دالامبر فرانسوی آنالیز ریاضی را در مکانیک بکار برد و از روشهای آن استفاده کرد و احکامی را که تا آنزمان فقط جنبه استنتاجات هندسی داشت به معادله گذارد ومبنای تمام این بنای عظیم فقط اصل سادهای بود، دالامبر با خود گفته بود: وقتی که جسمی حرکت میکند دلیل برآنست که نیروئی بر آن وارد میشود، بنابراین حتماً مابین این نیروها و تغییراتی که در حرکت ایجاد میشود تساوی یا تعادل وجود دارد، به عبارت دیگر گوئی که جسم با وجود حرکت در حال تعادل است.کلرو رقیب او در 18 سالگی کتابی بنام «تفحصات درباره منحنیهای دوانحنائی» انتشار داد و در مدت شانزده سال رسالهای تهیه و به آکادمی علوم تقدیم نمود که شامل مطالب جالب توجهی مخصوصاً در اطراف مکانیک آسمانی و هندسهبینهایتکوچکها بوددر اواسط این قرن هویگنس و نیوتون درباره معماری نور به موشکافی پرداختند.
اسحاق نیوتن در ضمن آزمایشهای خود به این نتیجه رسید که نور سفید تمام انوار مختلف را شامل است وبرای امتحان صحت این موضوع اشعات رنگین مختلف را با هم مخلوط کرد و از مجموعه آنها نور سفید بدست آورد و برای اینکه استدلال خود را قوی سازد دستهای از نور سفید حاصل را روی تیغه باریکی انداخت و یک سلسله حلقههای رنگین بدست آورد که نام حلقههای اسحاق نیوتن روی آنها مانده است.
ریاضیدانان انگلیسی سنسن و استوارت ضمن اکتشافات خود مسائل مختلفی از هندسه را استادانه مورد مطالعه قرار دادند. همچنین بروک تایلور و کولین ماکلرین کوششهای رها شدة اسحاق نیوتن را ادامه دادند. تایلور باعث توسعة فوقالعادة آنالیز ریاضی عناصر بینهایت کوچک که توسط لایب نیتس عرضه شده بود گردید و ماکلرین روش او را اصلاح کرد.
منجم انگلیسی هالی که در هندسه قدما نیز مطالعة بسیار میکرد آثار منلائوس و آپولونیوس را به چاپ رسانید و اولین راه حل مسألة یک مقطع مخروطی را با معلوم بودن سه نقطه ویک کانون آن به دست داد.
آبراهام مواور پروتستان فرانسوی که به انگلستان تبعید شده بود یک قضیة اصلی و اساسی دربارة اعداد موهومی ابداع کرد.
همچنین میش رول فرانسوی قضیه مهمی در جبر ابداع کرد و هموطن دیگر او آنتوان پاران هندسه تحلیلی دکارت را به فضای سه بعدی تعمیم داد. از جمله دانشمندانی که برای بسط کارهای لایب نیتس میکوشیدند میتوان خانوادة برتونی را نام برد. این خانواده از اهالی آنورس بلژیک بودند که به یال از شهرهای آلمان فرار کرده بودند.
ارشد ایشان ژاک اول حساب دیفرانسیل لایب نیتس را در دانشگاه بال تدریس میکرد. وی از جملة کسانی است که چگونگی محاسبة انتگرالها را تعلیم میداد. بعد از مرگ او برادرش ژان اول جانشین وی شد.
دیگر لئونارداولر ریاضیدان بزرگ سوئیسی است که در 15 آوریل 1707م در شهر بال متولد شد و در 17 سپتامبر 1783م در روسیه درگذشت.
در اواخر قرن هیجدهم و اوایل قرن نوزدهم کشور فرانسه پیشرو نهضت علمی اروپا بود و این پیشرفت را باید نتیجه انقلاب کبیر سال 1789م دانست که باعث تهییج حس ملی مردم شد و علم را لازمة زندگی قرارداد و به این ترتیب جنبش جدیدی در جستجوها و کشفیات علمی بوجود آورد. نفوذ آزادی خواهانة انقلاب در عین حال که زوائد خفه کننده علم را از آن دور کرد کشور فرانسه را نیز به مقام راهنمای علمی اروپا ارتقاء داد.
ارتقاء به این مقام بواسطة وجود مردانی نظیر لاگرانژ، لاپلاس، لژاندر، مونژ، فوریه و غیره بود. عمومی شدن تحصیلات علمی و ترویج کامل آن بطور محسوسی جستجوها و کشفیات علمی را افزایش داد. به این ترتیب بهترین و مشهورترین دانشمندان فرانسه نخستین میوههای شیرین دوران انقلاب را میچیدند.
لاگرانژ از جملة بزرگترین ریاضیدانان تمام ادوار تاریخ بشر است. وی در 19 سالگی حساب تغییرات را اختراع کرد که روش جدیدی در آنالیز است و به کمک آن خیلی سهلتر از حساب دیفرانسیل بعضی از مسائل مربوط به ماکزیمم و مینیمم را حل کرد. وی براساس کارهای دالامبر تمام متدهای مختلفی را که تا آنروز برای حل مسائل مکانیک مورد استفاده قرار میگرفت جمع نمود. «مکانیک تحلیلی» او که در سال 1788م عمومیت پیدا نمود بزرگترین شاهکار وی بشمار میآید. همچنین در سال 1797م تئوری توابع تحلیلی خود را نوشت که فجر دوران جدید را اعلام میکرد. دو سال بعد «حل معادلات عددی» را انتشار داد و قدرت خویش را در سیاحت راههای جدیدی که خود برای آنالیز باز کرده بود مضاعف ساخت. این دانشمند گرانقدر که ))ناپلئون او را «هرم مرتفع علوم ریاضی» مینامید در دهم آوریل 1813 در ««پاریس، شهری که انقلاب زمینه افتخار را برایش تدارک دیده بود زندگی را بدرود گفت:لاپلاس که در تدریس ریاضی دانشسرای عالی پاریس معاون لاگرانژ بود علاقه زیاد به علوم دقیقه داشت. وی با انتشار کتبی از قبیل «تئوری تحلیلی احتمالات» (1812) و «مطالعات فلسفی دربارة احتمالات» (1814) حساب احتمالات را تکمیل نمود و از سال 1799تا سال 1825 کتابی تحت عنوان «مکانیکآسمانی» در پنج جلد انتشار داد.
تاریخ ریاضیات قسمت اول تاریخ ریاضیات قسمت دوم تاریخ ریاضیات قسمت سوم
تاریخ ریاضیات قسمت چهارم تاریخ ریاضیات قسمت پنجم تاریخ ریاضیات قسمت ششم
جهت دسترسی به محتوای طبقه بندی شده در سایت، از لینک های زیر استفاده نماید.
محتوا: اخبار سایت محتوا: فیلم محتوا: نمونه سوال محتوا: تاریخ ریاضی
محتوا: مقالات محتوا: کنکور محتوا: گالری محتوا: کتب درسی
محتوا: رشته های دانشگاهی محتوا: دانشگاهی محتوا: ریاضی دانان محتوا: آزمون آنلاین
آموزش آنلاین آموزش الکترونیک آزمونهای آنلاین ریاضیدانان
نمونه سوال ریاضی سوالات سایر دروس کنکور سراسری رشته های دانشگاهی