Fourier analysisThe idea is to analyse functions (into sine and cosines
or, equivalently, complex exponentials) to nd the underly ing frequencies, their
strengths (and phases) and, where possible, to see if they can be recombined (syn-
thesis) into the original function. The answers will depend on the original prop-
erties of the functions, which often come from physics (heat , electronic or sound
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waves). This course will give basically a mathematical trea tment and so will be
interested in mathematical classes of functions (continui ty, differentiability prop-
erties).

2. BASICS OFLINEAR SPACES

A person is solely the concentration of an in nite set of inte r-
relations with another and others, and to separate a person
from these relations means to take away any real meaning of
the life.

VI. Soloviev

A space around us could be described as a three dimensional Euclidean space.
To single out a point of that space we need a xed frame of referencemnd three
real numbers, which are coordinatef the point. Similarly to describe a pair of
points from our space we could use six coordinates; for three points—nine, end so
on. This makes it reasonable to consider Euclidean (linear) spaces of an arbitrary
nite dimension, which are studied in the courses of linear algebra.

The basic properties of Euclidean spaces are determined by its linearand metric
structures. The linear spacdor vector spagestructure allows to add and subtract
vectors associated to points as well as tomultiply vectors by real or complex hum-
bers (scalars).

The metric spacestructure assign a distance—non-negative real number—to a
pair of points or, equivalently, de nes a length of a vectode ned by that pair. A
metric (or, more generally a topology) is essential for de n ition of the core analyt-
ical notions like limit or continuity . The importance of linear and metric (topolo-
gical) structure in analysis sometime encoded in the formul a:

(2.2) Analysis = Algebra + Geometry .

On the other hand we could observe that many sets admit a sort o f linear and
metric structures which are linked each other. Just few amon g many other ex-
amples are:

The set of convergent sequences;
The set of continuous functions on [0, 1].

It is a very mathematical way of thinkingo declare such sets to bespacesnd call
their elements points

But shall we lose all information on a particular element (e. g. a sequencefl=ng
if we represent it by a shapeless and size-less “point” witho ut any inner con g-
uration? Surprisingly not: all properties of an element cou Id be now retrieved
not from its inner con guration but from interactions with other elements through
linear and metric structures. Such a “sociological” approa ch to all kind of math-
ematical objects was codi ed in the abstract category theory

Another surprise is that starting from our three dimensiona | Euclidean space
and walking far away by a road of abstraction to in nite dimen sional Hilbert
spaces we are arriving just to yet another picture of the surr ounding space—that
time on the language of quantum mechanics

The distance from Manchester to Liverpool is 35 miles—just

about the mileage in the opposite direction!
A tourist guide to England

2.1. Banach spaces (basic de nitions only). The following de nition generalises
the notion of distanceknown from the everyday life.

De nition2.1. A metric(or distance functiohd on asetM isafunctiond :M M !
R, from the set of pairs to non-negative real numbers such that:

(i) d(x,y) > Oforall x,y 2 M,d(x,y) = Oimplies x =y .
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(i) d(x,y)= d(y,x)forall xandyin M.

(i) d(x,y)+ d(y,z) > d(x,z) forall x,y,and zin M (triangle inequality.
Exercise 2.2. Let M be the set of UK's cities are the following function are metri cs
onM:

(i) d(A,B) is the price of 2nd class railway ticket from A to B.

(i) d(A,B) is the off-peak driving time from A to B.

The following notion is a useful specialisation of metric ad opted to the linear
structure.

De nition 2.3. Let V be a (real or complex) vector space. Anormon V is a real-
valued function, written kxk, such that

(i) kxk > Oforall x 2 V, and kxk = Oimplies x = 0.
(i) kx k=] jkxkforall scalar and vector x.
(i) kx+ yk 6 kxk + kyk (triangle inequality).
A vector space with a norm is called a normed space

The connection between norm and metric is as follows:

Proposition 2.4. If k k is a norm onV, then it gives a metric o byd(x,y) = kx - yk.

X+ Yy

(a) (b) y

FIGURE 1. Triangle inequality in metric (a) and normed (b) spaces.

Proof. This is a simple exercise to derive items 2.1(i)-2.1(iii) of De nition 2.1from
corresponding items of De nition 2.3. For example, see the Figurel to derive the
triangle inequality.

An important notions known from real analysis are limit and convergence . Par-
ticularly we usually wish to have enough limiting points for  all “reasonable” se-
guences.

De nition 2.5. A sequencefx, gin a metric space (M, d) is a Cauchy sequeng for
every > 0, there exists an integern such that k,| > n implies that d(xx,X;) <

De nition 2.6. (M, d) is a complete metric spaéeevery Cauchy sequence in M
converges to alimitin M.

For example, the set of integers Z and reals R with the natural distance func-
tions are complete spaces, but the set of rationalsQ is not. The complete normed
spaces deserve a special name.

De nition 2.7. A Banach spade a complete normed space.

Exercise 2.8. A convenient way to de ne a norm in a Banach space is as follows .
The unit ball Uin a normed space B is the set of x such that kxk 6 1. Prove that:
() Uisaconvexsetie.x,y 2 Uand 2 [0,1]the point x +(1- )y isalso
in U.
(i) kxk=inff 2R, j ~x2 Ug
(iii) U is closed if and only if the space is Banach.
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1 Al Al

v
v
v

(i) (ii) (iii)
FIGURE 2. Different unit balls de ning norms in  R? from Example 2.9.

Example 2.9. Here is some examples of normed spaces.

(i) 5 is either R" or C" with norm de ned by
q
KO,k = paf? + ol + + xaf

(i) "7 is either R" or C" with norm de ned by
K(X1, ..., Xn)Ky = JXaj+ jXoj +  + jXn].
(i) "7 is either R" or C" with norm de ned by
K(X1,...,Xn)K; = max(jxdj,jX2j, . jXn))-
(iv) Let Xbe atopological space, thenC,, (X) is the space of continuous bounded
functions f : X! C with norm kfk, = supy jf(x)j.
(v) Let X be any set, then; (X) is the space of all bounded (not necessarily
continuous) functions f : X! C with norm kfk, = supy jf(x)j.
All these normed spaces are also complete and thus are Banactspaces. Some more
examples of both complete and incomplete spaces shall appea later.

—We need an extra space to accommodate this product!
A manager to a shop assistant

2.2. Hilbert spaces. Although metric and norm capture important geometric in-
formation about linear spaces they are not sensitive enough to represent such geo-
metric characterisation as angles (particularly orthogonality. To this end we need
a further re nements.
From courses of linear algebra known that the scalar product hx,yi = xiy1 +
+ XpYn isimportant in a space R" and de nes a norm kxk? = hx,xi. Hereis a
suitable generalisation:

De nition2.10. A scalar producfor inner produc) on a real or complex vector space
VisamappingV V! C,written hx,yi, that satis es:
(i) ,xi > 0and hx,xi = Oimplies x = 0.
(i) x,yi = hy,xi in complex spaces andhx,yi = hy,xi in real ones for all x,
2V.
(iii) %x Jyi = I, yi,forall x,y 2 V and scalar . (Whatis hx, y i?).
(iv) x+y,zi = hx,zi + hy,zi, forall x,y,andz2 V. (Whatis hx,y + zi?).

Last two properties of the scalar product is oftenly encoded in the phrase: “itis
linear in the rst variable if we x the second and anti-linea rin the second if we
x the rst”.

De nition 2.11. An inner product spac¥ is a real or complex vector space with a
scalar product on it.

Example 2.12. Here is&ome examples of inner product spaces which demonstrate
that expression kxk = * hx, xi de nes a norm.
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(i) The inner product for R" was de ned in the eginning of this section.
ahe inner product for C" is given by hx,yi = 7 xjyj. The norm kxk =
S

1 jxjj2 makes it "5 from Example 2.9(i).
(ii) The extension for in nite vectors: let °, be

b
(2.2) ', = fsequencesfxid |  jxj°<1g
1

Let us equip this set with operations of term-wise addition a nd multiplic-
ation by scalars, then *, is closed under them. Indeed it follows from the
triangle inequality and properties of absolutely convergent series. From
the stgndard Cauchy—Bunyakovskii-Schwarz inequality follows that the
series 1 x;y; absolutely convergesand its sum de ned to be hx, yi.

(iii) Let Cy[a,b] be a space of continuous functions on the interval [a,b] 2
R. As we learn from Example 2.9(iv) a normed space it is a hormed
space with the norm kfk; = supj p;jf(x)j. We could also de ne an in-
ner product:

7 0 7 1.
(2.3) H,gi = f(x)g(x)dx and kfk, = @ jf(x)j® dxA
a a

Now we state, probably, the most important inequality in ana lysis.
Thgorem 2.13 (Cauchy—Schwarz—Bunyalﬁvski.inequality) .pFngctory andy in
an inner product spac¥ let us de nekxk = = hx,xi andkyk = = hy,yi then we have
(2.4) i, yij 6 kxkkyk,
with equality if and only ifx andy are scalar multiple each other.
Proof. Forany x,y 2 Vandany t 2 R we have:
0< hx+ty,x+tyi = hx,xi + 2t< hy,xi + t?hy,yi),

Thus the discriminant of this quadratic expressionintis no n-positive: (< hy, xi)?-
kxk? kyk2 6 0, that is j< hx,yij 6 kxkkyk. Replacingy by € y for an arbitrary
2[- , Jweget <(e I,yi) 6 kxkkyk, this implies the desired inequality.

Corollary 2.14. Any inner product space is a normed space with ndotk = P hx, xi

(hence also a metric space, Prag).

Proof. Just to check items2.3(i}-2.3(iii) from De nition 2.3,
Again complete inner product spaces deserve a special name
De nition 2.15. A complete inner product space is Hilbert space

The relations between spaces introduced so far are as follows:

Hilbert spaces ) Banach spaces ) Complete metric spaces
+ + +

inner product spaces ) normed spaces ) metric spaces.
How can we tell if a given norm comes from an inner product?

Theorem 2.16 (Parallelogram identity) . In an inner product spackl we have for alk
andy 2 H (see Figurs):

(2.5) kx + yk? + kx - yk? = 2kxk?® + 2kyk?.
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FIGURE 3. To the parallelogram identity.

Proof. Just by linearity of inner product:
hx+y,x+yi+h-yXx-yi=2mkx +2hy,yi,
because the cross terms cancel out.

Exercise 2.17.Show that (2.5) is also a suf cient condition for a norm to arise from
aninner product. Namely, for a norm on a complex Banach space satisfying to (2.5)
the formula

(2.6)  hvyi

kx + yk? - kx- yk®+ ikx+ iy k? - ikx- iyk?

b

2
Koyt iky

= [
0
de nes an inner product. What is a suitable formula for areal Banach space?

Divide and rule!
Old but still much used recipe

2.3. Subspaces. To study Hilbert spaces we may use the traditional mathemati cal
technique of analysisand synthesis we split the initial Hilbert spaces into smaller
and probably simpler subsets, investigate them separately, and then reconstruct
the entire picture from these parts.

As known from the linear algebra, a linear subspacks a subset of a linear space
is its subset, which inherits the linear structure, i.e. pos sibility to add vectors and
multiply them by scalars. In this course we need also that sub spaces inherit topo-
logical structure (coming either from a norm or an inner prod uct) as well.

De nition2.18. By a subspacef a normed space (or inner product space) we mean
a linear subspace with the same norm (inner product respecti vely). We write X Y
or X Y.

Example 2.19. (i) CL,(X) "1 (X) where X is a metric space.
(ii) Any linear subspace of R" or C" with any norm given in Example 2.9(i-
2.9(iii).

(iii) Let ¢y be the space of nite sequence=. all sequencesoﬁ,]) such that exist
N with x, = Ofor n> N . This is a subspace of , since 1 jxj* is a nite
sum, so nite.

We also wish that the both inhered structures (linear and top ological) should be
in agreement, i.e. the subspace should be complete. Such interitance is linked to
the property be closed.

A subspace neednot be closed—for example the sequence

x=(1,1=2,1=3,1=4,..) 2 ", because 1=k* < 1

and x, =(1,1=2,...,1=n,0,0,..) 2 ¢y, convergestox thus x 2 S5 ».
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Proposition 2.20. (i) Any closed subspace of a Banach/Hilbert space is complete,
hence also a Banach/Hilbert space.
(ii) Any complete subspace is closed.
(i) The closure of subspace is again a subspace.

Proof. (i) Thisistrue in any metric space X: any Cauchy sequence fromY has
alimit x 2 X belonging to Y, butif Y is closed thenx 2 Y.
(i) Let Yis complete and x 2 Y, then there is sequencex, ! xin Yanditis a
Cauchy sequence. Then completeness ofY implies x 2 Y.
(iii) If x,y 2 Ythenthere arex, andy, in Ysuchthatx, ! xandy, ! vy.
From the triangle inequality :

K(Xn + yn)-( x+y)k6 kxp - xk+ ky, - yk! O,
SOXp +Yn ! x+yandx+y2Y.Similarly x 2 Yimplies x 2 Y forany

p Hence ¢y is an incompleteinner product space, with inner product hx,yi =
i XkYk (thisis a nite sum!) asitis notclosedin .

A A

1 l—m—m—

| |

| |

| |

| |

| |

| |

| |

@ i n ozta 1 (b) z 1
FIGURE 4. Jump function on (b) as a L, limit of continuous func-
tions from (a).
R 1=2
Similarly C[0, 1] with inner productnorm kfk = jf(t)j2 dt isincomplete—

0

take the large spaceX of functions continuous on [0, 1] except for a possible jump
at % (i.e. left and right limits exists but may be unequal and f(%) = limy, 14 f(t).
Then the sequence of functions de ned on Figure 4(a) has the limit shown on Fig-
ure 4(b) since:
Ay

. 2 2
kf - fok= jif - fnj dt<ﬁ! 0.

N[

1

NI

Obviously f 2 CJ[0, 1] nCJO0, 1].
Exercise 2.21.Show alternatively that the sequence of function f,, from Figure 4(a)
is a Cauchy sequence inCJ0, 1] but has no continuous limit.

Similarly the space CJa, b] is incompleteor any a < b if equipped by the inner
product and the corresponding norm:

4

(2.7) H,gi =  f(t)g(t)dt
%Z 11:2

(2.8) kfk, = @ jf(t)j® dtA

a



INTRODUCTION TO FUNCTIONAL ANALYSIS 15

De nition 2.22. De ne a Hilbert space L,[a,b] to be the smallest complete inner
product space containing space C[a, b] with the restriction of inner product given

by (2.7).

It is practical to realise L,[a, b] as a certain space of “functions” with the inner
product de ned via an integral. There are several ways to dot hat and we mention
just two:

(i) Elements of L,[a,b] are equivalent classes of Cauchy sequences(") of
functions from CJa, b].

(i) Letintegration be extended from the Riemann de nition to the wider Le-
besgue integratiofsee Section13). Let L be a set of square integrable in
Lebesgue sense functions on[a, b] with a nite norm ( 2.8). Then L,[a, b]
is a quotient space of L with respect to the equivalence relation f g,
kf - gk, = 0.

Example 2.23. Let the Cantor functionon [0, 1] be de ned as follows:

1,120
M=o t2rn0.

This function is not integrable in the Riemann sense but doeshave the
Lebesgue integral. The later however is equal to 0 and as an L,-function
the Cantor function equivalent to the function identically equal to O.

(iii) The third possibility is to map L,(R) onto a space of “true” functions but
with an additional structure. For example, in  quantum mechanici is use-
ful to work with the  Segal-Bargmann spaoéanalytic functions on C with

the inner product : 2

Hifai = f1(2)f2(2)e 14 dz.
C

Theorem 2.24. The sequence spagéas complete, hence a Hilbert space.

Proof. Take a Cauchy sequencex(™ 2 *,, where x(M = (x{™ x{™ x{™..). our
proof will have three steps: identify the limit  x; show itisin ~,; show x(") I x.

(i) If x(") is a Cauchy sequence in", then x(k”) is also a Cauchy sequence of

numbers for any xed k:
=2
2

(m) = xM. x(M 1 o

(n) _ X

X} (M 6

X (n) _

Xk
k=1

Let x« be the limit of x{").

(i) Foragiven > 0 nd ngsuchthat x(" - x(M < forall n,m>n .
For any K and m:

X 2 2
x(M oM T x(M L xm e 2

k=1

=] 2
Letm! 1 then K, x(W- x 6 2

Pi 26 2 .
LetK! 1 then ,.; %' - Xk 6 2 Thusx(™ - x2 7, and because
', is alinear space thenx = x(") - ( x(") - x)isalsoin ,.

(iii) We saw above that for any > Othereis ng suchthat x(") - x < for
alln>n . Thusx(M 1 x.
Consequently °, is complete.
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All good things are covered by a thick layer of chocolate (wel |,
if something is not yet—it certainly will)

2.4. Linear spans. As was explained into introduction 2, we describe “internal”
properties of a vector through its relations to other vector s. For a detailed descrip-
tion we need suf ciently many external reference points.

Let A be a subset ( nite or in nite) of a normed space V. We may wish to
upgrade it to a linear subspace in order to make it subject to o ur theory.

De nition 2.25. The linear spanof A, write Lin(A), is the intersection of all linear
subspaces ofV containing A, i.e. the smallest subspace containingA, equivalently
the set of all nite linear combination of elements of A. The closed linear spaaf A
write CLin(A) is the intersection of all closedinear subspaces ofV containing A,
i.e. the smallestclosedsubspace containing A.
Exercise 2.26. (i) Show that if A is a subset of nite dimension space then
Lin(A) = CLin(A).
(i) Show that for an in nite A spacesLin(A) and CLin(A)could be different.
(Hint: use Example 2.19(iii).)

Proposition 2.27. Lin(A) = CLin(A).

Proof. Clearly Lin(A) is a closed subspace containing A thus it should contain
CLin(A). Also Lin(A)  CLin(A) thus Lin(A)  CLin(A) = CLin(A). Therefore
Lin(A) = CLin(A).

Consequently CLin (A) is the set of all limiting points of nite linear combina-
tion of elements of A.

Example 2.28. Let V = C[a, b] with the supnorm kk, . Then:
Linf1,x, x?,...g= fall polynomials g
CLinf1,x,x?,...g= C[a, b] by the Weierstrass approximation theorem proved later.

The following simple result will be used later many times wit hout comments.

Lemma 2.29 (about Inner Product Limit) . SupposeH is an inner product space and
sequences, andy, have limitsx andy correspondingly. Theihx,,yni ! h X,yi or
equivalently: D E

Yol = im o, fm 3o
Proof. Obviously by the Cauchy—Schwarz inequality :
Mo, yni- b yij = jXy - X, yni + X, yn - Vij
6 iMXn - X, Ynij+ jX,yn - Vi
6 kxn - xkkypk+ kxkky, - yk! O,
sincekx, - xk! 0,ky, - yk! 0, andky,Kkis bounded.

3. ORTHOGONALITY

Pythagoras is forever!
The catchphrase from TV commercial of Hilbert Spaces
course

As was mentioned in the introduction the Hilbert spaces is an analog of our 3D
Euclidean space and theory of Hilbert spaces similar to plan e or space geometry.
One of the primary result of Euclidean geometry which still s urvives in high
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school curriculum despite its continuous nasty de-geometr isation is Pythagoras'
theorem based on the notion of orthogonality.

So far we was concerned only with distances between points. N ow we would
like to study angles between vectors and notably right angles Pythagoras' theorem
states that if the angle C in a triangle is right then ¢? = a2 + b?, see Figure5.

a
FIGURE 5. The Pythagoras' theoremc? = a2 + b?

Itis a very mathematical way of thinkingp turn this propertyof right angles into

their de nition, which will work even in in nite dimensional Hilbert spaces
Look for a triangle , or even for a right triangle
A universal advice in solving problems from elementary
geometry.

3.1. Orthogonal System in Hilbert Space. Ininner product spaces it is even more
convenient to give a de nition of orthogonality not from Pyt hagoras' theorem but
from an equivalent property of inner product.

De nition 3.1. Two vectors x and y in an inner product space are orthogonalif
hx,yi = O, written x ? v.

An orthogonal sequendger orthogonal systeire, ( nite orin nite) is one in which
en ? en whenever n 6 m.

An orthonormal sequend@r orthonormal systeine, is an orthogonal sequence
with ke, k = 1forall n.

Exercise 3.2. (i) Show thatif x ? x then x = 0 and consequently x ? y for
anyy 2 H.
(i) Show that if all vectors of an orthogonal system are non- zero then they
are linearly independent.

Example 3.3. These are orthonormal sequences:
(i) Basis vectors(1,0,0),(0,1,0,(0,0,1) in R® or C2.
(i) Vectors e, = (0,...,0,1,0,..) (with the only 1 on the nth place) in °,.
(Could you see a similﬁxr_ity with the previous example?)
(iii) Functions e, (t)= 1= 2 )e™ ,n2 Zin C[0,2 [
z 1
(3.1) he, ,emi = 2—eint e M gt =
0

1, n=m;
0, né m.

Exercise 3.4. Let A be a subset of an inner product spaceV and x ? y for any
y 2 A. Provethatx ? zforall z2 CLin(A).

Theorem 3.5 (Pythagoras'). If x ? y thenkx + yk2 = kxk?® + kykz. Alsoifeq, ..., e,
is orthonormal then . N
X 20X x x o
akex = ak €k, akex = Jak] -
1 1 1 1

1Some more “strange” types of orthogonality can be seen in the paper Elliptic, Parabolic and Hyper-
bolic Analytic Function Theory—1: Geometry of Invariants
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Proof. A one-line calculation.

The following theorem provides an important property of Hil  bert spaces which
will be used many times. Recall, that a subset K of a linear spaceV is convexf for
all x,y 2 Kand 2 [0,]]the point x +(1- )y isalsoin K. Particularly any
subspace is convex and any unit ball as well (see Exercise2.8(i)).

Theorem 3.6 (about the Nearest Point). LetK be a non-empty convex closed subset of
a Hilbert spacéd. For any pointx 2 H there is the unique point 2 K nearest t.

Proof. lpet d = infy,k d(x,y), where d(x, y)—the distance coming from the norm
kxk = = hx,xi and let y, a sequence points inK such that lim,, 1 d(x,y,) = d.
Then y, is a Cauchy sequence. Indeed from the parallelogram identity for the
parallelogram generated by vectors x - y, and x- y, we have:

kyn - Ymk® = 2kx- yok?+ 2kx- ymk®- k2X- yn - ymk?.
Note that k2x - ypn - ymk® = 4 x- Yoi¥ym 2> 492 since YaYo 2 K by its con-
vexity. For suf ciently large m and n we getkx- ymk*6 d+ andkx- y,k*6
d+ ,thusky, - ymk6 4(d?>+ )- 4d?= 4 ,ie.y, isa Cauchy sequence.
Let y be the limit of y,, which exists by the completeness of H, theny 2 K
since K is closed. Thend(x,y) = limp, 1 d(X,yn) = d. This show the existence

of the nearest point. Let y°be another point in K such that d(x,y9 = d, then the
parallelogram identity implies:

ky - y%&% = 2kx- yk?+ 2kx- y%%- k2x- y- y%° 6 4d?- 4d? = 0.
This shows the unigqueness of the nearest point.

Exercise 3.7. The essential role of the parallelogram identity in the abo ve proof
indicates that the theorem does not hold in a general Banach space.

() Show that in R? with either norm kk,; or kk, form Example 2.9 the
nearest point could be non-unique;
(i) Could you construct an example (in Banach space) when th e nearest point
does not exists?
Liberte, Egalite, Fraternite!

A longstanding ideal approximated in the real life by
something completely different

3.2. Bessel'sinequality. For the case then a convex subset is a subspace we could
characterise the nearest point in the term of orthogonality .

Theorem 3.8 (on Perpendicular). LetM be a subspace of a Hilbert sphicand a point
X 2 H be xed. Therz 2 M is the nearest point ta if and only ifx - z is orthogonal to
any vector inM .

Proof. Let z is the nearest point to x existing by the previous Theorem. We claim
that x - z orthogonal to any vector in M, otherwise there existsy 2 M such that
hx- z,yi & 0. Then
kx- z- YK = kx- zZk*- 2 <h- zyi+ 2kyk?
< kx- zk?,
if is chosen to be small enough and such that < hx- z,yi is positive, see Fig-

ure 6(i). Therefore we get a contradiction with the statement tha t z is closest point
to x.
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On the other hand if x - z is orthogonal to all vectors in Hj then particularly
(x- 2)? (z- y)forall y 2 Hy, see Figure6(ii). Sincex- y =(x- 2)+(z- y)we
got by the Pythagoras' theorem:

kx - yk? = kx- zk*+ kz- yk®.

Sokx - yk2 > kx - zk® and the are equalifandonly if z=y.

€1
M
z

0) y (ii) %2
FIGURE 6. (i) A smaller distance for a non-perpendicular direc-
tion; and
(i) Best approximation from a subspace

Exercise 3.9. The above proof does not work if hx - z,yi is an imaginary number,
what to do in this case?

Consider now a basic case ofapproximationletx 2 H be xed and ey, ...,e, be
orthonormal and denote Hj; = Linfey,..., e, g We could try to approximate x by a
vectory = ie; + + nen 2 Hjp.

P
Corollary 3.10. The minimal value dkx - ykfory 2 Hy isachievedwhen= " | I, ei .

P
Proof. Let z = '1‘ hx,eie,thenhx- zei = ei- hz ei = 0. By the previous
Theorem z is the nearest point to x.

Example 3.11. (i) In R® ndthe bestapproximationto (1,0, 0) from the plane
V :fx1+ X2+ x3 = Og We take an orthonormal basise; = (2 172,- 27 172,0),
e =(6 2,6 172 - 2 6 172) of V (Check this!). Then:

. . 1 1 11 1 2 1 1

= + = — - = + - = - = =

z= X, ei e + X, e € > 2,0 66 3 3737 3

(i) In CJ[0,2 ] what is the best approximation to f(t) = t by functions a +
be + ce 2 Let

eozplz el-pl:eit elzplze"
2 2 2
We nd:
Zz 2 2
Moo = pdtz Lp ="332
2 272 ,
0
z .
. te b— )
H,eii = pz:dt =i 2 (Check this!)
0
Zz

hH,e 1 = p?dt =- iIO 2 (Why we may not check this one?)
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Then the best approximation is (see Figure 7):

fo(t) = HW,epiep+ H,eiie + e qie
532 ‘
= —pZT+ ie" - ie""™ = - 2sint.
6,3 T T :
y
0 1 1 1
0 6,3

FIGURE 7. Best approximation by three trigonometric polynomials

Corollary 3.12 (Bessel's inequality). If (g) is orthonormal then

X
kxk® > i, eij?.
b i=1
Proof. Letz = 2 hx, ejie; thenx- z? e forall i therefore by Exercise3.4x- z? z.
Hence:

kxk? kzk? + kx - zk?

X
kzk®> = jx, eif?.
i=1

\

—Did you say “rice and sh for them”?
A student question

3.3. The Riesz—Fischertheorem. When (g;) is orthonormal we call I, e, i the nth
Fourier coef cienbf x (with respectto (e;), naturally).

Theorem,3.13 (Riesz—Fisher) Let(e,)} be n orthonormal sequence inlg Hilbert space
H. Then i n €n converges it if and only if 1 i nj2 < 1 .Inthiscas& i n €n K2 =

Tinf

P
Proof. NecessityLetxy = 'i n€n andx = limg 1 Xk. Sohx,eni = limgr 1 Xg,eni =
n forall n. By the Bessel's inequality for all k
X X
kxk? > jxeniff = oajt,
P 1 1
hence’ ¥j .}’ converges and the sum is at mostkxk>.
P P 1=2
Suf ciency: Consider kxy - Xpk = fn n€n = Ir(nj nJ'2 for k > m.

Since 'r‘n j nj2 convergesx, is a Cauchy sequence inH and thus has a limit x. By
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the P ' Z_Pk- 2 Z_Pl- 2
ythagoras' theorem kxxk® = 7j pj thusfor k! 1 kxk® = 7] by
the Lemma about inner product limit .

Observation: the closed linear span of an orthonormal sequence in any Hilbert
space looks like *,, i.e. ", is a universal model for a Hilbert space.
By Bessel's inequality and the Riesz—Fisher theoremwe know that the series
hx €l € cgnverges forany x 2 H. What is its limit?
Lety—x— 1 X, ei e, then

X
(3.2) ry,eki=h<,eki— h(,eiihei,eki=h<,eki- hx,eki=0 for all k.
1
De nition 3.14. An orthonormal sequence (&) in a Hilbert space H is completef
the identities hy,exi = Ofor all k imply y = 0.
A complete orthonormal sequence is also called orthonormal basig H.

Theorem 3.15(on Orthonormal Basis). Lete; be an orthonormal basis in a Hilber space
H. Then for anyx 2 H we have
X- . 2 . ..2
X = hX,eni en and kxk® = i enijs.
n=1 n=1
Proof. By the Riesz—Fisher theorem equation (3.2) and de nition of orthonormal
basis.

There are constructive existence theorems in mathematics.
An example of pure existence statement

3.4. Construction of Orthonormal Sequences. Natural questions are: Do orthonor-
mal sequences always exist? Could we construct them?

Theorem 3.16 (Gram—Schmidt). Let(x;) be a sequence of linearly independent vectors
in an inner product spac¥. Then there exists orthonormal seque(&g such that

Linfxy, X2,...,Xng= Linfe;,ez,...,€n0 foralln.
Proof. We give an explicit algorithm working by induction. The  baseof induction:
the rstvectoris e; = x3=kxik. The stepoflnduc,gon let e, ey, ...,e, are already
constructed as required. Let yp+1 = Xp+1 - 1 M™n+1,6i€. Then by (3.2

Vn+1 ?2 g fori=1,...,n. Wemay put e,+1 = yn+1—kyn+1k becausey,+1 6 0
due to linear independence of x's. Also

Linfe;,ez,...,en+19 = Linfey,e,...,yn+10
= Linfel,ez,...,Xn+1g
= Linfxy, X2,...,Xn+10

So(g) are orthonormal sequence.

Example 3.17. Consider C[0, 1] with the usual inner product ( 2.7) and apply or-
thogonalisation to the sequence 1, x, x?, .... Becauseklk = 1then e;(x) = 1. The
continuation could be presented by the table:

er(x)=1

1 z 1 p 1

y2(X) = x- I, lil=x- > ky2k2= (x- —)de- 17 e(x)= 12(x- E)
0

— 2. 2 ) 2, 1 1 _ Y3

y3(X) = X x5,1 1 X%, X > (x 2) 12, ..., e3= kysK
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Example 3.18. Many famous sequences oforthogonal polynomials , e.g. Chebyshev,
Legendre, Laguerre, Hermite, can be obtained by orthogonalisation of 1, x, x?,
... with various inner products.

(i) Legendre polynomiala C[- 1, 1] with inner product

z
(3.3) H,gi =  f(t)g(t)dt.
-1
(i) Chebyshev polynomiails C[- 1, 1] with inner product
z dt
(3.4) H,gi = f(t)g(t)pﬁ
-1
(iiiy Laguerre polynomials the space of polynomials P[0, 1 ) with inner product
¥
H,gi = f(t)g(t)e ' dt.
0
1 LN IR N BN N B B B [ LN IR R B N B B B 1 T‘J/T‘\T T T 1T [ T T//’Y‘\\T L L
A [\ / \
i \\\ > o | \
A / < i
y o/ \ > Yayals y op/ \|
H A b \ /
“‘ ] | \ /
- 1‘ P T T R R ST H R N B SR - I N | \I\\L/i 110
-1 0 -1 0
X X

FIGURE 8. Five rstLegendre P, and Chebyshev T; polynomials

See Figure8 for the ve rst Legendre and Chebyshev polynomials. Observ e the
difference caused by the differentinner products ( 3.3) and (3.4). On the other hand
note the similarity in oscillating behaviour with differen  t“frequencies”.

Another natural question is: When is an orthonormal sequenc e complete?

Proposition 3.19. Let(e,) be an orthonormal sequence in a Hilbert sgdcdhe follow-
ing are equivalent:
(i) (en) is an orthonormal basis.

(i) CLin((qD)) = H.

(i) kxk? =" 1 jh,eqif forallx 2 H.
Proof. CFLearIy 3.19(i)implies 3.19(ii) becausex =
kxk? = i hx, e, i e, by Theorem 3.15

If (en) is not complete then there existsx 2 H such that x 6 0 and h, exi for all
k, s03.19(iii) fails, consequently 3.19(iii) implies 3.19(i).

Finally if hx,exi = Oforall k then hx,yi = Oforall y 2 Lin((e,)) and moreover
forall y 2 CLin((e,)), by the Lemma on continuity of the inner product . But then
X 62CLin((e,)) and 3.19(ii) also fails becausehx, xi = 0is not possible. Thus 3.19(ii)
implies 3.19().

P
1 I, eqi e, in CLin((ey)) and
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Corollary 3.20. A separable Hilbert space (i.e. one with a countable dense set) can be
identi ed with either™ or ", in other words it has an orthonormal bagss, ) ( nite or
in nite) such that

X- . 2 . ..2

X = hx,eni e and kxk® = i enijs.

n=1 n=1
Proof. Take a countable dense set(xx), then H = CLin((xx)), delete all vectors
which are a linear combinations of preceding vectors, make o rthonormalisation
by Gram—Schmidt the remaining set and apply the previous proposition .

Most pleasant compliments are usually orthogonal to our rea |

qualities.
An advise based on observations

3.5. Orthogonal complements.

De nition 3.21. Let M be a subspace of an inner product spaceV. The orthogonal
complementwritten M?, of M is

M? =fx2V:lk,mi = 08m2 Mg

Theorem 3.22. If M is a closed subspace of a Hilbert sppatieenM ? is a closed subspace
too (hence a Hilbert space too).

Proof. Clearly M~ is a subspace ofH becausex,y 2 M’ implies ax + by 2 M7 :
hax + by, mi = alx,mi + bhy, mi = 0.
Alsoifall x, 2 M? and x, ! xthenx 2 M? due to inner product limit Lemma .

Theorem 3.23. LetM be a closed subspace of a Hilber sphac&hen for anyx 2 H
there exists the unique decompositiosr m + n withm 2 M, n 2 M? andkxk?® =
kmk? + knk?. ThusH=M M? and(M?)? = M.

Proof. For a given x there exists the unique closest point m in M by the Theorem
on nearest point and by the Theorem on perpendicular (x- m) ? yforally 2 M.

Sox=m+(x- m)=m+nwith m2 M andn 2 M?. The identity kxk? =
kmk? + knk? is just Pythagoras' theoremand M \ M? = fOgbecause null vector is
the only vector orthogonal to itself.

Finally (M?)? = M.WehaveH=M M? =(M?)? M7, foranyx2 (M?)?
there is a decomposition x = m + n with m 2 M andn 2 M?, but then n is
orthogonal to itself and therefore is zero.

Corollary 3.24 (about Orthoprojection) . There is alinear maBy fromH onto M (the
orthogonal projection or orthoprojection ) such that

(3.5) P2 = Py, kerPy = M7, Py? =1- Py.

Proof. Let us de ne Py (X) = m where x = m + n is the decomposition from the
previous theorem. The linearity of this operator follows fr om the fact that both M
and M” are linear subspaces. AlsoPy (m) = m forall m 2 M and the image of
Pu isM. Thus P4 = Py . Alsoif Py (x) = Othenx ? M, ie. kerPy = M?.
Similarly Py - (X)= nwherex=m+nandPy + Py-» = 1.

Example 3.25. Let (en ) be an orthonormal basis in a Hilber space andlet S N be
xed. Let M = CLinfe, :n 2 Sgand M’ = CLinfe, :n 2 N nSg Then
% X X
ag € = agex + akex.
k=1 k2s k625
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Remark3.26 In fact there is a one-to-one correspondence between closedlinear
subspaces of a Hilber spaceH and orthogonal projections de ned by identities ( 3.5).

4. FOURIER ANALYSIS
All bases are equal, but some are more equal then others.

As we saw already any separable Hilbert space posses an orthanormal basis
(in nitely many of them indeed). Are they equally good? This depends from
our purposes. For solution of differential equation which a rose in mathematical
physics (wave, heat, Laplace equations, etc.) there is a prdfered choice. The fun-
damental formula: dixeax = ae® reduces the derivative to a multiplication by a.
We could bene t from this observation if the orthonormal bas is will be constructed
out of exponents. This helps to solve differential equation s as was demonstrated

in Subsection 1.2 _ , ,
7.40pm Fourier series: Episode Il

Today's TV listing

4.1. Fourier series. Now we wish to address questions stated in Remark 1.9. Let

us consider the spacel,[- , ]. As we saw in Example 3.3(iii) there is an or-
thonormal sequence e, (t) = (2 )" ¥2e™ in L,[- , ]. We will show that it is
an orthonormal basis, i.e.
hS
f2L- .1 . f()= h, exi ex (1),
k=- 1
with convergence in L, norm. To do this we show that CLinfex : k 2 Zg =
L[ ]
Let CP[- , ] denote the continuous functions f on [- , ] such that f( ) =

f(- ). We also de ne f outside of the interval [- , ]by periodicity.
Lemma4.1l. The spac€P[- , ]JisdenseirL,[- , ]

Proof. Letf 2 L,[- , ]. Given > Othereexistsg 2 C[- , ]suchthatkf- gk<
= 2. Form continuity of g on a compact set follows that there is M such that jg(t)j <
M forall t 2 [- , ]. We can now replace g by periodic ¢, which coincides with

FIGURE 9. A modi cation of continuous function to periodic

gon[- , - []foranarbitrary > 0and hasthe same bounds:jg(t)j < M , see

Figure 9. Then
z

kg- gko = jg(t)- &(t)i® dt 6 (2M)? .

Soif < ?2=(4M)?thenkg- gk< = 2and kf - gk <

Now if we could show that CLinfeg : k 2 Zgincludes CP[- , ]then it also
includes L,[- , 1.
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Notation 4.2. Letf 2 CP[- , ],write

X
(4.2) fn = h, exi e, forn=0,1,2,...
k=- n

the partial sum of the Fourier serider f.
We want to show that kf - f,k, ! 0. To this end we de ne nth Fejér surmby the

formula
_ fo+ f1+ + f,

(4.2) Fo= "
and show that
kk, - fk, I 0.
Then we conclude
0 7 1,

kFo - Tk, = @ jR,(t)- f°A 6 (2 )¥2kF, - fk, ! O.

' P
SinceF, 2 Lin((en)) thenf 2 CLin((en)) and hencef = _11 H, e ex.
Remarkd.3. Itis not always true that kf, - fk; ! Oevenforf 2 CP[- , ]

Exercise 4.4. Find an example illustrating the above Remark.

It took 19 years of his life to prove this theorem

4.2. Fejér's theorem.

Proposition 4.5 (Fejér, age 19) Letf 2 CP[- , ]. Then
Z

(4.3) Fr(x) = Zi f(t)Kn (x- t)dt, where
4.4 Kn(t) = — K
( . ) n() - n+ 1 e [l
k=0m=- k
is theFejér kernel.
Proof. From notation (4.1):
X
fk(x) = H,emien(X)
m= k
Z Eim emx
me k. 2 2

1 X
= 5 f em (V) gt

m=- k
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Then from (4.2):

1 X
Fn(x) = n+1 fk(X)
k=0
Z
1 1 X )
= — f(t em (1 gt
n+12 k=0 ()mz— k
Z 1 X
= = f(t em (- O g,
2 ()n+1k: S

which nishes the proof.

Lemma 4.6. The Fejér kernel i2 -periodicK, (0) = n + 1 and:

2 (n+ 1)t

1 sin
2 fort 622 Z.
n+1 sin 5

(4.5) Kn (t) =

Proof. Let z = €' | then:

K _ 1 X - k 1 k
n(t) = 1 (z "+ + 1+ z+ + z°)
k=0
1 X T
= + - 7
1 (@ iinz,

j=n

by switch from counting in rows to counting in columns in Tabl e 1. Letw = €= 2,

z-l
z2 71

B

z
z 7
TABLE 1. Counting powers in rows and columns

i.e.z= w2, then

1
Kn(t) = n+1(w‘2”+2w‘2”+2+ +(n+ D+ nw?+ +w?)
(4,6): n+1(W_n+W_n+2+ +Wn—2+Wn)2
1 w-n-1. wn+t 2
= Could you sum a geometric progression?
n+1 w-1- w y g prog
S o (n+Dt 2
_ 1 2i sin =
n+1 2i sin} '

if w6 1. For the value of K, (0) we substitute w = 1into (4.6).
The rst eleven Fejér kernels are shown on Figure 10, we could observe that:

Lemma 4.7. Fejer's kernel has the following properties:
(i) Kn(t) > Oforallt 2 Randn 2 N.

. R
(i) Kn(t)ydt = 2 .
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(i) Forany 2 (0, )
Z Z
+ Ky(t)dt! O as n! 1.

Proof. The rst property immediately follows from the explicit formula ( 4.5). In
contrast the second property is easier to deduce from expression with double
sum (4.4):

ZK (t)ydt = £ x e dt
" n+1
k=0m=- k
1 XX z )
= e™ dt
n+1
k=0m=- k
1 X
= 1 2
n k=0
= 2

since the formula (3.1).
Finally if jtj > then sin?(t=2) > sin?(=2) > 0 by monotonicity of sinus on
[0, = 2], so:
1

06 Kn(t)6 (n + 1) sin’(=2)

L 1 4 i
ol 1 o i
5| 1 i
Al 1 . N i

YL 17 4L /\ ]
A 1 i

‘»

"A’M
M‘

?"'{ '
,w (|
Ll

-3-2-10 1 2 3 -3 -2-1.0 1 2 3

-

FIGURE 10. A family of Fejér kernels with the parameter m run-
ning from 0to 9is on the left picture. For a comparison unregu-
larised Fourier kernels are on the right picture.
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implying:
06 Kn(t)dt 6
6jtj6
Therefore the third property follows from the squeeze rule.

Theorem 4.8 (Fejér Theorem). Letf 2 CP[- , ]. Then its Fejer sums;, (4.2) con-
verges in supremum norm toon[- , ]and hence i, norm as well.

- ) |
(n+ si?(=2)

0 as n! 0.

Proof. Idea of the proof: if in the formula ( 4.3)
1 z
Fn (X) = > f(t)Kn (x- t)dt,

t is long way from x, K, is small (see Lemma4.7and Figure 10), for t near x, K,, is
big with total “weight” 2 , so the weighted average of f(t) is near f(x).
Here are details. Using property 4.7(ii) and periodicity of f and K, we could
express trivially
xZ xZ
f(x) = f(x)2i Kn(x- t)dt = 2i fOX)Kn (x- t)dt.

X- X-
Similarly we rewrite ( 4.3) as
1 "z
Fn (X) = > f(t)Kn (x- t)dt,

X-

then
1 “z
Y- R = > (f()- T())Ka(x- 1)dt
X-
xZ
6 > f(x)- f(t)jKn(x- t)dt.
x-
Given > 0 splitinto three intervals: 1; = [x- ,x- ], 12 =[x- ,x+ ],

I3 =[x+ ,x+ ], where ischosen such thatjf(t)- f(x)j< = 2fort 2 I,, which
is possible by czontinuity of f. So

Z
1 . . 1
> I2Jf(x)- f(t)jKn(x- t)dt 6 55 I2Kn(x- t)dt< >
And . z . 7
il if(¥)- F(OjKn(x- t)dt 6 2kfk, =— Ko (x- t)dt
2 I1[ I3 i 22 I1[ I3
= 1 Kn(u)du
< juj<
< A
2

if n is suf ciently large due to property 4.7(iii) of K, . Hencejf(x)- R, (x)j< for
a large n independent of x.

We almost nished the demonstration that e, (t) = (2 ) 172e™ is an orthonor-
mal basis of L,[- , [
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Corollary 4.9 (Fourier series). Letf 2 L,[- , ], with Fourier series
. A
® ; R int Hveﬂ I 1 - int
H,eqieq = Ch € where ¢, = p— = p— f(t)e dt.
n=- 1 n= 1 2 2
P, , P, 4 , _
Thenthe series =, Hf,ejie, = 7, cp€™ convergesin,[- , ]tof,ie
X .
lim f- cne™  =0.
k! 1
n=- k 2

Proof. This follows from the previous Theorem, Lemma 4.1 about density of CP in
L,, and Theorem 3.150n orthonormal basis.

4.3. Parseval's formula. The following result rst appeared in the framework of
L,[- , ]andonly later was understood to be a general property of inne r product
spaces.

Ehleorem 4.10 (Parsgval's formula). If f, g 2 L,[- , ]| have Fourier serie =
L chem g=" 1 d,em then
Z %
4.7) H,gi= f(t)g(t)dt =2 cndn.
-1

n=- n=

More generally iff and g are two vectors of a Hilbert spatewith an orthonormal
basis(e, )}, then
X .
H,gi = chdn, where ¢, = Hf,e i, d, = hg,eqi,
k= 1

are the Fourier coef cients bfandg.

Proof. In fact we could just prove the sec,_(,)nd, more general, stalgament—the rst
one is its particular realisation. Let f, = [_  cexandgn = ., deex will
be partial sums of the corresponding Fourier series. Then fr om orthonormality of
(en) and linearity of the innsr product:
+
_ X X x o
Hn,oni = Ck € deex = Ck d -
k=- n k=- n k=-n

This formula together with the facts that fy ! f and gk ! g (following from
Corollary 4.9) and Lemma about continuity of the inner product implies the asser-
tion.

Corollary 4.11. A integrable function& belongs td,[- , ]if and only if its Fourier
series is convergent and thefk? = 2 _11 jcka.

P
Proof. The necessity, i.e. implicationf 2 L, ) h f,fi = kfk? = 2 jcka, follows
from the previous Theorem. The suf ciency follows by Riesz—Fisher Theorem

Remark4.12 The actual réle of the Parseval's formula is shadowed by the or-
thonormality and is rarely recognised until we meet the waveletsor coherent states
Indeed the equality (4.7) should be read as follows:

Theorent.13 (Modi ed Parseval) . ThemaW :H! °, given by the formul@wf](n) =
Hf, eni is an isometry for any orthonormal bagis, ).
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We could nd many other systems of vectors (ey), x 2 X (very different from or-
thonormal bases) such thatthe map W : H ! L,(X) given by the simple universal
formula

(4.8) [WF](x) = Hf, ei

will be an isometry of Hilbert spaces. The map ( 4.8) is oftenly called wavelet trans-
formand most famous is the Cauchy integral formulan complex analysis. The ma-

jority of wavelets transforms are linked with group representationsee our post-
graduate course Wavelets in Applied and Pure Maths

Heat and noise but nota re?
Answer:  salag Ialno4 Jo uoneolddy,

4.4. Some Application of Fourier Series. We are going to provide now few ex-

amples which demonstrate the importance of the Fourier seri esin many questions.
The rst two (Example 4.14and Theorem 4.15 belong to pure mathematics and
last two are of more applicable nature.

Example 4.14. Letf(t)= ton[- , ]. Then
z
H,e i = te” ™ dt= (check!),

P ' .
sof(t) 1, (- )"(i=n)€™ . By a direct integration:

2 ‘ 2 2 3
kfk; = t°dt = —.
2 3
On the other hand by the previous Corollary :
X (.1 2 X
g=2 DT, 7 1
n ~.n
n6o0 n=1
Thus we get a beautiful formula
X 1 2
26

1
Here is another important result.

Theorem 4.15 (Weierstrass Approximation Theorem) . For any functionf 2 C[a, b]
and any > Othere exists a polynomiglsuch thatkf - pk, <

Proof. Change variable: t = 2 (x - %)z(b - a) thismaps x 2 [a,b]onto t 2
[- , ]. Let P denote the subspace of polynomials in C[- , ]. Thene™ 2 P
for any n 2 Z since Taylor series converges uniformly in [- , ]. Consequently P
contains the closed linear span in (supremum norm) of €™  anyn 2 Z, which is
CP[- , ]bythe Fejér theorem. Thus P CP[- , ]and we extend that to non-
periodic function as follows (why we could not make use of Lem ma 4.1 here, by
the way?).

Forany f 2 C[- , ]llet = (f()- f(- ))=(2 ) then fi(t) = f(t)- t 2
CP[- , ]and could be approximated by a polynomial p;(t) from the above dis-
cussion. Thenf(t) is approximated by the polynomial p(t) = p1(t)+ t.

It is easy to see, that the role of exponentse™ in the above prove is rather
modest: they can be replaced by any functions which has a Taylor expansion. The
real glory of the Fourier analysis is demonstrated in the two following examples.
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Example 4.16. The modern history of the Fourier analysis starts from the wo rks
of Fourier on the heat equation. As was mentioned in the intro duction to this part,
the exceptional role of Fourier coef cients for differenti al equations is explained

by the simple formula @e™ = ine™ . We shortly review a solution of the heat
equationto illustrate this.
Let we have a rod of the length 2 . The temperature at its point x 2 [- , ]

and amomentt 2 [0,1 ) is described by a function u(t,x)on[0,1) [- , ]. The
mathematical equation describing a dynamics of the tempera ture distribution is:

@4t,x) _ @ul(t,x)
@ @R
For any xed moment tg the function u(tp,x) depends only from x 2 [- , ]and

according to Corollary 4.9could be represented by its Fourier series:

(4.9) or, equivalently, @- @ u(t,x)= 0.

u(to,x) = hu,enie, = Cn (to)e™ |
n= 1 n= 1
where
hu,eqi 1 z i
Cn (to) = —92:” = P u(to,x)e” ™ dx,

with Fourier coef cients ¢, (tp) depending from tq. We substitute that decompos-
ition into the heat equation ( 4.9) to receive:

s )
@- @ ut,x)= @- @ cn (t)e™
n= 1
X )
- @_ @ Cn(t)e'”x
n= 1
s )
(4.10) = (c2(t) + n?cy (1)) €™ = 0.
n= 1

Since function €™ form a basis the last equation (4.10) holds if and only if
(4.11) c2(t)+ n%c,(t)= 0  forall nandt.

Equations from the system (4.11) have general solutions of the form:
(4.12) cn () = cn (0)e " forall t 2 [0,1),
producing a general solution of the heat equation ( 4.9) in the form:

X o X b
(4.13) u(t,x) = c, (0)e "te™ = cy (0)e Mt
n=- 1 n= 1

where constant ¢, (0) could be de ned from boundary condition. For example,
if it is known that the initial distribution of temperature w asu(0,x) = g(x) for a
function g(x) 2 L,[- , ]then c, (0) is the n-th Fourier coef cient of g(x).

The general solution (4.13 helps produce both the analytical study of the heat
equation (4.9) and numerical simulation. For example, from ( 4.13 obviously fol-
lows that

the temperature is rapidly relaxing toward the thermal equi librium with
the temperature given by co(0), however never reach it within a nite
time;

the “higher frequencies” (bigger thermal gradients) have a bigger speed
of relaxation; etc.
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FIGURE 11. The dynamics of a heat equation:
x—coordinate on the rod,

t—time,

T—temperature.

The example of numerical simulation for the initial value pr oblem with g(x) =
2cog2 u)+ 1.5sin(u). Itis clearly illustrate our above conclusions.

Example 4.17. Among the oldest periodic functions in human culture are aco ustic
waves of musical tones. The mathematical theory of musics (including rudiments
of the Fourier analysis!) is as old as mathematics itself and was highly respected
already in Pythagoras' schoohore 2500 years ago.

[ [ [
0 100 200 300

FIGURE 12. Two oscillation with unharmonious frequencies and
the appearing dissonance. Click to listen the blue and green pure
harmonics and red dissonance.

The earliest observations are that

(i) The musical sounds are made of pure harmonics (see the blue and green
graphs on the Figure 12), in our language cosand sin functions form a
basis;

(ii) Not every two pure harmonics are compatible, to be their frequencies
should make a simple ratio. Otherwise the dissonance (red gr aph on Fig-
ure 12) appears.

The musical tone, say G5, performed on different instrument s clearly has some-
thing in common and different, see Figure 13 for comparisons. The decomposi-
tion into the pure harmonics, i.e. nding Fourier coef cien t for the signal, could
provide the complete characterisation, see Figure 14.
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FIGURE 13. Graphics of G5 performed on different musical in-
struments (click on picture to hear the sound). Samples are taken
from Sound Library .
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FIGURE 14. Fourier series for G5 performed on different musical
instruments (same order and colour as on the previous Figure)

The Fourier analysis tells that:

(i) All sound have the same base (i.e. the lowest) frequencies which corres-
ponds to the G5 tone, i.e. 788 Gz.
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(i) The higher frequencies, which are necessarily are multiples of 788 Gz
to avoid dissonance, appears with different weights for dif ferent instru-
ments.

The Fourier analysis is very useful in the signal processing and is indeed the
fundamental tool. However it is not universal and has very se rious limitations.
Consider the simple case of the signals plotted on the Figure 15(a) and (b). They
are both made out of same two pure harmonics:

(i) On the rst signal the two harmonics (drawn in blue and gre en) follow
one after another in time on Figure 15(a);

(i) They just blended in equal proportions over the whole in terval on Fig-
ure 15(b).

2 Frndtnnd 27 1 |
N u L ‘ I
Il H | |

500—

400+

300

200

FIGURE 15. Limits of the Fourier analysis: different frequencies
separated in time

This appear to be two very different signals. However the Fou rier performed
over the whole interval does not seems to be very different, s ee Figure 15(c). Both
transforms (drawn in blue-green and pink) have two major pik es corresponding
to the pure frequencies. It is not very easy to extract differ ences between signals
from their Fourier transform (yet this should be possible ac cording to our study).

Even a better picture could be obtained if we use windowed Fourier transform
namely use a sliding “window” of the constant width instead o  f the entire interval
for the Fourier transform. Yet even better analysis could be obtained by means of
waveletsalready mentioned in Remark 4.12in connection with Plancherel's for-
mula. Roughly, wavelets correspond to a sliding window of a v ariable size—
narrow for high frequencies and wide for low.

5. DUALITY OF LINEAR SPACES
Everything has another side
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Orthonormal basis allows to reduce any question on Hilbert s pace to a question
on sequence of numbers. This is powerful but sometimes heavy technique. Some-
time we need a smaller and faster tool to study questions whic h are represented
by a single number, for example to demonstrate that two vecto rs are different it is
enough to show that there is a unequal values of a single coord inate. In such cases

linear functionalsare just what we needed.
—ls it functional?
—Yes, it works!

5.1. Dual space of a normed space.

De nition 5.1. A linear functionalon a vector spaceV is a linear mapping :V'!
C(or :V! Rintherealcase),i.e.

(ax+ by)=a (X)+ b (y), forall x,y 2V and a,b2 C.
Exercise 5.2. Show that (0) is necessarily 0.

We will not consider any functionals but linear, thus bellow functional always
means linear functional

Example 5.3. (i) LetV = C" andc,k = 1,...,n be complex numbers. Then
((X1,...,Xn)) = C1X1 + + CoXs is a linear functional.

R
(i) On C[0, 1] afunctional is givenby (f) = f(t)dt.
0

(i) On a Hilbert space H for any x 2 H a functional  is given by x(y) =

hy, xi.

Theorem 5.4. LetV be a normed space ands a linear functional. The following are
equivalent:
(i) is continuous (at any point of).
(i)  is continuous at poinD.
(iii) supfj (x)j:kxk 6 1g< 1 ,i.e. is abounded linear functional .

Proof. Implication 5.4(i)) 5.4(ii) is trivial.
Show 5.4(ii)) 5.4(iii). By the de nition of continuity : forany > Othere exists
> Osuchthatkvk < impliesj (v)- (0)j< .Take = 1thenj (x)j< 1for
all x with norm less than 1becausek x k < . But from linearity of  the inequality
j (x)j< 1limpliesj (X)j< 1= < 1 forall kxk6 1.
5.4(iif) ) 5.4(i). Let mentioned supremum be M. For any X,y 2 V such that
X 6 y vector (x- y)=kx- ykhasnorm 1. Thusj ((x- y)=kx- yk)j<M . By the
linearity of  this implies that j (x)- (y)j <M kx- yk. Thus is continuous.

De nition5.5. Thedual spac& of a normed space X is the set of continuous linear
functionals on X. De ne a norm on it by

(5.1) k k= supj (X)j.
kxk6 1
Exercise 5.6. (i) Show that X is a linear space with natural operations.

(i) Show that (5.1) de nesanormon X .
(i) Showthat j (x)j6 k k kxkforall x2 X, 2 X .

Theorem 5.7. X is a Banach space with the de ned norm (evexas incomplete).

Proof. Due to Exercise 5.6 we only need to show that X is complete. Let ( )
be a Cauchy sequence inX , then for any x 2 X scalars ,(x) form a Cauchy
sequence, sincg m(X)- n(X)j6 k m - nk kxk. Thus the sequence has a limit
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and wedene by (x)=Ilim, 1 ,(x). Clearly is alinear functional on X.
We should show that it is bounded and ! . Given > Othere exists N such
thatk - mk< foralln,m> N. Ifkxk 6 1thenj (X)- m(x)j6 ,let
m! 1 thenj ,(X)- (X)j6 ,so

J ¥i6] an(j+ 6k nk+
i.,e.k kis niteand k ,- k6 ,thus ,!

De nition 5.8. The kernel of linear functional , write ker , is the set all vectors
x 2 Xsuchthat (x)= 0.

Exercise 5.9. Show that
(i) ker isasubspace ofX.
(i) If 6 Othen ker is apropersubspace ofX.
(iii) If is continuous then ker is closed.

Study one and get any other for free!
Hilbert spaces sale

5.2. Self-duality of Hilbert space.

Lemma 5.10(Riesz—Fréchet) LetH be a Hilbert space anda continuous linear func-
tional onH, then there exists the unique 2 H such that (x) = hx,yi for allx 2 H.
Alsok k, = kyky.

Proof. Uniqueness: if x,yi = lx,y%,h x,y- y% = Oforall x2 Htheny - yCis
self-orthogonal and thus is zero (Exercise 3.2(i)).

Existence: we may assume that 6 0 (otherwise take y = 0), then M = ker is
a closedpropersubspace ofH. SinceH = M M7, there exists a non-zeroz2 M7,
by scaling we could get (z) = 1. Then for any x 2 H:

x=(x- (X)2)+ (X)z, with x- (X)z2 M, (X)z2M?~.

Becausehx,zi = (X)hz,zi = (x)kzk? forany x 2 H we sety = z=kzk?.
Equality of the norms k k, = kyk, follows fromthe Cauchy—Bunyakovskii-Schwarz
inequality inthe form (x) 6 kxk kykand the identity (y=kyk) = kyk.

R
Example 5.11. On L,[0,1]let (f)= f,t2 = f(t)t2dt. Then
0

OZ 14

k k= t2 = @ (t?)2dtA :pl—g.
0

6. OPERATORS

All the space's a stage,
and all functionals and operators merely players!

All our previous considerations were only a preparation of t he stage and now
the main actors come forward to perform a play. The vectors sp aces are not so
interesting while we consider them in statics, what really m ake them exciting is
the their transformations. The natural rst steps is to cons ider transformations
which respect both linear structure and the norm.
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6.1. Linear operators.

De nition 6.1. A linear operatoiT between two normed spaces X and Y is a map-
ping T: X! YsuchthatT(v + u)= T(v)+ T (u). The kernel of linear operator
ker T and imageare de ned by

kerT=1fx2 X:Tx= 0g ImT=1fy2Y:y=Tx forsomex 2 Xg

Exercise 6.2. Show that kernel of T is a linear subspace of X and image of T is a
linear subspace of Y.

As usual we are interested also in connections with the second (topological)
structure:

De nition 6.3. A norm of linear operatas de ned:
(6.1) KTk = supfkTxk, : kxk, 6 1g

T is abounded linear operatdrkTk = supfkTxk : kxkg< 1 .
Exercise 6.4. Show that KTxk 6 kTk kxk forall x 2 X.

Example 6.5. Consider the following examples and determine kernel and im ages
of the mentioned operators.

(i) On anormed space X de ne the zero operatoto a spaceY by Z :x! Ofor
all x 2 X. lts normis 0.

(i) Onanormed space X de ne the identity operatotby [x :x ! xforall x 2 X.
Its normis 1.

(i) On a normed space X any linear functional de ne a linear operator from
X'to C, its norm as operator is the same as functional.

(iv) The set of operators from C" to C™ is given by n  m matrices which
acts on vector by the matrix multiplication. All linear oper ators on nite-
dimensional spaces are bounded.

(v) On °,, let S(x1,X2,...) = (0,X1, X2, ...) be the right shift operator Clearly
kSxk = kxk for all x, sokSk = 1.

(vi) On L,[a,b], let w(t) 2 C[a,b] and de ne multiplication operatorM ,, f by
(M F)(t) = w(t)f(t). Now:

E
KMy k2 = jw(t)j?jf (1)} dt
a

E

6 K2 jf(t)j2 dt, where K= kwk; = supjw(t)j,

[a.b]
a

sokM k 6 K.

Exercise 6.6. Show that for multiplication operator in fact there is the
equality of norms kM, k, = kw(t)k, .

Theorem 6.7. LetT : X! Ybe alinear operator. The following conditions are equitale
(i) Tis continuous orX;
(i) T is continuous at the poind.
(i) Tis abounded linear operator.

Proof. Proof essentially follows the proof of similar Theorem 5.4.
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6.2. B(H) as a Banach space (and even algebra).

Theorem 6.8. Let B(X,Y) be thespace of bounded linear operators from X and Y
with the normde ned abovelf Y is complete, theB(X, Y) is a Banach space.

Proof. The proof repeat proof of the Theorem 5.7, which is a particular case of the
present theorem for Y = C, see Example6.5(iii).

Theorem 6.9. LetT 2 B(X,Y) andS 2 B(Y, Z), whereX, Y, andZ are normed spaces.
ThenST 2 B(X, Z) andkSTk 6 kSkKkTk.

Proof. Clearly (ST)x = §(Tx) 2 Z, and
kSTX 6 kSKKTxk 6 kSkkTk kxk,
which implies norm estimation if kxk 6 1.

Corollary 6.10. LetT 2 B(X, X) =B(X), whereX is a normed space. Then for any
n>1T" 2 B(X) andkT"k 6 kTk".

Proof. It is induction by n with the trivial base n = 1 and the step following from
the previous theorem.

Remarl6.11 Some texts use notationsL(X, Y) and L(X) instead of ours B(X, Y) and
B(X).

De nition 6.12. Let T 2 B(X,Y). We say T is an invertible operatoif there exists
S 2 B(Y, X) such that

ST= Ix and TS=lv.
Such anSis called the inverse operatoof T.

Exercise 6.13. Show that

(i) for aninvertible operator T:X! Y we have kerT = fOgand =T = .
(i) the inverse operator is unique (if exists at all). (Assu me existence ofSand
SO then consider operator STS.)

Example 6.14. We consider inverses to operators from Exercise 6.5.

(i) The zero operator is never invertible unless the patholo gical spacesX =
Y = fOg

(i) The identity operator |x is the inverse of itself.

(iii) A linear functional is not invertible unless it is non- zero and X is one di-
mensional.

(iv) Anoperator C" I C™ isinvertible if and only if m = n and correspond-
ing square matrix is non-singular, i.e. has non-zero determ inant.

(v) Therightshift Sis notinvertible on °, (itis one-to-one but is not onto). But
the left shift operatoi (X1, X2, ...) = ( X2,Xs,...) isits left inversei.e. TS= |
but TS6 | since ST(1,0,0,..) =(0,0,..). Tis notinvertible either (it is
onto but not one-to-one), however Sis its right inverse

(vi) Operator of multiplication M, is invertible if and only if w~ ! 2 CJa, b]
and inverse is M - 1. For example M 1. is invertible L,[0,1] and M. is
not.

6.3. Adjoints.

Theorem 6.15. Let H and K be Hilbert Spaces and@l 2 B(H,K). Then there exists
operatofT 2 B(K, H) such that

hrh, ki, = th, T ki forall h2H, k2K
SuchT is called theadjoint operator of T. AlsoT = T andkT k = kTk.
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Proof. For any xed k 2 K the expressionh :! h Th, ki, de nes a bounded linear
functional on H. By the Riesz—Fréchet lemmathere is a uniquey 2 H such that
HTh ki, = hh,yi, forall h2 H.Dene T k = y then T islinear:

, T ( 1k + 2ko)iy = HTh, 1ki+ okoig
1hTh ki + 2 HTh, ki
1, T kiig + 2, T Kaig
= t, 1T ki + 2T kaiy
SoT ( 1ky + 2kp)= 1T ki + 2T ko. T isdenedby rk, T hi = hrl k,hi and
the identity hT h,ki = bh, T ki = hTh,ki forall h and k shows T = T. Also:
KT kk? = HT k, T ki = h, TT Ki
6 kkk KTT kk6 kkk kTk KT kk,

which implies kT kk 6 kTk kkk, consequently kKT k 6 kTk. The opposite inequal-
ity follows from the identity kTk = kT k.

Exercise 6.16. (i) For operators T; and T, show that
(MT) =T,T,, (M+T) =T, +T, (T) =T .
(ii) If A is an operator on a Hilbert space H then (kerA)? = ImA .
6.4. Hermitian, unitary and normal operators.
De nition 6.17. Anoperator T : H! H is a Hermitian operatoror self-adjoint oper-
atorif T=T ,i.e.hTx yi = hx, Tyi forall x,y 2 H.

Example 6.18. (i) On °, the adjoint S to the right shift operator Sis given by
the left shift S = T, indeed:
hSx, yi h(0,X1,X2,...),(Y1,Y2,...)i
X1y2 + Xoy3+ = h(X1,X2,...),(Y2,¥3,...)i
= hTyi.
Thus Sis not Hermitian.
(i) Let D be diagonal operatoon ~, given by
D(X]_, X2, .. ) = ( 1X1, 2X2,.. )
where ( ) is any bounded complex sequence. It is easy to check that
kDk = k( n)k, = sup.j «jand
D (Xl,Xz, .. ) = ( 1X1, 2X2,.. .),

thus D is Hermitian ifand only if ¢ 2 R for all k.

@iy If T:C" ! C" is represented by multiplication of a column vector by
a matrix A, then T is multiplication by the matrix A —transpose and
conjugate to A.

Exercise 6.19. Show that for any bounded operator T operators T; = %(T T),
T Tand TT are Hermitians.
Theorem 6.20. LetT be a Hermitian operator on a Hilbert space. Then

kTk = sup JhT X, xij.
kxk=1
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Proof. If Tx= Ofor all x 2 H, both sides of the identity are 0. So we suppose that
9x 2 H for which Tx6 0.

We see thatjhTx, xij 6 kTxkkxk 6 KTk X? , SOSUP=1jHTX Xij 6 kTk. To get
the inequality the other way around, we rstwrite S := Supk= 1 JhT X Xij. Then for
any x 2 H, we have jiTx, xij6 s x? .

We now consider
AT(x + y),x+ yi = AT xi+ AT x yi+ hTy,xi+ hTy,yi = hTx, Xi+2< hTx, yi+hTy, yi
(becauseT being Hermitian gives hTy,xi = hy, Txi = hTx,yi) and, similarly,

AT(x- y),x- yi = ATx xi - 2< hTx yi + hTy, yi .
Subtracting gives
4< HTx yi = hT(X + y), X+ yi- hT(X- y),X- yi 6 s(kx+ yk?+kx- yk?) = 2s(kxk?+kyk?),
by the parallelogram identity.

Now, for x 2 H such that Tx 6 0, we put y = KTxk Lkxk Tx. Then kyk = kxk
and when we substitute into the previous inequality, we get

4KTxkkxk = 4< HTx,yi 6 4s x? ,

SokTxk 6 skxk and it follows that kTk 6 s, as required.

De nition 6.21. We say thatU : H ! H is aunitary operatoron a Hilbert space H
fu =U YieUU=UU =I.

Example 6.22. () fD:,! °,isadiagonal operator suchthatDey = e,
thenD e = gex and D is unitary ifand only if j «j= 1for all k.
(i) The shift operator Ssatises S S= | but SS 6 | thus Sis not unitary.

Theorem 6.23. For an operatolJ on a complex Hilbert spac¢¢ the following are equi-
valent:
(i) U is unitary;
(ii) U is surjection and amsometry, i.e.kUxk = kxk for allx 2 H;
(iii) U is a surjection and preserves the inner product, lilgx, Uyi = hx,yi for all
X,y 2 H.

Proof. 6.23(i)) 6.23(ii). Clearly unitarity of operator implies its invertibility a nd
hence surjectivity. Also

kUxk® = HUx, Uxi = hx,U Uxi = hx, xi = kxk®.
6.23(ii)) 6.23(iii). Using the polarisation identity (cf. polarisation in equa tion (2.6)):
AhTxyi = hI(x+y),x+yi+iHAT(x+iy),x+iyi
- hT(X- y),x- yi- ihT(x- iy),x- iyi.
X3

= i
k=0

K oT(x+ i), x + iky
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TakeT= U UandT = I, then

x3
4hJ Ux,yi = ik U UKx+iky),x+iky
k=0
= i U+ iky),Ux+iky)
k=0
x3
= i (x+ %), (x+ iky)
k=0
= 4hx,yi.
6.23(iii)) 6.23(i). Indeed hU Ux,yi = hx,yi implies (U U- I)x,yi = 0 for all
X,y 2 H, thenU U = |. SinceU should be invertible by surjectivity we see that

u=u1t
De nition 6.24. A normal operatofl is one forwhich T T=TT .

Example 6.25. (i) Any self-adjoint operator T is normal, since T = T.
(i) Any unitary operator U isnormal, sinceU U= 1= UU .
(i) Any diagonal operator D is normal , since Dex = yex,D e = ek, and
DD e = D Deyg :j kaek.
(iv) The shift operator Sis not normal.
(v) A nite matrix is normal (as an operator on %) if and only if it has an
orthonormal basis in which it is diagonal.

Remark6.26 Theorems 6.20and 6.23(ii) draw similarity between those types of
operators and multiplications by complex numbers. Indeed T heorem 6.20 said
that an operator which signi cantly change direction of vec tors (“rotates”) cannot
be Hermitian, just like a multiplication by a real number sca les but do not rotate.
On the other hand Theorem 6.23(ii) says that unitary operator just rotate vectors
but do not scale, as a multiplication by an unimodular comple x number. We will
see further such connections in Theorem 7.17.

7. SPECTRAL THEORY

Beware of ghosts2 in this area!

As we saw operators could be added and multiplied each other, in some sense
they behave like numbers, but are much more complicated. In t his lecture we
will associate to each operator a set of complex numbers which re ects certain
(unfortunately not all) properties of this operator.

The analogy between operators and numbers become even more deeper since
we could construct functions of operatorg¢called functional calculu} in a way we
build numeric functions. The most important functions of th is sort is called re-
solvent(see De nition 7.5). The methods of analytical functions are very powerful
in operator theory and students may wish to refresh their kno wledge of complex
analysis before this part.

7.1. The spectrum of an operator on a Hilbert space. An eigenvalue of operator
T 2 B(H) is a complex number such that there exists a nonzerox 2 H, called
eigenvectowith property Tx= X, in other words x 2 ker(T- ).

In nite dimensions T- | isinvertible if and only if  is not an eigenvalue. In
in nite dimensions it is not the same: the right shift operator Sis not invertible
but Ois not its eigenvalue becauseSx = 0implies x = 0 (check!).
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De nition 7.1. The resolvent set (T) of an operator T is the set
(M=f 2C:T- 1 isinvertible g
The spectrum of operatdr 2 B(H), denoted (T), is the complement of the resolvent
set (T):
(M=f 2C:T- | isnot invertible g

Example 7.2. If H is nite dimensional the from previous discussion follows t hat
(T) is the set of eigenvalues of T for any T.

Even this example demonstrates that spectrum does not provi de a complete de-
scription for operator even in nite-dimensional case. For example, both operators
in C? given by matrices 8 8 and 2 8 have a single point spectrum fOg
however are rather different. The situation became even wor st in the in nite di-

mensional spaces.

Theorem 7.3. The spectrum (T) of a bounded operatdris a nonempty compact (i.e.
closed and bounded) subse€Cof

For the proof we will need several Lemmas.

Lemma 7.4. LetA 2 B(H). If KAk < 1thenl - A is invertible inB(H) and inverse is
given by theNeumann series (C. Neumann, 1877):

*
(7.1) (I- Ay T=1+A+A2Z+ A%+ .. = AK
k=0

Proof. De ne the sequence of operators B, = | + A+  + AN —the partial sums
of the in nite series ( 7.1). Itis a Cauchy sequence, indeed:

kB, - Bnk = AM™*l4 AMF24 0 4 AN (ifn<m)
6 A™*l 4+ AM*2Z 4 4 KAk
6 KAK™*1+ KAK™TZ+ 4+ KAK"

kAK™* 1
6 —<
1- kAk
for a large m. By the completenessof B(H) there is a limit, say B, of the sequence
B, . Itis a simple algebra to check that (I - A)B, = B,(I- A)=1- A"*1 passing
to the limit in the norm topology, where A"*11 OandB, ! B we get:
(I- A)DBB=B(I- A)=1 , B=(l- AL

De nition 7.5. The resolventof an operator T is the operator valued function
de ned on the resolvent set by the formula:

(7.2) R(,T)=(T- 1)L
Corollary 7.6. @) Ifj j> kTkthen 2 (T), hence the spectrum is bounded.
(i) The resolvent set(T) is open, i.e forany 2 (T) then there exist> 0 such
thatall withj - j< arealsoin (T), i.e. the resolvent set is open and the

spectrum is closed.
Both statements together imply that the spectrum is compact

Proof. (i) Ifj j> kTkthen - T < landtheoperatorT- | =- (I- ~1T)
has the inverse

bS
(7.3) RO, M)=(T- 1)t=- - k- 1k
k=0



INTRODUCTION TO FUNCTIONAL ANALYSIS 43

by the previous Lemma.

(i) Indeed:
T-1 = T-1+( - )l
= (T- DU+ - NT-1)H.
The last line is an invertible operator because T - | is invertible by the
assumptionand I +( - )(T- 1) Yisinvertible by the previous Lemma,

since ( - )T- 1)yt <1if < (T- 1)?t.

Exercise 7.7. (i) Prove the rst resolvent identity:
(7.4) RC.,T- RC.T=(C - JRC,DRC.,T)
(i) Use the identity ( 7.4)to showthat (T- 1) 1! (T- 1) tas !
(i) Use the identity ( 7.4) to show that for z 2 (t) the complex derivative

diZR(z, T) of the resolvent R(z, T) is well de ned, i.e. the resolvent is an
analytic function operator valued function of  z.

Lemma 7.8. The spectrum is non-empty.

Proof. Let us assume the opposite, (T) = ? then the resolvent function R( ,T) is
well de ned for all 2 C. As could be seen from the von Neumann series (7.3
kR( ,T)k ! Oas ! 1. Thus for any vectors x, y 2 H the function f( ) =
hR( ,T)x,y)i is analytic (see Exercise7.7(iii)) function tensing to zero at in nity.
Then by the Liouville theorem from complex analysis R( ,T) = 0, which is im-
possible. Thus the spectrum is not empty.

Proof of Theorem.3. Spectrum is nonempty by Lemma 7.8and compact by Corol-
lary 7.6.

Remark7.9. Theorem 7.3 gives the maximal possible description of the spectrum,
indeed any non-empty compact set could be a spectrum for some bounded oper-
ator, see ProblemA.23.

7.2. The spectral radius formula. The following de nition is of interest.
De nition 7.10. The spectral radiuof T is
r(T)=supfj j: 2 (T)g

From the Lemma 7.6(i) immediately follows that r(T) 6 kTk. The more accurate
estimation is given by the following theorem.

Theorem 7.11. For a bounded operatdrwe have
(7.5) r(m=lim k1" K="
We start from the following general lemma:

Lemma 7.12. Let a sequenc@,, ) of positive real numbers satis es inequalitie®:6
am+n 6 am + ap forallm andn. Then there is a Iimitliml (an =n) and its equal to
n:

iﬂf (an=n).
Proof. The statements follows from the observation that forany n and m = nk + |

with 06 | 6 n we have a, 6 ka, + la; thus, for big m we got a,=m 6 a,=n+
la;=m 6 a,=n+
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Proof of Theorem.11 The existence of the limit lim,, 1 KT" K" in (7.5 follows
from the previous Lemma since by the Lemma 6.9logkT"* ™k 6 logkT" k+logkT™ k.
Now we are using some results from the complex analysis. The L aurent series for
the resolvent R( , T) in the neighbourhood of in nity is given by the von Neumann
series (7.3). The radius of its convergence (which is equal, obviously, to r(T)) by

the Hadamard theorem is exactly lim,, 1 kT" KN
Corollary 7.13. There exists 2 (T) such that j= r(T).

Proof. Indeed, as its known from the complex analysis the boundary o f the con-
vergence circle of a Laurent (or Taylor) series contain a singular point, the singular
point of the resolvent is obviously belongs to the spectrum.

Example 7.14. Let us consider the left shift operator S, forany 2 C such that
j j< 1lthevector (1, , 2, 3,...)isin ", and is an eigenvector of S with eigen-
value ,sotheopenunitdisk j j< 1belongsto (S ). Onthe other hand spectrum
of S belongs to the closed unit disk j j 6 1sincer(S) 6 kS k = 1. Because spec-
trum is closed it should coincide with the closed unit disk, s ince the open unit disk
is dense init. Particularly 12 (S ), butitis easy to see thatlis not an eigenvalue
of S.

Proposition 7.15. For anyT 2 B(H) the spectrum of the adjoint operator i§T ) =
f: 2 (Mo

Proof. If (T- 1)V = V(T- | )= Ithebytakingadjoints V (T - 1)=(T- 1)V =
I.So 2 (T)implies 2 (T ), usingthe property T = T we could invert the
implication and get the statement of proposition.

Example 7.16. In continuation of Example 7.14using the previous Proposition we
conclude that (S) is also the closed unit disk, but Sdoes not have eigenvalues at
all!

7.3. Spectrum of Special Operators.

Theorem 7.17. (i) If Uisaunitary operator then(U) fjzj = 1g
(i) If Tis Hermitianthen (T) R.
Proof. (i Ifjj>1then ~U < landthen | - U= (I- ~U)is
invertible, thus 62 (U). Ifj j< 1thenkU k< landthen | - U =
U(U - 1) is invertible, thus 62 (U). The remaining set is exactly
fz:jzj= 1g

(ii) Without lost of generality we could assume that kTk < 1, otherwise we
could multiply T by a small real scalar. Let us consider the Cayley trans-
formwhich maps real axis to the unit circle:

U=(T- il)(T+il) %

Straightforward calculations show that U is unitary if T is Hermitian.
Let us take 62R and 6 - i (this case could be checked directly by
Lemma 7.4). Then the Cayley transform = ( - i)( +i) *of isnoton
the unit circle and thus the operator

U- | =(T-0l)T+il) 2= - +i)yY=2( +i)y XT- 1 )(T+il)?
is invertible, which implies invertibility of T- |.So 62R.

The above reduction of a self-adjoint operator to a unitary o ne (it can be done
on the opposite direction as well!) is an important tool whic h can be applied in
other questions as well, e.g. in the following exercise.
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Exercise 7.18. (i) Show that an operator U : f(t) 7! e f(t) on L,[0,2 ]is
unitary and has the entire unit circle fjzj = 1gas its spectrum .
(ii) Find a self-adjoint operator T with the entire real line as its spectrum.

8. COMPACTNESS

It is not easy to study linear operators “in general” and ther e are many ques-
tions about operators in Hilbert spaces raised many decades ago which are still
unanswered. Therefore it is reasonable to single out classes of operators which
have (relatively) simple properties. Such a class of operators more closed to nite

dimensional ones will be studied here. )
These operators are so compact that we even can t them in

our course

8.1. Compact operators. Let us recall some topological de nition and results.

De nition 8.1. A compact seih a metric space is de ned by the property that any
its covering by a family of open sets contains a subcovering by a nite subfamily.

In the nite dimensional vector spaces R" or C" there is the following equival-
ent de nition of compactness (equivalence of 8.2(i) and 8.2(ii) is known as Heine—
Borel theorem

Theorem 8.2. IfasetEin R" or C" has any of the following properties then it has other
two as well:
(i) Eis bounded and closed;
(i) Eis compact;
(iii) Any in nite subset ofE has a limiting point belonging té&.

Exercise 8.3. Which equivalences from above are not true any more inthe in  nite
dimensional spaces?

De nition 8.4. Let X and Y be normed spaces,T 2 B(X,Y) is a nite rank operatorif
Im Tis a nite dimensional subspace of Y. T is acompact operatéfwhenever (x;)1
is a bounded sequence in X then its image (Tx )i has a convergent subsequence
inY.

The set of nite rank operators is denote by F(X,Y) and the set of compact
operators—by K(X,Y)

Exercise 8.5. Show that both F(X, Y) and K(X,Y) are linear subspaces ofB(X, Y).
We intend to show that F(X,Y) K(X,Y).

Lemma 8.6. LetZ be a nite-dimensional normed space. Then there is a nuiikand a
mappingS: Y ! Z which is invertible and such th& andS ! are bounded.

Proof. The proof is given by an explicit construction. Let N = dimZ and z, 7y, ...,
zy be abasisinZ. Let us de ne

X
S\y ' Z by S(al!aZI-'-yaN): aka,
k=1
then we have an estimation of norm:
X X
kSak = akzk 6 jakj kzk k
k=1 | k=1 '
X 2' 1=2 2- 1=2
6 jak] kzy k
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P 2 172 , :
SokSk 6 1 kzk and Sis continuous.

Clearly S has the trivial kernel, particularly kSak > 0 if kak = 1. By the
Heine—Borel theorem the unit sphere in *} is compact, consequently the continu-
ous function a 7! ¥ ayzc attains its lower bound, which has to be positive.
This means there exists > 0such that kak = 1implies kSak > , or, equivalently
if kzk < then S 'z < 1. Thelatermeansthat S ! 6 - !andboundedness
of S 1.

Corollary 8.7. For any two metric spacesandY we have=(X,Y) K(X,Y).

Proof. Let T 2 F(X,Y), if (xn)1 is a bounded sequence inX then (Tx,)} Z =
Im T is also bounded. LetS: ) ! Z be a map constructed in the above Lemma.
The sequence(S 1Tx,)} is bounded in ") and thus has a limiting point, say ao.
Then Say is a limiting point of (Tx, )7 .

There is a simple condition which allows to determine which d iagonal operat-
ors are compact (particularly the identity operator |xis notcompactif dmX= 1 ):

Proposition 8.8. LetT is adiagonal operatcand given by identitie3 g, = e, forall
n in a basise, . T is compactif and only if, ! 0.

Proof. If , 6! Othen there exists a subsequence ,, and > Osuchthatj , j>
for all k. Now the sequence (e,, ) is bounded but itsimage T&,, = n,en, hasno
convergent subsequence because for anyk 6 I:

N A P
k nkenk - nlenlk:(J nkJZ+J n|12)1_2> 2 ’

i.e. T, is nota Cauchy sequence, see Figurel6.

€

2€2

€2 €

1€1
€1

FIGURE 16. Distance between scales of orthonormal vectors

For the converse, note thatif , ! 0then we can de ne a nite rank operator
Tm, m > 1—m-“truncation” of T by:

Te, = e, 16 N6 m;

(8.1) Tmen = 0, n>m

Then obviously
0, 16 n6 m;
n€, N>m,
and KT- Tnk = supysy jnj! Oifm! 1 .All T, are nite rank operators (so
are compact) and T is also compact as their limit—by the next Theorem.

(T- Tm)en =

Theorem 8.9. Let T, be a sequence of compact operators convergent to an ofeirator
the norm topology (i.ekT - Tn k! 0)thenT is compact itself. Equivalentl{(X, Y) is
a closed subspaceB{(X, Y).
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Proof. Take a bounded sequence(x, )} . From compactness
of ; )9  subsequence(x{™)! of (x,)} st (Tux(M)! is convergent.
of , )9 subsequence(x'?)! of (x{")! st (Tox{?)! is convergent.
of T; )9  subsequence(x(™)! of (x(?)! st (Tex(?)! is convergent.

Could we nd a subsequence which converges for all T, simultaneously? The
rst guess “take the intersection of all above sequences (xﬁk))l " does not work

because the intersection could be empty. The way out is provi ded by the diagonal
argument(see Table2): a subsequence(Ty, xﬁk))% is convergent for all m, because

at latest after the term x{™ itis a subsequence 01‘(x,((m ))% .

T1X(11) T1X(21) Tlx(gl) Lo Ty
T2X(12) TzX(zz) szgz) O P P B P!
T3X(13) T3X(23) Tsxgs) Lo T L ag
Tox{™ T o™ T a
#

&
a

TABLE 2. The “diagonal argument”.

We are claiming that a subsequence(Txﬁk))% of (Tx,)} is convergent as well.
We use here = 3argument(see Figurel7): foragiven > 0choosep 2 N such that

KT- Tpk < = 3. Because(T, xf(k)) I 0itis a Cauchy sequence, thus there exists

o) fa(y)i< =3 / fa(t)

JF(x) fa(x)j< =3

FIGURE 17. The =3 argument to estimate jf(x)- f(y)j.

No > p such that Tpr(k) - Tpx,(') < = 3forall k,1>n (. Then:

T - T = (T T )+ (X - Toxf)+ (Toxf” - T)

T T+ x0T+ Tx - T

Thus T is compact.
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8.2. Hilbert—Schmidt operators.

De nition 8.10. Let T : H ! K be a bounded linear map between two Hilbert
spaces. ThenT is said to be Hilpert—Schmidt operatoif there exists an orthonormal
basis in H such that the series _, kTak? is convergent.

Example 8.11. (i) LetT: !P ", be adiagonal operator dened by Te, =
e,=n,forall n > 1. Then kTek®= n 2= 2=6(see Example4.14)
is nite.

(ii) The identity operator |y is not a Hilbert—Schmidt operator, unless H is
nite dimensional.

A relation to compact operator is as follows.

Theorem 8.12. All Hilbert—Schmidt operators are compact. (The oppositéusion is
false, give a counterexample!)

P
Proof. Let T 2 B(H, K) have a convergent series  kTe, k? in an orthonormal basis
(en)} of H. We again (see 8.1)) de ne the m-truncation of T by the formula

Te,, 16 n6 m;

(8.2) Tmen = 0, Asm.
P P
Then Tn, ( } akex) = T axex and each Ty, is a nite rank operator because
its image is spanned by the nite set of vectors Tey, ..., Tg,. We claim that
kKT- Tnk! 0. Indeed by linearity and |de nition of Ty :
X ’ hs
(T' Tm) an en = an (Te']).
n=1 n=m+1
Thus: |
s ' X
(8.3) (T' Tm) an en = an (Te'])
n=1 n=m+1

X‘ . .
6 janjk(Ten )k

n=m+1 | |
s 1=2 s 1=2
R . 2 R 2
6 janj k(Ten )k
n=m+1 n=m+1
X X L2
(8.4) 6 anen k(T e, )k
n=1 n=m+1

sokT- Tnk! Oand by the previous Theorem T is compact as a limit of compact
operators.

Corollary 8.13 (from the above proof) . For a Hilbert—Schmidt operator

)é_ ' 1=2

kTk 6 k(Te )k?
n=m+1

Proof. Just consider difference of T and Ty = 0in (8.3)—(8.4).

Example 8.14. An integral operatoil on L,[0, 1] is de ned by the formula:
z

(8.5) (THX) = K, y)f(y)dy,  f(y) 2 L,[0, 1,
0
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where the continuous on [0, 1] [0, 1] function K is called the kernel of integral oper-
ator.

Theorem 8.15. Integral operato(8.5) is Hilbert—Schmidt.

Proof. Let (e,)!; be an orthonormal basis of L,[0,1], e.g. (2™ )n2z. Letus
consider the kernel Ky (y) = K(x,y) as a function of the argument y depending
from the parameter x. Then:

z z
(Te)(x) = K(x,y)en(y)dy = Ky(y)en(y)dy = Ky, eni.
0 0

R
SokTe k* = jiKy, enij? dx. Consequently:
0

X , x Z
kTe, k
-1 -1
Zx
Ky, enij? dx

Ky, enij? dx

(8.6)

0 1
z
kKy k? dx
0
zz
K(x,y)j? dxdy < 1
00

Exercise 8.16. Justify the exchange of summation and integration in ( 8.6).

Remark8.17. The de nition 8.14and Theorem 8.15work also forany T : L,[a,b]!
L,[c, d] with a continuous kernel K(x,y) on[c,d] [a,b].

De nition 8.':_1,8. De ne Hilbert—Schmidt normof a Hilbert—Schmidt operator A by
kAkZs =  +_,kAe,k® (it is independent of the choice of orthonormal basis
(en)}, see QuestionA.27).

Exercise 8.19. Show that set of Hilbert—Schmidt operators with the above no rm
is a Hilbert space and nd the an expression for the inner prod uct.

Example 8.20. Let K(x,y) = x- vy, then

Y4 z Y4
(THX) = (x- Vf(y)dy = x f(y)dy - yf(y)dy
0 0 0
is a rank 2 operator. Furthermore:
zZz z 3 1
KTCs = (x- y)Pdxdy = Y70 gy
3 x=0
00 0
Fa-y2 (1-y)* y* ' _1
= + —dy = - + = _.
3 3 12 12, 6

0
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On the other hand there is an orthonormal basis such that
1 1
Tf= p—=H,eiie; - p—=H, e ey,
12 1 1 12 2 2

=)
and kTk = 1 and = TkTek® = % and we get KTk 6 KTk, in agreement with
Corollary 8.13

9. THE SPECTRAL THEOREM FOR COMPACT NORMAL OPERATORS

Recall from Section 6.4 that an operator T is normal if TT = T T; Hermitian
(T = T)and unitary (T = T 1) operators are normal.

9.1. Spectrum of normal operators.

Theorem 9.1. LetT 2 B(H) be a normal operator then
(i) kerT = kerT ,soker(T- )= ker(T - I)forall 2C
(i) Eigenvectors corresponding to distinct eigenvalues ateogonal.
(iii) kTk = r(T).
Proof. (i) Obviously:
x2kerT , hTxTx=0,hTTxxi=0
, hTTx,xi=0,h TXx,Txi=0
,  X2KkerT.

The second part holds because normalities of Tand T- | are equivalent.
(i) If Tx= x,Ty= y then fromthe previous statement Ty = y . If 6

then the identity

h,yi = iTxyi = hx, T yi = I, yi

implies hx,yi = 0.
(i) Let S = T T then normality of T implies that S is Hermitian (check!).

Consequently inequality

kSxk® = ISx, Sx = Sx,x 6 S kxk®

implies kSk’ 6 S? . But the opposite inequality follows from the The-
orem 6.9, thus we have the equality S = kSk? and more generally by
induction: " = kSk*" forall m.

Now we claim kSk = kTk?. From Theorem 6.9and 6.15we get kSk =
KT Tk 6 kTk?. On the other hand if kxk = 1 then

KT Tk > jHT Tx xij= hHTx Tx = KTxk?
implies the opposite inequality kSk > kTk®. And because (T2") T2" =
(T T)2" we get the equality
T 2= (T =kT TR = kTR
Thus:
(M= lim 7" 7 = jim kK"
mi 1 mi 1

l_pm+1

= kTk.

by the spectral radius formula ( 7.5).

Example 9.2. It is easy to see that normality is important in 9.1(iii), indeed the

non-normal operator T given by the matrix in C has one-point spectrum

0 1
00
fOg consequently r(T) = Obut kTk = 1.
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Lemma 9.3. LetT be a compact normal operator then
(i) The set of of eigenvaluesTofs either nite or a countable sequence tending to
zero.
(i) All the eigenspaces, i.ker(T - 1), are nite-dimensional for all & 0.

Remark9.4. This Lemma is true for any compact operator, but we will not us e that
in our course.

Proof. (i) Let Hp be the closed linear span of eigenvectors of T. Then T restric-
ted to Hy is a diagonal compact operator with the same set of eigenvalu es
nasinH. Then , ! 0from Proposition 8.8.

Exercise 9.5. Use the proof of Proposition 8.8to give a direct demonstra-
tion.

Solution. Or straightforwardly assume opposite: there existan > 0
and in nitely many eigenvalues , such thatj ,j > . By the previous
Theorem there is an orthonormal sequence v, of corresponding eigen-

vectors T, = ,V,. Now the sequence (v, ) is bounded but its image
Tw, = ey has no convergent subsequence because for ank 6 I:
I S S p_
k kv - rek=(j «i°+j 12> 2,

i.e. T, is not a Cauchy sequence, see Figurel6.

(i) Similarly if Ho = ker(T- 1) is in nite dimensional, then restriction of T
on Hg is | —which is non-compact by Proposition 8.8. Alternatively con-
sider the in nite orthonormal sequence (v,), Tv, = Vv asin Exercise9.5.

Lemma 9.6. Let T be a compact normal operator. Then all non-zero poirgts (T) are
eigenvalues and there exists an eigenvalue of modkdlks

Proof. Assume without lost of generality that T 6 0. Let 2 (T), without lost of

generality (multiplying by a scalar) = 1.
We claim that if 1is not an eigenvalue then there exist > 0 such that
(9.2 k(I - T)xk> kxk.

Otherwise there exists a sequence of vectors(x, ) with unit norm such that (I -
T)xn ! 0. Then from the compactness of T for a subsequence(x,, ) thereisy 2 H
suchthatTx,, ! y,thenx, ! yimplying Ty=yandy 6 0—i.e.y is eigenvector
with eigenvalue 1.

Now we claim Im(l - T) is closed, i.e.y 2 Im(I - T) implies y 2 Im(l - T).
Indeed, if (I - T)xn ! vy, then there is a subsequence(xn, ) such that Tx,, ! z
implying xn, ! y+zthen(l- T)(z+y)=y.

Finally | - T is injective, i.e ker(l - T) = fOg by (9.1). By the property 9.1(i),
ker(l - T )= fOgas well. But because alwaysker(I - T )= Im(l- T)? (check!) we
got surjectivity, i.e. Im(I- T)? = fOgof |- T. Thus (I- T) ! exists and is bounded
because Q.1) implies kyk>  (1- T)" 'y . Thus 162 (T).

The existence of eigenvalue such thatj j = kTk follows from combination of
Lemma 7.13and Theorem 9.1(iii).

9.2. Compact normal operators.

Theorem 9.7 (The spectral theorem for compact normal operators). LetT be a com-
pact normal operator on a Hilbert spalde Then there exists an orthonormal sequence
(en) of eigenvectors d’fandxcorresponding eigenvalugs, ) such that:

(9.2) Tx= n X, enien, forallx 2 H.
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If ( ) is anin nite sequence it tends to zero.
Conversely, ifT is given by a formulg9.2) then it is compact and normal.

Proof. Suppose T 6 0. Then by the previous Theorem there exists an eigenvalue
1 such that j 1j = kTk with corresponding eigenvector e; of the unit norm. Let
H; = Lin(ey)?. If x 2 Hy then

(93) hT X, eli =T eli = X, 161 = 1h>(,e1i =0,

thus Tx 2 H; and similarly T x 2 H;. Write Ty = TjHl which is again a nor-
mal compact operator with a norm does not exceeding kTk. We could inductively
repeat this procedure for T; obtaining sequence of eigenvalues 3, 3, ...with ei-

genvectors e, €3, .... If T, = 0for a nite n then theorem is already proved.
Otherwise we have an in nite sequence , ! 0. Let
X 2 X 2 2
X = hx,exiex +yn ) k xko= i, exij” + kyp k7, Yn 2 Hp,
1 1

from Pythagoras's theorem. Thenky, k 6 kxkand kTy,k 6 kT, kky,k 6 j njkxk!

0 by Lemma 9.3 Thus |

X ' X
Tx= nI!ml hx,eni Tey + Ty, = n X, eni e
' 1 1

P
Converselyif Tx= " 1 , hx,eqie, then

x

b
RTx yi = n X, enihey,yi = hx,eni nhy,eni,
1 1

P
us Ty = i n hy,enie,. Then we got the normality of T: T Tx= TT x =

i ] nj2 hy,enie,. Also T is compact because it is a uniform limit of the nite

rank operators Tyx = | X, eqien.

Corollary 9.8. LetT be a compact normal operator on a separable Hilbert $patten
there exists a orthonormal bagjg such that

X- .
Tx= n %, gnign,
1
and , are eigenvalues dfincluding zeros.

Proof. Let (en ) be the orthonormal sequence constructed in the proof of the previous
Theorem. Then x is perpendicular to all e, if and only if its in the kernel of T. Let
(fn) be any orthonormal basis of kerT. Then the union of (e,) and (f,) is the
orthonormal basis (g, ) we have looked for.

Exercise 9.9. Finish all details in the above proof.

Corollary 9.10 (Singular value decomposition) . If T is any compact operator on a
separgble Hilbert space then there exists orthonormaksegs(ec) and (fi) such that
Tx= | kX eifx where( ) is asequence of positive numbers such that O if

it is an in nite sequence.

Proof. Operator T T is compact and Hermitian (hence normal).FFrom the previous
Corollary there is an orthonormal basis (ex) suchthat T Tx= | X, eci e for
some positive , = kTe,k*. Let , = kTe,kand f, = Te,= ,. Thenf, is an

orthonormal sequence (chexck!) and y
Tx= hx,eni Teg = hx,eni nfn.

n n
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Corollary 9.11. A bounded operator in a Hilber space is compact if and onlyi#f &
uniform limit of the nite rank operators.

roof. Suf ciencyfollows from 8.9. Necessity by the previoug, Corollary Tx =
n X, eni nf, thus T is a uniform limit of operators Ty x = nmzl X,eni nfn
which are of nite rank.

10. APPLICATIONS TO INTEGRAL EQUATIONS

In this lecture we will study the Fredholm equationle ned as follows. Let the
integral operatowith a kernelK(x,y) de nedon [a,b] [a,b]be de ned as before

E
(10.1) (T X)) = K(xy) (y)dy.
a
The Fredholm equation of the rst and secondinds correspondingly are:

(10.2) T =f° and - T =f,

for a function f on [a, b]. A special case is given by Volterra equatiorby an operator
integral operator (10.1) T with a kernel K(x,y) = Ofor all y > x which could be
written as:

X

(10.3) (THX) = Kxy) (y)dy.

a

RR
We will consider integral operators with kernels Ksuchthat  K(x,y)dxdy< 1,

aa

then by Theorem 8.15T is a Hilbert—Schmidt operator and in particular bounded.

As a reason to study Fredholm operators we will mention that s olutions of dif-
ferential equations in mathematical physics (notably heat and wave equations) re-
quires a decomposition of a function f as a linear combination of functions K(x,y)
with “coef cients” . This is an continuous analog of a discrete decomposition
into Fourier series.

Using ideas from the proof of Lemma 7.4we de ne Neumann serie$or the re-
solvent:

(10.4) (- TYyi=1+ 7T+ 272+ |
which is valid forall < KTk *.
Example 10.1. Solve the Volterra equation
X
(- y (dy=x*  onLy[0,1].
0
Inthiscasel - T = f,with f(x) = x? and:

_ y, 06 y6 x;
Kx,y) = 0, X<y 6 1.

Straightforward calculations shows:

X A
(TH(x) = y y?dy= 7

0

Z 4 6
v = Y gy X
(TN = yldy= 2.
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and generally by induction:
X

. y2n X2n+2
(TN = Yaram® = e+
0
Hence:
X N y2n+2
x) = T =

0 o 2"(n + 1)!
2)4 N+ 1y2n+2
2+ D!

= g(eX =2 ) forall 2 Cnfog

because in this caser(T) = 0. For the Fredholm equations this is not always the
case, see Tutorial problemA.29.

Among other integral operators there is an important subcla ss with separable
kerne] namely a kernel which has a form:

X
(10.5) Kx,y)= gi(x)hj(y).
j=1

In such a case:

Eyo
(T = g (x)h;(y) (y)dy
al=1
3 E
= g () hi(y) (y)dy,
=1 a
i.e. the image of T is spanned by gi(x), ..., dn (X) and is nite dimensional, con-

sequently the solution of such equation reduces to linear al gebra.

Example 10.2. Solve the Fredholm equation (actually nd eigenvectors of T):
z
cogx+y) (y)dy

0
Zz

(cosxcosy - sinxsiny) (y)dy.
0
Clearly (x) should be a linear combination (x) = A cosx + Bsinx with coef -
cients A and B satisfying to:
Z
cosy (A cosy + Bsiny) dy,

0
Zz

siny (A cosy + Bsiny) dy.

(%)

A

(o8]
1



INTRODUCTION TO FUNCTIONAL ANALYSIS 55

Basiccalculus implies A = A and B =- B and the only nonzero solutions
are:
= 1 A80 B=0
=- "1 A=0 B8O
We develop some Hilbert—Schmidt theory for integral operat ors.
Theorem 10.3. Suppose thaK(x,y) is a continuous function ofa,b] [a,b] and
K(x,y) = K(y, x) and operatofl is de ned by(10.1). Then

(i) Tis a self-adjoint Hilbert—Schmidt opgrator.
(i) All eigenvalues oT are real and satisfy , 2 < 1.
(i) The eigenvectong, of T can be chosen as an orthonormal basis, [, b], are
continuous for nonzero, and

b b
T = nh vhivy where = h ,vhivy
n=1 n=1
Proof. (i) The condition K(x,y) = K(y, x) implies the Hermitian property of
T: 0 1
E E
hr, 0= @K(xy) (y)dyA (x)dx
a a
ER
= K(x,y) (y) (x)dxdy
aa
)24 OZ !
= () @ K(y,x) (x)dxA dy
a a
= h,Ti.

The Hilbert—Schmidt property (and hence compactness) was proved in
Theorem 8.15

(i) Spectrum of T is geal as for any Hermitian operator, see Theorem 7.17(ii)
and niteness of |, 2 follows from Hilbert-Schmidt property

(iii) The existence of orthonormal basis consisting from ei genvectors (v, ) of T
was proved in Corollary 9.8 If , 6 Othen:

V(1) - Va(x2) = 5 T((Twe)(X) - ( Th )(X2))
E
1
= — (K(x1,y)- K(x2,y))va (y) dy
n
a
and by Cauchy—Schwarz-Bunyakovskii inequality :
1 E
Vn (X1) - Vn(x2)j 6 j—jkVn k, JK(x1,Y)- K(xz2,y)jdy
n
a
which tense to 0 due to (uniform) continuity of K(x,y).

Theorem 10.4. LetT be as in therevious TheoreniThenif 6 Oand -~ ! 62 (T), the
unique solution of theFredholm equation of the second kind - T =fis

_>4 H, v i

11' n

(10.6)

Vp .
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P
Proof. Let = i anVnh where a, = h ,vyi, then
X P
- T = an(l' n)Vn:f: H,VniVn
1 1
ifand only if an = H,vpi=(]- n) forall n. Note 1- n qDOSince “162 (T).

Because , ! Owegot 1 janj” by its comparison with T jHf,vnij* = kfk?,
thus the solution exists and is unique by the Riesz—Fisher Theorem

See ExerciseA.30 for an example.

Theorem 10.5 (Fredholm alternative) . Let T 2 K(H) be compact normal and 2
C nfOg Consider the equations:

(10.7) -T =0
(10.8) - T = f
theneither
(A) the only solution to(10.7) is = 0 and(10.8 has a unique solution for any
f2H;or

(B) there exists a nonzero solution {0.7) and (10.8) can be solved if and onlyfif
is orthogonal all solutions t¢10.7).

Proof. (A) If = 0Ois the only solution of ( 10.7), then - ! is not an eigenvalue
of T and then by Lemma 9.6is neither in spectrum of T. Thus| - T is
invertible and the unique solution of ( 10.9 is givenby = (I- T) *f.

(B) A nonzero solution to ( 10.7) means that ~* 2 (T). Let (v,) be an or-
thonormal basis of eigenvectors of T for eigenvalues ( ). By Lemma 9.3(ii)

only a nite number of , isequalto - !, saytheyare 1,..., n,then
X b

(- T) = (@- n)h vaiva= (1-  n)h ,vqyivy,.
n=1 n=N+1

P
If f = i hf,vhi vy then the identity (1 - T) = f is only possible if
h,vh,i = Ofor 16 n 6 N. Conversely from that condition we could give

a solution
x H,vni
= N vy + o forany o2 Lin(vy,...,Vn),

n=N+1 . n

which is again in H becausef 2 Hand , ! 0.

Example 10.6. Let us consider
z
(THX)= (xy- x-y+1) (y)dy.
0
Because the kernel ofT is real and symmetric T = T , the kernel is also separable:

z z
(THX¥)=x (2y- 1 (V)dy+ (-y+1) (y)dy,
0 0
and T of the rank 2 with image of T spanned by 1 and x. By direct calcul|ations:

T: 12 70 1

2
. 11 1
T: x 7! X+ 5,

o NIk

or T is given by the matrix

ol O
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According to linear algebra decomposition over eigenvecto rs is:

1= with vector (1) ,

Ol NI

-1
2 = with vector 12
with normalisation vi(y) = 1, va(y) = P 12(y - 1=2) and we complete it to an
orthonormal basis (v, ) of L,[0, 1]. Then

If 6 2or6then(I- T) = fhasaunique solution (cf. equation (10.6):
X2 i b3
= Mvn + h, vhivy

n= |
X - X '
= Vel v 7 Hovaive)
n=1

n

11' n

H,vhivy.

n=
If = 2then the solutions exist provided H,vii = 0and are:

2

. 1 .
=f+ H,voivo+ Cvy = f + EH,VZIV2+ Cvy, c2C.

1-

If = 6then the solutions exist provided H,v,i = 0and are:

=f+171H,V1iV1+CV2=f- gH,VQiVQ"'CVz, c2C.
- 1
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11. BANACH AND NORMED SPACES

We will work with either the eld of real numbers R or the complex numbers
C. To avoid repetition, we use K to denote either R or C.

11.1. Normed spaces. Recall, see Defn.2.3, anorm on a vector spaceV is a map
kk:V! [0,1) suchthat
(i) kuk = Oonly when u = 0;
(i) kuk=jjkukfor 2 Kandu2V,
(i) ku + vk 6 kuk+ kvk for u,v2 V.

A norm induces a metric, see Defn.2.1, on V by setting d(u, V) = ku - vk. When
V is completesee Defn.2.6, for this metric, we say that V is a Banach space

Theorem 11.1. Every nite-dimensional normed vector space is a Banachespa

We will use the following simple inequality:

Lemma11.2. Let two real numberd <p,q< 1 are related throug% + ql = 1then
o ja” ot
(11.1) jabj6 —/— + —/,
p q

for any complexa andb.

Proof. Consider the function (t) = t™ - mt foran 1 <m < 1. From its de-
rivative  (t) = m(t™ ! - 1) we nd the only critical point on [0,1 ), which is its
maximum. Thus write the inequality (t) 6 (1) fort = aP=b? and m = 1=p.
After transformation we get ab™ %P - 16 %(ap b- 9 - 1) and multiplication by b¢
with rearrangements lead to the desired result.

Proposition 11.3 (Holder's Inequality) . Forl<p< 1 ,letq 2 (1,1 ) be such that
1=p+ 1=g= 1. Forn > landu,v 2 K", we have that
0 1 1 0 1 E

X X X
jujvije @ juPA @ jyj'A
j=1 j=1 j=1

. P -
Proof. For reasons become clear soon we use the notationkuk = j”: Ly

1

e | .
and kvk = jzlequ anddenefor 16 i 6 n:

o= Ui = Vi
a = KUk and b; UK
Summing up for 16 i 6 n all inequalities obtained from ( 11.1):
ia: P b id
jaibij6 24 Jb'—J
p q

we get the result.
Using Holder inequality we can derive the following one:

Proposition 11.4 (Minkowski's Inequality) . Forl<p < 1 ,andn > 1, letu,v 2
K". Then
O 1 1= 0 1 1= O 1 1=
% % " P
@ ju+viPA 6@ jufA +@ jyPA
j=1 j=1 j=1
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Proof. For p > 1 we have:

X . . x L .p- 1 X . .. .D- 1
(11.2) it yed® = xdixe P ykdixe + yei®T T
1 1 1
By Holder inequality
I 1
x o g XX A1)
Pedixe + ykiP 6 P rac + yif P
1 1 1
Adding a similar inequality for the second term in the righth  and side of (11.2) and

("

P 1
division by " x + ye®® YT yields the result.

Minkowski's inequality shows thatfor 16 p < 1 (the casep = 1is easy) we
cande neanorm kk;, on K" by
0 115

X
kuk, = @ ju;PA (u=(ug, ,up)2K").
j=1
We can de ne an in nite analogyg of this. Let 16 p< 1, let P be the space
of all scalar sequences(x,) with ~  jxnj° < 1 . A careful use of Minkowski's
inequality shows that P is a vector space. Then'P becomes a normed space for
the k k, norm.
Recall that a Cauchy sequence, see Defn2.5, in a normed space is bounded:
if (Xn) is Cauchy then we can nd N with kx, - xnk < 1forall n,m > N.
Then kx,k 6 kx, - xnk+ kxyk < kxyk+ 1for n > N, so in particular, kx,k 6
max(kx1k, kxak, Jkxn -k, kxy k+ D).

Theorem 11.5. For1 6 p < 1 ,the spacé® is a Banach space.

Proof. Most completeness proofs are similar to this, see Thm. 2.24. So we shall
prove this resultin detail. Let (x(")) be a Cauchy-sequence in'? ; we wish to show
this converges to some vector in °P.
For eachn, x(™ 2 P so is a sequence of scalars, sayx\")!_,. As (x() is
Cauchy, for each > Othere existsN sothat x(") - x(m) ,6 fornm>N .
For k xed,
0 1.5
x(M - (M g @X x(") - xm) A = g
_ P

J

when n,m > N . Thus the scalar sequence(xf(”)),l,:l is Cauchy in K and hence
converges, toyy say.
Lety = (yx), so thaty is a candidate for the limit of (x(")). Firstly, we check

thaty 2 "P. We calculate,

){( H 1:p )(( o ]_:p
- 5 P = i ; (n)
o= dm W= gm e m o
| |
H 1:p H l:p
X p R p
= lim lim x{") 6 lim lim x{"
Kl'1 n! 1 k=1 K1 n! 1 -1

lim x(MM <1,
n! 1 p

as(x()) is Cauchy, and hence bounded.
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Finally, we check that x(™) 1 yin P, For > 0,letn > N , so that

1= L
X b X b
xXM -y = lim XMy = lim lim  x{M - x(™
p K 1 KI1 m! 1
k=1 k=1
! ]_:p ! 1:p

X '
(n) _ ,(m)P im  lim (n) _ ,(m)P
Ko X 6 Jim im Moo T K

k=1 k=1

lim lim
KI'l1m! 1

= lim xM . x(M ¢
m! 1 p

asn > N .Hence x(") -y !0

Forp = 1 , there are two analogies to the "P spaces. The rstis arguably more
natural, but we write co for it. ¢ is the space of all scalar sequencegx, ) which
converge to 0. We equip ¢ with the sup norm,

k(xn)kl = Sggjxnj ((Xn) 2 CO)-
n

This is de ned, as if x, ! 0, then (x,) is bounded. Similarly, we de ne ! to be
the vector space of all bounded scalar sequences, with thek k; norm. Hence cy is
a subspace of ! , and we can check thatcg is closed.

Theorem 11.6. The spacesy and'! are Banach spaces.

Proof. This will be a variant of the previous proof: it's shorter, bu t the “trick” is
maybe harder to remember. We do the “! case. Again, let (x(")) be a Cauchy
sequence in"!, and for each n, let x(" = (x{"))1_,. For > Owe can nd
N such that x(") - x(M < for n,m > N. Thus, for any k, we see that
x(k") - x(km) < whenn,m > N. So(xﬁn))lzl is Cauchy, and hence converges,
saytoxg 2 K. Letx =(xk).

Letm > N, so that for any k, we have that

X - x{M = lim x(M o XM g
n:

As k was arbitrary, we see that sup, X - xﬁm) 6 . So, rstly, this shows that
(x- x(M) 21 ‘andsoalsox = (x- x(M)+ x(M) 2 1 Secondly, we have shown
that x- x(M 6 whenm > N,sox(™ I xinnorm.

Example 11.7. We can also consider a Banach space of functiond. [a, b] with the

norm
Z, 1=p
ktk, = (0P dt
a

See the discussion after Defn.2.22for a realisation of such spaces.

11.2. Bounded linear operators. Recall what a linear map is, see Defn.6.1 A lin-

ear map is often called an operator Alinearmap T:E! Fbetween normed spaces
is boundedf there exists M > 0 such that kT(x)k 6 M kxk for x 2 E, see Defn.6.3.
We write B(E, F) for the set of operators from E to F. For the natural operations,

B(E, F) is a vector space. We normB(E, F) by setting

KT(x)k
ok X2 Ex60

(11.3) kTk = sup

Exercise 11.8. Show that
(i) The expression (11.3 is a norm in the sense of Defn. 2.3.
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(i) We equivalently have
kTk = supfkT(x)k : x 2 E, kxk 6 1g= supfkT(x)k :x 2 E, kxk = 1g.

Proposition 11.9. For alinear ma : E! Fbetween normed spaces, the following are
equivalent:
(i) Tis continuous (for the metrics induced by the normstoand F);
(ii) Tis continuous ao;
(iii) T is bounded.

Proof. Proof essentially follows the proof of similar Theorem 5.4. See also discus-
sion about usefulness of this theorem there.

Theorem 11.10. LetE be a normed space, andfdte a Banach space. TH&(E, F) is a
Banach space.

Proof. Let (T,) be a Cauchy sequence inB(E, F). For x 2 E, check that (T, (x)) is
Cauchy in F, and hence converges to, say,T(x), asFis complete. Then check that
T:E! Fislinear, bounded, and that kT, - Tk! 1 .

We write B(E) for B(E, E). For normed spacesE, Fand G, and for T 2 B(E,F)
and S2 B(F, G), we havethat ST=S T 2 B(E, G) with kSTk 6 kSkKkTk.

For T 2 B(E, F), if there exists S 2 B(F, E) with ST = Ig, the identity of E, and
TS= I, then T is said to be invertible, and write T = S 1. In this case, we say that
E and F are isomorphicspaces, and thatT is an isomorphism

If KT(x)k = kxk for each x 2 E, we say that T is an isometry If additionally T
is an isomorphism, then T is an isometric isomorphisirand we say that E and Fare
isometrically isomorphic

11.3. Dual Spaces. Let E be a normed vector space, and letE (also written E®) be
B(E, K), the space of bounded linear maps from E to K, which we call function-
als or more correctly, bounded linear functionalsee Defn.5.1 Notice that as K is
complete, the above theorem shows that E is always a Banach space.

Theorem 11.11. Letl < p < 1, and again letg be such thal=p+ 1=q = 1. Then
the map@ ! ("P) ;u 7! , is an isometric isomorphism, wherg, is de ned, for
u=(uj) 29, by

b

w()= U (x=(x)2°P).

ji=1
Proof. By Holder's inequality, we see that

0 1,40 1.5

X s
Jui6  juipie @ juiffA @ A = kuk, kxk, .
i=1 i=1 j=1
So the sum converges, and hence  isde ned. Clearly | islinear, and the above
estimate also shows thatk ,k 6 ku kq . Themapu 7!  isalso clearly linear, and
we've just shown that it is norm-decreasing.
Nowlet 2 (*P) . Foreachn,lete, = (0, ,0,1,0, ) withthe linthe nth

position. Then, for x = (x,) 2 P,
|

X X i
X - Xc€ = Xk jP I 0,
k=1 P k=n+1
asn! 1 .As iscontinuous, we see that
x X
(x) = nIiml (Xkek) = Xk (ek).
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Letuy = (e) foreachk. If u = (uk) 2 9 then we would have that = .
Letus x N 2 N, and de ne
0 ug = 0ork>N,
Xk =

T jukj® % :ug 6 0.

Then we see that

X L X
el = juP Y = ju?,
k=1 k=1 k=1
asp(q- 1) = g. Then, by the previous paragraph,
b X
(X)= XU = jugj?.
k=1 k=1
Hence L .
. - 1=p H =q
i X R
k k> ka = JukJ = JukJ
p k=1 k=1
By letting N ! 1, it follows that u 2 "9 with kuk, 6 k k. So =  and

k k=k uk6 kuk,. Hence every element of ("P) arises as , for some u, and
alsok k= kukq.

Loosely speaking, we say that "4 = ("P) , although we should always be careful
to keep in mind the exact map which gives this.

Similarly, we can show that ¢, = ! and that ("!) = ! (the implementing
isometric isomorphism is giving by the same summation formu la).

11.4. Hahn—-Banach Theorem. Mathematical induction is a well known method
to prove statements depending from a natural number. The mat hematical induc-
tion is based on the following property of natural numbers: a ny subset of N has
the least element. This observation can be generalised to the trans nite induction
described as follows.

A posetis a set X with arelation  suchthata aforall a2 X,ifa band
b athena=b,andifa bandb «c,thena c. We say that (X, ) is total
if forevery a,b 2 X, eithera borb a. ForasubsetS X, anelementa 2 X
is an upper boundfor Sif s a forevery s 2 S. An element a 2 X is maximalif
whenever b 2 Xissuchthata b,thenalsob a.

Then Zorn's Lemma tells us that if X is a non-empty poset such that every total
subset has an upper bound, then X has a maximal element. Really this is an axiom
which we have to assume, in addition to the usual axioms of set -theory. Zorn's
Lemma is equivalent to the axiom of choicand Zermelo's theorem

Theorem 11.12 (Hahn—Banach Theorem). Let E be a normed vector space, and let
F  E be asubspace. Let2 F. Then there exists 2 E with k k 6 k k and
(x)= (x) foreachk 2 F.

Proof. We do the real case. An “extension” of isaboundedlinearmap ¢ :G!
RsuchthatF G E, g(x) = (x)forx 2 F, andk gk 6 k k. We intro-
duce a partial order on the pairs (G, ¢) of subspaces and functionals as follows:
(G1, &,) (G2, g,)ifandonlyif G; Gpand ,(X)= &,(x)forall x2 G;.
A Zorn's Lemma argument shows that a maximal extension ¢ : G ! R exists.
We shall show that if G 6 E, then we can extend ¢, a contradiction.

Let X 62G, so an extension 1 of to the linear span of G and x must have the
form

i+ ax)= (X)+ a (x2 G,a2R),
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forsome 2 R. Underthis, ;islinear and extends , butwe also need to ensure
thatk 1k 6 k k. Thatis, we need

(11.4) j 9+ a j6 k kkx+ axk (x2 G,a2R).

To simplify proof put - ay = xin (11.4) an divide both sides of the identity by a.
Thus we need to show that there exist such  that

i - (y)j6 k kkx- yk forall y2G,a2R,

or
(y)- kK kkx- yk6 6 (y)+ k kkx- yk.

Forany y; and y, in G we have:
(Y1)-  (¥2) 6 k kkyi- y2k6 k k(kx- y2k+ kx- yik).

Thus
(y1)- k kkx- yik6 (y2)+ k kkx- ysk.
As y; and y, were arbitrary,
sup(- (y)- k kky +xk) 6 inf (- (y)+ k kky + xk).
y2G y2G
Hence we can choose between the inf and the sup.
The complex case follows by “complexi cation”.

The Hahn-Banach theorem tells us that a functional from a sub space can be
extended to the whole space without increasing the norm. In p articular, extending
a functional on a one-dimensional subspace yields the follo wing.

Corollary 11.13. LetE be a normed vector space, andl@t E. Then there exists 2 E
with k k= land (x)= kxk.

Another useful result which can be proved by Hahn-Banach ist he following.

Corollary 11.14. LetE be a normed vector space, andHbee a subspaceBf Forx 2 E,
the following are equivalent:

(i) x 2 Fthe closure of;
(i) foreach 2 E with (y) = Oforeacly 2 F, we have that (x) = 0.

Proof. 11.14(i)) 11.14(ii) follows because we can nd a sequence (yn) in F with
yn ! X; thenit's immediate that (x) = O, because is continuous. Conversely,
we show thatif 11.14(i)doesn't hold then 11.14(ii)doesn't hold (thatis, the contra-
positive to 11.14(ii)) 11.14(i).

So,x 62F. Dene :linfF,xg! K by

(y+tx)=1t (y 2 Rt 2 K).

This is well-de ned, for if y + tx = y%+ t% then either t = t° or otherwise
x=(t- t9 (y°- y) 2 Fwhich is a contradiction. The map is obviously linear,
so we need to show that it is bounded. Towards a contradiction , suppose that
is not bounded, so we can nd a sequence (y, + t,x) with ky, + tyxk 6 1 for
eachn, andyetj (yn +thaX)j = jtnj! 1. Then t;ly, +x 6 1=jt,j! O, so
that the sequence(- t;, 'y,), which isin F, converges tox. Sox is in the closure of
F, a contradiction. So is bounded. By Hahn-Banach theorem, we can nd some
2 E extending .Fory 2 F,wehave (y)= (y)= 0O,while (xX)= (x)=1,
so011.14(ii)doesn't hold, as required.
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Wedene E = (E) tobethe bidual of E,anddene J:E! E as follows.
For x 2 E, J(x) should be in E ,thatis,amapE ! K. We de ne this to be the
map 7! (x)for 2 E .We write this as

()= (¥ (x2E 2E).

The Corollary 11.13shows that Jis an isometry; when Jis surjective (that is, when
Jis an isomorphism), we say that E is re exive. For example, P is re exive for
l<p< 1.

11.5. C(X) Spaces. This section is not examinable, BUT a pre-requisite for the
course is the Topology course, and so | assume that you know the basics about
compact spaces, and so forth. Standard facts about topology will be used in later
sections of the course.

All our topological spaces are assumed Hausdorff Let X be a compact space,
and let Ck (X) be the space of continuous functions from X to K, with pointwise
operations, so that Ck (X) is a vector space. We normCx (X) by setting

kfk, = supjf(x)j  (f 2 Ck(X)).
x2X

Theorem 11.15. Let X be a compact space. THén(X) is a Banach space.

Let Ebe a vector space, and letk k ;, and k k ,, be norms on E. These norms are
equivalentif there exists m > 0 with

m” L kxk z 6 kxkgy 6 mkxk, (x2 E).

Theorem 11.16. LetE be a nite-dimensional vector space with bdsis .. ., e, g so we
can identifyE with K" as vector spaces, and hence talk about the kdaron E. If k k is
any norm onE, thenk k andk k, are equivalent.

Corollary 11.17. LetE be a nite-dimensional normed space. Then a suliset E is
compact if and only if it is closed and bounded.

Lemma 11.18. Let E be a normed vector space, andHdte a closed subspaceEakith
E6 F. ForO< < 1,wecan ndXg 2 Ewith kxgk 6 1andkxp- yk> fory 2 F.

Theorem 11.19. Let E be an in nite-dimensional normed vector space. Therctbeed
unit ball ofE, the setx 2 E : kxk 6 1g is not compact.

Proof. Use the above lemma to construct a sequence(x, ) in the closed unit ball of
E with, say, kx, - Xmk > 1=2for eachn 6 m. Then (x,) can have no convergent
subsequence, and so the closed unit ball cannot be compact.

12. MEASURE THEORY
The presentation in this section is close to [2—4].
12.1. Basic Measure Theory.

De nition 12.1. Let X be a set. A -algebraon X is a collection of subsets of X, say
R 2%, such that
(i) X2 R;
(i) if AAB2 R,thenAnB2 R;
(iii) if (Ap)isanysequenceinR,then[ A, 2 R

If we drop the rst condition from the de nition we got a ring.
Exercise 12.2. Show that the empty set belongs to any -algebra.

De nition 12.3. A semiringS of sets is the collection such that



INTRODUCTION TO FUNCTIONAL ANALYSIS 65

(i) itis closed under intersection;
(i) for A, B2 SwehaveAnB=Cyt ...t Cy with Cx 2 S.

Example 12.4. The following are semirings but not rings:

(i) The collection of intervals [a, b) on the real line;
(i) The collection of all rectangles fa 6 x <b,c 6 y <d gon the plane.

Exercise 12.5. Let Sbe a semiring. Show that
(i) The collection of all disjoint unions t J_ Ay, where Ay 2 S, is aring. We
call it the ring R(S) generated byhe semiring S.
(i) Any ring containing S contains R(S) as well.

Fora -algebraRand A,B 2 R, we have
A\ B=Xn(Xn(A\ B))= Xn((XnA)[ (XnB)) 2 R;

similarly, Ris closed under taking (countably) in nite intersections.

As the intersection of a family of -algebras is again a -algebra, and the power
set2X is a -algebra, it follows that given any collection D 2%, thereis a -
algebraRsuchthatD R, suchthatif Sis any other -algebra,with D S, then
R S. We callRthe -algebra generated Y. In a similar way we can

De nition 12.6. A measurésamap :R! [0,1 ]denedona -algebraR, such
that
i (?)=0.
(i) if (An)is a nite subset of R, such that A; age pairwise disjoint (that is,
An\ An = ? forn 8 m),then ([ ,Ap) = (An). This property is
called additivity of a measure.

n

In analysis we are interested in in nities and limits, thus t he following exten-
sion of additivity is very important.

De nition 12.7. In terms of the previous de nition we say that is countably ad-
ditive (or  -additive if foany countable family (An) of pairwise disjoint sets from
Rwe have ([nAn)= | (An). Ifthe sum diverges, then as it will be the sum
of positive numbers, we can, without problem, de neittobe +1 .

Example 12.8. (i) Fixapoint a 2 R and de ne a measure by the condition
(A)=1lifa2 Aand (A)= 0otherwise.

(i) For the semiring from Example 12.4(i)dene ([a,b)) = b- a. Thisisa
measure, and we will show its  -additivity.

(iii) For the semiring from Example 12.4(ii),dene (V)= (b- a)(d- c) for

therectangleV = fa6 x<b,c6 y<dg ltisagaina -additive measure.

We will see how to de ne a measure which is not  -additive in Section 12.4
De nition 12.9. A measure is nite if (A)< 1 forall A X

A measure is -nite if Xis a union of countable number of sets Xy, such that
the restriction of  to each Xy is nite.

Proposition 12.10. Let be a measure on aalgebraR. Then:
@) IfA,B2 Rwith A B, then (A)6 (B);
(i) fA,B2 RwithA Band (B)<1,then (BnA)= (B)- (A);

(i) If (An) isasequence iR,withA; A, Aj . Then
lim (An)= ([An).
n! 1
(iv) If (An)isasequence iR, withA; A, As f (Ap) < 1 for some
m, then

Iim (An)= (VAn).
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12.2. Extension of Measures. From now on we consider only nite measures, an
extension to - nite measures will be done later.

Proposition 12.11. Any measure °on a semiringSis uniquely extended to a measure
on the generated rinB(S), see Ex12.5 If the initial measure was-additive, then the
extension is -additive as well.

Proof. If an extension exists it shall satisfy (A) =t ., %Ak), where Ax 2 S. We
need to show for this de nition two elements:
(i) Consistency, i.e. independence of the value from a presentation of A 2
R(S) asA = t - A, where Ay 2 S. For two different presentation A =
k=1Axand A = t L B, dene Cx = Aj\ By and express the value of
(A) through them.
(i) Additivity. For A =t {_; A, where Ay 2 R(S) presentA = t !y and
obtain additivity from this sub-presentation.
Finally show the -additivity. For a set A = ti_ Ay, where Ay 2 R(S), nd
presentations A = t _,Bx and By = tj”:(';)B,-k . Then use -additivity of ®and
the possibility to change summation signs in series with non -negative terms.

In a similar way we can extend a measure from a semiring to corr esponding
-ring, however it can be done even for a larger family. To do th at we will use the
following notion.

De nition 12.12. Let Sbe a semi-ring of subsets in X, and be a measure de ned
on S. An outer measure on Xisamap :2X! [0,1 ]de ned by:

X
(A) = inf (Ag), suchthatA [ Ak, Ax2S
k
Proposition 12.13. An outer measure has the following properties:
M (*)=0
(i) ifA Bthen (A)6 (B); p
(i) if (An) is any sequence i, then ([nAn)6 , (An).

The nal condition says that an outer measure is countably sub-additive

Example 12.14. The Lebesgue outer measameR is de ned out of the measure from
Example 12.8(ii), that isfor A 8 R, as 9

<X =
(A)=inf — (bj- a):A [ j2la,by).
e ;
We make this de nition, as intuitively, the “length”, or mea sure, of the interval
[a,b)is(b- a).
For example, for outer Lebesgue measure we have (A) = 0for any countable
set, which follows, as clearly  (fxg = Oforany x 2 R.

Lemma 12.15. Leta<b. Then ([a,b])=b- a.

Proof. For > 0, as[a,b] [a,b+ ),wehavethat ([a,b]) 6 (b- a)+ . As
> 0, was arbitrary, ([a,b]) 6 b- a.

To show the opposite inequality we observe that [a,b) [a,b]and [a,b) =
b - a (becausefa, b) is in the semi-ring) so [a,b] > b- a) by 12.13(ii).

Our next aim is to construct measures from outer measures. We use the notation
A MB=(A[ B)n(A\ B) for symmetric difference of sets
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De nition 12.16. Given an outer measure  de ned by a semiring S, we de ne
A X to be Lebesgue measuralildor any " > 0 there is a countable union B of
elementsin Ssuchthat (A MB) <".

Obviously all elements of Sare measurable. An alternative de nition of a meas-
urable set is due to Carathéodory.

De nition 12.17. Given an outer measure ,we dene E X to be Carathéodory
measurablé
(A)= (A\VB+ (AnE),
forany A X
As is sub-additive, this is equivalent to
(A)> (A\E)+ (AnE) (A X)),
as the other inequality is automatic.

Exercise 12.18.Show that measurability by Lebesgue and Carathéodory are equi-
valent.

Theorem 12.19 (Lebesgue) Let  be an outer measure ohde ned by a semirings,
and letL be the collection of all Lebesgue measurable sets forhenL is a -algebra,
and if isthe restriction of tolL,then isa measure.

Sketch of prooffirst we show that ~ (A) = (A) forasetA 2 R(S). If A [ Ak
then (A) 6 « (Ax), taking inmum we get  (A) < (A). The opposite
inequality follows because A 2 R(S) implies a disjoint representation A = t  By.

Now we will show that R(S) is an incomplete metric space, with the measure

being uniformly continuous functions. Measurable sets mak e the completion of
R(S) with  being continuation of  to the completion by continuity.

De ne a distance between elements A, B 2 L as the outer measure of the sym-
metric difference of A and B: d(A,B) = (A MB). Introduce equivalence relation
A Bif d(A,B) = 0and use the inclusion for the triangle inequality:

AMB (AMC)[ (CMB)

Then Lebesgue measurable sets make the closure ofS with respect to this dis-
tance.

We can check that measurable sets form an algebra. To this endwe need to
make estimations, say, of ((A1\ Az) M(B1\ By)) intermsof (A; MB;).

Now we show that L is -algebra. LetAx 2 L and A = [ «KAx. Then for any

"> Othere exist By 2 Ssuchthat (Ax MBy) < 5. Dene B=[By. Then

([kA) M([kBk) [ « (Ak MBy) implies (A MB)<".
Now dene Bf = B; and BY = By n[f /B;. ThenB =4 (B? and BY 2 R(S).
From the convergence of the series there isN such that &:N (Bk) < ". Let
BO=[}.,BY. Then (BMB%6 "and (A MB?%6 2"
To check that  is measure onL we use the following

Lemma12.20.j (A)- (B)j6 (A MB),thatis isuniformly continuous in the
metricd(A, B).

Proof of the LemmaUse inclusions A B[ (A MB)

To show additivity take A1, 2 L,A = A1t Ay, Bi2 2 Rand (A MB;j)<".

Then (AM(Bi[ Bp)) <2"andj (A)- (Bi[ B2)j< 2".Thus (Bi[ By)=

(Bi[ B2) = (B)+ (Bz)- (Ba[ Bz), but (Bi[ B2) = d(Bi[ B2,?) =
d(Bl[ By, A7\ Ag) < 2". Therefore

j (Bi[ B2)- (B1)- (B)j<2".
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Combining everything together we get:
o (A)- (A)-  (A2)j< 6"
Thus is additive. p
Check the countable additivity for A = t (Ax. The Inequality (A)6 |, (Ak)
follows from countable sub-add'ig'vity. The opposite inequ ality is the limiting case

of the nite inequality (A) > {:‘: 1 (Ay) following from additivity and mono-
tonicity of

Corollary 12.21. LetE R be open or closed. Thens Lebesgue measurable.

Proof. This is a common trick, using the density and the countabilit y of the ration-
als. As -algebras are closed under taking complements, we need only show that
open sets are Lebesgue measurable.

Intervals (a, b) are Lebesgue measurable by the very de nition. Nowlet U R
be open. For eachx 2 U, there existsay < by with x 2 (ax,bx) U. By making
ay slightly larger, and by slightly smaller, we can ensure that ax,bx 2 Q. Thus
U = [ x(ax,bx). Each interval is measurable, and there are at most a countale
number of them (endpoints make a countable set) thus U is the countable (or nite)
union of Lebesgue measurable sets, and henceJ is Lebesgue measurable itself.

We perform now an extension of nite measure to - nite one. Let there is
-additive and - nite measure de ned on a semiring in X = t Xk, where
restriction of mu to every Xy is nite. Consider the Lebesgue extension ¢ of
de ned within  Xi. Aset A X is measurable if every intersection A\ Xy is g
measurable. For a such measurable §(eA we de ne its measure by the identity:

(A) = k(AN Xk).
k

We call a measure de ned on L completef whenever E X is such that there
existsF2 Lwith (F)= 0Oand E F, we have that E 2 L. Measures constructed
from outer measures by the above theorem are always complete. On the example
sheet, we saw how to form a complete measure from a given measure. We call sets
like E null sets complete measures are useful, because it is helpful to be alte to
say that null sets are in our -algebra. Null sets can be quite complicated. For the
Lebesgue measure, all countable subsets ofR are null, but then so is the Cantor
set, which is uncountable.

De nition 12.22. If we have a property P(x) which is true except possibly x 2 A
and (A) = 0, we say P(x) is almost everywherer a.e.

12.3. Complex-Valued Measures and Charges. We oftenly need expand the meas-
ures to be more than only positive-valued.

De nition 12.23. Let X be a set, andR be a -ring. A real- (complex-) valued
function on R is called a charge(or signed measujef it is countablylgdditive as
follows: for any Ayx 2 Rthe identity A = t Ay implies the series | (Ak) is
absolute convergent and has the sum (A).

Example 12.24. Any linear combination of -additive measures on R with real
(complex) coef cients is real (complex) charge.

The opposite statement is also true:

Theorem 12.25. Any real (complex) charge has a representation= ;- ,( =
1- 2+1 3- 1 4),where  are -additive measures.

To prove the theorem we need the following de nition.
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P
De nition 12.26. The variation of a chargen asetA isj j(A) = sup j (Ax)jfor
all disjoint splitting A =t (Ak.

Example 12.27. If = 1- o, thenj j(A) 6 1(A)+ 2(A). The inequality
becomes an identity for disjunctive measuresn A (that is there is a splitting A =
At A such that Z(Al) = 1(A2) = 0)

The relation of variation to charge is as follows:

Theorem 12.28. For any charge the functionj jisa -additive measure.
Finally to prove the Thm. 12.25we use the following

Proposition 12.29. For any charge the functionj j- isa -additive measure as well.
From the Thm. 12.25we can deduce

Corollary 12.30. The collection of all charges on algebraR is a linear space which is
complete with respect to the distance:

d( 1, 2)= ASlZJFR)j 1(A)-  2(A)j.

The following result is also important:

Theorem 12.31(Hahn Decomposition) . Let be a charge. There ex#stB 2 L, called
a Hahn decomposition of (X, ), with A\ B = ?,A[ B = X and such that for any
E2L,

(A\E)>0, (B\ E)6O0.
This need not be unique.

Proof. We only sketch this. We say that A 2 L is positiveif
(E\VA)>0 (E2 L),

and similiarly de ne what it means for a measurable set to be negative Suppose
that nevertakes the value- 1 (the other case follows by considering the charge
- ).
Let = inf (Bp) where we take the in mum over all negative sets By. If

= - 1 then for each n, we can nd a negative B, with (Bp) 6 - n. But then
B = [ B, would be negative with  (B) 6 - n forany n,sothat (B)=- 1 a
contradiction.

So > -1 andso for eachn we can nd a negative B, (B,) < + 1=n.
Then we can show that B = [ B, is negative, and argue that (B) 6 . AsB s
negative, actually (B) =

There then follows a very tedious argument, by contradictio n, to show that
A = XnBis a positive set. Then (A, B) is the required decomposition.

12.4. Constructing Measures, Products. Consider the semiring Sofintervals [a, b).
There is a simple description of all measures on it. For a measure de ne

< ([0,t)) if t> 0,
F@)=, 0 ift =0,
([t,0) ift< O,
F is monotonic and any monotonic function F de nes a measure on S by the
by ([a,b)) = Hb)- Ha). The correspondence is one-to-one with the additional
assumption H0) = O.

Theorem 12.32. The above measureis -additive onS if and only if Fis continuous
from the left:Ht - 0) = K1) forallt 2 R.
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Proof. The necessity:Ht)- Ht- 0)= lim-, o ([t- ",t))= 0.

For suf ciency assume [a, b) = t [ak, bx). Theinequality ([a,b)) > |, ([ak,bk))
follows from additivity and monotonicity. For the opposite  inequality take ¢ s.t.
Fb)- Hb- )<" and Fax)- Hax - «) <"=2 (use left continuity of F). Then
the interval [a, llg, ]is covered by (ax - «,bk), there is nite subcovering. Thus

(la,b- )6 oy (ax- b))

Example 12.33. (i) Take Ht) = t, then the corresponding measure is the Le-
besgue measure onR.

(i) Take Ht) be the integer part of t, then counts the number of integer
within the set.

(i) De ne the Cantor functionas follows (x) = 1=2 on (1=3,2=3); (X) =
1=4 on (1=9,2=9); (x) = 3=4on (7=9,8=9). This function is monotonic
and can be continued to [0, 1] by continuity. The resulting measure is as
follows:

The measure of the entire interval is 1.
Measure of every point is zero.
The measure of the Cantor set is1, while its Lebesgue measure isO.

Another possibility to build measures is their product.

De nition 12.34. Let X and Y be spaces, and letS and T be semirings on X and
Y respectively. Then S T is the semiring consisting of fA B : A 2 SB 2
Tg(“generalised rectangles”). Let and be measures onSand T respectively.
De ne the product measure onS T bytherule ( A B)= (A) (B).

Example 12.35. The measure from Example 12.8(iii) is the product of two copies
of pre-Lebesgue measures from Example 12.8(ii).

13. INTEGRATION

We now come to the main use of measure theory: to de ne a general theory of
integration.

13.1. Measurable functions. From now on, by a measure spacge shall mean a
triple (X,L, ), where X is a set,L isa -algebraon X, and is a measure de ned

on L. We say that the members of L are measurableor L-measurable, if necessary
to avoid confusion.

De nition 13.1. A function f : X! R is measurablé
E.(f)=fx2 X:f(X) <cg

isin L forany c 2 R.
A complex-valued function is measurable if its real and imag inary parts are
measurable.

Lemma 13.2. The following are equivalent:

(i) Afunctionf is measurable;
(i) Foranya<b the sef- '((a,b)) is measurable;
(i) For any open sdtl 2 R the setf~ 1(U) is measurable.

Proof. Use that any open setU 2 R is a union of countable set of intervals (a,b),
cf. proof of Cor. 12.21

Corollary 13.3. Letf be measurable arglbe continuous, then the compositig(f (x))
is measurable.

Proof. The preimage of (- 1 , ¢) under a continuous g is an open set, and its preim-
age under f is measurable.
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Theorem 13.4. Letf,g : X ! R be measurable. Theai, f + g, fg, max(f,g) and
min(f, g) are all measurable. That is measurable functions form abadgand this algebra
is closed under convergence a.e.

Proof. Use Cor. 13.3to show measurability of f , jfj and f2.
Next use the following identities:

Ec(fi+f2) = [r2(E(f2)\ Ec.(f2)),
(fr+12)%-(f1- f2)?
2 ,
(fl + f2) + Jf]_ - fgj
3 .
If (fn) is a non-increasing sequence of measurable functions conveging to f.
Than Ec(f) = [ n Ec(fn).

Moreover any limit can be replaced by two monotonic limits:

I fa (9= Tim - lim max(fa (9, fas 100, Fae(9).

fifo

max(fy, f2)

Finally if f, is measurable andf, = f; almost everywhere, then f, is measurable
as well.

We can de ne several types of convergence for measurable functions

De nition 13.5. We say that sequence(f, ) of functions converges
(i) uniformly to f (notated f,, ) f)if

supjfn (x)- f(x)j! O
X2 X

(i) almost everywher® f (notated f,, ¥ f) if
fan(x)! f(x) forall x2 XnA, (A)=0;
(ii) in measure tof (notated f, ! f)ifforall "> 0
(fx2 X:jfa(x)- f(x)j>"9! O.
Clearly uniform convergence implies both convergences a.e and in measure.
Theorem 13.6. On nite measures convergence a.e. implies convergenceasune.

Proof. Dene An(") = fx 2 X :jfn(x)- f(X)j > "g Let Bp(") = [k>nAx(").
Clearly By (")  Bn+1("), letB(") = \ 1 B, ("). If x 2 B(") then f,, (x) 6! f(x). Thus
(B(")) = 0,but (B(")) = limp, 1 (Bn(")). SinceA,(") By (") we see that
(An (")) ! O
Exercise 13.7. Present examples of sequencegf,) and functions f such that:
() fn ! fbutnot f, #f.
(i) f, #*fbutnot f,) f.
However we can slightly “ x” either the set or the sequence to “upgrade” the
convergence as shown in the following two theorems.

Theorem 13.8 (Egorov). If f, f*f on a nite measure seX then for any > Othereis
E Xwith (E )< andf,) fonXnE .

Proof. We use A, (") and By (") from the proof of Thm. 13.6 For every " > 0we
seen (Bn (")) ! O, thus for each k there is N(k) such that (By (x)(1=K)) < = 2k,
Putg = [ kBN(k)(lzk).

Theorem 13.9. If f, ! f thenthereis a subsequerfog) such thatf,, fffork! 1.
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Proof. In the notations of two previous proofs: for every natural k take ny such
that (An, (1=k)) < 1=2. Dene Cyn = [i.,,An,(1=k) and C = \ C,. Then

(C) = Oand if x 62C then there is such N that x 62A,,, (1=Kk) for all k > N . That
means thatjf,, (x) - f(x)j < 1=kfor all such k,i.ef,, (x)! f(x).

Exercise 13.10.Read about Luzin's C-property.

13.2. Lebsgue Integral. First we de ne a sort of “basis” for the space of integral
functions.

De nition 13.11. ForA X,we de ne , to be the indicator functionof A, by

1 :x2A,

X) =
A= e

Then, if A is measurable, then Al((1=2,3=2)) = A 2 L; conversely, if A 2 L,
then XnA 2 L, and we see thatforany U R open, ,*(U) is either 7, A, XnA,
or X, all of which arein L. So A is measurable ifand only if A 2 L.

De nition 13.12. A measurable function f : X ! R is simpleif it attain only a
countable number of values.

Lemma 13.13. A functionf : X! R is simple if and only if
b
(13.1) f= te A,
k=1
for somety)i., R andAy 2 L. Thatis, simple functions are linear combinations of
indicator functions of measurable sets.
Moreover in the above representation the ggtscan be pair-wise disjoint and alk
pair-wise different. In this case the representation isjuei.

Notice that it is now obvious that

Corollary 13.14. The collection of simple functions forms a vector spacewéasn't clear
from the original de nition.

De nition 13.15. A simple function in the form ( 13.1) with disjoint Ay is called
summablef the following series converges:
% %
jtkj (Ag) if f has the above unique representation f = tk A,
k=1 k=1
It is another combinatorial exercise to show that this de ni tion is independent
of the way we write f.

De nition 13.16. For any summable function f from the previous De nition we
de ne the integral of a simple function f : X ! R over a measurable setA by
setting 7

%
fd = tk (Ax\ A).
A k=1
Clearly the series converges for any summable function f. Moreover

Lemma 13.17. The value of integral of a summable function is independent its rep-
resentation by the sum of indicators over pair-wise digjs@ts.

Proof. This is another slightly tedious combinatorial exercise. Y ou need to prove
that the integral of a simple function is well-de ned, in the sense that it is inde-
pendent of the way we choose to write the simple function.
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We will denote by S(X) the collection of all simple summable functions on X.

Proposition 13.18. Letf,g: X! R be inS(X) (thatis simple summable), lat b 2 R
andA is eemeasurable. Then: R
() ,af+bgd =a ,fg +b ,gd , thatisS(X) is alinear space;
(i) The correspondenéeé R fd isalinear functional or§(X);
(i) The correspondenge! , fd isacharge;

(iv) The function .

(13.2) da(f,9) = XJ'f(X)- g()jd (x)

has all properties of the distance $(X) probably except separation.

(v) ForallA X:
z z

f(x)d (x)- AQ(X)O' (x) 6 dui(f,9).

R
(vi) Iff 6 gthen  fdy 6 , gd ,thatisintegral is monotonic ;
(vii) Forf > Owe have, fd = Oifandonlyif (fx2 X:f(x) 6 0g = 0.

Proof. The proof is almost obvious, for example the Property 13.18(i)easily follows
from Lem. 13.17

Wegill outline 13.18(iii) only. Let f is an indicator function of a set B, then
Al ,fd = (A\ B)isa -additive measure (and thus—a charge). By the
Cor. 12.30the same is true for nite linear combinations of indicator f unctions and
their limits in the sense of distance d;.

We can identify functions which has the same values a.e. Then S(X) becomes a
metric space with the distance d; (13.2. It may be incomplete and the completion
will be realised as a the following space of functions:

De nition 13.19. A function f is summableby a measure if there is sequence
(fn)  S(X) such that
(i) the sequence(fy) is a Cauchy sequence inS(X);
(i) f, FF.
Clear if a function is summable, then any equivalent functio n is summable as
well. Set of equivalent classes will be denoted by L, (X).

Lemma 13.20. If the measure is nite than any bounded measurable function is sum-
mable.

Proof. De ne Ey, (f) = fx2 X :k=n 6 f(x) < (k+ 1)=ngand f,, = P K r'j— E., (note
that the sum is nite due to boundedness of f).

Sincejf, (x) - f(x)j < 1=n we have uniform cgnvergence (thus convergence a.e.)
and (f,) is the Cauchy sequence:ds (fn,fm) =y jfn - fmjd 6 (2+1) (X).

Remarkl3.21 This Lemma can be extended to the space ofessentially boundefdinc-
tions L; (X), in otherwords L; (X) L;(X) for nite measures.
Exercise 13.22.Convergence in the metric d; and a.e. do not imply each other:

(i) Give an example of f, #*f such that d1(f,,f) 6! O.
(i) Give an example of the sequence (f,) and function f in L*(X) such that
d1(fn,f) 6! Obut f, does not converge tof a.e.

To build integral we need the following

Lemma 13.23. Let(f,,) and(gn ) be two Cauchy sequences3(X) with the same limit
a.e., therdy(fn,gn)! O.
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Proof. Let , = f, - gn, then this is a Cauchy sequence with zero limit a.e. As-
guime the opposite to the statement: there exist > 0 ang sequence(ny) such that
«J n.d > .Rescaling-renumbering we canobtain _j njd > 1
Take quickly convergent subsequengeng the Cauchy property:

di( v niy) 6 12272
Ren.umberin.g agiz;n assumeql( Kk pk+1) 6 1:2k+2P . R
Since 1 is a simple, that is p= ke A and otk A, = o1jd > L
Thus there exists N, such that E‘zljtkj A, > 374 PutA = tE: 1A and C =

Maxie ke N jtkj = Maxxza j 1(X)].
By the Egorov's Theorem 13.8there is E A such that (E) < 1=(4C) and
n) Oon BE AnE. Theg

z
i = ad - jajd e g C= g
Since z z 1
Bjnjd - Bj nv1jd 6 di( n, n+l)6W
we get
z z x1Z z LoXt g
aid > jaid - jaid - jaajd >3- i

k=1 B
But this contradicts to uniform convergence , ) 0Oon B.

1

R
Corollary 13.24. The functionalla (f) = , f(x)d (x), de ned on anyA 2 L on the
space of simple functioi®X) can be extended by continuity to the functionallgifX, ).

De nition 13.25. For an arbitrary summable f 2 L;(X), we de ne the Lebesgue
integral 7 b
fd = lim fnd
A ntl.
where the Cauchy sequencef,, of summable simple functions convergesto f a.e.
Theorem 13.26. (i) L;(X) is alinear space.
(i) For any setA X the correspondende7! , fd is a linear functional on
L, (X). R
(i) Foranyf 24, (X) the value (A)= , fd isacharge.
(iv) di(f,g)= ,jf- gjd isadistance ol,(X).

Proof. The proof is follows from Prop. 13.18and continuity of extension.

Remarkl3.27 Note that we build L, (X) as a completion of S(X) with respect to the
distance d;. Its realisation as equivalence classes of measurable funtions on X is
somehow secondary to this.

13.3. Properties of the Lebesgue Integral. We will state some results on integral
and limit, in particular we state that L, (X) is closed in d; metric.

Theorem 13.28(Lebesgue on dominated convergence) Let(f,) be a sequence of
summable functions oK, and thereis 2 L,(X) such thafjf, (x)j 6 (x) forallx 2 X,
n2N.
If f, F°f, thenf 2 L,(X) and forzany measuzrabne:
lim fnd = fd
nt'1 A A

Proof. For any measurable A the expression (A)= , d denesa nite meas-
ure on X due to non-negativeness of and Thm. 13.26
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Lemma 13.29. If g is measurable and bounded thfes g is -summable and for any
-measurable sét we have 7 7

fd = gd .
A A

Proof of the Lemmalet M be the set of all g such that the Lemma is true. M in-
cludes any inZdicator fur%ctions g= 5 of a measurable B:

fd = gd = d = (A\B)= gd.
A A A\ B A

Thus M contains also nite liner combinations of indicators. Fora ny n 2 N and a

bounded g two functions g. (x) = 2[ng(x)] and g (x) = g. + X are nite linear

comginations of indzicators and arg in M. Sinceg_Z (x) 6 g(x) 6 g+z(x) we have

g- (x)d = g-.d 6 g (x)d 6 g+(xX)d = g+(x)d .
A A A A

By squeeze rule forn ! 1 we have the middle term tensesto , gd , thatis
g2 M.

For the proof of the theorem de ne:
fn(x)= (x), if (x)60,

M) = it (x)= 0,
_f= (x), if (x) 80,
9 = o it (x)= 0.

Then g, is boypded by 1 and gn ° g. To show the theorem it will be enough to
show limy,; 1 ,9nd = , gd . Forthe uniformly bounded functions on the
nite measure set this can be derived from the Egorov's Thm. 13.8 see an example
of this in the proof of Lemma 13.23

R R
Exercise 13.30.Give an example of f, ¥°f suchthat , f,d 6 | fd

Exercise 13.31(Chebyshev's inequality) . Show that: if f is non-negative and sum-
mable, then 7

(13.3) fx 2 X:f(x) >cg< % fd
X

Theorem 13.32 (B. Levi's, on monotone convergence). Let (f,) be monotonically
increasing sequencesummable functions oK. De ne f(x) = lim,, 1 f, (X) (allowing
the valuet 1 ).
() gallintegrals , f, ¢ are bounded by the same value tfiés summable and
xfnd =gima 1 yfnd .
@ii) Iflimp, 1 fnd =+1 then functionf is not summable.

Proof. Replacingf, by f, - fyand f by f- f; we canassumef, > Oandf > 0. LetE

be the sethvheref isin nite, then E= \R' [ n Enn ,wh%e Enn = X2 X:fh(x)> N.

We have En fnd >N (Enn ), but En fnd 6 .fnd 6 Cthen (Enn) 6

C=N by Chebyshev's inequality. Thus (E) = limy; 1 limnr 1 (Enn ) = 0.
Thus f is nite a.e.

Lemma 13.33. Letf be a measygable non-negative function attaining only nredues.
f is summable if and only ifup , fd < 1, where the supremum is taken over all
nite-measure seA such thatf is bounded orA.
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roof of the Lemmalf f is summable then for any set A X we have , fd 6
i fd < h,thus the supremum is nite.
Letsup , fd =M< 1,dene B=fx2 X:f(x)= Ogand Ay = fx 2 X:2¢6

f(x) < 2¢*1 k2 Zgwe have (Ax) <M=2¢and X =Bt (t{.,A«). Dene

A

2k i x2 Ay,
9 = o' ix2B,

_ f(x), ifx2t", An,
fn(x) = 0, otherwise.

Then g(x) 6 f(x) < 2g(x) and f, (x) < 2g£x). Function gds a simple function, its
summability follows from the estimation ., , gd 6 ., , fd 6 M. Then

f, T%f and we use the Lebesgue Thm.13.280n dominated convergence.

Let A be a nite £neasure set SL?h that f is bounged, then
fd = Ilim fprd 6 Im f,d 6 C.
A ni1l nl1
This show summability of f by the previous Lemma. The rest of statement and the
second part follows from the Lebesgue Thm. 13.28on dominated convergence.

Now we can extend this result dropping the monotonicity assu mption.
Lemma 13.34(Fatou). If a sequencé ) of -summable non-negative functions is such
that:
xfnd 6 Cforalln;
fo P9F, R
thenf is -summable and, fd 6 C.

Proof of Fatou's Lemmal.et us replace the limit f, ! f by two monotonic limits:
On (X) = min(fh(x),...,fn+k(X))
gn(x) = lim gun (x).

R
Thenlimp: 1 gn(x) = f(x) a.e. From monotonicity of integsal we get , g, d 6
C. Then Levi's Thm. 13.32implies that f is summable and | fd 6 C.

Remark13.35 Note that theyprice for digpping monotonicity from Thm.  13.32to
Lem. 13.34is that the limit , f,d !  fd may nothold any more.

Exercise 1386.Give angxample such that under the Fatou's lemma condition w e
getlimy,, 1 ,f,d 6 ,fd

Now we can show that L;(X) is complete:
Theorem 13.37. L, (X) is a Banach space.

Proof. Itis clear that the distance function d; indeed de ne anorm kfk, = d4(f, 0).
We only need o demonstrate the completeness. Take a Cauchy sguence (f,)
and building a subsequence if necessary, assume that itsquickly convergenthat
is di(fn,fp+1) 6 1=2%. Put ; = f;and | =gfn - fn.1for n> 1. The sequence

n(X) = 1] «(x)jis monotonic, integrals « n d are bounded by the same
constant. Thus by the B. Levi's Thm. 13.32and its prgof , ! for a summable
essentially bounded function . Therefore the series k (X) converges as well to
a function f. But this means that f, ™ f. We also notice jf,, (P | (). Thus by
the Lebesgue Thm. 13.28on dominated convergence lim,; 1 jfn - fjd = 0.
Thatisf, ! finthe norm of L;(X).
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The next important property of the Lebesgue integral is its absolute continuity

Theorem 13.38(Absolute continuity of Lebesgue integral) . Letf 2 L,(X). Then for
any"> Othereisa > Osuchthat , fd <" if (A)<

Proof. If f is essentially bounded by M, thenitis enoughtoset = "=M. Ingeneral
let:

A, = fx2X:n6 jf(x)j<n + 1g

B, = t 8 Ay,

Ch = XnB,.

R . P, - ) P,R .
Ehen xIfid =5 5 ifid , thus there is an N such that  , jfid =

Cu jfid <"= 2. Nowput = m thenforany A Xwith (A) <
z z z z W
fd 6 jfjd = ffid + ffid< =+ ==".
A A A\ By A\ Cy 2 2

13.4. Integration on Product Measures. We will study in some details product
measures introduced in Defn. 12.34 We start from the following

Theorem 13.39. Let X andY be spaces, and I8tand T be semirings oX andY respect-
ivelyand and be measures ddandT respectively. If and are -additive, then the
product measure from Defn.12.34is -additive as well.

Proof. ForanyC=A B2S Tletusdene fC%x): A(X) (B). Then
( NS = (A) (B)= Xfcd :

If the same setC hgs arepresentationC = t (Cy for Cx 2 S T, then -additivity

of implies fc = | fc,. By the Lebesgue theorem13.28on dominated conver-
ence:
g Z x Z
fed = fe, d .
X K X
Thus

X
( WO = )(Cx).

k

The above correspondenceC 7! fc can be extended to the ring R(S T) gener-
atedby S T by the forrr)1(u|a:

fc = feo, forC=txCk 2 R(S T).
k
We obtain:
kfc, - fe,ky 6 ( )(C1 MCy)

because from the representationC; = A;t Band C, = A,t B, where B = C;\
C, one can see thatfc, - fc, = fa, - fa,, fcomc, = fa, + fa, together with
ifa, - fa,j6 fa, + fa, for non-negative functions..

Thus the map C 7! fc can be extended to the map of -algebra L(X YY) of

-measurable set toL,(X) by the formula fjm, ¢, = limy fc, .

Exercise 13.40. Describe topologies where two limits from the last formula a re
taken.

Lemma13.41.LetC 2 L(X Y). Foralmostevery 2 XthesetlCy = fy 2 Y: (X,y) 2
Cgis -measurable and(Cy) = fc(X).
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Proof. For sets from the ring R(S  T) itis true by the de nition. If C(") is a mono-
tonic sequence of sets, then (limy CS(”)) = limpy (Cf(")) by -additivity of meas-
ures. Thus the property (Cx) = fy(C) is preserved by monotonic limits. The
following result of the separate interest:

Lemma 13.42. Any measurable set is up to a set of zero measure can be defreive
elementary sets by two monotonic limits.

Proof of Lem13.42 Let C be a measurable set, putC,, 2 R(S T) to approximate
Cupto 2 "in .LetC=\1_;[t.,Cnhsk,then

( )(Cn[=1Cn+k)= 0 and ( )([k=1Cn+knC)= 20",
Then ( J(CMC) 6 2% " forany n 2 N.

Coming back to Lem. 13.41we notice that (in the above notations) fc = f.
almost everywhere. Then:

fc)=fcx)= (C)= (Co).

Theorem 13.43. Let and are - nite measures andC be a measurable set
X Y.WedeneCy = fy 2 Y: (x,y) 2 Cg Then for -almost everi 2 X the setCy
is -measurable, functiohc (x) = (Cy) is -rgeasurable and

(13.4) ( )(C) = xfcd :

where both parts may have the valug .

Proof. If C has a nite measure, then the statement is reduced to Lem. 13.41and a
passage to limitin (13.4).

If C has an in nite measure, then there exists a sequence of C, C, such that
[nCh = Cand ( )(Cf) I' 1.Thenfc(x) = lim, fc, (X) and

fe,d =( )Cn)! +1.
X

Thus fc is measurable and non-summable.

This theorem justify the well-known technique to calculati on of areas (volumes)
as integrals of length (areas) of the sections.

Remarkl3.44 (i) The role of spacesX and Y in Theorem 13.43is symmetric,
thus we can swap them in the conclusion.
(i) The Theorem 13.43can be extended to any nite number of measure
spaces. For the casze of three space&X, ), (Y, ),éZ, ) we have:

(13.5) ( )(C) = (Cxy ) d( x.y)= ( )(C2)d (2),
XY z

where

ny
C;

fz2 Z2:(x,y,2) 2 Cg
f(x,y)2 X Y:(x,y,2) 2 Cg

Theorem 13.45 (Fubini). Letf(x,y) be a summable function on the product of spaces
(X, )and(Y, ). Then:
() gRor -almost every 2 X the functionf(x,y) is summable ofy andfy(x) =
v f(x,y)d (y)isa -summable oiX.
(i) Ror -almostevery 2 Y the functionf(x,y) is summable oiX andfx (y) =
« f(x,y)d (x)isa -summable ory.
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(iii) Thgre are the identities:

(13.6) f(x,y) d( )(x.y)
XY

Z Z

foxy)d (y) d (x)
ZY
Xf(X,Y)d (x) d (y).

(iv) For a non-negative functions the existence of any repeategral in (13.6) im-
plies summability of onX Y.

Proof. From the decomposition f = f, - f. we can reduce our consideration to
non-negative functions. Let us consider the product of thre e spaces(X, ), (Y, ),
(R, ),with = dz being the Lebesgue measure onR. De ne

C=1f(x,y,222X Y R:06 26 f(x,y)g
Using the relation ( 13.5 we get:

Cy = fz2R:06 z6 f(x,y)g (Cyy ) = f(X,y) 7

Cx = f(y,222Y R:06 z6 f(x,y)g ( )(Cx) = f(x,y)d (y).
Y
the theorem follows from those relations.

Exercise 13.46. Show that the rst three conclusions of the Fubini The-
orem may fail if f is not summable.
Show that the fourth conclusion of the Fubini Theorem may fai |if f has
values of different signs.

13.5. Absolute Continuity of Measures.

De nition 13.47. Let X be a setwith -algebraRand - nite measure and nite
charge on R The charge is absolutely continuousvith respectto if (A)= 0
for A 2 Rimplies (A)= 0. Two charges ; and ; areequivalentftwo conditions
j 1J(A)= 0andj »j(A) = 0are equivalent.

Theorem 13.48 (Radon—Nikodym) . Any charge which absolutely continuous with
respect to a measurehave the form

(A)= fd ,
A

wheref is a function fromL;. The functionf 2 L, is uniquely de ned by the charge

Proof. Again, this is a sketch. First we will assume that is a measure. LetD be
the collection of measurablezfunctions g: X! [0,1) such that

gd 6 () (E2L).
E

ket = supgzp RX gd 6 (X)< 1. Sowecan nda sequence(gn)in D with
W Ond !

We de ne fo(x) = sup, gn(X). We can show thatfo = 1 only on a set of -
measure zero, so if we adjustf on this set, we get a measurable function f : X!
[0,1 ). There is now a long argument to show that f is as required.

If is acharge, we can nd f by applying the previous operation to the meas-
ures . and . (asitiseasytoverifythat ., . n ).

We show that f iszessentially unique. If g is another function inducing , then

f-gd = (- (=0 (E2L).
E
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LetE= fx 2 X :f(x)- g(x) > Og so asf- gis measurable,E2 L. Then RE f-gd =
Oandf- g > 0on E, so by our result from integration theory, we havethat f- g= 0
almost everywhere on E. Similarly, if F= fx 2 X :f(x)- g(x) 6 Og then F2 L and
f - g = 0almost everywhere on F. As E[ F= X, we conclude that f = g almost
everywhere.

Corollary 13.49. Let be a measure oK, be a nite charge, which is absolutely con-

tinuous with respect to . For any" > 0 there exists > 0such that (A) < implies

JI(A) <™.

Proof. Byghe Radon—-Nikodym theoggm there is a function f 2 L,(X, ) such that
(A) = ,fd . Thenj j(A) = ,jfjd ad we get the statement from The-

orem 13.380n absolute continuity of the Lebesgue integral.

14. FUNCTIONAL SPACES

In this section we describe various Banach spaces of functions on sets with
measure.

14.1. Integrable Functions. Let (X,L, ) be a measure space. Fol 6 p< 1 ,we
dene Lp( ) to be the space of mzeasurable functionsf : X! K such that

ffiPd< 1.
X
We de ne kk, :Lp()! [0,1)by
z 1=p
kfk, = ifi° d (fF2LpC ).

X

Notice that if f = 0 almost everywhere, then jfji° = 0 almost everywhere, and
so kfk, = 0. However, there can be non-zero functions such that f = 0 almost
everywhere. Sokk, isnotanormon L ( ).

Lemmal4.l. Letl<p< 1, letq2 (1,1 )besuchthat=p+1=q= 1. Forf 2 L,( )
andg 2 L9( ), we have thafg Zis integrable, and

jfgid 6 kfk, kgk, .
X
Proof. Recall that we know from Lem. 11.2that
I
jabje B 4 P o k).
p q
Now we follow the steps in proof of Prop. 11.3 De ne measurable functions a,b :
X! K by setting
f(x) 9(x)
ax)= ——, b(x)= — (x 2 X).
fk, gk
So we have that
AP, g

ja(x)b(x)j 6 D g (x 2 X).
pkfky,  akgk,
By integr%ting, we see that -
1 1 1 1
jabjd 6 ——  jfifd + —% jg"d ==+ ==1.
M p kfkp ) q kgkg 9 P q

Hence, by the de nition of a ar? b,

fai 6 ik, kak, .
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as required.

Lemma14.2. Letf,g 2 Ly( ) andleta 2 K. Then:
() kafk, = jajkfk,;
(i) kf+ gk, 6 kfk, + kgk,.

In particular, L, is a vector space.

Proof. Part 14.2(i)is easy. For14.2(ii), we need a version of Minkowski's Inequality,
which will follow from the previous lemma. We essentially re peat the proof of
Prop. 11.4

Notice thatzthe p=1 caseizs easy, so suppose thal < p < 1 . We have that

XH+9Pd :Xﬁ+gﬂlﬁ+md
Z

»

if + g L (ifj + jgj) d
X Z
Xﬁ+w*Md+Xﬁ+w*Md.

Applying the lemma, this is

4 1=q V4 1=q

6 kik,  jf+ g Y d +kgk,  jf+gf® Vd

X X

Asqg(p- 1) = p, we see that
kf + gkg 6 kfk, + kgk, kf + gkgzq .
As p- p=qg = 1, we conclude that
kf + gkp 6 kfkp + kgkp ,

as required.

In particular, if f,g2 L,( )thenaf+g2 L,( ),showingthat L,( ) isa vector
space.

We de ne an equivalence relation  on the space of measurable functions by
setting f g if and only if f = g almost everywhere. We can check that is an
equivalence relation (the slightly non-trivial partistha t is transitive).

Proposition 14.3. For1 6 p < 1, the collection of equivalence classg¢ )= isa
vector space, aridk, is a well-de ned normor, ()= .

Proof. We need to show that addition, and scalar multiplication, ar e well-de ned
onlLp( )= .Leta2 Kandfy,f2,01,022 Lp( ) with f1 frandg:s g2. Then
it's easy to see thataf, + g1 af, + gz; but this is all that's required!

If f gthenjfj’ = jgj° almost everywhere, and so kfk, = kgk,. Sokk, is well-
de ned on equivﬁence classes. In particular, if f Othen kfk, = 0. Conversely,
if kfk, = Othen Xjfjp d = 0, soasjfj® is a positive function, we must have that
jfi’ = 0 almost everywhere. Hence f = 0 almost everywhere, sof 0. That s,

ff2Lp():f Og= f2Lp():kfk, =0 .

It follows from the above lemma that this is a subspace of L, ( ).
The above lemma now immediately shows that kk; isanormonL,( )= .

De nition 14.4.  We write L, () for the normed space (L, ( )= ,kk,).
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We will abuse notation and continue to write members of L,( ) as functions.
Really they are equivalence classes, and so care must be take when dealing with
Ly ( ). Forexample,if f 2 L, ( ), it does not make sense to talk about the value of
f at a point.

Theorem 14.5. Let(fn) be a Cauchy sequencelip( ). There exist$ 2 L,( ) with
kfn - fk, !' 0. Infact, we can nd a subsequengey) such thatf,, ! f pointwise,
almost everywhere.

Proof. We shall show this carefully for L; ( ) below. This case is similar.
Corollary 14.6. L, ( ) is a Banach space.

Proposition 14.7. Let(X,L, ) be a measure space, andllé& p< 1 . We cande ne a
map :Lq()! Ly( ) bysetting (f)=F forf2 L( ),pl+ qlz 1, where
Z

Fil,()! K, g7 ngd 92L,()).

Proof. This proof very similar to proof of Thm. 11.11 Forf 2 L,( )andg2 L9( ),
it follows by the above Iemea (HoId%r‘s Inequality), that fg is integrable, and

fgd 6 jfgjd 6 kfk, kgk, .
X X

Letf,f22 L,( )andg1,92 2 L9( )with f; foandg; gz. Thenfigs = fo0:
almost everywhere and f,g; = f,g, almost everywhere, so f191 = f,g, almost
everywhere, and hence 7 7

fig1d = fo00d .
X X

So iswell-de ned.
Clearly islinear, and we have shown that k (f)k 6 kfk,.

Letf 2 L9( )anddene g: X! K by

oY id- 2
9(x) = fF(x) i (X)] f(x) 8 0,

0 (f(x)= 0.
Then jg(x)j = jf(x)j% * for all x 2 X, and
enjg(x)j = jf(x)] 7 orall x X and so 2
jgf d = P Pd = jfj*d,
X X X

sokgk, = kfkg ", and so, in particular, g 2 L,( ). LetF= (f), so that
z z
Hg)= fgd = jfi'd =kfky.
X X a
Thus kR > kfkg =kgkp = kfkq. So we conclude that kFk = kf kq, showing that
is an isometry.
Proposition 14.8. Let(X,L, ) be a nite measure space, et p < 1 , and letF 2

L,( ) . Then there existg 2 Lq(z), pl + ql = 1such that

) = ngd (F2L,().

Proof. As (X) <1 ,forE2 L, wehavethatk gk, = ()P <1.S0 g2 Lo( ),
and hence we can de ne

B=Keg (E2L).



INTRODUCTION TO FUNCTIONAL ANALYSIS 83

We proceed to show that is a signed (or complex) measure. Then we can apply
the Radon-Nikodym Theorem 13.48to an afunction g:X! K such that

He= (B= Egd (E2L).

There is then a long argumentté) show that g 2 L9( ) and that

fgd = Kf)
X
forall f 2 L,( ), and notjustfor f = .

Proposition 14.9. Forl<p< 1 ,wehavethat,( ) = L,( ) isometrically, under
the identi cation of the above results.

Remark14.1Q Note that L; is not isomorphic to L;, except nite-dimensional
situation. Moreover if  is not a point measure L; is not a dual to any Banach
space.

14.2. Dense Subspacesin L.

Proposition 14.11. Let(X,L, ) be a nite measure space, andled p < 1 . Then the
collection of simple functions is denselin( ).

Proof. Letf 2 L, ( ), and suppose for now that f > 0. For eachn 2 N, let
fn = max(n,2 "b2"fc).
Then eachf, is simple, f, " f, and jf, - fj° ! 0 pointwise. For each n, we have
that
06fn6f§) 06 f- f, 6 f,

so thatjf - f,j° 6 jfj° forall n. As jfi" d < 1, we can apply the Dominated
Convergence Theorem to see thaé

lim jf, - f d =0,
noox

thatis, kfn - fk, ! O.
The general case follows by taking positive and negative parts, and if K = C,
by taking real and imaginary parts rst.

Proposition 14.12. Let ([0, 1],L, ) be the restriction of Lebesgue measui@®ta]. We
often writeL, ([0, 1]) instead oL, ( ). Forl<p < 1, we have thaCx ([0, 1]) is dense
in L, ([0, 1]).

Proof. As [0, 1] is a nite measure space, and each member of Ck ([0, 1]) is bounded,
itis easy to see that eachf 2 Cx ([0, 1]) is such that kfk, < 1 . So it makes sense
to regard Ck ([0, 1]) as a subspace ofL, ( ). If Ck ([0, 1]) is not dense in L, ( ), then
we can nd anon-zero F2 L,([0,1]) with Kf) = Oforeachf 2 Cx([0,1]). This
was a corollary of the Hahn-Banach theorem 11.12

So there exists a non-zzerog 2 L4([0, 1) with

fgd =0  (f 2 Ck([0,1]).

[0.1]
Let a <[Q in [0, 1]. Byeapproximating (a,b) by a continuous function, we can
showthat ,,,9d = g @apd =0.

Suppose for now that K = R. Let A = fx 2 [0,1] : g(x) > 0g2 L. By the
de nition of the Lebesgue (outer) measure, for > 0, there exist sequences(a,)
and (bn) with A [ n(an,bn),and (bh - an) 6 (A)+
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For eachN, consider [ N_,(an,bn). If some (ai,b;i) overlaps (aj, b;), then we
could just consider the larger interval (min(a;, a;), max(b;i, bj)). Formally by an
induction argument, we see that we can write t N_;(an,b,) as a nite union of
disjoint open intervals. By linearity, it hence follows that for N 2 N, if we set
Bn = [ N: 1(an ,bn )zthen

geyd = O (aibyr[ (anby)d =0

P
LetB=[n(an,bn),soA Band (B)6 ,(bn- an)6 (A)+ . Wethen
have that

z z z
gdsyd - ged = g Bn(ai,by)[ [ (aNbe)d
We now apply the Holder inequality to get
z 12p
Bn(ai.bu)[ [ (an.by)d kgk, = (Bn(as,b))[ [ (an,bn))*™ kgk,
X 1
6 (bn - an) kgkq .
n=N+1

We can make this arbitrarily small t%y making N large. Hence we conclude that
Jdg B d =0.
Then we apply Holder again to see that
7 pp yz g Z
gad = gad - gsd = gpgund 6Kkgk, (BnA)'™P 6 kgk, .

As > Owas arbitrary, we see that RA gd = 0. Asgis positive on A, we conclude
that g = O almost everywhere on A.

A similar argument applied to the set fx 2 [0, 1] : g(x) 6 Ogallows us to conclude
that g = O almost everywhere. If K = C, then take real and imaginary parts.

14.3. Continuous functions. Let K be a compact (always assumed Hausdorff) to-
pological space.

De nition 14.13. The Borel -algebraB(K), on K, isthe -algebra generated by the
open sets in K (recall what this means from Section 11.5. A member of B(K) is a
Borelset.

Notice that if f : K I K is a continuous function, then clearly f is B(K)-
measurable (the inverse image of an open set will be open, and hence certainly
Borel). Soif :B(K)! K isa nite charge or complex measure (for K = R or
K = C respectively), then f will be -integrable (asf is bounded) and so we can
de ne d

(Ck(K)! K, (fy= fd (f 2 Ck(K)).
K
Clearly is linear. SuppoEe for now that is positive, so that
i (6 jfjd 6 kfk; (K) (f 2 Ck (K)).
K

So 2 Ck(K) with k k6 (K).
The aim of this section is to show that all of Cg (K) arises in this way.
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De nition 14.14. A measure :B(K)! [0,1 ) isregularif for each A 2 B(K), we
have

(A) = supf (E):E A and Eis compactg
=inff (U): A UandU is openg.

Acharge = 4 - _ isregularif , and . are regular measures. A complex
measure isregularif its real and imaginary parts are regular.

Example 14.15. (i) Many common measures on the real line, e.g. the Le-
besgue measure, point measures, etc., are regular.
(i) An example of the measure on [0, 1] which is not regular:

0=0, (f30 =1, (A)=+1,

for any other subset A [0, 1].
(i) Another example of a -additive measure on [0, 1] which is not regular:

0, if A is at most countable;

(A) = +1 otherwise.

As we are working only with compact spaces, for us, “compact” is the same as
“closed”. Regular measures somehow interact “well” with th e underlying topo-
logy on K.

We let M g(K) and M ¢(K) be the collection of all nite, regular, signed or com-
plex (respectively) measures on B(K). These are real or complex, respectively, vec-
tor spaces for the obvious de nition of addition and scalar m ultiplication.

Recall, Defn.12.26 thatfor 2 M ¢ (K) we de ne the variation of

>4- . .
k k= sup i (An)j
n=1
where the supremum is taken over all sequences (A, ) of pairwise disjoint mem-
bers of B(K), with t , A, = K. Such(A,) are called partitions.
Proposition 14.16. The variationk k is a norm onM g (K).

0. If k k = 0, then for A 2 B(K), let A; =
?. Then (Ap) is a partition, and so

Proof. If = 0 then clearly k k
A,A2 = KnA and A3 = A4=

b
0= j(An)j=] (A)i+] (KnA)j.
n=1
Hence (A) = 0, and so asA was arbitrary, we have that = 0.
Clearly ka k= jajk kfora2 Kand 2 Mk(K).
For , 2 M (K) and a partition (A, ), we have that
X X X

IC*+ )(An)i= J (An)+ (An)i6  j (An)i+] (An)i6 k k+k k.

As (An) was arbitrary, we seethatk + k6 k k+ k k.

To get a handle on the “regular” condition, we need to know a li ttle more about
Ck (K).

Theorem 14.17 (Urysohn's Lemma) . LetK be a compact space, andHeF be closed
subsets oK with E\ F= ?. There exist$ : K! [0, 1] continuous withf(x) = 1 for
x 2 Eandf(x) = Oforx 2 F(written f(E) = flgandf(F) = f0g.

Proof. See a book on (point set) topology.
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Lemma 14.18. Let :B(K) ! [0,1 ) be aregular measure. Then fdr K open, we
have Z

(U) = sup fd :f2Cr(K),06f6 vy
K

Proof. If 06 f6 y,then
Z Z Z

0= 0d 6 fd 6 yd = (U).
K K K

Conversely, let F = KnU, a closed set. LetE U be closed. By Urysohn
Lemma 14.17 there existsf : K! [0, 1] continuous with f(E) = flgand f(F) = fOg
So g6 f6 y,andhence 7

()6 fd 6 (U).
K

As isregular,
A

(U) = supf (E):E U closedg6 sup fd :06f6 y 6 (U).
K

Hence we have equality throughout.
Lemma 14.19. Let 2 Mg(K). Then
z

k k=k k:=sup fd :f 2 Cr(K),kfk, 6 1
K
Proof. Let (A, B) be a Hahn decomposition (Thm. 12.30) for . Forf 2 Cg(K) with

kfk, 6_1, we have that
Z Z Z Z Z

fd 6 fd + fd = fd ., + fd .
K ZA f A B
6 jfid «+ jfid . 6kik, ( (A)- (B)) 6 kfk, k k,
A B

using the factthat (B) 6 0and that (A, B) is a partition of K.

Conversely, as is regular, for > 0, there exist closed setsE and Fwith E
A,F B,andwith L(E)> +(A)- and .(F > .(B)- . ByUrysohn
Lemma 14.17 there existsf : K! [0, 1] continuous with f(E) = flgand f(F) = fOg
Letg = 2f - 1, sogis continuous, g takes valuesin[- 1, 1], and g(E) = flg g(F) =
f- 1g Then

Z Z Z
gd = 1d + -1d + gd
K E F 7 Kn(E[f)
= (B- (A+ gd + gd
AnE BnF

As E A,Wghave (E)= +(E),andasF B,vzvehave- (ZF): - (P. So

gd> 4(A)- + _(B)- + gd + gd
K

AnE BnF
>j (A)i+] (B)i- 2 - j(AnE)j- | (Bnh)j
> (A)i+] (B)- 4.
As > Owas arbitrary, we seethatk k> j (A)j+] (B)j= k k.
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14.4. Riesz Representation Theorem. To facilitate an approach to the key point
of this Subsection we will require some more de nitions.

De nition 14.20. A functional Fis positiveif for any non-negative function f we
have Hf) > 0.

Lemma 14.21. Any positive linear functionaF on C(X) is continuous ankFk = K1),
wherel is the function identically equal tt on X.

Proof. For any function f such that kfk, 6 1 the function 1- f is non negative
thus: H1)- Hf)= K1- f) > 0, Thus K1) > F(f), thatis Fis bounded and its norm
is K1).

So for a positive functional you know the exact place where to spot its norm,
while a linear functional can attain its norm in an generic po int of the unit ball in

C(X). Itis also remarkable that any bounded linear functional ca n be represented
by a pair of positive ones.

Lemma 14.22. Let be a continuous linear functional d(X). Then there are positive
functionals + and . onC(X), suchthat = ., -

Proof. First, for f 2 Cr(K) with f > 0, we de ne

+(f)=sup (g):g2Cgr(K),06 g6 f >0,

-(B)= +(®)- (H=sup (9- (f): g2 Cr(K), 06 g6 f
sup (h): h2Cgr(K),06 h+f6 f
sup (h): h2Cgr(K),-f6 h6 0 >0.

In sense this is similar to the Hahn decomposition (Thm. 12.31).
We can check that
L(@f)=t +(f), .@f)=t .(f) (t>0,f>0).
For fq,f, > 0, we have that
+(fa+f2) = supf (g): 06 g6 f1+fsg
supf (g1+92): 06 g1+ 026 f1+fag
supf (g1)+ (92): 06 916 f1, 06 g2 6 fog
+(f)+ 4 (f2).
Conversely, if 06 g 6 f; + f,, then setg; = min(g,f1), so0 6 g1 6 f;. Let
02=0- 015001 6 gimpliesthat 06 g,. Forx 2 K, if g1(x) = g(x) then g>(x) =
06 fa(x); if g1(x) = f1(x) then f1(x) 6 g(x) and so g2(x) = g(x) - f1(x) 6 f2(x).
So006 g2 6 fp,and g = g1 + g2. So in the above displayed equation, we really
have equality throughout, and so ., (f1 + f2) = +(f1)+ +(f2). As is additive,
itis now immediate that . (f1 + )= . (f1)+ . (f2)
For f 2 Cr(K) we put f, (x) = max(f(x),0) and f. (x) = - min(f(x),0). Then
f >0andf=f,- f.. Wedene:
«B)= +(f)- (), - (O)= () ().
As when we were dealing with integration, we can check that . and . become
linear functionals; by the previous Lemma they are bounded.

\Y

Finally, we need a technical de nition.

De nition 14.23. For f 2 Cr(K), we de ne the supportof f, written supp(f), to be
the closure of the setfx 2 K : f(x) 6 Og
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Theorem 14.24 (Riesz Representation) LetK be a compact (Hausdorff) space, and let
2 Ck (K) . There exists a uniquze 2 Mk (K) such that

(f)= fd (f 2 Ck (K)).
K

Furthermorek k= k k.

Proof. Let us show uniquenessif 1, > 2 M(K) both induce then = ;- >
induces the zero functional on CKU?' So foerZ Cr(K),

0=< fd = fd ;
zK zK
== fd = fd ;.
K K
So  and ; both induce the zero functional on Cr(K). By Lemma 14.19 this
means thatk (k= k k= 0,showingthat = [ +i ; = 0, asrequired.

Existences harder, and we shall only sketch it here. Firstly, we shall suppose
that K = R and that is positive
Motivated by the above Lemmas 14.18and 14.19 for U K open, we de ne

(Uy=sup (f): T2Cr(K),06 f6 y, supp(f) U
For A Kgeneral, we de ne
(A)=inff (U): U Kisopen, A Ug.
We then proceed to show that

is an outer measure: this requires a technical topological lemma, where
we make use of the support condition in the de nition.
We then check that every open setin -measurable.
As B(K) is generated by open sets, and the collection of -measurable
setsis a -algebra, it follows that every member of B(K)is -measurable.
By using results from Section 12, it follows thatif we let  be the restriction
of  to B(K), then is ameasure onB(K).
We then check that this measure is regular.
Finally, we show that  does induce the functional . Arguably, it is this
last step which is the hardest (or least natural to prove).

If is not positive, then by Lemma 14.22representitas = . - _ for pos-
itve . As . and . are positive functionals, we can nd , and . positive
measures in M g (K) such that

z z
«(f)= fd ., ()= fd . (f 2 Cr(K)).
K K

Thenif = 4+ - _,weseethat
)= - -({= de (f 2 Cr(K)).

Finally, if K = C, then we use the same “complexi cation” trick from the proof
of the Hahn-Banach Theorem 11.12 Namely, let 2 Cc(K) ,anddene ., ; 2
Cr(K) by
(=< (), iH)==(@ (f2Cr(K).
These are both clearly R-linear. Notice also that j ((f)j = j< (f)j 6 j (f)] 6
k kkfk, ,so , is bounded; similarly ;.
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By the real version of the Riesz Representation Theorem, there exist charges
and ; such that

z z
< (f)= ()= fd ,, =()= i(f)= fd; (f 2 Cr(K)).
K K
Thenlet = ,+i j,soforf 2 Cc(K),
z z z
fd = fd ,+i fd ;
K z Kz yA z

<()d ,+i =(f)d ,+i <@di- =f)d
K K K K
r(<@EN+ i = N+ i(<®)- i (=(F)

< (<) + i< (=(H)+ i= (<(f)- = (=())
(<(®)+i=(f)= (),

as required.

Notice that we have not currently proved that k k = k kinthe caseK = C. See
a textbook for this.

15. FOURIER TRANSFORM

In this section we will brie y present a theory of Fourier tra nsform focusing on
commutative group approach. We mainly follow footsteps of [ 2, Ch. IV].

15.1. Convolutions on Commutative Groups.  Let G be a commutative group, we
will use + sign to denote group operation, respectively the inverse el ements of
g 2 G will be denoted - g. We assume that G has a Hausdorff topology such
that operations (g1,92) 7! g1 + g> and g 7! - g are continuous maps. We also
assume that the topology is locally compagthat is the group neutral element has a
neighbourhood with a compact closure.

Example 15.1. Our main examples will be as follows:

(i) G = Z the group of integers with operation of addition and the disc rete
topology (each point is an open set).
(i) G = R the group of real numbers with addition and the topology den ed
by open intervals.
(i) G = T the group of Euclidean rotations the unit circle in  R? with the
natural topology. Another realisations of the same group:
Unimodular complex numbers under multiplication.
Factor group R=Z, that is addition of real numbers modulus 1.
There is a homomorphism between two realisations given by z = €2 't,
t2[0,1),jzj= 1

We assume thatG has a regular Borel measure which is invariant in the follow-
ing sense.

De nition 15.2. Let be a measure on a commutative group G, is called invari-
ant (or Haar measurgif for any measurable X and any g 2 G the setsg + X and - X
are also measurableand (X)= (g+ X)= (- X).

Such an invariant measure exists if and only if the group is lo cally compact, in
this case the measure is uniquely de ned up to the constant fa ctor.

Exercise 15.3. Check that in the above three cases invariant measures are:

G = Z, the invariant measure of X is equal to number of elements in X.
G = R the invariant measure is the Lebesgue measure.
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G = T the invariant measure coincides with the Lebesgue measure.

De nition 15.4. A convolutionof two functions on a commutative group G with

an invariant measure iszde ned by: -

(15.1) (fr f2)(x) = Gfl(X' y)fa(y)d (y) = Gfl(y)fz(x' y)d (y).

Theorem 15.5. If f1, f, 2 L;(G, ), then the integrals in(15.1) exist for almost every
x 2 G, the functionf; foisinLy(G, )andkf; fok 6 kfik Kfak.

Proof. If f1,f2 2 L,(G, ) then by Fubini's Thm. 13.45the function (X,y) = f1(X)

fa(y)isin Ly(G G, )and k k= kfik kfak.
Letusdeneamap :G G! G Gsuchthat (x,y) = (x+yvy,y). Itis
measurable (send Borel sets to Borel sets) and preserves theneasure . Indeed,

for an elementary set X = AZ B G Gwehave:

( X)) = 0 y)d (x)d (y)
f G

x(X-y,y)d (x)d (y)
£ %

£

x(X-y,y)d (x) d (y)

(A+y)d (y)= (A)  (B)=( )(X).

We used invariance of and Fubini's Thm. 13.45 Therefore we have an isometric
isomorphism of L;(G G, ) into itself by the formula:

T (xy)= (xy)= x-y.y).
If we apply this isomorphism to the above function  (x,y) = f1(x) f2(y) we shall
obtain the statement.

De nition 15.6. Denote by S(k) the map S(k) : f 7! k f which we will call
convolution operatowith the kernelk.

Corollary 15.7. If k 2 L,(G) then the convolutior§(k) is a bounded linear operator on
L,(G).

Theorem 15.8. Convolution is a commutative, associative and distribatoperation. In
particular S(f1)S(f2) = S(f2)S(f1) = S(f1 f2).

Proof. Direct calculation using change of variables.

It follows from Thm. 15.5that convolution is a closed operation on L,(G) and
has nice properties due to Thm. 15.8 We x this in the following de nition.

De nition 15.9. L,(G) equipped with the operation of convolution is called con-
volution algebra.; (G).

The following operators of special interest.

De nition 15.10. An operator of shift T(a) acts on functions by T(a) : f(x) 7!
f(x+ a).

Lemma 15.11. An operator of shift is an isometry bf(G),16 p6 1 .
Theorem 15.12. Operators of shifts and convolutions commute:
T(a)(fl f2) = T(a)fl fg = fl T(a)fg,

or

T(@)$(f) = S(A)T(a) = (T(a)f).
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Proof. Just another calculation with a change of variables.

Remarkl5.13 Note that operator of shifts T(a) provide a representationf the group
G by linear isometric operators in L,(G), 1 6 p 6 1. Amap f 7! §f) is a
representatiof the convolution algebra

There is a useful relation between support of functions and t heir convolutions.

Lemma 15.14. For anyf, f2 2 L;(G) we have:
supp(f:  f2)  supp(f1) + supp(fz).

Proof. If x 62upp(f1)+ supp(f2) then forany y 2 supp(f2) we have x- y 62supp(fq).
Thus for such x convolution is the integral of the identical zero.

15.2. Characters of Commutative Groups. Our purpose is to map the commutat-
ive algebra of convolutions to a commutative algebra of func tions with point-wise
multiplication. To this end we rst represent elements of th e group as operators of
multiplication.

De nition 15.15. A character : G ! T is a continuous homomorphism of an
abelian topological group G to the group T of unimodular complex numbers un-
der multiplications:

x+y)= () (¥).
Lemma 15.16. The product of two characters of a group is again a charattee group.
If isacharacter dbthen - = isacharacter as well.

Proof. Let ; and », be characters ofG. Then:

1(gh) 2(gh) = 1(9) 1(h) 2(9) 2(h)
= (12(9) 209)( 2(h) 2(h)) 2 T.

De nition 15.17. The dual groupis collection of all characters of G with operation
of multiplication.

The dual group becomes a topological group with the uniform convergence on
compacts

Exercise 15.18.Check that the sequencef,, (x) = x" does not converge uniformly
on compacts if considered on [0, 1]. However it does converges uniformly on com-
pacts if considered on (0, 1).

Example 15.19. If G = Z then any character is de ned by its values (1) since
(15.2) (my=[ @)1".

Since (1) can be any numberon T we see that?2 is parametrised by T.
Theorem 15.20. The group? is isomorphic tar .

Proof. The correspondence from the above example is a group homomorphism.

Indeedif ;isthecharacterwith ,(1)= z,then ;, ,, = ;,2,. SinceZ isdiscrete,

every compact consists of a nite number of points, thus unif orm convergence on

compacts means point-wise convergence. The equation (L5.2) shows that ,, !
cifandonlyif . (1! (1), thatisz, ! z

Theorem 15.21. The groupf is isomorphic t&Z.
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Proof. For every n 2 Z de ne a character of T de ned by

(15.3) n(2)= 2", z2T.

We will show that these are the only characters in Cor. 15.25 The isomorphism
property is easy to establish. The topological isomorphism follows from discrete-

ness of . Indeed due to compactness of T for n 6 m:

: _ 2 _ e m-n 2 _ _
r;nZaTXJ n(2) m (2)] r;nZaTx 2- 2<z 4

Principle 15.22 (Pontryagin's duality) . For any locally compact commutative topo-

logical group G the natural map G ! é such that it maps g 2 G to a characterfy
on G by the formula:

(15.4) fo( )= (9), 2 6,
is an isomorphism of topological groups.

Remarkl5.23 (i) The principle is not true for commutative group which are
not locally compact.
(ii) Note the similarity with an embedding of a vector space i nto the second
dual.

The Pontryagin's duality tells that the collection of all ch aracters contains enough
information to rebuild the initial group.

Theorem 15.24. The groupR is isomorphic tdR.

Proof. For 2 R de neacharacter 2 R by
(15.5) (x)= e X, x2R.

Moreover any smooth character of the group G = (R, +) has the form (15.9. In-
deed, let be a smooth character ofR. Putc = 9t)ji=0 2 C. Then qt) = c (t)
and (t) = €. We also getc 2 iR and any such ¢ de ne a character. Then the
multiplication of characters is:  1(t) »(t) = eCite2t = elc2*c)t 5o we have a
group isomorphism.

For a generic character we can apply rst the smoothing techniquand reduce to
the above case.

Let us show topological homeomorphism. If ! then ! uniformly
on any compact in R from the explicit formula of the character. Reverse, let | !

uniformly on any interval. Then .- (X! 21uniformly on [0,1]. But

supj - (- 3 = supjsin (- )X

[0,1] [0,1]
1, ifjn- > 1=2,
sin jn- j, ifjn- |6 1=2.

Thus | !
Corollary 15.25. Any character of the group has the forn{15.3.

Proof. Let 2 T, consider 1(t) = (€? ) which is a character of R. Thus 4(t) =
e’ 't forsome 2 R. Since 1(1)= 1then =n2Z. Thus (t)= e’ "t thatis
(2)= 2" forz=¢€? 't.

Remarkl5.26 Although Ris isomorphic to R there is no a canonical form for this

N
isomorphism (unlike for R ! R). Our choice is convenient for the Poisson formula
below, however some other popular de nitions are I X or ! e'*,
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We can unify the previous three Theorem into the following st atement.
Theorem 15.27. LetG = R" ZK T! be the direct product of groups. Then the dual
groupisG=R" Tk ZI
15.3. Fourier Transform on Commutative Groups.

De nition 15.28. Let G be alocally compact commutative group with an invariant
measure . Foranyf 2 Ll(G)fle ne the Fourier transformf by

(15.6) fl)y= fx Nd ), 2 6.
G
That is the Fourier transform f'is a function on the dual group G&.
Example 15.29. () If G = Z, thenf 2 L,(Z) is a two-sided sgmmable se-
qguence(cnp )n2z.- Its Fourier transform is the function f(z) = ﬁ:_ 1 CnZ"

on T. Sometimesf(z) is called generating functiorof the sequence(c, ).

(i) If G = T, then the Fourier transform of f 2 L(T) is its Fourier coef cients
see Sectiord. 1

(i) If G = R, the Fourier transform is also the function on R given by the

Fourier integral .

(15.7) fl)y= f(x)e?'* dx.
R

The important properties of the Fourier transform are captu red in the following
statement.

Theorem 15.30. LetG be a locally compact commutative group with an invariant siea
ure . The Fourier transform maps functions frdm(G) to continuous bounded functions
on&. Moreover, a convolution is transformed to point-wise riplitation:

(15.8) (fa f200 )= fu() f2(),

a shift operatoff (a), a 2 G is transformed in multiplication by the charactiy 2 é:
(15.9) (T@M)=fa() f1),  fa()= (@

and multiplication by a character 2 G is transformed to the shiff( - 1):

(15.10) ( =T HC =" ). .

Proof. Letf 2 L,(G). Forany" > OthereisacompactK Gsuchthat . jfjd <
| in &, then we have the uniform convergence of |, ! on K, so there

isn(") such that forIZ<> n (") we havej ¢(x)- (x)£< " forall x 2 K. Then
fta)- ) 6 Kjf(x)jj n(X)- (jd (x)+ KJ'f(><)jj n(X)- ()jd (x)

6 "kfk+ 2".

Thus f'is continuous. Its boundedness follows from the integral es timations. Al-
gebraic maps (15.8—(15.10 can be obtained by changes of variables under integ-
ration. For example, using Fubigi'sZThm. 13.45and invariance of the measure:

(f2 f20()

Gn

f1(s)fa(t - s)ds (t)dt

f1(s) (s)fa(t- s) (t- s)dsdt
G G
fi()f2( ).
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15.4. Fourier Integral. We recall the formula ( 15.7):
De nition 15.31. We de ne the Fo%rier integralof a function f 2 L1(R) by

(15.11) fl)y= f(x)e 2™ dx.
R
We already know that f'is a bounded continuous function on R, a further prop-
erty is:

Lemma 15.32. If a sequence of functioifs,) L;(R) converges in the metric, (R),
then the sequenc(é\n) converges uniformly on the real line.

Proof. This follows from the estimation:

fa()- fn() 6 ijn(X)- fm (X)j dx.

Lemma 15.33. The Fourier integraf\off 2 L;(R) has zerolimitsat 1 and+1 .

Proof. Take f the indicator function of [a,b]. Thenf = —1 (e 2@ - e 2 )

6 0. Thuslim , 1 f( ) = 0. By continuity from the previous Lemma this can
be extended to the closure of simple functions, the spacelL;(R).

Lemma 15.34. If f is absolutely continuous on every interval aft2 L, (R), then
fr=2if

More generally:

(15.12) F®Ip=(2 i )f

Proof. This is follows from integration by parts, which is possible because assump-
tion in the Lemma.

Corollary 15.35. I1f (k) 2 |, (R) then

2
that isf' decrease at in nity faster thapj .

De nition 15.36. We say that a function fis rapidly decreasing lim,, 1 xXf(x) =
Oforany k 2 N.

The collection of all smooth rapidly decreasing functionsi s called Schwartz space
and is denoted by S.

Example 15.37. An example of a rapidly decreasing function is e * *. Find its
Fourier transform.

Lemma 15.38. Letf(x) andxf(x) are both inL; (R), thenf'is differentiable and
fO= (- 2 ixfy

More generally

(15.13) ) = ((- 2 ix)n

Proof. It is follows from the differentiation under the integratio n sign.

Corollary 15.39. The Fourier transform of a smooth rapidly decreasing fuomcis a
smooth rapidly decreasing function.



INTRODUCTION TO FUNCTIONAL ANALYSIS 95

The relation (15.12 and (15.13 allows to reduce many partial differential equa-
tions to algebraic one, to nish the solution we need the inve rse of the Fourier
transform.

De nition 15.40. We de ne the invezrse Fourier transformon L, (R):
(15.14) f( )= f(x)e2™ dx.
R

Theorem 15.41. The Fourier integral and the inverse Fourier transform aneerse maps.
Thatis, ifg = f'thenf = g.

Proof. The exact meaning of the statement depends from the spaces wtich we con-
sider as the domain and the range. Various variants and their proofs can be found
in the literature. For example, in [ 2, x IV.2.3], it is proven for the Schwartz space
S of smooth rapidly decresing functions using the intertwini ng relations (15.12
and (15.13. Thus the composition of Fourier integral and the inverse F ourier
transform commutes both with operator of multiplication by  x and differentiation.
Then we need a result, that any operator commuting with multi plication by x is
operator of multiplication by a function f, then commutation with differentiation
implies %= 0, thatis f = const The value of this constant can be evaluated by a
Fourier transform on a single function, say e * ’

Theorem 15.42 (Plancherel identity) . The Fourier transform extends uniquely to a
unitary mapL,(R) ! L,(R):

y mapL,(R) 2(R) 7 7

jfi” dx = fd.
R R

Proof. The proof will be done in three steps: rst we establish the id entity for
smooth rapidly decreasing functions, then for L, functions with compact support
and nally forany L, function.

(i) Take f; and f, 2 S be smooth rapidly decreasing functions and g; and g,
be theirgourier transform. Tr%anz(using Funini's Thm. 13.45:

f1(t)f2(t) dt
R

g1( )e?'t d fo(t)dt
Rz

g1( ) €'t fy(t)dtd
R

g1( )92( )d
R

Putf; = f, = f and g1 = g2 = g we get the identity.

(i) Nextlet f 2 L,(R) with a supportin (- a,a) thenf 2 L,(R) as well, thus
the Fourier transform is well-de ned. Let f, 2 S be a sequence with
supporton (- a,a) which convergesto f in L, and thusin L;. The Fourier
transform g, converges to g uniformly and is a Cauchy sequence in L,
due to the above identity. Thus g, ! g in L, and we can extend the
Plancherel identity by continuity to L, functions with compact support.

(i) The nal bitis done for a general f 2 L, the sequence

f(x), if xj<n,

fn (x) = 0, otherwise;

of truncations to the interval (- n,n). Forf, the Plancherel identity is es-
tablished above, andf, ! fin L,(R). We also build their Fourier images
gn and see that this is a Cauchy sequence inL,(R), sog, ! g.
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If f 2 L\ L, then the above g coincides with the ordinary Fourier transform on
L,.

Proofs of the following statements are not examinable Thms. 12.1912.31, 13.48
14.24 Props. 14.11,14.12

APPENDIX A. TUTORIAL PROBLEMS

These are tutorial problems intended for self-assessment o the course under-
standing.

A.1. Tutorial problems |I. All spaces are complex, unless otherwise speci ed.

A.1. Show that kfk = jf(0)j + supjf (t)j de nes a norm on C*[0, 1], which is the
space of (real) functions on [0, 1] with continuous derivative.

P
A.2. Show thatthe formula h(x,), (yn)i = ﬁ: 1 Xn ¥, =n? de nes aninner product
on ', , the space of bounded (complex) sequences. What norm does itproduce?

A.3. Use the Cauchy—Schwarz inequality for a suitable inner prod uct to prove that
forall f 2 C[0, 1] the inequality

z 04 L1

f(x)xdx 6 C@ jf(x)j>dxA
0 0

holds for some constant C > 0 (independent of f) and nd the smallest possible C
that holds for all functions f (hint: consider the cases of equality).

A.4. We de ne the following norm on °; , the space of bounded complex se-
qguences:

K(Xn)K1 = supjxnj.
n>1

Show that this norm makes *; into a Banach space (i.e., a complete normed space).

A.5. Fix a vector (w1,...,W,) whose components are strictly positive real num-
bers, and de ne an inner producton C" by
X
hx,yi = Wi Xk Vi -
k=1

Show that this makes C" into a Hilbert space (i.e., a complete inner-product space).
A.2. Tutorial problems II.

A.6. Show that the supremum norm on C[0, 1] isn't given by an inner product, by
nding a counterexample to the parallelogram law.

A7.In ,lete; =(1,0,0,..), e =(0,1,0,0,..),e3 = (0,0,1,0,0,..), and so

on. Show that Lin (e1,ez,...) = coo, and that CLin (e1,€2,...) = *,. What is
CLin (ez,e3,...)?
A.8. Let C[- 1, 1] have the standard L, inner product, de ned by
Zz
H,gi =  f(t)g(t)dt.
-1
Show that the functions 1, t and t? - 1=3 form an orthogonal (not orthonormal!)

basis for the subspaceP, of polynomials of degree at most 2 and hence calculate
the best L,-approximation of the function t* by polynomials in P,.
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A.9. De ne an inner product on CJ0, 1] by
Zp
W, gi =  tf(t)g(t)dt.
0

Use the Gram—Schmidt process to nd the rst 2 terms of an orth onormal sequence
formed by orthonormalising the sequence 1,t,t?,....

A.10. Consider the plane P in C* (usual inner product) spanned by the vectors
(1,1,0,0 and (1,0,0,- 1). Find orthonormal bases for P and P?, and verify dir-
ectly that (P?)? = P.

A.3. Tutorial Problems llI.

A.11. Leta and b be arbitrary real numbers with a <b . By using the fact that the
functions s2-€™ ,n 2 Z, are orthonormal in L,[0,2 ], together with the change

of variable x = 2 (t- a)=(b- a), nd an orthonormal basis in L[a, b] of the form
en(t)= e™t ,n 2 Z, for suitable real constants and

A.12. For which real values of is

b 4
n elnt
n=1
the Fourier series of a function in Lo[- , ]?
A.13. Calculate the Fourier series of f(t) = €' on[- , ]anduse Parseval's identity
to deduce that
R 1
_, n?2+1 tanh
A.14. Using the fact th?} (en) is a complete orthonormal system in Lp[- , ],
where e, (t) = exp(int )= 2 , show that eo,sl,cl,sz,cz,...ispacomplete orthonor-
mal system, where s, (t) = sinnt=" " and ¢, (t) = cosnt="". Show that every
Lo[- , ]function f has a Fourier series
b3
ap + an cosnt + b, sinnt,
n=1

converging in the L, sense, and give a formula for the coef cients.

A.15. Let C(T) be the space of continuous (complex) functions on the circle
T = fz 2 C :jzj = 1gwith the supremum norm. Show that, for any polynomial f(z)
in C(T) 7
f(z)dz = 0.
jzj=1
Deduce that the function f(z) = z is not the uniform limit of polynomials on the
circle (i.e., Weierstrass's approximation theorem doesn't hold in this form).

A.4. Tutorial Problems IV.

A.16. De ne alinear functional on CJ[0, 1] (continuous functionson [0, ]) by (f) =
f(1=2). Show that is bounded if we give C[O, 1] the supremum norm. Show that

is not bounded if we use the L, norm, because we can nd a sequence (f,) of
continuous functions on [0, 1] such that kf, k, 6 1, but f,(1=2)! 1 .



98 VLADIMIR V. KISIL

P
A.17. Theglardy spaced, is the Hilbert space of all power series f(z) = ﬁ: panz",

such that rlwojan 2 <*1 , Where the inner product is given by
+

X X b _
anz", baz" = anby.
n=0 n=0 n=0
Show that the sequencel, z, z?, z%, .. . is an orthonormal basis for Hy.
Fix w with jwj < 1 and de ne a linear functional on Hj; by (f) = f(w). Write
down a formula for the function g(z) 2 H, suchthat (f) = H,gi. Whatis k k?

A.18. The Volterra operatoiv : L,[0,1]! L»[0, 1] is de ned by
X
(VF)(x) = f(t)dt.
0

Use the Cauchy—Schwarz inequality to show that j(Vf)(x)j 6 P xkfky (hint: write
(VH)(X) = H, i where J is a function that you can ﬁvrite down explicitly).
Deduce that kVfk3 6 1kfk3, and hencekVk 6 1= 2.

A.19. Find the adjoints of the following operators:
() A7, ", denedby A(xi,Xz,...)=(0,%%, %, %, ...);
and, on a general Hilbert space H:
(ii) The rank-one operator R, de ned by Rx= hx,yiz, wherey and z are xed
elements of H;
(iiiy The projection operator Py ,dened by Py (m+ n) = m,wherem 2 M
andn2M?,andH=M M? asusual.

A.20. Let U 2 B(H) be a unitary operator. Show that (Ue,) is an orthonormal
basis of H whenever (e, ) is.
Let *,(Z) denote the Hilbert space of two-sided sequences(an)i_. ; with

b3
k(an)k? = janj?< 1.
n=- 1
Show that the bilateral right shift V : *,(Z) ! ",(Z) dened by V((an)) = (bn),
where b, = an. 1 forall n 2 Z, is unitary, whereas the usual right shift S on
"5 = ,(N) is not unitary.

A.5. Tutorial Problems V.

A21. Letf 2 C[- , ]andlet M; be the multiplication operator on L,(- , ),
given by (Mg)(t) = f(t)g(t),for g 2 Lo(- , ). Find afunction {2 C[- , ]such
that M; = M.

Show that M is always a normal operator. When is it Hermitian? When is it
unitary?

A.22. Let T be any operator such that T" = Ofor some integer n (such operators are
called nilpotent). Show that | - Tis invertible (hint: consider 1+ T+ T2+ ...+ T"" 1),
Deduce that | - T= isinvertible forany 6 O.

Whatis (T)? Whatisr(T)?

A.23. Let ( ) be a xed bounded sequence of complex nhumbers, and de ne an
operator on “, by T((xn)) =(( yn)), wherey, = X, foreachn. RecallthatTis a
bounded operator and kTk = k( )k . Let =1 1, »,...g Prove the following:
(i) Each  is aneigenvalue of T, and hence isin (T).
(i) If 62 ,thentheinverse of T- | exists (and is bounded).
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Deducethat (T)= . Note, thatthen any non-empty compact set could be a spectrum
of some bounden operator

A.24. Let Sbe anisomorphismbetween Hilbert spacesH and K, thatis, S:H! K
is a linear bijection such that Sand S ! are bounded operators. Suppose thatT 2
B(H). Show that T and STS ! have the same spectrum and the same eigenvalues

(if any).
P _ —
A.25. Deneanoperator U: ,(Z)! La(- , )byU((an))= +. , ane™ :p2 .

n=-
Show that U is a bijection and an isometry, i.e., that kUxk = kxk forall x 2 ",(Z).
Let V be the bilateral right shift on ",(Z), the unitary operator de ned on Ques-
tion A.20. Letf 2 Lo(- , ). Show that (UVU- f)(t) = e f(t), and hence, using

Question A.24, show that (V) = T, the unit circle, but that V has no eigenvalues.
A.6. Tutorial Problems VI.

A.26. Show that K(X) is a closed linear subspace ofB(X), and that AT and TA are
compact whenever T 2 K(X) and A 2 B(X). (This means thatK(X) is a closed ideal
of B(X).)

A.27. Let A be a Hilbert—Schmidt operator, and let (enlgn> 1 and (fm)m>1 be or-
thonormal bases of A. By writing each Ae, asAe, = 1m:1hAen fmifm, show
that %

X
kAe, k? = KA f k2.
n=1 s} m=
Deduce that the quantity kAkZg =
of orthonormal basis, and that kAkyps
Schmidt normof A.)

A.28. (i) Let T 2 K(H) be a compact operator. Using Question A.26, show
that T Tand TT are compact Hermitian operators.
(i) Let (en)n>1 and (fn)n>1 be orthonormal bases of a Hilbert space H, let
( n)n>1 beanybounded complex sequence, and letT 2 B(H) be an oper-
ator de ned by

=

1 kAen k? is independent of the choice
KA Kkys . (kAkHS is called the Hilbert—

1
n=

X
Tx= nhx,enify.
n=1
Prove that T is Hilbert—Schmidt precisely when ( ,) 2 °,. Show that
T is a compact operator if and only if , ! 0, and in this case write
down spectral decompositions for the compact Hermitian ope rators T T
and TT.

A.29. Solve the Fredholm integral equation - T = f, where f(x) = x and
Zz
(TH)= xy? (y)dy  ( 2L2(0,1),
0

for small values of by means of the Neumann series.
For what values of does the series converge? Write down a solution which is
valid for all  apart from one exception. What is the exception?

A.30. Supposethathisa2 -periodic Lo(- , ) function with Fourier series = ~_ , an€e™ .
Show that each of the functions (y) = €& ,k 2 Z, is an eigenvector of the in-
tegral operator Ton Lo(- , ) de ned by

Z

(THX)= h(x-y) (y)dy,
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and calculate the corresponding eigenvalues.

Now let h(t) 3- log(2(1- cost)). Assuming, without proof, that h(t) has
the Fourier series  |,; 160 €™ Sinj, use the Hilbert-Schmidt rBethod to solve the
Fredholmequation - T = f, where f(t) has Fourier series ,1]:_ L che™ and
1= 62 (T).

A.7. Tutorial Problems VII.

A.31. Use the Gram—-Schmidt algorithm to nd an orthonormal basis f or the sub-
spaceX of Lo(- 1, 1) spanned by the functions t, t2 and t4.

Hence nd the best L,(- 1, 1) approximation of the constant function f(t) = 1
by functions from X.

A.32. Forn = 1,2,...let | denote the linear functional on °, de ned by
n(X)= Xg+ Xo+ ...+ Xn,
where x = (X1, X2,...) 2 *,. Use the Riesz—Fréchet theorem to calculate&k , k.

A.33. Let T be a bounded linear operator on a Hilbert space, and suppose that
T = A+iB, where A and B are self-adjoint operators. ExpressT interms of A and
B, and hence solve forA and Bintermsof Tand T .

Deduce that every operator T can be written T = A + iB, where A and B are
self-adjoint, in a unique way.

Show that T is normal if and only if AB = BA.

A.34. Let P, be the subspace ofL,(- , ) consisting of all polynomials of degree
at most n, and let TIID be the subspace consisting of all trigopnometric polynomial s
of the form f(t) = ;. , ak€® . Calculate the spectrum of the differentiation
operator D, de ned by (Df)(t) = fYt), when

(i) D isregarded as an operator on P, , and

(i) D isregarded as an operator on T, .
Note that bothP, andT, are nite-dimensional Hilbert spaces.

Show that T, has an orthonormal basis of eigenvectors of D, whereas P, does

not.

A.35. Use the Neumann series to solve the Volterra integral equation - T = f
R

in Ly[0,1], where 2 C,f(t)= 1forall t,and (T )(x)= t? (t)dt. (You should
0

be able to sum the in nite series.)
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APPENDIX B. SOLUTIONS OF TUTORIAL PROBLEMS

Solutions of the tutorial problems will be distributed due i n time on the paper.
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APPENDIX C. COURSE IN THE NUTSHELL
C.1. Some useful results and formulae (1).

C.1. A normon a vector space,kxk, satis es kxk > 0, kxk = Oif and only if x = 0,
kx k = j jkxk, and kx + yk 6 kxk + kyk (triangle inequality). A norm de nes a
metric and a complete normed space is called aBanach space

C.2. An inner-product spacks a vector space (usually complex) with a scalar product
onit, x,yi2 Csuchthathx,yi = hy,xi,hx,yi = M, yi,lx+y,zi = kx,zi+hy,z,
hx,xi > 0and hkx,xi = Oif and only if x = 0. This de nes a norm by kxk? = hx, xi.
A complete inner-product space is called a Hilbert space A Hilbert space is auto-
matically a Banach space.

C.3. The Cauchy-Schwarz inequalityhx, yij 6 kxkkyk with equality if and only if
x and y are linearly dependent.

C.4. Some xamples of Hilbert space$) Euclidean C". I_(,u) "5, sequences(ag) with
k(ak)k3 =  jakj? < 1. In both caseshay), (bx)i =  axbg. (i) Lo[a,b], func-

R R

tions on [a,b] with kfk3 = jf(t)j?dt < 1. Here if,gi = f(t)g(t)dt. (iv) Any
a a

closed subspace of a Hilbert space.

C.5. Other examples of Banach spacg@y Cy, (X), continuous bounded functions on
a topological space X. (ii) *; (X), all bounded functions on a set X. The supremum
norms on Cy, (X) and *; (X) make them into Banach spaces. (iii) Any closed sub-
space of a Banach space.

C.6. On incomplete spaced he inner-product (L) norm on CJ0, 1] is incomplete.
Coo (sequences eventually zero), with the *, norm, is another incomplete i.p.s.

C.7. The parallelogram identity kx + yk? + kx - yk® = 2kxk? + 2kyk? in an inner-
product space. Not in general normed spaces.

C.8. On subspaceComplete =) closed. The closure of a linear subspace is still a
linear subspace. Lin (A) is the smallest subspace containingA and CLin (A) is its
closure, the smallest closed subspace containingA.

C.9. From now on we work in inner-product spaces

C.10. The orthogonality x ? y if hx,yi = 0. An orthogonal sequentashe, ,eni = 0
for n 6 m. If all the vectors have norm 1 it is ﬁm orthonormal sequence (0.n,%)g.
en =(0,...,0,1,0,0,..) 2 ,and e, (t)=(1= 2 )€™ inLy(- , ).

C.11. Pythagoras's theorenif x ? y then kx + yk? = kxk? + kyk?.

P P
C.12. The best approximatioto x by a linear combination = ., kexis -, eciex

if the e are orthonormal. Note that hx, egi is the Fourier coef cient of x w.r.t. e.
P
C.13. Bessel's inequalitykxk? > = ;_, jix, exij? if €;,..., e, isano.n.s.

P
C.14. Riesz-Hj schertheorerﬁor ang.n.s. (en)i mg Hilbert space, n € converges
ifand only if = j ,j°< 1 ;thenk nenk?="j j%

C.15. A complete o.n.sor orthonormal basis (0.n.b.Js an o.n.s. (e,) sgch that if
hy,e i = Ofor all n theny = 0. In that case every vector is of the form n€n as
in the R-F theorem. Equivalently: the closed linear span of t he (e,) is the whole
space.

C.16. Gram—-Schmidt orthonormalization procesStart with xi, Xz, ... linearly inde-
pendent Construct e, ep,... an o.n.s. by inductively setting yn+1 = Xp+1 -
k= 1MXn+ 1, i€ and then normallzmg €n+1= Yn+17KYn+1k.
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C.17. On orthogonal complement® ? is the set of all vectors orthogonal to everything
in M. If M is a closed linear subspace of a Hilbert spaceH thenH =M M?.
There is also a linear map, Py the projection from H onto M with kernel M? .

C.18. Fourier series Work in Lo(- , ) with o.n.s. e, (t) = (1:p 2 )et | Let

CP(- , ) be the contiiuous periodic functions, which are dense in L. Forf 2
CP(- , )write f, = . . H,ejie,, m > 0. We wish to show that kfn, - fkp !

0,i.e., that(ey) isano.n.b.

C.19. The Fejéer kernelForf 2 CP(- , )write Ry, =(fo+ ...+ fn)=(m+ 1). Then
R P P _

Fn(X)=(1=2 ) f(t)Km(x- t)dt where Kn (t)=(1=(m+ 1) ., K . €n

e
is the Fejér kernel. Also Ky, (t) = (1=(m + 1))[sin’(m + 1)t=2]=[sin? t=2].

C.20. Fejér's theoremlf f 2 CP(- , ) then its Fejér sums tend uniformly to f on
[- , ]and hencein L, norm also. Hence CLin ((e,)) CP(- , ) so must be all
of Lo(- , ). Thus(en) isano.n.b.

P .
C.21. Corollary. If f 2 Ly(- , ) then f(t) = cn €™ with convergence in L,
wherec, =(1=2 ) f(t)e " dt.

P _
.22. Parseval's formula If f,Pg 2 Lo(- , ) have Fourier series c,e™ and
d,e™ then (1=2 )Hf,gi = cndn.

C.23. Weierstrass approximation theorerihe polynomials are dense in C[a, b] for
any a <b (inthe supremum norm).

C.2. Some useful results and formulae (2).

C.24. On dual spacesA linear functionalon a vector space X is a linear mapping

: X! C(orto R inthe real case), i.e., (ax+ by)=a (x)+ b (y). When Xis
a normed space, is continuous if and only if itis boundedi.e.,supfj (x)j : kxk 6
1g< 1 . Then we de ne k k to be this sup, and it is a norm on the space X of
bounded linear functionals, making X into a Banach space.

C.25. Riesz—Frechet theorenif : H ! C is a bounded linear functional on a
Hilbert space H, then there is a unique y 2 H such that (x) = hx,yi forall x 2 H;
alsok k= kyk.

C.26. On linear operatar These are linear mappings T : X | Y, between normed
spaces. Dening kTk = supfkT(x)k : kxk 6 1g nite, makes the bounded (i.e.,
continuous) operators into a normed space, B(X,Y). When Y is complete, so is
B(X,Y). We getkTxk 6 kTkkxk, and, when we can compose operators, kKSTk 6
kSk kTk. Write B(X) for B(X, X), and for T 2 B(X), kT"k 6 kTk". InverseS= T 1!
when ST= TS= 1.

C.27. On adjoints T 2 B(H,K) determines T 2 B(K,H) such that hT h,kix =
hh,T kiy forall h2 H,k 2 K. Also kT k= kTkand T =T.

C.28. On unitary operator ThoseU 2 B(H) for which UU = U U = |. Equival-
ently, U is surjective and an isometry (and hence preserves the inner product).
Hermitian operatomor self-adjoint operatorThoseT 2 B(H) suchthatT=T .
On normal operatar Those T 2 B(H) such that TT = T T (so including Her-
mitian and unitary operators).

C.29. On spectrum (T)=f 2 C:(T- I)isnotinvertiblein B(X)g Includes all
eigenvalues where Tx = x for some x 6 0, and often other things as well. On
spectral radiusr(T) = supfj j: 2 (T)g Properties: (T) is closed, bounded and
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nonempty. Proof: based on the fact that (I - A) is invertible for kAk < 1. This
implies that r(T) 6 KTk.

C.30. The spectral radius formular (T) = inf,> 1 KTk = lim,, ; KT"k™" .

Note that (T")=f": 2 (T)gand (T)=f : 2 (T)g The spectrum
of a unitary operator is contained in fjzj = 1g and the spectrum of a self-adjoint
operator is real (proof by Cayley transformU = (T- il )(T + il )" * is unitary).

C.31. On nite rank operator T 2 KX, Y) if Im T is nite-dimensional.

On compact operatoiT 2 K(X,Y) if: whenever (x,) is bounded, then (Tx,) has
a convergent subsequence. NowHX,Y)  K(X,Y) since bounded sequences in a
nite-dimensional space have convergent subsequences (because whenZ isf.d., Z
is isomorphic to J,i.e.,9S:'% ! Zwith S,S ! bounded). Also limits of compact
operators are compact, which shows that a diagonal operator Tx = nhx,eqien
is compactiff , ! 0.

P
C.32. Hilbert-Schmidt operatorsT is H-Swhen  kTe, k? < 1 forsome o.n.b. (e, ).
All such oplgrators are corEpact—write them as a limit of nite rank operators
Tk with Ty ﬁ: jan€, = ﬁ: ;an(Te& ). This class includes integral operators
T:Lz(a,b)! Ly(a,b) of the form
E
(TH(X) = K(x,y)f(y)dy,

a

where K is continuous on [a,b] [a,b].

C.33. On spectral properties of normal operatdfsT is normal, then (i) kerT = kerT ,
soTx= x =) T x= x; (i) eigenvectors corresponding to distinct eigenvalues
are orthogonal; (iii) kTk = r(T).

If T 2 B(H) is compact normal, then its set of eigenvalues is either nit e or a
sequence tending to zero. The eigenspaces are nite-dimensonal, except possibly
for = 0. All nonzero points of the spectrum are eigenvalues.

C.34. On spectral theorem for compact normal operatdigere is an ortl‘pnormal se-
quence(ex ) of eigenvectors of T, and eigenvalues( ), suchthatTx= |, kX, eciex.
If ( k) is an in nite sequence, then it tends to 0. All operators of th e above form
are compact and normal.

Corollary. In the spectral theorem we can have the same formula with an or-
thonormal basis adding in vectors from kerT.

C.35. On general compact operatord/e can write Tx = P khx, ecify, where (ex)
and (fx) are orthonormal sequences and( ) is either a nite sequence or an in-
nite sequence tending to 0. HenceT 2 B(H) is compact if and only if it is the norm
limit of a sequence of nite-rank operators

C.36. On integral equations Fredholm equations on Ly(a,b) areT = for -

R
T = f,where (T )(X) = K(X,y) (y)dy. Volterra equations similar, except
a
R
that Tisnowdenedby (T )(xX)= K(x,y) (y)dy.
a

C.37. Neumannserie(I - T) '5 1+ T+ ?T?+ .., forkTk< 1.
On separable kerneK(x,y) = j”: 1 0i(X)h;(y). The image of T (and hence its
eigenvectors for 6 0) lies in the space spanned bygi, ..., 0n -

C.38. Hilbert—Schmidt theory Suppose thatK 2 C([a,b] [a,b]) and K(y,x) =
K(x,y). Then (in the Fredholm case) T is a self-adjoint Hilbert—Schmidt operator
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and eigenvectors corresponding to honzero eigenvalues are continuous functions.
If 6 0and 1= 62 (T),thethesolutionof - T =fis

R H v

Vi .
1-

k=1
C.39. Fredholm alternative Let T be compact and normal and 6 0. Consider
the equations (i) - T = 0and (i) - T = f. Then EITHER (A) The only
solution of (i) is = 0and (ii) has a unique solution for all f OR (B) (i) has nonzero
solutions  and (ii) can be solved if and only if f is orthogonal to every solution of

0)
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APPENDIX D. SUPPLEMENTARY SECTIONS

D.1. Reminder from Complex Analysis.  The analytic function theory is the most

powerful tool in the operator theory. Here we briey recall f ew facts of complex
analysis used in this course. Use any decent textbook on complex variables for a
concise exposition. The only difference with our version th at we consider function
f(z) of a complex variable z taking value in an arbitrary normed spa¥eover the eld

C. By the direct inspection we could check that all standard pr oofs of the listed
results work as well in this more general case.

De nition D.1. A function f(z) of a complex variable z taking value in a normed
vector spaceV is called differentiableat a point z, if the following limit (called de-
rivative of f(z) at zy) exists:

(D.1) foz0) = lim Zo+ 2)- f(z0)
z! 0 z
De nition D.2. A function f(z) is called holomorphidor analytic) in an open set
C it is differentiable at any point of

Theorem D.3 (Laurent Series). Let a functionf(z) be analytical in the annulus< z <
Rfor some real < R, then it could be uniquely represented by the Laurent series

(D.2) f(2) = c 2%, for someg 2 V.
k= 1

Theorem D.4 (Cauchy—Hadamard). The radiir®andR®, (r® < R9 of convergence of
the Laurent serieD.2) are given by

. - 1 . -
(D.3) ro= liminf ke, k=" and — = limsupke, kX" .
nt 1 RO g
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bounded
essentially, 73
Cantor, 15, 70
differentiable, 106
essentially bounded, 73
generating, 93
holomorphic, 106
indicator, 72
measurable, 70
rapidly decreasing, 94
simple, 72
integral, 72
summable, 72
square integrable, 15
summable, 73
support, 87
functional, sedinear functional
linear, 35
bounded, 35
positive, 87
functional calculus, 41
functions of operators, 41
fundamental domain, 4

general compact operators, 104
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generating function, 93 isomorphic spaces, 61
Gram-Schmidt orthogonalisation, 21 isomorphism, 61, 99
Gram-Schmidt orthonormalization process, isometric, 61
102
group kemgl, 53
dual, 91 Fejer,25

kernel of convolution, 90
kernel of integral operator, 49
kernel of linear functional, 36
Haar measure, 89 kernel of linear operator, 37
Hahn decomposition of a charge, 69 .
Hahn-Banach theorem, 62 Laguerre polynomials, 22
Hardy space, 98 Lebesgue

representation, 91
group representations, 30

heat equation, 31 integral, 74
Heine—Borel theorem, 45 measure
Hermitian operator, 39, 103 outer, 66
Hilbert space, 12, 102 set
Hilbert-Schmidt norm, 49, 99 measurable, 67
Hilbert—Schmidt operator, 48 theorem, 67
Hilbert-Schmidt operators, 104 theorem on dominated convergence, 74
Hilbert—-Schmidt theory, 104 Lebesgue integration, 15
holomorphic function, 106 Lebesgue measure,70
Holder's Inequality, 58 leftinverse, 38
left shift operator, 38
identity Legendre polynomials, 22
parallelogram, of, 12 lemma
identity operator, 37 about inner product limit, 16
image of linear operator, 37 Fatou's, 76
incomplete spaces,102 Riesz—Fréchet,36
indicator function, 72 Urysohn's, 85
inequality length of a vector, 9
Bessel's,20 Levi's theorem on monotone convergence, 75
Cauchy—Schwarz—Bunyakovskii, of, 12 limit
Chebyshev, 75 two monotonic, 71, 76, 78
Holder's, 58 linear
Minkowski's , 58 operator, 37
triangle, of, 10 linear operator
inner product, 11 image, of, 37
inner product space, 11 linear functional, 35, 103
complete, seeHilbert space kernel, 36
inner-product space, 102 linear operator, 103
integrability conditions, 3 norm, of, 37
integral kernel, of, 37
Fourier, 93, 94 linear space, 9
Lebesgue,15, 74 linear span, 16
monotonicity, 73 locally compact topology, 89
Riemann, 15
simple function, 72 mathematical way of thinking, 9, 17
integral equations, 104 measurable
integral formula function, 70
Cauchy, 30 set ’
integral operator, 48,53 Carathéodory, 67
with separable kernel, 54 Lebesgue,67
invariant measure, 89 measure, 65
Inverse, 103 - nite, 65, 68

inverse Fourier transform, 95 absolutely continuous, 79

inverse operator, 38 C(_Jr_nplet_e, 68
invertible operator, 38 dI_SJUHCtIVE, 69
isometric nite, 65
isomorphism, 61 _Haar,_ 89
isometry, 40, 61 invariant, 89
isomorphic Lebesgue,70
outer, 66

isometrically, 61
outer, 66
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product, 70, 77

regular, 85

signed, seecharge
metric, 9, 58
metric space, 9
Minkowski's inequality, 58
monotonicity of integral, 73
multiplication operator, 37

nearest point theorem, 18
Neumann series, 42, 53, 104
nilpotent, 98
norm, 10, 58, 102
Hilbert—-Schmidt, 49, 99
norm of linear operator, 37
normal operator, 41, 103
normed space, 10
complete, seeBanach space

operator, 60
adjoint, 38
bounded, 60
compact, 45

singular value decomposition, 52

convolution, 90
diagonal, 39
unitary, 40
eigenvalue of, 41
eigenvector of, 41
nite rank, 45
Hermitian, 39
Hilbert-Schmidt, 48
identity, 37
integral, 48,53
kernel of, 49
with separable kernel, 54
inverse, 38
left, 38
right, 38
invertible, 38
isometry, 40
linear, 37
bounded, 37
image, of, 37
kernel, of, 37
norm, of, 37
nilpotent, 98
normal, 41
of multiplication, 37
self-adjoint, seeHermitian operator
shift
left, 38
right, 37
shift on a group, 90
spectrum of, 42
unitary, 40
Volterra, 98
zero, 37
orthogonal
complement, 23
projection, 23
orthogonal polynomials, 22
orthogonal complement, 23
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orthogonal complements, 103
orthogonal projection, 23
orthogonal sequence, 17, 102
orthogonal system, 17
orthogonalisation
Gram—-Schmidt, of, 21
orthogonality, 11,17, 102
orthonormal basis, 21
theorem, 21
orthonormal basis (0.n.b.), 102
orthonormal sequence, 17
complete , 21
orthonormal sequence (0.n.s.),102
orthonormal system, 17
orthoprojection, 23
corollary, about, 23
outer measure, 66

parallelogram identity, 12, 102
Parseval's formula, 29, 103
partial sum of the Fourier series, 25
period, 4
periodic, 4
perpendicular

theorem on, 18
polynomial approximation, 30
polynomials

Chebyshev, 22

Laguerre, 22

Legendre, 22

orthogonal, 22
Pontryagin's duality, 92
positive

functional, 87
product

inner, 11

scalar, 11
product measure, 70, 77
projection

orthogonal, 23
Pythagoras' school, 32
Pythagoras' theorem, 17
Pythagoras's theorem, 102

quantum mechanics, 9, 15

radius

spectral, 43
Radon—-Nikodym theorem, 79
regular charge, 85
regular measure, 85
representation

of group, 30

algebra, of, 91

group, of, 91

Riesz, 88
resolvent, 41, 42

identity, rst, 43
resolvent set , 42
Riesz representation, 88
Riesz—Fischer theorem,102
Riesz—Fisher theorem,20
Riesz—Fréchet lemma,36
Riesz—Fréchet theorem,103
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right inverse, 38
right shift operator, 37
ring, 64

scalar product, 11
school
Pythagoras', 32
Schwartz space,94
Segal-Bargmann space 15
self-adjoint operator, seeHermitian operator,
103
semiring, 64
separable Hilbert space, 23
separable kernel, 54, 104
sequence
Cauchy, 10
orthogonal, 17
orthonormal, 17
complete , 21
series
Fourier, 5
Neumann, 42, 53
set
compact, 45
Borel, 84
Cantor, 70
convex, 10, 18
measurable
Carathéodory, 67
Lebesgue,67
symmetric difference, 66
shift
bilaterial right, 98
shift operator, 90
signed measure, seecharge
simple function, 72
integral, 72
summable, 72
sine
Fourier coef cients, 6
singular value decomposition of compact
operator, 52
space
Banach, 10, 58
dual, 35
Hardy, 98
Hilbert, 12
separable,23
inner product, 11
complete, seeHilbert space
linear, 9
metric, 9
complete, 10
normed, 10
complete, seeBanach space
of bounded linear operators, 38
Schwartz, 94
Segal-Bargmann,15
vector, sedinear space
space of nite sequences, 13
span
linear, 16
closed, 16

spectral properties of normal operators, 104
spectral radius, 43
spectral radius formula, 104
spectral radius:, 103
spectral theorem for compact normal
operators, 51, 104
spectrum, 103
spectrum of operator, 42
statement
Fejér,seegheorem
Gram-Schmidt, seeheorem
Riesz—Fisher,seegheorem
Riesz—Fréchet,sedemma
sub-additive
countably, 66
subsequence
convergent
quickly, 74,76
quickly convergent, 74,76
subspace,13
subspaces,102
sum
Fejér, of, 25
summable
function, 73
simple function, 72
support of function, 87
symmetric difference of sets, 66
synthesis, 13
system
orthogonal, 17
orthonormal, 17

theorem
Egorov, 71
Fejér, of,28
Fubini, 78
Gram—-Schmidt, of, 21
Hahn-Banach, 62
Heine—Borel, 45
Lebesgue,67
Lebesgue on dominated convergence, 74
monotone convergence, B. Levi, 75
on nearest point , 18
on orthonormal basis, 21
on perpendicular, 18
Pythagoras', 17
Radon—-Nikodym, 79
Riesz—Fisher, of,20
spectral for compact normal operators, 51
Weierstrass approximation, 30
thinking
mathematical, 9, 17
topology
locally compact, 89
transform
Cayley, 44
Fourier, 93
windowed, 34
wavelet, 30
triangle inequality, 10, 102
two monotonic limits, 71, 76, 78
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uniform convergence, 71
on compacts, 91

unit ball, 10

unitary operator, 40,103

Urysohn's lemma, 85

variation of a charge, 69, 85
vector

length of, 9
vector space,9
vectors

orthogonal, 17
\olterra equation, 53
\olterra operator, 98

wavelet transform, 30

wavelets, 29, 34

Weierstrass approximation theorem, 30, 103
windowed Fourier transform, 34

zero operator, 37
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