کشور دانش خیز هلند نیز در اواخر این قرن مهد آزادی و یکی از مراکز مهم علمی جهان شده بود. آدرینرومن و سپس آدرین متیوس مقدار تقریبی عدد پی را محاسبه کردند و یکی دیگر از هموطنان آنان بنام وان سولن تا 30 رقم اعشار آن را بدست آورد. همچنین انگلستان که در آغاز قرن شانزدهم برای پیشرفت علم جبرکوشیده بود اینک با کشف لگاریتم بوسیله جان نپر تئوری فن محاسبة عددی را یک قدم قطعی به جلو برد.
کوپرنیک(1543_1473) منجم بزرگ لهستانی در اواسط قرن شانزدهم در کتاب مشهور خود بنام «دربارة دوران اجسام آسمانی» که همزمان با مرگش انتشار یافت تصویری از منظومة شمسی بدست داد که امروز هر دانش آموزی با آن آشناست:
1. مرکز منظومة شمسی، خورشید است نه زمین.
2. در حالی که ماه بگرد زمین میچرخد، سیارات دیگر، همراه با خود زمین بگرد خورشید میچرخند.
3. زمین در هر 24 ساعت یکبار حول محور خود میچرخد نه کرة ستارههای ثابت.
پس از مرگ کوپرنیک در قلب اروپا، در کشور دانمارک مردی بنام تیکو براهه متولد شد که کارهای او پایه و اساس انقلاب قریب الوقوع نجوم گردید. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایرههای هممرکز وفق نمیدهد. از آنجا که تیکو براهه بیشتر به رصدهای مستقیم و اندازهگیری سرگرم بود، هیچ کوشش برای تجزیه و تحلیل نتایج خود انجام نداد و این کار به یوهان کپلر که در سال آخر زندگی تیکو براهه دستیار وی بود محول گشت.
پس از سالها کار، وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل نمیپیمایند بلکه همة آنها بر روی بیضیهایی حرکت میکنند که خورشید در یکی از دو کانون آنها قرار دارد.
همچنین وی در نخستینبار اصل ماند (اصل جبر) را در مکانیک حدس زد که بعدها بوسیلة گالیله صورت تحقیق یافت.
قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزهآسا است. از فعالترین دانشمندان این قرن کشیشی پاریسی بود بنام مارن مرسن که میتوان وی را گرانبهاترین قاصد علمی جهان دانست. این شخص اطلاعات لازم را به دانشمندان میداد و به ملاقات ایشان میرفت و هر هفته آنان را در کلبه خود جمع میکرد و وسیله تبادل افکارشان را فراهم میساخت. و حتی برای اینکه بتواند آثار علمای مزبور را منتشر کند، شخصاً چاپخانهای تهیه کرد و رابط مابین گالیله،دکارت،فرما و دیگران شد. به مدد همین اجتماعات بود که کولیر توانست آکادمی علوم پاریس را در سال 1666 تأسیس کند. در سال 1609گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس میکرد. وی یکی از واضعین مکتب تجربی است.
مخالفت او با اصول ارسطو اشکالات بزرگی برای وی تولید کرد و میدانیم که در سال 1663 وی در سن هفتاد سالگی در برابر دادگاه تفتیش عقاید حاضر شد و چون بعد از کوپرینک اول کسی بود که حرکت زمین را به دور خورشید تأیید کرد محکوم گردید. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف کرد و آن عبارت است از ازدیاد سرعت در هر ثانیه و همچنین قوانین حرکت گلوله روی سطح افقی و سطح شیبدار نیز مطالعه نمود. گالیله موفق به اختراع دوربینی گردید که هنوز هم نام او را همراه دارد.
در همان اوقات که گالیله نخستین دوربین خود را به سوی آسمان متوجه نمود در 31 مارس 1596در تورن فرانسه رنه دکارت بدنیا آمد.
وی به زودی با مارن مرسسن که یکی از همکلاساش بود دوست شد و پس از یکدوره فعالیتهای نظامی و مسافرتهای متعدد به پاریس و هلنددر سال 1650 درسوئد زندگی را بدرود گفت. دکارت در میان همه کارهایش از عرضه نمودن افکار فلسفی خود در روابط بین انسان و طبیعت غفلت ننمود. کتاب وی به نام دیوپتریک که موضوع آن مسائل مربوط به مبحث نور بویژه انکسار میباشد جزو برجستهترین آثار اوست.
نام ریاضیدان بزرگ سوئیسی «پول گولدن» را نیز باید با نهایت افتخار ذکر کرد. شهرت وی بخصوص بواسطه قضایای مربوط به اجسام دوار است که نام او را دارا میباشد و در کتابی به نام «مرکز ثقل» ذکر شده است.
دیگر از دانشمندان برجسته قرن هفدهم پییردوفرما ریاضیدان بزرگ فرانسوی است که در سال 1601 در بومون دوکانی متولد شد و در 1665 در کاستر درگذشت. وی مطالعات عمیق و جالبی درباره ریاضیات مطلق و نور کرد. یکی از برجستهترین آثار او «تئوری اعداد» است که وی کاملاً بوجود آورنده آن میباشد. در هندسه، فرما در همان زمان دکارت و مستقل از او مبانی هندسه تحلیلی را کشف کرد، گذشته از آن وی از دکارت نیز تجاوز نمود و اولین کسی است که این علم را در مورد فضای سه بعدی بکار برد.
تجسمات رفیع و استادانه او در حساب عالی است تا جائی که استدلال بعضی از قضایای او فقط یک قرن بعد بوسیله کسانی از قبیل اولرولاگرانژ باز یافته شد و یکی از قضایای او را حتی امروز نیز نتوانستهاند ثابت کنند.
ریاضیدان بزرگ دیگری که در این قرن به خوبی درخشید ژیرار دزارک فرانسوی میباشد که بیشتر به واسطه کارهای درخشانش در هنر معماری شهرت یافته بود. دزارک در هندسه آثاری ارزشمند دارد ومیتوان گفت که وی راه به سوی آنچه که «هندسه جدید» نامیده میشود بازکرد. او نخستین کسی است که درباره اشکال هندسی تنها به روابط متری مابین کمیات اکتفا نکرد و خواص تصویری را نیز در نظر گرفت و هندسه وضعی را پدید آورد.
و بالاخره ریاضیدان دیگر فرانسوی یعنی روبروال را باید نام ببریم که بواسطه ترازوی مشهوری که نام او را همراه دارد همه جا معروف است.
در اواسط قرن هفدهم کمکم مقدمات اولیه آنالیز عناصر بینهایت کوچک در تاریکی و ابهام بوجود آمد و رفتهرفته سر و صدای آن به گوش مردم رسید و فکرها را بدان سوی متوجه ساخت. این نکته را نیز بایستی متذکر شد که مرکز ثقل علمی اروپا تغییر کرده بود:ایتالیا که مدتهای مدید درخشیده بود کمکم به خاموشی میگرائید. آلمان بلافاصله بعد از کپلر دچار جنگهای سی ساله شد و دیگر تا هنگام درخشیدن لایب نیتس گفتگوئی از آن در میان نبود.انگلستان در انتظار پیدایش موجود مافوق بشری همچون نیوتن بود و کشور هلند به انتظار هویگنس تنها به تربیت مردان علاقمند و متبحر اکتفا میکرد. در این احوال کشور فرانسه اولین مقام علمی را اشغال کرده بود. کدام کشور میتوانست مدعی وجود کسانی همچون دکارت،فرما، دزارک ، روبروال و پاسکال باشد.
بدون شک پاسکال همراه با دکارت و فرما یکی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز میتوان ارزش او را در علم فیزیک برابر گالیله دانست. او هنگامی که هنوز آنقدر کم سن بود که خط راست را میله و دایره را گردی مینامید بدون آنکه هرگز کتاب هندسهای دیده باشد بسیاری از احکام سی و دو قضیه اولیه اقلیدس را خود به خود کشف کرده بود. درسن شانزده سالگی کتابی درباره مقاطع مخروطی نوشت و هنوز یکی از قضایای آن به نام او مشهور است، همچنین در هیجده سالگی یعنی در سال 1641 نخستین ماشین حساب را اختراع کرد که هنوز در کنسرواتوار صنایع و مشاغل محفوظ است.
درایتالیا آثار کاوالیری فصل جدیدی در هندسه بوجود آورد. وی در سال 1629 ایدهآلهای ارشمیدس را تحت عنوان «هندسه غیر قابل تقسیمها» دنبال نمود و در 1635 نیز کتابی به همین نام انتشار داد. طبق نظر او هریک از اجزاء مرتباً تقسیم بدو میشدند و بینهایت کوچک میگردیدند. همچنین اولین جستجوهای مربوط به حساب بینهایت کوچکها از اوست.
در نیمه دوم قرن هفدهم ریاضی بطور دقیق و کنجکاوانهای دنبال شد. سه نابغه فناناپذیر این دوره یعنیاسحاق نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن کرده بودند.
اسحاق نیوتن روز چهارم ژانویه سال 1643 در وولسی تورپ واقع در ناحیه لینکولشایر متولد شد و در بیستم مارس 1827 در گذشت. وی در هیجده سالگی جزو شاگردان مجانی وارد دانشگاه کمبریج شد و در آنجا ابتدا آثار اقلیدس و سپس هندسه دکارت را مطالعه کرد. در سال 1673 با کتاب هویگنس بنام «درباره نوسان ساعتها» که برای اولینبار اصول مکانیک آسمانی را شامل بود آشنائی یافت. مسلماً این کتاب موجب تقویت افکار او درباره قانون جاذبه گردید و کمکم میخواست او را بستوه آورد. در این هنگام وی تصمیم گرفت افکاری را که تا آنروز در مغز خود محفوظ داشته بود روی کاغذ آورد و بنا بر این از سال 1684 به نوشتن کتاب «اصول» مشغول شد. وی تحت عنوان «حساب فلوکسیونها» روش نوینی برای پیشرفت حساب بینهایتکوچکها ایجاد نمود که باعث ترقی و توسعه علمالقوا یا دینامیک گردید.
لایپ نیتس در سوم ژوئیه سال 1646 یعنی سه سال بعد از تولد اسحاق نیوتن در شهر لایپزیک آلمان چشم به دنیا گشود. وی درهمه بخشهای معارف بشری مطالعات عمیق کرد، و در همه آنها مطالب درجه اولی کشف نمود. ریاضیات، حقوق، مذهب، سیاست، تاریخ، ادبیات، منطق، مابعدالطبیعه و فلسفه هریک پس از دیگری توجه او را جلب کرد. در سال 1684 با انتشار مقالهای درباره حساب عناصر بینهایت کوچک انقلابی برپا کرد. وی در این مقاله یک منحنی را مرکب ازبینهایت پارهخط راست که هریک بینهایت کوچک بودند فرض کرده بود و اگر میخواست کمیتی مثل حرارت را مورد مطالعه قرار دهد که از مقداری معین تا مقداری دیگر تغییر میکرد چنین تصور میکرد که این تغییرات تشکیل یافته است از مجموع بینهایت تغییرات کوچک، و این تغییرات جزئی را دیفرانسیل و مجموع آنها را انتگرال نامید. با کشف دیفرانسیل وسیله جدیدی برای تحقیق آنالیز بوجود آمد. ورود آنالیز عناصر بینهایت کوچک در قلمرو علم همچون هجوم طوفان و یا موج مقاومت ناپذیری بود که به کلی دانش ریاضی را زیر و رو کرد و به آن صورت جدیدی بخشید.
هویگنس در 14 ماه آوریل 1629در شهر لاهه متولد شد. وی در تکمیل دینامیک و مکانیک استدلالی با اسحاق نیوتن همکاری کرد و عملیات مختلف آنها باعث شد که ارزش واقعی حساب انتگرال در بسط و توسعه علوم دقیقه روشن گردد. همچنین هویگنس دست به اصلاح ساعت زد و به این منظور دنباله تجسسات گالیله را گرفت.
در قرن هیجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یک دوره آرامش مبدل گردید. تمام جهد و کوشش دانشمندان مصروف این میشد تا با وسایل جدید نتایج کشفیات اساسی متقدمین را توسعه دهند.
در اوایل این قرن موارد استعمال حساب بینهایت کوچکها در منحنی ها و رویه ها کشف گردید و همچنین حساب احتمالات تکمیل شد، باضافه کشفیات سرشار اسحاق نیوتن درباره مکانیک آسمانی که مدتی بدون انعکاس ماند مخصوصاً به کمک دانشمندان فرانسوی بسط داده شد.
تاریخ ریاضیات قسمت اول تاریخ ریاضیات قسمت دوم تاریخ ریاضیات قسمت سوم
تاریخ ریاضیات قسمت چهارم تاریخ ریاضیات قسمت پنجم تاریخ ریاضیات قسمت ششم
جهت دسترسی به محتوای طبقه بندی شده در سایت، از لینک های زیر استفاده نماید.
محتوا: اخبار سایت محتوا: فیلم محتوا: نمونه سوال محتوا: تاریخ ریاضی
محتوا: مقالات محتوا: کنکور محتوا: گالری محتوا: کتب درسی
محتوا: رشته های دانشگاهی محتوا: دانشگاهی محتوا: ریاضی دانان محتوا: آزمون آنلاین
آموزش آنلاین آموزش الکترونیک آزمونهای آنلاین ریاضیدانان
نمونه سوال ریاضی سوالات سایر دروس کنکور سراسری رشته های دانشگاهی