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P R E F A C E

This book has evolved from lectures on engineering mathematics given regu-
larly over many years to students at all levels in the United States, England, and

elsewhere. It covers the more advanced aspects of engineering mathematics that
are common to all first engineering degrees, and it differs from texts with similar
names by the emphasis it places on certain topics, the systematic development
of the underlying theory before making applications, and the inclusion of new
material. Its special features are as follows.

Prerequisites

The opening chapter, which reviews mathematical prerequisites, serves two
purposes. The first is to refresh ideas from previous courses and to provide

basic self-contained reference material. The second is to remove from the main
body of the text certain elementary material that by tradition is usually reviewed
when first used in the text, thereby allowing the development of more advanced
ideas to proceed without interruption.

Worked Examples

The numerous worked examples that follow the introduction of each new idea
serve in the earlier chapters to illustrate applications that require relatively little

background knowledge. The ability to formulate physical problems in mathemat-
ical terms is an essential part of all mathematics applications. Although this is not
a text on mathematical modeling, where more complicated physical applications
are considered, the essential background is first developed to the point at which
the physical nature of the problem becomes clear. Some examples, such as the
ones involving the determination of the forces acting in the struts of a framed
structure, the damping of vibrations caused by a generator and the vibrational
modes of clamped membranes, illustrate important mathematical ideas in the
context of practical applications. Other examples occur without specific applica-
tions and their purpose is to reinforce new mathematical ideas and techniques as
they arise.

A different type of example is the one that seeks to determine the height
of the tallest flagpole, where the height limitation is due to the phenomenon of
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buckling. Although the model used does not give an accurate answer, it provides a
typical example of how a mathematical model is constructed. It also illustrates the
reasoning used to select a physical solution from a scenario in which other purely
mathematical solutions are possible. In addition, the example demonstrates how
the choice of a unique physically meaningful solution from a set of mathematically
possible ones can sometimes depend on physical considerations that did not enter
into the formulation of the original problem.

Exercise Sets

The need for engineering students to have a sound understanding of mathe-
matics is recognized by the systematic development of the underlying theory

and the provision of many carefully selected fully worked examples, coupled with
their reinforcement through the provision of large sets of exercises at the ends
of sections. These sets, to which answers to odd-numbered exercises are listed at
the end of the book, contain many routine exercises intended to provide practice
when dealing with the various special cases that can arise, and also more chal-
lenging exercises, each of which is starred, that extend the subject matter of the
text in different ways.

Although many of these exercises can be solved quickly by using standard
computer algebra packages, the author believes the fundamental mathematical
ideas involved are only properly understood once a significant number of exer-
cises have first been solved by hand. Computer algebra can then be used with
advantage to confirm the results, as is required in various exercise sets. Where
computer algebra is either required or can be used to advantage, the exercise
numbers are in blue. A comparison of computer-based solutions with those ob-
tained by hand not only confirms the correctness of hand calculations, but also
serves to illustrate how the method of solution often determines its form, and
that transforming one form of solution to another is sometimes difficult. It is
the author’s belief that only when fundamental ideas are fully understood is it
safe to make routine use of computer algebra, or to use a numerical package
to solve more complicated problems where the manipulation involved is pro-
hibitive, or where a numerical result may be the only form of solution that is
possible.

New Material

Typical of some of the new material to be found in the book is the matrix
exponential and its application to the solution of linear systems of ordinary

differential equations, and the use of the Green’s function. The introductory dis-
cussion of the development of discontinuous solutions of first order quasilinear
equations, which are essential in the study of supersonic gas flow and in vari-
ous other physical applications, is also new and is not to be found elsewhere.
The account of the Laplace transform contains more detail than usual. While
the Laplace transform is applied to standard engineering problems, including
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control theory, various nonstandard problems are also considered, such as the
solution of a boundary value problem for the equation that describes the bend-
ing of a beam and the derivation of the Laplace transform of a function from
its differential equation. The chapter on vector integral calculus first derives and
then applies two fundamental vector transport theorems that are not found in
similar texts, but which are of considerable importance in many branches of
engineering.

Series Solutions of Differential Equations

Understanding the derivation of series solutions of ordinary differential equa-
tions is often difficult for students. This is recognized by the provision of

detailed examples, followed by carefully chosen sets of exercises. The worked ex-
amples illustrate all of the special cases that can arise. The chapter then builds
on this by deriving the most important properties of Legendre polynomials and
Bessel functions, which are essential when solving partial differential equations
involving cylindrical and spherical polar coordinates.

Complex Analysis

Because of its importance in so many different applications, the chapters on
complex analysis contain more topics than are found in similar texts. In partic-

ular, the inclusion of an account of the inversion integral for the Laplace transform
makes it possible to introduce transform methods for the solution of problems
involving ordinary and partial differential equations for which tables of transform
pairs are inadequate. To avoid unnecessary complication, and to restrict the mate-
rial to a reasonable length, some topics are not developed with full mathematical
rigor, though where this occurs the arguments used will suffice for all practical
purposes. If required, the account of complex analysis is sufficiently detailed for
it to serve as a basis for a single subject course.

Conformal Mapping and Boundary
Value Problems

Sufficient information is provided about conformal transformations for them to
be used to provide geometrical insight into the solution of some fundamen-

tal two-dimensional boundary value problems for the Laplace equation. Physi-
cal applications are made to steady-state temperature distributions, electrostatic
problems, and fluid mechanics. The conformal mapping chapter also provides
a quite different approach to the solution of certain two-dimensional boundary
value problems that in the subsequent chapter on partial differential equations
are solved by the very different method of separation of variables.
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Partial Differential Equations

An understanding of partial differential equations is essential in all branches of
engineering, but accounts in engineering mathematics texts often fall short of

what is required. This is because of their tendency to focus on the three standard
types of linear second order partial differential equations, and their solution by
means of separation of variables, to the virtual exclusion of first order equations
and the systems from which these fundamental linear second order equations are
derived. Often very little is said about the types of boundary and initial condi-
tions that are appropriate for the different types of partial differential equations.
Mention is seldom if ever made of the important part played by nonlinearity in
first order equations and the way it influences the properties of their solutions.
The account given here approaches these matters by starting with first order
linear and quasilinear equations, where the way initial and boundary conditions
and nonlinearity influence solutions is easily understood. The discussion of the
effects of nonlinearity is introduced at a comparatively early stage in the study
of partial differential equations because of its importance in subjects like fluid
mechanics and chemical engineering. The account of nonlinearity also includes
a brief discussion of shock wave solutions that are of fundamental importance in
both supersonic gas flow and elsewhere.

Linear and nonlinear wave propagation is examined in some detail because
of its considerable practical importance; in addition, the way integral transform
methods can be used to solve linear partial differential equations is described.
From a rigorous mathematical point of view, the solution of a partial differential
equation by the method of separation of variables only yields a formal solution,
which only becomes a rigorous solution once the completeness of any set of
eigenfunctions that arises has been established. To develop the subject in this
manner would take the text far beyond the level for which it is intended and
so the completeness of any set of eigenfunctions that occurs will always be as-
sumed. This assumption can be fully justified when applying separation of vari-
ables to the applications considered here and also in virtually all other practical
cases.

Technology Projects

To encourage the use of technology and computer algebra and to broaden the
range of problems that can be considered, technology-based projects have

been added wherever appropriate; in addition, standard sets of exercises of a
theoretical nature have been included at the ends of sections. These projects are
not linked to a particular computer algebra package: Some projects illustrating
standard results are intended to make use of simple computer skills while others
provide insight into more advanced and physically important theoretical ques-
tions. Typical of the projects designed to introduce new ideas are those at the
end of the chapter on partial differential equations, which offer a brief introduc-
tion to the special nonlinear wave solutions called solitons.
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Numerical Mathematics

Although an understanding of basic numerical mathematics is essential for all
engineering students, in a book such as this it is impossible to provide a sys-

tematic account of this important discipline. The aim of this chapter is to provide
a general idea of how to approach and deal with some of the most important
and frequently encountered numerical operations, using only basic numerical
techniques, and thereafter to encourage the use of standard numerical packages.
The routines available in numerical packages are sophisticated, highly optimized
and efficient, but the general ideas that are involved are easily understood once
the material in the chapter has been assimilated. The accounts that are given
here purposely avoid going into great detail as this can be found in the quoted
references. However, the chapter does indicate when it is best to use certain types
of routine and those circumstances where routines might be inappropriate.

The details of references to literature contained in square brackets at the ends
of sections are listed at the back of the book with suggestions for additional read-
ing. An instructor’s Solutions Manual that gives outline solutions for the techno-
logy projects is also available.

Acknowledgments

Iwish to express my sincere thanks to the reviewers and accuracy readers, those
cited below and many who remain anonymous, whose critical comments and

suggestions were so valuable, and also to my many students whose questions
when studying the material in this book have contributed so fundamentally to its
development. Particular thanks go to:

Chun Liu, Pennsylvania State University
William F. Moss, Clemson University
Donald Hartig, California Polytechnic State University at San Luis Obispo
Howard A. Stone, Harvard University
Donald Estep, Georgia Institute of Technology
Preetham B. Kumar, California State University at Sacramento
Anthony L. Peressini, University of Illinois at Urbana-Champaign
Eutiquio C. Young, Florida State University
Colin H. Marks, University of Maryland
Ronald Jodoin, Rochester Institute of Technology
Edgar Pechlaner, Simon Fraser University
Ronald B. Guenther, Oregon State University
Mattias Kawski, Arizona State University
L. F. Shampine, Southern Methodist University

In conclusion, I also wish to thank my editor, Barbara Holland, for her invalu-
able help and advice on presentation; Julie Bolduc, senior production editor, for
her patience and guidance; Mike Sugarman, for his comments during the early
stages of writing; and, finally, Chuck Glaser, for encouraging me to write the book
in the first place.

xix



This Page Intentionally Left Blank



P A R T O N E

REVIEW MATERIAL

Chapter 1 Review of Prerequisites

1



This Page Intentionally Left Blank



1C H A P T E R

Review of Prerequisites

Every account of advanced engineering mathematics must rely on earlier mathematics
courses to provide the necessary background. The essentials are a first course in calculus

and some knowledge of elementary algebraic concepts and techniques. The purpose of
the present chapter is to review the most important of these ideas that have already been
encountered, and to provide for convenient reference results and techniques that can be
consulted later, thereby avoiding the need to interrupt the development of subsequent
chapters by the inclusion of review material prior to its use.

Some basic mathematical conventions are reviewed in Section 1.1, together with the
method of proof by mathematical induction that will be required in later chapters. The
essential algebraic operations involving complex numbers are summarized in Section 1.2,
the complex plane is introduced in Section 1.3, the modulus and argument representa-
tion of complex numbers is reviewed in Section 1.4, and roots of complex numbers are
considered in Section 1.5. Some of this material is required throughout the book, though
its main use will be in Part 5 when developing the theory of analytic functions.

The use of partial fractions is reviewed in Section 1.6 because of the part they play
in Chapter 7 in developing the Laplace transform. As the most basic properties of deter-
minants are often required, the expansion of determinants is summarized in Section 1.7,
though a somewhat fuller account of determinants is to be found later in Section 3.3 of
Chapter 3.

The related concepts of limit, continuity, and differentiability of functions of one or
more independent variables are fundamental to the calculus, and to the use that will
be made of them throughout the book, so these ideas are reviewed in Sections 1.8 and
1.9. Tangent line and tangent plane approximations are illustrated in Section 1.10, and
improper integrals that play an essential role in the Laplace and Fourier transforms, and
also in complex analysis, are discussed in Section 1.11.

The importance of Taylor series expansions of functions involving one or more in-
dependent variables is recognized by their inclusion in Section 1.12. A brief mention is
also made of the two most frequently used tests for the convergence of series, and of the
differentiation and integration of power series that is used in Chapter 8 when considering
series solutions of linear ordinary differential equations. These topics are considered again
in Part 5 when the theory of analytic functions is developed.

The solution of many problems involving partial differential equations can be simplified
by a convenient choice of coordinate system, so Section 1.13 reviews the theorem for the

3



4 Chapter 1 Review of Prerequisites

change of variable in partial differentiation, and describes the cylindrical polar and spherical
polar coordinate systems that are the two that occur most frequently in practical problems.

Because of its fundamental importance, the implicit function theorem is stated without
proof in Section 1.14, though it is not usually mentioned in first calculus courses.

1.1 Real Numbers, Mathematical Induction,
and Mathematical Conventions

Numbers are fundamental to all mathematics, and real numbers are a subset
of complex numbers. A real number can be classified as being an integer, a

rational number, or an irrational number. From the set of positive and negative
integers, and zero, the set of positive integers 1, 2, 3, . . . is called the set of natural
numbers. The rational numbers are those that can be expressed in the form m/n,
where m and n are integers with n �= 0. Irrational numbers such as π ,

√
2, and sin 2

are numbers that cannot be expressed in rational form, so, for example, for no
integers m and n is it true that

√
2 is equal to m/n. Practical calculations can only

be performed using rational numbers, so all irrational numbers that arise must be
approximated arbitrarily closely by rational numbers.

Collectively, the sets of integers and rational and irrational numbers form what
is called the set of all real numbers, and this set is denoted by R. When it is necessary
to indicate that an arbitrary number a is a real number a shorthand notation is
adopted involving the symbol ∈, and we will write a ∈ R. The symbol ∈ is to be read
“belongs to” or, more formally, as “is an element of the set.” If a is not a member
of set R, the symbol ∈ is negated by writing /∈, and we will write a /∈ R where, of
course, the symbol /∈ is to be read as “does not belong to,” or “is not an element
of the set.” As real numbers can be identified in a unique manner with points on a
line, the set of all real numbers R is often called the real line. The set of all complex
numbers C to which R belongs will be introduced later.

One of the most important properties of real numbers that distinguishes them
from other complex numbers is that they can be arranged in numerical order. This
fundamental property is expressed by saying that the real numbers possess the order
property. This simply means that if x, y ∈ R, with x �= y, then

either x < y or x > y,

where the symbol < is to be read “is less than” and the symbol > is to be read
“is greater than.” When the foregoing results are expressed differently, though
equivalently, if x, y ∈ R, with x �= y, then

either x − y < 0 or x − y > 0.

It is the order property that enables the graph of a real function f of a real
variable x to be constructed. This follows because once length scales have been
chosen for the axes together with a common origin, a real number can be made
to correspond to a unique point on an axis. The graph of f follows by plotting all
possible points (x, f (x)) in the plane, with x measured along one axis and f (x)
along the other axis.

The absolute value |x| of a real number x is defined by the formulaabsolute value

|x| =
{

x if x ≥ 0
−x if x < 0.
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This form of definition is in reality a concise way of expressing two separate state-
ments. One statement is obtained by reading |x| with the top condition on the right
and the other by reading it with the bottom condition on the right. The absolute
value of a real number provides a measure of its magnitude without regard to its
sign so, for example, |3| = 3, |−7.41| = 7.41, and |0| = 0.

Sometimes the form of a general mathematical result that only depends on an
arbitrary natural number n can be found by experiment or by conjecture, and then
the problem that remains is how to prove that the result is either true or false for
all n. A typical example is the proposition that the product

(1 − 1/4)(1 − 1/9)(1 − 1/16) . . . [1 − 1/(n + 1)2]

= (n + 2)/(2n + 2), for n = 1, 2, . . . .

This assertion is easily checked for any specific positive integer n, but this does not
amount to a proof that the result is true for all natural numbers.

A powerful method by which such propositions can often be shown to be either
true or false involves using a form of argument called mathematical induction. Thismathematical

induction type of proof depends for its success on the order property of numbers and the fact
that if n is a natural number, then so also is n + 1. The steps involved in an inductive
proof can be summarized as follows.

Proof by Mathematical Induction
Let P(n) be a proposition depending on a positive integer n.

STEP 1 Show, if possible, that P(n) is true for some positive integer n0.
STEP 2 Show, if possible, that if P(n) is true for an arbitrary integer n = k ≥ n0,

then the proposition P(k + 1) follows from proposition P(k).
STEP 3 If Step 2 is true, the fact that P(n0) is true implies that P(n0 + 1) is true,

and then that P(n0 + 2) is true, and hence that P(n) is true for all n ≥ n0.
STEP 4 If no number n = n0 can be found for which Step 1 is true, or if in Step 2

it can be shown that P(k) does not imply P(k + 1), the proposition P(n)
is false.

The example that follows is typical of the situation where an inductive proof
is used. It arises when determining the nth term in the Maclaurin series for sin ax
that involves finding the nth derivative of sin ax. A result such as this may be found
intuitively by inspection of the first few derivatives, though this does not amount to
a formal proof that the result is true for all natural numbers n.

EXAMPLE 1.1 Prove by mathematical induction that

dn/dxn[sin ax] = an sin(ax + nπ/2), for n = 1, 2, . . . .

Solution The proposition P(n) is that

dn/dxn[sin ax] = an sin(ax + nπ/2), for n = 1, 2, . . . .

STEP 1 Differentiation gives

d/dx[sin ax] = a cos ax,
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but setting n = 1 in P(n) leads to the result

d/dx[sin ax] = a sin(ax + π/2) = a cos ax,

showing that proposition P(n) is true for n = 1 (so in this case n0 = 1).
STEP 2 Assuming P(k) to be true for k > 1, differentiation gives

d/dx{dk/dxk[sin ax]} = d/dx[ak sin(ax + kπ/2)],

so

dk+1/dxk+1[sin ax] = ak+1 cos(ax + kπ/2).

However, replacing k by k + 1 in P(k) gives

dk+1/dxk+1[sin ax] = ak+1 sin[ax + (k + 1)π/2]

= ak+1 sin[(ax + kπ/2) + π/2]

= ak+1 cos(ax + kπ/2),

showing, as required, that proposition P(k) implies proposition P(k + 1), so Step 2
is true.
STEP 3 As P(n) is true for n = 1, and P(k) implies P(k + 1), it follows that the
result is true for n = 1, 2, . . . and the proof is complete.

The binomial theorem finds applications throughout mathematics at all levels,
so we quote it first when the exponent n is a positive integer, and then in its more
general form when the exponent α involved is any real number.

Binomial theorem when n is a positive integer

If a, b are real numbers and n is a positive integer, then

(a + b)n = an + nan−1b + n(n − 1)
2!

an−2b2

+ n(n − 1)(n − 2)
3!

an−3b3 + · · · + bn,

or more concisely in terms of the binomial coefficientbinomial coefficient (
n
r

)
= n!

(n − r)!r !
,

we have

(a + b)n =
n∑

r=0

(
n
r

)
an−r br ,

where m! is the factorial function defined as m! = 1 · 2 · 3 · · · m with m > 0 an
integer, and 0! is defined as 0! = 1. It follows at once that(

n
0

)
=
(

n
n

)
= 1.
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The binomial theorem involving the expression (a + b)α , where a and b are real
numbers with |b/a| < 1 and α is an arbitrary real number takes the following form.

General form of the binomial theorem when α is an arbitrary
real number

If a and b are real numbers such that |b/a| < 1 and α is an arbitrary real
number, then

(a + b)α = aα

(
1 + b

a

)α

= aα

(
1 + α

1!

(
b
a

)
+ α(α − 1)

2!

(
b
a

)2

+ α(α − 1)(α − 2)
3!

(
b
a

)3

+ · · ·
)

.

The series on the right only terminates after a finite number of terms if α is a
positive integer, in which case the result reduces to the one just given. If α is
a negative integer, or a nonintegral real number, the expression on the right
becomes an infinite series that diverges if |b/a| > 1.

EXAMPLE 1.2 Expand (3 + x)−1/2 by the binomial theorem, stating for what values of x the series
converges.

Solution Setting b/a = 1
3 x in the general form of the binomial theorem gives

(3 + x)−1/2 = 3−1/2
(

1 + 1
3

x
)−1/2

= 1√
3

(
1 − 1

6
x + 1

24
x2 − 5

432
x3 + · · ·

)
.

The series only converges if | 1
3 x| < 1, and so it is convergent provided |x| < 3.

Some standard mathematical conventions

Use of combinations of the ± and ∓ signs

The occurrence of two or more of the symbols ± and ∓ in an expression is to be
taken to imply two separate results, the first obtained by taking the upper signs and
the second by taking the lower signs. Thus, the expression a ± b sin θ ∓ c cos θ is an
abbreviation for the two separate expressions

a + b sin θ − c cos θ and a − b sin θ + c cos θ.

Multi-statements

When a function is defined sectionally on n different intervals of the real line, instead
of formulating n separate definitions these are usually simplified by being combined
into what can be considered to be a single multi-statement. The following examplemulti-statement
is typical of a multi-statement:

f (x) =
⎧⎨⎩

sin x, x < π

0, π ≤ x ≤ 3π/2
−1, x > 3π/2.
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It is, in fact, three statements. The first is obtained by reading f (x) in conjunction
with the top line on the right, the second by reading it in conjunction with the second
line on the right, and the third by reading it in conjunction with the third line on
the right. An example of a multi-statement has already been encountered in the
definition of the absolute value |x| of a number x. Frequent use of multi-statements
will be made in Chapter 9 on Fourier series, and elsewhere.

Polynomials

A polynomial is an expression of the form P(x) = a0xn + a1xn−1+ · · · + an−1x + an.polynomials
The integer n is called the degree of the polynomial, and the numbers ai are called
its coefficients. The fundamental theorem of algebra that is proved in Chapter 14
asserts that P(x) = 0 has n roots that may be either real or complex, though some
of them may be repeated. (a0 �= 0 is assumed.)

Notation for ordinary and partial derivatives

If f (x) is an n times differentiable function then f (n)(x) will, on occasion, be used
to signify dn f/dxn, so that

f (n)(x) = dn f
dxn

.

If f (x, y) is a suitably differentiable function of x and y, a concise notation used to
signify partial differentiation involves using suffixes, so thatsuffix notation for

partial derivatives

fx = ∂ f
∂x

, fyx = ( fy)x = ∂

∂x

(
∂ f
∂y

)
= ∂2 f

∂y∂x
, fyy = ∂2 f

∂y2
, . . . ,

with similar results when f is a function of more than two independent variables.

Inverse trigonometric functions

The periodicity of the real variable trigonometric sine, cosine, and tangent functions
means that the corresponding general inverse trigonometric functions are many val-
ued. So, for example, if y = sin x and we ask for what values of x is y = 1/

√
2, we

find this is true for x = π/4 ± 2nπ and x = 3π/4 ± 2nπ for n = 0, 1, 2, . . . . To over-
come this ambiguity, we introduce the single valued inverses, denoted respectively
by x = Arcsin y, x = Arccos y, and x = Arctan y by restricting the domain and
range of the sine, cosine, and tangent functions to one where they are either strictly
increasing or strictly decreasing functions, because then one value of x corresponds
to one value of y and, conversely, one value of y corresponds to one value of x.

In the case of the function y = sin x, by restricting the argument x to the inter-
val −π/2 ≤ x ≤ π/2 the function becomes a strictly increasing function of x. The
corresponding single valued inverse function is denoted by x = Arcsin y, where y is
a number in the domain of definition [−1, 1] of the Arcsine function and x is a num-
ber in its range [−π/2, π/2]. Similarly, when considering the function y = cos x, the
argument is restricted to 0 ≤ x ≤ π to make cos x a strictly decreasing function of x.
The corresponding single valued inverse function is denoted by x = Arccos y, where
y is a number in the domain of definition [−1, 1] of the Arccosine function and x is
a number in its range [0, π ]. Finally, in the case of the function y = tan x, restricting
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the argument to the interval −π/2 < x < π/2 makes the tangent function a strictly
increasing function of x. The corresponding single valued inverse function is de-
noted by x = Arctan y where y is a number in the domain of definition (−∞, ∞)
of the Arctangent function and x is a number in its range (−π/2, π/2).

As the inverse trigonometric functions are important in their own right, the
variables x and y in the preceding definitions are interchanged to allow considera-
tion of the inverse functions y = Arcsin x, y = Arccos x, and y = Arctan x, so that
now x is the independent variable and y is the dependent variable.

With this interchange of variables the expression y = arcsin x will be used to
refer to any single valued inverse function with the same domain of definition as
Arcsin x, but with a different range. Similar definitions apply to the functions y =
arccos x and y = arctan x.

Double summations

An expression involving a double summation like
∞∑

m=1

∞∑
n=1

amn sin mx sin ny,

means sum the terms amn sin mx sin ny over all possible values of m and n, so thatdouble summation
∞∑

m=1

∞∑
n=1

amn sin mx sin ny = a11 sin x sin y + a12 sin x sin 2y

+ a21 sin 2x sin y + a22 sin 2x sin 2y + · · · .
A more concise notation also in use involves writing the double summation as

∞∑
m=1,n=1

amn sin mx sin nx.

The signum function

The signum function, usually written sign(x), and sometimes sgn(x), is defined assignum function

sign(x) =
{

1 if x > 0
−1 if x < 0.

We have, for example, sign(cos x) = 1 for 0 < x < π/2, and sign(cos x) = −1 for
π/2 < x < π or, equivalently,

sign(cos x) =
{

1, 0 < x < 1
2π

−1, 1
2π < x < π.

Products

Let {uk}n
k=1 be a sequence of numbers or functions u1, u2, . . . ; then the product of

the n members of this sequence is denoted by
∏n

k=1 uk, so that
n∏

k=1

uk = u1u2 · · · un.

When the sequence is infinite,infinite product

lim
n→∞

n∏
k=1

uk =
∞∏

k=1

uk
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is called an infinite product involving the sequence {uk}. Typical examples of infinite
products are

∞∏
k=2

(
1 − 1

k2

)
= 1

2
and

∞∏
k=1

(
1 − x2

k2π2

)
= sin x

x
.

More background information and examples can be found in the appropriate sec-
tions in any of references [1.1], [1.2], and [1.5].

Logarithmic functions

The notation ln x is used to denote the natural logarithm of a real number x, thatthe functions ln
and Log is, the logarithm of x to the base e, and in some books this is written loge x. In this

book logarithms to the base 10 are not used, and when working with functions of a
complex variable the notation Log z, with z = reiθ means Log z = ln r + iθ .

EXERCISES 1.1

1. Prove that if a > 0, b > 0, then a/
√

b + b/
√

a ≥√
a + √

b.

Prove Exercises 2 through 6 by mathematical induction.

2.
∑n−1

k=0(a + kd) = (n/2)[2a + (n − 1)d]
(sum of an arithmetic series).

3.
∑n−1

k=0 rk = (1 − rn)/(1 − r) (r �= 1)
(sum of a geometric series).

4.
∑n

k=1 k2 = (1/6)n(n + 1)(2n + 1) (sum of squares).
5. dn/dxn[cos ax] = an cos(ax + nπ/2), with n a natural

number.
6. dn/dxn[ln(1 + x)] = (−1)n+1(n − 1)!/(1 + x)n, with n a

natural number.

7. Use the binomial theorem to expand (3 + 2x)4.
8. Use the binomial theorem and multiplication to expand

(1 − x2)(2 + 3x)3.

In Exercises 9 through 12 find the first four terms of the
binomial expansion of the function and state conditions for
the convergence of the series.

9. (3 + 2x)−2.
10. (2 − x2)1/3.
11. (4 + 2x2)−1/2.
12. (1 − 3x2)3/4.

1.2 Complex Numbers

Mathematical operations can lead to numbers that do not belong to the real number
system R introduced in Section 1.1. In the simplest case this occurs when finding
the roots of the quadratic equation

ax2 + bx + c = 0 with a, b, c ∈ R, a �= 0

by means of the quadratic formula

x = −b ± √
b2 − 4ac

2a
.

The discriminant of the equation is b2 − 4ac, and if b2 − 4ac < 0 the formuladiscriminant of
a quadratic involves the square root of a negative real number; so, if the formula is to have

meaning, numbers must be allowed that lie outside the real number system.
The inadequacy of the real number system when considering different math-

ematical operations can be illustrated in other ways by asking, for example, how
to find the three roots that are expected of a third degree algebraic equation as
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simple as x3 − 1 = 0, where only the real root 1 can be found using y = x3 − 1, or
by seeking to give meaning to ln(−1), both of which questions will arise later.

Difficulties such as these can all be overcome if the real number system is
extended by introducing the imaginary unit i defined as

i2 = −1,

so expressions like
√

(−k2) where k a positive real number may be written√
(−1)

√
(k2) = ±ik. Notice that as the real number k only scales the imaginary

unit i , it is immaterial whether the result is written as ik or as ki .
The extension to the real number system that is required to resolve problems

of the type just illustrated involves the introduction of complex numbers, denoted
collectively by C, in which the general complex number, usually denoted by z, has
the form

z = α + iβ, with α, β real numbers.

The real number α is called the real part of the complex number z, and the real
number β is called its imaginary part. When these need to be identified separately,
we write

real and imaginary
part notation

Re{z} = α and Im{z} = β,

so if z = 3 − 7i , Re{z} = 3 and Im{z} = −7.
If Im{z} = β = 0 the complex number z reduces to a real number, and if

Re{z} = α = 0 it becomes a purely imaginary number, so, for example, z = 5i is
a purely imaginary number. When a complex number z is considered as a variable
it is usual to write it as

z = x + iy,

where x and y are now real variables. If it is necessary to indicate that z is a general
complex number we write z ∈ C.

When solving the quadratic equation az2 + bz + c = 0 with a, b, and c real
numbers and a discriminant b2 − 4ac < 0, by setting 4ac − b2 = k2 in the quadratic
formula, with k > 0, the two roots z1 and z2 are given by the complex numbers

z1 = −(b/2a) + i(k/2a) and z2 = −(b/2a) − i(k/2a).

Algebraic rules for complex numbers

Let the complex numbers z1 and z2 be defined as

z1 = a + ib and z2 = c + id,

with a, b, c, and d arbitrary real numbers. Then the following rules govern the
arithmetic manipulation of complex numbers.

Equality of complex numbers

The complex numbers z1 and z2 are equal, written z1 = z2 if, and only if,
Re{z1} = Re{z2} and Im{z1} = Im{z2}. So a + ib = c + id if, and only if,

a = c and b = d.
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EXAMPLE 1.3 (a) 3 − 9i = 3 + bi if, and only if, b = −9.
(b) If u = −2 + 5i , v = 3 + 5i , w = a + 5i , then

u = w if, and only if, a = −2 but u �= v, and
v = w if, and only if, a = 3.

Zero complex number

The zero complex number, also called the null complex number, is the number
0 + 0i that, for simplicity, is usually written as an ordinary zero 0.

EXAMPLE 1.4 If a + ib = 0, then a = 0 and b = 0.

Addition and subtraction of complex numbers

The addition (sum) and subtraction (difference) of the complex numbers z1

and z2 is defined as

z1 + z2 = Re{z1} + Re{z2} + i[Im{z1} + Im{z2}]

and

z1 − z2 = Re{z1} − Re{z2} + i[Im{z1} − Im{z2}].

So, if z1 = a + ib and z2 = c + id, then

z1 + z2 = (a + ib) + (c + id)

= (a + c) + i(b + d),

and

z1 − z2 = (a + ib) − (c + id)

= (a − c) + i(b − d).

EXAMPLE 1.5 If z1 = 3 + 7i and z2 = 3 + 2i , then the sum

z1 + z2 = (3 + 3) + (7 + 2)i = 6 + 9i,

and the difference

z1 − z2 = (3 − 3) + (7 − 2)i = 5i.

Multiplication of complex numbers

The multiplication (product) of the two complex numbers z1 = a + ib and
z2 = c + id is defined by the rule

z1z2 = (a + ib)(c + id) = (ac − bd) + i(ad + bc).

An immediate consequence of this definition is that if k is a real number, then
kz1 = k(a + ib) = ka + ikb. This operation involving multiplication of a complex
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number by a real number is called scaling a complex number. Thus, if z1 = 3 + 7i
and z2 = 3 + 2i , then 2z1 − 3z2 = (6 + 14i) − (9 + 6i) = −3 + 8i .

In particular, if z = a + ib, then −z = (−1)z = −a − ib. This is as would be
expected, because it leads to the result z − z = 0.

In practice, instead of using this formal definition of multiplication, it is more
convenient to perform multiplication of complex numbers by multiplying the brack-
eted quantities in the usual algebraic manner, replacing every product i2 by −1, and
then combining separately the real and imaginary terms to arrive at the required
product.

EXAMPLE 1.6 (a) 5i(−4 + 3i) = −15 − 20i.
(b) (3 − 2i)(−1 + 4i)(1 + i) = (−3 + 12i + 2i − 8i2)(1 + i)

= [(−3 + 8) + (12 + 2)i](1 + i) = (5 + 14i)(1 + i)
= 5 + 14i + 5i + 14i2 = (5 − 14) + (5 + 14)i = −9 + 19i .

Complex conjugate

If z = a + ib, then the complex conjugate of z, usually denoted by z and read
“z bar,” is defined as z = a − ib. It follows directly that

(z) = z and zz = a2 + b2.

In words, the complex conjugate operation has the property that taking the complex
conjugate of a complex conjugate returns the original complex number, whereas
the product of a complex number and its complex conjugate always yields a real
number.

If z = a + ib, then adding and subtracting z and z gives the useful results

z + z = 2Re{z} = 2a and z − z = 2i Im{z} = 2ib.

These can be written in the equivalent form

Re{z} = a = 1
2

(z + z) and Im{z} = b = 1
2i

(z − z).

Quotient (division) of complex numbers

Let z1 = a + ib and z2 = c + id. Then the quotient z1/z2 is defined as

z1

z2
= (ac + bd) + i(bc − ad)

c2 + d2
, z2 �= 0.
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In practice, division of complex numbers is not carried out using this definition.
Instead, the quotient is written in the form

z1

z2
= z1z2

z2z2
,

where the denominator is now seen to be a real number. The quotient is then found
by multiplying out and simplifying the numerator in the usual manner and dividing
the real and imaginary parts of the numerator by the real number z2z2.

EXAMPLE 1.7 Find z1/z2 given that z1 = (3 + 2i) and z2 = 1 + 3i .

Solution

3 + 2i
1 + 3i

= (3 + 2i)(1 − 3i)
(1 + 3i)(1 − 3i)

= 3 − 9i + 2i − 6i2

10
= 9

10
− 7i

10
.

Modulus of a complex number

The modulus of the complex number z = a + ib denoted by |z|, and also called
its magnitude, is defined as

|z| = (a2 + b2)1/2 = (zz)1/2.

It follows directly from the definitions of the modulus and division that

|z| = |z| = (a2 + b2)1/2,

and

z1/z2 = z1z2/|z2|2.

EXAMPLE 1.8 If z = 3 + 7i , then |z| = |3 + 7i | = (32 + 72)1/2 = √
58.

It is seen that the foregoing rules for the arithmetic manipulation of complex
numbers reduce to the ordinary arithmetic rules for the algebraic manipulation of
real numbers when all the complex numbers involved are real numbers. Complex
numbers are the most general numbers that need to be used in mathematics, and
they contain the real numbers as a special case. There is, however, a fundamental
difference between real and complex numbers to which attention will be drawn
after their common properties have been listed.

Properties shared by real and complex numbers

Let z, u, and w be arbitrary real or complex numbers. Then the following
properties are true:

1. z + u = u + z. This means that the order in which complex num-
bers are added does not affect their sum.

2. zu = uz. This means that the order in which complex numbers are
multiplied does not affect their product.
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3. (z + u) + w = z + (u + w). This means that the order in which
brackets are inserted into a sum of finitely many complex numbers does
not affect the sum.

4. z(uw) = (zu)w. This means that the terms in a product of complex
numbers may be grouped and multiplied in any order without affecting
the resulting product.

5. z(u + w) = zu + zw. This means that the product of zand a sum of
complex numbers equals the sum of the products of z and the individual
complex numbers involved in the sum.

6. z + 0 = 0 + z = z. This result means that the addition of zero to
any complex number leaves it unchanged.

7. z · 1 = 1 · z = z. This result means that multiplication of any com-
plex number by unity leaves the complex number unchanged.

Despite the properties common to real and complex numbers just listed, there
remains a fundamental difference because, unlike real numbers, complex numbers
have no natural order. So if z1 and z2 are any complex numbers, a statement such
as z1 < z2 has no meaning.

EXERCISES 1.2

Find the roots of the equations in Exercises 1 through 6.

1. z2 + z + 1 = 0.
2. 2z2 + 5z + 4 = 0.

3. z2 + z + 6 = 0.

4. 3z2 + 2z + 1 = 0.
5. 3z2 + 3z + 1 = 0.

6. 2z2 − 2z + 3 = 0.

7. Given that z = 1 is a root, find the other two roots of
2z3 − z2 + 3z − 4 = 0.

8. Given that z = −2 is a root, find the other two roots of
4z3 + 11z2 + 10z + 8 = 0.

9. Given u = 4 − 2i, v = 3 − 4i, w = −5i and a + ib =
(u + iv)w, find a and b.

10. Given u = −4 + 3i, v = 2 + 4i , and a + ib = uv2, find a
and b.

11. Given u = 2 + 3i, v = 1 − 2i, w = −3 − 6i, find |u + v|,
u + 2v, u − 3v + 2w, uv, uvw, |u/v|, v/w.

12. Given u = 1 + 3i, v = 2 − i, w = −3 + 4i , find uv/w,

uw/v and |v|w/u.

1.3 The Complex Plane

Complex numbers can be represented geometrically either as points, or as directed
line segments (vectors), in the complex plane. The complex plane is also called the
z-plane because of the representation of complex numbers in the form z = x + iy.
Both of these representations are accomplished by using rectangular cartesian coor-
dinates and plotting the complex number z = a + ib as the point (a, b) in the plane,
so the x-coordinate of z is a = Re{z} and its y-coordinate is b = Im{z}. Because of
this geometrical representation, a complex number written in the form z = a + ib
is said to be expressed in cartesian form. To acknowledge the Swiss amateur math-cartesian

representation of z ematician Jean-Robert Argand, who introduced the concept of the complex plane
in 1806, and who by profession was a bookkeeper, this representation is also called
the Argand diagram.
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FIGURE 1.1 (a) Complex numbers as points. (b) Complex numbers as vectors.

For obvious reasons, the x-axis is called the real axis and the y-axis the imaginary
axis. Purely real numbers are represented by points on the real axis and purely
imaginary ones by points on the imaginary axis. Examples of the representation
of typical points in the complex plane are given in Fig. 1.1a, where the numbers
4, 3i, 2 + 2i , and 2 − 2i are plotted as points. These same complex numbers are
shown again in Fig. 1.1b as directed line segments drawn from the origin (vectors).
The arrow shows the sense along the line, that is, the direction from the origin to the
tip of the vector representing the complex number. It can be seen from both figures
that, when represented in the complex plane, a complex number and its complex
conjugate (in this case 2 + 2i and 2 − 2i) lie symmetrically above and below the
real axis. Another way of expressing this result is by saying that a complex number
and its complex conjugate appear as reflections of each other in the real axis, which
acts like a mirror.

The addition and subtraction of two complex numbers have convenient geo-
metrical interpretations that follow from the definitions given in Section 1.2. When
complex numbers are added, their respective real and imaginary parts are added,
whereas when they are subtracted, their respective real and imaginary parts are
subtracted. This leads at once to the triangle law for addition illustrated in Fig. 1.2a,
in which the directed line segment (vector) representing z2 is translated without
rotation or change of scale, to bring its base (the end opposite to the arrow) into co-
incidence with the tip of the directed line element representing z1 (the end at which
the arrow is located). The sum z1 + z2 of the two complex numbers is then repre-
sented by the directed line segment from the base of the line segment representing
z1 to the tip of the newly positioned line segment representing z2.

The name triangle law comes from the triangle that is constructed in the com-
plex plane during this geometrical process of addition. Notice that an immediate

triangle and
parallelogram
laws

consequence of this law is that addition is commutative, because both z1 + z2 and
z2 + z1 are seen to lead to the same directed line segment in the complex plane. For
this reason the addition of complex numbers is also said to obey the parallelogram
law for addition, because the commutative property generates the parallelogram
shown in Fig. 1.2a.
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z1
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z 1
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−z2

0

0

FIGURE 1.2 Addition and subtraction of complex numbers using the triangle/parallelogram law.

The geometrical interpretation of the subtraction of z2 from z1 follows similarly
by adding to z1 the directed line segment −z2 that is obtained by reversing of the
sense (arrow) along z2, as shown in Fig. 1.2b.

It is an elementary fact from Euclidean geometry that the sum of the lengths
of the two sides |u| and |v| of the triangle in Fig. 1.3 is greater than or equal to the
length of the hypotenuse |u + v|, so from geometrical considerations we can write

|u + v| ≤ |u| + |v|.

This result involving the moduli of the complex numbers u and v is called the triangletriangle inequality
inequality for complex numbers, and it has many applications.

An algebraic proof of the triangle inequality proceeds as follows:

|u + v|2 = (u + v)(u + v) = uu + vu + uv + vv

= |u|2 + |v|2 + (uv + uv) ≤ |u2| + |v2| + 2|uv|
= (|u| + |v|)2.

The required result now follows from taking the positive square root.
A similar argument, the proof of which is left as an exercise, can be used to

show that ‖u|− |v‖ ≤ |u + v|, so when combined with the triangle inequality we have

‖u| − |v‖ ≤ |u + v| ≤ |u| + |v|.

⎢u⎥

⎢v⎥⎢u
+  v⎥

Real axis0

Imaginary
axis

FIGURE 1.3 The triangle inequality.
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EXERCISES 1.3

In Exercises 1 through 8 use the parallelogram law to form
the sum and difference of the given complex numbers and
then verify the results by direct addition and subtraction.

1. u = 2 + 3i, v = 1 − 2i .
2. u = 4 + 7i, v = −2 − 3i .
3. u = −3, v = −3 − 4i .
4. u = 4 + 3i, v = 3 + 4i .

5. u = 3 + 6i, v = −4 + 2i .
6. u = −3 + 2i, v = 6i .
7. u = −4 + 2i, v = −4 − 10i .
8. u = 4 + 7i, v = −3 + 5i .

In Exercises 9 through 11 use the parallelogram law to ver-
ify the triangle inequality |u + v| ≤ |u| + |v| for the given
complex numbers u and v.

9. u = −4 + 2i, v = 3 + 5i .
10. u = 2 + 5i, v = 3 − 2i .
11. u = −3 + 5i, v = 2 + 6i .

1.4 Modulus and Argument Representation
of Complex Numbers

When representing z = x + iy in the complex plane by a point P with coordinates
(x, y), a natural alternative to the cartesian representation is to give the polar
coordinates (r, θ) of P. This polar representation of z is shown in Fig. 1.4, wherepolar representation

of z

OP = r = |z| = (x2 + y2)1/2 and tan θ = y/x. (1)

The radial distance OP is the modulus of z, so r = |z|, and the angle θ measured
counterclockwise from the positive real axis is called the argument of z. Because of
this, a complex number expressed in terms of the polar coordinates (r, θ) is said to
be in modulus–argument form. The argument θ is indeterminate up to a multiple
of 2π , because the polar coordinates (r, θ), and (r, θ + 2kπ), with k = ±1, ±2, . . . ,

identify the same point P. By convention, the the angle θ is called the principal
value of the argument of z when it lies in the interval −π < θ ≤ π . To distinguish
the principal value of the argument from all of its other values, we write

Arg z = θ, when −π < θ ≤ π. (2)

The values of the argument of z that differ from this value of θ by a multiple of
2π are denoted by arg z, so that

arg z = θ + 2kπ, with k = ± 1, ±2, . . . . (3)

Real axis

Imaginary
axis

θ
O x = r cos θ

y = r sin θ

zr = ⎢z⎥

P(r, θ)

FIGURE 1.4 The complex plane and the (r, θ)
representation of z.
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The significance of the multivalued nature of arg z will become apparent later when
the roots of complex numbers are determined.

The connection between the cartesian coordinates (x, y) and the polar coordi-
nates (r, θ) of the point P corresponding to z = x + iy is easily seen to be given by

x = r cos θ and y = r sin θ.

This leads immediately to the representation of z = x + iy in the alternative
modulus–argument formmodulus–argument

representation of z
z = r(cos θ + i sin θ). (4)

A routine calculation using elementary trigonometric identities shows that

(cos θ + i sin θ)2 = (cos 2θ + i sin 2θ).

An inductive argument using the above result as its first step then establishes the
following simple but important theorem.

THEOREM 1.1 De Moivre’s theorem

(cos θ + i sin θ)n = (cos nθ + i sin nθ), for n a natural number.

EXAMPLE 1.9 Use de Moivre’s theorem to express cos 4θ and sin 4θ in terms of powers of cos θ

and sin θ .

Solution The result is obtained by first setting n = 4 in de Moivre’s theorem and
expanding (cos θ + i sin θ)4 to obtain

cos4 θ + 4i cos3 θ sin θ − 6 cos2 θ sin2 θ − 4i cos θ sin3 θ + sin4 θ = cos 4θ + i sin 4θ.

Equating the respective real and imaginary parts on either side of this identity gives
the required results

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

and

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

As the complex number z = cos θ + i sin θ has unit modulus, it follows that all
numbers of this form lie on the unit circle (a circle of radius 1) centered on the
origin, as shown in Fig. 1.5.

Using (5), we see that if z = r(cos θ + i sin θ), then

zn = rn(cos nθ + i sin nθ), for n a natural number. (5)

The relationship between eθ , sin θ, and cos θ can be seen from the following
well-known series expansions of the functions

eθ =
∞∑

n=0

θn

n!
= 1 + θ + θ2

2!
+ θ3

3!
+ θ4

4!
+ θ5

5!
+ θ6

6!
+ · · · ;

sin θ =
∞∑

n=0

(−1)n θ2n+1

(2n + 1)!
= θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · · ;

cos θ =
∞∑

n=0

(−1)n θ2n

(2n)!
= 1 − θ2

2!
+ θ4

4!
− θ6

6!
+ · · · .
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Real axis

Imaginary
axis

0
θ

y = sin θ

i

−i

x = cos θ

z = cos θ + i sin θ

1−1

FIGURE 1.5 Point z = cos θ + i sin θ on the
unit circle centered on the origin.

By making a formal power series expansion of the function eiθ , simplifying powers
of i , grouping together the real and imaginary terms, and using the series represen-
tations for cos θ and sin θ , we arrive at what is called the real variable form of the
Euler formula

eiθ = cos θ + i sin θ, for any real θ . (6)

This immediately implies that if z = reiθ , then

Euler formula

zα = rαeiαθ , for any real α. (7)

When θ is restricted to the interval −π < θ ≤ π , formula (6) leads to the useful
results

1 = ei0, i = eiπ/2, −1 = eiπ , −i = e−iπ/2

and, in particular, to

1 = e2kπ i for k = 0, ±1, ±2, . . . .

The Euler form for complex numbers makes their multiplication and division
very simple. To see this we set z1 = r1eiα and z2 = r2eiβ and then use the results

z1z2 = r1r2ei(α+β) and z1/z2 = r1/r2ei(α−β). (8)

These show that when complex numbers are multiplied, their moduli are multiplied
and their arguments are added, whereas when complex numbers are divided, their
moduli are divided and their arguments are subtracted.

EXAMPLE 1.10 Find uv, u/v, and u25 given that u = 1 + i, v = √
3 − i .

Solution u = 1 + i = √
2eiπ/4, v = √

3 − i = 2e−iπ/6, so uv = 2
√

2eiπ/12, u/v =
(1/

√
2)ei5π/12 while u25 = (

√
2eiπ/4)25 = (

√
2)25(eiπ/4)25 = 4096

√
2(ei(6+1/4)π ) =

4096
√

2(ei6π )(eiπ/4) = 4096
√

2(eiπ/4) = 4096
√

2(1 + i).

To find the principal value of the argument of a given complex number z,
namely Arg z, use should be made of the signs of x = Re{z}, and y = Im{z} together
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with the results listed below, all of which follow by inspection of Fig. 1.5.

Signs of x and y Arg z = θ

x < 0, y < 0 −π < θ < −π/2
x > 0, y < 0 −π/2 < θ < 0
x > 0, y > 0 0 < θ < π/2
x < 0, y > 0 π/2 < θ < π

EXAMPLE 1.11 Find r = |z|, Arg z, arg z, and the modulus–argument form of the following values
of z.

(a) −2
√

3 − 2i (b) −1 + i
√

3 (c) 1 + i (d) 2 − i2
√

3.

Solution (a) r = {(−2
√

3)2 + (−2)2}1/2 = 4, Argz = θ = −5π/6 and
arg z = −5π/6 + 2kπ , k = ± 1, ±2, . . . , z = 4(cos(−5π/6) + i sin(−5π/6)).

(b) r = {(−1)2 + (
√

3)2}1/2 = 2, Arg z = θ = 2π/3 and arg z = 2π/3 + 2kπ,

k = ±1, ±2, . . . , z = 2(cos(2π/3) + i sin(2π/3)).

(c) r = {(1)2 + (1)2}1/2 =
√

2, Arg z = θ = π/4 and arg z = π/4 + 2kπ,

k = ±1, ±2, . . . , z =
√

2(cos(π/4) + i sin(π/4)).

(d) r = {(2)2 + (−2
√

3)2}1/2 = 4, Arg z = θ = −π/3 and arg z = −π/3 + 2kπ,

k = ±1, ±2, . . . , z = 4(cos(−π/3) + i sin(−π/3)).

EXERCISES 1.4

1. Expand (cos θ + i sin θ)2 and then use trigonometric
identities to show that

(cos θ + i sin θ)2 = (cos 2θ + i sin 2θ).

2. Give an inductive proof of de Moivre’s theorem

(cos θ + i sin θ)n = (cos nθ + i sin nθ),

for n a natural number.

3. Use de Moivre’s theorem to express cos 5θ and sin 5θ

in terms of powers of cos θ and sin θ .
4. Use de Moivre’s theorem to express cos 6θ and sin 6θ

in terms of powers of cos θ and sin θ .
5. Show by expanding (cos α + i sin α)(cos β + i sin β) and

using trigonometric identities that

(cos α + i sin α)(cos β + i sin β)

= cos(α + β) + i sin(α + β).

6. Show by expanding (cos α + i sin α)/(cos β + i sin β)
and using trigonometric identities that

(cos α + i sin α)/(cos β + i sin β)

= cos(α − β) + i sin(α − β).

7. If z = cos θ + i sin θ = eiθ , show that when n is a natural
number,

cos(nθ) = 1
2

(
zn + 1

zn

)
and sin(nθ) = 1

2i

(
zn − 1

zn

)
.

Use these results to express cos3 θ sin3
θ in terms of mul-

tiple angles of θ . Hint: z̄ = 1/z.

8. Use the method of Exercise 7 to express sin6
θ in terms

of multiple angles of θ .
9. By expanding (z + 1/z)4, grouping terms, and using the

method of Exercise 7, show that

cos4 θ = (1/8)(3 + 4 cos 2θ + cos 4θ).

10. By expanding (z − 1/z)5, grouping terms, and using the
method of Exercise 7, show that

sin5
θ = (1/16)(sin 5θ − 5 sin 3θ + 10 sin θ).

11. Use the method of Exercise 7 to show that

cos3 θ + sin3
θ = (1/4)(cos 3θ + 3 cos θ

− sin3
θ + 3 sin θ).



22 Chapter 1 Review of Prerequisites

In Exercises 12 through 15 express the functions of u, v, and
w in modulus-argument form.

12. uv, u/v, and v5, given that u = 2 − 2i and v = 3 + i3
√

3.
13. uv, u/v, and u7, given that u = −1 − i

√
3, v = −4 + 4i .

14. uv, u/v, and v6, given that u = 2 − 2i, v = 2 − i2
√

3.
15. uvw, uw/v, and w3/u4, given that u = 2 − 2i, v =

3 − i3
√

3 and w = 1 + i .
16. Express [(−8 + i8

√
3)/(−1 − i)]2 in modulus–argument

form.
17. Find in modulus–argument form [(1 + i

√
3)3/

(−1 + i)2]3.
18. Use the factorization

(1 − zn+1) = (1 − z)(1 + z + z2 + · · · + zn) (z �= 1)

with z = eiθ = exp(iθ) to show that

n∑
k=1

exp(ikθ) = exp(inθ) − 1
1 − exp(−iθ)

.

19. Use the final result of Exercise 18 to show that

n∑
k=1

exp(ikθ) = exp[i(n + 1/2)θ ] − exp(iθ/2)
exp(iθ/2) − exp(−iθ/2)

,

and then use the result to deduce the Lagrange identity

1 + cos θ + cos 2θ + · · · + cos nθ

= 1/2 + sin[(n + 1/2)θ]
2 sin(θ/2)

, for 0 < θ < 2π.

1.5 Roots of Complex Numbers

It is often necessary to find the n values of z1/n when n is a positive integer and z is
an arbitrary complex number. This process is called finding the nth roots of z. To
determine these roots we start by setting

w = z1/n, which is equivalent to wn = z.

Then, after defining w and z in modulus–argument form as

w = ρeiφ and z = reiθ , (9)

we substitute for w and z in wn = z to obtain

ρneinφ = reiθ .

It is at this stage, in order to find all n roots, that use must be made of the many-
valued nature of the argument of a complex number by recognizing that 1 = e2kπ i

for k = 0, ±1, ±2, . . . . Using this result we now multiply the right-hand side of the
foregoing result by by e2kπ i (that is, by 1) to obtain

ρneinφ = reiθe2kπ i = rei(θ+2kπ).

Equality of complex numbers in modulus–argument form means the equality of
their moduli and, correspondingly, the equality of their arguments, so applying this
to the last result we have

ρn = r and nφ = θ + 2kπ,

showing that

ρ = r1/n and φ = (θ + 2kπ)/n.

Here r1/n is simply the nth positive root of r : ρ = n
√

r .
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w1
w2

0

FIGURE 1.6 Location of the roots of z1/n.

Finally, when we substitute these results into the expression for w, we see that
the n values of the roots denoted by w0, w1, . . . , wn−1 are given by

wk = r1/n{cos[(θ + 2kπ)/n] + i sin[(θ + 2kπ)/n]},
for k = 0, 1, . . . , n − 1.

(10)

nth roots of a complex
number z

Notice that it is only necessary to allow k to run through the successive integers
0, 1, . . . , n − 1, because the period of the sine and cosine functions is 2π , so allowing
k to increase beyond the value n − 1 will simply repeat this same set of roots. An
identical argument shows that allowing kto run through successive negative integers
can again only generate the same n roots w0, w1, . . . , wn−1.

Examination of the arguments of the roots shows them to be spaced uniformly
around a circle of radius r1/n centered on the origin. The angle between the radial
lines drawn from the origin to each successive root is 2π/n, with the radial line from
the origin to the first root w0 making an angle θ/n to the positive real axis, as shown
in Fig. 1.6. This means that if the location on the circle of any one root is known,
then the locations of the others follow immediately.

Writing unity in the form 1 = ei0 shows its modulus to be r = 1 and the principal
value of its argument to be θ = 0. Substitution in formula (10) then shows the n
roots of 11/n, called the nth roots of unity, to be

w0 = 1, w1 = eiπ/n, w2 = ei2π/n, . . . , wn−1 = ei(n−1)π/n. (11)

By way of example, the fifth roots of unity are located around the unit circle as
shown in Fig. 1.7.

If we set ω = w1, it follows that the nth roots of unity can be written in the form

1, ω, ω2, . . . , ωn−1.

As ωn = 1 and ωn − 1 = (ω − 1)(1 + ω + ω2 + · · · + ωn−1) = 0, as ω1 �= 1 we see
that the the nth roots of unity satisfy

1 + ω + ω2 + · · · + ωn−1 = 0. (12)
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FIGURE 1.7 The fifth roots of unity.

This result remains true if ω is replaced by any one of the other nth roots of unity,
with the exception of 1 itself.

EXAMPLE 1.12 Find w = (1 + i)1/3.

Solution Setting z = 1 + i = √
2eiπ/4 shows that r = |z| = √

2 and θ = π/4. Sub-
stituting these results into formula (1) gives

wk = 21/6{cos[(1/12)(1 + 8k)π ] + i sin[(1/12)(1 + 8k)π ]}, for k = 0, 1, 2.

The square root of a complex number ζ = α + iβ is often required, so we now
derive a useful formula for its two roots in terms of |ζ |, α and the sign of β. To
obtain the result we consider the equation

z2 = ζ, where ζ = α + iβ,

and let Arg ζ = θ . Then we may write

z2 = |ζ |eiθ ,

and taking the square root of this result we find the two square roots z− and z+ are
given by

z± = ±|ζ |1/2eiθ/2

= ±|ζ |1/2{cos(θ/2) + i sin(θ/2)}.
Now cos θ = α/|ζ |, but

cos2(θ/2) = (1/2)(1 + cos θ), and sin2(θ/2) = (1/2)(1 − cos θ),
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so

cos2(θ/2) = (1/2)(1 + α/|ζ |), and sin2(θ/2) = (1/2)(1 − α/|ζ |).
As −π < θ ≤ π , it follows that in this interval cos(θ/2) is nonnegative, so taking
the square root of cos2(θ/2) we obtain

cos(θ/2) =
(

|ζ | + α

2|ζ |

)1/2

.

However, the function sin(θ/2) is negative in the interval −π < θ < 0 and positive
in the interval 0 < θ < π , and so has the same sign as β. Thus, the square root of
sin2(θ/2) can be written in the form

sin(θ/2) = sign (β)

(
|ζ | − α

2|ζ |

)1/2

.

Using these expressions for cos(θ/2) and sin(θ/2) in the square roots z± brings us
to the following useful rule.

Rule for finding the square root of a complex number

Let z2 = ζ , with ζ = α + iβ. Then the square roots z+ and z− of ζ are given
by

z+ =
( |ζ | + α

2

)1/2

+ i sign (β)
( |ζ | − α

2

)1/2

z− = −
( |ζ | + α

2

)1/2

− i sign (β)
( |ζ | − α

2

)1/2

.

EXAMPLE 1.13 Find the square roots of (a) ζ = 1 + i and (b) ζ = 1 − i .

Solution (a) ζ = 1 + i so |ζ | = √
2, α = 1 and sign(β) = 1, so the square roots of

ζ = 1 + i are

z± = ±
⎧⎨⎩
(√

2 + 1
2

)1/2

+ i

(√
2 − 1
2

)1/2
⎫⎬⎭ .

(b) ζ = 1 − i , so |ζ | = √
2, α = 1 and sign(β) = −1, from which it follows that the

square roots of ζ = 1 − i are

z± = ±
⎧⎨⎩
(√

2 + 1
2

)1/2

− i

(√
2 − 1
2

)1/2
⎫⎬⎭ .

The theorem that follows provides information about the roots of polynomials
with real coefficients that proves to be useful in a variety of ways.
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THEOREM 1.2 Roots of a polynomial with real coefficients Let

P(z) = zn + a1zn−1 + a2zn−2 + · · · an−1z + an

be a polynomial of degree n in which all the coefficients a1, a2, . . . , an are real. Then
either all the n roots of P(z) = 0 are real, that is, the n zeros of P(z) are all real, or
any that are complex must occur in complex conjugate pairs.

Proof The proof uses the following simple properties of the complex conjugate
operation.

1. If a is real, then a = a. This result follows directly from the definition of the
complex conjugate operation.

2. If b and c are any two complex numbers, then b + c = b + c. This result also
follows directly from the definition of the complex conjugate operation.

3. If b and c are any two complex numbers, then bc = bc and br = (b)r .

We now proceed to the proof. Taking the complex conjugate of P(z) = 0 gives

zn + a1zn−1 + a2zn−2 + · · · + an−1z + an = 0,

but the ar are all real so ar zn−r = ar zn−r = ar zn−r = ar (z)n−r , allowing the preceding
equation to be rewritten as

(z)n + a1(z)n−1 + a2(z)n−2 + · · · + an−1z + an = 0.

This result is simply P(z) = 0, showing that if z is a complex root of P(z), then so
also is z. Equivalently, z and z are both zeros of P(z).

If, however, z is a real root, then z = z and the result remains true, so the first
part of the theorem is proved. The second part follows from the fact that if z=α + iβ
is a root, then so also is z = α − iβ, and so (z − α − iβ) and (z − α + iβ) are factors
of P(z). The product of these factors must also be a factor of P(z), but

(z − α − iβ)(z − α + iβ) = z2 − 2αz + α2 + β2,

and the expression on the right is a quadratic in z with real coefficients, so the final
result of the theorem is established.

EXAMPLE 1.14 Find the roots of z3 − z2 − z − 2 = 0, given that z = 2 is a root.

Solution If z = 2 is a root of P(z) = 0, then z − 2 is a factor of P(z), so dividing
P(z) by z − 2 we obtain z2 + z + 1. The remaining two roots of P(z) = 0 are the
roots of z2 + z + 1 = 0. Solving this quadratic equation we find that z = (−1 ±
i
√

3)/2, so the three roots of the equation are 2, (−1 + i
√

3)/2, and (−1 − i
√

3)/2.

For more background information and examples on complex numbers, the complex
plane and roots of complex numbers, see Chapter 1 of reference [6.1], Sections 1.1
to 1.5 of reference [6.4], and Chapter 1 of reference [6.6].
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EXERCISES 1.5

In Exercises 1 through 8 find the square roots of the given
complex number by using result (10), and then confirm the
result by using the formula for finding the square root of a
complex mumber.

1. −1 + i.

2. 3 + 2i.

3. i.

4. −1 + 4i.

5. 2 − 3i.

6. −2 − i.

7. 4 − 3i.

8. −5 + i.

In Exercises 9 through 14 find the roots of the given complex
number.

9. (1 + i
√

3)1/3.
10. i1/4.
11. (−1)1/4.

12. (−1 − i)1/3.
13. (−i)1/3.
14. (4 + 4i)1/4.

15. Find the roots of z3 + z(i − 1) = 0.
16. Find the roots of z3 + iz/(1 + i) = 0.

17. Use result (12) to show that

1 + cos(2π/n) + cos(4π/n) + · · ·
+ cos[(2(n − 1)π/n)] = 0

and

sin(2π/n) + sin(4π/n) + · · · + sin[(2(n − 1)π/n)] = 0.

18. Use Theorem 1.1 and the representation z = reiθ to
prove that if a and b are any two arbitrary complex
numbers, then ab = ab and (ar ) = (a)r .

19. Given z = 1 is a zero of the polynomial P(z) = z3 −
5z2 + 17z − 13, find its other two zeros and verify that
they are complex conjugates.

20. Given that z = −2 is a zero of the polynomial P(z) =
z5 + 2z4 − 4z − 8, find its other four zeros and verify
that they occur in complex conjugate pairs.

21. Find the two zeros of the quadratic P(z) = z2 − 1 + i ,
and explain why they do not occur as a complex conju-
gate pair.

1.6 Partial Fractions

Let N(x) and D(x) be two polynomials. Then a rational function of x is any function
of the form N(x)/D(x). The method of partial fractions involves the decomposition
of rational functions into an equivalent sum of simpler terms of the type

P1

ax + b
,

P2

(ax + b)2
, . . . and

Q1x + R1

Ax2 + Bx + C
,

Q2x + R2

(Ax2 + Bx + C)2 , . . . ,

where the coefficients are all real together with, possibly, a polynomial in x.
The steps in the reduction of a rational function to its partial fraction represen-

tation are as follows:

STEP 1 Factorize D(x) into a product of linear factors and quadratic factors with
real coefficients with complex roots, called irreducible factors. This is the hardest
step, and real quadratic factors will only arise when D(x) = 0 has pairs of com-
plex conjugate roots (see Theorem 1.2). Use the result to express D(x) in the
form

D(x) = (a1x + b1)r1 . . . (amx + bm)rm
(

A1x2 + B1x + C1
)s1

. . .
(

Akx2 + Bkx + Ck
)sk

,

where ri is the number of times the linear factor (ai x + bi ) occurs in the factoriza-
tion of D(x), called its multiplicity, and s j is the corresponding multiplicity of the
quadratic factor (Aj x2 + Bj x + Cj ).
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STEP 2 Suppose first that the degree n of the numerator is less than the degree d
of the denominator. Then, to every different linear factor (ax + b) with multiplicity
r , include in the partial fraction expansion the terms

P1

(ax + b)
+ P2

(ax + b)2
+ · · · + Pr

(ax + b)r
,

where the constant coefficients Pi are unknown at this stage, and so are called
undetermined coefficients.
STEP 3 To every quadratic factor (Ax2 + Bx + C)s with multiplicity s include inpartial fraction

undetermined
coefficients

the partial fraction expansion the terms

Q1x + R1

(Ax2 + Bx + C)
+ Q2x + R2

(Ax2 + Bx + C)2
+ · · · + Qs x + Rs

(Ax2 + Bx + C)s
,

where the Qj and Rj for j = 1, 2, . . . , s are undetermined coefficients.
STEP 4 Take as the partial fraction representation of N(x)/D(x) the sum of all
the terms in Steps 2 and 3.
STEP 5 Multiply the expression

N(x)/D(x) = Partial fraction representation in Step 4

by D(x), and determine the unknown coefficients by equating the coefficients of
corresponding powers of x on either side of this expression to make it an identity
(that is, true for all x).
STEP 6 Substitute the values of the coefficients determined in Step 5 into the
expression in Step 4 to obtain the required partial fraction representation.
STEP 7 If n ≥ d, use long division to divide the denominator into the numerator
to obtain the sum of a polynomial of degree n − d of the form

T0 + T1x + T2x2 + · · · + Tn−dxn−d,

together with a remainder term in the form of a rational function R(x) of the type
just considered. Find the partial fraction representation of the rational function
R(x) using Steps 1 to 6. The required partial fraction representation is then the sum
of the polynomial found by long division and the partial fraction representation of
R(x).

EXAMPLE 1.15 Find the partial fraction representations of

(a) F(x) = x2

(x + 1)(x − 2)(x + 3)
and (b) F(x) = 2x3 − 4x2 + 3x + 1

(x − 1)2
.

Solution (a) All terms in the denominator are linear factors, so by Step 1 the
appropriate form of partial fraction representation is

x2

(x + 1)(x − 2)(x + 3)
= A

x + 1
+ B

x − 2
+ C

x + 3
.

Cross multiplying, we obtain

x2 = A(x − 2)(x + 3) + B(x + 1)(x + 3) + C(x + 1)(x − 2).
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Setting x = −1 makes the terms in B and C vanish and gives A= −1/6. Setting
x = 2 makes the terms in A and C vanish and gives B = 4/15, whereas setting
x = −3 makes the terms in Aand B vanish and gives C = 9/10, so

x2

(x + 1)(x − 2)(x + 3)
= −1

6(x + 1)
+ 4

15(x − 2)
+ 9

10(x + 3)
.

(b) The degree of the numerator exceeds that of the denominator, so from Step 7
it is necessary to start by dividing the denominator into the numerator longhand to
obtain

2x3 − 4x2 + x + 3
(x − 1)2

= 2x + 3 − x
(x − 1)2

.

We now seek a partial fraction representation of (3 − x)/(x − 1)2 by using Step 1
and writing

3 − x
(x − 1)2

= A
x − 1

+ B
(x − 1)2

.

When we multiply by (x − 1)2, this becomes

3 − x = A(x − 1) + B.

Equating the constant terms gives 3 = −A+ B, whereas equating the coefficients
of x gives −1 = Aso that B = 2. Thus, the required partial fraction representation
is

2x3 − 4x2 + x + 3
(x − 1)2

= 2x + 1
1 − x

+ 2
(x − 1)2

.

An examination of the way the undetermined coefficients were obtained in (a)
earlier, where the degree of the numerator is less than that of the denominator
and linear factors occur in the denominator, leads to a simple rule for finding the
undetermined coefficients called the “cover-up rule.”

The cover-up rule

Let a partial fraction decomposition be required for a rational function
N(x)/D(x) in which the degree of the numerator N(x) is less than that of
the denominator D(x) and, when factored, let D(x) contain some linear fac-
tors (factors of degree 1).

Let (x − α) be a linear factor of D(x). Then the unknown coefficient K in
the term K/(x − α) in the partial fraction decomposition of N(x)/D(x) is ob-
tained by “covering up” (ignoring) all of the other terms in the partial fraction
expansion, multiplying the remaining expression N(x)/D(x) = K/(x − α) by
(x − α), and then determining K by setting x = α in the result.

To illustrate the use of this rule we use it in case (a) given earlier to find Afrom
the representation

x2

(x + 1)(x − 2)(x + 3)
= A

x + 1
+ B

x − 2
+ C

x + 3
.
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We “cover up” (ignore) the terms involving B and C, multiply through by (x + 1),
and find A from the result

x2

(x − 2)(x + 3)
= A

by setting x = −1, when we obtain A= −1/6. The undetermined coefficients B and
C follow in similar fashion.

Once a partial fraction representation of a function has been obtained, it is
often necessary to express any quadratic x2 + px + q that occurs in a denominator
in the form (x + A)2 + B, where A and B may be either positive or negative real
numbers. This is called completing the square, and it is used, for example, whencompleting the square
integrating rational functions and when finding inverse Laplace transforms.

To find Aand B we set

x2 + px + q = (x + A)2 + B

= x2 + 2Ax + A2 + B,

and to make this an identity we now equate the coefficients of corresponding
powers of x on either side of this expression:

(coefficients of x2) 1 = 1 (this tells us nothing)
(coefficients of x) p = 2A
(constant terms) q = A2 + B.

Consequently A= (1/2)p and B = q − (1/4)p2, and so the result obtained by com-
pleting the square is

x2 + px + q = [x + (1/2)p]2 + q − (1/4)p2.

If the more general quadratic ax2 + bx + c occurs, all that is necessary to re-
duce it to this same form is to write it as

ax2 + bx + c = a[x2 + (b/a)x + c/a],

and then to complete the square using p = b/a and q = c/a.

EXAMPLE 1.16 Complete the square in the following expressions:

(a) x2 + x + 1.

(b) x2 + 4x.
(c) 3x2 + 2x + 1.

Solution (a) p = 1, q = 1, so A= 1/2, B = 3/4, and hence

x2 + x + 1 = (x + 1/2)2 + 3/4.

(b) p = 4, q = 0, so A= 2, B = −4, and hence

x2 + 4x = (x + 2)2 − 4.

(c) 3x2 + 2x + 1 = 3[x2 + (2/3)x + 1/3] and so p = 2/3, q = 1/3, from which it fol-
lows that A= 1/3 and B = 2/9, so

3x2 + 2x + 1 = 3{(x + 1/3)2 + 2/9}.
Further information and examples of partial fractions can be found in any one of
references [1.1] to [1.7].



Section 1.7 Fundamentals of Determinants 31

EXERCISES 1.6

Express the rational functions in Exercises 1 through 8 in
terms of partial fractions using the method of Section 1.6,
and verify the results by using computer algebra to deter-
mine the partial fractions.

1. (3x + 4)/(2x2 + 5x + 2).
2. (x2 + 3x + 5)/(2x2 + 5x + 3).
3. (3x − 7)/(2x2 + 9x + 10).
4. (x2 + 3x + 2)/(x2 + 2x − 3).
5. (x3 + x2 + x + 1)/[(x + 2)2(x2 + 1)].

6. (x2 − 1)/(x2 + x + 1).
7. (x3 + x2 + x + 1)/{(x + 2)2(x + 1)}.
8. (x2 + 4)/(x3 + 3x2 + 3x + 1).

Complete the square in Exercises 9 through 14.

9. x2 + 4x + 5.
10. x2 + 6x + 7.
11. 2x2 + 3x − 6.

12. 4x2 − 4x − 3.
13. 2 − 2x + 9x2.
14. 2 + 2x − x2.

1.7 Fundamentals of Determinants

A determinant of order n is a single number associated with an array A of n2

numbers arranged in n rows and n columns. If the number in the ith row and
jth column of a determinant is ai j , the determinant of A, denoted by det A and
sometimes by |A|, is written

det A = |A| =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣ . (13)

It is customary to refer to the entries ai j in a determinant as its elements. Notice the
use of vertical bars enclosing the array A in the notation |A| for the determinant
of A, as opposed to the use of the square brackets in [A] that will be used later to
denote the matrix associated with an array A of quantities in which the number of
rows need not be equal to the number of columns.

The value of a first order determinant det A with the single element a11 is
defined as a11 so that det[a11] = a11 or, in terms of the alternative notation for a
determinant, |a11| = a11. This use of the notation |.| to signify a determinant should
not be confused with the notation used to signify the absolute value of a number.

The second order determinant associated with an array of elements containing
two rows and two columns is defined as

det A =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21, (14)

so, for example, using the alternative notation for a determinant we have∣∣∣∣ 9 3
−7 −4

∣∣∣∣ = 9(−4) − (−7)3 = −15.

Notice that interchanging two rows or columns of a determinant changes its sign.
We now introduce the terms minor and cofactor that are used in connection with

determinants of all orders, and to do so we consider the third order determinant

det A =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ . (15)
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The minor Mi j associated with ai j , the element in the ith row and jth column of
det A, is defined as the second order determinant obtained from det A by deleting
the elements (numbers) in its ith row and jth column. The cofactor Ci j of an element
in the ith row and jth column of the det A in (15) is defined as the signed minor
using the rule

Ci j = (−1)i+ j Mi j . (16)

minors and cofactors

With these ideas in mind, the determinant det A in (15) is defined as

det A =
3∑

j=1

a1 j (−1)1+ j det M1 j

= a11 M11 − a12 M12 + a13 M13.

If we introduce the cofactors Ci j , this last result can be written

det A = a11C11 + a12C12 + a13C13, (17)

and more concisely as

det A =
3∑

j=1

a1 j C1 j . (18)

Result (18), or equivalently (17), will be taken as the definition of a third order
determinant.

EXAMPLE 1.17 Evaluate the determinant ∣∣∣∣∣∣
1 3 −3
2 1 0

−2 1 1

∣∣∣∣∣∣ .
Solution

The minor M11 = ∣∣ 1
1

0
1

∣∣= (1)(1) − (0)(1) = 1, so the cofactor
C11 = (−1)(1+1) M11 = 1.
The minor M12 = ∣∣ 2

−2
0
1

∣∣ = (2)(1) − (0)(−2) = 2, so the cofactor
C12 = (−1)(1+2) M12 = −2.
The minor M13 = ∣∣ 2

−2
1
1

∣∣ = (2)(1) − (1)(−2) = 4, so the cofactor
C13 = (−1)(1+3) M13 = 4.

Using (17) we have∣∣∣∣∣∣
1 3 −3
2 1 0

−2 1 1

∣∣∣∣∣∣ = (1)C11 + (3)C12 + (−3)C13 = (1)(1) + (3)(−2) + (−3)(4) = −17.

When expanded, (17) becomes

det A = a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22,
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and after regrouping these terms in the form

det A = −a21a12a33 + a21a32a13 + a22a11a33 − a22a31a13 − a23a11a32 + a23a31a12,

we find that

det A = a21C21 + a22C22 + a23C23.

Proceeding in this manner, we can easily show that det A may be obtained by
forming the sum of the products of the elements of A and their cofactors in any
row or column of det A. These results can be expressed symbolically as follows.

Expanding in terms of the elements of the ith row:

det A = ai1Ci1 + ai2Ci2 + ai3Ci3 =
3∑

j=1

ai j Ci j . (19)

Laplace expansion
theorem Expanding in terms of the elements of the jth column:

det A = a1 j C1 j + a2 j C2 j + a3 j C3 j =
3∑

i=1

ai j Ci j . (20)

Results (19) and (20) are the form taken by the Laplace expansion theorem when
applied to a third order determinant. The extension of the theorem to determinants
of any order will be made later in Chapter 3, Section 3.3.

EXAMPLE 1.18 Expand the following determinant (a) in terms of elements of its first row, and (b) in
terms of elements of its third column:

|A| =
∣∣∣∣∣∣
1 2 4
1 0 2
1 2 1

∣∣∣∣∣∣ .
Solution (a) Expanding in terms of the elements of the first row requires the
three cofactors C11 = M11, C12 = −M12, and C13 = M13, where

M11 =
∣∣∣∣0 2
2 1

∣∣∣∣ = −4, M12 =
∣∣∣∣1 2
1 1

∣∣∣∣ = −1, M13 =
∣∣∣∣1 0
1 2

∣∣∣∣ = 2,

so C11 = (−1)(1+1)(−4) = −4, C12 = (−1)(1+2)(−1) = 1, C13 = (−1)(1+3)(2) = 2,
and so

|A| = (1)(−4) + (2)(1) + (4)(2) = 6.

(b) Expanding in terms of the elements of the third column requires the three
cofactors C13 = M13, C23 = −M23, and C33 = M33, where

M13 =
∣∣∣∣1 0
1 2

∣∣∣∣ = 2, M23 =
∣∣∣∣1 2
1 2

∣∣∣∣ = 0, M33 =
∣∣∣∣1 2
1 0

∣∣∣∣ = −2,

so C13 = (−1)(1+3)(2) = 2, C23 = 0, C33 = (−1)(3+3)(−2) = −2 and so

|A| = (4)(2) + (2)(0) + (1)(−2) = 6.
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Two especially simple third order determinants are of the form

det A =
∣∣∣∣∣∣
a11 a12 a13

0 a22 a23

0 0 a33

∣∣∣∣∣∣ and det A =
∣∣∣∣∣∣
a11 0 0
a21 a22 0
a31 a32 a33

∣∣∣∣∣∣ .
The first of these determinants has only zero elements below the diagonal line drawn
from its top left element to its bottom right one, and the second determinant has
only zero elements above this line. This diagonal line in every determinant is called
the leading diagonal. The value of each of the preceding determinants is easily seen
to be given by the product a11a22a33 of the terms on its leading diagonal.

Simpler still in form is the third order determinant

det A =
∣∣∣∣∣∣
a11 0 0
0 a22 0
0 0 a33

∣∣∣∣∣∣ = a11a22a33,

whose value a11a22a33 is again the product of the elements on the leading diagonal.
For another approach to the elementary properties of determinants, see

Appendix A16 of reference [1.2], and Chapter 2 of reference [2.1].

EXERCISES 1.7

Evaluate the determinants in Exercises 1 through 6 (a) in
terms of elements of the first row and (b) in terms of ele-
ments of the second column.

1.

∣∣∣∣∣∣
1 5 7
1 −1 1
1 2 1

∣∣∣∣∣∣ .
2.

∣∣∣∣∣∣
2 1 −1
2 6 −1
5 1 −1

∣∣∣∣∣∣ .
3.

∣∣∣∣∣∣
5 2 4
1 2 1
3 1 5

∣∣∣∣∣∣ .

4.

∣∣∣∣∣∣
−1 3 6

2 1 4
−1 3 1

∣∣∣∣∣∣ .
5.

∣∣∣∣∣∣
1 0 −6
2 1 3
4 3 21

∣∣∣∣∣∣ .
6.

∣∣∣∣∣∣
1 5 −1
2 1 −3

−4 1 1

∣∣∣∣∣∣ .
7. On occasion the elements of a matrix may be func-

tions, in which case the determinant may be a function.
Evaluate the functional determinant∣∣∣∣∣∣

1 0 0
0 sin x − cos x
0 cos x sin x

∣∣∣∣∣∣ .
8. Determine the values of λ that make the following

determinant vanish:∣∣∣∣∣∣
3 − λ 2 2

2 2 − λ 0
2 0 4 − λ

∣∣∣∣∣∣ .
Hint: This is a polynomial in λ of degree 3.

9. A matrix is said to be transposed if its first row is written
as its first column, its second row is written as its second

column . . . , and its last row is written as its last column.
If the determinant is |A|, the determinant of AT, the
transpose matrix A, is denoted by |AT|. Write out the
expansion of |A| using (17) and reorder the terms to
show that

|A| = |AT|.

10. Use elimination to solve the system of linear equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

for x1 and x2, in which not both b1 and b2 are zero, and
show that the solution can be written in the form

x1 = D1/|A| and x2 = D2/|A|, provided |A| �= 0,

where |A| is the determinant of the matrix of coefficients
of the system

|A| =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ , D1 =
∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , and D2 =
∣∣∣∣a11 b1

a21 b2

∣∣∣∣ .
Notice that D1 is obtained from |A| by replacing its
first column by b1 and b2, whereas D2 is obtained from
|A| by replacing its second column by b1 and b2. This is
Cramer’s rule for a system of two simultaneous equa-
tions. Use this method to find the solution of

x1 + 5x2 = 3

7x1 − 3x2 = −1.
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11. Repeat the calculation in Exercise 10 using the system
of equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3,

in which not all of b1, b2, and b3 are zero, and show that
provided |A| �= 0,

x1 = D1/|A|, x2 = D2/|A|, and x3 = D3/|A|,

where |A| is the determinant of the matrix of coeffi-
cients and Di is the determinant obtained from |A| by
replacing its ith column by b1, b2, and b3 for i = 1, 2, 3.
This is Cramer’s rule for a system of three simultaneous
equations, and the method generalizes to a system of n
linear equations in n unknowns. Use this method to find
the solution of

x1 + 2x2 − x3 = 2

x1 − 3x2 − 2x3 = −1

2x1 + x2 + 2x3 = 1.

1.8 Continuity in One or More Variables

If the function y = f (x) is defined in the interval a ≤ x ≤ b, the interval is called
the domain of definition of the function. The function f is said to have a limit at a
point c in a ≤ x ≤ b, written limx→c f (x) = L, if for every arbitrarily small number
ε > 0 there exists a number δ > 0 such that

| f (x) − L| < ε when |x − c| < δ. (21)

This technical definition means that as x either increases toward c and becomes
arbitrarily close to it, or decreases toward c and becomes arbitrarily close to it, so
f (x) approaches arbitrarily close to the value L. Notice that it is not necessary for
f (x) to be defined at x = c, or, if it is, that f (c) assumes the value L. If f (x) has a
limit L as x → c and in addition f (c) = L, so that

lim
x→c

f (x) = f (c) = L, (22)

then the function f is said to be continuous at c. It must be emphasized that in this
definition of continuity the limiting operation x → c must be true as x tends to c
from both the left and right. It is convenient to say that x approaches c from the left
when it increases toward c and, correspondingly, to say that x approaches c from
the right when it decreases toward it.

The function f is continuous from the right at x = c ifcontinuity from
the right lim

x→c+
f (x) = f (c), (23)

where the notation x → c+ means that x decreases toward c, causing x to tend to
c from the right. Similarly, f is continuous from the left at x = c ifcontinuity from

the left lim
x→c−

f (x) = f (c), (24)

where now x → c− means that x increases toward c, causing x to tend to c from the
left. The relationship among definitions (22), (23), and (24) is that f is continuous
at the point c ifcontinuity at x = c

lim
x→c−

f (x) = lim
x→c+

f (x) = f (c). (25)

When expressed in words, this says that f is continuous at x = c if the limits
of f as x tends to c from both the left and right exist and, furthermore, the limits
equal the functional value f (c).

continuous function
A function f that is continuous at all points of a ≤ x ≤ b is said to be a contin-

uous function on that interval. Graphically, a continuous function on a ≤ x ≤ b is a
function whose graph is unbroken but not necessarily smooth. A function f is said
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a c d b x

y = f(x)

Continuous
at x = c

Discontinuous
at x = d

Continuous
from the left

Continuous
from the right

f(c)

y

a c b x

y = f(x)

Discontinuous
at x = c

k1

k2

y

(a) (b)

0 0

FIGURE 1.8 (a) A continuous function for a < x < b. (b) A discontinuous function.

to be smooth over an interval if at each point of the graph the tangent lines to the
left and right of the point are the same. Figure 1.8a shows the graph of a continuous
function that is smooth over the intervals a ≤ x < c and c < x < b but has different
tangent lines to the immediate left and right of x = c where the function is not
smooth. A function such as this is said to be continuous and piecewise smooth over
the interval a ≤ x ≤ b.

A function f is said to be discontinuous at a point c if it is not continuous there.discontinuous
function For a jump discontinuity we have

smooth function

continuous and
piecewise smooth
function

lim
x→c−

f (x) = k1 and lim
x→c+

f (x) = k2, but k1 �= k2. (26)

A function f is said to have a removable discontinuity at a point c if k1 = k2 in (26),
but f (c) �= k1, as at the point c2 in Fig. 1.9.

An example of a discontinuous function is shown in Fig. 1.8b where a jump
discontinuity occurs at x = c.

A function f is said to be piecewise continuous on an interval a ≤ x ≤ b if itpiecewise continuity
is continuous on a finite number of adjacent subintervals, but discontinuous at the
end points of the subintervals, as shown in Fig. 1.9.

The notion of continuity of a function of several variables is best illustrated
by considering a function f (x, y) of the two independent variables x and y. The
function f defined in some region of the (x, y)-plane D, say, is said to be continuous

Discontinuous
at c2

Discontinuous
at c1

Discontinuous
at c3

y = f(x)

a c1 c2 c3 b x

y

0

FIGURE 1.9 A piecewise continuous function.
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at the point (a, b) in D if

lim
x→a,y→b

f (x, y) = f (a, b), (27)

and to be discontinuous otherwise.
In this definition of continuity, it is important to recognize that a general point P

at (x, y) is allowed to tend to the point (a, b) in D along any path in the (x, y)-plane

continuity of f(x, y)

that lies in D. Expressed differently, f will only be continuous at (a, b) if the limit
in (27) is independent of the way in which the point (x, y) approaches the point
(a, b). When this is true for all points in D, the function f is said to be continuous
in D.

The function f is, for instance, discontinuous at (a, b) ifdiscontinuity of f(x, y)

lim
x→a,y→b

f (x, y) = k, but f (a, b) �= k.

Sufficient for showing that a function f is discontinuous at a point (a, b) is by
demonstrating that two different limiting values of f are obtained if the point P
at (x, y) is allowed to tend to (a, b) along two different straight-line paths. This
approach can be used to show that the function

f (x, y) = xy
x2 + a2 y2

has no limit at the origin. If we allow the point P at (x, y) to tend to the origin along
the straight line y = kx, with k an arbitrary constant, the function f becomes

f (x, kx) = k
1 + a2k2

,

and it is seen from this that f is constant along each such line. However, the value
of f on each line, and hence at the origin, depends on k, so f has no limit at the
origin and so is discontinuous at that point, though f is defined and continuous at
all other points of the (x, y)-plane.

An example of a function f (x, y) that is continuous everywhere except at points
along a curve � in the (x, y)-plane is shown in Fig. 1.10.

z = f(x, y)

Discontinuous

along Γ

y

x

z

Γ

D

0

FIGURE 1.10 A function f (x, y) continuous everywhere except
at points on �.
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The extension of these definitions to functions of n variables is immediate and
so will not be discussed.

Discussions on continuity and its consequences can be found in any one of
references [1.1] to [1.7].

1.9 Differentiability of Functions
of One or More Variables

The function f (x) defined in a ≤ x ≤ b is said to be differentiable with the derivative
f ′(c) at a point c inside the interval if the following limit exists:

lim
h→0

f (c + h) − f (c)
h

= f ′(c). (28)

Here, as in the definition of continuity, for f to be differentiable at point c the
limit must remain unchanged as h tends to zero through both positive and negative
values. The function f is said to be differentiable in the interval a ≤ x ≤ b if it isdifferentiability of f(x)
differentiable at every point in the interval. When f is differentiable at a point c with
derivative f ′(c), the number f ′(c) is the gradient, or slope, of the tangent line to
the graph at the point (c, f (c)). A function with a continuous derivative throughout
an interval is said to be a smooth function over the interval. The function f will be
said to be nondifferentiable at any point c where the limit in (28) does not exist.

Even when a function f is nondifferentiable at a point, it is possible that a
special form of derivative can still be defined to the left and right of the point if
the requirement that the limit in (28) exists as h → 0 through both positive and
negative values is relaxed. The function f has a right-hand derivative at a if theleft- and right-hand

derivatives of f(x) limit

lim
h→0+

f (a + h) − f (a)
h

(29)

exists, and a left-hand derivative at b if the limit

lim
h→0−

f (b + h) − f (b)
h

. (30)

exists.
When c is a specific point, f ′(c) is a number, but when x is a variable, f ′(x) be-

comes a function. Left- and right-hand derivatives are illustrated in Fig. 1.11. An im-
portant consequence of differentiability is that differentiability implies continuity,
but the converse is not true.

The first order partial derivative with respect to x of the function f (x, y) of thefirst order partial
derivatives of
f(x, y)

two independent variables x and y at the point (a, b) is the number defined by

lim
h→0

f (a + h, b) − f (a, b)
h

, (31)
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FIGURE 1.11 Left- and right-hand derivatives as tangent lines.

provided the limit exists. The value of this partial derivative is denoted either by
∂ f/∂x at (a, b), or by fx(a, b). The corresponding partial derivative at a general
point (x, y) is the function fx(x, y).

Similarly, the first order partial derivative with respect to y of the function
f (x, y) at the point (a, b) is the number defined by the limit

lim
k→0

f (a, b + k) − f (a, b)
k

, (32)

provided the limit exists. The value of this partial derivative is denoted either by
∂ f/∂y at (a, b), or by fy(a, b). At a general point (x, y) this partial derivative be-
comes the function fy(x, y). Higher order partial derivatives are defined in a similar
fashion leading, for example, to the second order partial derivativessecond order partial

derivatives of f(x, y)

∂2 f/∂x2 = ∂/∂x(∂ f/∂x), ∂2 f/∂y2 = ∂/∂y(∂ f/∂y),

∂2 f/∂x∂y = ∂/∂y(∂ f/∂x), and ∂2 f/∂y∂x = ∂/∂x(∂ f/∂y).

A more compact notation for these same derivatives is

fxx, fyy, fxy, and fyx, so that, for example fyx = ∂2 f/∂y∂x and fyy = ∂2 f/∂y2.

The derivatives fxy and fyx are called mixed partial derivatives, and their relation-mixed partial
derivatives ship forms the statement of the next theorem, the proof of which can be found in

any one of references [1.1] to [1.7].

THEOREM 1.3 Equality of mixed partial derivatives Let f, fx, fxy, and fyx all be defined and
continuous at a point (a, b) in a region. Then

fxy(a, b) = fyx(a, b).
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This result, given conditions for the equality of mixed partial derivatives, is an
important one, and use will be made of it on numerous occasions as, for example,
in Chapter 18 when second order partial differential equations are considered.

If z = f (x, y), the total differential dz of f is defined astotal differential

dz = (∂ f/∂x) dx + (∂ f/∂y) dy, (33)

where dz, dx, and dy are differentials. Here, a differential means a small quantity,
and the differential dz is determined by (33) when the differentials dx and dy are
specified. When ∂ f/∂x and ∂ f/∂y are evaluated at a specific point (a, b), result (33)
provides a linear approximation to f (x, y) near to the point (a, b). Although finite,
the limits of the quotients of the differentials dz ÷ dx and dy ÷ dx as the differential
dx → 0 are such that they become the values of the derivatives dz/dx and dy/dx,
respectively, at a point (x, y) where ∂ f/∂x and ∂ f/∂y are evaluated.

1.10 Tangent Line and Tangent Plane
Approximations to Functions

Let y = f (x) be defined in the interval a ≤ x ≤ b and be differentiable throughout
it. Then a tangent line (linear) approximation to f near a point x0 in the interval istangent line

approximation given by

yT = f (x0) + (x − x0) f ′(x0). (34)

This linear expression approximates the function f close to x0 by the tangent to the
graph of y = f (x) at the point (x0, f (x0)).

This simple approximation has many uses; one will be in the Euler and modified
Euler methods for solving initial value problems for ordinary differential equations
developed in Chapter 19.

EXAMPLE 1.19 Find a tangent line approximation to y = 1 + x2 + sin x near the point x = α.

Solution Setting x0 = α and substituting into (34) gives

y ≈ 1 + α2 + sin α + (x − α)(2α + cos α) for x close to α.

Let the function z = f (x, y) be defined in a region Dof the (x, y)-plane where it
possesses continuous first order partial derivatives ∂ f/∂x and ∂ f/∂y. Then a tangent
plane (linear) approximation to f near any point (x0, y0) in D is given bytangent plane

approximation

zT = f (x0, y0) + (x − x0) fx(x0, y0) + (y − y0) fy(x0, y0). (35)

This linear expression approximates the function f close to the point (x0, y0) by a
plane that is tangent to the surface z = f (x, y) at the point (x0, y0, f (x0, y0)). The
tangent plane approximation in (35) is an immediate extension to functions of two
variables of the tangent line approximation in (34), to which it simplifies when only
one independent variable is involved.
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Both of these approximations are derived from the appropriate Taylor series
expansions of functions discussed in Section 1.12 by retaining only the linear terms.

EXAMPLE 1.20 Find the tangent plane approximation to the function z = x2 − 3y2 near the point
(1, 2).

Solution Setting x0 = 1, y0 = 2 and substituting into (35) gives

z ≈ −11 + 2(x − 1) − 12(y − 2) for (x, y) close to (1, 2).

1.11 Integrals

A differentiable function F(x) is called an antiderivative of the function f (x)
on some interval if at each point of the interval dF/dx = f (x). If F(x) is any
antiderivative of f (x), the indefinite integral of f (x), written

∫
f (x) dx, isindefinite and

definite integrals ∫
f (x) dx = F(x) + c,

where c is an arbitrary constant called the constant of integration. The function f (x)
is called the integrand of the integral. Thus, an indefinite integral is a function, and
an antiderivative and an indefinite integral can only differ by an arbitrary additive
constant.

The expression
∫ b

a f (x) dx, called a definite integral, is a number and may be
interpreted geometrically as the area between the graph of f (x) and the lines x = a
and x = b, for b > a, with areas above the x-axis counted as positive and those below
it as negative.

The relationship between definite integrals that are numbers and indefinite
integrals that are functions is given in the next theorem, included in which is also
the mean value theorem for integrals. See the references at the end of the chapter
for proofs and further information.

THEOREM 1.4 Fundamental theorem of integral calculus and the mean value theorem for integrals
If F ′(x) is continuous in the interval a ≤ x ≤ b, throughout which F ′(x) = f (x),
then

∫ b

a
f (x) dx = F(b) − F(a).

Another result is

∫ b

a
f (x) dx = (b − a) f ′(ξ),

if f is differentiable, where the number ξ , although unknown, lies in the interval
a < ξ < b. In this form the result is called the mean value theorem for integrals.
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An improper integral is a definite integral in which one or more of the following
cases arises: (a) the integrand becomes infinite inside or at the end of the interval
of integration, or (b) one (or both) of the limits of integration is infinite.

Types of Improper Integrals
Case (a)

If the integrand of an integral becomes infinite at a point c inside the interval of
integration a ≤ x ≤ b as shown in Fig. 1.12a, the improper integral is said to exist
if the limits in (36) exist. When the improper integral exists it is said to converge toconvergence and

divergence of
improper integrals

the (finite) value of the following limit:

∫ b

a
f (x) dx = lim

h→0

∫ c−h

a
f (x) dx + lim

k→0

∫ b

c+k
f (x) dx. (36)

In this definition h > 0 and k > 0 are allowed to tend to zero independently of
each other. If, when the limit is taken, the integral is either infinite or indeterminate,
the integral is said to diverge.

Some integrals of this type diverge when h and k are allowed to tend to zero
independently of each other, but converge when the limit is taken with h = k, in
which case the result of the limit is called the Cauchy principal value of the integral.Cauchy principal value
Integrals of this type arise frequently when certain types of definite integral are
evaluated in the complex plane by means of contour integration (see Chapter 15,
Section 15.5).

Case (b)

If a limit of integration in a definite integral is infinite, say the upper limit as shown
in Fig. 1.12b, then, when it exists, the improper integral is said to converge to the
value of the limit ∫ ∞

a
f (x) dx = lim

R→∞

∫ R

a
f (x) dx, (37)

y = f(x)

y = f(x)

xa

y

xa c b

y

(a) (b)

0 0

FIGURE 1.12 (a) f (x) is infinite inside the interval of integration. (b) The
interval of integration is infinite in length.
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and the integral is divergent if the limit is either infinite or indeterminate. If both
limits are infinite, the improper integral is said to converge to the value of the limit

∫ ∞

−∞
f (x) dx = lim

R→∞,S→∞

∫ R

−S
f (x) dx (38)

when it exists, and the integral is said to be divergent if the limit is either infinite or
indeterminate.

In (38) R and S are allowed to tend to infinity independently of each other.
Integrals of this type also have Cauchy principal values if the foregoing process
leads to divergence, but the integrals are convergent when the limit is taken with
R = S. Integrals of this type also occur when certain real integrals are evaluated by
means of contour integration (see Chapter 15, Section 15.5).

Elementary examples of convergent improper integrals of the types shown in
(36) to (38) are ∫ 1

0

x p − x−p

x − 1
dx = 1

p
− πcot pπ, (p2 < 1),∫ ∞

0
exp(−x) sin xdx = 1/2 and

∫ ∞

−∞

dx
1 + x2

= π.

THEOREM 1.5 Differentiation under the integral sign — Leibniz’ rule If ξ(t), η(t), dξ/dt, dη/dt,
f (x, t), and ∂ f/∂t are continuous for t0 ≤ t ≤ t1 and for x in the interval of integra-
tion, then

d
dt

∫ η(t)

ξ(t)
f (x, t) dx =

∫ η(t)

ξ(t)

∂ f (x, t)
∂t

dx + f (η(t), t)
dη

dt
− f (ξ(t), t)

dξ

dt
.

This theorem is used, for example, in Chapter 18 when discussing discontinuous
solutions of a class of partial differential equations called conservation laws. Exten-
sions of the theorem to functions of more variables are developed in Chapter 12,
Section 12.3, where certain vector integral theorems are developed, and applica-
tions of the results of that section to fluid mechanics are to be found in Chapter 12,
Section 12.4.

An application of Theorem 1.5 that is easily checked by direct calculation is

d
dt

∫ t2

2t
(x2 + t) dx =

∫ t2

2t
dx + (t4 + t) · 2t − (4t2 + t) · 2 = 2t5 − 5t2 − 4t.

A proof of Leibniz’ rule can be found, for example, in Chapter 12 of reference [1.6].

1.12 Taylor and Maclaurin Theorems

THEOREM 1.6 Taylor’s theorem for a function of one variable Let a function f (x) have deriva-
tives of all orders in the interval a < x < b. Then for each positive integer n and
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each x0 in the interval

f (x) = f (x0) + (x − x0) f (1)(x0) + (x − x0)2

2!
f (2)(x0) + · · ·

+ (x − x0)n

n!
f (n)(x0) + Rn+1(x),

where f (r)(x) = dr f/dxr , and the remainder term Rn+1(x) is given by

Rn+1(x) = (x − x0)n+1

(n + 1)!
f (n+1)(ξ),

for some ξ between x0 and x.

Taylor’s theorem becomes the Taylor series for f (x) when n is allowed to
become infinite, and if the remainder term is neglected in Taylor’s theorem the
result is called the Taylor polynomial approximation to f (x) of degree n. The TaylorTaylor polynomial
polynomial of degree 1 is simply the tangent line approximation to f at x0 given
in (34).

Taylor’s theorem reduces to Maclaurin’s theorem if x0 = 0, and if we allow n toMaclaurin’s theorem
become infinite in Maclaurin’s theorem, it becomes the Maclaurin series for f (x).

A special case of Theorem 1.6 arises when Taylor’s theorem is terminated with
the term R1(x), corresponding to n = 0, because the result can be written

f (x) − f (x0)
x − x0

= f ′(ξ), (39)

with ξ between x0 and x, and in this form it is called the mean value theorem formean value theorem
derivatives (see the last result of Theorem 1.4).

A Taylor series is an example of an infinite series called a power series, the
general form of which is

∞∑
n=0

an(x − x0)n = a0 + a1(x − x0) + a2(x − x0)2 + · · · . (40)

In (40) the quantity x is a variable, the numbers ai are the coefficients of the power
series, the constant x0 is called the center of the series, or the point about which the
series is expanded, and unless otherwise stated, x, x0, and the ai are real numbers,
so the power series is a function of x.

A power series is said to converge for a given value of x if the sum of the infinite
series for this value of x is finite. If the sum is infinite, or is not defined, the power
series will be said to diverge for that value of x. Power series converge in an interval
x0 − R < x < x0 + R, where the number R is called the radius of convergence of
the series. Expressions for R are derived in Section 15.1.

The interval x0 − R < x < x0 + R is called the interval of convergence of the
power series. A power series converges for all x inside the interval of convergence
and diverges for all x outside it, and the series may, or may not, converge at the
end points of the interval. The convergence properties of power series are shown
diagramatically in Fig. 1.13, and results (40) and combining expressions for R with
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FIGURE 1.13 Interval of convergence of a power series with center x0.

(40) gives the following theorem (see the references at the end of the chapter for
real variable proofs of the following results and for more information).

THEOREM 1.7 Ratio test and nth root test for the convergence of power series The power series

∞∑
n=0

an(x − x0)n = a0 + a1(x − x0) + a2(x − x0)2 + · · ·

converges in the interval of convergence x0 − R < x < x0 + R, where the radius of
convergence R is determined by either of the formulasradius and interval

of convergence

(a) R = 1/ lim
n→∞ |an+1/an| or (b) R = 1/ lim

n→∞ |an|1/n.

The power series will diverge outside the interval of convergence, and its behavior
at the ends of the interval of convergence must be determined separately.

A simple result on the convergence of a series that is often useful is the alter-
nating series test. An alternating series is so named because the signs of successive
terms of the series alternate in sign.

THEOREM 1.8 The alternating series test for convergence The alternating series
∑∞

n=1(−1)n+1an

converges if an > 0 and an+1 < an for all n and limn→∞ an = 0.

The following theorem on the differentiation and integration of power series
is often needed, and it is a real variable form of a result proved later in Chapter 15
when complex power series are studied.

THEOREM 1.9 Differentiation and integration of power series Let a power series have an interval
of convergence x0 − R < x < x0 + R. Then the series may be differentiated and
integrated term by term, and in each case the resulting series will have the same
interval of convergence as the original series. In addition, within an interval of
convergence common to any two power series, the series may be scaled by a constant
and added or subtracted term by term and the resulting power series will have the
same common interval of convergence.

The simplest form of Taylor’s theorem for a function of two variables that finds
many applications is given in the next theorem.

THEOREM 1.10 Taylor’s theorem for a function of two variables Let f (x, y) be defined for a <

x < b and c < y < d and have continuous partial derivatives up to and including
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those of order 2. Then for x0 and y0 any points such that a < x0 < b and c < y0 < d,

f (x, y) = f (x0, y0) + (x − x0) fx(x0, y0) + (y − y0) fy(x0, y0)

+ 1
2!

[
(x − x0)2 fxx(x0 + ξ, y0 + η) + 2(x − x0)(y − y0)

× fxy(x0 + ξ, y0 + η)(y − y0)2 fyy(x0 + ξ, y0 + η)
]
,

where the numbers ξ and η are unknown, but ξ lies between x0 and x and η lies
between y0 and y.

The group of second order partial derivatives in Theorem 1.10 forms the re-
mainder term, and when these derivatives are ignored, the result reduces to the
tangent plane approximation to f (x, y) at the point (x0, y0) given in (35).

More information on Taylor’s theorem and series can be found, for example,
in reference [1.2].

1.13 Cylindrical and Spherical Polar
Coordinates and Change of Variables
in Partial Differentiation

Mathematical problems formulated using a particular coordinate system, such as
cartesian coordinates, often need to be reexpressed in terms of a different co-
ordinate system in order to simplify the task of finding a solution. When partial
derivatives occur in the formulation of problems, it becomes necessary to know
how they transform when a different coordinate system is used. The fundamental
theorem governing the transformation of partial derivatives under a change of vari-
ables takes the following form (see the references at the end of the chapter for the
proof of Theorem 1.11 and for more examples of its use).

THEOREM 1.11 Change of variables in partial differentiation Let f (x1, x2, . . . , xn) be a differ-
entiable function with respect to the n independent variables x1, x2, . . . , xn, and
let the n new independent variables u1, u2, . . . , un be determined in terms of
x1, x2, . . . , xn by

x1 = X1(u1, u2, . . . , un), x2 = X2(u1, u2, . . . , un), . . . , xn = Xn(u1, u2, . . . , un),

where X1, X2, . . . , Xn are differentiable functions of their arguments. Then, if as a
result of the change of variables the function f (x1, x2, . . . , xn) becomes the function
F(X1, X2, . . . , Xn), and using chain rules we have

∂ F
∂u1

= ∂ f
∂x1

∂ X1

∂u1
+ ∂ f

∂x2

∂ X2

∂u1
+ · · · + ∂ f

∂xn

∂ Xn

∂u1

∂ F
∂u2

= ∂ f
∂x1

∂ X1

∂u2
+ ∂ f

∂x2

∂ X2

∂u2
+ · · · + ∂ f

∂xn

∂ Xn

∂u2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂ F
∂un

= ∂ f
∂x1

∂ X1

∂un
+ ∂ f

∂x2

∂ X2

∂un
+ · · · + ∂ f

∂xn

∂ Xn

∂un
.

(41)
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To find higher order partial derivatives it is necessary to express the relationships
between the operations of differentiation in the two coordinate systems, rather than
between the actual derivatives themseves. This can be accomplished by rewriting
the results of Theorem 1.11 in the form of partial differential operators as follows:

∂

∂u1
≡ ∂ X1

∂u1

∂

∂x1
+ ∂ X2

∂u1

∂

∂x2
+ · · · + ∂ Xn

∂u1

∂

∂xn

∂

∂u2
≡ ∂ X1

∂u2

∂

∂x1
+ ∂ X2

∂u2

∂

∂x2
+ · · · + ∂ Xn

∂u2

∂

∂xn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂

∂un
≡ ∂ X1

∂un

∂

∂x1
+ ∂ X2

∂un

∂

∂x2
+ · · · + ∂ Xn

∂un

∂

∂xn
.

(42)

When expressed in this form the relationships between the partial differentia-
tion operations ∂/∂x1, ∂/∂x2, . . . , ∂/∂xn and ∂/∂u1, ∂/∂u2, . . . , ∂/∂un become clear.
This interpretation is needed when finding higher order partial derivatives such as
∂2 F/∂u2∂u1, because

∂2 F
∂u2∂u1

= ∂

∂u1

(
∂ F
∂u2

)
=
(

∂ X1

∂u1

∂

∂x1
+ ∂ X2

∂u1

∂

∂x2
+ · · · + ∂ Xn

∂u1

∂

∂xn

)(
∂ F
∂u2

)
.

An important combination of partial derivatives that occurs throughout physics
and engineering is called the Laplacian of a function. When a twice differentiable
function f (x, y, z) of the cartesian coordinates x, y, and z is involved, the Laplacian
of f , denoted by � f and sometimes by ∇2 f , read “del squared f ,” takes the form

� f = ∇2 f = ∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z2

. (43)

Cylindrical Polar Coordinates (r, θ, z)
The cylindrical polar coordinate system (r, θ, z) is illustrated in Fig. 1.14, and its
relationship to cartesian coordinates is given by

x = r cos θ, y = r sin θ, z = z, with 0 ≤ θ < 2π and r ≥ 0. (44)

Spherical Polar Coordinates (r,φ, θ)
The spherical polar coordinate system (r, φ, θ) shown in Fig. 1.15 is related to carte-
sian coordinates by

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,

with 0 ≤ θ ≤ π, 0 ≤ φ < 2π.
(45)

The derivation of the formulas for the change of variables in functions of several
variables can be found in any one of references [1.1] to [1.7], where cylindrical and
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FIGURE 1.14 Cylindrical polar
coordinates (r, θ, z).
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FIGURE 1.15 Spherical polar coordinates (r, φ, θ).

spherical polar coordinates are also discussed. Information on general orthogonal
coordinate systems can be found in references [G.3] and [2.3].

EXERCISES 1.13

1. By making the change of variables x = r cos θ, y =
r sin θ, z = z, in the function f (x, y, z), when it becomes
the function F(r, θ, z), show that in cylindrical polar co-
ordinates

∂ F
∂r

= cos θ
∂ f
∂x

+ sin θ
∂ f
∂y

,

∂ F
∂θ

= −r sin θ
∂ f
∂x

+ r cos θ
∂ f
∂y

,
∂ F
∂z

= ∂ f
∂z

.

2. Use the results of Exercise 1 to show that in cylindrical
polar coordinates the Laplacian

� f = ∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z2

becomes

�F = ∂2 F
∂r 2

+ 1
r

∂ F
∂r

+ 1
r 2

∂2 F
∂θ2

+ ∂2 F
∂z2

,

and hence that an equivalent form of �F is

�F = 1
r

[
∂

∂r

(
r
∂ F
∂r

)
+ 1

r
∂

∂θ

(
∂ F
∂θ

)
+ ∂

∂z

(
r
∂ F
∂z

)]
.

3. By making the change of variable x = r sin θ cos φ, y =
r sin θ sin φ, z = r cos θ in the function f (x, y, z), when it

becomes F(r, φ, θ), show that in spherical polar coordi-
nates

∂ F
∂r

= sin θ cos φ
∂ f
∂x

+ sin φ sin θ
∂ f
∂y

+ cos φ
∂ f
∂z

∂ F
∂φ

= r cos φ cos θ
∂ f
∂x

+ r cos φ sin θ
∂ f
∂y

− r sin φ
∂ f
∂z

∂ F
∂z

= −r sin φ sin θ
∂ f
∂x

+ r sin φ cos θ
∂ f
∂y

.

4. Use the results of Exercise 3 to show that in spherical
polar coordinates the Laplacian

� f = ∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z2

becomes

�F = 1
r 2

∂

∂r

(
r 2 ∂ F

∂r

)
+ 1

r 2 sin2
θ

(
∂2 F
∂φ2

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂ F
∂θ

)
.
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1.14 Inverse Functions and the Inverse
Function Theorem

In mathematics and its applications it is often necessary to find the inverse of a
function y = f (x) so x can be expressed in the form x = g(y), and when this can be
done the function g is called the inverse of f and is such that y = f (g(y)). When
f is an arbitrary function its inverse is often denoted by f −1, and this superscript
notation is also used to denote the inverse of trigonometric functions so if, for
example, y = sin x, the inverse sine function is written sin−1, so that x = sin−1 y.
However, the notation y = arcsin y is also used with the understanding that the
notations arcsin and sin−1 are equivalent.

A trivial example of a function whose inverse can be found unambiguously
is y = ax + b, because provided a �= 0 we can write x = (y − b)/a for all x and y.
This is not the case, however, when trigonometric functions are involved, because
the function y = sin x will give a unique value of y for any given x, but given y
there are infinitely many values of x for which y = sin x. This and similar inverse
trigonometric functions are considered in elementary calculus courses. There the
multivalued nature of the inverse sine function is resolved by restricting it to make
y lie in a specific interval chosen so that one y corresponds to one x and, conversely,
one x corresponds to one y. This situation is described by saying that the relationship
between x and y is one-to-one. Specifically, in the case of the sine function, this is
accomplished by requiring that if x = sin y, the inverse function y = Arcsin x is
restricted so its principal value lies in the interval −π/2 ≤ Arcsinx ≤ π/2, where
the domain of definition of the inverse function is −1 ≤ x ≤ 1.

A different possibility that arises frequently is when x and y are related by an
equation of the form f (x, y) = 0 from which it is impossible to extract either x
as a function of y, or y as a function of x in terms of known functions. A typical
example of this type is f (x, y) = x2 − 2y2 − sin xy. To make matters precise, if x
and y are related by an equation f (x, y) = 0, then if a function y = g(x) exists
such that f (x, g(x)) = 0, the function y = g(x) is said to be defined implicitly by
f (x, y) = 0.

Although it is often not possible to find the function g(x), it is still necessary
to know when, in a neighborhood of a point (x0, y0), given a value of x, a unique
value of y can be found, sometimes only numerically. The implicit function the-
orem that follows is seldom mentioned in first calculus courses because its proof
involves certain technicalities, but it is quoted here in the simplest possible form
because of its fundamental importance and the fact that is it frequently used by
implication.

THEOREM 1.12 The implicit function theorem Let f (x, y) and fy(x, y) be continuous in a region
D of the (x, y)-plane and let (x0, y0) be a point inside D, where f (x0, y0) = 0 and
fy(x0, y0) �= 0. Then

(i) There is a rectangle R inside D containing (x0, y0) at all points of which there
can be found a unique y such that f (x, y) = 0.

(ii) If the value of y is denoted by g(x), then y0 = g(x0), with f (x, g(x)) = 0, and
g(x) is continuous inside R.



50 Chapter 1 Review of Prerequisites

(iii) If, in addition, fx(x, y) is continuous in D then g(x) is differentiable in R and
g′(x) = − fx(x,g(x))

fy(x,g(x)) .

In general terms, the implicit function theorem gives conditions that ensure the
existence of an inverse function that is continuous and smooth enough to be differ-
entiable. The theorem has a more general form involving functions f (x1, x2, . . . , xn)
of n variables, though this will not be given here. The interested reader can find ac-
counts of the implicit function theorem and some of its generalizations in references
[1.4], [1.6], and [5.1].
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CHAPTER 1

TECHNOLOGY PROJECTS

1

Linear Difference Equations and
the Fibonacci Sequence

In Italy in 1202, Leonardo of Pisa, also known as Fi-
bonacci, posed the following question. Let a newly
born pair of rabbits produce two offspring each
month, with breeding starting when they are 2 months
old. Assuming that the pair of offspring start breed-
ing in the same fashion when 2 months old, and that
the process continues thereafter in a similar manner
with no deaths, how many pairs of rabbits will there
be after n months?

If un, is the number of pairs of rabbits after n
months, the production of rabbits can be represented
by the linear difference equation, or recurrence
relation,

un+2 = un+1 + un,

where the sequence of numbers ur with r = 1, 2, . . .

is generated by setting u1 = 1 and u2 = 1, since this
represents the initial pair of rabbits that began the
breeding process. A simple calculation using this dif-
ference equation shows that the sequence of numbers
generated in this manner that represents the number
of pairs of rabbits present each month is

1, 1, 2, 3, 5, 8, . . . ,

and this is called the Fibonacci sequence. This se-
quence is found to occur in the study of regular solids,
in numerical analysis, and elsewhere in mathematics.

A linear difference equation of the form

un+2 = aun+1 + bun,

with a and b real numbers, can be solved by substitut-
ing un = Aλn into the difference equation and find-
ing the two roots λ1 and λ2 of the resulting quadratic
equation in λ. When λ1 �= λ2, the general solution is
un = A1λ

n
1 + Aλn

2, and when λ1 = λ2 = λ , say, the gen-
eral solution is un = (A1 + nA2)μn. The arbitrary con-
stants A1 and A2 are found by requiring un to satisfy
some given conditions of the form u1 = α and u2 = β,

where the numbers α and β specify the way the se-
quence starts (the initial conditions).

Use this method to show that the solution un for
the Fibonacci sequence is

un = 1√
5

[
1 + √

5
2

n
1

√
5

2

n]
,

for n = 1, 2, . . . .

Make use of computer algebra to generate the first
30 terms of the Fibonacci sequence directly from the
difference equation, and verify that the results are in
agreement wïth the preceding formula.

Use computer algebra to show that
limn→∞(un/un 1) = 1

2 (
√

5 + 1). This number is called
the golden mean, and in art and architecture it rep-
resents the ratio of the sides of a rectangle that is
considered to have the most pleasing appearance.

Project 2

Erratic Behavior of a Sequence Generated
by a Difference Equation

1. Not all difference equations generate sequences
of numbers that evolve steadily as happens with
the Fibonacci sequence. Use computer algebra
to generate the first 20 terms of the sequence
produced by the difference equation

un+2 = 2un+1 5un with u1 = 1, u2 = 3,

and observe its erratic behavior. Use the method
of Project 1 to determine the analytical solution,
and by means of computer algebra confirm that
the two results are in agreement. Examine the
analytical solution and explain why the behavior
of the sequence of terms is so erratic.

2. Construct a difference equation of your own in
which the roots λ1 and λ2 are equal. Find the an-
alytical solution and use computer algebra to de-
termine the first 20 terms of the sequence. Verify
that these terms are in agreement with the ones
generated directly from the difference equation.
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2C H A P T E R

Vectors and Vector Spaces

Engineers, scientists, and physicists need to work with systems involving physical quan-
tities that, unlike the density of a solid, cannot be characterized by a single number.

This chapter is about the algebra of important and useful quantities called vectors that
arise naturally when studying physical systems, and are defined by an ordered group of
three numbers (a, b, c). Vectors are of fundamental importance and they play an essen-
tial role when the laws governing engineering and physics are expressed in mathematical
terms.

A scalar quantity is one that is completely described when its magnitude is known,
such as pressure, temperature, and area. A vector is a quantity that is completely specified
when both its magnitude and direction are given, such as force, velocity, and momentum.
A vector can be described geometrically as a directed straight line segment, with its length
proportional to the magnitude of the vector, the line representing the vector parallel to
the line of action of the vector, and an arrow on the line showing the direction along the
line, or the sense, in which the vector acts.

This geometrical interpretation of a vector is valuable in many ways, as it can be used
to add and subtract vectors and to multiply them by a scalar, since this merely involves
changing their magnitude and sense, while leaving the line to which they are parallel
unchanged. However, to perform more general algebraic operations on vectors some other
form of representation is required. The one that is used most frequently involves describing
a vector in terms of what are called its components along a set of three mutually orthogonal
axes, which are usually taken to be the axes O{x, y, z} in the cartesian coordinate system.
Here, by the component of a vector along a given line l , we mean the length of the
perpendicular projection of the vector onto the line l .

We will see later that this cartesian representation of a vector identifies it completely
in terms of three components and enables algebraic operations to be performed on it. In
particular, it allows the introduction of the scalar product, or dot product, of two vectors
that results in a scalar, and a vector product, or cross product, of two vectors that leads to
a vector.

Finally, vectors and their algebra will be generalized to n space dimensions, leading
to the concept of a vector space and to some related ideas.

55
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2.1 Vectors, Geometry, and Algebra

Many quantities are completely described once their magnitude is known. A
typical example of a physical quantity of this type is provided by the tempera-

ture at a given point in a room that is determined by the number specifying its value
measured on a temperature scale, such as degrees F or degrees C. A quantity such
as this is called a scalar quantity, and different examples of mathematical and phys-
ical scalar quantities are real numbers, length, area, volume, mass, speed, pressure,
chemical concentration, electrical resistance, electric potential, and energy.

scalar

Other physical quantities are only fully specified when both their magnitude
and direction are given. Quantities like this are called vector quantities, and a typicalvector
example of a vector quantity arises when specifying the instantaneous motion of a
fluid particle in a river. In this case both the particle speed and its direction must be
given if the description of its motion is to be complete. Speed in a given direction
is called velocity, and velocity is a vector quantity. Some other examples of vector
quantities are force, acceleration, momentum, the heat flow vector at a point in a
block of metal, the earth’s magnetic field at a given location, and a mathematical
quantity called the gradient of a scalar function of position that will be defined
later. By definition, the magnitude of a vector quantity is a nonnegative number
(a scalar) that measures its size without regard to its direction, so, for example, the
magnitude of a velocity is a speed.

A convenient geometrical representation of a vector is provided by a straight
line segment drawn in space parallel to the required direction, with an arrowhead
indicating the sense in which the vector acts along the line segment, and the length
of the line segment proportional to the magnitude of the vector. This is called a
directed straight line segment, and by definition all directed straight line segmentsdirected straight

line segment that are parallel to one another and have the same sense and length are regarded
as equal. Expressed differently, moving a directed straight line segment parallel
to itself so that its length remains the same and its arrow still points in the same
direction leaves the vector it represents unchanged. A shift of a directed straight line
segment of this type is called a translation of the vector it represents. For this reasontranslation
the terms directed straight line segment and vector can be used interchangeably. Some
examples of vectors that are equal through translation are shown in Fig. 2.1.

It must be emphasized that geometrical representations of vectors as directed
straight line segments in space are defined without reference to a specific coordinate
system. This purely geometrical interpretation of vectors finds many applications,
though a different form of representation is necessary if an effective vector algebra
is to be developed for use with the calculus. An analytical representation of vectors
that allows a vector algebra to be constructed with this purpose in mind can be based
on a general coordinate system. However, throughout this chapter only rectangular
cartesian coordinates will be used because they provide a simple and natural way
of representing vectors.

FIGURE 2.1 Equal geometrical vectors.
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x

y

z

0

FIGURE 2.2 A right-handed
rectangular cartesian coordinate system.

In rectangular cartesian coordinates the x-, y-, and z-axes are all mutually
orthogonal (perpendicular), and the positive sense along the axes is taken to be in
the direction of increasing x, y, and z. The orientation of the axes will always be
such that the positive direction along the z-axis is the one in which a right-handed
screw (such as a corkscrew) aligned with the z-axis will advance when rotated from
the positive x-axis to the positive y-axis, as shown in Fig. 2.2. A system of axes with
this property is called a right-handed system.right-handed system

The end of a vector toward which the arrow points will be called the tip of the
vector, and the other end its base. Because a vector is invariant under a translation,
there is no loss of generality in taking its base to be located at the origin O of the
coordinate system, and its tip at a point P with the coordinates (a1, a2, a3), say, as
shown in Fig. 2.3. An application of the Pythagoras theorem to the triangle OPP′

O

x

y

z

P(a1, a2, a3)

P

a3

a1

a2
OP = (a 1

2 + a 2
2 + a 3

2 )
1/2

OP' = (a
1

2
+ a

2
2
) 1/2

FIGURE 2.3 The vector from O to P and its components a1, a2, and a3
in the x-, y-, z-coordinate system.
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shows the length of the line from O to P to be (a2
1 + a2

2 + a2
3)1/2. This length is

proportional to the magnitude of the vector it represents, and as the base of the
vector is at O, the sense of the vector is from O to P. For convenience, the constant
of proportionality will be taken to be 1, so a directed straight line segment of unit
length will represent a vector of magnitude 1 and so will be called a unit vector.
Using this convention, the vector represented by the line from O to P in Fig. 2.3 has
magnitude (a2

1 + a2
2 + a2

3)1/2. The three numbers a1, a2, and a3, in this order, that
define the vector from O to P are called its components in the x, y, and z directions,
respectively.

magnitude, unit
vector, and
components

A set of three numbers a1, a2, and a3 in a given order, written (a1, a2, a3), is
called an ordered number triple. As the coordinates (a1, a2, a3) of point P in Fig. 2.3ordered number triple
completely define the vector from O to P, this ordered number triple may be taken
as the definition of the vector itself. In general, changing the order of the numbers
in an ordered number triple changes the vector it defines.

Sometimes it is necessary to consider a vector whose base does not coincide with
the origin. Suppose that when this occurs the base C is at the point (c1, c2, c3) and the
tip D is at the point (d1, d2, d3). Then Fig. 2.4 shows the components of this vector
in the x, y, and z directions to be d1 − c1, d2 − c2, and d3 − c3. These components
determine both the magnitude and direction of the vector. The vector is described
by the ordered number triple (d1 − c1, d2 − c2, d3 − c3), and the length of CD that
is equal to the magnitude of the vector is [(d1 − c1)2 + (d2 − c2)2 + (d3 − c3)2]1/2.

For convenience, it is usual to represent a vector by a single boldface character
such as a, and its magnitude (length) by ‖a‖, called the norm of a. It is necessary tonorm and modulus
say here that in applications of vectors to mechanics, and in some purely geometrical
applications of vectors, the norm of vector r is often called its modulus and written
|r|. When this convention is used, because |r| is a scalar it is usual to denote it by
the corresponding ordinary italic letter r , so that r = |r|.

If the base and tip of a vector need to be identified by letters, a vector such as
the one from C to D in Fig. 2.4 is written CD, with underlining used to indicate that
a vector is involved, and the ordering of the letters is such that the first shows the

x

y

z

D

C

C'
D

d3

c3

d1

c1

d2c20

FIGURE 2.4 Vector directed from point C at
(c1, c2, c3) to point D at (d1, d2, d3).
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base and the second the tip of the vector. Thus, CD and DC are vectors of equal
magnitude but opposite sense, and when these vectors are represented by arrows,
the arrows are parallel and of equal length, but point in opposite directions.

EXAMPLE 2.1 If, in Fig. 2.4, C is the point (−3, 4, 9) and D the point (2, 5, 7), the vector
CD has components 2 − (−3) = 5, 5 − 4 = 1, and 7 − 9 = −2, and so is rep-
resented by the ordered number triple (5, 1, −2), whereas vector DC has
components −5, −1, and 2 and is represented by the ordered number triple
(−5, −1, 2).

Having illustrated the concepts of scalars and vectors using some familiar ex-
amples, we now develop the algebra of vectors in rather more general terms.

Vectors

A vector quantity a is an ordered number triple (a1, a2, a3) in which a1, a2,
and a3 are real numbers, and we shall write a = (a1, a2, a3). The numbers a1,
a2, and a3, in this order, are called the first, second, and third components of
vector a or, equivalently, its x-, y-, and z-components.

Null vector

The null (zero) vector, written 0, has neither magnitude nor direction and is
the ordered number triple 0 = (0, 0, 0).

Equality of vectors

Two vectors a = (a1, a2, a3) and b = (b1, b2, b3) are equal, written a = b, if,
and only if, a1 = b1, a2 = b2, and a3 = b3.

EXAMPLE 2.2 If a = (a1, −5, 6), b = (3, b2, b3) and c = (3, −5, 1), then a = b if a1 = 3, b2 = −5
and b3 = 6, and b = c if b2 = −5 and b3 = 1, but a �= c for any choice of a1 because
6 �= 1.

Norm of a vector

The norm of vector a = (a1, a2, a3), denoted by ‖a‖, is the non-negative real
number

‖a‖ = (
a2

1 + a2
2 + a2

3

)1/2
,

and in geometrical terms ‖a‖ is the length of vector a. The norm of the null
vector 0 is ‖0‖ = 0. For example, if a is in m/sec, “length” of a is in m/sec.

EXAMPLE 2.3 If a = (1, −3, 2), then ‖a‖ = [12 + (−3)2 + 22]1/2 = √
14, as illustrated in Fig. 2.5.



60 Chapter 2 Vectors and Vector Spaces

x
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A
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0

FIGURE 2.5 Vector a and its norm ‖a‖.

The sum of two vectors

If a = (a1, a2, a3) and b = (b1, b2, b3) have the same dimensions, say, both are
m/sec, their sum, written a + b, is defined as the ordered number triple (vector)
obtained by adding corresponding components of a and b to give

a + b = (a1 + b1, a2 + b2, a3 + b3).

EXAMPLE 2.4 If a = (1, 2, −5) and b = (−2, 2, 4), then

a + b = (1 + (−2), 2 + 2, −5 + 4) = (−1, 4, −1).

Multiplying a vector by a scalar

Let a = (a1, a2, a3) and λ be an arbitrary real number. Then the product λa is
defined as the vector

λa = (λa1, λa2, λa3).

EXAMPLE 2.5 Let a = (2, −3, 5), b = (−1, 2, 4). Then 2a = (4, −6, 10), 4b = (−4, 8, 16), and
2a + 4b = (4 + (−4), −6 + 8, 10 + 16) = (0, 2, 26).

This definition of the product of a vector and a scalar, called scaling a vector,
shows that when vector a is multiplied by a scalar λ, the norm of a is multiplied by
|λ|, because

‖λa‖ = (
λ2a2

1 + λ2a2
2 + λ2a2

3

)1/2 = |λ| · ‖a‖.

It also follows from the definition that the sense of vector a is reversed when it is
multiplied by −1, though its norm is left unaltered. The definition of the difference
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a

b

b1

b2

y

a2

a1 x

a

a + b b

a1 + b1

a2 + b2

y

a2

a1 x0 0

FIGURE 2.6 The vector sum a + b.

of two vectors is seen to be contained in the definition of their sum, because a − b =
a + (−b). In particular, when a = b, we find that that a − a = 0, showing that −a is
the additive inverse of a.

The geometrical interpretations of the sum a + b, the difference a − b, and the
scaled vector λa in terms of their components are shown in Figs. 2.6 to 2.8, though to
simplify the diagrams only the two-dimensional cases are illustrated. This involves
no loss of generality, because it is always possible to choose the (x, y)-plane to
coincide with the plane containing the vectors a and b.

Vector Addition by the Triangle Rule
Consideration of Fig. 2.6 shows that the addition of vector b to vector a is obtained
geometrically by translating vector b until its base is located at the tip of vector a,
and then the vector representing the sum a + b has its base at the base of vector a
and its tip at the tip of the repositioned vector b. Because of the triangle involving
vectors a, b, and a + b, this geometrical interpretation of a vector sum is called the
triangle rule for vector addition. The triangle rule also applies to the differencetriangle rule for

addition of two vectors, as may be seen by considering Fig. 2.7, because after obtaining −b
from b by reversing its sense, the difference a − b can be written as the vector sum
a + (−b), where −b is added to vector a by means of the triangle rule.

The algebraic results discussed so far concerning the addition and scaling of vec-
tors, together with some of their consequences, are combined to form the following
theorem.

a
b

−b b1

−b1

−b2

b2

y

a2

a1 x

a

a − b
−b

a1 − b1

a2 − b2

y

a2

a1 x0 0

FIGURE 2.7 The vector difference a − b.
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1/2a2

y

1/2a

1/2a1 x

(k = 2) (k = 1/2)

(k = −2)

0 0 0

FIGURE 2.8 The vector ka for different values of k.

THEOREM 2.1 Addition and scaling of vectors Let P, Q, and R be arbitrary vectors and let α and
β be arbitrary real numbers. Then:

1. P + Q = Q + P (vector addition is commutative);

2. P + 0 = 0 + P = P (0 is the identity element in vector addition);

3. (P + Q) + R = P + (Q + R) (vector addition is associative);

4. α(P + Q) = αP + αQ (multiplication by a scalar is distributive
over vector addition);

5. (αβ)P = α(βP) = β(αP) (multiplication of a vector by a product
of scalars is associative);

6. (α + β)P = αP + βP (multiplication of a vector by a sum of scalars
is distributive);

7. ‖αP‖ = |α| · ‖P‖ (scaling P by α scales the norm of P by |α|).

Proof The results of this theorem are all immediate consequences of the above
definitions so as the proofs of results 1 to 6 are all very similar, and result 7 has
already been established, we only prove result 4.

Let P = (p1, p2, p3) and Q = (q1, q2, q3); then

α(P + Q) = α(p1 + q1, p2 + q2, p3 + q3)

= α[(p1, p2, p3) + (q1, q2, q3)]

= α(p1, p2, p3) + α(q1, q2, q3)

= αP + αQ,

as was to be shown.

The Representation of Vectors in Terms
of the Unit Vectors i, j, and k
The components of a vector, together with vector addition, can be used to describe
vectors in a very convenient way. The idea is simple, and it involves using the
standard convention that i, j, and k are vectors of unit length that point in the
positive sense along the x-, y-, and z-axes, respectively. Vectors such as i, j, and k
that have a unit norm (length) are called unit vectors, so ‖i‖ = ‖j‖ = ‖k‖ = 1.
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a = a1i + a2j
+ a3k

A(a1, a2, a3)

a3k
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x
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i 0

FIGURE 2.9 Vector a in terms of the unit vectors i, j, and k.

An arbitrary vector a can be represented by an “arrow,” with its base at the
origin and its tip at the point A with cartesian coordinates (a1, a2, a3) where, of
course, a1, a2, and a3 are also the components of a. Consequently, scaling the unit
vectors i, j, and k by the respective x, y, and z components a1, a2, and a3 of a,
followed by vector addition of these three vectors, shows that a can be written

a = a1i + a2j + a3k, (1)

as can be seen from Fig. 2.9. The representation of vector a in terms of the unit
vectors i, j, and k in (1), and the ordered triple notation, are equivalent, so

a = a1i + a2j + a3k = (a1, a2, a3). (2)

In some applications a vector defines a point in space, so vectors of this type
are called position vectors. The symbol r is normally used for a position vector, soposition vector
if point P with coordinates (x, y, z) is a general point in space, as in Fig. 2.10, its

r = x i + y j + zk
P(x, y, z)

zk

y

x i

y j

z

x

OP =⎥⎢r⎥⎢= (x2 + y2 + z2)
1/2

k

j

i 0

FIGURE 2.10 Position vector of a general point P in space.
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position vector relative to the origin is

r = xi + yj + zk, (3)

and its norm (length) is

‖r‖ = (x2 + y2 + z2)1/2. (4)

EXAMPLE 2.6 (a) Find the distance of point P from the origin given that its position vector is r =
2i + 4j − 3k. (b) If a general point P in space has position vector r = xi + yj + zk,
describe the surface defined by ‖r‖ = 3 and find its cartesian equation.

Solution (a) As r is the position vector of P relative to the origin, the distance of
point P from the origin is ‖r‖ = [22 + 42 + (−3)2]1/2 = √

29.
(b) As ‖r‖ = 3 (constant), it follows that the required surface is one for which every
point lies at a distance 3 from the origin, so the surface must be a sphere of radius
3 centered on the origin. As r = xi + yj + zk is the general position vector of a
point on this sphere, the result ‖r‖ = 3 is equivalent to (x2 + y2 + z2)1/2 = 3, so the
cartesian equation of the sphere is x2 + y2 + z2 = 9.

Because of the equivalence of the ordered number triple notation and the
representation of vectors in terms of the unit vectors i, j, and k given in (2), both
systems obey the same rules governing the addition and scaling of vectors in terms
of their components. Thus, the following rules apply to the combination of any two
vectors a = a1i + a2 j + a3k, b = b1i + b2 j + b3k expressed in terms of i, j, and k, and
an arbitrary real number λ.

The sum a + b is given by

a + b = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k. (5)

The product λ a is given by

λ a = λa1 i + λa2 j + λa3 k. (6)

The norm of scaled vector λ a is given by

‖λ a‖ = |λ| · ‖a‖
= |λ|(a2

1 + a2
2 + a2

3

)1/2
. (7)

EXAMPLE 2.7 If a = 5i + j − 3k and b = 2i − 2j − 7k, find (a) a + b, (b) a − b, (c) 2a + b, and
(d) |−2a|.

Solution

(a) a + b = (5i + j − 3k) + (2i − 2j − 7k)
= (5 + 2)i + (1 − 2)j + (−3 − 7)k
= 7i − j − 10k.

(b) a − b = (5i + j − 3k) − (2i − 2j − 7k)
= (5 − 2)i + (1 − (−2))j + (−3 − (−7))k
= 3i + 3j + 4k.
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(c) 2a + b = 2(5i + j − 3k) + (2i − 2j − 7k)
= (10i + 2j − 6k) + (2i − 2j − 7k)
= (10 + 2)i + (2 + (−2))j + (−6 + (−7))k
= 12i − 13k.

(d) |−2a| = [(−10)2 + (−2)2 + 62]1/2 = 2
√

35

or, equivalently,

|−2a| = |−2| · ‖a‖ = 2‖a‖ = 2[52 + 12 + (−3)2]1/2 = 2
√

35.

Finding a Unit Vector in the Direction
of an Arbitrary Vector
It is often necessary to find a unit vector in the direction of an arbitrary vector
a = a1i + a2j + a3k. This is accomplished by dividing a by its norm ‖a‖, because the
vector a/‖a‖ has the same sense as a and its norm is 1. It is convenient to use a symbol
related to an arbitrary vector a to indicate the unit vector in its direction, so from
now on such a vector will be denoted by â, read “a hat.” So if a = a1i + a2j + a3k,

â = a/‖a‖ = (a1i + a2j + a3k)/
(
a2

1 + a2
2 + a2

3

)1/2

= (a1/a)i + (a2/a)j + (a3/a)k, with a = (
a2

1 + a2
2 + a2

3

)1/2
.

(8)

As the symbols i, j, and k are used exclusively for the unit vectors in the x-, y-, and
z-directions, it is not necessary to write î, ĵ, and k̂.

The relationship between a, â, and ‖a‖ can be put in the useful form

a = ‖a‖â, (9)

showing that a general vector a can always be written as the unit vector â scaled by
‖a‖. Unless otherwise stated, a �= 0.

EXAMPLE 2.8 Find a unit vector in the direction of a = 3i + 2j + 5k.

Solution As ‖a‖ = (32 + 22 + 52)1/2 = √
38, it follows that

â = a/‖a‖ = (3/
√

38)i + (2/
√

38)j + (5/
√

38)k.

EXAMPLE 2.9 It is known from experiments in mechanics that forces are vector quantities and so
combine according to the laws of vector algebra. Use this fact to find the sum and
difference of a force of 9 units in the direction of 2i + j − 2k and a force of 10 units
in the direction of 4i − 3j, and determine the magnitudes of these forces.

Solution We will use the convention that a unit vector represents a force of 1 unit.
Let F be the force of 9 units. Then as ‖2i + j − 2k‖ = [22 + 12 + (−2)2]1/2 = 3, the
unit vector in the direction of F is

F̂ = (1/3)(2i + j − 2k) = (2/3)i + (1/3)j − (2/3)k,

so F = 9F̂ = 6i + 3j − 6k units.
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Similarly, let G be the force of 10 units. Then as ‖4i − 3j‖ = 5, the unit vector
in the direction of G is

Ĝ = (1/5)(4i − 3j) = (4/5)i − (3/5)j,

so G = 10Ĝ = 8i − 6j units.
Combining these results shows that F + G = 14i − 3j − 6k units, and F − G =

−2i + 9j − 6k units, from which it follows that the magnitudes of the forces are
given by

‖F + G‖ = √
241 units and ‖F − G‖ = 11 units.

Equality of vectors expressed in terms of unit vectors

As the difference of two equal and opposite vectors is the null vector 0, this
shows that if a = b, where a = a1i + a2j + a3k, and b = b1i + b2j + b3k, then
the respective components of vectors a and b must be equal, leading to the
result that

a = b if, and only if, a1 = b1, a2 = b2, and a3 = b3. (10)

Simple Geometrical Applications of Vectors
Although our use of vectors will be mainly in connection with the calculus, the
following simple geometrical applications are helpful because they illustrate basic
vector arguments and properties.

Although we have seen how an arbitrary vector can be expressed in terms of unit
vectors associated with a cartesian coordinate system, it must be remembered that
the fundamental concept of a vector and its algebra is independent of a coordinate
system. Because of this, it is often possible to use the rules governing elementary
vector algebra given in Theorem 2.1 to establish equations in a purely vectorial
manner, without the need to appeal to any coordinate system. Once a general
vector equation has been established, the representation of the vectors involved in
terms of their components and the unit vectors i, j, and k can be used to convert
the vector equation into the equivalent cartesian equations.

The purely vectorial approach to geometrical problems is well illustrated by
finding the vector AB in terms of the position vectors of points Aand B, and then
using the result to find the position vector of the mid-point of AB. After this, the
purely vectorial derivation of a geometrical result followed by its interpretation in
cartesian form will be illustrated by finding the equation of a straight line in three
space dimensions.

Vector AB in terms of the position vectors of A and B

Let a and b be the position vectors of points A and B relative to an origin O, as
shown in Fig. 2.11.

An application of the triangle rule for the addition of vectors gives

OA + AB = OB,

but OA = a and OB = b, so

a + AB = b,
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FIGURE 2.11 Vectors a, b, and AB.

giving

AB = b − a. (11)

When expressed in words, this simple but useful result asserts that vector AB is
obtained by subtracting the position vector a of point A from the position vector b
of point B.

EXAMPLE 2.10 Find the position vector of the mid-point of AB if point A has position vector a and
point B has position vector b relative to an origin O.

Solution Let point C, with position vector c relative to origin O, be the mid-point
of AB, as shown in Fig. 2.12.
By the triangle rule,

OA + AC = OC,

but OA = a, and from (11) AC = (1/2)(b − a), so

OC = a + (1/2)(b − a),

so the required result is

c = OC = (1/2)(b + a).

O

C

A

B

a

c
b

AC

FIGURE 2.12 C is the mid-point of AB.
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FIGURE 2.13 The straight line L.

The vector and cartesian equations
of a straight line

Let line L be a straight line through point A with position vector a relative to an
origin O, and let the line be parallel to a vector b. If P is an arbitrary point on line
L with position vector r relative to O, an application of the triangle rule for vector
addition to the vectors shown in Fig. 2.13 gives

r = OA + AP.

But OA = a, and as AP is parallel to b, a number λ can always be found such that
AP = λb, so the vector equation of line L becomesvector equation

of straight line

r = a + λb. (12)

Notice that result (12) determines all points P on L if λ is taken to be a number in
the interval −∞ < λ < ∞.

The cartesian equations of line L follow by setting a = a1i + a2j + a3k, b =
b1i + b2j + b3k, and r = xi + yj + zk in result (12), and then using the definition of
equality of vectors given in (10) to obtain the corresponding three scalar cartesian
equations. Proceeding in this way we find that

xi + yj + zk = a1i + a2j + a3k + λ(b1i + b2j + b3k),

so equating corresponding components of i, j, and k on each side of this equation
brings us to the required cartesian equations for L in the formcartesian and

standard
form of
straight line x1 = a1 + λb1, x2 = a2 + λb2, x3 = a3 + λb3. (13)

An equivalent form of these equations is obtained by solving each equation for
λ and equating the results to get

x − a1

b1
= y − a2

b2
= z − a3

b3
= λ. (14)
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This is the standard form (also called the canonical form) of the cartesian equa-
tions of a straight line. It is important to notice that when written in standard form
the coefficients of x, y, and z are all unity. Once the equation of a straight line is
written in standard form, equating each numerator to zero determines the compo-
nents (a1, a2, a3) of a position vector of a point on the line, while the denominators
in the order (b1, b2, b3) determine the components of a vector parallel to the line.

EXAMPLE 2.11 A straight line L is given in the form

2x − 3
4

= 3 − y
2

= z + 1
3

.

Find the position vector of a point on L and a vector parallel to L.

Solution When the equation is written in standard form it becomes

x − 3/2
2

= y − 3
−2

= z + 1
3

= λ.

Comparing these equations with (14) shows that (a1, a2, a3) = (3/2, 3, −1) and b =
(b1, b2, b3) = (2, −2, 3). So the position vector of a point on the line is a = (3/2)i +
3j − k, and a vector parallel to the line is b = 2i − 2j + 3k.

Neither of these results is unique, because μb is also parallel to the line for
any scalar μ �= 0, and any other point on L would suffice. For example, the vector
14i − 14j + 21k is also parallel to the line, while setting λ = 2 leads to the result
(a1, a2, a3) = (11/2, −1, 5), corresponding to a different point on the same line, this
time with position vector a = (11/2)i − j + 5k.

Summary This section has introduced vectors both as geometrical quantities that can be represented
by directed line segments and, using a right-handed system of cartesian axes, as ordered
number triples. Definitions of the scaling, addition, and subtraction of vectors have been
given, and a general vector has been defined in terms of the set of three unit vectors i,
j, and k that lie along the orthogonal cartesian axes O{x, y, z}. Finally, the vector and
cartesian equations of a straight line in space have been derived, and the standard form of
the cartesian equations has been introduced from which a vector parallel to the line may
be found by inspection.

EXERCISES 2.1

1. Prove Results 1, 3, and 6 of Theorem 2.1.
2. Given that a = 2i + 3j − k, b = i − j + 2k, and

c = 3i + 4j + k, find (a) a + 2b − c, (b) a vector d
such that a + b + c + d = 0, and (c) a vector d such that
a − b + c + 3d = 0.

3. Given a = i + 2j + 3k, b = 2i − 2j + k, find (a) a vector
c such that 2a + b + 2c = i + k, (b) a vector c such that
3a − 2b + c = i + j − 2k.

4. Given that a = 3i + 2j − 3k, b = 2i − j + 5k, and
c = 2i + 5j + 2k, find (a) 2a + 3b − 3c, (b) a vector d
such that a + 3b − 2c + 3d = 0, and (c) a vector d such
that 2a − 3d = b + 4c.

5. Given that Aand B have the respective position vectors
2i + 3j − k and i + 2j + 4k, find the vector AB and a
unit vector in the direction of AB.

6. Given that A and B have the respective position vec-
tors 3i − j + 4k and 2i + j + k, find the vector AB
and the position vector c of the mid-point of AB.

7. Given that Aand B have the respective position vectors
a and b, find the position vector of a point P on the line
AB located between A and B such that

(length AP)/(length PB) = m/n, where m, n > 0

are any two real numbers.
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8. Find the position vector r of a point P on the straight
line joining point Aat (1, 2, 1) and point B at (3, −1, 2)
and between A and B such that

(length AP)/(length PB) = 3/2.

9. It is known from Euclidean geometry that the medians
of a triangle (lines drawn from a vertex to the mid-point
of the opposite side) all meet at a single point P, and
that P is two-thirds of the distance along each median
from the vertex through which it passes. If the vertices
A, B, and C of a triangle have the respective position
vectors a, b, and c, show that the position vector of P is
(1/3)(a + b + c).

10. Forces of 1, 2, and 3 units act through the origin along,
and in the positive directions of, the respective x-, y-,
and z-axes. Find the vector sum S of these forces, the
magnitude ‖S‖ of the sum of the vectors, and a unit
vector in the direction of S.

11. Forces of 2, 1, and 4 units act through the origin along,
and in the positive directions of, the respective x-, y-,
and z-axes. Find the vector sum S of these forces, the
magnitude ‖S‖ of the sum of the vectors, and a unit
vector in the direction of S.

12. A straight line L is given in the form

3x − 1
4

= 2y + 3
2

= 2 − 3z
1

.

Find the position vectors of two different points on L
and a unit vector parallel to L.

13. A straight line L is given in the form

2x + 1
3

= 3y + 2
4

= 2 − 4z
−1

.

Find position vectors of two different points on L and
a unit vector parallel to L.

14. Given that a straight line L1 passes through the points
(−2, 3, 1) and (1, 4, 6), find (a) the position vector of
a point on the line and a vector parallel to it, and (b)
a straight line L2 parallel to L1 that passes through the
point (1, 2, 1).

15. Given that a straight line L1 passes through the points
(3, 2, 4) and (2, 1, 6), find (a) the position vector of a
point on the line and a vector parallel to it, and (b) a
straight line L2 parallel to L1 that passes through the
point (−2, 1, 2).

16. A straight line has the vector equation r = a + λb,
where a = 3j + 2k, and b = 2i + j + 2k. Find the carte-
sian equations of the line and the coordinates of three
points that lie on it.

17. A straight line passes through the point (3, 2, −3) par-
allel to the vector 2i + 3j − 3k. Find the cartesian equa-
tions of the line and the coordinates of three points that
lie on it.

18. In mechanics, if a point A moves with velocity vA and
point B moves with velocity vB, the velocity vR of A rel-
ative to B (the relative velocity of Awith respect to B)
is defined as vR = vA − vB. Power boat A moves north-
east at 20 knots and power boat B moves southeast at
30 knots. Find the velocity of boat Arelative to boat B,
and a unit vector in the direction of the relative velocity.

2.2 The Dot Product (Scalar Product)

A product of two vectors a and b can be formed in such a way that the result
is a scalar. The result is written a · b and called the dot product of a and b. The
names scalar product and inner product are also used in place of the term dot
product.

Dot Product
Let a and b be any two vectors that after a translation to bring their bases into
coincidence are inclined to one another at an angle θ , as shown in Fig. 2.14, where
0 ≤ θ ≤ π . Then the dot product of a and b is defined as the numberdot or scalar product

a · b = ‖a‖ · ‖b‖cos θ.

This geometrical definition of the dot product has many uses, but when working
with vectors a and b that are expressed in terms of their components in the i, j, and
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θ
b

a

FIGURE 2.14 Vectors a and b
inclined at an angle θ .

k directions, a more convenient form is needed. An equivalent definition that is
easier to use is given later in (23).

Properties of the dot product

The following results, in which a and b are any two vectors and λ and μ are any two

properties
of the dot
product

scalars, are all immediate consequences of the definition of the dot product.

The dot product is commutative

a · b = b · a and λa · μb = μa · λb = λμa · b (15)

The dot product is distributive and linear

a · (b + c) = a · b + a · c and a · (λb + μc) = λa · b + μa · c. (16)

The angle between two vectors

The angle θ between vectors a and b is given by

cos θ = a · b
‖a‖ · ‖b‖ , with 0 ≤ θ ≤ π. (17)

Parallel vectors (θ = 0)

If vectors a and b are parallel, then

a · b = ‖a‖ · ‖b‖ and, in particular, a · a = ‖a‖2. (18)

Orthogonal vectors (θ = π/2)

If vectors a and b are orthogonal, then

a · b = 0. (19)
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Product of unit vectors

If â and b̂ are unit vectors, then

â · b̂ = cos θ, with 0 ≤ θ ≤ π. (20)

An immediate consequence of properties (15), (19), and (20) is that

i · i = j · j = k · k = 1, (21)

and

i · j = j · i = i · k = k · i = j · k = k · j = 0. (22)

We now use results (21) and (22) to arrive at a simple expression for the dot
product in terms of the components of a and b. To arrive at the result we set
a = a1i + a2j + a3k, b = b1i + b2j + b3k and form the dot product

a · b = (a1i + a2j + a3k) · (b1i + b2 j + b3k).

Expanding this product using (15) and (16) and making use of results (21) and (22)
brings us to the following alternative definition of the dot product expressed in termsdot product in terms

of components of the components of a and b:

a · b = a1b1 + a2b2 + a3b3. (23)

Using (23) in (17) produces the following useful expression that can be used to find
the angle θ between a and b:

cos θ = a1b1 + a2b2 + a3b3(
a2

1 + a2
2 + a2

3

)1/2(
b2

1 + b2
2 + b2

3

)1/2
where 0 ≤ θ ≤ π. (24)

EXAMPLE 2.12 Find a · b and the angle between the vectors a and b, given that a = i + 2j + 3k and
b = 2i − j − 2k.

Solution ‖a‖ = √
14, ‖b‖ = 3, and a · b = 1 · 2 + 2 · (−1) + 3 · (−2) = −6. Using

these results in (24) gives

cos θ = −6/(3
√

14) = −2/
√

14,

so as 0 ≤ θ ≤ π we see that θ = 2.1347 radians, or θ = 122.3◦.

The projection of a vector onto the line of another vector

The projection of vector a onto the line of vector b is a scalar, and it is the

projecting a vector
onto a line

signed length of the geometrical projection of vector a onto a line parallel to
b, with the sign positive for 0 ≤ θ < π/2 and negative for π/2 < θ ≤ π . This
is illustrated in Fig. 2.15, from which it is seen that the signed length of the
projection of a onto the line of vector b is ON, where ON = ‖a‖ cos θ .
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FIGURE 2.15 The projection of vector a onto the line of vector b.

If b̂ is the unit vector along b, then as a = â‖a‖, and â · b̂ = cos θ , the projection
ON = ‖a‖ cos θ can be written as the dot product

ON = ‖a‖â · b̂ = a · b̂ = a · b
‖b‖ (25)

EXAMPLE 2.13 Find the strength of the magnetic field vector H = 5i + 3j + 7k in the direction of
2i − j + 2k, where a unit vector represents one unit of magnetic flux.

Solution We are required to find the projection of vector H in the direction of
the vector 2i − j + 2k. Setting b = 2i − j + 2k, ‖b‖ = 3, so b̂ = (1/3)(2i − j + 2k),
so the strength of the vector H in the direction of b is

H · b̂ = (1/3)(5i + 3j + 7k) · (2i − j + 2k) = 7.

Direction cosines and direction ratios

If a = a1i + a2 j + a3k is an arbitrary vector, the unit vector â in the direction
of a is

â = (a1i + a2 j + a3k)/‖a‖
= (a1i + a2 j + a3k)/

(
a2

1 + a2
2 + a2

3

)1/2
. (26)

Taking the dot product of a with i, j, and k, and setting l = a1/

(a2
1 + a2

2 + a2
3)1/2, m = a2/(a2

1 + a2
2 + a2

3)1/2, and n = a3/(a2
1 + a2

2 + a2
3)1/2

gives

l = i · â, m = j · â, and n = k · â,

so we may write

â = li + mj + nk. (27)

The dot product â · â = l2 + m2 + n2 = (a2
1 + a2

2 + a2
3)/‖a‖2, but ‖a‖2 =

a2
1 + a2

2 + a2
3 , so

l2 + m2 + n2 = 1. (28)

The number l is the cosine of the angle β1 between a and the x-axis, the
number m is the cosine of the angle β2 between a and the y-axis, and the
number n is the cosine of the angle β3 between a and the z-axis, as shown in
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FIGURE 2.16 The angles β1, β2, and β3.

Fig. 2.16. The numbers (l, m, n) are called the direction cosines of a, because
they determine the direction of the unit vector â that is parallel to a.

Notice that when any two of the three direction cosines l, m, and n of a

direction cosines

vector a are given, the third is related to them by

l2 + m2 + n2 = 1.

Because of result (27) it is always possible to write

a = ‖a‖(li + mj + nk), (29)

where l, m, and n are the direction cosines of a.
As the components a1, a2, and a3 of a are proportional to the direction

cosines, they are called the direction ratios of a.direction ratios

EXAMPLE 2.14 Find the direction cosines and direction ratios of a = 3i + j − 2k.

Solution As ‖a‖ = √
14, the direction cosines are l = 3/

√
14, m = 1/

√
14, and

n = −2/
√

14. The direction ratios of a are 3, 1, and −2, or any nonnegative multiple
of these three numbers such as 15/

√
14, 5/

√
14, and −10/

√
14.

The triangle inequality

The following result will be needed in the proof of the triangle inequality that
is to follow. The absolute value of a · b = ‖a‖ · ‖b‖ cos θ is

|a · b| = ‖a‖ · ‖b‖|cos θ |,

but | cos θ | ≤ 1, so using this in the above result we obtain the Cauchy–Schwarz
inequality,

|a · b| ≤ ‖a‖ · ‖b‖. (30)
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THEOREM 2.2 The triangle inequality If a and b are any two vectors, then

‖a + b‖ ≤ ‖a‖ + ‖b‖.

Proof From (18) we have

‖a + b‖2 = (a + b) · (a + b) = a · a + 2a · b + b · b

= ‖a‖2 + 2a · b + ‖b‖2,

but a · b ≤ |a · b|, so from the Cauchy–Schwarz inequality (30)

‖a + b‖2 ≤ ‖a‖2 + 2‖a‖·‖b‖ + ‖b‖2

= (‖a‖ + ‖b‖)2.

Taking the positive square root of this last result, we obtain the triangle inequality

‖a + b‖ ≤ ‖a‖ + ‖b‖.

The triangle inequality will be generalized in Section 2.5, but in its present form
it is the vector equivalent of the Euclidean theorem that “the sum of the lengths of
any two sides of a triangle is greater than or equal to the length of the third side,”
and it is from this theorem that the inequality derives its name.

Equation of a Plane
When working with the vector calculus it is sometimes necessary to consider a plane
that is locally tangent to a point on a surface in space so it will be useful to derive
the general equation of a plane in both its vector and cartesian forms.

A plane � can be defined by specifying a fixed point belonging to the plane and a
vector n that is perpendicular to the plane. This follows because if n is perpendicular
at a point on the plane, it must be perpendicular at every point on the plane. Any
vector n that is perpendicular to a plane is called a normal to the plane. Clearly a
normal to a plane is not unique, because a plane has two sides, so if a normal n is
directed away from one side of the plane, the vector −n is a normal directed away
from the other side. Both n and −n can be scaled by any nonzero number and still
remain normals; consequently, if n is a normal to a plane, so also are all vectors of
the form λn, with λ �= 0 any real number.

Let a fixed point Aon plane � with normal n have position vector a relative to
an origin O, and let P be a general point on plane � with position vector r relative
to O. Then, as may be seen from Fig. 2.17, the vector r − a lies in the plane, and so
is perpendicular (normal) to n. Forming the dot product of n and r − a, and using
(19), shows that the vector equation of plane � is

n · (r − a) = 0, (31)

or, equivalently,

n · r = n · a. (32)

vector equation of
a plane

cartesian equation of
a plane The cartesian form of this equation follows by considering a general point

with coordinates (x, y, z) on plane �, setting r = xi + yj + zk, a = a1i + a2 j + a3k,
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FIGURE 2.17 Plane � with normal n passing
through point A.

and n = n1i + n2 j + n3k, and then substituting into (32) to get

(n1i + n2 j + n3k) · (xi + yj + zk) = (n1i + n2 j + n3k) · (a1i + a2 j + a3k).

Taking the dot products and using results (21) and (22) show the cartesian equation
of plane � to be

n1x + n2 y + n3z = n1a1 + n2a2 + n3a3 = d, a constant. (33)

EXAMPLE 2.15 Find the cartesian equation of the plane through the point (2, 5, 3) with normal
3i + 2 j − 7k.

Solution Here n1 = 3, n2 = 2, n3 = −7 and a1 = 2, a2 = 5, and a3 = 3, so substi-
tuting into (33) shows the plane has the equation

3x + 2y − 7z = −5.

Summary This section has introduced the dot or scalar product of two vectors in geometrical terms
and, more conveniently for calculations, in terms of the components of the two vectors
involved. The applications given include the important operation of projecting a vector
onto the line of another vector and the derivation of the vector equation and cartesian
equation of a plane.

EXERCISES 2.2

1. Find the dot products of the following pairs of vectors:
(a) i − j + 3k, 2i + 3j + k.
(b) 2i − j + 4k, −i + 2 j + 2k.
(c) i + j − 3k, 2i + j + k.

2. Find the dot products of the following pairs of vectors:
(a) i − 2 j + 4k, i + 2 j + 3k.
(b) 3i + j + 2k, 4i − 3j + k.
(c) 5i − 3j + 3k, 2i − 3j + 5k.

3. Find which of the following pairs of vectors are
orthogonal:
(a) 3i + 2 j − 6k, −9i − 6j + 18k.
(b) 3i − j + 7k, 3i + 2 j + k.

(c) 2i + j + k, i + j − k.
(d) i + j − 3k, 2i + j + k.

4. Find which, if any, of the following pairs of vectors are
orthogonal:
(a) 2i + j + k, 8i + 2 j + 2k.
(b) i + 2 j + 3k, 2i − 2 j − 3k.
(c) i + 2 j + 4k, 2i + j + 3k.
(d) i + j, 2 j + 3k.

5. Given that a = 2i + 3j − 2k, b = i + 3j + k and c = 3i +
j − k, find (a) (a + b) · c. (b) (2b − 3c) · a. (c) a · a.
(d) c · (a − 2b).
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6. Given that a = 3i + 2 j − 3k, b = 2i + j + 2k, and c = 5i +
2 j − 2k, find (a) b · (b + (a · c)c). (b) (a + 2b) · (2b − 3c).
(c) (c · c)b − (a · a)c.

7. Find the angle between the following pairs of vectors:
(a) i + j + k, 2i + j − k.
(b) 2i − j + 3k, 2i + j + 3k.
(c) 3i − j + k, i − 2 j + 3k.
(d) i − 2 j + k, 4i − 8j + 16k.

8. Given a = 2i − 3j − 3k, b = i + j + 2k, and c = 3i −
2 j − k, find the angles between the following pairs of
vectors:
(a) a + b, b − 2c. (b) 2a − c, a + b − c. (c) b + 3c,
a − 2c.

9. Find the component of the force F = 4i + 3j + 2k in the
direction of the vector i + j + k.

10. Find the component of the force F = 2i + 5j − 3k in the
direction of the vector 2i + j − 2k.

11. Given that a = i + 2 j + 2k and b = 2i − 3j + k, find
(a) the projection of a onto the line of b, and (b) the
projection of b onto the line of a.

12. Given that a = 3i + 6j + 9k and b = i + 2 j + 3k,
(a) find the projection of a onto the line of b and
(b) compare the magnitude of a with the result found
in (a) and comment on the result.

13. Find the direction cosines and corresponding angles for
the following vectors:
(a) i + j + k. (b) i − 2 j + 2k. (c) 4i − 2 j + 3k.

14. Find the direction cosines and corresponding angles for
the following vectors:
(a) i − j − k. (b) 2i + 2 j − 5k. (c) −4j − k.

15. Verify the triangle inequality for vectors a = i + 2 j + 3k
and b = 2i + j + 7k.

16. Verify the triangle inequality for vectors a = 2i − j − 2k
and 3i + 2 j + 3k.

17. Find the equation of the plane with normal 2i − 3j + k
that contains the point (1, 0, 1).

18. Find the equation of the plane with normal i − 2 j + 2k
that contains the point (2, −3, 4).

19. Given that a plane passes through the point (2, 3, −5),
and the vector 2i + k is normal to the plane, find the
cartesian form of its equation.

20. The equation of a plane is 3x + 2y − 5z = 4. Find a vec-
tor that is normal to the plane, and the position vector
of a point on the plane.

21. Explain why if the vector equation of plane � in (32) is
divided by ‖n‖ to bring it into the form r · n = a · n, the
number |a · n| is the perpendicular distance of origin O
from the plane. Explain also why if a · n > 0 the plane
lies to the side of O toward which n is directed, as in
Fig. 2.15, but that if a · n < 0 it lies on the opposite side
of O toward which −n is directed.

22. Use the result of Exercise 21 to find the perpendicular
distance of the plane 2x − 4y − 5z = 5 from the origin.

23. The angle between two planes is defined as the angle
between their normals. Find the angle between the two
planes x + 3y + 2z = 4 and 2x − 5y + z = 2.

24. Find the angle between the two planes 3x + 2y − 2z = 4
and 2x + y + 2z = 1.

25. Let a and b be two arbitrary skew (nonparallel) vectors,
and set a = ab + ap, where ab is parallel to b and ap is
perpendicular to b and lies in the plane of a and b. Find
ab and ap in terms of a and b.

26. The law of cosines for a triangle with sides of length a,
b, and c, in which the angle opposite the side of length
c is C, takes the form

c2 = a2 + b2 − 2ab cos C.

Prove this by taking vectors a, b, and c such that c =
a − b and considering the dot product c · c = (a − b) ·
(a − b).

27. The work units W done by a constant force F when
moving its point of application along a straight line
L parallel to a vector a are defined as the product of
the component of F in the direction of a and the dis-
tance d moved along line L. Express W in terms of F, a,
and d.

28. If a and b are arbitrary vectors and λ and μ are any two
scalars, prove that

‖λa + μb‖2 ≤ λ2‖a‖2 + 2λμa · b + μ2‖b‖2.

29. Verify the result of Exercise 28 by settingλ = 2, μ = −3,
a = 3i + j − 4k, and b = 2i + 3j + k.

2.3 The Cross Product

A product of two vectors a and b can be defined in such a way that the result is a
vector. The result is written a × b and called the cross product of a and b. The name
vector product is also used in place of the term cross product.

Before defining the cross product we first formulate what is called the right-hand
rule. Given any two skew vectors a and b, the right-hand rule is used to determine
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the sense of a third vector c that is required to be normal to the plane containing
vectors a and b.

The Right-Hand Rule
Let a and b be two arbitrary skew vectors with the same base point, with c a vector

right-hand rule

normal to the plane containing them. If the fingers of the right hand are curled in
such a way that they point from vector a to vector b through the angle θ between
them, with 0 < θ < π , then when the thumb is extended away from the palm it will
point in the direction of vector c.

When applying the right-hand rule, the order of the vectors is important. If
vectors a, b, and c obey the right-hand rule, they will always be written in the order
a, b, c, with the understanding that c is normal to the plane of a and b, with its sense
determined by the right-hand rule. Figure 2.18 illustrates the right-hand rule.

An important special case of the right-hand rule has already been encountered
in connection with the unit vectors i, j, and k that obey the rule, and because the
vectors are mutually orthogonal the vectors j, k, i and k, i, j also obey the right-hand
rule.

The cross product (a geometrical interpretation)

Let a and b be two arbitrary vectors, with n̂ a unit vector normal to the plane of

geometrical definition
of a cross product

a and b chosen so that a, b, and n̂, in this order, obey the right-hand rule. Then
the cross product of vectors a and b, written a × b, is defined as the vector

a × b = ‖a‖.‖b‖ sin θ n̂. (34)

This geometrical definition of the cross product is useful in many situations,
but when the vectors a and b are specified in terms of their cartesian components
a different form of the definition will be needed.

The cross product can be interpreted as a vector area, in the sense that it can
be written a × b = Sn̂, where S = OA· BN = ‖a‖ · ‖b‖ sin θ is the geometrical area

θ

a

b

c

FIGURE 2.18 The right-hand rule.
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FIGURE 2.19 The cross product
interpreted as the vector area of a
parallelogram.

of the parallelogram in Fig. 2.19, and the unit vector n̂ is normal to the area. This
shows that the geometrical area S of the vector parallelogram with sides a and b is
simply the modulus of the cross product a × b, so S = ‖a × b‖.

Properties of the cross product

The following results are consequences of the definition of the cross product.

The cross product is anticommutative

properties of the
cross product

a × b = −b × a (35)

The cross product is associative

a × (b + c) = a × b + a × c. (36)

Parallel vectors (θ = 0)

If vectors a and b are parallel, then

a × b = 0. (37)

Orthogonal vectors (θ = π/2)

If vectors a and b are orthogonal, then

a × b = ‖a‖.‖b‖n̂. (38)

Product of unit vectors

If a and b are unit vectors, then

a × b = sin θ n̂. (39)

An immediate consequence of properties (34), (35), and (37) is that

i × i = j × j = k × k = 0, (40)
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and

i × j = k, j × i = −k, j × k = i, k × j = −i, k × i = j, i × k = −j.

(41)

Only results (35) and (36) require some comment, as the other results are
obvious. The change of sign in (35) that makes the cross product anticommutative
occurs because when the vectors a and b are interchanged, the right-hand rule
causes the direction of n̂ to be reversed. Result (36) can be proved in several ways,
but we shall postpone its proof until a different expression for the cross product
has been derived.

To obtain a more convenient expression for the cross product that can be used
when a and b are known in terms of their components, we proceed as follows.
Let a = a1i + a2 j + a3k and b = b1i + b2 j + b3k, and consider the cross product
a × b = (a1i + a2 j + a3k) × (b1i + b2 j + b3k). Expanding this expression term by
term is justified because of the associative property given in (36), and it leads to the
result

a × b = a1b1i × i + a1b2i × j + a1b3i × k + a2b1j × i + a2b2 j × j

+ a2b3j × k + a3b1k × i + a3b2k × j + a3b3k × k.

Results (40) cause three terms on the right-hand side to vanish, and results (41)
allow the remaining six terms to be collected into three groups as follows to givecross product

in terms of
components a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k. (42)

This alternative expression for the cross product in terms of the cartesian com-
ponents of vectors a and b can be further simplified by making formal use of the
third-order determinant,

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ ,
because a formal expansion in terms of elements of the first row generates result
(42). We take this result as an alternative but equivalent definition of the cross
product.

The cross product (cartesian component form)

Let a = a1i + a2 j + a3k and b = b1i + b2 j + b3k. Then

practical definition of
a cross product using
a determinant

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (43)

When expressing a × b as the determinant in (43), purely formal use was made
of the method of expansion of a determinant in terms of the elements of its first
row, because (43) is not a determinant in the ordinary sense as its elements are a
mixture of vectors and numbers.
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EXAMPLE 2.16 Given that a = 3i − 2 j − k and b = i + 4j + 2k, find a × b and a unit vector n̂ normal
to the plane containing a and b such that a, b, and n, in this order, obey the right-hand
rule.

Solution Substitution into expression (43) gives

a × b =
∣∣∣∣∣∣

i j k
3 −2 −1
1 4 2

∣∣∣∣∣∣
= [(−2) · 2 − 4 · (−1)]i − [3 · 2 − 1 · (−1)] j + [3 · 4 − 1 · (−2)]k

= −7j + 14k.

The required unit vector n̂ is simply the unit vector in the direction of a × b, so

n̂ = (a × b)/‖a × b‖ = (−7j + 14k)/(7
√

5).

= (−1/
√

5)j + (2/
√

5)k.

We now return to the proof of the associative property stated in (35) and establish
it by means of result (43).

Setting a = a1i + a2 j + a3k, b = b1i + b2 j + b3k, and c = c1i + c2 j + c3k, we
have

a × (b + c) =
∣∣∣∣∣∣

i j k
a1 a2 a3

(b1 + c1) (b2 + c2) (b3 + c3)

∣∣∣∣∣∣ .
Expanding the determinant in terms of elements of its first row and grouping terms
gives

a × (b + c) = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

+ (a2c3 − a3c2)i − (a1c3 − a3c1)j + (a1c2 − a2c1)k

= a × b + a × c,

and the result is proved.

Summary This section first introduced the vector or cross product of two vectors in geometrical terms
and then used the result to show that the vector product is anticommutative, in the sense
that a × b = −b × a. Important results involving the vector product are given in terms
of the components of the two vectors that are involved. Finally, the vector product was
expressed in a form that is most convenient for calculations by writing it in determinantal
form, the rows of which contain the unit vectors i, j, and k and the components of the
respective vectors.

EXERCISES 2.3

In Exercises 1 through 6 use (43) to find a × b.

1. For a = 2i − j − 4k, b = 3i − j − k.
2. For a = −3i + 2 j + 4k, b = 2i + j − 2k.
3. For a = 7i + 6k, b = 3j + k.
4. For a = 3i + 7j + 2k, b = i − j + k.
5. For a = 2i + j + k, b = 2i − j + k.

6. For a = 3i − 2 j + 6k, b = 2i + j + 3k.
In Exercises 7 through 10 verify the equivalence of the def-
initions of the cross product in (34) and (43) by first using
(43) to calculate a × b, and hence ‖a × b‖ and n̂, and then
calculating ‖a‖ and ‖b‖ directly, using result (17) to find
cos θ and hence sin θ , and using the results to find a × b
from (34).
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7. For a = i + j + 3k and b = 3i + 2 j + k.
8. For a = i + j + k and b = 4i + 2 j + 2k.
9. For a = 2i + j − 3k and b = 5i − 2k.

10. For a = −2i − 3j + k and b = 3i + j + 2k.

In Exercises 11 through 14, verify by direct calculation that
(b + c) × a = −a × (b + c).

11. a = 3j + 2k, b = i − 4j + k, and c = 5i − 2 j + 3k.
12. a = −i + 5j + 2k, b = 4i + k, and c = −2i − 4j + 3k.
13. a = i + k, b = 3i − j − 2k, and c = 3i + j + k.
14. a = 5i + j + k, b = 2i − j − k, and c = 4i + 2 j + 3k.

In Exercises 15 through 18 find a unit vector normal to a
plane containing the given vectors.

15. 3i + j + k and i + 2 j + k.
16. 2i − j + 2k and 2i + 3j + k.
17. i + j + k and 2i + 3j − k.
18. 2i + 2 j − k and 3i + j + 4k.
19. Find a unit vector normal to a plane containing vec-

tors a + b and a + c, given that a = i + 2 j + k, b =
2i + j − 2k, and c = 3i + 2 j + 4k.

20. Given that a = 3i + j + k, b = 2i − j + 2k, and c = i +
j + k, find (a) a vector normal to the plane containing
the vectors a + (a · b)b and c and, (b) explain why the
normal to a plane containing the vectors a and b and
the normal to a plane containing the vectors (a · b)a
and (b · c)b are parallel.

In Exercises 21 through 24, find the cartesian equation of
the plane that passes through the given points.

21. (1, 3, 2), (2, 0, −4), and (1, 6, 11).
22. (1, 4, 3), (2, 0, 1), and (3, 4, −6).
23. (1, 2, 3), (2, −4, 1), and (3, 6, −1).
24. (1, 0, 1), (2, 5, 7), and (2, 3, 9).

Three points with position vectors a, b, and c will be
collinear (lie on a line) if the parallelogram with adja-
cent sides a − b and a − c has zero geometrical area.
Use this result in Exercises 25 through 28 to determine
which sets of points are collinear.

25. (2, 2, 3), (6, 1, 5), (−2, 4, 3).
26. (1, 2, 4), (7, 0, 8), (−8, 5, −2).
27. (2, 3, 3), (3, 7, 5), (0, −5, −1).
28. (1, 3, 2), (4, 2, 1), (1, 0, 2).
29. A vector N normal to the plane containing the skew

vectors a and b can be found as follows. N is normal to
a and b, so a · N = 0 and b · N = 0. If a component of N
is assigned an arbitrary nonzero value c, say, the other
two components can be found from these two equa-
tions as multiples of c, and N will then be determined
as a multiple of c. A suitable choice of c will make N a
unit normal N̂. Apply this method to vectors a and b in
Exercise 7 to find a vector N̂. Compare the result with
the unit vector

n̂ = (a × b)/‖a × b‖

found from (43). Explain why although both n̂ and N̂
are normal to the plane containing a and b they may
have opposite senses.

2.4 Linear Dependence and Independence
of Vectors and Triple Products

The dot and cross products can be combined to provide a simple test that determines
whether or not an arbitrary set of three vectors possesses a property of fundamental
importance to the algebra of vectors. First, however, some introductory remarks
are necessary.

Given a set of n vectors a1, a2, . . . , an, and a set of n constants c1, c2, . . . , cn, the
sum

c1a1 + c2a2 + · · · + cnan

is called a linear combination of the vectors. Linear combinations of the vectors i,linear combination
of vectors

basis

j, and k were used in Section 2.1 to express every vector in three-dimensional space
as a linear combination of these three vectors. A triad of vectors such as i, j, and
k with the property that all vectors in three-dimensional space can be represented
as linear combinations of these three vectors is said to form a basis for the space.



Section 2.4 Linear Dependence and Independence of Vectors and Triple Products 83
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FIGURE 2.20 Nonorthogonal triad
forming a basis in three-dimensional
space.

It is a fundamental property of three-dimensional space that a basis for the space
comprises a set of three vectors a1, a2, and a3, with the property that the linear
combination

c1a1 + c2a2 + c3a3 = 0 (44)

is only true when c1 = c2 = c3 = 0. Vectors a1, a2, and a3 satisfying this condition
are said to be linearly independent vectors, and a vector d of the formlinear independence

and linear
dependence d = c1a1 + c2a2 + c3a3,

where not all of c1, c2, and c3 are zero, is said to be linearly dependent on the vectors
a1, a2, and a3. The vectors i, j, and k that form a basis for three-dimensional space
are linearly independent vectors, but the position vector r = 2i − 3j + 5k is linearly
dependent on vectors i, j, and k.

Clearly, vectors i, j, and k do not form the only basis for three-dimensional
space, because any triad of linearly independent vectors a1, a2, and a3 will serve
equally well, as, for example, the nonorthogonal set of vectors shown in Fig. 2.20.

The dot and cross products will now be combined to develop a test for linear
dependence and independence based on the elementary geometrical idea of the
volume of the parallelepiped shown in Fig. 2.21, three edges a, b, and c of which
meet at the origin.

θ
a

b

c

x

y

V
n^

z

0

FIGURE 2.21 Volume V of a parallelepiped.
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The volume V of a parallelepiped is a nonnegative number given by the product
of the area of its base and its height. Suppose vectors a and b are chosen to form
two sides of the base of the parallelepiped. Then the vector area of this base has
already been interpreted as a × b. The vertical height of the parallelepiped is the
projection of vector c in the direction of the unit vector n̂ normal to the base, and
so is given by n̂ · c. Consequently, as a × b = ‖a‖ · ‖b‖ sin θ n̂, it follows that

V = |(a × b) · c|. (45)

The absolute value of the right-hand side of (45) has been taken because a volume
must be a nonnegative quantity, whereas the dot product (a × b) · c may be of
either sign.

If vectors a, b, and c form a basis for three-dimensional space, vector c cannot
be linearly dependent on vectors a and b, and so the parallelepiped in Fig. 2.21
with these vectors as its sides must have a nonzero volume. If, however, vectors
a, b, and c are coplanar (all lie in the same plane), and so cannot form a basis for
the space, the volume of the parallelepiped will be zero. These simple geometrical
observations lead to the following test for the linear independence of three vectors
in three-dimensional space.

THEOREM 2.3 Test for linear independence of vectors in three-dimensional space Let a, b, and
c be any three vectors. Then the vectors are linearly independent if (a × b)· c �= 0,

a test for linear
independence

and they are linearly dependent if (a × b) · c = 0.

A product of the type (a × b) · c is called a scalar triple product. The name
arises because the result is a scalar. It is also called a mixed triple product since
both · and × appear. Three vectors are involved in this dot (scalar) product, one of
which is the vector a × b and the other is the vector c.

Scalar triple products are easily evaluated, because taking the dot product of
a × b in the form given in (42) with c = c1i + c2 j + c3k givesscalar triple product

(a × b) · c = (a2b3 − a3b2)c1 − (a1b3 − a3b1)c2 + (a1b2 − a2b1)c3.

The right-hand side of this expression is simply the value of a determinant with
successive rows given by the components of a, b, and c, so we have arrived at the
following convenient formula for the scalar triple product.

Scalar triple product

Let a = a1i + a2 j + a3k, b = b1i + b2 j + b3k, and c = c1i + c2 j + c3k. Then

scalar triple product
as a determinant

(a × b) · c =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ . (46)

Interchanging any two rows in a matrix changes the sign but not the value of
its determinant. Two such switches in (46) leave the value unchanged, so the dot
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product is commutative and so we arrive at the useful result

(a × b) · c = a · (b × c). (47)

So, in a scalar triple product the dot and cross may be interchanged without altering
the result.

EXAMPLE 2.17 Given the two sets of vectors (a) a = i + 2j − 5k, b = i + j + 2k, c = i + 4j − 19k
and (b) a = 2i + j + k, b = 3i + 4k, c = i + j + k, find if the vectors are linearly in-
dependent or linearly dependent.

Solution We apply Theorem 2.3 to each set, using result (46) to evaluate the scalar
triple products.

(a) (a × b) · c =
∣∣∣∣∣∣
1 2 −5
1 1 2
1 4 −19

∣∣∣∣∣∣ = 0,

so the set of three vectors in (a) is linearly dependent. In fact this can be seen from
the fact that c = 3a − 2b.

(b) (a × b) · c =
∣∣∣∣∣∣
2 1 1
3 0 4
1 1 1

∣∣∣∣∣∣ = −4 �= 0,

so the set of three vectors in (b) is linearly independent. Although not re-
quired, the volume V of the parallelepiped formed by these three vectors is V =
|(a × b) · c| = | − 4| = 4.

Another notation for the scalar triple product of vectors a, b, and c is [a, b, c],
so

[a, b, c] = (a × b) · c, (48)

or, in terms of a determinant,

[a, b, c] =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ . (49)

Using this definition of [a, b, c] with the row interchange property of determi-
nants (see Section 1.7) shows thatalternative forms of a

scalar triple product
[a, b, c] = [b, c, a] = [c, a, b], (50)

because two row interchanges are needed to arrive at [b, c, a] from [a, b, c], leaving
the sign of the determinant unchanged, whereas two more are required to arrive at
[c, a, b] from [b, c, a], again leaving the sign of the determinant unchanged.

The order of the vectors in results (46), or in the equivalent notation of (48), is
easily remembered when the results are abbreviated to

a b c
b c a
c a b
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In this pattern, row two follows from row one when the first letter is moved to the
end position, and row three follows from row two by means of the same process. The
effect of applying this process to the third row is simply to regenerate the first row.
Rearrangements of this kind are called cyclic permutations of the three vectors.

Again making use of the row interchange property of determinants (see Section
1.7), it follows that

[a, b, c] = −[a, c, b],

because this time only one row interchange is needed to produce the result on the
right from the one on the left, so that a sign change is involved.

A different product involving the three vectors a, b, and c that this time gener-
ates another vector is of the form

a × (b × c),

and products of this type are called vector triple products since the results are
vectors. In these products it is essential to include the brackets because, in gen-
eral, a × (b × c) �= (a × b) × c. The most important results concerning vector triple
products are given in the following theorem.

THEOREM 2.4 Vector triple products If a, b, and c are any three vectors, then

(a) a × (b × c) = (a · c)b − (a · b)c

andvector triple product

(b) (a × b) × c = (a · c)b − (b · c)a.

Proof The proof of the results in Theorem 2.4 both follow in similar fashion,
so we only prove result (a) and leave the proof of result (b) as an exercise. We
write the cross product a × (b × c) in the form of the determinant in (43), with the
components of a in the second row and those of b × c (obtained from (42)) in the
third row when we find that

a × (b × c) =
∣∣∣∣∣∣

i j k
a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣∣∣∣∣∣ .
Expanding this determinant in terms of the elements of its first row and grouping
terms gives

a × (b × c) = [(a2c2 + a3c3)b1 − (a2b2 + a3b3)c1]i + [(a1c1 + a3c3)b2

− (a1b1 + a3b3)c2] j + [(a1c1 + a2c2)b3 − (a1b1 + a2b2)c3]k.

As it stands, this result is not yet in the form that is required, but adding and
subtracting a1b1c1 to the coefficient of i, a2b2c2 to the coefficient of j, and a3b3c3 to
the coefficient of k followed by grouping terms give

a × (b × c) = (a · c)b − (a · b)c,

and the result is established.
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EXAMPLE 2.18 Find a × (b × c) and (a × b) × c, given that a = 3i + j − 4k, b = 2i + j + 3k, and
c = i + 5j − k.

Solution a · b = −5, a · c = 12, and b · c = 4, so

a × (b × c) = (a · c)b − (a · b)c = 12b + 5c = 29i + 37j + 31k,

and

(a × b) × c = (a · c)b − (b · c)a = 12b − 4a = 12i + 8j + 52k.

Accounts of geometrical vectors can be found, for example, in references [2.1], [2.3],
[2.6], and [1.6].

Summary This section introduced the two fundamental concepts of linear dependence and inde-
pendence of vectors. It then showed how the scalar triple product involving three vectors,
that gives rise to a scalar quantity, provides a simple test for the linear dependence or
independence of the vectors involved. A simple and convenient way of calculating a scalar
triple product was shown to be in terms of a determinant with the elements in its rows
formed by the components of the three vectors involved in the product. Finally a vector
triple product was defined that gives rise to a vector quantity, and it was shown that to
avoid ambiguity it is necessary to bracket a pair of vectors in such a product. A rule for the
expansion of a vector triple product was derived and shown to involve a linear combina-
tion of two of the vectors multiplied by scalar products so that, for example, a × (b × c) =
(a · c)b − (a · b)c.

EXERCISES 2.4

In Exercises 1 through 4 use the vectors a, b, and c to find
(a) the scalar triple product a · (b × c), and (b) the volume
of the parallelepiped determined by these three vectors di-
rected away from a corner.

1. a = 2i − j − 3k, b = 3i − 2k, c = i + j − 4k.

2. a = i − j + 2k, b = i + j + 3k, c = 2i − j + 3k.

3. a = −i − j + k, b = 2i + 2 j + 3k, c = −4i + j + 3k.

4. a = 5i + 3k, b = 2i − j, c = −2i + 3j − 2k.

In Exercises 5 through 10 find which sets of vectors are
coplanar.

5. i + 3j + 2k, 2i + j + 4k, 4i + 7j + 8k.

6. 2i + j + 4k, i + 2 j + k, 4i + 3j + 6k.

7. 2i + k, i + 4j + 2k, 3i + 12 j + 7k.

8. i + j + k, 2i + j + 2k, 4i + 3j + k.

9. 2i + j − k, 3i + j + 2k, 5i + j + 8k.

10. 2i + j − k, i + 2 j + 2k, 5i + 4j + k.

In Exercises 11 through 15 use computer algebra to verify
that [a, b, c] = [c, a, b] = −[a, c, b].

11. a = i + j + k, b = 2i + j − k, c = 3i − j + k.

12. a = i − j − k, b = −5i + 2 j − 3k, c = 2i + 3j − 2k.

13. a = −3i − 4j + k, b = 9i + 12 j − 3k, c = i + 2j + k.

14. a = 3i + 4k, b = i + 5k, c = 2 j + k.

15. Prove that if a, b, c, and d are any four vectors, and
λ, μ are arbitrary scalars [λa + μb, c, d] = λ[a, c, d] +
μ[b, c, d]. Use computer algebra with vectors a, b, c,
d from Exercise 12 with d = 4c − 2 j + 6k, and scalars
λ, μ of your choice, to verify this result.

In Exercises 16 through 20 find (a) the cartesian equation of
the plane containing the given points, and (b) a unit vector
normal to the plane.

16. (1, 2, 1), (3, 1, −2), (2, 1, 4).
17. (2, 0, 3), (0, 1, 0), (2, 4, 5).
18. (−1, 2, −3), (2, 4, 1), (3, 0, 1).
19. (1, 2, 5), (−2, 1, 0), (0, 2, 0).
20. Prove result (b) of Theorem 2.4.
21. Show that

a × (b × c) + b × (c × a) + c × (a × b) = 0.

22. The law of sines for a triangle with angles A, B, and C
opposite sides with the respective lengths a, b, and c
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takes the form

a
sin A

= b
sin B

= c
sin C

.

Prove this by considering a vector triangle with sides
a, b, and c, where c = a + b, and taking the cross prod-
uct of c = a + b first with a, then with b, and finally
with c.

In Exercises 23 through 26 use the fact that four points with
position vectors p, q, r, and s will be coplanar if the vectors
p − q, p − r, and p − s are coplanar to find which sets of
points all lie in a plane.

23. (1, 1, −1), (−3, 1, 1), (−1, 2, −1), (1, 0, 0).
24. (1, 2, −1), (2, 1, 1), (0, 1, 2), (1, 1, 1).
25. (0, −4, 0), (2, 3, 1), (3, −4, −2), (4, −2, −2).
26. (1, 2, 3), (1, 0, 1), (2, 1, 2), (4, 1, 0).
27. The volume of a tetrahedron is one-third of the product

of the area of its base and its vertical height. Show the
volume V of the tetrahedron in Fig. 2.22, in which three
edges formed by the vectors a, b, and c are directed
away from a vertex, is given by

V = (1/6)|a · (b × c)|

28. Let a, b, c, and d be vectors and λ, μ, ν be scalars
satisfying the equation

λ(b × c) + μ(c × a) + ν(a × b) + d = 0.

Show that if a, b, and c are linearly independent, then

λ = −(a · d)/[a · (b × c)], μ = −(b · d)/[a · (b × c)],

ν = −(c · d)/[a · (b × c)].

c

a

b

FIGURE 2.22 Tetrahedron.

29. Let a, b, c, and d be vectors and λ, μ, ν be scalars satis-
fying the equation

λa + μb + νc + d = 0.

By taking the scalar products of this equation first with
b × c, then with a × c, and finally with a × b, show that
if a, b, and c are linearly independent, then

λ = −d · (b × c)/[a · (b × c)],

μ = −d · (c × a)/[a · (b × c)],

ν = −d · (a × b)/[a · (b × c)].

30. Show that a = i + 2 j + k, b = 2i − j − k, and c = 4i +
3j + ik are linearly independent vectors, and use them
with a vector d of your choice to verify the results of
Exercises 28 and 29.

31. Prove the Lagrange identity

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c).

2.5 n-Vectors and the Vector Space Rn

There are many occasions when it is convenient to generalize a vector and its
associated algebra to spaces of more than three dimensions. A typical situation
occurs in mechanics, where it is sometimes necessary to consider both the position
and the momentum of a particle as functions of time. This leads to the study of
a 6-vector, three components of which specify the particle position and three its
momentum vector at a time t .

n-tuples

Sets of n numbers (x1, x2, . . . , xn) in a given order, that can be thought of either
as n-vectors or as the coordinates of a point in n-dimensional space are called
ordered n-tuples of real numbers or, simply, n-tuples.
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An n-vector

If n ≥ 2 is an integer, and x1, x2, . . . , xn are real numbers, an n-vector is an

n-vector

ordered n-tuple

(x1, x2, . . . , xn).

components and
dimension The numbers x1, x2, . . . , xn are called the components of the n-vector, xi is the

ith component of the vector, and n is called the dimension of the space to which
the n-vector belongs. For any given n, the set of all vectors with n real components
is called a real n-space or, simply, an n-space, and it is denoted by the symbol Rn.
A corresponding space exists when the n numbers x1, x2, . . . , xn are allowed to be
complex numbers, leading to a complex n-space denoted by Cn. In this notation
R3 is the three-dimensional space used in previous sections.

In R3 the length of a vector was taken as the definition of its norm, so if
r = x1i + x2 j + x3k, then ‖r‖ = (x2

1 + x2
2 + x2

3 )1/2. A generalization of this norm to
Rn leads to the following definition.

The norm in Rn

The norm of the n-vector (x1, x2, . . . , xn), denoted by ‖(x1, x2, . . . , xn)‖ is

norm in Rn

‖(x1, x2, . . . , xn)‖ =
√(

x2
1 + x2

2 + · · · + x2
n

)
=
[

n∑
i=1

x2
i

]1/2

.

(51)

The laws for the equality, addition, and scaling of vectors in R3 in terms of the
components of the vector generalize to Rn as follows.

Equality of n-vectors

Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two n-vectors. Then the vectors will
be equal, written (x1, x2, . . . , xn) = (y1, y2, . . . , yn), if, and only if, correspond-
ing components are equal, so thatalgebraic rules for

equality, addition,
and scaling using
components

x1 = y1, x2 = y2, . . . , xn = yn. (52)

Addition of n-vectors

Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be any two n-vectors. Then the sum of
these vectors, written (x1, x2, . . . , xn) + (y1, y2, . . . , yn), is defined as the vector
whose ith component is the sum of the corresponding ith components of the
vectors for i = 1, 2, . . . , n, so that

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

(53)
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Scaling an n-vector

Let (x1, x2, . . . , xn) be an arbitrary n-vector and λ be any scalar. Then the
result of scaling the vector by λ, written λ(x1, x2, . . . , xn), is defined as the
vector whose ith component is λ times the ith component of the original
vector, for i = 1, 2, . . . , n, so that

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn). (54)

The null (zero) vector in Rn is the vector 0 in which every component is zero,
so that

0 = (0, 0, . . . , 0). (55)

As with vectors in R3, so also with n-vectors in Rn, it is convenient to use
a single boldface symbol for a vector and the corresponding italic symbols with
suffixes when it is necessary to specify the components. So we will write

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

The reasoning that led to the interpretation of Theorem 2.1 on the algebraic rules
for the addition and scaling of vectors in R3 leads also the following theorem for
n-vectors.

THEOREM 2.5 Algebraic rules for the addition and scaling of n-vectors in Rn Let x, y, and z be
arbitrary n-vectors, and let λ and μ be arbitrary real numbers. Then:

(i) x + y = y + x;
(ii) x + 0 = 0 + x = x;

(iii) (x + y) + z = x + (y + z);
(iv) λ(x + y) = λx + λy;
(v) (λμ)x = λ(μx) = μ(λx);

(vi) (λ + μ)x = λx + μx;
(vii) ‖λx‖ = |λ|‖x‖.

Because of this similarity between vectors in R3 and in Rn, the space Rn is
called a real vector space, though because the symbol R indicates real numbers
this is usually abbreviated a vector space. Analogously, when the elements of the
n-vectors are allowed to be complex, the resulting space is called the complex vector
space Cn.

So far there would seem to be little difference between vectors in R3 and Rn,
but major differences do exist, and they are best appreciated when geometrical
analogies are sought for vector operations in Rn.

The dot product of n-vectors

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be any two n-vectors. Then

dot product of
n-vectors

the dot product of these two vectors, written x · y and also called their inner
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product, is defined as the sum of the products of corresponding components,
so that

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = x1 y1 + x2 y2 + . . . + xn yn. (56)

The following properties of this dot product are strictly analogous to those of
the dot product in R3 and can be deduced directly from (56).

THEOREM 2.6 Properties of the dot product in Rn Let x, y, and z be any three n-vectors and λ

be any scalar. Then:

(i) x · y = y · x;
(ii) x · (y + z) = x · y + x · z;

(iii) (λx) · y = x · (λy) = λ(x · y);
(iv) x · x = ‖x‖2;
(v) x · 0 = 0;

(vi) ‖x‖2 = 0 if, and only if, x = 0.

The existence of a dot product in Rn allows the Cauchy–Schwarz and triangle
inequalities to be generalized, both of which play a fundamental role in the study
of vector spaces. Various forms of proof of these inequalities are possible, but the
one given here has been chosen because it makes full use of the properties of the
dot product listed in Theorem 2.6.

THEOREM 2.7 The Cauchy–Schwarz and triangle inequalities Let x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) be any two n-vectors. Then

(a) |x · y| ≤ ‖x‖ · ‖y‖ (Cauchy–Schwarz inequality),generalized
inequalities
for n-vectors and

(b) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

Proof We start by proving the Cauchy–Schwarz inequality in (a). The inequality
is certainly true if x · y = 0, so we need only consider the case x · y �= 0. Let x and
y be any two n-vectors, and λ be a scalar. Then, using properties (ii) to (iv) of
Theorem 2.6,

‖x + λy‖2 = (x + λy) · (x + λy),

= ‖x‖2 + λx · y + λy · x + λ2‖y‖2.

However, by result (1) of Theorem 2.6, y · x = x · y, so

‖x + λy‖2 = ‖x‖2 + 2λx · y + λ2‖y‖2.

We now set λ = −‖x‖2/(x · y) to obtain

‖x + λy‖2 = −‖x‖2 + (‖x‖4‖y‖2)/|x · y|2,
where we have used the fact that (x · y)2 = |x · y|2. As ‖x + λy‖2 is nonnegative, this
result is equivalent to

−‖x‖2 + (‖x‖4 · ‖y‖2)/|x · y|2 ≥ 0.
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Cancelling the nonnegative number ‖x‖2, which leaves the inequality sign un-
changed; rearranging the terms; and taking the square root of the remaining non-
negative result on each side of the inequality yields the Cauchy–Schwarz inequality

|x · y| ≤ ‖x‖ · ‖y‖.
To prove the triangle inequality (b) we set λ = 1 and start from the result

‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2.

As x · y may be either positive or negative, x · y ≤ |x · y|, so making use of the
Cauchy–Schwarz inequality shows that

‖x + y‖2 ≤ ‖x‖2 + 2‖x‖ · ‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

The triangle inequality follows from taking the square root of each side of this
inequality, which is permitted because both are nonnegative numbers.

The dot product in R3 allowed the angle between vectors to be determined and,
more importantly, it provided a test for the orthogonality of vectors. These same
geometrical ideas can be introduced into the vector space Rn if the Cauchy–Schwarz
inequality is written in the form

−‖x‖ · ‖y‖ ≤ x · y ≤ ‖x‖ · ‖y‖.
After division by the nonnegative number ‖x‖ · ‖y‖, this becomes

−1 ≤ x · y
‖x‖ · ‖y‖ ≤ 1.

This enables the angle θ between the two n-vectors x and y to be defined by the
result

cos θ = x · y
‖x‖ · ‖y‖ .

orthogonality
of n-vectors

On account of this result, two n-vectors x and y in Rn will be said to be
orthogonal when x · y = 0.

By analogy with R3 we will call x = (x1, x2, . . . , xn) a unit n-vector if ‖x‖ = 1.

unit n-vector
If we define the unit n-vectors e1, e2, . . . , en as

e1 = (1, 0, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), . . . , en = (0, 0, 0, 0, . . . , 1),

we see that

ei · e j =
{

1 for i = j
0 for i �= j,

showing that the ei are mutually orthogonal unit n-vectors in Rn. As a result of this
the vectors e1, e2, . . . , en play the same role in Rn as the vectors i, j, and k in R3.
This allows the vector x = (x1, x2, . . . , xn) to be written as

x = x1e1 + x2e2 + · · · + xnen,

where xi is the ith component of x.
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Now suppose that for n > 3, we set

u1 = (1, 0, 0, 0, . . . , 0), u2 = (0, 1, 0, 0, . . . , 0), u3 = (0, 0, 1, 0, . . . , 0),

and all other ui identically zero, so that ui = (0, 0, 0, 0, . . . , 0) for i = 4, 5, . . . , n.
Then it is not difficult to see that u1, u2, and u3 behave like the unit vectors i, j,
and k, so that, in some sense the vector space R3 is embedded in the vector space
Rn with vectors in both spaces obeying the same algebraic rules for addition and
scaling. This is recognized by saying that R3 is a subspace of Rn.subspaces

Subspace of Rn

A subset S of vectors in the vector space Rn is called a subspace of Rn if S is
itself a vector space that obeys the rules for the addition and the scaling of
vectors in Rn.

EXAMPLE 2.19 Find the condition that the set S of vectors of the form (x, mx + c, 0), for any m
and all real x forms a subspace of the vector space R3, and give a geometrical
interpretation of the result.

Solution The set S can only contain the null vector (0, 0, 0) if c = 0, so if c �= 0
the vectors in S cannot form a subspace of R3. Now let c = 0, so that S contains the
null vector. The vector addition law holds, because if (x, mx, 0) and (x′, mx′, 0) are
vectors in S, the sum

(x, mx, 0) + (x′, mx′, 0) = (x + x′, m(x + x′), 0)

is also a vector in S. The scaling λ(x, mx, 0) = (λx, mλx, 0) also generates a vector
in S, so the scaling law for vectors also holds, showing that S is a subspace of R3

provided c = 0.
If the three components of vectors in S are regarded as the x-, y-, and

z-components of a vector in R3, the vectors can be interpreted as points on the
straight line y = mx passing through the origin and lying in the plane z = 0. This
subspace is a one-dimensional vector space embedded in the three-dimensional
vector space R3.

EXAMPLE 2.20 Test the following subsets of Rn to determine if they form a subspace.

(a) S is the set of vectors (x1, x1 + 1, . . . , xn) with all the xi real numbers.
(b) S is the set of vectors (x1, x2, . . . , xn) with x1 + x2 + · · · + xn = 0 and all the xi

are real numbers.

Solution (a) The set S does not contain the null vector and so cannot form a
subspace of Rn. This result is sufficient to show that S is not a subspace, but to see
what properties of a subspace the set S possesses we consider both the summation
and scaling of vectors in S. If (x1, x1 + 1, . . . , xn) and (x′

1, x′
1 + 1, . . . , x′

n) are two
vectors in S, their sum

(x1, x1 + 1, . . . , xn) + (x′
1, x′

1 + 1, . . . , x′
n) = (x1 + x′

1, x1 + x′
1 + 2, . . . , xn + x′

n)

is not a vector in S, so the summation law is not satisfied.
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The scaling condition for vectors is not satisfied, because if λ is an arbitrary
scalar,

λ(x1, x1 + 1, . . . , xn) = (λx1, λx1 + λ, . . . , λxn) �= (a, a + 1, . . .), (λn1 = a)

showing that scaling generates another a vector in S. We have proved that the
vectors in S do not form a subspace of Rn.

(b) The set S does contain the null vector, because x1 = x2 = · · · = xn = 0 satisfies
the constraint condition x1 + x2 + · · · + xn = 0. Both the summation law and the
scaling law for vectors are easily seen to be satisfied, so this set S does form a
subspace of Rn.

EXAMPLE 2.21 Let C(a, b) be the space of all real functions of a single real variable x that are
continuous for a < x < b, and let S(a, b) be the set of all functions belonging to
C(a, b) that have a derivative at every point of the interval a < x < b. Show that
S(a, b) forms a subspace of C(a, b).

Solution In this case a vector in the space is simply any real function of a single
real variable x that is continuous in the interval a < x < b. The null vector corre-
sponds to the continuous function that is identically zero in the stated interval, so
as the derivative of this function is also zero, it follows that the set S(a, b) must
also contain the null vector. The sum of continuous functions in a < x < b is a con-
tinuous function, and the sum of differentiable functions in this same interval is a
differentiable function, so the summation law for vectors is satisfied. Similarly, scal-
ing continuous functions and differentiable functions does not affect either their
continuity or their differentiability, so the scaling law for vectors is also satisfied.
Thus, S(a, b) forms a subspace of C(a, b). Think of the dimension of these spores
as infinite; norm and inner product are easy to define.

Summary This section generalized the concept of a three-dimensional vector to a vector with n com-
ponents in Rn. It was shown that the magnitude of a vector in three space dimensions
generalizes to the norm of a vector in Rn and that in terms of components, the equality,
addition, and scaling of vectors in Rn follow the same pattern as with three space dimen-
sions. The dot product was generalized and two fundamental inequalities for vectors in Rn

were derived. The concept of orthogonality of vectors was generalized and the notion of
a subspace of Rn was introduced.

EXERCISES 2.5

In Exercises 1 through 8 find the sum of the given pairs of
vectors, their norms, and their dot product.

1. (2, 1, 0, 2, 2), (1, −1, 2, 2, 4).
2. (3, −1, −1, 2, −4), (1, 2, 0, 0, 3).
3. (2, 1, −1, 2, 1), (−2, −1, 1, −2, −1).
4. (3, −2, 1, 1, 2, 0, 1), (1, −1, 1, −1, 1, 0, 1).
5. (3, 0, 1, 0), (0, 2, 0, 4).
6. (1, −1, 2, 2, 0, 1), (2, −2, 1, 1, 1, 0).
7. (−1, 2, −4, 0, 1), (2, −1, 1, 0, 2).
8. (3, 1, 2, 4, 1, 1, 1), (1, 2, 3, −1, −2, 1, 3).

In Exercises 9 through 12 find the angle between the given
pairs of n-vectors and the unit n-vector associated with each
vector.

9. (3, 1, 2, 1), (1, −1, 2, 2).
10. (4, 1, 0, 2), (2, −1, 2, 1).
11. (2, −2, −2, 4), (1, −1, −1, 2).
12. (2, 1, −1, 1), (1, −2, 2, 2).

In Exercises 13 through 18 determine if the set of vectors
S forms a subspace of the given vector space. Give reasons
why S either is or is not a subspace.
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13. S is the set of vectors of the form (x1, x2, . . . , xn) in Rn,
with the xi real numbers and x2 = x4

1 .
14. S is the set of vectors of the form (x1, x2, . . . , xn) in

Rn, with the xi real numbers and x1 + 2x2 + 3x3 + · · · +
nxn = 0.

15. S is the set of vectors of the form (x1, x2, . . . , xn) in Rn,
with the xi real numbers and x1 + x2 + x3 + · · · + xn =
2.

16. S is the set of vectors of the form (x1, x2, . . . , x6) in R6,
with the xi real numbers and x1 = 0 or x6 = 0.

17. S is the set of vectors of the form (x1, x2, . . . , x6) in R6,
with the xi real numbers and x1 − x2 + x3 · · · + x6 = 0.

18. S is the set of vectors of the form (x1, x2, . . . , x5) in R5,
with the xi real numbers and x2 < x3.

In Exercises 19 to 23 determine if the given set S is a sub-
space of the space C[0, 1] of all real valued functions that
are continuous on the interval 0 ≤ x ≤ 1. Give reasons why
either S is a subspace, or it is not.

19. S is the set of all polynomials of degree two.
20. S is the set of all polynomial functions.
21. S is the set of all continuous functions such that f (0) =

f (1) = 0.
22. S is the set of all continuous functions such that f (0) = 0

and f (1) = 2.
23. S is the set of all continuous once differentiable func-

tions such that f (0) = 0 and f ′(x) > 0.
24. Prove that the set S of all vectors lying in any plane in

R3 that passes through the origin forms a subspace of
R3.

25. Explain why the set S of all vectors lying in any plane in
R3 that does not pass through the origin does not form
a subspace of R3.

26. Consider the polynomial P(λ) defined as

P(λ) = ‖x + λy‖2,

where x and y are vectors in Rn. Show, provided not
both x and y are null vectors, that the graph of P(λ) as
a function of λ is nonnegative, so P(λ) = 0 cannot have
real roots. Use this result to prove the Cauchy–Schwarz
inequality

|x · y| ≤ ‖x‖ · ‖y‖.
27. Let x and y be vectors in Rn and λ be a scalar. Prove

that

‖x + λy‖2 + ‖x − λy‖2 = 2(‖x‖2 + λ2‖y‖2).

28. If x and y are orthogonal vectors in Rn, prove that the
Pythagoras theorem takes the form

‖x + y‖2 = ‖x‖2 + ‖y‖2.

29. What conditions on the components of vectors x and y
in the Cauchy–Schwarz inequality cause it to become
an equality, so that

n∑
i=1

xi yi =
(

n∑
i=1

x2
i

)1/2 ( n∑
i=1

y2
i

)1/2

?

30. Modify the method of proof used in Theorem 2.7 to
prove the complex form of the Cauchy–Schwarz in-
equality∣∣∣∣∣ n∑

i=1

xi yi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi |2
)1/2

+
(

n∑
i=1

|yi |2
)1/2

,

where the xi and yi are complex numbers.

2.6 Linear Independence, Basis, and Dimension

The concept of the linear independence of a set of vectors in R3 introduced in
Section 2.4 generalizes to Rn and involves a linear combination of n-vectors.

Linear combination of n-vectors

Let x1, x2, . . . , xm be a set of n-vectors in Rn. Then a linear combination of the
n-vectors is a sum of the form

c1x1 + c2x2 + · · · + cmxm,

where c1, c2, . . . , cm are nonzero scalars.
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An example of a linear combination of vectors in R5 is provided by the vector
sum (m = 3, n = 5)

2x1 + x2 + 3x3,

where x1 = (1, 2, 3, 0, 4), x2 = (2, 1, 4, 1, −3), and x3 = (6, 0, 2, 2, −1). The vector
in R5 formed by this linear combination is

2x1 + x2 + 3x3 = 2(1, 2, 3, 0, 4) + (2, 1, 4, 1, −3) + 3(6, 0, 2, 2, −1),

= (22, 5, 16, 7, 2).

A linear combination of n-vectors is the most general way of combining n-
vectors, and the definition of a linear combination of vectors contains within it the
definition of the scaling of a single n-vector as a special case. This can be seen
by setting m = 1, because this reduces the linear combination to the single scaled
n-vector c1x1.

Linear dependence of n-vectors

Let x1, x2, . . . , xm be a set of n-vectors in Rn. Then the set is said to be linearly
dependent if, and only if, one of the n-vectors can be expressed as a linear

linear dependence
and independence
of n-vectors

combination of the remaining n-vectors.

An example of linear dependence in R4 is provided by the vectors x1 =
(1, 0, 2, 5), x2 = (2, 1, 2, 1), x3 = (3, 2, 1, 0), and x4 = (−1, −1, −1, 7), because

x4 = 2x1 − 3x2 + x3.

Linear independence of n-vectors

Let x1, x2, . . . , xm be a set of n-vectors in Rn. Then the set is said to be linearly
independent if, and only if, the n-vectors are not linearly dependent.

A simple example of a set of linearly independent vectors in R4 is provided by the
vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), and e3 = (0, 0, 1, 0). The linear indepen-
dence of these 4-vectors can be seen from the fact that for no choice of c1 and c2

can the vector c1e1 + c2e2 be made equal to e3.
To make effective use of the concept of linear independence, and to understand

the notion of the basis and dimension of a vector space, it is necessary to have a test
for linear independence. Such a test is provided by the following theorem.

THEOREM 2.8 Linear dependence and independence Let S be a set of non-zero n-vectors
x1, x2, . . . , xm, with m ≥ 2. Then:

(a) Set S is linearly dependent if the vector equation

c1x1 + c2x2 + · · · + cmxm = 0

is true for some set of scalars (constants) c1, c2, . . . , cm that are not all zero;
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(b) Set S is linearly independent if the vector equation

c1x1 + c2x2 + · · · + cmxm = 0

is only true when c1 = c2 = · · · = cm = 0.

Proof To establish result (a) it is necessary to show that the conditions of the
definition of linear dependence are satisfied. First, if the set S of n-vectors is linearly
dependent, scalars d1, d2, . . . , dm exist such that

d1x1 + d2x2 + · · · + dmxm = 0.

There is no loss of generality in assuming that d1 �= 0, because if this is not the case
a renumbering of the vectors can always make this possible. Consequently,

x1 = (−d2/d1)x2 + (−d3/d1)x3 + · · · + (−dm/d1)xm,

which shows, as claimed, that the set S is linearly dependent, because x1 is linearly
dependent on x2, x3, . . . , xm. A similar argument applies to show that xr is linearly
dependent on the remaining n-vectors in S provided dr �= 0, for r = 2, 3, . . . , m.

Conversely, if one of the n-vectors in set S, say x1, is linearly dependent on the
remaining n-vectors in the set, scalars d1, d2, . . . , dm can be found such that

x1 = d2x2 + · · · + dmxm,

so that

x1 − d2x2 − · · · − dmxm = 0.

This result is of the form given in definition of linear dependence with c1 = 1,

c2 = −d2, . . . , cm = −dm, not all of which constants are zero, so again the set of
n-vectors in S is seen to be linearly dependent.

To establish result (b), suppose, if possible, that the set S of vectors is linearly
independent, but that some scalars d1, d2, . . . , dm that are not all zero can be found
such that

d1x1 + d2x2 + · · · + dmxm = 0.

Then if d1 �= 0, say, is one of these scalars, it follows that

x1 = (−d2/d1)x2 + (−d3/d1)x3 + · · · + (−dm/d1)xm,

which is impossible because this shows that, contrary to the hypothesis, x1 is linearly
dependent on the remaining n-vectors in S. So we must have c1 = c2 = · · · =
cm = 0.

A systematic and efficient computational method for the application of
Theorem 2.8 to vectors in Rn will be developed in the next chapter for the three
separate cases that arise, (a) m < n, (b) m = n, and (c) m > n. However, when n
and m are small, a straightforward approach is possible, as illustrated in the next
example.

EXAMPLE 2.22 Test the following sets of vectors in R4 for linear dependence or independence.

(a) x1 = (2, 1, 1, 0), x2 = (0, 2, 0, 1), x3 = (1, 1, 0, 2), x4 = (0, 2, 1, 1).

(b) x1 = (4, 0, 2), x2 = (2, 2, 0), x3 = (1, 1, 0), x4 = (5, 1, 2).
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Solution In both (a) and (b) it is necessary to consider the vector equation

c1x1 + · · · + cmxm = 0.

If the equation is only satisfied when c1 = c2 = · · · = cm = 0, the set of vectors will
be linearly independent, whereas if a solution can be found in which not all of the
constants c1, c2, c3, c4 vanish, the set of vectors will be linearly dependent.

(a) Substituting for x1, x2, x3, x4 in the preceding equation and equating cor-
responding components show the coefficients ci must satisfy the following
equations

2c1 + c3 = 0

c1 + 2c2 + c3 + 2c4 = 0

c1 + c4 = 0

c2 + 2c3 + c4 = 0.

The third equation shows that c4 = −c1, so the equations can be rewritten as

2c1 + c3 = 0

−c1 + 2c2 + c3 = 0

c2 − c1 + 2c3 = 0.

Adding twice the third equation to the first equation shows that c3 = 0, so c1 = 0, and
it then follows that c2 = c3 = c4 = 0. This has established the linear independence
of the set of vectors in (a).

(b) Proceeding in the same manner with the set of vectors in (b) leads to the
following equations for the coefficients ci :

4c1 + 2c2 + c3 + 5c4 = 0

2c2 + c3 + c4 = 0

2c1 + 2c4 = 0.

The third equation shows that c4 = −c1, so using this result in the first two equations
reduces the first one to

−c1 + 2c2 + c3 = 0

and the second to

−c1 + 2c2 + c3 = 0.

There is only one equation connecting c1, c2, and c3, and hence also c4. This
means that if c2 and c3 are given arbitrary values, not both of which are zero, the
constants c1 and c4 will be determined in terms of them. Thus, a set of constants
c1, c2, c3, c4 that are not all zero can be found that satisfy the vector equation,
showing that the set of vectors in (b) is linearly dependent. This set of constants
is not unique, but this does affect the conclusion that the set of vectors is linearly
dependent, because to establish linear dependence it is sufficient that at least one
such set of constants can be found.
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Example 2.22 has shown one way in which Theorem 2.8 can be implemented
for vectors in Rn, but it also illustrates the need for a systematic approach to the
solution of the system of equations for the coefficients when n is large.

A trivial case of Theorem 2.8 arises when the set of vectors S contains the null
vector 0, because then the set of vectors in S is always linearly dependent. This can
be seen by assuming that x1 = 0, because then the vector equation in the theorem
becomes

c10 + c2x2 + · · · + cmxm = 0.

This vector equation is satisfied if c1 �= 0 (arbitrary) and c2 = c3 = · · · = cm = 0, so,
as not all of the coefficients are zero, the set of vectors must be linearly dependent.

We conclude this introduction to the vector space Rn by defining the span, a
basis, and the dimension of a vector space.

Span of a vector space

Let the set of non-zero vectors x1, x2, . . . , xm belonging to a vector space

span of a vector space

V have the property that every vector in V can be expressed as a linear
combination of these vectors. Then the vectors x1, x2, . . . , xm are said to span
the vector space V.

EXAMPLE 2.23 All vectors v in the (x, y)-plane are spanned by the vectors i and j, because any
vector v = (v1, v2) can always be written v = v1i + v2 j. This is an example of vectors
spanning the space R2.

EXAMPLE 2.24 The vector space Rn is spanned by the unit n-vectors

e1 = (1, 0, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), . . . , en = (0, 0, 0, 0, . . . , 1).

EXAMPLE 2.25 The subspace R3 of the vector space R5 is spanned by the unit vectors

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0),

because all vectors v = (v1, v2, v3) in R3 can be written in the form of the linear
combination v = v1e1 + v1e2 + v3e3.

Basis of a vector space

Let x1, x2, . . . , xn be vectors in Rn. Then the vectors are said to form a basis
for the vector space Rn if:

basis of a vector
space in Rn

(i) The vectors x1, x2, . . . , xn are linearly independent.
(ii) Every vector in Rn can be expressed as a linear combination of the vectors

x1, x2, . . . , xn.

Dimension of a vector space

The dimension of a vector space is the number of vectors in its basis.

dimension of a
vector space
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EXAMPLE 2.26 A basis for the space of ordinary vectors in three dimensions is provided by the
vectors i, j, and k, so the dimension of the space is 3.

EXAMPLE 2.27 A basis for Rn is provided by the n vectors

e1 = (1, 0, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), . . . , en = (0, 0, 0, 0, . . . , 1),

so its dimension is n.

EXAMPLE 2.28 It was shown in Example 2.20 (b) that the set S of vectors (x1, x2, . . . , xn) with
x1 + x2 + · · · + xn = 0 forms a subspace of Rn. The dimension of Rn is n, but the
constraint condition x1 + x2 + · · · + xn = 0 implies that only n − 1 of the compo-
nents x1, x2, . . . , xn can be specified independently, because the constraint itself
determines the value of the remaining component. This in turn implies that the
basis for the subspace S can only contain n − 1 linearly independent vectors, so S
must have dimension n − 1.

More information on linear vector spaces can be found in references [2.1] and [2.5]
to [2.12].

Summary In this section the concepts of linear dependence and independence were generalized to
vectors in Rn, and the span of a vector space was defined as a set of vectors in Rn with the
property that every vector in Rn can be expressed as a linear combination of these vectors.
Naturally in Rn, as in R 3, a set of vectors spanning the space is not unique. The smallest set
of n vectors spanning a vector space is said to form a basis for the vector space, and the
dimension of a vector space is the number of vectors in its basis. This corresponds to the
fact that the unit vectors i, j, and k form a basis for the ordinary three-dimensional space
R 3, because every vector in this space can be represented as a linear combination of i, j,
and k.

EXERCISES 2.6

In Exercises 1 through 12 determine if the set of m vec-
tors in three-dimensional space is linearly independent by
solving for the scalars c1, c2 . . . cm in Theorem 2.8. Where
appropriate, verify the result by using Theorem 2.3.

1. a = i + 2 j + k, b = i − j + k, c = 2i + k.
2. a = 3i − j + k, b = i + 3k, c = 5i − j + 7k.
3. a = 2i − j + k, b = 3i + j − k, c = 8i + j + 7k.
4. a = 3i + 2k, b = i + j + 2k, c = 11i + 2 j − 2k.
5. a = 4i − j + 3k, b = i + 4j − 2k, c = 3i − j − k.
6. a = i + j − k, b = i − j + k, c = −i + j + k.
7. a = i + 2 j + k, b = i + 3j − k, c = 3i + 10j − 5k.
8. a = 2i + 3j + k, b = i − 3j + 2k, c = i + 15j − 4k.
9. a = 3i − j + 2k, b = i + j + k (m = 2).

10. a = i + j + k, b = i + 2 j + k, c = i + 3j + k, d = i − 4j + k
(m = 4).

11. a = i − j + 3k, b = 2i − j + 2k, c = i + k, d = 3i + j + k
(m = 4).

12. a = i + j, b = j + k, c = i − k.

In Exercises 13 through 16, determine if the set of vec-
tors in R4 is linearly independent by using the method of
Example 2.22.

13. (1, 3, −1, 0), (1, 2, 0, 1), (0, 1, 0, −1), (1, 1, 0, 1).
14. (1, −2, 1, 2), (4, −1, 0, 2), (2, 1, −1, 1), (1, 0, 0, −1).
15. (2, 1, 0, 1), (1, 0, 1, 1), (4, 1, 2, −1), (1, 0, 1, −1).
16. (1, 2, 1, 1), (1, −2, 0, −1), (1, 1, 1, 2), (1, −1, 0, 0).

In Exercises 17 through 20, find a basis and the dimension
of the given subspace S.

17. The subspace S of vectors in R5 of the form
(x1, x2, x3, x4, x5) with x1 = x2.

18. The subspace S of vectors in R4 of the form
(x1, x2, x3, x4) with x1 = 2x2.

19. The subspace S of vectors in R5 of the form
(x1, x2, x3, x4, x5) with x1 = x2 = 2x3.
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20. The subspace S of vectors in R6 of the form
(x1, x2, x3, x4, x5, x6) with x1 = 2x2 and x3 = −x4.

21. Let u = cos2 x and v = sin2 x form a basis for a vector
space V. Find which of the following can be represented
in terms of u and v, and so lie in V.

(a) 2. (b) sin 2x. (c) 0. (d) cos 2x. (e) 2 + 3x. (f) 3 −
4 cos 2x.

22. Given that r ≤ n, prove that any subset S of r vectors
selected from a set of n linearly independent vectors is
linearly independent.

2.7 Gram–Schmidt Orthogonalization Process

A set of vectors forming a basis for a vector space is not unique, and having ob-
tained a basis by some means, it is often useful to replace it by an equivalent set
of orthogonal vectors. The Gram–Schmidt orthogonalization process accomplishes
this by means of a sequence of simple steps that have a convenient geometrical
interpretation. We now develop the Gram–Schmidt orthogonalization process for
geometrical vectors in R3, though in Section 4.2 the method will be extended to vec-
tors in Rn to enable orthogonal matrices to be constructed from a set of eigenvectors
associated with a symmetric matrix.

Let us now show how any basis for R3, comprising three nonorthogonal linearly
independent vectors a1, a2, and a3, can be used to construct an equivalent basis
involving three linearly independent orthogonal vectors u1, u2, and u3. It is essential
that the vectors a1, a2, and a3 be linearly independent, because if not, the vectors
u1, u2, and u3 generated by the Gram–Schmidt orthogonalization process will be
linearly dependent and so cannot form a basis for R3. The derivation of the method
starts by setting

u1 = a1,

where the choice of a1 instead of a2 or a3 is arbitrary.
The component of a2 in the direction of u1 is u1 · a2, so the vector component

of a2 in this direction is

(u1 · a2)u1 = (u1 · a2)u1

‖u1‖2
,

and this always exists because ‖u1‖2 > 0. Subtracting this vector from a2 gives a
vector u2 that is normal to u1, so

u2 = a2 − (u1 · a2)u1

‖u1‖2
.

Similarly, to find a vector normal to both u1 and u2 involving a3, it is necessary
to subtract from a3 the components of vector a3 in the direction of u1 and also in
the direction of u2, so that

u3 = a3 − (u1 · a3)u1

‖u1‖2
− (u2 · a3)u2

‖u2‖2
,

and this also always exists, because ‖u1‖2 > 0 and ‖u2‖2 > 0.
If an orthonormal basis is required, it is necessary to normalize the vectors

u1, u2, and u3 by dividing each by its norm.



102 Chapter 2 Vectors and Vector Spaces

Rule for the Gram–Schmidt orthogonalization process in R3

A set of nonorthogonal linearly independent vectors a1, a2, and a3 that form
a basis in R3 can be used to generate an equivalent orthogonal basis involving
the vectors, u1, u2, and u3 by setting

u1 = a1, u2 = a2 − (u1 · a2)u1

‖u1‖2
, and

u3 = a3 − (u1 · a3)u1

‖u1‖2
− (u2 · a3)u2

‖u2‖2
.

As already remarked, the choice of a1 as the vector with which to start the
orthogonalization process was arbitrary, and the process could equally well have
been started by setting u1 = a2 or u1 = a3. Using a different vector will produce a
different set of orthogonal vectors u1, u2, and u3, but any basis for R3 is equivalent
to any other basis, so unless there is a practical reason for starting with a particular
vector, the choice is immaterial.

EXAMPLE 2.29 Given the nonorthogonal basis a1 = i − j − k, a2 = i + j + k, and a3 = −i + 2k,
use the Gram–Schmidt orthogonalization process to find an equivalent orthogonal
basis, and then find the corresponding orthonormal basis.

Solution Using the preceding rule we start with u1 = i − j − k, and to find u2 we
need to use the results u1 · a2 = −1 and ‖u1‖2 = 3, so that

u2 = i + j + k − (−1/3)(i − j − k) = (4/3)i + (2/3)j + (2/3)k.

To find u3 we need to use the results u1 · a3 = −3, ‖u1‖2 = 3, u2 · a3 = 0, and
‖u2‖2 = 24/9, so that

u3 = −i + 2k − (−3/3)(i − j − k) = −j + k.

So the required equivalent orthogonal basis is

u1 = i − j − k, u2 = (4/3)i + (2/3)j + 2/3k, and u3 = −j + k.

The corresponding orthonormal basis obtained by dividing each of these vectors
by its norm (modulus) is

û1 = (1/
√

3)u1, û2 = (1/2)
√

(3/2)u2 and û3 = (1/
√

2)u3.

Other accounts of the Gram–Schmidt orthogonalization process are to be found in
references [2.1] and [2.7] to [2.12].
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Summary In this section it is shown how in R 3 the Gram–Schmidt orthogonalization process converts
any three nonorthogonal linearly independent vectors a1, a2, and a3 into three orthogonal
vectors u1, u2, and u3. If necessary, the vectors u1, u2, and u3 can then be normalized in
the usual manner to form an orthogonal set of unit vectors.

EXERCISES 2.7

In Exercises 1 through 6, use the given nonorthogonal
basis for vectors in R3 to find an equivalent orthogonal
basis by means of the Gram–Schmidt orthogonalization
process.

1. a1 = i + 2 j + k, a2 = i − j, a3 = 2 j − k.
2. a1 = j + 3k, a2 = i + j − k, a3 = i + 2k.
3. a1 = 2i + j, a2 = 2 j + k, a3 = k.
4. a1 = i + 3k, a2 = i − j + k, a3 = 2i + j.
5. a1 = −i + k, a2 = 2 j + k, a3 = i + j + k.

6. a1 = i + k, a2 = −j + k, a3 = i + j + 2k.

In Exercises 7 and 8, find two different but equivalent sets
of orthogonal vectors by arranging the same three non-
orthogonal vectors in the orders indicated.

7. (a) a1 = 3j − k, a2 = i + j, a3 = i + 2k.

(b) a1 = i + j, a2 = 3j − k, a3 = i + 2k.
8. (a) a1 = j − k, a2 = i + k, a3 = −i − j + k.

(b) a1 = −i − j + k, a2 = i + k, a3 = j − k.
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3C H A P T E R

Matrices and Systems
of Linear Equations

Many types of problems that arise in engineering and physics give rise to linear alge-
braic simultaneous equations. A typical engineering example involves the determi-

nation of the forces acting in the struts of a pin-jointed structure like a truss that forms the
side of a bridge supporting a load. The determination of the forces in a strut is important
in order to know when it is in compression or tension, and to ensure that no truss exceeds
its safe load. The analysis of the forces in structures of this type gives rise to a set of linear
simultaneous equations that relate the forces in the struts and the external load.

It is necessary to know when systems of linear equations are consistent so a solution
exists, when they are inconsistent so there is no solution, and whether when a solution
exists it is unique or nonunique in the sense that it involves a number of arbitrary param-
eters. In practical problems all of these mathematical possibilities have physical meaning,
and in the case of a truss, the inability to determine the forces acting in a particular strut
indicates that it is redundant and so can be removed without compromising the integrity
of the structure.

A more complicated though very similar situation occurs when linearly vibrating sys-
tems are coupled together, as may happen when an active vibration damper is attached
to a spring-mounted motor. However, in this case it is a system of simultaneous linear
ordinary differential equations determining the amplitudes of the vibrations of the motor
and vibration damper that are coupled together. The analysis of this problem, which will
be considered later, also gives rise to a linear system of simultaneous algebraic equations.

Linear ordinary differential equations are also coupled together when working with
linear control systems involving feedback. When such systems are solved by means of the
Laplace transform to be described later, linear algebraic systems again arise and the nature
of the zeros of the determinant of a certain quantity then determines the stability of the
control system.

Linear systems of simultaneous algebraic equations also play an essential role in com-
puter graphics, where at the simplest level they are used to transform images by translating,
rotating, and stretching them by differing amounts in different directions.

Although each equation in a system of linear algebraic equations can be considered
separately, such can be discovered about the properties of the physical problem that gave
rise to the equations if the system of equations can be studied as a whole. This can be
accomplished by using the algebra of matrices that provides a way of analyzing systems
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as a single entity, and it is the purpose of this chapter to introduce and develop this aspect
of what is called linear algebra.

After defining the notion of a matrix, this chapter develops the fundamental matrix
operations of equality, addition, scaling, transposition, and multiplication. Various appli-
cations of matrices are given, and the brief review of determinants given in Chapter 1 is
developed in greater detail, prior to its use when considering the solution of systems of
linear algebraic equations.

The concept of elementary row operations is introduced and used to reduce systems
of linear algebraic equations to a form that shows whether or not a unique solution exists.
When a solution does exist, which is either unique or determined in terms of some of the
remaining variables, this reduction enables the solution to be found immediately.

The inverse of an n × n matrix is defined and shown only to exist when the determinant
of the matrix is nonvanishing, and, finally, the derivative of a matrix whose elements
are functions of a variable is introduced and some of its most important properties are
derived.

3.1 Matrices

Matrices arise naturally in many different ways, one of the most common being
in the study of systems of linear equations such as

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm.

(1)

In system (1) the numbers ai j are the coefficients of the equations, the numbers bi

are the nonhomogeneous terms, and the number of equations m may equal, exceed,
or be less than n, the number of unknowns x1, x2, . . . , xn.

System (1) is said to be homogeneous when b1 = b2 = · · · = bm = 0, and to be
nonhomogeneous when at least one of the bi is nonvanishing. The algebraic prop-
erties of the system are determined by the array of coefficients ai j , the nonhomo-
geneous terms bi and the numbers m and n. From now on, the array of coefficients
and the nonhomogeneous terms on the right will be denoted by the single symbols
A and b, respectively, where

A =

⎡⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

⎤⎥⎥⎦ and b =

⎡⎢⎢⎣
b1

b2

·
bm

⎤⎥⎥⎦ . (2)

The array of mn coefficients ai j in m rows and n columns that form A is an
example of an m × n matrix, where m × n is read “m by n.” The array b is an
example of an m × 1 matrix, and it is called an m element column vector. We will
use the convention that an array such as A, with two or more rows and two or more
columns, will be denoted by a boldface capital letter. An array with a single row, or
a column such as b, will be denoted by a boldface lowercase letter.

Each entry in a matrix is called an element of the matrix, and entries may be
numbers, functions, or even matrices themselves. The suffixes associated with an
element show its position in the matrix, because the first suffix is the row number
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and the second is the column number. Because of this convention, the element a35

in a matrix belongs to the third row and the fifth column of the matrix. So, for
example, if A is a 3 × 2 matrix and its general element ai j = i + 3 j , then as i may
only take the values 1, 2, and 3, and j the values 1 and 2, it follows that

A =
⎡⎣4 7

5 8
6 9

⎤⎦ .

In a column vector c with elements c11, c21, c31, . . . , cm1, as only a single column
is involved, it is usual to vary the suffix convention by omitting the second suffix
and instead numbering the elements sequentially as c1, c2, c3, . . . , cm, so that

c =

⎡⎢⎢⎢⎢⎢⎢⎣

c1

c2
...
...

cm

⎤⎥⎥⎥⎥⎥⎥⎦ .

Later it will be necessary to introduce row vectors, and in an s element row vec-
tor r with elements r11, r12, r13, . . . , r1s, the notation is again simplified, this time by
omitting the first suffix and numbering the elements sequentially as r1, r2, . . . , rs , so

r = [r1, r2, . . . , rs]. (3)

In general, row and column vectors will be denoted by boldface lowercase letters
such as a, b, c, and x, and matrices such as the coefficient matrix in (2) will be
denoted by boldface capital letters such as A, B, P, and Q.

A different convention that is also used to denote a matrix involves enclosing
the array between curved brackets instead of the square ones used here. Thus,(

1 5 9
−3 2 4

)
and

[
1 5 9

−3 2 4

]
(4)

denote the same 2 × 3 matrix. A matrix should never be enclosed between two
vertical rules in order to avoid confusion with the determinant notation because[

3 −4
5 2

]
is a matrix, but

∣∣∣∣3 −4
5 2

∣∣∣∣ = 26 is a determinant.

Definition of a matrix

An m × n matrix is an array of mn entries, called elements, arranged in m rows
and n columns. If a matrix is denoted by A, then the element in its ith row and
jth column is denoted by ai j and

A = [ai j ] =

⎡⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . .

am1 am2 . . . amn

⎤⎥⎥⎦ .
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The following are typical examples of matrices:some typical matrices

A 1 × 1 matrix: [3]; a single element may be regarded as a matrix.

A 3 × 4 matrix:

⎡⎣1 3 5 0
2 −1 4 3
7 2 1 6

⎤⎦ ; a matrix with real numbers as elements.

A 2 × 2 matrix:
[

1 + i 1 − i
3 + 4i 2 − 3i

]
; a matrix with complex numbers as

elements.

A 2 × 2 matrix:
[

cosθ sin θ

−sinθ cos θ

]
; a matrix with functions as elements.

A 1 × 3 matrix: [2, −5, 7]; a three-element row vector.

A 2 × 1 matrix:
[

11
9

]
; a two-element column vector.

A square matrix is a matrix in which the number of rows m equals the number of
columns n. A typical square matrix is the 3 × 3 matrix⎡⎣2 0 5

1 −3 4
3 1 7

⎤⎦ .

Definition of the equality of matrices

Let A = [ai j ] be an m × n matrix and B = [bi j ] be a p × q matrix. Then ma-
trices A and B will be equal, written A = B, if, and only if:

(a) A and B have the same number of rows, and the same number of
columns, so that m = p and n = q, and

(b) ai j = bi j , for each i and j .

Equality of matrices means that if A and B are equal, then each is an identical copy
of the other.

EXAMPLE 3.1

If A =
[

2 3 a
b 6 1

]
, B =

[
2 3 9

−3 6 1

]
, and C =

⎡⎣ 2 3 9
−3 6 1

0 0 0

⎤⎦ ,

then A = B if and only if a = 9 and b = −3, but A �= C and B �= C.

Definition of matrix addition

The addition of matrices A and B is only defined if the matrices each have
the same number of rows and the same number of columns. Let A = [ai j ] and
B = [bi j ] be m × n matrices. Then the the m × n matrix formed by adding A
and B, called the sum of A and B and written A + B, is the matrix whose
element in the ith row and jth column is ai j + bi j , for each i and j , so that

A + B = [ai j + bi j ].

Matrices that can be added are said to be conformable for addition.
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It is an immediate consequence of this definition that A + B = B + A, so matrix
addition is commutative.

Definition of the transpose of a matrix

Let A = [ai j ] be an m × n matrix. Then the transpose of A, denoted by AT

(and sometimes by A′), is the matrix obtained from A by interchanging rows
and columns to produce the n × m matrix

AT = [ai j ]T = [a ji ].

The definition of the transpose of a matrix means that the first row of A becomes
the first column of AT, the second row of A becomes the second column of AT, . . . . ,

and, finally, the mth row of A becomes the mth column of AT. In particular, if A is
a row vector, then its transpose is a column vector, and conversely.

EXAMPLE 3.2

If A =
[

2 6 3
1 0 4

]
then AT =

⎡⎣2 1
6 0
3 4

⎤⎦ , and if A = [7, 3, 2] then AT =
⎡⎣7

3
2

⎤⎦ .

Definition of scaling a matrix by a number

Let A = [ai j ] be an m × n matrix and λ be a scalar (real or complex). Then if
A is scaled by λ, written λA, every element of A is multiplied by λ to yield
the m × n matrix

λA = [λai j ].

EXAMPLE 3.3
If λ = 2 and A =

[
2 −6 7
1 4 15

]
, then λA = 2A =

[
4 −12 14
2 8 30

]
,

and if λ = −1, then

λA = (−1)A = −A =
[−2 6 −7
−1 −4 −15

]
.

Taken together, the definitions of the addition and scaling of matrices show
that if the matrices A and B are conformable for addition, then the subtraction of
matrix B from A, called their difference and written A − B, is to be interpreted asdifference

(subtraction) of
matrices A − B = A + (−1)B.

EXAMPLE 3.4

If A =
[

2 5 8
1 −4 5

]
and B =

[
2 4 5
2 −4 1

]
, then A − B =

[
0 1 3

−1 0 4

]
.
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The null or zero matrix 0 is defined as any matrix in which every element is zero.
The introduction of the null matrix makes it appropriate to call −A the negative of
A, because

A − A = A + (−1)A = 0.

When working with the null matrix the number of its rows and columns is never
stated, because these are always taken to be whatever is appropriate for the equation

negative of a matrix

that is involved.

Definition of the product of a row and a column vector

Let a = [a1, a2, . . . , ar ] be an r-element row vector, and b = [b1, b2, . . . , br ]T

be an r -element column vector. Then the product ab, in this order, is the
number defined as

ab = a1b1 + a2b2 · · · + ar br .

Notice that this product is only defined when the number of elements in the row
vector A equals the number of elements in the column vector B.

EXAMPLE 3.5 Find the product ab given that a = [1, 4, −3, 10] and b = [2, 1, 4, −2]T.

Solution
ab = [1, 4, −3, 10]

⎡⎢⎢⎣
2
1
4

−2

⎤⎥⎥⎦
= (1) · (2) + (4) · (1) + (−3) · (4) + (10) · (−2)

= −26.

Definition of the product of matrices

Let A = [ai j ] be an m × n matrix in which the r th row is the row vector ar ,
and let B = [bi j ] be a p × q matrix in which the sth column is the column
vector bs . The matrix product AB, in this order, is only defined if the number
of columns in A equals the number of rows in B, so that n = p. The product is
then an m × q matrix with the element in its r th row and sth column defined
as ar bs . Thus, if crs = ar bs , as crs = ar1b1s + ar2b2s + · · · + arnbns ,

AB = [crs] = [ar1b1s + ar2b2s + · · · + arnbns],

for 1 ≤ r ≤ m and 1 ≤ s ≤ q, or, equivalently,

AB =

⎡⎢⎢⎣
a1b1 a1b2 a1b3 . . . a1bq

a2b1 a2b2 a2b3 . . . a2bq
. . . . . . . . . . . . . . .

amb1 amb2 amb3 . . . ambq

⎤⎥⎥⎦ .
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When a matrix product AB is defined, the matrices are said to be con-
formable for matrix multiplication in the given order.

It is important to notice that when the product AB is defined, the product BA mayin general, matrix
multiplication is
noncommutative

or may not be defined, and even when BA is defined, in general AB �= BA. This
situation is recognized by saying that, in general, matrix multiplication is noncom-
mutative.

Provided matrices A and B are conformable for multiplication, the above rule
for finding their product AB, in this order, is best remembered by saying that the
element in the ith row and jth column of AB is the product of the ith row of A and
the jth column of B.

EXAMPLE 3.6 Form the matrix products AB and BA given that

A =
[

1 4 −3
2 5 4

]
and B =

⎡⎣4 1
2 6
0 3

⎤⎦ .

Solution Let us calculate the matrix product AB. The first and second row vectors
of A are a1 = [1, 4, −3] and a2 = [2, 5, 4], and the first and second column vectors
of B are b1 = [4, 2, 0]T and b2 = [1, 6, 3]T. As A is a 2 × 3 matrix and B is a 3 × 2
matrix, the product AB is conformable for multiplication and yields a 2 × 2 matrix

AB =
[

a1b1 a1b2

a2b1 a2b2

]
=
[

(1 · 4 + 4 · 2 + (−3) · 0) (1 · 1 + 4 · 6 + (−3) · 3)
(2 · 4 + 5 · 2 + 4 · 0) (2 · 1 + 5 · 6 + 4 · 3)

]
=
[

12 16
18 44

]
.

The product BA is also conformable for multiplication and yields a 3 × 3
matrix, where now we must use the row vectors of B that with an obvious change
of notation are b1 = [4, 1], b2 = [2, 6], b3 = [0, 3], and the column vectors of A that
are a1 = [1, 2]T, a2 = [4, 5]T, and a3 = [−3, 4]T, so that

BA =
⎡⎣b1a1 b1a2 b1a3

b2a1 b2a2 b2a3

b3a1 b3a2 b3a3

⎤⎦ =
⎡⎣(4 · 1 + 1 · 2) (4 · 4 + 1 · 5) (4 · (−3) + 1 · 4)

(2 · 1 + 6 · 2) (2 · 4 + 6 · 5) (2 · (−3) + 6 · 4)
(0 · 1 + 3 · 2) (0 · 4 + 3 · 5) (0 · (−3) + 3 · 4)

⎤⎦
=
⎡⎣ 6 21 −8

14 38 18
6 15 12

⎤⎦ .

This is an example of two matrices A and B that can be combined to form the
products AB and BA, but AB �= BA.

EXAMPLE 3.7 Write the system of simultaneous equations (1) in matrix form.

Solution Using the matrices A and b in (2) and setting x = [x1, x2, . . . , xn]T allows
the system of equations (1) to be written

Ax = b.

Here, as is usual, to save space the transpose operation has been used to display
the elements of column vector x in the more convenient form x = [x1, x2, . . . , xn]T.
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The definitions of matrix multiplication and addition lead almost immediately
to the results of the following theorem, so the proof is left as an exercise.

THEOREM 3.1 Associative and distributive properties of matrices Let A, B, and C be matrices
that are conformable for the operations that follow, and let λ be a scalar. Then:

some important
properties of matrices (i) If AB and BA are both defined, in general AB �= BA;

(ii) A(BC) = (AB)C = ABC;

(iii) (λA)B = A(λB) = λAB;

(iv) A(B + C) = AB + AC;

(v) (A + B)C = AC + BC.

THEOREM 3.2 Transposition of a product If matrices A and B are conformable to form the
product AB, then

(AB)T = BTAT.

Proof The products (AB)T and BTAT are both defined, and each is an m × q
matrix. Introduce the notation [M]i j to denote the element of M in row i and
column j . Then from the transpose operation and the rule for matrix multiplication,
for all permissible i, j ,

[AB]T
i, j = [AB] j,i = (product of jth row of A with ith column of B) =

n∑
k=1

a jkbki .

Similarly,

[BTAT]i, j = (product of ith row of BT with jth column of AT)

= (product of ith column of B with jth row of A) =
n∑

k=1

a jkbki .

So [AB]T
i j = [BTAT]i j for all permissible i, j , showing that (AB)T = BTAT.

It is an immediate consequence of Theorem 3.1(ii) that if A is a square matrix
and m and n are positive integers,raising a matrix to a

power

A · A · A · . . . · A︸ ︷︷ ︸
n times

= An and Am · An = Am+n.

A useful result from the definition of addition is

(A + B)T = AT + BT,

while from Theorem 3.2

(ABC)T = CTBTAT.
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As the order in which a sequence of permissible matrix multiplications is per-
formed influences the product, it is necessary to introduce a form of words that
makes the order unambiguous. This is accomplished by saying that if matrix A mul-
tiplies matrix B from the left, as in AB, then B is premultiplied by A, while if A
multiplies B from the right, as in BA, then B is postmultiplied by A. Equivalently, in
the product AB, we can say that A is postmultiplied by B, or that B is premultiplied
by A.

Important Differences Between Ordinary
Algebraic Equations and Matrix Equations

(i) The algebraic equation ab = 0, in which a and b are numbers, not both of

pre- and post-
multiplication of
matrices

which are zero, implies that either a = 0 or b = 0. However, if the matrix product
AB is defined and is such that AB = 0, then it does not necessarily follow that either
A = 0 or B = 0.

(ii) The algebraic equation ab = ac in which a, b, and c are numbers, with a �= 0,
allows cancellation of the factor a leading to the conclusion that b = c. However,
if the matrix products AB and AC are defined and are such that AB = AC, this
does not necessarily imply that B = C, so that cancellation of matrix factors is not
permissible.

The validity of these two statements can be seen by considering the following simple
examples.

EXAMPLE 3.8 Consider matrices A and B given by

A =
[

1 4
3 12

]
and B =

[
4 −8

−1 2

]
.

Then AB = 0, but neither A nor B is a null matrix.

EXAMPLE 3.9 Consider the matrices A, B, and C given by

A =
[

1 −1
2 −2

]
, B =

[
2 4 6
2 3 4

]
, and C =

[
3 6 8
3 5 6

]
.

Then

AB = AC =
[

0 1 2
0 2 4

]
,

but B �= C.

In a square n × n matrix A = [ai j ], the elements on a line extending from top
left to bottom right is called the leading diagonal of A, and it contains the n elements
a11, a22, . . . , ann.

So the leading diagonal of the 2 × 2 matrix A in Example 3.8 contains the
elements 1 and 12, and the leading diagonal of the 2 × 2 matrix B contains the
elements 4 and 2. Symbolically, the leading diagonal of the n × n matrix A = [ai j ]leading diagonal and

trace of a matrix shown below comprises the n elements in the shaded diagonal strip, though these



114 Chapter 3 Matrices and Systems of Linear Equations

n elements do not form an n element vector.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · ·
· · · · · · ·

an1 an2 an3 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎦ .

The trace of a square matrix A, written tr(A), is the sum of the terms on its
leading diagonal, so for the foregoing matrix tr(A) = a11 + a22 + · · · + ann.

Square matrices in which all elements away from the leading diagonal are zero,
but not every element on the leading diagonal is zero, are called diagonal matrices.
Of the class of diagonal matrices, the most important are the unit matrices, also
called identity matrices, in which every element on the leading diagonal is the
number 1. These n × n matrices are usually all denoted by the symbol I, with the
value of n being understood to be appropriate to the context in which they arise.
If, however, the value of n needs to be indicated, the symbol I can be replaced by
In. It is easily seen from the definition of matrix multiplication that for any m × n
matrix A it follows that

ImA = AIn or, more simply, IA = AI = A,

and that when A is an n × n matrix,

IA = AI = A.

When working with matrices, the unit matrix I plays the part of the unit real number,
and it is because of this that I is called either the unit or the identity matrix.identity or unit matrix

An example of a 4 × 4 diagonal matrix is

D =

⎡⎢⎢⎣
3 0 0 0
0 2 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎦ , with the trace given by tr(D) = 3 + 2 + 0 + 1 = 6.

The 3 × 3 unit matrix is the diagonal matrix

I = I3 =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ , and its trace is tr(I) = 1 + 1 + 1 = 3.

Various special square n × n matrices occur sufficiently frequently for them to
be given names, and some of the most important of these are the following:

Upper triangular matrices are matrices in which all elements below the leading
diagonal are zero. A typical example of a 4 × 4 upper triangular matrix is

some special matrices U =

⎡⎢⎢⎣
1 3 −1 0
0 2 −6 1
0 0 −3 2
0 0 0 4

⎤⎥⎥⎦ .
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Lower triangular matrices are matrices in which all elements above the leading
diagonal are zero. A typical example of a 4 × 4 lower triangular matrix is

L =

⎡⎢⎢⎣
2 0 0 0
1 0 0 0
3 −2 5 0

−2 4 7 3

⎤⎥⎥⎦ .

Symmetric matrices A = [ai j ] are matrices in which ai j = a ji for all i and j .
If A is symmetric, then A = AT. A typical example of a symmetric matrix is

M =
⎡⎣ 1 5 −3

5 4 2
−3 2 7

⎤⎦ .

Skew-symmetric matrices A = [a ji ] are matrices in which ai j = −a ji for all
i and j . From the definition of an n × n skew-symmetric matrix we have
aii = −aii for i = 1, 2, . . . , n, so the elements on the leading diagonal must
all be zero. An equivalent definition of a skew-symmetric matrix A is that
AT = −A. A typical example of a skew-symmetric matrix is

S =

⎡⎢⎢⎣
0 3 −5 6

−3 0 2 −4
5 −2 0 −1

−6 4 1 0

⎤⎥⎥⎦ .

An orthogonal matrix Q is a matrix such that QQT = QTQ = I. A typical
orthogonal matrix is

Q =

⎡⎢⎢⎣
1√
2

− 1√
2

1√
2

1√
2

⎤⎥⎥⎦ .

More special than the preceding real valued matrices are matrices A = [ai j ] in
which the elements ai j are complex numbers. We will write A to denote the matrix
obtained from A by replacing each of its elements ai j by its complex conjugate ai j ,
so that

A = [ai j ].

Then matrix A is said to be Hermitian if

A
T = A.

A typical Hermitian matrix is

A =
[

7 1 − 4i
1 + 4i 3

]
.

The matrix A is said to be skew-Hermitian if

A
T = −A.

A typical skew-Hermitian matrix is

A =
[

3i 5 + 2i
−5 + 2i 0

]
.
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More will be said later about some of these special square matrices and the ways in
which they arise.

Finally, we mention that every m × n matrix A can be represented differently
as a block matrix, in which each element is itself a matrix. This is accomplished byblock matrices
partitioning the matrix A into submatrices by considering horizontal and vertical
lines to be drawn through A between some of its rows and columns, and then
identifying each group of elements so defined as a submatrix of A. Clearly there is
more than one way in which a matrix can be partitioned. As an example of matrix
partitioning, let us consider the 3 × 3 matrix

A =
⎡⎣3 −1 2

1 2 0
2 1 0

⎤⎦ .

One way in which this matrix can be partitioned is as follows:

A =

⎡⎢⎣3 −1 2

1 2 0
2 1 0

⎤⎥⎦ .

This can now be written in block matrix form as

A =
[

A11 A12

A21 A22

]
,

where the submatrices are

A11 = [3 −1], A12 = [2], A21 =
[

1 2
2 1

]
, and A22 =

[
0
0

]
.

The addition and scaling of block matrices follow the same rules as those for
ordinary matrices, but care must be exercised when multiplying block matrices.
To see how multiplication of block matrices can be performed, let us consider the
product of matrix A above and the 3 × 4 matrix

B =

⎡⎢⎣1 2 2 1
3 1 1 0

2 3 0 2

⎤⎥⎦ ,

which are conformable for the product AB that is itself a 3 × 4 matrix. If B is
partitioned as indicated by the dashed lines, it can be written as

B =
[

B11 B12

B21 B22

]
,

where the submatrices are

B11 =
[

1
3

]
, B12 =

[
2 2 1
1 1 0

]
, B21 = [2], and B22 = [3, 0, 2].

Consideration of the definition of the product of matrices shows that we may now
write the matrix product AB in the condensed form

AB =
[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
,
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where the partitioned matrices have been multiplied as though their elements were
ordinary elements. This result follows because of correct partitioning, as each prod-
uct of submatrices is conformable for multiplication and all of the matrix sums are
conformable for addition.

In this illustration, routine calculations show that

A11B11 + A12B21 = [4], A11B12 + A12B22 = [11, 5, 7],

A21B11 + A22B21 =
[

7
5

]
, and A21B12 + A22B22 =

[
4 4 1
5 5 2

]
,

so

AB =
⎡⎣ [4] [11, 5, 7][

7
5

] [
4 4 1
5 5 2

]⎤⎦ =
⎡⎣4 11 5 7

7 4 4 1
5 5 5 2

⎤⎦ .

This result is easily confirmed by direct matrix multiplication.
The calculation of a matrix product AB using partitioned matrices applies in

general, provided the partitioning of A and B is performed in such a way that the
products of all the submatrices involved are defined.

Matrix partitioning has various uses, one of which arises in machine compu-
tation when a very large fixed matrix A needs to be multiplied by a sequence
of very large matrices P, Q, R, . . . . If it happens that A can be partitioned in
such a way that some of its submatrices are null matrices, the computational time
involved can be drastically reduced, because the product of a submatrix and a
null matrix is a null matrix, and so need not be computed. The economy fol-
lows from the fact that in machine computation multiplications occupy most of
the time, so any reduction in their number produces a significant reduction in the
time taken to evaluate a matrix product, and the result is even more significant
when the same partitioned matrix with null blocks is involved in a sequence of
calculations.

Block matrices are also of significance when describing complex oscillation
problems governed by a large system of simultaneous ordinary differential equa-
tions. Their importance arises from the fact that the matrix of coefficients of the
equations often contains many null submatrices, and when this happens the struc-
ture of the nonnull blocks provides useful information about the fundamental
modes of oscillation that are possible, and also about their interconnections.

For other accounts of elementary matrices see the appropriate chapters in
references [2.1], [2.5], and [2.7] to [2.12].

Summary This section defined m × n matrices, and the special cases of column and row vectors, and
it introduced the fundamental algebraic operations of equality, addition, scaling, transpo-
sition, and multiplication of matrices. It was shown that, in general, matrix multiplication
is not commutative, so that even when both of the products AB and BA are defined, it is
usually the case that AB �= BA.

Pre- and postmultiplication of matrices was defined, and some important special types
of matrices were introduced, such as the unit matrix I. It was also shown how a matrix A
can be subdivided into blocks, and that a matrix operation performed on A can be inter-
preted in terms of matrix operations performed on block matrices obtained by subdivision
of A.



118 Chapter 3 Matrices and Systems of Linear Equations

EXERCISES 3.1

In Exercises 1 through 4 find the values of the constants a,
b, and c in order that A = B.

1. A =
[

a2 1 c
2 3 a

]
, B =

[−a 1 4
2 b −1

]
.

2. A =
⎡⎣1 4 3

a 2 4
9 1 c

⎤⎦ , B =
⎡⎣1 4 3

2 2 4
b 1 0

⎤⎦.

3. A =
⎡⎣ a2 a 1

b 1 2
1 + a 2 + c 6

⎤⎦ , B =
⎡⎣a2 a 1

3 1 2
2 4 6

⎤⎦.

4. A =
⎡⎣ 1 3 + a 2

1 + b a 5
b2 1 a2

⎤⎦ , B =
⎡⎣ 1 −1 c

4 a 5
b2 1 a2

⎤⎦.

In Exercises 5 through 8 find A + B and A − B.

5. A =
⎡⎣1 4 3 6

2 1 0 2
1 −1 0 1

⎤⎦ , B =
⎡⎣2 0 1 −2

1 1 −3 1
0 1 1 0

⎤⎦.

6. A =
⎡⎣ 1 7 6

0 2 4
−1 0 1

⎤⎦ , B =
⎡⎣2 −1 6

1 −2 3
2 1 2

⎤⎦.

7. A =

⎡⎢⎢⎣
1 2 4
3 1 0
1 1 0
2 2 4

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 2 3
3 −1 1
0 1 1
1 3 2

⎤⎥⎥⎦.

8. A =

⎡⎢⎢⎣
1 4 3 6
0 2 1 4
0 0 3 1
0 0 0 2

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 0 0 0
3 1 0 0
1 2 4 0
1 1 1 3

⎤⎥⎥⎦.

In Exercises 9 through 12 form the sum λA + μB.

9. λ = 1, μ = 3, A =
⎡⎣1 4 2

2 1 4
3 2 2

⎤⎦,

B =
⎡⎣2 3 −1

1 2 4
1 0 3

⎤⎦.

10. λ = −1, μ = 2, A =
[

1 4 1
2 4 0

]
,

B =
[

2 1 1
0 2 4

]
.

11. λ = 4, μ = −2, A =
⎡⎣ 4 3 1

2 1 1
1 2 1

⎤⎦ ,

B =
⎡⎣ 6 1 0

2 4 2
1 1 2

⎤⎦ .

12. λ = 3, μ = −3, A =
⎡⎣ 3 1 4

2 2 1
3 6 2

⎤⎦ ,

B =
⎡⎣ 3 2 1

4 2 3
2 1 1

⎤⎦ .

In Exercises 13 through 16 find the product AB.

13. A = [1, 4, −2, 3], B = [2, 1, −1, 2]T.

14. A = [2, 3, 1, 4], B = [3, 1, 1, 3]T.
15. A = [1, 4, 3, 7, 5],

B = [2, 2, −1, −1, 3]T.
16. A = [1, 3, −1, 2, 0],

B = [−1, 2, 13, 4, 1]T.

In Exercises 17 through 22 find the product AB and, when
it exists, the product BA.

17. A =
[

1 4
2 0

]
, B =

[
2 1 3
1 4 1

]
.

18. A = [1, 4, 6, −7], B = [2, 3, −2, 3]T.

19. A =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦ , B =
⎡⎣ 3 1 4

2 1 −5
7 2 0

⎤⎦ .

20. A =
⎡⎣ 2 0 0

0 −3 0
0 0 5

⎤⎦ , B =
⎡⎣ 9 −1 4

1 6 −2
2 2 3

⎤⎦ .

21. A =

⎡⎢⎢⎣
2 3 1
4 1 2
2 2 6
1 5 2

⎤⎥⎥⎦ , B =
⎡⎣ 5 2 3

2 0 4
1 4 7

⎤⎦ .

22. A =

⎡⎢⎢⎣
1 2 1 0
2 1 1 4
1 0 2 1
1 1 2 1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
3 1
4 2
6 −2

−1 4

⎤⎥⎥⎦ .

23. Given

A =
⎡⎣ 2 5 −3

5 1 4
−3 4 6

⎤⎦ and B =
⎡⎣4 2 1

2 5 6
1 6 3

⎤⎦ ,

show that (AB)T = BA.
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In Exercises 24 through 28 write the given systems of equa-
tions in the matrix form Ax = b, where A is the coefficient
matrix, x is the vector of unknowns, and b is the nonhomo-
geneous vector term.

24. 3x + 5y − 6z = 7
x − 7y + 4z = −3
2x + 4y − 5z = 4.

25. 4u + 5v − w + 7z = 25
3u + 2v + 3z = 6
v + 6w − 7z = 0.

26. 5x + 3y − 6z = 14
6x − 5y + 11z = 20
x − 4y + 3z = 2
9x − 3y + 2z = 35.

27. 3x + 4y − 2z = λx
2x − 7y + 6z = λy
8x + 3y + 5z = λz.

28. 2x + 3y + 6z = λ(3x + 2y + 3z)
3x − 4y + 2z = λ(x − 5y + 2z)
4x + 9y + 2z = λ(x − 2y + 4z).

29. If

A =
⎡⎣1 3 6

1 2 0
0 1 3

⎤⎦ , B =
⎡⎣2 0 1

4 2 3
0 −1 1

⎤⎦ , and

X =
⎡⎣x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦ ,

solve for X given that

3X + A = ATB − X + 3B.

30. If

A =
⎡⎣2 1 4

1 2 1
3 0 2

⎤⎦ , B =
⎡⎣1 4 1

2 1 2
1 1 2

⎤⎦ , and

X =
⎡⎣x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤⎦ ,

solve for X given that

2ABT + X − 2I = 3X + 4B − 2A.

31. Given that

A =
⎡⎣3 2 2

2 2 0
2 0 4

⎤⎦ ,

show that

A3 − 9A2 + 18A = 0.

32. Given that

A =
⎡⎣0 1 0

0 0 1
2 1 −2

⎤⎦ ,

show that

A3 + 2A2 − A − 2I = 0.

33. Prove the second result in Theorem 3.1 that A(BC) =
(AB)C = ABC.

34. Prove the third result in Theorem 3.1 that (λA)B =
A(λB) = λAB.

35. Prove the fourth result in Theorem 3.1 that A(B + C)
= AB + AC.

In Exercises 36 through 39 verify that (AB)T = BT AT.

36. A =
⎡⎣3 1 4

2 1 2
4 2 3

⎤⎦ , B =
⎡⎣2 1 3

1 2 5
0 2 1

⎤⎦ .

37. A =
⎡⎣2 1 4 3

1 6 2 1
1 1 −2 4

⎤⎦ , B =

⎡⎢⎢⎣
1 4 3
2 1 5

−1 3 2
1 7 3

⎤⎥⎥⎦ .

38. A =
⎡⎣1 4 2

7 3 −1
0 2 5

⎤⎦ , B =
⎡⎣3 1 −5

1 3 4
2 0 8

⎤⎦ .

39. A =
⎡⎣1 4 6 2

2 1 4 1
3 0 0 2

⎤⎦ , B =

⎡⎢⎢⎣
1 2 1

−2 1 4
2 2 5
1 1 1

⎤⎥⎥⎦ .

40. Verify that (ABC)T = CTBTAT given that

A =
[

1 5
3 1

]
, B =

[
3 −2
4 5

]
, and C =

[−2 3
5 7

]
.

41. Prove that if D is the n × n diagonal matrix

D =

⎡⎢⎢⎢⎢⎣
k1 0 0 · · · 0
0 k2 0 · · · 0
0 0 k3 · · · 0
. . . . . . . . . . . .

0 0 0 · · · kn

⎤⎥⎥⎥⎥⎦ , then

Dm =

⎡⎢⎢⎢⎢⎣
km

1 0 0 · · · 0
0 km

2 0 · · · 0
0 0 km

3 · · · 0
. . . . . . . . . . . . .

0 0 0 · · · km
n

⎤⎥⎥⎥⎥⎦ ,

where m is a positive integer.
42. Find A2, A3, and A4, given that

A =
⎡⎣1 2 7

2 5 6
1 0 −1

⎤⎦ .

43. Find A2, A4, and A6, given that

A =
[

1/2 −(
√

3)/2

(
√

3)/2 1/2

]
.
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44. Use the matrix A in Exercise 42 to find A3, A5, and A7.
45. A square matrix A such that A2 = A is said to be idem-

potent. Find the three idempotent matrices of the form

A =
[

1 p
q r

]
.

46. A square matrix A such that for some positive integer
n has the property that An−1 �= 0, but An = 0 is said to
be nilpotent of index n (n ≥ 2). Show that the matrix

A =
⎡⎣0 0 0

4 0 0
1 −1 0

⎤⎦
is nilpotent and find its index.

47. A quadratic form in the variables x1, x2, x3, . . . , xn is
an expression of the form ax2

1 + bx1x2 + cx2
2 + dx1x3 +

· · · + f xn−1xn + gx2
n in which some of the coefficients

a, b, c, d, . . . , f, g may be zero. Explain why xTAx is a
quadratic form and find the quadratic form for which

A =

⎡⎢⎢⎣
3 4 0 3
4 2 2 6
0 2 5 1
3 6 1 7

⎤⎥⎥⎦ and x =

⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦ .

48. Find the quadratic form xTAx when

A =

⎡⎢⎢⎣
4 1 3 6
2 3 5 4
1 4 1 2
2 0 4 1

⎤⎥⎥⎦ and x =

⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦ .

49. Explain why the matrix A in the general expression for

a quadratic form xTAx can always be written as a sym-
metric matrix.

In Exercises 50 through 52 find the symmetric matrix A
for the given quadratic form when written xTAx, with
x = [x, y, z]T.

50. x2 + 3xy − 4y2 + 4xz + 6yz − z2.

51. 2x2 + 4xy + 6y2 + 7xz − 9z2.

52. 7x2 + 7xy − 5y2 + 4xz + 2yz − 9z2.

53. A square matrix P is called a stochastic matrix if all its
elements are nonnegative and the sum of the elements
in each row is 1. Thus, the matrix

P =

⎡⎢⎢⎣
p11 p12 · · · p1n

p21 p22 · · · p2n

. . . . . . . . . . .

pn1 pn2 · · · pnn

⎤⎥⎥⎦
will be a stochastic matrix if pi j ≥ 0 for 0 ≤ i ≤ n,

0 ≤ j ≤ n, and
n∑

j=1

pi j = 1 for i = 1, 2, . . . , n.

Let the n element column vector E = [1, 1, 1, . . . , 1]T.
By considering the matrix product PE, and using math-
ematical induction, prove that Pm is a stochastic matrix
for all positive integral values of m.

54. Construct a 3 × 3 stochastic matrix P. Find P2 and P3,
and by showing that all elements of these matrices are
nonnegative and that all their row-sums are 1, verify
the result of Exercise 53 that each of these matrices is a
stochastic matrix.

3.2 Some Problems That Give Rise to Matrices

(a) Electric Circuits with Resistors
and Applied Voltages
A simple electric circuit involving five resistors and three applied voltages is shown
in Fig. 3.1. The directions of the currents i1, i2, and i3 flowing in each branch of
the circuit are shown by arrows. The currents themselves can be determined by an
application of Ohm’s law and the Kirchhoff laws that can be stated as follows:

(a) Voltage = current × resistance (Ohm’s law);
(b) The algebraic sum of the potential drops around each closed circuit is zero

(Kirchhoff’s second law);
(c) The current entering each junction must equal the algebraic sum of the cur-

rents leaving it (Kirchhoff’s first law).

An application of these laws to the circuit in Fig. 3.1, where the potentials are inequations and
matrices for electric
circuits volts, the resistances are in ohms, and the currents are in amps, leads to the following
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4 6

i1

i2 i36 4

FIGURE 3.1 An electric circuit with
resistors and applied voltages.

set of simultaneous equations:

8 = 12i1 + 10(i1 − i2) + 8(i1 − i3)

4 = 10(i2 − i1) + 6(i2 − i3)

6 = 8(i3 − i1) + 6(i3 − i2) + 4i3.

After collecting terms this system can be written as the matrix equation Ax = b,
with

A =
⎡⎣ 30 −10 −8

−10 16 −6
−8 −6 18

⎤⎦ , x =
⎡⎣i1

i2

i3

⎤⎦ , b =
⎡⎣8

4
6

⎤⎦ .

The directions assumed for the currents ir for r = 1, 2, 3 are shown by the arrows
in Fig. 3.1, but if after the system of equations is solved, the value of the current is
found to be negative, the direction of its arrow must be reversed.

The circuit in Fig. 3.1 is simple, so in this example the currents can be found
by routine elimination between the three equations. When many coupled circuits
are involved a matrix approach is useful, and it then becomes necessary to develop
a method for solving for x the matrix equation Ax = b, the elements of which
are the required currents. If the number of equations is small, x can be found by
making use of the matrix A−1, inverse to A, that will be introduced later, though
the most computationally efficient approach is to use one of the numerical methods
for solving systems of linear simultaneous equations described in Chapter 19.

(b) Combinatorial Problems: Graph Theory
Matrices play an important role in combinatorial problems of many different types
and, in particular, in graph theory. The purpose of the brief account offered here
will be to illustrate a particular application of matrices, and no attempt will be made
to discuss their subsequent use in the solution of the associated problems.

Combinatorial problems involve dealing with the possible arrangements of
situations of various different kinds, and computing the number and properties of
such arrangements. The arrangements may be of very diverse types, involving at
one extreme the ordering of matches that are to take place in a tennis tournament,
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FIGURE 3.2 The graph representing routes.

and at the other extreme finding an optimum route for a delivery truck or for the
most efficient routing of work through a machine shop.

The ideas involved are most easily illustrated by means of examples, the first
of which involves the delivery from a storage depot of a consumable product to
a group of supermarkets in a large city where it is important that daily deliveries
be made as rapidly as possible. One possibility involves a delivery truck making a
delivery to each supermarket in turn and returning to the storage depot between
each delivery before setting out on the next delivery.

An alternative is to travel between supermarkets after each delivery without
returning to the storage depot. The question that then arises is which approach to
routing is the best, and how it is to be determined.

A typical situation is illustrated in Fig. 3.2, in which supermarkets numbered
1 to 5 are involved, with circles representing supermarkets and lines and arcs rep-
resenting the routes.

The representation in Fig. 3.2 is called a graph, and it is to be regarded as a set
graphs, vertices,
edges, and adjacency
matrix

of points represented by the circles called vertices of the graph, and edges of the
graph represented by the lines and arcs. In Fig. 3.2 the vertices are the circles 1,
2, . . . , 5 and the seven edges are the lines and arcs connecting the vertices.

A special type of matrix associated with such a graph is an adjacency matrix,
that is, a matrix whose only entries are 0 or 1. The rules for the entries in an adjacency
matrix A = [ai j ] are that

ai j =
{

1, if vertices i and j are joined by an edge
0, otherwise.

The adjacency matrix for the graph in Fig. 3.2 is seen to be the symmetric matrix

A =

⎡⎢⎢⎢⎢⎣
0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1
1 0 1 1 0

⎤⎥⎥⎥⎥⎦ .

It is to be expected that an adjacency matrix is symmetric, because if i is adjacent
to j , then j is adjacent to i .

Although we shall not attempt to do so here, the interconnection properties
of the problem represented by the graph in Fig. 3.2 can be analyzed in terms of its
adjacency matrix A. The optimum routing problem can then be resolved once the
traveling times along roads (lines or arcs) are known.

Sometimes it happens that the edges in a graph represent connections that only
operate in one direction, so then arrows must be added to the graph to indicate these
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FIGURE 3.3 A typical digraph. FIGURE 3.4 The Königsberg bridge problem.

directions. A graph of this type is called a digraph (directed graph). The rules for
the entries in the adjacency matrix A = [ai j ] of a digraph are that

ai j =
{

1, if vertices i and j are joined by an edge with an arrow from i to j
0, otherwise.

A typical digraph is shown in Fig. 3.3, and it has the associated adjacency matrix

digraph

A =

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 0 0
0 0 1 0

⎤⎥⎥⎦ .

The adjacency matrix A characterizes all the possible interconnections between
the four vertices and, as with the previous example, an analysis of the properties of
any situation capable of representation in terms of this digraph can be performed
using the matrix A. Problems of this type can arise in transportation problems in
cities with one-way streets, and in chemical processes where a fluid is piped to
different parts of a plant through an interconnecting network of pipes through
which fluid may only flow in a given direction.

Königsberg
bridge problem

Before closing this brief introduction to graph theory, mention should be made
of a problem of historical significance, since it represented the start of graph theory
as it is known today. The problem is called the Königsberg bridge problem, and it
was solved by Euler (1707–1783). During the early 18th century the Prussian town
of Königsberg was established on two adjacent islands in the middle of the river
Pregel. The islands were linked to the land on either side of the river, and to one
another, by seven bridges, as shown in Fig. 3.4a. It was suggested to Euler that he
should resolve the conjecture that it ought to be possible to walk through the town,
starting and ending at the same place, while crossing each of the seven bridges only
once.
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Euler replaced the picture in Fig. 3.4a by the graph in Fig. 3.4b, though it was
not until much later that the term graph in the sense used here was introduced.
In Fig. 3.4b the vertices S and Q represent the two islands and, using the same
lettering, P and R represent the riverbanks. The number of edges incident on each
vertex represents the number of bridges connected to the corresponding land mass.
Euler introduced the concept of a connected graph, in which each pair of vertices is
linked by a set of edges, and also what is now called an eulerian circuit, comprising
a path through all vertices that starts and ends at the same vertex and uses every
edge only once. He called the number of edges incident upon a vertex the degree
of the vertex, and by using these ideas he was able to prove the impossibility of the
conjecture. The arguments involved are not difficult, but their details would be out
of place here.

Many more practical problems are capable of solution by graph theory, which
itself belongs to the branch of mathematics called combinatorics. In elementary
accounts, graph theory and related combinatorial issues are usually called discrete
mathematics. More information about combinatorics and its connection with ma-
trices can be found in References [2.2] and [2.13].

(c) Translations, Rotations, and Scaling
of Graphs: Computer Graphics
The simplest operations in computer graphics involve copying a picture to a differ-matrices and

computer graphics ent location, rotating a picture about a fixed point, and scaling a picture, where the
scaling can be different in the horizontal and vertical directions. These operations
are called, respectively, a translation, a rotation, and a scaling of the picture. Oper-
ations of this nature can all be represented in terms of matrices, and they involve
what are called linear transformations of the original picture.

Translation

A translation of a two-dimensional picture involves copying it to a different location
without either rotating it or changing its horizontal and vertical scales. Figure 3.5
shows the original cartesian axes O(x, y) and the shifted axes O′(x′, y′), where
the respective axes remain parallel to their original directions and the origin O′ is
located at the point (h, k) relative to the O(x, y) axes.

The relationship between the two sets of coordinates is given by

x = x′ + h and y = y′ + k.

y
y′

k
O′

h x

x′

O

FIGURE 3.5 A translation.
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FIGURE 3.6 A rotation through an angle θ .

If x = [x, y]T, x′ = [x′, y′]T, and b = [h, k]T, the coordinate transformation can be
written in matrix form as

x = x′ + b,

where matrix b represents the translation.

Rotation

A rotation of the coordinate axes through an angle θ is shown in Fig. 3.6, where
P(x, y) is an arbitrary point. The coordinates of P in the (x, y) reference frame and
the (x′, y′) reference frame are related as

x = OR = OP cos(φ + θ) = OP cos φ cos θ − OP sin φ sin θ

= OQcos θ − PQsin θ = x′ cos θ − y′ sin θ,

and

y = PR = OP sin(φ + θ) = OP sin φ cos θ + OP cos φ sin θ

= PQcos θ + OQsin θ = y′ cos θ + x′ sin θ,

so

x = x′ cos θ − y′ sin θ and y = y′ cos θ + x′ sin θ.

Defining the matrices x, x′, and R as

x =
[

x
y

]
, x′ =

[
x′

y′

]
, and R =

[
cos θ −sin θ

sin θ cos θ

]
allows the coordinate transformation to be written as

x = Rx′.

Scaling

If S is a matrix of the form

S =
[

kx 0
0 ky

]
,
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where kx and ky are positive constants, and x′ = Sx, it follows that

x = kxx′ and y = ky y′,

showing that x is obtained by scaling x′ by kx, while y is obtained by scaling y′ by
ky. This form of scaling is represented by premultiplication of x by S, and if, for
example,

S =
[

4 0
0 3

]
,

the effect of this transformation on a circle of radius a will be to map it into an
ellipse with semimajor axis of length 4a parallel to the x-axis and a semiminor axis
of length 3a parallel to the y-axis.

Composite transformations

By combining the preceding matrix operations to form a composite transformation,
it is possible to carry out several transformations simultaneously. As an example,
the effect of a rotation R followed by a translation b when performed on a vector
x′ are seen to be described by the matrix equation

x = Rx′ + b,

the effect of which is shown in Fig. 3.7.
If a scaling S is performed before the rotation and translation, the effect on a

vector x′ is described by the matrix equation

x = RSx′ + b.

This is illustrated in Fig. 3.8b, which shows the effect when a transformation
of this type is performed on the circle of radius a centered on the origin shown in
Fig. 3.8a, with

b =
[

h
k

]
, R =

[
cos π/3 −sin π/3
sin π/3 cos π/3

]
, and S =

[
3 0
0 2

]
.

It is seen that the circle has first been scaled to become an ellipse with semiaxes 3a
and 2a, after which the ellipse has been rotated through an angle π/3, and finally
its center has been translated to the point (h, k).

O h x

x′
y′

y

k
O′

P(x , y)

θ
φ

FIGURE 3.7 A rotation and a translation.
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y′
y′y

x′

π/3

xa0 0

(a) (b)

h x

−3a

−2a

3a

x′

y

2a

k π /3

FIGURE 3.8 The composite transformation x = RSx′ + b.

It is essential to remember that the order in which transformations are per-
formed will, in general, influence the result. This is easily seen by considering the
two transformations x = RSx′ + b and x = SRx′ + b. If the first of these is per-
formed on the circle in Fig. 3.8a, it produces Fig. 3.8b, but when the second is
performed on the same circle, it first converts it into an ellipse with its major axis
horizontal, and then translates the center of the ellipse to the point (h, k). In this
case the effect of the rotation cannot be seen, because the circle is symmetric with
respect to rotations.

A relationship of the form x = F(x′) can be interpreted geometrically in two
distinct ways which are equally valid:

1. As the change in the way we describe the location of a point P. Then the
relationship is called a transformation of coordinates (Figs. 3.5, 3.6, 3.7).

2. As a mapping of a point P from one location to a new one.

(d) Matrix Analysis of Framed Structures
A framed structure is a network of straight struts joined at their ends to form a
rigid three-dimensional structure. A typical framed structure is the steel work for
a large building before the walls and floors have been added. A simple example
of a framed structure, called a truss, is a plane construction in which the struts are
joined together to form triangles, as in the side section of the small bridge shown
in Fig. 3.9.

For safety, to ensure that no strut fails when the bridge carries the largest
permitted load, it is necessary to determine the force experienced by each strut in
the truss when the bridge supports its maximum load in several different positions.
Typically, the largest load could be due to a heavy truck crossing the bridge. The
analysis of trusses is usually simplified by making the following assumptions:

� The structure is in the vertical plane;
� The weight of each strut can be neglected;
� Struts are rigid and so remain straight;
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A C

DB

E

FIGURE 3.9 A typical truss found in a
side section of a bridge.

A
π /3 π /3 π /3 π /3

F4

F3F1

R1 R2

L /2

3m

L /2 LC

F2 F6

F5 F7

DB

E

FIGURE 3.10 A truss supporting a concentrated load.

� Each joint is considered to be hinged, so the only forces acting at a joint are
along the struts meeting at the joint if forces are applied at joints only.

� There are no redundant struts, so that removing a strut will cause the truss to
collapse.

We now write down the simultaneous equations that must be solved to find the
forces acting in the seven struts of length L that form the truss shown in Fig. 3.10,
when a concentrated load 3m is located at point C midway between A and E. This
load could be considered to be a heavily laden truck standing in the center of the
bridge.

To determine the reactions at the support points Aand E, we use the fact that
for equilibrium the turning moments about these two points must be zero. The
turning moment of the load 3m about the point A must be cancelled by the turning
moment of the reaction R2 at E, so 3m(L) = R2(2L), showing that R2 = 3m/2.
Similarly, the turning moment of the load 3m about the point E must be cancelled
by the turning moment of the reaction R1 at A, so 3m(L) = R1(2L), showing that
R1 = 3m/2.

The directions in which the forces F1 to F7 are assumed to act are shown by
arrows, and if later a force is found to be negative, the direction of the associated

equations and
matrices for a framed
structure

arrows must be reversed. For equilibrium the sum of the vertical components of
all forces acting at each joint must be zero, as must be the sum of the horizontal
components of all forces acting at each joint. The equations representing the balance
of forces at each joint are as follows, where when resolving the forces acting at joint
C, the effect of the load 3m which acts vertically downwards must be taken into
account:

Joint A(vertical) F1 sin π/3 − 3m/2 = 0
Joint A(horizontal) F1 cos π/3 + F2 = 0
Joint B(vertical) F1 sin π/3 + F3 sin π/3 = 0
Joint B(horizontal) F1 cos π/3 − F3 cos π/3 − F4 = 0
Joint C(vertical) F3 sin π/3 + F5 sin π/3 + 3m = 0
Joint C(horizontal) F2 + F3 cos π/3 − F5 cos π/3 − F6 = 0
Joint D(vertical) F5 sin π/3 + F7 sin π/3 = 0
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Joint D(horizontal) F4 + F5 cos π/3 − F7 cos π/3 = 0
Joint E(vertical) F7 sin π/3 − 3m/2 = 0
Joint E(horizontal) F6 + F7 cos π/3 = 0.

After substituting for sin π/3 and cos π/3, these equations can be written in the
matrix form Ax = b, where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

√
3 0 0 0 0 0 0

1
2 1 0 0 0 0 0

1
2

√
3 0 1

2

√
3 0 0 0 0

1
2 0 − 1

2 −1 0 0 0

0 0 1
2

√
3 0 1

2

√
3 0 0

0 1 1
2 0 − 1

2 −1 0

0 0 0 0 1
2

√
3 0 1

2

√
3

0 0 0 1 1
2 0 − 1

2

0 0 0 0 0 0 1
2

√
3

0 0 0 0 0 1 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

F7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3m/2
0
0
0

−3m
0
0
0

3m/2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These are 10 equations for the 7 unknown forces F1 to F7, so unless 3 of the
equations represented in Ax = b are combinations of the remaining 7 equations,
we cannot expect there to be a solution. When the rank of a matrix is introduced
in Section 3.6, we will see how systems of this type can be checked for consistency
and, when appropriate, simplified and solved.

In this case the equations are sufficiently simple that they can be solved se-
quentially, without the use of matrices. The solution is seen to be

F1 = m
√

3, F2 = −m/(
√

3/2), F3 = −m
√

3, F4 = m
√

3,

F5 = −m
√

3, F6 = −m(
√

3/2), F7 = m
√

3.

The signs show that the arrows in Fig. 3.10 associated with forces F2, F3, F5, and
F6 should be reversed, so these struts are in tension, while the others are in com-
pression.

Notice that matrix A is determined by the geometry of the truss, and so does
not change when forces are applied to more than one of the joints on the truss
(bridge). This means that after the 10 equations have been reduced to seven, the
same modified matrix A can be use to find the forces in the struts for any form of
concentrated loading. Had a more complicated struss been involved, many more
equations would have been involved, so that a matrix approach becomes necessary.
This approach also identifies any redundant struts in a structure, because the force
in a redundant strut is indeterminate.

k1

m1

m2

x2

x1

k2

FIGURE 3.11 A compound
mass–spring system.

(e) A Compound Mass–Spring System
Matrices can have variables as elements, and an analysis of the compound mass–
spring system shown in Fig. 3.11 shows one way in which this can arise. Figure 3.11
represents a mass m1 suspended from a rigid support by a spring of negligible mass
with spring constant k1, and a mass m2 suspended from mass m1 by a spring of
negligible mass with spring constant k2. The vertical displacement of m1 from its
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equilibrium position is x1, and the vertical displacement of m2 from its equilibrium
position is x2. Each spring is assumed to be linearly elastic, so the restoring force
exerted by a spring is equal to the product of the displacement from its equilibrium
position and the spring constant.

The product of the mass m1 and its acceleration is m1d2x1/dt2, and the restoring
force due to spring k1 is k1x1, while the restoring force due to spring k2 is k2(x1 − x2),
so the equation of motion of m1 isequations of motion

of a coupled
mass–spring system m1

d2x1

dt2
= −k1x1 − k2(x1 − x2).

Similarly, the equation of motion of m2 is

m2
d2x2

dt2
= −k2(x2 − x1),

where the negative signs are necessary because the springs act to restore the masses
to their original positions.

This system can be written as the matrix differential equation ẍ + Ax = 0, by
defining A and x as

A =

⎡⎢⎢⎣
(k1 + k2)

m1
− k2

m1

− k2

m2

k2

m2

⎤⎥⎥⎦ , x =
[

x1

x2

]
, and ẍ =

⎡⎢⎢⎢⎣
d2x1

dt2

d2x2

dt2

⎤⎥⎥⎥⎦ .

The solution of this system will not be considered here as ordinary differential
equations and systems of the type derived here are discussed in detail in Chapter 6,
where matrix methods are also developed. Chapter 7 develops Laplace transform
methods for the solution of differential equations and systems. It will suffice to
mention here that the dynamical behavior of the compound mass–spring system in
Fig. 3.11 is completely characterized by matrix A.

(f) Stochastic Processes
Certain problems arise that are not of a deterministic nature, so that both the formu-
lation of the problem and its outcome must be expressed in terms of probabilities.
The probability p that a certain event occurs is a number in the interval 0 ≤ p ≤ 1.
An event with probability p = 0 is one that never occurs, and an event with prob-
ability p = 1 is one that is certain to occur. So, for example, when tossing a coin
N times and recording each outcome as an H (head) or a T (tail), if the number
of heads is NH and the number of tails is NT, so that N = NH + NT, the numbers
NH/N and NT/N will be approximations to the respective probabilities that a head
or a tail occurs when the coin is tossed. If the coin is unbiased, it is reasonable to
expect that as N increases both NH/N and NT/N will approach the value 1/2. This
will mean, of course, that the chances of either a head or a tail occurring on each
occasion are equal.

The example we now outline is called a stochastic process and is illustrated by
considering a process that evolves with time and is such that at any given moment
it may be in precisely one of N different situations, usually called states, where N is
finite. We shall denote the N states in which the process may find itself at any given
time tm by S1, S2, . . . , SN, with m = 0, 1, 2, . . . , and tm−1 < tm, it being assumed that
the outcome at each time depends on probabilities, and so is not deterministic.
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To formulate the problem we assume that what are called the conditional prob-
abilities pki (also called transition probabilities) that determine the probability with
which the process will be in state Sj at time tm are all known, given that it was in
state Sk at time tm−1, and that these probabilities are the same from t1 to t2 as from
tm−1 to tm for m = 0, 1, 2, . . . . This last assumption means that the probability with
which the transition from state Sk to Sj occurs is independent of the time at which
the process was in state Sk.

The conditional probabilities can be arranged as the N × N matrix P = [pjk],
so as probabilities are involved, all the pjk are nonnegative, and as each stage must
have an outcome, the sum of the elements in every row of matrix P must equal 1.
A matrix P with these properties, namely that

0 ≤ pjk ≤ 1, 0 ≤ j ≤ N, 0 ≤ k ≤ N, and
N∑

j=1

pjk = 1,

is called a stochastic matrix (see Exercise 53, Section 3.1).
Processes like these, whose condition at any subsequent instant does not depend

stochastic matrix and
a Markov process

on how the process arrived at its present state, are called Markov processes. Simple
but typical examples of such processes involving only two states are gambling wins
and losses, the reliability of machines that may either be operational or under repair,
shells fired from a gun that either hit or miss the target and errors that introduce
an incorrect digit 1 or 0 when transferring binary coded information.

To develop the argument a little further, let us now consider a process that can
be in one of two states, and that the matrix P describing its transitions is given by

P =
[

2/3 1/3
1/4 3/4

]
.

Now suppose that initially the probability distribution is given by the row ma-
trix E(0) = [p, q], where, of course, p + q = 1. Then if E(m) denotes the proba-
bility distribution of the states at time tm, it follows that E(1) = E(0)P, but as P
is independent of the time we conclude that after m transitions the general result
must be

E(m) = E(0)Pm,

so in this case

E(m) = [p, q]
[

2/3 1/3
1/4 3/4

]m

.

Direct calculation shows that

E(3) = [0.470p + 0.398q, 0.530p + 0.602q],

E(6) = [0.432p + 0.426q, 0.568p + 0.574q],

and

E(10) = [0.429p + 0.429q, 0.571p + 0.571q],

so it is reasonable to ask if E(m) tends to a limiting vector as m → ∞ and, if so,
what this is? As this problem is simple, an analytical answer is possible, though it
involves using a diagonalizing matrix P which will be discussed later.
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We will see later that P can be written as ADB, where D is a diagonal matrix
and AB = I. In this case

A =
[

1 4
1 −3

]
, D =

[
1 0
0 5/12

]
, and B =

[
3/7 4/7
1/7 −1/7

]
,

so

P =
[

1 4
1 −3

] [
1 0
0 5/12

] [
3/7 4/7
1/7 −1/7

]
.

In what follows we will need to make repeated use of the fact that

BA =
[

3/7 4/7
1/7 −1/7

] [
1 4
1 −3

]
=
[

1 0
0 1

]
= I.

Using this last property we find that

P2 =
[

1 4
1 −3

] [
1 0
0 5/12

] [
3/7 4/7
1/7 −1/7

] [
1 4
1 −3

] [
1 0
0 5/12

] [
3/7 4/7
1/7 −1/7

]
=
[

1 4
1 −3

] [
1 0
0 5/12

]2 [3/7 4/7
1/7 −1/7

]
.

However, when a diagonal matrix is raised to a power, each of its elements is
raised to that same power (see Problem 41, Section 3.1), so

P2 =
[

1 4
1 −3

] [
1 0
0 (5/12)2

] [
3/7 4/7
1/7 −1/7

]
and, in general,

Pm =
[

1 4
1 −3

] [
1 0
0 (5/12)m

] [
3/7 4/7
1/7 −1/7

]
.

Thus,

Pm =

⎡⎢⎢⎣
3 + 4(5/12)m

7
4 − 4(5/12)m

7

3 − 3(5/12)m

7
4 + 3(5/12)m

7

⎤⎥⎥⎦ ,

showing that as m → ∞, so

lim
m→∞ E(m)Pm = [3(p + q)/7, 4(p + q)/7] = [3/7, 4/7],

and we have found the limiting state of the system.
Stochastic processes also occur that involve more than two states. The problem

of determining the probability with which such processes will be in a given state,
and when a limiting state exists, the limiting values of the probabilities involved, is
of considerable practical importance. An introduction to stochastic process can be
found in reference [2.4].

Summary This section has introduced some of the many areas in which matrices play an essential
role. These range from electric circuits needing the application of Kirchhoff’s laws, through
routing problems involving the concepts of directed graphs and adjacency matrices, to the
classical Königsberg bridge problem, computer graphic operations performed by linear
transformations, the matrix analysis of forces in a framed structure, the oscillations of a
coupled mass–spring system, and stochastic processes.
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EXERCISES 3.2

1. State which of the following matrices is a stochastic ma-
trix, giving a reason when this is not the case.

(a)

⎡⎣0.5 0.3 0.2
0.25 0 0.75
0.5 0.5 0

⎤⎦.

(b)

⎡⎣1.2 0 −0.2
0 0.8 0.2

0.6 0.3 0.1

⎤⎦ .

(c)

⎡⎣0.5 0.2 0.3
0.7 0.3 0.2
0.4 0.2 0.4

⎤⎦ .

(d)

⎡⎣0.3 0.1 0.6
0.8 0 0.2
0 1 0

⎤⎦ .

2. Given the stochastic matrix

P =
[

3/4 1/4
1/2 1/2

]
and the initial probability distribution E(0) = [p, q], with
p, q ≥ 0 and p + q = 1, the probability distribution of
the two states at time tm is given by

E(m) = E(0)Pm.

Find E(2), E(4), and E(6), together with their values
when p = 1/4, q = 3/4.

In Exercises 3 through 6 find the adjacency matrices for the
given graphs and digraphs.

3.

3

6
1

2

4

5

FIGURE 3.12

4.

1

2

3
4

FIGURE 3.13

5.

3

4
5

FIGURE 3.14

6.
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FIGURE 3.15

3.3 Determinants

Every square matrix A with numbers as elements has associated with it a single
unique number called the determinant of A, which is written detA. If A is an n × n
matrix, the determinant of A is indicated by displaying the elements ai j of A between
two vertical bars as follows:

notation for a
determinant detA =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣ . (5)

The number n is called the order of determinant A, and in (5) the vertical bars are
used to distinguish detA, that is a number, from matrix A that is an n × n array of
numbers.
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A general definition of the value of detA in terms of its elements ai j will be
given later, so for the moment we define only the value of first and second order
determinants (see Section 1.7). If A only contains a single element a11 so A = [a11]
then, by definition, detA = a11, and if A is the 2 × 2 matrix

A =
[

a11 a12

a21 a22

]
,

then, by definition,

det A =
[

a11 a12

a21 a22

]
= a11a22 − a21a12. (6)

Notice that in (6) the numerical value of detA is obtained by forming the
product of the two terms a11 and a22 on the leading diagonal, and subtracting from
it the product of the two terms a21 and a12 on the cross diagonal. This process, called
expanding the determinant, is easily remembered by representing the method by
which the determinant is expanded as

a11
�
��

a12

a21�
��

a22

= a11a22 − a21a12,

where the product involving the downward arrow generates the first pair of terms
on the right and the product involving the upward arrow indicates that the product
of the associated pair of terms is to be subtracted.

EXAMPLE 3.10 Find detA given

(a) detA =
∣∣∣∣3 −1
2 6

∣∣∣∣ and (b) detA =
∣∣∣∣1 + i i
−3i 2

∣∣∣∣.
Solution (a) Using (5) we have

detA =
∣∣∣∣3 −1
2 6

∣∣∣∣ = 3 · 6 − 2 · (−1) = 20.

(b) Again using (5) we have

detA =
∣∣∣∣1 + i i
−3i 2

∣∣∣∣ = (1 + i) · 2 − (−3i) · i = −1 + 2i.

To provide some motivation for the introduction of determinants, we solve by
elimination the two linear simultaneous algebraic equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2.
(7)

To eliminate x2 we multiply the first equation by a22 and the second equation by
a12, and then subtract the results to obtain

(a11a22 − a21a12)x1 = a22b1 − a12b2.

This shows that when a11a22 − a21a12 �= 0,

x1 = a22b1 − a12b2

a11a22 − a21a12
.
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This result can be expressed in terms of detA as

x1 = (a22b1 − a12b2)/detA. (8)

Similarly, when x1 is eliminated from equations (7) we find that

x2 = (a11b2 − a21b1)/detA. (9)

Examination of (8) and (9) shows that their numerators can be written in terms
of determinants that are closely related to detA, becauseCramer’s rule for a

system of two
equations x1 = D1

D
and x2 = D2

D
, (10)

where

D = detA, D1 =
∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , and D2 =
∣∣∣∣a11 b1

a21 b2

∣∣∣∣ . (11)

The form of solution of equations (7) in terms of the determinants in (10) and
(11) is called Cramer’s rule. The rule itself says that xi = Di/D for i = 1, 2, where
determinant D1 is obtained from D = detA by replacing the first column of A by the
nonhomogeneous terms b1 and b2 on the right of equations (7), and determinant D2

is obtained from D by replacing the second column of A by these same two terms.

EXAMPLE 3.11 Use Cramer’s rule to solve the equations

3x1 + 5x2 = 4

2x1 − 4x2 = 1.

Solution The three determinants required by Cramer’s are

D = detA =
∣∣∣∣3 5
2 −4

∣∣∣∣ = −22, D1 =
∣∣∣∣4 5
1 −4

∣∣∣∣ = −21, D2 =
∣∣∣∣3 4
2 1

∣∣∣∣ = −5,

so x1 = D1/D = 21/22 and x2 = D2/D = 5/22.

This example shows how determinants enter naturally into the solution of a
system of equations. As determinants of order n > 2 occur in the study of differ-
ential equations, analytical geometry, throughout linear algebra, and elsewhere, it
is necessary to generalize the definition of a determinant of order 2 given in (6) to
determinants of any order n.

With this objective in mind, we first define the minors and cofactors of a deter-
minant of order n. The minor Mi j associated with the element ai j in the ith row and
jth column of the nth order determinant in (5) is the determinant of order n − 1
formed from detA by deleting the elements in the ith row and jth column. As each
element of detA has an associated minor, a determinant of order n has n2 minors.

By way of example, the minor M3 j of the nth order determinant in (5) is the
determinant of order n − 1minors and cofactors

M3 j =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1 j−1 a1 j+1 · · · a1n

a21 a22 · · · a2 j−1 a2 j+1 · · · a2n

a41 a42 · · · a4 j−1 a4 j+1 · · · a4n

· · · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · anj−1 anj+1 · · · ann

∣∣∣∣∣∣∣∣∣∣
. (12)
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The cofactor Ci j associated with the element ai j in determinant (5) is defined
in terms of the minor Mi j as

Ci j = (−1)i+ j Mi j for i, j = 1, 2, . . . , n, (13)

so an nth order determinant has n2 cofactors.

EXAMPLE 3.12 Find the minors and cofactors of

detA =
∣∣∣∣2 −3
1 4

∣∣∣∣ .
Solution Inspection shows that M11 = 4, M12 = 1, M21 = −3, and M22 = 2. Using
definition (12), the cofactors are seen to be

C11 = (−1)1+1 M11 = 4, C12 = (−1)1+2 M12 = −1, C21 = (−1)2+1 M21 = 3,

and C22 = (−1)2+2 M22 = 2.

Recognizing that the cofactors of the second order determinant

detA =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ are C11 = a22, C12 = −a21, C21 = −a12, and C22 = a11,

we see from the definition detA = a11a22 − a21a12 that detA can be expressed in
terms of these cofactors in four different ways:expanding a second

order determinant in
terms of rows or
columns

detA = a11C11 + a12C12, using elements and cofactors from the first row of A;

detA = a21C21 + a22C22, using elements and cofactors from the second row of A;

detA = a11C11 + a21C21, using elements and cofactors from the first column of A;

detA = a12C12 + a22C22, using elements and cofactors from the second

column of A.

This has proved by direct calculation that the value of the general second order
determinant detA is given by the sum of the products of the elements and their
associated cofactors in any row or column of the determinant. When the definition
of a determinant is extended to the case n > 2 it will be seen that this same property
remains true.

There are various ways of defining an nth order determinant, and from among
these we have chosen to use one that involves a recursive process. More will be said
about this recursive process, and how it can be used to evaluate the determinant,
once the definition has been formulated.

Definition of a determinant of order n

The nth order determinant detA in which the element ai j has the associated
cofactor Ci j for i, j = 1, 2, . . . , n is defined as

detA =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣ =
n∑

j=1

a1 j C1 j . (14)
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Recalling the different ways in which a second order determinant can be eval-
uated, we see that the expansion of detA in (14) is in terms of the elements and
cofactors of the first row, so for conciseness this expansion is said to be in terms of
the elements of the first row.

The recursive process enters this definition through the fact that each cofactor
C1 j is a determinant of order n − 1, as can be seen from (12), so each cofactor in turn
can be expanded in terms of determinants of order n − 2, and the process continued
until determinants of order 2 are obtained that can then be calculated using (6).

EXAMPLE 3.13 Expand

detA =
∣∣∣∣∣∣
1 4 −1
2 0 3
1 2 1

∣∣∣∣∣∣ .
Solution To expand this third order determinant using (14), we must find the
cofactors of the elements of the first row, so to do this we first find the minors and
then use (13) to find the cofactors, as a result of which we find that

M11 =
∣∣∣∣0 3
2 1

∣∣∣∣ = −6, so C11 = (−1)1+1(−6) = −6

M12 =
∣∣∣∣2 3
1 1

∣∣∣∣ = −1, so C12 = (−1)1+2(−1) = 1

M13 =
∣∣∣∣2 0
1 2

∣∣∣∣ = 4, so C13 = (−1)1+3(4) = 4.

As the elements of the first row are a11 = 1, a12 = 4, and a13 = −1, we find from
(12) that

detA = (1)C11 + (4)C12 + (−1)C13 = (1)(−6) + (4)(1) + (−1)(4) = −6.

The determinant associated with either an upper or a lower triangular matrix
A of any order is easily expanded, because repeated application of (12) shows that
it reduces to the product of the terms on the leading diagonal, so the expansion
of the nth order upper triangular determinant with elements a11, a22, . . . , ann on its
leading diagonal

detA =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

0 a22 · · · a2n

0 0 · · · · · ·
0 0 0 ann

∣∣∣∣∣∣∣∣ = a11a22 . . . ann, (15)

and a corresponding result is true for a lower triangular matrix.
Definition (14) can be used to prove that nth order determinants, like second

order determinants, have the property that their value is given by the sum of the
products of the elements and their cofactors in any row or column. This result,
together with a generalization concerning the vanishing of the sum of the products
of the elements in any row (or column) and the corresponding cofactors in a different
row (or column), forms the next theorem. The details of the proof can be found in
linear algebra texts, for example, [2.1], [2.5], [2.7], [2.9], but the method used has
no other application in what is to follow, so the proof will be omitted.
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THEOREM 3.3 Laplace expansion theorem and an extension Let A be an n × n matrix with ele-
ments ai j . Then,

Laplace expansion
theorem (i) detA can be expanded in terms of elements of its ith row and the cofactors

Ci j of the ith row as

detA = ai1Ci1 + ai2Ci2 + · · · + ainCin =
n∑

j=1

ai j Ci j

for any fixed i with 1 ≤ i ≤ n.
(ii) detA can be expanded in terms of elements of its jth column and the cofactors

Ci j of the jth column as

detA = a1 j C1 j + a2 j C2 j + · · · + anj Cnj =
n∑

j=1

ai j Ci j

for any fixed j with 1 ≤ j ≤ n.
(iii) The sum of the products of the elements of the ith row with the corresponding

cofactors of the kth row is zero when i �= k.
(iv) The sum of the products of the elements in the jth column with the corre-

sponding cofactors of the kth column is zero when j �= k.

Results (i) and (ii) are often used to advantage when a row or column contains
many zeros, because if the determinant is expanded in terms of the elements of
that row or column, the cofactors associated with each zero element need not be
calculated.

Results (iii) and (iv) simply say that the sum of the products of the elements in
any row (or column) with the corresponding cofactors in a different row (or column)
is zero.

PIERRE SIMON LAPLACE (1749–1827)
A French mathematician of remarkable ability who made contributions to analysis, differential
equations, probability, and celestial mechanics. He used mathematics as a tool with which to
investigate physical phenomena, and made fundamental contributions to hydrodynamics, the
propagation of sound, surface tension in liquids, and many other topics. His many contributions
had a wide-ranging effect on the development of mathematics.

EXAMPLE 3.14 Verify Theorem 3.3(i) by expanding the determinant in Example 3.13 in terms
of the elements of its second row. Use the determinant to check the result of
Theorem 3.3(iii).

Solution The second row contains a zero element in its mid position, so the co-
factor C22 associated with the zero element need not be calculated. The necessary
cofactors in the second row that follow from the minors are

M21 =
∣∣∣∣4 −1
2 1

∣∣∣∣ = 6 so C21 = (−1)2+1(6) = −6

M23 =
∣∣∣∣1 4
1 2

∣∣∣∣ = −2 so C23 = (−1)2+3(−2) = 2.
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As a21 = 2 and a23 = 3, it follows from Theorem 3.3(i) that when detA is expanded
in terms of elements of its second row,

detA = (2)(−6) + (3)(2) = −6,

confirming the result obtained in Example 3.13.
As a particular case of Theorem 3.3(iii), let us show that the sum of the products

of the cofactors in the first row of detA and the corresponding elements in the third
row is zero.

In Example 3.13 it was found that C11 = −6, C12 = 1, and C13 = 4, so as the
elements of the third row are a31 = 1, a32 = 2, and a33 = 1, we have

a31C11 + a32C12 + a33C13 = (−6)(1) + (2)(1) + (1)(4) = 0,

confirming the result of Theorem 3.3(iii) when the elements of row 3 and the co-
factors of row 1 are used.

Determinants have a number of special properties that can be used to sim-
plify their expansion, though their main uses are found elsewhere in mathematics,
where determinants often characterize some important theoretical feature of a
problem. The most important and useful of these properties are contained in the
next theorem.

THEOREM 3.4 Properties of determinants A determinant detA has the following properties:

(i) If any row or column of a determinant detA only contains zero elements, thenbasic properties of
determinants detA = 0.

(ii) If A is a square matrix with the transpose AT, then detA = detAT.
(iii) If each element of a row or column of a square matrix A is multiplied by a

constant k, then the value of the determinant is kdetA.
(iv) If two rows (or columns) of a square matrix are interchanged, the sign of the

determinant is changed.
(v) If any two rows or columns of a square matrix A are proportional, then

detA = 0.
(vi) Let the square matrix A be such that each element ai j of the ith row (or the

jth column) can be written as ai j = a(1)
i j + a(2)

i j . Then if A1 is the matrix derived from
A by replacing its ith row (or jth column) by the elements a(1)

i j and A2 is the matrix
derived from A by replacing its ith row (or jth column) by the elements a(2)

i j ,

detA = detA1 + detA2.

(vii) The addition of a multiple of a row (or column) of a determinant to another
row (or column) of the determinant leaves the value of the determinant unchanged.
(viii) Let A and B be two n × n matrix, then

det(AB) = detA detB.

Proof

(i) The result follows by expanding the determinant in terms of the row or column
that only contains zero elements.
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(ii) The result follows from the fact that expanding detA in terms of the elements
of its first row is the same as expanding detAT in terms of the elements of its first
column.
(iii) The result follows by expanding the determinant in terms of the row or column

in which each element has been multiplied by the constant k, because k appears as
a factor in each term, so the result becomes kdetA.
(iv) The proof is by induction, starting with a second order determinant for which

the result can be seen to be true from definition (6). To proceed with an inductive
proof we assume the results to be true for a determinant of order r − 1, and show it
must be true for a determinant of order r. Expand a row of a determinant of order
r in terms of the elements of a row (or column) that has not been interchanged.
Then, by hypothesis, as the cofactors are determinants of order r − 1, their signs
will all be reversed. This establishes that if the hypothesis is true for a determinant
of order r − 1 it must also be true for a determinant of order r . As the result is true
for r = 2, it follows by induction that it is true for all integers r > 2, and the result
is proved.

(v) If the value of the determinant is detA, and one row is k times another,
then from (ii) by removing the factor k from the row the value of the determinant
will be kdetA1, where A1 is now a determinant with two identical rows. From
(ii), interchanging two rows changes the sign of the determinant, but the rows
are identical, leaving the determinant invariant, so detA1 = 0. A similar argument
shows the result to be true when two columns are proportional, so the result is
proved.
(vi) The result is proved directly by expanding the determinant in terms of the

elements of the ith row (or the jth column).
(vii) Let the square matrix B be obtained from A by adding k times the ith row (or
a column) to the jth row (or column). Then from (iii) and (vi),

detB = detA + kdetC,

where C is obtained from A by replacing the ith row (or column) by the jth row
(or column). As detC has two identical rows (or columns), it follows from (v) that
detC = 0, so detB = detA and the result is proved.
(viii) A proof of this result will be given later after the introduction of elementary
row operation matrices.

Cramer’s rule, which was first encountered when seeking the solution of the two
equations in (7), can be extended to a system of n equations in a very straightforward
manner, and it takes the following form.

Cramer’s rule

The solution of the system of n equations in the n unknowns x1, x2, . . . , xnCramer’s rule for a
system of n equations
in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · ·
an1x1 + an2x2 + · · · + annxn = bn
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is given by

xi = detAi/detA for i = 1, 2, . . . , n,

where detA is the determinant of the coefficient matrix with elements ai j , and
detAi is the determinant obtained from the coefficient matrix by replacing its
ith column by the column containing the number b1, b2, . . . , bn.

The justification for Cramer’s rule in this more general form will be postponed
until after the introduction of inverse matrices, when a simple proof can be given.
Cramer’s rule is mainly of theoretical importance and, in general, it should not
be used to solve equations when n > 3. This is because the number of multipli-
cations required to evaluate a determinant of order n is (n − 1)n!, so to solve
for n unknowns (n + 1) determinants must be evaluated leading to a total of
(n2 − 1)n! multiplications, and this calculation becomes excessive when n > 3.
An efficient way of solving large systems by means of elimination is given in
Chapter 19.

EXAMPLE 3.15 Use Cramer’s rule to solve

x1 − 2x2 + x3 = 1

2x1 + x2 − 2x3 = 3

−x1 + 3x2 + 4x3 = −2.

Solution The determinants involved are

detA =
∣∣∣∣∣∣

1 −2 1
2 1 −2

−1 3 4

∣∣∣∣∣∣ = 29, detA1 =
∣∣∣∣∣∣

1 −2 1
3 1 −2

−2 3 4

∣∣∣∣∣∣ = 37

detA2 =
∣∣∣∣∣∣

1 1 1
2 3 −2

−1 −2 4

∣∣∣∣∣∣ = 1, detA3 =
∣∣∣∣∣∣

1 −2 1
2 1 3

−1 3 −2

∣∣∣∣∣∣ = −6,

so x1 = 37/29, x2 = 1/29, and x3 = −6/29.

A purely algebraic approach to the study of determinants and their properties is
to be found in reference [2.8], and many examples of their applications are given
in references [2.11] and [2.12].

Summary This section has extended to an nth order determinant the basic notion of a second or-
der determinant that was reviewed in Chapter 1, and then established its most important
properties. The Laplace expansion formulas that were established are of theoretical im-
portance, but it will be seen later that the practical evaluation of a determinant is most
easily performed by reducing the n × n matrix associated with a determinant to its echelon
form.



142 Chapter 3 Matrices and Systems of Linear Equations

EXERCISES 3.3

In Exercises 1 through 4 find detA.

1. detA =
∣∣∣∣∣∣
2 1 −1
0 4 3
3 2 −2

∣∣∣∣∣∣.

2. detA =
∣∣∣∣∣∣
−1 2 1

1 3 2
−4 1 2

∣∣∣∣∣∣.

3. detA =
∣∣∣∣∣∣

2 4 −3
−2 1 0

5 −2 4

∣∣∣∣∣∣.

4. detA =
∣∣∣∣∣∣

4 0 0
−2 cos x − sin x

5 sin x cos x

∣∣∣∣∣∣.
5. Given that

detA =
∣∣∣∣∣∣
−3 1 4

2 −1 5
4 2 5

∣∣∣∣∣∣ = 87,

confirm by direct calculation that (a) interchanging the
first and last rows changes the sign of detA and (b) in-
terchanging the second and third columns changes the
sign of detA.

6. Given that

detA =
∣∣∣∣∣∣

2 1 3
5 −2 2

−1 1 3

∣∣∣∣∣∣ = −24,

confirm by direct calculation that (a) adding twice row
two to row three leaves detA unchanged and (b) sub-
tracting three times column three from column one
leaves detA unchanged.

Establish the results in Exercises 7 through 12 without a di-
rect expansion of the determinant by using the properties
listed in Theorem 3.4.

7.

∣∣∣∣∣∣
1 + a a a

b 1 + b b
c c 1 + c

∣∣∣∣∣∣ = (1 + a + b + c).

8.

∣∣∣∣∣∣
1 a b + c
1 b c + a
1 c a + b

∣∣∣∣∣∣ = 0.

9.

∣∣∣∣∣∣
a2 b2 c2

a b c
1 1 1

∣∣∣∣∣∣ = (a − b)(a − c)(b − c).

10.

∣∣∣∣∣∣
x2 + a2 ab ac

ab x2 + b2 bc
ac cb x2 + c2

∣∣∣∣∣∣ = x4(x2 + a2 + b2 + c2).

11.

∣∣∣∣∣∣
1 a b
a 1 b
a b 1

∣∣∣∣∣∣ = (a + b + 1)(a − 1)(b − 1).

12.

∣∣∣∣∣∣∣∣
k 1 1 1
1 k 1 1
1 1 k 1
1 1 1 k

∣∣∣∣∣∣∣∣ = (k + 3)(k − 1)3.

In Exercises 13 and 14 use Cramer’s rule to solve the system
of equations.

13. 2x1 − 3x2 + x3 = 4
x1 + 2x2 − 2x3 = 1
3x1 + x2 − 2x3 = −2.

14. 3x1 + x2 + 2x3 = 5
2x1 − 4x2 + 3x3 = −3
x1 + 2x2 + 4x3 = 2.

15. Let P(λ) be given by

P(λ) =
∣∣∣∣∣∣
3 − λ 0 1

2 2 − λ 2
4 2 1 − λ

∣∣∣∣∣∣ ,
where λ is a parameter. Expand the determinant to find
the form of the polynomial P(λ) and use the result to
find for what values of λ the determinant vanishes.

16. Let P(λ) be given by

P(λ) =
∣∣∣∣∣∣
4 − λ 0 1

1 −λ 1
−1 −2 2 − λ

∣∣∣∣∣∣ ,
where λ is a parameter. Expand the determinant to find
the form of the polynomial P(λ) and use the result to
find for what values of λ the determinant vanishes.

17. Given that

A =
⎡⎣−3 0 4

1 2 −1
1 0 1

⎤⎦ and B =
⎡⎣1 2 3

2 3 1
3 1 2

⎤⎦ ,

calculate det(AB), detA, detB, and hence verify that
det(AB) = detAdetB.
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3.4 Elementary Row Operations, Elementary
Matrices, and Their Connection
with Matrix Multiplication

To motivate what is to follow we will examine the processes involved when solving
by elimination the system of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm,

(16)

though later more will need to be said about the details of this important prob-
lem, and how it is influenced by the number of equations m and the number of
unknowns n.

Elementary Row Operations
The three types of elementary row operations used when solving equations (16) by
elimination are:the three basic types

of elementary row
operation TYPE I The interchange of two equations

TYPE II The scaling of an equation by a nonzero constant
TYPE III The addition of a scalar multiple of an equation to another equation

In matrix notation the system of equations (16) becomes

Ax = b, (17)

where A = [ai j ] is an m × n matrix, x = [x1, x2, . . . , xn]T, and b = [b1, b2, . . . , bm]T.
The three elementary row operations of types I to III that can be performed on
the equations in (16) can be interpreted as the corresponding operations performed
on the rows of the matrices A and b. This is equivalent to performing these same
operations on the rows of the new matrix denoted by (A, b), defined as

(A, b) =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

· · · · · ·
am1 am2 . . . amn bm

⎤⎥⎥⎥⎦ , (18)

that has m rows and n + 1 columns and is obtained by inserting the column vector b
containing the nonhomogeneous terms on the right of matrix A.

When considering the system of linear equations in (16), matrix (A, b) is called
the augmented matrix associated with the system. The separation of the last columnthe augmented matrix
in (18) by a vertical dashed line is to indicate partitioning of the matrix to show that
the elements of the last column are not elements of the coefficient matrix A.
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We are now in a position to introduce a notation for the three elementary row
operations that are necessary when using an elimination process to find the solution
of a system of equations in matrix form (ordinary or augmented).

Elementary row operations

The three elementary row operations that may be performed on a matrix are:

(i) The interchange of the ith and jth rows, which will be denoted by R{i → j,
j → i}.
(ii) The replacement of each element in the ith row by its product with a

nonzero constant α, which will be denoted by R{(α)i → i}.
(iii) The replacement of each element of the jth row by the sum of β times

the corresponding element in the ith row and the element in the jth row, which
will be denoted by R{(β)i + j → j}.

EXAMPLE 3.16 To illustrate the elementary row operations, we consider the matrix

A =
⎡⎣1 6 4 −3 2

2 0 1 7 4
5 2 8 2 3

⎤⎦ .

An example of an elementary row operation of type (i) performed on A is provided
by R{1 → 3, 3 → 1}. This requires rows 1 and 3 to be interchanged to give the new
matrix

R{1 → 3, 3 → 1}A =
⎡⎣5 2 8 2 3

2 0 1 7 4
1 6 4 −3 2

⎤⎦ .

An example of an elementary row operation of type (ii) performed on A is provided
by R{(−3)1 → 1}. This requires each element in row 1 to be multiplied by −3 to
give the new matrix

R{(−3)1 → 1}A =
⎡⎣−3 −18 −12 9 −6

2 0 1 7 4
5 2 8 2 3

⎤⎦ .

An example of an elementary row operation of type (iii) performed on A is provided
by R{(4)1 + 2 → 2}, which requires the elements of row 1 to be multiplied by 4 and
then added to the corresponding elements of row 2 to give the new matrix

R{(4)1 + 2 → 2}A =
⎡⎣1 6 4 −3 2

6 24 17 −5 12
5 2 8 2 3

⎤⎦ .

A sequence of elementary row operations performed on the augmented
matrix (A, b) will lead to a different augmented matrix (A′, b′). However, as this is
equivalent to performing the corresponding sequence of operations on the actual
equations in (16), although (A, b) and (A′, b′) will look different, the interpreta-
tion of (A′, b′) in terms of the solution of the system of equations in (16) will, of
course, be the same as that of (A, b). It will be seen later that the purpose of car-
rying out these operations on a matrix is to simplify it while leaving its essential
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algebraic structure unaltered, e.g., without changing the solution x1, . . . , xn of the
corresponding system of equations.

The definition that now follows is a consequence of the equivalence, in terms of
equations (16), of matrix (A, b) and any matrix (A′, b′) that can be derived from it
by means of a sequence of elementary row operations, though the definition applies
to matrices in general, and not only to augmented matrices.

Row equivalence of matrices

Two m × n matrices will be said to be row equivalent if one can be obtained
from the other by means of a sequence of elementary row operations. Row
equivalence between matrices A and B is denoted by writing A ∼ B.

The row equivalence of matrices has the useful properties listed in the following
theorem.

THEOREM 3.5 Reflexive, symmetric, and transitive properties of row equivalence

(i) Every m × n matrix A is row equivalent to itself (reflexive property).
(ii) Let A and B be m × n matrices. Then if A is row equivalent to B, B is row

equivalent to A (symmetric property).
(iii) Let A, B, and C be m × n matrices. Then if matrix A is row equivalent to B

and B is row equivalent to C, A is row equivalent to C (transitive property).

Proof

(i) The property is self-evident.
(ii) To establish this property we must show the three elementary row operations

involved are reversible. In the case of elementary row operations of type (i) the
result follows from the fact that if an application of the operation R{i → j, j → i}
to matrix A yields a new matrix B, an application of the operation R{ j → i, i → j}
to matrix B generates the original matrix A.

Similarly, in the case of elementary row operations of type (ii), if an application
of the operation R{(α)i → i} to matrix A yields a new matrix B, an application of
the operation R{(1/α)i → i} to matrix B reproduces the original matrix A.

Finally we consider the case of elementary row operations of type (iii). If an
application of the operation R{(β)i + j → j} to matrix A yields a new matrix B,
an application of the operation R{(−β)i + j → j} to B returns the original matrix
A. Taken together these results establish property (ii).
(iii) Using property (ii) in (iii) establishes the row equivalence first of A and B,

and then of B and C, and hence of A and C, so property (iii) is proved.

Let us now define what are called elementary matrices and examine the effect
they have when used to premultiply a matrix.

Elementary matrices

An n × n elementary matrix is any matrix that is obtained from an n × n unit
matrix I by performing a single elementary row operation.
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The following concise notation will be used to identify the elementary matrices that
correspond to each of the three elementary row operations.

TYPE I Ei j will denote the elementary matrix obtained from the unit matrix I
by interchanging its ith and jth rows.

TYPE II Ei (c) will denote the matrix obtained from the unit matrix I by multi-
plying its ith row by the nonzero scalar c.

TYPE III Ei j (c) will denote the matrix obtained from the unit matrix I by adding
c times its ith row to its jth row.

EXAMPLE 3.17 Let I be the 3 × 3 unit matrix. Then

the three basic types
of elementary
matrix

I =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ , E23 =
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦ , E3(4) =
⎡⎣1 0 0

0 1 0
0 0 4

⎤⎦ , and

E13(5) =
⎡⎣1 0 0

0 1 0
5 0 1

⎤⎦ .

Determinants of Elementary Matrices
It follows directly from the definitions of elementary matrices that:

(a) The determinant of an elementary matrix of Type I is −1, because two rows
of a unit matrix have been interchanged so, in terms of Ei j , we have det(Ei j ) = −1.

(b) The determinant of an elementary matrix of Type II in which a row is multi-
plied by a nonzero constant c is c, because a row of a unit matrix has been multiplied
by c so, in terms of Ei (c), we have det(Ei (c)) = c.

(c) The determinant of an elementary matrix of Type III in which c times one row
has been added to another row is 1, because the addition of a multiple of a row of
a unit matrix to another row leaves its value unchanged so, in terms of Ei j (c), we
have det(Ei j (c)) = 1.

The next theorem shows that premultiplication of a matrix A by an elementary
matrix E that is conformable for multiplication performs on A the same elementary
row operation that was used to generate E from I.

THEOREM 3.6 Row operations performed by elementary matrices Let E be an m × melementary
matrix produced by performing an elementary row operation on the unit matrix
I, and let A be an m × n matrix. Then the matrix product EA is the matrix that is
obtained when the row operation that generated E from I is performed on A.

Proof The proof of the theorem follows directly from the definition of a matrix
product and the fact that, with the exception of the ith element in the ith row of I,
which is 1, all the other elements in that row are zero. So if E is the elementary matrix
obtained from I by replacing the element 1 in its ith row by α, the result of the matrix
product EA will be that the elements in the ith row of A will be multiplied by α. As
the form of argument used to establish the effect on A of premultiplication by P to
form PA can also be employed when the other two elementary row operations are
used to generate an elementary matrix E, the details will be left as an exercise.
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EXAMPLE 3.18 Let A be the matrix

A =
⎡⎣2 4 5

1 3 7
6 1 2

⎤⎦ .

If we use the notation for elementary matrices, and introduce the elementary matrix
E23 from Example 3.17 obtained by interchanging the last two rows of I3, a routine
calculation shows that

E23A =
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦⎡⎣2 4 5
1 3 7
6 1 2

⎤⎦ =
⎡⎣2 4 5

6 1 2
1 3 7

⎤⎦ ,

so the product E23A has indeed interchanged the last two rows of A.
Similarly, again using the elementary matrices in Example 3.17, it is easily

checked that E3(4)A multiplies the elements in the third row of A by 4, while
E13(5)A adds five times the first row of A to the last row.

The main use of Theorem 3.6 is to be found in the theory of matrix algebra,
and in the justification it provides for various practical methods that are used when
working with matrices. This is because when solving purely numerical problems the
necessary row operations need only be performed on the rows of the augmented
matrix instead of on the system of equations itself.

Typical uses of the theorem will occur later after a discussion of the linear
independence of equations, the definition of what is called the rank of a matrix,
and the introduction of the inverse of an n × n matrix A. In this last case, the results
of the theorem will be used to provide an elementary method by which what is
called the inverse matrix of an n × n matrix can be obtained when n is small.

Summary This section introduced the three types of elementary row operations that are used when
manipulating matrices together with the corresponding three types of elementary matrix
that can be used to perform elementary row operations.

3.5 The Echelon and Row-Reduced Echelon
Forms of a Matrix

We now use the row equivalence of matrices to reduce a matrix A to one of two
slightly different but related standard forms called, respectively, its echelon form
and its row-reduced echelon form. It is helpful to introduce these two new concepts
by considering the solution of the system of m equations in n unknowns introduced
in (16) and written in an equivalent but more condensed form as (A, b), where

(A, b) =

⎡⎢⎢⎣
a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

· · · · · ·
am1 am2 . . . amn bm

⎤⎥⎥⎦ , (19)

because this is equivalent to the full matrix equation Ax = b.
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Echelon and row-reduced echelon forms of a matrix

A matrix A is said to be in echelon form if:echelon and
row-reduced
echelon forms (i) The first nonzero element in each row, called its leading entry, is 1;

(ii) In any two successive rows i and i + 1 that do not consist entirely of
zeros the leading element in the (i + 1)th row lies to the right of the leading
element in ith row;
(iii) Any rows that consist entirely of zeros lie at the bottom of the matrix.

Matrix A is said to be in row-reduced echelon form if, in addition to conditions
(i) to (iii), it is also true that
(iv) In a column that contains the leading entry of a row, all the other ele-

ments are zero.

In summary, this definition means that a matrix A is in echelon form if the
first nonzero entry in any row is a 1, the entry appears to the right of the first
nonzero entry in the row above, and all rows of zeros lie at the bottom of the
matrix. Furthermore, matrix A is in row-reduced echelon form if, in addition to
these conditions, the first nonzero entry in any row is the only nonzero entry in the
column containing that entry.

EXAMPLE 3.19 The following matrices are in echelon form:

⎡⎣1 0 5 7
0 0 1 0
0 0 0 0

⎤⎦ and

⎡⎢⎢⎢⎢⎣
1 1 1 1 1 1
0 0 1 2 0 1
0 0 0 1 5 2
0 0 0 0 1 3
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

The matrices⎡⎢⎢⎣
0 1 0 2 0 5 0
0 0 1 1 0 3 2
0 0 0 0 1 1 0
0 0 0 0 0 0 0

⎤⎥⎥⎦ ,

⎡⎣1 0 0 9 2
0 1 0 2 3
0 0 1 1 0

⎤⎦ , and

⎡⎣1 0 0 5
0 1 0 2
0 0 1 1

⎤⎦
are in row-reduced echelon form.

Rules for the reduction of a matrix to echelon form

The reduction of the m × n matrix to its echelon form is accomplished by
means of the following steps:rules for finding the

echelon form 1. Find the row whose first nonzero element is furthest to the left and, if
necessary, move it into row 1; if there is more than one such row, choose
the row whose first nonzero element has the largest absolute value.

2. Scale row 1 to make its leading entry 1.
3. Subtract multiples of row 1 from the m − 1 rows below it to reduce to

zero all entries that lie below the leading entry in the first column.
4. In the m − 1 rows below row 1, find the row whose first nonzero entry is

furthest to the left and, if necessary, move it into row 2; if there is more
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than one such row, choose the row whose first nonzero entry has the
largest absolute value.

5. Scale row 2 to make its leading entry 1.
6. Subtract multiples of row 2 from the m − 2 rows below it to reduce to

zero all entries in the column below the leading entry in row 2.
7. Continue this process until either the first nonzero entry in the mth row

is 1, or a stage is reached at which all subsequent rows consist entirely
of zeros.

8. The matrix is then in its echelon form.

Remark
The selection in Step 1, and the steps corresponding to Step 4, of a row whose first
nonzero entry has the largest magnitude is made to reduce computational errors,
and is not necessary mathematically. This criterion is introduced to ensure that the
elimination procedure does not use an unnecessary scaling of a nonzero entry of
small absolute magnitude to reduce to zero an entry of large absolute magnitude.

rules for finding the
row-reduced echelon
form

Rules for the reduction of a matrix to row-reduced echelon form

1. Proceed as in the reduction of a matrix to echelon form, but when steps
equivalent to Step 6 are reached, in addition to subtracting multiples
of the row containing a leading entry 1 from the rows below to reduce
to zero all elements in the column below the leading entry, this same
process must be repeated to reduce to zero all elements in the column
above the leading entry.

2. An equivalent approach is first to reduce the matrix to echelon form and
then, starting with row 2 and working downwards, to subtract multiples
of successive rows from the rows above to generate columns with leading
entries to ones with the single nonzero entry 1.

Each of these methods reduces a matrix to its row-reduced echelon form.

The row equivalence of a matrix with either its echelon or its row-reduced
echelon form means that the different-looking systems of equations represented
by these three matrices all have identical solution sets. The simplified structure of
the row echelon and row-reduced echelon forms of the original augmented matrix
makes the solution of the associated system of equations particularly easy, as can
be seen from the following examples.

EXAMPLE 3.20 Reduce the following matrix to its echelon and its row-reduced echelon form:⎡⎢⎢⎣
0 1 2 0 3
2 4 8 2 4
1 2 4 2 2
1 3 6 1 5

⎤⎥⎥⎦ .
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Solution

⎡⎢⎢⎣
0 1 2 0 3
2 4 8 2 4
1 2 4 2 2
1 3 6 1 5

⎤⎥⎥⎦ ∼
switch rows

2 and 1

⎡⎢⎢⎣
2 4 8 2 4
0 1 2 0 3
1 2 4 2 2
1 3 6 1 5

⎤⎥⎥⎦

∼
divide row 1 by 2

⎡⎢⎢⎣
1 2 4 1 2
0 1 2 0 3
1 2 4 2 2
1 3 6 1 5

⎤⎥⎥⎦ ∼
subtract row 1

from rows 3 and 4

⎡⎢⎢⎣
1 2 4 1 2
0 1 2 0 3
0 0 0 1 0
0 1 2 0 3

⎤⎥⎥⎦

∼
subtract row 2

from row 4

⎡⎢⎢⎣
1 2 4 1 2
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎦
and the matrix is now in echelon form.

Having already obtained the echelon form of the matrix, we now use it to obtain
the row-reduced echelon form. We already have⎡⎢⎢⎣

0 1 2 0 3
2 4 8 2 4
1 2 4 2 2
1 3 6 1 5

⎤⎥⎥⎦ ∼

⎡⎢⎢⎣
1 2 4 1 2
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎦ ∼
subtract twice row 2

from row 1

⎡⎢⎢⎣
1 0 0 1 −4
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎦ ∼
subtract row 3

from row 1

⎡⎢⎢⎣
1 0 0 0 −4
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎦ ,

and the matrix is now in its row-reduced echelon form.

EXAMPLE 3.21 Solve the system of equations

x2 + 2x3 = 3

2x1 + 4x2 + 8x3 + 2x4 = 4

x1 + 2x2 + 4x3 + 2x4 = 2

x1 + 3x2 + 6x3 + x4 = 5.

Solution The augmented matrix (A, b) for this system is the matrix in Exam-
ple 3.20 that was shown to be equivalent to the row-reduced echelon form⎡⎢⎢⎢⎢⎣

1 0 0 0 −4

0 1 2 0 3

0 0 0 1 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

If we recall that the first four columns of this matrix contain the coefficients of x1, x2,
x3, and x4, while the last column contains the nonhomogeneous terms, the matrix
implies the much simpler system of equations

x4 = 0, x2 + 2x3 = 3, and x1 = −4.
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As there are only three equations connecting four unknowns, it follows that
in the second equation either x2 or x3 can be assigned arbitrarily, so if we choose
to set x3 = k (an arbitrary number), the solution set of the system in terms of the
parameter k becomes

x1 = −4, x2 = 3 − 2k, x3 = k, and x4 = 0.

The same solution could have been obtained from the echelon form of the matrix⎡⎢⎢⎢⎢⎣
1 2 4 1 2

0 1 2 0 3

0 0 0 1 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

because this implies the system of equations

x1 + 2x2 + 4x3 + x4 = 2, x2 + 2x3 = 3, and x4 = 0.

Starting from the last equation we find x4 = 0, and setting x3 = k in the middle
equation gives, as before, x2 = 3 − 2k. Finally, substituting x2, x3, and x4 in the first
equation gives x1 = −4. This process of arriving at a solution of a system of equations
whose coefficient matrix is in upper triangular form is called back substitution.back substitution

It should be noticed that the system of equations would have had no solution
if the row-reduced echelon form had been⎡⎢⎢⎢⎢⎣

1 0 0 0 −4

0 1 2 0 3

0 0 0 1 0

0 0 0 0 5

⎤⎥⎥⎥⎥⎦ .

This is because although the equations corresponding to the first three rows of
this matrix would have been the same as before, the fourth row implies 0 = 5,
which is impossible. This corresponds to a system of equations where one equation
contradicts the others, so that no solution is possible.

Summary This section defined two related types of fundamental matrix that can be obtained from a
general matrix by means of elementary row operations. The first was a reduction to echelon
form and the second, derived from the first form, was a reduction to row-reduced echelon
form. Each of the reduced forms retains the essential properties of the original matrix,
while simplifying the task of solving the associated system of linear algebraic equations.

EXERCISES 3.5

Let P, Q, and R be the matrices

P =
⎡⎣3 0 0

0 1 0
0 0 1

⎤⎦ , Q =
⎡⎣0 0 1

0 1 0
1 0 0

⎤⎦ , R =
⎡⎣1 2 0

0 1 0
0 0 1

⎤⎦ .

In Exercises 1 through 4 verify by direct calculation
that (a) premultiplication by P multiplies row 1 by 3;
(b) premultiplication by Q interchanges rows 1 and 3; and

(c) premultiplication by R adds twice row 2 to row 1.

1.

⎡⎣2 1 1
1 3 0
1 2 4

⎤⎦.

2.

⎡⎣1 −1 2
2 1 3
3 0 7

⎤⎦.

3.

⎡⎣4 0 1
2 0 3
1 2 5

⎤⎦.

4.

⎡⎣9 1 3
2 4 7
1 2 2

⎤⎦.
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In Exercises 5 and 6 write down the required elementary
matrices.

5. When I is the 3 × 3 unit matrix, write down E12, E2(3),
and E12(6).

6. When I is the 4 × 4 unit matrix, write down E41, E4(3),
and E23(4).

In Exercises 7 through 12, reduce the given matrices to their
row-reduced echelon form.

7.

⎡⎣0 3 4 1
3 1 2 2
1 5 2 1

⎤⎦.

8.

⎡⎣4 1 3 1 3
2 1 1 2 0
3 2 1 1 0

⎤⎦.

9.

⎡⎣4 −2 2 3 1
2 0 0 3 2
4 1 2 5 1

⎤⎦.

10.

⎡⎢⎢⎢⎢⎣
3 2 1 1
2 5 1 2
3 1 1 3
0 1 3 4
2 1 3 1

⎤⎥⎥⎥⎥⎦.

11.

⎡⎢⎢⎣
2 2 4 1 4
1 1 3 2 1
3 2 5 1 4
1 0 3 1 2

⎤⎥⎥⎦.

12.

⎡⎣3 2 3 2
3 7 1 −1
5 1 1 3

⎤⎦.

In Exercises 13 through 18, reduce the given augmented
matrices to their row-reduced echelon form and, where ap-
propriate, use the result to solve the related system of equa-
tions in terms of an appropriate number of the unknowns
x1, x2, . . . .

13.

⎡⎢⎢⎣
2 3 1 0

1 3 1 4

6 9 4 8

⎤⎥⎥⎦.

14.

⎡⎢⎢⎣
2 1 1 0

2 3 1 4

4 9 4 8

⎤⎥⎥⎦.

15.

⎡⎢⎢⎣
0 2 1 1 1

1 3 1 2 1

3 9 4 3 0

⎤⎥⎥⎦.

16.

⎡⎢⎢⎢⎢⎢⎣
2 1 0 2 1

1 3 1 4 2

2 1 2 3 1

4 7 4 11 7

⎤⎥⎥⎥⎥⎥⎦.

17.

⎡⎢⎢⎢⎢⎢⎣
1 0 1 0 2 0

2 2 6 0 6 0

1 0 1 1 6 0

3 2 7 0 8 2

⎤⎥⎥⎥⎥⎥⎦.

18.

⎡⎢⎢⎣
3 0 6 0 6

1 1 5 1 9

2 0 4 2 10

⎤⎥⎥⎦.

3.6 Row and Column Spaces and Rank

The reduction of an m × n matrix A to either its echelon or its row-reduced echelon
form will produce a row of zeros whenever the row is a linear combination of some
(or all) of the rows above it. So if an echelon form contains r ≤ m nonzero rows,
it follows that these r rows are linearly independent, and hence that the remaining
m − r rows are linearly dependent on the first r rows. The number r is called the
row rank of matrix A.

This means that if the r nonzero rows of an echelon form u1, u2, . . . , ur are
regarded as n element row vectors belonging to a vector space Rn, the r vectors will
span a subspace of Rn. Consequently, as these vectors form a basis for this subspace,
every vector in it can be expressed as a linear combination of the form

a1u1 + a2u2 + · · · + ar ur ,

where the a1, a2, . . . , ar are scalar constants. This subspace of Rn is called the row
space of matrix A.

It should be remembered that the vectors forming a basis for a space are not
unique, and that any basis can be transformed to any other one by means of suitable
linear combinations of the vectors involved. So although the r nonzero rows of therow and column

ranks and spaces echelon form of A and those of its row-reduced echelon form look different, they
are equivalent, and each forms a basis for the row space of A.

Just as there may be linear dependence between the rows of A, so also may
there be linear dependence between its columns. If s of the n columns of an m × n
matrix A are linearly independent, the number s is called the column rank of matrix
A. When the s nonzero columns v1, v2, . . . , vs are regarded as m element column
vectors belonging to a vector space Rm, these vectors will span a subspace of Rm.



Section 3.6 Row and Column Spaces and Rank 153

Consequently, as these vectors form a basis for this subspace, every vector in it can
be expressed as a linear combination of the form

b1v1 + b2v2 + · · · + bsvs,

where the b1, b2, . . . , bs are scalar constants. This subspace of Rm is called the column
space of matrix A.

The connection between the row and column ranks of a matrix is provided by
the following theorem.

THEOREM 3.7 The equality of the row and column ranks Let A be any matrix. Then the row
rank and column rank of A are equal.

equality of the rank
of a matrix and its
transpose Proof Let an m × n matrix A have row rank r . Then in its row-reduced echelon

form it must contain r columns v1, v2, . . . , vr , in each of which only the single
nonzero entry 1 appears. Call these columns the leading columns of the row-reduced
echelon form, and let them be arranged so that in the ith column v, the entry 1
appears in the ith row.

The row-reduced echelon form of A will comprise the leading columns arranged
in numerical order with, possibly, columns between the ith and the (i + 1)th leading
columns in which zero elements lie below the ith row but nonzero elements may
occur above it. Furthermore, there may be columns to the right of column vr in
which zero elements lie below the r th row but nonzero elements may lie above it.

By subtracting suitable multiples of the leading columns from any columns
that lie between them or to the right of vr , it is possible to reduce all entries in
such columns to zero. Consequently, at the end of this process, the only remaining
nonzero columns will be the r linearly independent leading columns v1, v2, . . . , vr .
This establishes the equality of the row and column ranks.

Rank

The rank of matrix A, denoted by rank (A), is the value common to the row
and column ranks of A.

THEOREM 3.8 Rank of A and AT Let A be any matrix. Then

rank (A) = rank (AT).

Proof The columns of A are the rows of AT, so the column rank of A is the row
rank of AT. However, by Theorem 3.7 these two ranks are equal, so the result is
proved.

EXAMPLE 3.22 Let

A =

⎡⎢⎢⎣
1 0 3 0 4 0
2 1 7 0 10 1
1 0 3 2 6 4
1 0 3 0 4 0

⎤⎥⎥⎦ .
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Then the row-reduced echelon form of A is B (B ∼ A)

B =

⎡⎢⎢⎣
1 0 3 0 4 0
0 1 1 0 2 1
0 0 0 1 1 2
0 0 0 0 0 0

⎤⎥⎥⎦ ,

showing that the number of leading columns is 3, so the row rank of A is 3, and
hence its rank is 3. Three row vectors spanning a subspace of R6, and so forming a
basis for this subspace, are the three nonzero row vectors in this 4 × 6 matrix,

u1 = [1, 0, 3, 0, 4, 0], u2 = [0, 1, 1, 0, 2, 1], and u3 = [0, 0, 0, 1, 1, 2].

The row-reduced echelon form of AT is⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

showing that the number of leading columns is 3, confirming as would be expected
that the column rank of A (the row rank of AT) is 3. The three row vectors of AT

spanning a subspace of R4, and so forming a basis for this subspace, are the three
nonzero rows in this 6 × 4 matrix, namely,

[1, 0, 0, 1], [0, 1, 0, 0], and [0, 0, 1, 0].

The three linearly independent column vectors of A are obtained by transposing
these vectors to obtain

v1 =

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ , v2 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , and v3 =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ .

Summary This section introduced the important algebraic concepts of the rank of a matrix, and of
the row and column spaces of a matrix. The equality of the row and column ranks of a
matrix was then proved. It will be seen later that the rank of a matrix plays a fundamental
role when we seek a solution of a linear algebraic system of equations.

EXERCISES 3.6

In Exercises 1 through 14 find the row-reduced echelon
form of the given matrix, its rank, a basis for its row space,
and a basis for its column space.

1.

⎡⎣1 3 1 0 1 1
2 2 1 0 0 1
0 2 1 4 1 3

⎤⎦ .
2.

⎡⎢⎢⎣
1 3 2 1
2 0 2 1
1 0 4 5
0 1 2 4

⎤⎥⎥⎦ .

3.

⎡⎢⎢⎣
3 0 2 6 0
4 1 0 11 3
2 0 2 4 0
3 0 0 6 3

⎤⎥⎥⎦ .

4.
[

2 3 1 0 0 2 4
1 2 1 0 4 1 2

]
.

5.

⎡⎣1 2 3
2 3 1
3 2 1

⎤⎦ .

6.

⎡⎣3 2 4
1 2 2
8 8 12

⎤⎦ .
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7.

⎡⎢⎢⎣
1 3 4
3 0 4
2 3 1
0 3 5

⎤⎥⎥⎦ .

8.

⎡⎢⎢⎢⎢⎣
2 1 3 1
1 1 0 3
1 2 1 0
3 3 4 1
2 3 1 3

⎤⎥⎥⎥⎥⎦ .

9.

⎡⎣1 2 1 4 5 7
2 1 0 1 2 1
3 3 1 5 7 8

⎤⎦ .

10.

⎡⎣2 4 0 10 8
0 2 1 3 1
2 6 1 13 9

⎤⎦ .

11.

⎡⎢⎢⎢⎢⎣
0 −1 4 3

0 0 1 2

0 0 0 −1

1 0 0 0

⎤⎥⎥⎥⎥⎦ .

12.

⎡⎢⎢⎢⎢⎣
1 0 0 0

1 −1 0 0

2 5 −1 0

1 3 2 1

⎤⎥⎥⎥⎥⎦ .

13.

⎡⎢⎣ 1 7 2 4

0 0 5 7

0 0 0 3

⎤⎥⎦ .

14.

⎡⎢⎢⎢⎢⎢⎢⎣

1 5 0 3

2 1 1 1

1 2 3 2

3 3 4 3

4 5 7 5

⎤⎥⎥⎥⎥⎥⎥⎦ .

3.7 The Solution of Homogeneous Systems
of Linear Equations

Having now introduced the echelon and row-reduced echelon forms of an m × n
matrix A, we are in a position to discuss the nature of the solution set of the system

homogeneous and
nonhomogeneous
systems of equations

of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm,

(20)

which will be nonhomogeneous when at least one of the terms bi on the right is
nonzero, and homogeneous when b1 = b2 = · · · = bm = 0. In this section we will
only consider homogeneous systems.

Rather than working with the full system of homogeneous equations corre-
sponding to bi = 0, i = 1, 2, . . . , m in (20), it is more convenient to work with its
coefficient matrix

A =

⎡⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

⎤⎥⎥⎦ , (21)

which contains all the information about the system. The coefficients in the first
column of A are multipliers of x1, those in the second column are multipliers of
x2, . . . , and those in the nth column are multipliers of xn.

Denote by AE either the echelon or the row-reduced echelon form of the
coefficient matrix A. Then, as elementary row operations performed on a coefficient
matrix are equivalent in all respects to performing the same operations on the
corresponding full system of equations, the solution set of the matrix equation

Ax = 0 (22)

will be the same as the solution set of an echelon form of the homogeneous equa-
tions

AEx = 0. (23)
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It is obvious that x = 0, corresponding to x = [0, 0, . . . , 0]T, is always a solution of
(22) and, of course of (23), and it is called the trivial solution of the homogeneous
system of equations. To discover when nontrivial solutions exist it is necessary to
work with the equivalent echelon form of the equations given in (23).

If rank(A) = r , the first r rows of AE will be nonzero rows, and the last m − r
rows will be zero rows. As there are m rows in A, we must consider the three
separate cases (a) m < n, (b) m = n, and (c) m > n.

trivial solution

Case (a): m < n. In this case there are more variables than equations. As
rank(A) = r , and there are m equations, it follows that r = rank(A) ≤ m.
The system in (22) will thus contain only r linearly independent equations
corresponding to the first r rows of AE. So working with system (23), we
see that r of the variables x1, x2, . . . , xn will be determined in terms of the
remaining m − r variables regarded as parameters (see Example 3.23).
Case (b): m = n. In this case the number of variables equals the number of
equations. If rank(A) = r < n we have the same situation as in Case (a),
and the variables x1, x2, . . . , xn will be determined by the system of equations
in (23) in terms of the remaining m − r variables regarded as parameters.
However, if r = n, only the trivial solution x = 0 is possible, because in this
case AE becomes the unit matrix In, from which it follows directly that x = 0.
Case (c): m > n. In this case the number of equations exceeds the number
of variables and r = rank(A) ≤ n. This is essentially the same situation as
in Case (b), because if r = rank(A) < n, the variables x1, x2, . . . , xn will be
determined by the system of equations in (22) in terms of the remaining m − r
variables regarded as parameters, while if rank(A) = n only the trivial solution
x = 0 is possible.

The practical determination of solution sets to homogeneous systems of linear
equations is illustrated in the next example.

EXAMPLE 3.23 Find the solution sets of the homogeneous systems of linear equations with coeffi-
cient matrices given by:

(a) A =
⎡⎣1 2 1 7 0

3 6 4 24 3
1 4 4 12 3

⎤⎦, (b) A =
⎡⎣1 3 2

2 1 0
1 2 1

⎤⎦, (c) A =

⎡⎢⎢⎣
2 3 6 1
1 4 2 2
4 11 10 5
1 0 1 1

⎤⎥⎥⎦,

(d) A =

⎡⎢⎢⎢⎢⎣
1 4 1 2
1 3 0 1
2 1 1 1
4 9 3 5
5 5 2 3

⎤⎥⎥⎥⎥⎦ , (e) A =
⎡⎣1 2 3 1 4 3

0 1 3 0 1 5
3 1 2 3 1 4

⎤⎦

Solution

(a) The row-reduced echelon form of the matrix is

AE =
⎡⎣1 0 0 8 3

0 1 0 −2 −3
0 0 1 3 3

⎤⎦ ,
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showing that rank(A) = 3. This corresponds to the following three equations be-
tween the five variables x1, x2, x3, x4, and x5:

x1 + 8x4 + 3x5 = 0, x2 − 2x4 − 3x5 = 0, and x3 + 3x4 + 3x5 = 0.

Letting x4 = α and x5 = β be arbitrary numbers (parameters) allows the solution
set to be written

x1 = −8α − 3β, x2 = 2α + 3β, x3 = −3α − 3β, x4 = α, x5 = β.

(b) The row-reduced echelon form of the matrix is

AE =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ ,

showing that rank(A) = 3. This corresponds to the trivial solution x1 = x2 = x3 = 0.
(c) The row-reduced echelon form of the matrix is

AE =

⎡⎢⎢⎣
1 0 0 20/13
0 1 0 5/13
0 0 1 −7/13
0 0 0 0

⎤⎥⎥⎦ ,

showing that rank(A) = 3. This corresponds to the solution set x1 + (20/13)x4 =
0, x2 + (5/13)x4 = 0, and x3 − (7/13)x4 = 0. Setting x4 = k, an arbitrary number
(a parameter), shows the solution set to be given by

x1 = −(20/13)k, x2 = −(5/13)k, x3 = (7/13)k, and x4 = k.

(d) The row-reduced echelon form of the matrix is

AE =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 1/3
0 0 1 2/3
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

showing that rank(A) = 3. This corresponds to the following three equations for
the four variables x1, x2, x3, and x4:

x1 = 0, x2 + (1/3)x4 = 0, and x3 + (2/3)x4 = 0.

Setting x4 = k, an arbitrary number (a parameter), shows the solution set to be
given by

x1 = 0, x2 = −k/3 = 0, x3 = −2k/3, and x4 = k.

(e) The row-reduced echelon form of the matrix is

AE =
⎡⎣1 0 0 1 −1/4 1/2

0 1 0 0 13/4 −5/2
0 0 1 0 −3/4 5/2

⎤⎦ ,

showing that rank(A) = 3. This corresponds to the following three equations for
the six variables x1 to x6:

x1 + x4 − (1/4)x5 + (1/2)x6 = 0, x2 + (13/4)x5 − (5/2)x6 = 0

x3 − (3/4)x5 + (5/2)x6 = 0.



158 Chapter 3 Matrices and Systems of Linear Equations

Setting x4 = α, x5 = β, and x6 = γ , where α, β, and γ are arbitrary numbers
(parameters), shows the solution set to be given by

x1 = −α + (1/4)β − (1/2)γ, x2 = −(13/4)β + (5/2)γ, x3 = (3/4)β − (5/2)γ

x4 = α, x5 = β, and x6 = γ.

Summary This section made use of the rank of a matrix to determine when a nontrivial solution of
a linear system of homogeneous linear algebraic equations exists and, when it does, its
precise form.

EXERCISES 3.7

In Exercises 1 through 10, use the given form of the matrix
A to find the solution set of the associated homogeneous
linear system of equations Ax = 0.

1.

⎡⎣1 3 2 1 1
1 1 0 1 2
0 1 2 1 3

⎤⎦.

2.

⎡⎢⎢⎣
1 2 0 1 1
0 3 1 0 1
2 0 2 0 1
1 0 3 1 1

⎤⎥⎥⎦.

3.

⎡⎢⎢⎣
1 2 4 1
0 3 1 3
1 4 1 3
2 6 5 4

⎤⎥⎥⎦.

4.

⎡⎢⎢⎣
1 2 1 0
2 1 0 1
0 3 5 1
1 0 1 5

⎤⎥⎥⎦.

5.

⎡⎢⎢⎢⎢⎣
1 3 4
2 1 3
1 0 2
3 1 1
2 3 1

⎤⎥⎥⎥⎥⎦.

6.

⎡⎢⎢⎢⎢⎣
2 1 1 3
1 2 3 0
0 1 4 2
1 3 1 2
0 4 1 1

⎤⎥⎥⎥⎥⎦.

7.

⎡⎢⎢⎣
1 5 2 2 1 3 2
0 1 4 1 0 1 1
1 2 1 0 0 2 0
2 3 0 1 1 0 2

⎤⎥⎥⎦.

8.

⎡⎢⎢⎣
1 4 1 0
2 1 3 1
5 6 7 2
2 1 0 1

⎤⎥⎥⎦.

9.

⎡⎣1 1 5 0 0 1
2 3 1 2 1 3
0 1 0 1 3 0

⎤⎦.

10.

⎡⎢⎢⎣
1 3 2 1 1
2 5 1 0 2
0 1 2 0 3
1 0 3 1 2

⎤⎥⎥⎦.

3.8 The Solution of Nonhomogeneous Systems
of Linear Equations

We now turn our attention to the solution of the nonhomogeneous system of equa-
tions in (20) that may be written in the matrix form

Ax = b, (24)

where A is an m × n matrix and b is an m × 1 nonzero column vector. In many
respects the arguments we now use parallel the ones used when seeking the form of
the solution set for a homogeneous system, but there are important differences. This
time, rather than working with the matrix A, we must work with the augmented
matrix (A, b) and use elementary row operations to transform it into either an
echelon or a row-reduced echelon form that will be denoted by (A, b)E. When this
is done, system (24) and the echelon form corresponding to (A, b)E will, of course,
each have the same solution set.

It is important to recognize that rank(A) is not necessarily equal to rank
(A, b)E, so that in general rank(A) ≤ rank((A, b)E). The significance of this
observation will become clear when we seek solutions of systems like (24).
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Case (a): m < n. In this case there are more variables than equations, and it
must follow that rank((A, b)E) ≤ m. If rank(A) = rank((A, b)E) = r , it follows
that r of the equations in (24) are linearly independent and m − r are linear
combinations of these r equations. This means that the first r rows of (A, b)E

are linearly independent while the last m − r rows are rows of zeros. Thus, r
of the variables x1 to xn will be determined by the equations corresponding to
these r nonzero rows, in terms of the remaining m − r variables as parameters.
It can happen, however, that rank(A) = r < rank((A, b)E), and then the
situation is different, because one or more of the rows following the r th row
will have zeros in its first n entries and nonzero numbers for their last entries.
When interpreted as equations, these will imply contradictions, because they
will assert expressions such as 0 = c with c �= 0 that are impossible. Thus, no
solution will exist if rank(A) �= rank((A, b)E).
Case (b): m = n. In this case the number of variables equals the number
of equations, and it must follow that rank((A, b)E) ≤ n. The situation now
parallels that of Case (a), because if rank(A) = rank((A, b)E) = r < m, then r
of the equations in (24) will be linearly independent, while m − r will be linear
combinations of these r equations. So, as before, the first r rows of (A, b)E will
be linearly independent while the last m − r rows will be rows of zeros. Thus, r
of the variables x1 to xn will be determined by the equations corresponding to
these r nonzero rows in terms of the remaining m − r variables as parameters.
In the case r = n, the solution will be unique, because then AE = I. Finally,
if rank(A) �= rank((A, b)E), it follows, as in Case (a), that no solution will
exist.
Case (c): m > n. In this case there are more equations than variables, and it
must follow that rank((A, b)E) ≤ n. If rank(A) = rank((A, b)E) = r , it follows,
as in Case (b), that r of the equations in (24) are linearly independent while
m − r are linear combinations of these r equations. Thus, again, the first r rows
of (A, b)E will be linearly independent while the last m − r rows will be rows
of zeros. Consequently, r of the variables x1 to xn will be determined by the
equations corresponding to these r nonzero rows in terms of the remaining
m − r variables as parameters. If rank(A) �= rank((A, b)E), then as before no
solution will exist.

These considerations bring us to the definition of consistent and inconsistent
systems of nonhomogeneous equations, with consistent systems having solutions,
sometimes in terms of parameters, and inconsistent systems have no solution.

Consistent and inconsistent nonhomogeneous systems

The nonhomogeneous system Ax = b is said to be consistent when it has a
solution; otherwise, it is said to be inconsistent.

consistent and
inconsistent systems

As with homogeneous systems, the practical determination of solution sets of
nonhomogeneous systems of linear equations will be illustrated by means of
examples.
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EXAMPLE 3.24 Find the solution sets for each of the following augmented matrices (A, b), where
the matrices A are those given in Example 3.23.

(a) (A, b) =

⎡⎢⎣1 2 1 7 0 1

3 6 4 24 3 0

1 4 4 12 3 3

⎤⎥⎦ (b) (A, b) =

⎡⎢⎣1 3 2 2

2 1 0 1

1 2 1 − 3

⎤⎥⎦

(c) (A, b) =

⎡⎢⎢⎢⎢⎣
2 3 6 1 2

1 4 2 2 3

4 11 10 5 1

1 0 1 1 2

⎤⎥⎥⎥⎥⎦ (d) (A, b) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 4 1 2 2

1 3 0 1 0

2 1 1 1 3

4 9 3 5 7

5 5 2 3 0

⎤⎥⎥⎥⎥⎥⎥⎦
(e) (A, b) =

⎡⎢⎣1 2 3 1 4 3 −2

0 1 3 0 1 5 0

3 1 2 3 1 4 1

⎤⎥⎦ .

Solution

(a) In this case,

(A, b)E =

⎡⎢⎣1 0 0 8 3 −7

0 1 0 −2 −3 11/2

0 0 1 3 3 −3

⎤⎥⎦ .

As rank(A, b)E = 3, and the rank of matrix A is the rank of the matrix formed by
deleting the last column of (A, b)E, it follows that rank(A) = 3. So rank(A, b)E =
rank(A), showing the equations to be consistent, so they have a solution.

If we remember that the first column contains the coefficients of x1, the second
column the coefficients of x2, . . . , and the fifth column the coefficients of x5, while
the last column contains the nonhomogeneous terms, we can see that the matrix
(A, b)E is equivalent to the three equations

x1 + 8x4 + 3x5 = −7, x2 − 2x4 − 3x5 = 11/2, x3 + 3x4 + 3x5 = −3.

So, if we set x4 = α and x5 = β, with α and β arbitrary numbers (parameters), the
solution set becomes

x1 = −8α − 3β − 7, x2 = 2α + 3β + 11/2, x3 = −3α − 3β − 3,

x4 = α and x5 = β.

(b) In this case,

(A, b)E =

⎡⎢⎣1 0 0 9

0 1 0 −17

0 0 1 22

⎤⎥⎦ .

Here A is a 3 × 3 matrix and rank(A) = rank((A, b)E) = 3, so the equations are
consistent and the solution is unique. The solution set is seen to be

x1 = 9, x2 = −17, and x3 = 22.
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(c) In this case,

(A, b)E =

⎡⎢⎢⎢⎢⎣
1 0 0 20/13 0
0 1 0 5/13 0
0 0 0 −7/13 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

This system has no solution because the equations are inconsistent. This follows
from the fact that rank(A) = 3, as can be seen from the first four columns, while the
five columns show that rank((A, b)E) = 4, so that rank(A) �= rank((A, b)E). The
inconsistency can be seen from the contradiction contained in the last row, which
asserts that 0 = 1.

(d) In this case

(A, b)E =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 1/3 0
0 0 1 2/3 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

This system also has no solution because the equations are inconsistent. This fol-
lows from the fact that rank(A) = 3 and rank((A, b)E) = 4, so that rank(A) �=
rank((A, b)E). The inconsistency can again be seen from the contradiction in the
last row, which again asserts that 0 = 1.

(e) In this case

(A, b)E =

⎡⎢⎣1 0 0 1 −1/4 1/2 5/8

0 1 0 0 13/4 −5/2 −21/8

0 0 1 0 −3/4 5/2 7/8

⎤⎥⎦ ,

showing that rank(A) = rank((A, b)E) = 3, so the equations are consistent.

Reasoning as in (a) and setting x4 = α, x5 = β, and x6 = γ , with α, β, and γ arbitrary
numbers (parameters), shows the solution set to be given by

x1 = −α + (1/4)β − (1/2)γ + 5/8, x2 = −(13/4)β + (5/2)γ − 21/8,

x3 = (3/4)β − (5/2)γ + 7/8, x4 = α, x5 = β, x6 = γ.

A comparison of the corresponding solution sets in Examples 3.23 and 3.24
shows that whenever the nonhomogeneous system has a solution, it comprises the
sum of the solution set of the corresponding homogeneous system, containing ar-
bitrary parameters, and numerical constants contributed by the nonhomogeneous
terms. This is no coincidence, because it is a fundamental property of nonhomo-
geneous linear systems of equations. The combination of solutions comprising thegeneral solution of

a nonhomogeneous
system

sum of a solution of the homogeneous system Ax = 0 containing arbitrary con-
stants, and a particular fixed solution of the nonhomogeneous system Ax = b that
is free from arbitrary constants, is called the general solution of a nonhomogeneous
system. The result is important, so it will be recorded as a theorem.
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THEOREM 3.9 General solution of a nonhomogeneous system The nonhomogeneous system of
equations

Ax = b

for which rank(A) = rank ((A, b)E) has a general solution of the form

x = xH + xP,

where xH is the general solution of the associated homogeneous system AxH = 0
and xP is a particular (fixed) solution of the nonhomogeneous system AxP = b.

Proof Let x be any solution of the nonhomogeneous system Ax = b, and let xP

be a solution of the nonhomogeneous system AxP = b that contains no arbitrary
constants (a fixed solution). Then, as the equations are linear,

A(x − xP) = Ax − AxP = b − b = 0,

showing that the difference xD = x − xP is itself a solution of the homogeneous
system. Consequently, all solutions of the nonhomogeneous system are contained
in the solution set of the homogeneous system to which xD belongs, and the theorem
is proved.

Summary This section used the rank of a matrix to determine when a solution of a linear system
of nonhomogeneous equations exists and to determine its precise form. If the ranks of a
matrix and an augmented matrix are equal, it was shown that a solution exists, furthermore,
if there are n equations and the rank r < n, then r unknowns can be expressed in terms
of arbitrary values assigned to the remaining n − r unknowns. The system was shown to
have a unique solution when r = n, and no solution if the ranks of the matrix and the
augmented matrix are different.

EXERCISES 3.8

In Exercises 1 through 10 write down a system of equa-
tions with an appropriate number of unknowns x1, x2, . . .

corresponding to the augmented matrix. Find the solution
set when the equations are consistent, and state when the
equations are inconsistent.

1.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 3 11

0 3 −2 1 11

2 1 0 4 23

3 2 −1 2 21

1 −1 3 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

2.

⎡⎢⎢⎣
2 1 3 1 1

0 1 4 1 1

3 0 0 2 1

⎤⎥⎥⎦ .

3.

⎡⎢⎢⎢⎢⎢⎣
1 3 1 1 0

1 1 3 2 1

1 1 0 3 1

2 0 2 1 0

⎤⎥⎥⎥⎥⎥⎦ .

4.

⎡⎢⎢⎣
1 4 2 3 4

2 0 3 1 2

5 4 8 5 8

⎤⎥⎥⎦ .

5.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 −1 −4

2 3 1 2 12

1 2 −2 3 15

3 1 −1 1 11

1 1 −1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

6.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1

2 1 1 3

0 2 1 3

2 6 7 5

1 −2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

7.

⎡⎢⎢⎢⎢⎢⎣
1 2 3 0 1

0 1 0 2 1

2 1 3 1 0

1 4 1 5 2

⎤⎥⎥⎥⎥⎥⎦ .

8.

⎡⎢⎢⎣
2 1 0 0 3 1

1 2 1 1 3 0

0 1 2 5 1 2

⎤⎥⎥⎦ .

9.

⎡⎢⎢⎢⎢⎢⎣
1 2 1 4

1 1 2 0

2 1 1 4

0 3 5 1

⎤⎥⎥⎥⎥⎥⎦ .

10.

⎡⎢⎢⎣
1 3 1 1 2 1

1 −2 1 3 1 0

2 0 1 0 3 0

⎤⎥⎥⎦.
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3.9 The Inverse Matrix

The operation of division is not defined for matrices. However, we will see that
n × n matrices A for which detA �= 0 have associated with them an n × n matrix B,
called its multiplicative inverse, with the property that

AB = BA = I.

The purpose of this section will be to develop ways of finding the multiplicative

multiplicative inverse
matrix

inverse of a matrix, which for simplicity is usually called the inverse matrix, but first
we give a formal definition of the inverse of a matrix.

The inverse of a matrix

Let A and B be two n × n matrices. Then matrix A is said to be invertible and
to have an associated inverse matrix B if

AB = BA = I.

Interchanging the order of A and B in this definition shows that if B is the inverse
of A, then A must be the inverse of B.

To see that not all n × n matrices have inverses, it will be sufficient to try to find
a matrix B such that the product AB = I, where

A =
[

1 2
1 2

]
and B =

[
a b
c d

]
.

The product AB is

AB =
[

1 2
1 2

] [
a b
c d

]
=
[

a + 2c b + 2d
a + 2c b + 2d

]
,

so if this product is to equal the 2 × 2 unit matrix I, it is necessary that[
a + 2c b + 2d
a + 2c b + 2d

]
=
[

1 0
0 1

]
.

Equating corresponding elements in the first columns shows that this can only
hold if a + 2c = 1 and a + 2c = 0, while equating corresponding elements in the sec-
ond columns shows that b + 2d = 0 and b + 2d = 1, which is impossible, so matrix
A has no inverse. In this case detA = 0, and we will see later why the nonvanishing
of detA is necessary if A is to have an inverse.

Nonsingular and singular matrices

An n × n matrix is said to be nonsingular when its inverse exists, and to be
singular when it has no inverse.

singular and
nonsingular n × n
matrices

EXAMPLE 3.25 We have already seen that the matrix

A =
[

1 2
1 2

]
,
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for which detA = 0, has no inverse and so is singular. However, in the case of matrix
A that follows, a simple matrix multiplication confirms that it has associated with
it an inverse B, where

A =
⎡⎣ 1 0 1

−1 2 0
0 1 1

⎤⎦ and B =
⎡⎣ 2 1 −2

1 1 −1
−1 −1 2

⎤⎦ ,

because AB = BA = I. Furthermore, detA �= 0, so A is nonsingular, as is B, and
each is the inverse of the other.

Before proceeding further it is necessary to establish that, when it exists, the
inverse matrix is unique.

THEOREM 3.10 Uniqueness of the inverse matrix A nonsingular matrix A has a unique inverse.

Proof Suppose, if possible, that the nonsingular n × n matrix A has the two dif-
ferent inverses B and C. Then as AC = I, we have

B = BI = B(AC) = (BA)C = IC = C,

showing that B = C, so the inverse matrix is unique.

It is convenient to denote the inverse of a nonsingular n × n matrix A by the
symbol A−1. This is suggested by the exponentation notation (raising to a power),
because if for the moment we write A = A1, then AA−1 = A1A−1 = I, showing
that exponents may be combined in the usual way, with the understanding that
A1A−1 = A(1−1) = A0 = I.

THEOREM 3.11 Basic properties of inverse matrices

(i) The unit matrix I is its own inverse, so I = I−1.basic properties of
the inverse matrix (ii) If A is nonsingular, so also is A−1, and (A−1)−1 = A.

(iii) If A is nonsingular, so also is AT, and (A−1)T = (AT)−1.
(iv) If A and B are nonsingular n × n matrices, so is AB, and

(AB)−1 = B−1A−1.

(v) If A is nonsingular, then (A−1)m = (Am)−1 for m = 1, 2, . . . .

Proof We prove only (i) and (iv), and leave the proofs of (ii), (iii), and (v) as
exercises. The proof of (i) is almost immediate, because I2 = I, showing that I = I−1.
To prove (iv) we premultiply B−1A−1 by AB to obtain

ABB−1A−1 = AIA−1 = AA−1 = I,

which shows that (AB)−1 is B−1A−1, so the proof is complete.

A simple method of finding the inverse of an n × n matrix is by means of
elementary row operations, but to justify the method we first need the following
theorem.
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THEOREM 3.12 Elementary row operation matrices are nonsingular Every n × n matrix E that
represents an elementary row operation is nonsingular.

Proof Every n × n matrix E that represents an elementary row operation is de-
rived from the unit matrix I by means of one of the three operations defined at the
start of Section 3.4. So, as rank(I) = n and E and I are row similar, it follows that
rank(E) = n, and so E is also nonsingular.

We can now describe an elementary way of finding an inverse matrix by means
of elementary row transformations. Let A be a nonsingular n × n matrix, and let
E1, E2, . . . , Em represent a sequence of elementary row operations of Types I, II,
and III that reduces A to I, so thatfinding an inverse

matrix using
elementary row
operations EmEm−1 . . . E2E1A = I.

Then postmultiplying this result by A−1 gives

EmEm−1 . . . E2E1I = A−1,

so A−1 is given by

A−1 = EmEm−1 · · · E2E1I,

where the product of the first m matrices on the right is nonsingular because of
Theorem 3.11. Expressed in words, this result states that when a sequence of el-
ementary row operations is used to reduce a nonsingular matrix A to the unit
matrix I, performing the same sequence of elementary row operations on I, in the
same order, will generate the inverse matrix A−1. If matrix A is singular, this will
be indicated by the generation of either a complete row or a complete column of
zeros before I is reached.

If A is nonsingular, it is reducible to the unit matrix I, and clearly detA �= 0.
However, if A is singular, the attempt to reduce it to I will generate either a row or
a column of zeros, so that then detA = 0. The vanishing or nonvanishing of detA
provides a simple and convenient test for the singularity or nonsingularity of A
whenever n is small, say n ≤ 3, because only then is it a simple matter to calculate
detA.

The practical way in which to implement this result is not to use the matrices
Ei to reduce A to I, but to perform the operations directly on the rows of the
partitioned matrix (A, I), because when A in the left half of the partitioned matrix
has been reduced to I, the matrix I in the right half will have been transformed
into A−1.

EXAMPLE 3.26 Use elementary row operations to find A−1 given that

A =
⎡⎣ 1 0 1

−1 2 0
0 1 1

⎤⎦ .
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Solution We form the augmented matrix (A, I) and proceed as described earlier.

(A, I) =

⎡⎢⎣ 1 0 1 1 0 0

−1 2 0 0 1 0

0 1 1 0 0 1

⎤⎥⎦ ∼
add row 1
to row 2

⎡⎢⎣1 0 1 1 0 0

0 2 1 1 1 0

0 1 1 0 0 1

⎤⎥⎦
∼

subtract row 3
from row 2

⎡⎢⎣1 0 1 1 0 0

0 1 0 1 1 −1

0 1 1 0 0 1

⎤⎥⎦ ∼
subtract row 2
from row 3

⎡⎢⎣1 0 1 1 0 0

0 1 0 1 1 −1

0 0 1 − 1 −1 2

⎤⎥⎦
∼

subtract row 3
from row 1

⎡⎢⎣1 0 0 2 1 −2

0 1 0 1 1 −1

0 0 1 − 1 −1 2

⎤⎥⎦ .

The 3 × 3 matrix on the left of this row-equivalent partitioned matrix is now the
unit matrix I, so the required inverse matrix is the one to the right of the partition,
namely,

A−1 =
⎡⎣ 2 1 −2

1 1 −1
−1 −1 2

⎤⎦ .

Once A−1 has been obtained, it is always advisable to check the result by
verifying that AA−1 = I.

Before proceeding further we will use elementary matrices to provide the
promised proof of Theorem 3.4(viii).

Proof that det(AB) = detA detB Let E1 be a row matrix of Type I. Then if A is a
nonsingular matrix, det(EIA) = −detA, because only a row interchange is involved.
However, det(EI) = −1, so det(EIA) = detEIdetA. Similar arguments show this to
be true for elementary row operation matrices of the other two types, so if E is an
elementary row operation of any type, thenthe proof that

det(AB) = detA detB
det(EA) = detEdetA.

If detA �= 0, premultiplication by a sequence of elementary row operation
matrices E1, E2, . . . , Er will reduce A to I, so performing them on I in the reverse
order allows us to write

A = E1E2 . . . Er I = E1E2 . . . Er .

A repetition of the result det(EA) = detEdetA shows that

detA = detE1detE2 . . . detEr .

If B is conformable for multiplication with A, using the preceding result we
have

det(AB) = det(E1E2 . . . Er B)

= detE1detE2 . . . detEr detB,

but

detE1detE2 . . . detEn = detA, and so det(AB) = detAdetB.
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To complete the proof we must show this result remains true if A is singular, in
which case detA = 0. When detA = 0, the attempt to reduce it to the unit matrix I
by elementary row operation matrices will fail because at one stage it will produce
a determinant in which a row will contain only zero elements. Consequently, a
determinant detEm, say, will be zero, which is impossible, so det(AB) = 0. However,
if detA = 0, then detAdetB = 0, so that once again det(AB) = detAdetB, and the
result is proved.

EXAMPLE 3.27 Use (a) elementary row operations and (b) the determinant test to show matrix A
is singular, given that

A =
⎡⎣1 1 0

1 0 1
4 3 1

⎤⎦ .

Solution

(a) Using elementary row operations on the augmented matrix gives

(A, I) =

⎡⎢⎣1 1 0 1 0 0

1 0 1 0 1 0

4 3 1 0 0 1

⎤⎥⎦ ∼
subtract row 1

from row 2

⎡⎢⎣1 1 0 1 0 0

0 −1 1 −1 1 0

4 3 1 0 0 1

⎤⎥⎦
∼

subtract 4 times
row 1 from row 3

⎡⎢⎣1 1 0 1 0 0

0 −1 1 −1 1 0

0 −1 1 − 4 0 1

⎤⎥⎦
∼

subtract row 2
from row 3

⎡⎢⎣1 1 0 1 0 0

0 −1 1 −1 1 0

0 0 0 − 3 −1 1

⎤⎥⎦ .

The reduction is terminated at this stage by the appearance of a row of zeros on
the matrix to the left of the partition, showing that A cannot be reduced to I, and
hence that A is singular.

(b) Applying the determinant test to A, we find that detA = 0, showing that A
is singular. Although in this case this is by far the quickest way to establish the
singularity of A, this would not have been so had the order of detA been much
greater than 3. This is because when n > 3, the effort involved in performing the
elementary row operations in an attempt to reduce A to I is considerably less than
the effort involved when calculating detA.

The following very different way of finding the inverse of an n × n matrix A is
mainly of theoretical importance, though it is a practical method when n is small.
The method is based on the properties of the sum of products of elements and
cofactors of a determinant.

Let A = [ai j ] be an n × n matrix, C = [Ci j ] be the associated n × n matrix of
cofactors and form the matrix product

ACT =

⎡⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . .

an1 an2 . . . ann

⎤⎥⎥⎦
⎡⎢⎢⎣

C11 C21 . . . Cn1

C12 C22 . . . Cn2

. . . . . . . . .

C1n C2n . . . Cnn

⎤⎥⎥⎦ .
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If we write B = ACT, with B = [bi j ], it follows from the rule for matrix multiplication
that

bi j = ai1C1 j + ai2C2 j + · · · + ainCnj .

Thus, bi j is seen to be the sum of the product of the elements of the ith row of A
and the corresponding cofactors of the elements of the jth row of A. It then follows
from the Laplace expansion theorem for determinants that

bi j = detA, for i = j = 1, 2, . . . , n

and

bi j = 0, for i �= j.

Using these results in the matrix product, we find that

ACT =

⎡⎢⎢⎢⎢⎣
detA 0 0 . . . 0

0 detA 0
0 0 detA . . . 0

. . . . . . . . . . . .

0 0 0 . . . detA

⎤⎥⎥⎥⎥⎦
= detA I.

Consequently, provided detA �= 0, it follows that

(1/detA)ACT = I.

Writing this as

A{(1/detA)CT} = I

shows that

A−1 = (1/detA)CT.

The matrix CT, called the adjoint of A and written adjA, is the transpose of theadjoint matrix
matrix of cofactors of A. So the formula for the inverse of A becomes

A−1 = (1/detA)adjA. (25)

We have arrived at the following definition and theorem.

Adjoint matrix

If A is an n × n matrix, and C is the associated matrix of cofactors, the trans-
pose CT of the matrix of cofactors is called the adjoint of A and is written
adjA.

THEOREM 3.13 The inverse matrix in terms of the adjoint of A Let A be a nonsingular n × n
matrix. Then the inverse of A is given by

formal definition of
an inverse matrix

A−1 = (1/detA)adjA.
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EXAMPLE 3.28 Use Theorem 3.13 to find A−1, given that

A =
⎡⎣1 3 0

2 1 1
1 0 1

⎤⎦ .

Solution The matrix of cofactors

C =
⎡⎣ 1 −1 −1

−3 1 3
3 −1 −5

⎤⎦ , so CT =
⎡⎣ 1 −3 3

−1 1 −1
−1 3 −5

⎤⎦ .

Expanding detA in terms of the elements of its first row (we already have its asso-
ciated cofactors in the first row of C) gives detA = 1 · 1 + (−1) · 3 + 1 · 0 = −2, so
from Theorem 3.13,

A−1 = (−1/2)CT =

⎡⎢⎢⎣
− 1

2
3
2 − 3

2
1
2 − 1

2
1
2

1
2 − 3

2
5
2

⎤⎥⎥⎦ .

Although the result of Theorem 3.13 is of considerable theoretical importance,
unless n is small, the task of evaluating the determinants involved makes it imprac-
tical for the determination of inverse matrices. In general, for large n, an inverse
matrix is found by means of a computer using elementary row operations to reduce
A to I.

General Proof of Cramer’s Rule
In conclusion, we will use Theorem 3.13 to arrive at a simple proof of Cramer’s rule
for the system of equations

proof of Cramer’s rule
for a system of n
equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
an1x1 + an2x2 + · · · + annxn = bn.

If we write the system as Ax = b, then, provided detA �= 0, the solution can be
written

x = A−1b = (1/detA)(adjA)b = (1/detA)CTb,

where CT is the transpose of the matrix of cofactors of A. If x = (x1, x2, . . . , xn)T

and b = (b1, b2, . . . , bn)T, the ith element of x is given by

xi = (1/detA)(C1i b1 + C2i b2 + · · · + Cni bn) for i = 1, 2, . . . , n.

This is simply the expansion of detAi in terms of the elements of its ith column,
where Ai is the matrix obtained from A by replacing the elements of the ith column
by the elements of b. This has established that

xi = detAi/detA, for i = 1, 2, . . . , n,

and the proof is complete.



170 Chapter 3 Matrices and Systems of Linear Equations

More information about the material in Sections 3.4 to 3.9 is to be found in the
appropriate chapters of references [2.1], [2.5], and [2.7] to [2.12].

GABRIEL CRAMER (1704–1752):
A Swiss mathematician who made many contributions to algebra and geometry. The result
called Cramer’s rule was, in fact, first formulated by Maclaurin around 1729 and published
posthumously in his Treatise on Algebra (1748). The form of the rule attributed to Cramer
appeared in his book Traite des courbes algebraiques (1750), which became a standard reference
work during the remainder of the century. The work was so well written and so often quoted
that after his death Cramer was, on occasions, considered to be the originator of the rule.

Summary Division by matrices is not defined, but the introduction of a multiplicative inverse A−1 of a
nonsingular n × n matrix A, called the inverse of A, enables certain operations that in some
sense are similar to matrix division to be performed. This section gave the formal definition
of the inverse of a matrix and established its most important algebraic properties. The
inverse matrix was used to prove Cramer’s rule for a general system of n nonhomogeneous
linear algebraic equations when the determinant of the coefficient matrix is nonsingular.

EXERCISES 3.9

In Exercises 1 through 8, construct a suitable augmented
matrix and find the inverse of the given matrix using ele-
mentary row operations.

1.

⎡⎣1 3 7
2 1 −1
2 1 5

⎤⎦ .

2.

⎡⎣−4 1 0
1 −3 1
2 1 4

⎤⎦ .

3.

⎡⎣1 1 3
5 2 1
1 6 2

⎤⎦ .

4.

⎡⎣2 −6 1
1 3 4
0 −2 1

⎤⎦ .

5.

⎡⎣2 3 1
1 2 0
2 4 1

⎤⎦ .

6.

⎡⎣3 0 1
1 −1 1
0 4 5

⎤⎦ .

7.

⎡⎢⎢⎣
1 2 0 1
1 0 −3 4
0 1 2 5
2 −1 2 2

⎤⎥⎥⎦ .

8.

⎡⎢⎢⎣
0 1 2 3
2 2 −4 2
1 3 0 1
3 1 1 0

⎤⎥⎥⎦ .

9. Given that

A =
⎡⎣3 −1 1

1 4 0
2 1 −3

⎤⎦ and B =
⎡⎣1 −3 1

2 0 5
3 1 2

⎤⎦ ,

verify that (AB)−1 = B−1A−1.

10. Given that

A =
⎡⎣4 1 2

3 1 0
3 2 1

⎤⎦, verify that (A−1)T = (AT)−1 and

(A−1)2 = (A2)−1.

In Exercises 11 through 16, use Theorem 3.13 to find the
inverse of the given matrix, and check the result by showing
that AA−1 = I.

11.

⎡⎣2 4 −5
2 7 1
1 3 4

⎤⎦ .

12.

⎡⎣3 −7 8
1 4 3
0 −5 1

⎤⎦ .

13.

⎡⎣9 2 1
1 4 10
3 1 2

⎤⎦ .

14.

⎡⎣−3 2 6
2 −1 7
5 4 −2

⎤⎦ .

15.

⎡⎢⎢⎣
2 0 1 2
3 1 3 4
1 0 −2 3
1 −2 2 7

⎤⎥⎥⎦ .

16.

⎡⎢⎢⎣
0 1 −4 1
3 7 5 2
1 −2 6 0
0 1 3 1

⎤⎥⎥⎦ .

In the following two exercises, use the determinant test to
show the given matrix is singular, and then verify this by
using elementary row operations applied to a suitable aug-
mented matrix, as in Example 3.27. Compare the effort in-
volved in each case.

17.

⎡⎢⎢⎣
0 2 1 0
1 1 3 0
2 1 4 2
4 3 10 2

⎤⎥⎥⎦ . 18.

⎡⎢⎢⎣
1 3 0 1
1 1 2 1
1 1 2 5
0 −1 1 2

⎤⎥⎥⎦ .
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3.10 Derivative of a Matrix

When the elements of matrix A are differentiable functions of a single variable,
say t , so that A = A[ai j (t)], calculus can be performed on matrices, so it becomes
necessary to define the derivative of a matrix. An illustration of the need for this
was given in Section 3.2(e), where the matrix differential equation ẍ + Ax = 0
was obtained as the system of second order differential equations determining
the motion of a compound mass–spring system.

Derivative of a matrix

Let the m × n matrix A have elements ai j (t) that are differentiable functions
of the variable t . Then the first order derivative of A with respect to t , written
dA/dt , is defined asfundamental

definition of dA/dt

dA/dt = [d(ai j )/dt],

and its nth order derivative with respect to t is defined recursively as

dnA/dtn = d/dt[dn−1A/dtn−1], for n = 1, 2, . . . ,

with the convention that d0(ai j )/dt0 = ai j , so that d0A/dt0 = A.
The derivative of a constant matrix is the null (zero) matrix 0.

EXAMPLE 3.29 Find dA/dt and d2A/dt2 given that

(a) A =
[

t2 3t cosh t
2t + 1 et sin 2t

]
, (b) A =

[
tet

cos 3t

]
.

Solution

(a) By definition,

dA/dt =
[

2t 3 sinh t
2 et 2 cos 2t

]
and d2A/dt2 =

[
2 0 cosh t
0 et −4 sin 2t

]
.

(b) dA/dt =
[

et + tet

−3 sin 3t

]
and d2A/dt2 =

[
2et + tet

−9 cos 3t

]
.

derivative of a sum, a
product, and an
inverse matrix

THEOREM 3.14 Derivative of the sum of two matrices Let A(t) and B(t) be an m × n matrices,
each with differentiable elements. Then

d/dt{A + B} = dA/dt + dB/dt.

Proof The result follows immediately from the definition of the sum of two
matrices.
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THEOREM 3.15 Derivative of a matrix product Let A(t) be an m × n matrix and B(t) be an
n × q matrix, each with differentiable elements. Then, if the m × q matrix C(t) =
A(t) B(t),

dC/dt = {dA/dt}B + A{dB/dt}.

Proof It follows from the definition of the matrix product of two matrices A and
B that are conformable for multiplication that crs = ar1b1s + ar2b2s + · · · + arnbns ,
so each term in crs is a product of two differentiable functions. Differentiating crs

establishes the theorem in which the order of the matrix products must be as shown.

THEOREM 3.16 Derivative of an inverse matrix Let A(t) be an n × n nonsingular matrix with
differentiable elements. Then

dA−1/dt = −A−1{dA/dt}A−1.

Proof As A is nonsingular, its inverse A−1 exists and AA−1 = I. Differentiating
the matrix product AA−1 = I gives

{dA/dt}A−1 + AdA−1/dt = 0.

Premultiplication by A−1 followed by a rearrangement establishes the theorem.

EXAMPLE 3.30 Find dA−1/dt given that

A =
[

cos t −sin t
sin t cos t

]
.

Solution We have

dA/dt =
[−sin t −cos t

cos t −sin t

]
and A−1 =

[
cos t sin t

−sin t cos t

]
,

so from Theorem 3.16

dA−1/dt = −A−1{dA/dt}A−1 =
[−sin t cos t
−cos t −sin t

]
.

In this case the result is easily checked by direct differentiation of A−1.

Applications of the derivative of a matrix are to be found in reference [2.11]
and, for example, in connection with systems of ordinary differential equations in
reference [3.15].

Summary Matrices can occur with functions as their elements as, for example, when a matrix de-
scribes a rotation through an angle θ about the origin of a cartesian coordinate system
O{x, y}, or when a column vector contains the unknown functions u1(t), u2(t), . . . , un(t)
that form the solution set of a system of linear differential equations with independent
variable t. Because of this, it is necessary to understand how to differentiate a matrix with
respect to an independent variable that is present in functions forming its elements. This
section addressed this matter by first defining the fundamental operation of differentiation
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of a matrix, and then establishing the way in which it is to be applied to the sum and
product of two matrices and to the inverse matrix.

EXERCISES 3.10

In Exercises 1 through 4, find dC/dt and d2C/dt2.

1. C = A + B, where A =
[

t3 t t sin t
t2 cos t sin 2t

]
and

B =
[

1 2t2 cosh t
t 3 cos t

]
.

2. C = A − B, where A =
[

e2t 1 tan t
t sin t cos 3t

]
and

B =
[

2 2t sinh t
t t sin t

]
.

3. C = A − 2B, where A =
[

t + 2 2t t3

3 3t e2t

]
and

B =
[

e2t t t3

1 t2 sinh t

]
.

4. C = A + 3B, where A =
[

(t + 1)2 t t2

2t 1 ln t

]
and

B =
[

t sin t 4 t
t t cosh t

]
.

In Exercises 5 and 6, use Theorem 3.15 to find dC/dt , where
C = AB, and check the result by direct differentiation of C.

5. A =
[

sin t −cos 3t
cos t sin t

]
and B =

[
1 + 2t 2 sin t

2 cos t

]
.

6. A =
[

cosh t cos t
sinh t sin t

]
and B =

[
ln(2t) t

t cos t

]
.

In Exercises 7 and 8 find dA−1/dt by means of Theorem
3.16 and then verify the result by direct differentiation
of A−1.

7. A =

⎡⎢⎣ cos t sin t 0
−sin t cos t 0

t2 t 1

⎤⎥⎦ .

8. A =
[

t2 2t
−t 3t

]
.

9. Find an expression for

d2{A−1}/dt2

in terms of A−1, dA/dt , and d2A/dt2. Apply the result
to

A =
[

cos t −sin t
sin t cos t

]
and verify it by direct differentiation of A−1.



CHAPTER 3

TECHNOLOGY PROJECTS

Project 1

Simplification of det C When C = [ci j + di j]

The purpose of this project is to provide practice
with the computer algebra of determinants and to ex-
tend the result of Theorem 3.4(vi) to the case when
each element of a determinant is the sum of two
numbers.

1. Let a1, a2, a3, b1, b2, b3 be arbitrary 3 �1 ele-
ment column vectors. Then, by repeated appli-
cation of Theorem 3.4(vi), extend its result to
the case when C � [a1 � b1, a2 � b2, a3 � b3] by
expressing det C as a sum of 3 �3 determinants
with columns formed from a1, a2, a3, b1, b2, and
b3.

2. Define an arbitrary matrix C of the form C �
[a1 � b1, a2 � b2, a3 � b3], and with the aid of a
computer algebra determinant package find det
C by using the result of Step 1. Confirm the re-
sult by applying the computer algebra package
directly to find det C.

Project 2

The Row-Reduced Echelon Form of a Matrix
and Its Rank

The purpose of this project is to provide practice with
elementary row operations performed by means of
computer algebra. It involves reducing a matrix step
by step, using the rules given in Section 3.5, to its row-
reduced echelon form, from which its rank can then
be determined by inspection.

1. Let A be the matrix

A =

⎡⎢⎢⎢⎢⎣
0 1 3 2 4 2
1 2 1 �3 1 1

�4 0 1 2 0 1
0 �3 �4 5 0 �3
2 1 �2 �1 2 �1

⎤⎥⎥⎥⎥⎦ .

Using computer algebra, apply sequentially the
steps in the rule in Section 3.5 to reduce A to

its row-reduced echelon form, and hence find
rank (A).

2. Confirm the result obtained in Step 1 by using
a computer algebra package to find directly the
row-reduced echelon form of A. Take note that
in some computer algebra packages the row-
reduced echelon form of a matrix A is called
the Gauss–Jordan form of A.

Project 3

A Theorem on the Rank of a Matrix Product
ABC

The purpose of this project is to provide practice with
matrix multiplication and the reduction of matrices
to their row-reduced echelon forms using computer
algebra.

1. If A, B, and C are arbitrary rectangular matri-
ces, it can be shown that when the matrix product
ABC exists, then

Rank(AB) � Rank(BC) � Rank(B)

� Rank(ABC).

2. Define three arbitrary rectangular matrices A,
B, and C for which the product ABC is defined.
Using computer algebra matrix multiplication
and computer algebra row-reduction to echelon
form, find the ranks of AB, BC, B, and ABC,
and hence confirm the inequality in Step 1 for
this particular case.

Project 4

Consistency of Augmented Coefficient
Matrices, Solution by Back Substitution
and Cramer's Rule

The purpose of this project is to use computer alge-
bra to determine the consistency of two 6 �7 aug-
mented coefficient matrices. The solution for the cor-
responding consistent set of linear equations is then
found after the reduction of its augmented coefficient
matrix to row-reduced echelon form followed by back

174
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substitution. Finally, the solution is checked using
Cramer's rule, which, despite the large determinants
involved, becomes feasible when computer algebra is
used.

1. Use computer algebra to determine which of the
augmented coefficient matrices A and B is con-
sistent, given that

A

⎡⎢⎢⎢⎢⎢⎢⎣
1 4 7 3 0 2 4
3 1 0 2 3 4 1
1 2 1 1 4 3 2
2 4 0 0 1 6 3
0 1 2 1 2 1 0
2 5 2 1 1 7 5

⎤⎥⎥⎥⎥⎥⎥⎦ and

B

⎡⎢⎢⎢⎢⎢⎢⎣
4 1 3 0 1 4 2
1 1 1 3 2 1 1
0 1 1 2 2 1 3
4 0 1 1 2 3 4
1 1 3 2 4 2 1
0 4 3 3 1 2 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

2. In the case of the consistent set of equations, us-
ing the reduction of the coefficient matrix to its
row-reduced echelon form, find the solution by
back substitution.

3. Using computer algebra, apply Cramer's rule
to the consistent set of equations to find the
solution, and so confirm the result found in
step 2.
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Project 5

A One-Way Traffic Flow Problem

The diagram shows the pattern of one way traffic flow
at six road intersections at the corners of two city
blocks. The arrows show the directions of traffic flow,
and the associated numbers are the traffic flow rates
in vehicles per hour at peak traffic time.

By equating the flow rate of traffic into an intersection
to the flow rate out of it (no parking is allowed), find
equations relating the traffic flow rates x1, x2, . . . , x7

along each of the roads. Explain why with the given
peak flow rates it is impossible to close road DE, and
comment on the effect on traffic flow if road CD is
closed for repairs.

Project 6

Forces in Bridge Struts

Use matrix methods to find the forces in the pin-
jointed framed bridge section shown in Fig. 3.10, given
that a concentrated load m acts vertically downwards 
at joint B.

Give a simple example of a pin-jointed framed
structure that contains a redundant strut, and prove
its redundancy by attempting to determine the forces
acting in the strut when the structure is loaded.
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4C H A P T E R

Eigenvalues, Eigenvectors,
and Diagonalization

In engineering and physics, problems involving n linear algebraic equations in n indepen-
dent variables with a constant coefficient matrix A often arise where a solution vector

x is required to be proportional to Ax. Setting the constant of proportionality equal to
λ, this means that x must be a solution of the equation Ax = λx or, equivalently, of the
equation (A − λI)x = 0. The numbers λi for which nonzero solutions xi exist are called
the eigenvalues of matrix A, and the corresponding vectors xi are called the eigenvectors
of A.

Eigenvalues and eigenvectors arise, for example, when studying vibrational problems,
where the eigenvalues represent fundamental frequencies of vibration and the eigenvectors
characterize the corresponding fundamental modes of vibration.

They also occur in many other ways; in mechanics, for example, the eigenvalues can
represent the principal stresses in a solid body, in which case the eigenvectors then describe
the corresponding principal axes of stress caused by the body being subjected to external
forces. Also in mechanics, the moment of inertia of a solid body about lines through its
center of gravity can be represented by an ellipsoid, with the length of a line drawn from
its center to the surface of the ellipsoid proportional to the moment of inertia of the body
about an axis through the center of gravity of the body drawn parallel to the line. In this
case the eigenvalues represent the principal moments of inertia of the body about the
principal axes of inertia, that are then determined by the eigenvectors.

More precisely, if A is an n × n matrix, the polynomial Pn(λ) of degree n in the scalar
λ defined as Pn(λ) = det (A − λI) is called the characteristic polynomial of A. The roots of
the equation Pn(λ) = 0 are called the eigenvalues of matrix A, and the column vectors
x1, x2, . . . , xn satisfying the matrix equation (A − λi I)xi = 0 are called the eigenvectors of
matrix A.

This chapter explains how eigenvalues and eigenvectors are determined and estab-
lishes important properties of eigenvectors. The eigenvectors of an n × n matrix A with n
linearly independent eigenvectors are then used to simplify the structure of A by means
of a process called diagonalization. An important application of diagonalization will arise
later when considering the solution of linear systems of ordinary differential equations that
arise from the study of mechanical, electrical, and chemical reaction problems. Diagonal-
ization is also an important tool when working with partial differential equations, different
types of which describe the temperature distribution in a metal, electromagnetic wave
propagation, and diffusion processes, to name a few examples.
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After a brief discussion of some special n × n matrices with complex elements, real
quadratic forms are defined and the properties of eigenvectors are used to reduce a general
quadratic form to a sum of squares. This is a process that finds many different applications,
one of which occurs later when classifying the partial differential equations of engineering
and physics in order to know the type of auxiliary conditions that must be imposed in
order for them to give rise to physically meaningful solutions.

The chapter ends with the introduction of the matrix exponential eA, where A is a real
n × n matrix, and it is shown how this enters into the solution of a linear first order matrix
differential equation of the form dx/dt = Ax.

4.1 Characteristic Polynomial, Eigenvalues,
and Eigenvectors

Throughout this chapter we will be considering the solutions of the homogeneous
system of algebraic equations

Ax = λx, (1)

where A[ai j ] is an n × n matrix, x is an n element column vector with elements
x1, x2, . . . , xn, and λ is a scalar. For A given we wish to find x and λ. Introducing the
n × n unit matrix by I allows (1) to be written

(A − λI)x = 0, (2)

showing that x is a solution of a homogeneous system of equations with the co-
efficient matrix A − λI. It was seen in Chapter 3 that nontrivial solutions x of (2)
are only possible if one or more rows of the coefficient matrix A − λI are linearly
dependent on its remaining rows. This means that nontrivial solutions x will exist if
rank(A − λI) < n, but this, in turn, is equivalent to the more convenient condition
det(A − λI) = 0. This is a polynomial equation for λ.

Let Pn(λ) be the polynomial of degree n in λ defined by the determinant

Pn(λ) =

∣∣∣∣∣∣∣∣∣∣
a11 − λ a12 a13 a14 · · · · · a1n

a21 a22 − λ a23 a24 · · · · · a2n

a31 a32 a33 − λ a34 · · · · · a3n

. . . . . . . . . . . . . . . . . . .

an1 an2 an3 an4 . . . . ann − λ

∣∣∣∣∣∣∣∣∣∣
. (3)

Inspection of the determinant defining Pn(λ) shows the coefficient of λn is (−1)n,
so the polynomial is of the form

Pn(λ) = (−1)n[λn + c1λ
n−1 + c2λ

n−2 − · · · + cn−1λ + c0]. (4)

The polynomial Pn(λ) is called the characteristic polynomial of A and the as-characteristic
polynomial, equation,
and eigenvalue

sociated polynomial equation Pn(λ) = 0 is the characteristic equation of A. As the
characteristic equation of A is of degree n in λ, it will have n roots, some of which
may be repeated. The roots of Pn(λ) = 0, or equivalently the zeros of Pn(λ), are
called the eigenvalues of A or, sometimes, the characteristic values of A.
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Eigenvalues (characteristic values) of A

The eigenvalues of an n × n matrix A are the n zeros of the polynomial
P(λ) = det(A − λI), or, equivalently, the n roots of the nth degree polynomial
equation det(A − λI) = 0.

In general, a matrix with complex coefficients will have complex eigenvalues,
though even when the coefficients of A are all real it is still possible for complex
eigenvalues to arise. This is because then the characteristic equation will have real
coefficients, so if complex roots occur they must do so in complex conjugate pairs.

If an eigenvalue λ∗ is repeated r times, corresponding to the presence of a
factor (λ − λ∗)r in the characteristic polynomial Pn(λ), the number r is called the
algebraic multiplicity of the eigenvalue λ∗. The set of all eigenvalues λ1, λ2, . . . ,λnspectrum and

spectral radius of A is called the spectrum of A, and the number R = max{|λ1|, |λ2|, . . . , |λn|}, equal
to the largest of the moduli of the eigenvalues, is called the spectral radius of A. The
name comes from the fact that when the spectrum of A is plotted as points in the
complex plane, they all lie inside or on a circle of radius R centered on the origin.

An eigenvector of an n × n matrix A, corresponding to an eigenvalue λ = λi ,eigenvectors and
eigenvalues is a nonzero n-element column vector xi that satisfies the matrix equation

Axi = λi xi

or, equivalently, that is a solution of the homogeneous system of n algebraic equa-
tions

(A − λi I)xi = 0. (5)

Eigenvectors of A

The eigenvector xi of the n × n matrix A, corresponding to the eigenvalue
λ = λi , is a solution of the homogeneous equation (A − λi I)xi = 0.

It is important to recognize that because system (5) is homogeneous, the ele-
ments of an eigenvector can only be determined as multiples of one of its nonzero
elements as a parameter. This means that if for some choice of the parameter x is
an eigenvalue, then kx will also be an eigenvalue for any k �= 0.

The next theorem is fundamental to the use of eigenvectors and shows that
when an n × n matrix A has n distinct (different) eigenvalues, its n eigenvectors
form a basis for the vector space associated with the matrix A.

THEOREM 4.1 Linear independence of eigenvectors The eigenvectors x1, x2, . . . , xm, correspond-
ing to m distinct eigenvalues λ1, λ2, . . . , λm, of an n × n matrix A, are linearly inde-

eigenvectors are
linearly independent pendent. Furthermore, if m = n, the set of eigenvectors x1, x2, . . . , xn forms a basis

for the n-dimensional vector space associated with A.

Proof The proof will be by induction, starting with two vectors, and it uses the
fact that Axi = λi xi for i = 1, 2, . . . , m.
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Let x1 and x2 correspond to distinct eigenvalues λ1 and λ2, and let constants k1

and k2 be such that

k1x1 + k2x2 = 0.

Then

A(k1x1 + k2x2) = 0,

but Axi = λi xi , so this is equivalent to

k1λ1x1 + k2λ2x2 = 0.

Subtracting λ2 times the first equation from the last result gives

(λ1 − λ2)k1x1 = 0.

By hypothesis, λ1 �= λ2, so as x1 �= 0 it follows that k1 = 0. Using this result in k1x1 +
k2x2 = 0 shows that k2 = 0, so we have established the linear independence of x1

and x2.
To proceed with an inductive proof we now assume that linear independence

has been proved for the first r − 1 vectors, and show that the r th vector must also
be linearly independent. To accomplish this we consider the equation

k1x1 + k2x2 + · · · + kr xr = 0.

Premultiplying this equation by A and reasoning as before, we arrive at the result

k1λ1x1 + k2λ2x2 + · · · + krλr xr = 0.

Subtracting λr times the first equation from the last one gives

(λ1 − λr )k1x1 + (λ2 − λr )k2x2 + · · · + (λr−1 − λr )kr−1xr−1 = 0.

By the inductive hypothesis x1, x2, . . . , xr−1 are linearly independent, so as xr �= 0,

(λ1 − λr )k1 = (λ2 − λr )k2 = · · · = (λr−1 − λr )kr−1 = 0.

The eigenvalues are distinct, so the last result can only be true if k1 = k2 = · · · =
kr−1 = 0. Thus kr = 0, and so the vector xr is linearly independent of the vectors
x1, x2, . . . , xr−1. It has been shown that x1 and x2 are linearly independent, so by
induction we conclude that the set of vectors xi is linearly independent for i =
1, 2, . . . , m.

A matrix A can have no more than n linearly independent eigenvectors, so when
m = n the set of eigenvectors x1, x2, . . . , xn spans the n-dimensional vector space
associated with matrix A and forms a basis for this space. The proof is complete.

It can happen that an eigenvalue with algebraic multiplicity r > 1 only has s dif-
ferent eigenvectors associated with it, where s < r , and when this occurs the number

algebraic and
geometric multiplicity

s is called the geometric multiplicity of the eigenvalue. The set of all eigenvectors
associated with an eigenvalue with geometric multiplicity s together with the null
vector 0 forms what is called the eigenspace associated with the eigenvalue. When
one or more eigenvalues has a geometric multiplicity that is less than its algebraic
multiplicity, it follows directly that the vector space associated with A must have
dimension less than n.
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EXAMPLE 4.1 Find the characteristic polynomial, the eigenvalues, and the eigenvectors of the
matrix

A =
⎡⎣2 1 −1

3 2 −3
3 1 −2

⎤⎦ .

Solution The characteristic polynomial P3(λ) is given by

P3(λ) =
∣∣∣∣∣∣
2 − λ 1 −1

3 2 − λ −3
3 1 −2 − λ

∣∣∣∣∣∣ ,
and after expanding the determinant we find that

P3(λ) = −λ3 + 2λ2 + λ − 2.

The characteristic equation P3(λ) = 0 is

λ3 − 2λ2 − λ + 2 = 0,

and inspection shows it has the roots 2, 1, and −1. So the eigenvalues of A are
λ1 = 2, λ2 = 1, and λ3 = −1, and as these roots are all distinct (there are no repeated
roots), each has an algebraic and geometric multiplicity of 1 (each is a single root).
The set of numbers −1, 1, 2 forms the spectrum of matrix A. As the spectral radius
R of a matrix is defined as the largest of the moduli of the eigenvalues, we see that
R = 2.

To find the eigenvectors xi of A corresponding to the eigenvalues λ = λi , for i =
1, 2, 3, it will be necessary to solve the homogeneous system of algebraic equations

(A − λi I)xi = 0 for i = 1, 2, 3,

where xi = [x1, x2, x3]T.

Case λ1 =2

The system of equations to be solved is⎡⎣2 − 2 1 −1
3 2 − 2 −3
3 1 −2 − 2

⎤⎦⎡⎣x1

x2

x3

⎤⎦ =
⎡⎣0

0
0

⎤⎦ ,

and this matrix equation is equivalent to the set of three linear algebraic equations

x2 − x3 = 0, 3x1 − 3x3 = 0, and 3x1 + x2 − 4x3 = 0.

The first two equations are equivalent, so only one of the first two equations
and the third equation are linearly independent. Solving the last two equations for
x1 and x2 in terms of x3, we find that x1 = x2 = x3, so setting x3 = k1 where k1 is an
arbitrary real number (a parameter) shows that the eigenvector x1 corresponding
to the eigenvalue λ1 = 2 is given by

x1 =
⎡⎣k1

k1

k1

⎤⎦ = k1

⎡⎣1
1
1

⎤⎦.
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As k1 is an arbitrary parameter, for convenience we set k1 = 1 and as a result obtain
the eigenvector

x1 =
⎡⎣1

1
1

⎤⎦ .

Case λ2 = 1

This time the system of equations to be solved to find the eigenvector x2 is⎡⎣2 − 1 1 −1
3 2 − 1 −3
3 1 −2 − 1

⎤⎦⎡⎣x1

x2

x3

⎤⎦ =
⎡⎣0

0
0

⎤⎦,

and this is equivalent to the three linear algebraic equations

x1 + x2 − x3 = 0, 3x1 + x2 − 3x3 = 0, and 3x1 + x2 − 3x3 = 0.

The last two equations are identical, so we must solve for x1, x2, and x3 using
the first two equations. It is easily seen from these two equations that x2 = 0 and
x1 = x3, so setting x1 = k2, where k2 is an arbitrary real number (a parameter), gives

x2 = k2

⎡⎣1
0
1

⎤⎦.

Making the arbitrary choice k2 = 1 shows that the eigenvector x2 corresponding to
λ2 = 1 is

x2 =
⎡⎣1

0
1

⎤⎦ .

Case λ3 = −1

Setting λ = λ3, and proceeding as before, shows that the elements of the eigenvector
x3 must satisfy the three equations

3x1 + x2 − x3 = 0, 3x1 + 3x2 − 3x3 = 0, and 3x1 + x2 − x3 = 0,

with the solution x1 = 0, x2 = x3 = k3, where k3 is an arbitrary real number
(a parameter). Making the arbitrary choice k3 = 1 allows the eigenvector x3 to
be written as

x3 =
⎡⎣0

1
1

⎤⎦ .

We have shown that matrix A has the three distinct eigenvalues λ1 = 2, λ2 = 1,
and λ3 = −1, corresponding to which there are the three eigenvectors

x1 =
⎡⎣1

1
1

⎤⎦ , x2 =
⎡⎣1

0
1

⎤⎦ , and x3 =
⎡⎣0

1
1

⎤⎦ .

These three eigenvectors form a basis for the three-dimensional vector space asso-
ciated with A.
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As the eigenvectors x of matrix A satisfy the homogeneous equation (2), they
can be multiplied by an arbitrary nonzero number K, which is either positive or
negative, and still remain an eigenvector. This property is used to scale the eigenvec-
tors of A to produce what are called normalized eigenvectors. This scaling is used
in numerical calculations involving the iteration of eigenvectors, because without
normalization the elements of x may either grow or diminish in absolute value after
each stage of the calculation, leading to a progressive loss of accuracy.

Normalization of eigenvectors

Various normalizations are in use. The most common one for eigenvectorsa frequently used
way of normalizing
eigenvectors

with real elements involves scaling the eigenvector so that the square root of
the sum of the squares of its elements is 1. So, for example, if

x =
⎡⎣a

b
c

⎤⎦ , the normalizing factor K = 1
(a2 + b2 + c2)1/2

(6)

and the normalized eigenvector x̂ becomes

x̂ =
⎡⎣a/(a2 + b2 + c2)1/2

b/(a2 + b2 + c2)1/2

c/(a2 + b2 + c2)1/2

⎤⎦ . (7)

When the eigenvectors in Example 4.1 are normalized in this way, they become

x̂1 =
⎡⎣1/

√
3

1/
√

3
1/

√
3

⎤⎦ , x̂2 =
⎡⎣1/

√
2

0
1/

√
2

⎤⎦ , and x̂3 =
⎡⎣ 0

1/
√

2
1/

√
2

⎤⎦ .

EXAMPLE 4.2 Find the characteristic polynomial, eigenvalues, and eigenvectors of the matrix

A =

⎡⎢⎢⎣
0 0 1 1

−1 2 0 1
−1 0 2 1

1 0 −1 0

⎤⎥⎥⎦ .

Solution The determinant defining the characteristic polynomial is

P4(λ) =

⎡⎢⎢⎣
−λ 0 1 1
−1 2 − λ 0 1
−1 0 2 − λ 1

1 0 −1 −λ

⎤⎥⎥⎦ ,

and after the determinant is expanded the characteristic equation P4(λ) = 0 is found
to be

P4(λ) = λ(λ3 − 4λ2 + 5λ − 2) = 0.

Clearly, λ = 0 is a root of P4(λ) = 0, and inspection shows the other three roots to
be 1, 1, and 2. So the eigenvalues of A are λ1 = 0, λ2 = 1, λ3 = 1, and λ4 = 2. In this
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case λ2 = λ3 = 1, so the eigenvalue 1 has algebraic multiplicity 2, and the remaining
two eigenvalues each have an algebraic multiplicity of 1. To find the eigenvectors
corresponding to these eigenvalues we proceed as in Example 4.1.

Case λ1 = 0

Setting λ = λ1 = 0 in (A − λI)x = 0 leads to the four equations

x3 + x4 = 0, −x1 + 2x2 + x4 = 0, −x1 + 2x3 + x4 = 0, and x1 − x3 = 0.

Proceeding as before we find that x1 = x2 = x3 = −x4, so solving for x1, x2, and x3

in terms of x4, and setting x4 = 1 (an arbitrary choice), shows the eigenvector x1

to be

x1 =

⎡⎢⎢⎣
−1
−1
−1

1

⎤⎥⎥⎦ .

Case λ2 = λ3 = 1

The eigenvalue 1 has algebraic multiplicity 2, so we must attempt to find two dif-
ferent eigenvectors that correspond to the single eigenvalue λ = 1. Setting λ = 1 in
(A − λI)x = 0 leads to the four equations

−x1 + x3 + x4 = 0, −x1 + x2 + x4 = 0, −x1 + x3 + x4 = 0, x1 − x3 − x4 = 0.

The first, third, and fourth equations are identical, so x1, x2, x3, and x4 must be
determined from the two equations

−x1 + x3 + x4 = 0 and −x1 + x2 + x4 = 0.

As there are four unknown quantities x1, x2, x3, and x4, and only two equations
relating them, it will only be possible to solve for two of these quantities in terms of
the remaining two. The equations show that x2 = x3 and x4 = x1 − x3, so choosing
to solve for x3 and x4 in terms of x1 and x2 by setting x1 = α and x2 = β, with α and
β arbitrary constants, shows that the eigenvectors x2 and x3 are both of the form

x2,3 =

⎡⎢⎢⎣
α

β

β

α − β

⎤⎥⎥⎦ .

It is possible to obtain two different eigenvectors from this last result by
choosing two different pairs of values for the arbitrary parameters α and β. We
will define x2 by setting α = 1 and β = 1, and x3 by setting α = 1 and β = 0, and as
a result we find that

x2 =

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦ and x3 =

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ .

Had other choices of the parameters α and β been made, two different eigenvectors
would have been produced.
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Case λ4 = 2

Setting λ = λ4 = 2 in (A − λI)x = 0 leads to the four equations

−2x1 + x3 + x4 = 0, −x1 + x4 = 0, −x1 + x4 = 0, x1 − x3 − 2x4 = 0.

These equations have the solution x1 = x3 = x4 = 0, with no condition being im-
posed on x2. For simplicity we choose to set x2 = 1 to obtain

x4 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ .

In this example, the eigenvalue 1 has algebraic multiplicity 2, and two dif-
ferent eigenvectors can be associated with it, so the geometric multiplicity of the
eigenvalue is also 2. The four eigenvectors x1, x2, x3, and x4 form a basis for the
four-dimensional vector space associated with matrix A.

Had different values been used forα andβ, the basis vectors for this vector space
would have been different, though the vector space itself would have remained the
same because linear combinations of basis vectors will produce an equivalent set
of basis vectors.

The spectrum of A is the set of numbers 0, 1, 2, and the spectral radius of A is
seen to be R = 2.

EXAMPLE 4.3 Show that the matrix

A =
⎡⎣1 1 0

0 1 0
0 0 0

⎤⎦
has three eigenvalues, but only two linearly independent eigenvectors.

Solution The characteristic polynomial

P3(λ) =
∣∣∣∣∣∣
1 − λ 1 0

0 1 − λ 0
0 0 −λ

∣∣∣∣∣∣ ,
and after expanding the determinant the characteristic equation P3(λ) = 0 becomes

P3(λ) = −λ(1 − λ)2 = 0.

The eigenvalue λ1 = 0 occurs with algebraic multiplicity 1 and the eigenvalue λ2 =
λ3 = 1 occurs with algebraic multiplicity 2.

The equations determining the eigenvector x1, corresponding to the eigenvalue
λ = λ1 = 0, are

x1 + x2 = 0 and x2 = 0,

so x1 = x2 = 0 and x3 is arbitrary. Setting x3 = 1 gives

x1 =
⎡⎣0

0
1

⎤⎦ .

The equations determining x2 and x3, corresponding to λ = λ2 = λ3 = 1, are

x1 = k(arbitrary) and x2 = x3 = 0,
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so setting k = 1, we find that the eigenvalue λ2 = λ3 = 1 with algebraic multiplicity
2 only has associated with it the single eigenvector

x2,3 =
⎡⎣1

0
0

⎤⎦ .

So the algebraic multiplicity of the eigenvalue λ = 1 is 2, but its geometric multi-
plicity is 1. The spectrum of A is the set of numbers 0, 1, so the spectral radius of A
is R = 1.

The eigenvalues of a diagonal matrix can be found immediately, and the cor-
responding eigenvectors take on a particularly simple form. Let D be the n × n
diagonal matrix

D =

⎡⎢⎢⎢⎢⎣
a1 0 0 · · · · 0
0 a2 0 · · · · 0
. . . . . . . . . .

. . . . . . . . . .

0 0 0 · · · · an

⎤⎥⎥⎥⎥⎦ ,

with entries a1, a2, . . . , an on its leading diagonal, not all of which are zero, and zeros
elsewhere. Then it is easily seen that the eigenvalues of D are λ1 = a1, λ2 = a2, . . . ,

λn = an. The eigenvector xi corresponding to the eigenvalue λi = ai becomes an
n-element column vector in which only the ith element is nonzero. It is not dif-
ficult to show that this result remains true whatever the algebraic multiplicity of
an eigenvalue, so every diagonal n × n matrix has n eigenvectors of this form. For
convenience, the ith element in xi is usually taken to be 1 so, for example, the matrix

A =
⎡⎣3 0 0

0 −5 0
0 0 4

⎤⎦
has eigenvalues λ1 = 3, λ2 = −5, and λ3 = 4 and eigenvectors

x1 =
⎡⎣1

0
0

⎤⎦ , x2 =
⎡⎣0

1
0

⎤⎦ , and x3 =
⎡⎣0

0
1

⎤⎦ .

Similarly, the diagonal matrix

A =
⎡⎣−2 0 0

0 4 0
0 0 4

⎤⎦
has an eigenvalue λ1 = −2 with multiplicity 1 and a double eigenvalue λ2 = λ3 = 4
with multiplicity 2, but the matrix still has the three distinct eigenvectors

x1 =
⎡⎣1

0
0

⎤⎦ , x2 =
⎡⎣0

1
0

⎤⎦ , and x3 =
⎡⎣0

0
1

⎤⎦ .

When the degree of the characteristic equation of a matrix exceeds 2, its roots
must usually be found by means of a numerical technique. In such circumstances the
next theorem provides a simple and useful check for the values of the eigenvalues
that have been computed.
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THEOREM 4.2 The sum of eigenvalues Let the n × n matrix A[ai j ] have the n eigenvalues λ1,

λ2, . . . , λn, which may be either real or complex. Then
a check on the sum
of the eigenvectors

λ1 + λ2 + · · · + λn = (−1)n−1(a11 + a22 + · · · + ann) = (−1)n−1tr(A).

Proof As the multiplication of a column of a matrix by a number k is equivalent
to multiplication of its determinant by k, we can write

Pn(λ) = det(A − λI) = (−1)n det(λI − A).

Expanding the determinant on the right in terms of the elements of the first column
and separating out the factors that can give rise to the terms in λn and λn−1, we
arrive at the result

Pn(λ) = (−1)n{(λ − a11)(λ − a22) · · · (λ − ann) + Qn−2(λ)},
where Qn−2(λ) is a polynomial in λ of degree n − 2.

Identifying the coefficients of λn and λn−1 in the expression for Pn(λ) shows
that

Pn(λ) = (−1)n{λn − (a11 + a22 + · · · + ann)λn−1 + · · · + constant + Qn−2(λ)}.
An equivalent expression for Pn(λ) can be obtained by expanding it in terms of its
factors (λ − λ1), (λ − λ2), . . . , (λ − λn) to obtain

Pn(λ) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn)

= (−1)n{λn − (λ1 + λ2 + · · · + λn)λn−1 + · · · + constant}.
The statement of the theorem then follows by comparing the coefficients of

λn−1 in the two different expressions for Pn(λ), where it will be recalled that the
trace of an n × n matrix A[ai j ], written tr(A), is the sum of the elements on its
leading diagonal, so that tr(A) = a11 + a22 + · · · + ann.

EXAMPLE 4.4 Use Theorem 4.2 to check the eigenvalues of the matrices in Examples 4.1 and 4.2.

Solution In Example 4.1, λ1 = 2, λ2 = 1, and λ3 = −1, so λ1 + λ2 + λ3 = 2, and
tr(A) = 2 + 2 − 2 = 2, so the result of Theorem 4.2 is verified. Similarly, in Exam-
ple 4.2, λ1 = 0, λ2 = 1, λ3 = 1, and λ4 = 2, so λ1 + λ2 + λ3 + λ4 = 4, and tr(A) =
0 + 2 + 2 + 0 = 4, showing that the result of Theorem 4.2 is again verified.

EXAMPLE 4.5 Find the characteristic polynomial, eigenvalues, and eigenvectors of

A =
⎡⎣−1 − 2i −1 − i 2 + 2i

−4i −i 4i
−1 − 3i −1 − i 2 + 3i

⎤⎦ ,

and use Theorem 4.2 to check the eigenvalues.

Solution This matrix has complex elements. Expanding det(A − λI) = 0 shows
that the characteristic polynomial P3(λ) is

P3(λ) = λ3 − λ2 + λ − 1.
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Inspection shows the eigenvalues determined by P3(λ) = 0 to be λ1 = 1, λ2 = i , and
λ3 = −i . Finding the eigenvectors, as in Example 4.1, gives

(λ1 = 1) x1 =
⎡⎣1

0
1

⎤⎦ , (λ2 = i) x2 =
⎡⎣ 0

1
1/2

⎤⎦ , and (λ3 = −i) x3 =
⎡⎣1

1
1

⎤⎦ .

In this example, although the matrix A has complex elements, the characteristic
polynomial has real coefficients, and one of its zeros (an eigenvalue) is real and its
other two zeros (eigenvalues) are complex conjugates. The test in Theorem 4.2 is
satisfied because tr(A) = λ1 + λ2 + λ3 = tr(A) = 1.

Complex eigenvalues arise in numerous applications of matrices, and when
this happens it is often useful to have qualitative information about a region in
the complex plane that contains all of the eigenvalues, without the necessity of
computing their actual values. This form of approach is particularly useful when
the coefficients of a polynomial are not specific, and all that is known is that they lie
within given intervals or, if complex, that the modulus of each is bounded by a given
number.

Another need for this type of information occurs when working with systems
of linear differential equations, because it will be seen in Chapter 6 that the roots
of a characteristic polynomial equation determine the form of the general solu-
tion of a homogeneous system. Roots of the form α + iβ will be seen to lead to
real solutions of the form eαt sin βt and eαt cos βt , and these solutions will only re-
main bounded (stable) as t → +∞ if the real part of every root is negative. This
means that the qualitative knowledge that all of the roots lie to the left of the
imaginary axis will be sufficient to ensure that the solution remains finite (is stable)
as t → +∞.

The theorem that follows is the simplest of many similar results that are avail-
able, all of which provide information about regions in the complex plane where
all of the zeros of a characteristic polynomial are located. Two other results are to
be found in the exercise set at the end of this section; the one called the Routh–
Hurwitz stability criterion is particularly useful when working with systems of linear
differential equations.

Although the theorem to be proved in this section identifies a region less pre-
cisely than many similar theorems, it has been included to illustrate how such regions
can be found, and also because the derivation of the result is elementary. The proof
only uses the basic properties of complex numbers extending as far as the triangle
inequality.

THEOREM 4.3 The Gerschgorin circle theorem Let A[ai j ] be an n × n matrix, and define the
circles C1, C2, . . . , Cn in the complex plane such that circle Cr has its center at arr

and the radiusfinding a region that
contains all the
eigenvalues

ρr =
n∑

j=1, j �=r

|ar j | = |ar1| + |ar2| + · · · + |ar,r−1| + |ar,r+1| + · · · + |arn|.

Then each of the eigenvalues of A lies in at least one of these circles.
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Proof The r th equation of Ax = λx is

ar1x1 + · · · + ar,r−1xr−1 + (arr − λ)xr + ar,r+1xr+1 + · · · + arnxn = 0.

Solving for (arr − λ), taking the modulus of the result, and making repeated use
of the triangle inequality |a + b| ≤ |a| + |b|, where a and b are arbitrary complex
numbers, leads to the inequality

|λ − arr | <

n∑
j=1, j �=r

|ar j ||xj |/|xr |, for r = 1, 2, . . . , n.

We now choose xr to be the element of x with the largest modulus, so that |xj |/|xr | ≤
1 for r = 1, 2, . . . , n. The statement of the theorem is obtained from the inequality
involving |λ − arr | by replacing each term |xj |/|xr | on the right by 1, and then
repeating the argument for r = 1, 2, . . . , n.

EXAMPLE 4.6 Apply the Gerschgorin circle theorem to Example 4.1.

Solution Circle C1 has its center at the point a11 = (2, 0) and its radius ρ1 = |a12| +
|a13| = 1 + 1 = 2. Circle C2 has its center at the point a22 = (2, 0) and its radius
ρ2 = |a21| + |a23| = 3 + 3 = 6, while circle C3 has its center at the point a33 = (−2, 0)
and its radius ρ3 = |a31| + |a32| = 3 + 1 = 4.

Consequently, the Gerschgorin circle theorem asserts that all the eigenvalues
of A lie in the region of the complex plane enclosed by these three circles. The
circles are shown in Fig. 4.1 together with the locations of the three eigenvalues
2, 1, and −1.

Physical problems that give rise to matrices with real coefficients often do so
in the form of real valued symmetric matrices. These matrices have a number of
useful properties that we will examine after first introducing the notions of the inner
product and norm of a matrix vector, and then orthogonal and orthonormal sets of
matrix vectors.

−2−6 2

2

6

4

80

C3

C1

C2

Real axis

Imaginary axis

λ = −1 λ = 1 λ = 2

FIGURE 4.1 The Gerschgorin circles for Example 4.1.
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Inner product of vectors

Let u and v be two n-element matrix vectors (row or column) with the respec-
tive elements u1, u2, . . . , un and v1, v2, . . . , vn. Then their dot or inner product,
denoted here by u · v but elsewhere often by 〈u, v〉, is defined as

u · v = u1v1 + u2v2 + · · · + unvn. (8)

inner products, the
norm, orthogonal
and orthonormal
sets of vectors

Norm of a vector

The norm of an n-element vector w (row or column) with elements w1,

w2, . . . , wn, written ‖w‖, is defined as (w · w)1/2, and so is given by

‖w‖ = (
w2

1 + w2
2 + · · · + w2

n

)1/2
. (9)

We now use the matrix norm to introduce the idea of the orthogonality of sets
of matrix vectors, and then to show how such sets can be replaced by an equivalent
orthonormal set of vectors.

Orthogonal and orthonormal sets of vectors

Let u1, u2, . . . , un be a set of n-element vectors (row or column). Then the set
is said to be orthogonal if

ui · u j =
{

0 for i �= j,
‖ui‖2 for i = j,

(10)

and to be orthonormal if, in addition to being orthogonal, the norm of each
vector is 1, so that ‖ui‖ = 1 for i = 1, 2, . . . , n. This means that the set of
vectors u1, u2 . . . , un will form an orthonormal set if

ui · u j =
{

0 for i �= j,
‖ui‖2 = 1 for i = j.

(11)

EXAMPLE 4.7 Given the sets of vectors
(a)

u1 =
⎡⎣ 1

2
−2

⎤⎦ , u2 =
⎡⎣2

1
2

⎤⎦ and u3 =
⎡⎣−2

2
1

⎤⎦ ,

and
(b)

u1 = [1/4,
√

3/4,
√

3/2], u2 = [
√

3/2, −1/2, 0], u3 = [
√

3/4, 3/4, −1/2],

show the vectors in set (a) are orthogonal and convert them to an orthonormal set,
and that those in set in (b) are orthonormal.
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Solution

(a) u1 · u2 = 1.2 + 2.1 − 2.2 = 0 and, similarly, u1 · u3 = u2 · u3 = 0, and ‖u1‖ =
‖u2‖ = ‖u3‖ = √

9 = 3. So the set is orthogonal but not orthonormal, because the
vector norms are not all equal to 1. To convert the set into an orthonormal set,
it is only necessary to divide each vector by its norm to arrive at the equivalent
orthonormal set

û1 =
⎡⎣ 1/3

2/3
−2/3

⎤⎦ , û2 =
⎡⎣2/3

1/3
2/3

⎤⎦ , and û3 =
⎡⎣−2/3

2/3
1/3

⎤⎦ .

(b) Proceeding as in (a) we have u1 · u2 = u1 · u3 = u2 · u3 = 0, showing that the
set is orthogonal. However, ‖u1‖ = ‖u2‖ = ‖u3‖ = 1, so the set is also orthonormal.

THEOREM 4.4 Eigenvalues and eigenvectors of a symmetric matrix Let A be an n × n real sym-
metric matrix. Then

(i) the eigenvalues of A are all real;
(ii) the eigenvectors of A corresponding to distinct eigenvalues are mutually or-

thogonal.

Proof We start by observing that if x and y are two n-element column vectors the

properties of
eigenvalues and
eigenvectors of
symmetric matrices

product yTAx is a scalar, and so is equal to its transpose. Thus, yTAx = (yTAx)T =
xTATy, but as A is symmetric AT = A, so that yTAx = xTATy.

To prove (i), let λ be an eigenvalue of A with the corresponding eigenvector x.
Then

Ax = λx.

Taking the complex conjugate of this result and using the fact that A is real valued,
so that A = A, gives

Ax = λx.

This shows that λ is an eigenvalue of A with the associated eigenvector x. If we now
premultiply this result by xT, we obtain the scalar equation

xTAx = λxTx,

but premultiplying the original eigenvalue equation by xT gives

xTAx = λxTx.

Using the result xTAx = xTAx then shows that λxTx = λxTx, but xTx = xTx so
λ = λ, which is only possible if λ is real. This has established the first part of the
theorem.

To prove (ii) we must show that if xr and xs are eigenvectors of A corresponding
to the distinct eigenvalues λr and λs , with r �= s, then xr · xs = 0, which is equiva-
lent to the condition xT

r xs = 0. The eigenvalues λr and λs and the corresponding
eigenvectors xr and xs satisfy the equations

Axr = λr xr and Axs = λsxs,
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from which, after premultiplication by xT
s and xT

r , respectively, we obtain the two
scalar equations

xT
s Axr = λr xT

s xr and xT
r Axs = λsxT

r xs .

Again, using the fact that the transpose of a scalar leaves it unchanged, we
see that the preceding results are identical, so subtracting them we arrive at the
condition

(λr − λs)xT
r xs = 0.

As λr �= λs for r �= s, this is only possible if xT
r xs = 0, so the eigenvectors are mutu-

ally orthogonal and the proof is complete.

It can be shown that even when some of the eigenvalues of a real symmetric
n × n matrix A are repeated, the matrix A will still have n linearly independent
eigenvectors, though this result will not be proved here. See, for example, references
[2.1], [2.5], [2.8], [2.9], and [2.10].

Orthogonal matrices

An n × n real matrix Q will be said to be an orthogonal matrix iforthogonal matrices
and rotations

QTQ = I (12)

so, if Q is an orthogonal matrix, it follows that

QT = Q−1.

When interpreted geometrically in terms of the cartesian geometry of two or
three space dimensions, premultiplication of a linear transformation by an orthog-
onal matrix corresponds to a pure rotation (or a reflection or both; rotation only if
det Q = +1) in space that preserves the lengths between any two points in space,
and also the angles between any two straight lines.

A typical geometrical interpretation of a two-dimensional transformation per-
formed by an orthogonal matrix has already been encountered in Section 3.2(c),
where the transformation considered was x′ = Rx, with

R =
[

cos θ − sin θ

sin θ cos θ

]
, x =

[
x
y

]
, and x′ =

[
x′

y′

]
.

When this transformation was considered in Section 3.2(c), the column vector x
represented a point P in the (x, y)-plane with coordinates (x, y), and x′ represented
the same point with coordinates (x′, y′) in the (x′, y′)-plane, which was obtained by
rotating the O{x, y} axes counterclockwise through an angle θ about the origin, as
shown in Fig. 4.2.

The transformation (interpreted as a mapping of points) shows that every point
in the O{x′, y′} plane experiences the same rotation through an angle θ about the
origin. To show that lengths are preserved, let points P1 and P2 have coordinates
(x1, y1) and (x2, y2) in the O{x, y} plane and their image points P′

1 and P′
2 have

the coordinates (x′
1, y′

1) and (x′
2, y′

2) in the O{x′, y′} plane. Then the square of the
distance d between P1 and P2 is given by d2 = (x1 − x2)2 + (y1 − y2)2, and the square
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P(x, y)
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θ

O

FIGURE 4.2 A rotation of axes about the origin
through the angle θ .

of the distance (d′)2 between P′
1 and P′

2 is given by (d′)2 = (x′
1 − x′

2)2 + (y′
1 − y′

2)2.
However, from the linear transformation x′ = Rx we find that

x1 = x′
1 cos θ − y′

1 sin θ, x2 = x′
2 cos θ − y′

2 sin θ

and

y1 = x′
1 sin θ + y′

1 cos θ, y2 = x′
2 sin θ + y′

2 cos θ,

from which, after substituting for x′
1, x′

2, y′
1, and y′

2, it follows that (d′)2 = d2, show-
ing that distances are preserved. The angles between straight lines in the plane
will be preserved because the points on each line will be rotated about the origin
through the same angle without changing their distance from the origin.

EXAMPLE 4.8 Show that the matrix

R =
[

cos θ − sin θ

sin θ cos θ

]
is orthogonal.

Solution We have

RT =
[

cos θ sin θ

− sin θ cos θ

]
,

but RTR = I, so R is orthogonal.

THEOREM 4.5 Properties of orthogonal matrices

(i) If Q is orthogonal then detQ = ±1;main properties of
orthogonal matrices (ii) The product of n × n orthogonal matrices is an orthogonal matrix;

(iii) The eigenvalues of an orthogonal matrix are all of unit modulus;
(iv) The rows (columns) of an orthogonal matrix form an orthonormal set of

vectors.

Proof To prove (i) we start from the fact that detQ = detQT. This follows directly
from the Laplace expansion of a determinant, because expanding detQ in terms of
the elements of its ith row is the same as expanding detQT in terms of the elements
of its ith column. From (12), QQT = 1, so as det(AB) = detAdetB we can write
detQdetQT = 1, but detQT = detQ by Theorem 3.4 so detQdetQT = (detQ)2 = 1,
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and so detQ = ±1. If det Q = +1, rotation. If det Q = −1, rotation plus reflection
in general.

Result (ii) follows from the fact that if Q1 and Q2 are two n × n orthogonal
matrices, then (Q1Q2)TQ1Q2 = QT

2 QT
1 Q1Q2 = QT

2 Q2 = 1, and the result is estab-
lished.

The proof of Result (iii) is similar to the proof of (i) in Theorem 4.3. If Q is real,
taking the complex conjugate of Qx = λx gives Qx = λx, so taking the transpose
of this we find that xTQT = λxT. Forming the product of these two results gives
xTQTQx = λλxTx, but QTQ = I, so xTx = λλxTx, showing that λλ = 1. Result (iii)
follows from this last result because λλ = |λ|2 = 1.

Finally, Result (iv) follows from the definition of an orthogonal matrix, because
QQT = 1, and if ui is the ith row of Q and v j is the jth column of QT (the jth column
of Q), then ui v j = 0 for i �= j , and ui v j = 1 for i = j , confirming that the vectors
form an orthonormal set.

Summary After definition of the eigenvalues of an n × n matrix A in terms of its characteristic poly-
nomial, the associated eigenvectors were defined. An eigenvalue that is repeated r times
was said to have the algebraic multiplicity r , and the set of all eigenvalues of A was
called the spectrum of A. The spectral radius of A was defined in terms of the eigenvalues
λ1, λ2, . . . , λn as the number R = max{|λ1|, |λ2|, . . . |λn|}, and the linear independence of
the set of all eigenvectors was established. The most frequently used method of normaliz-
ing eigenvectors was introduced, and examples were worked showing how to determine
eigenvectors once the eigenvalues are known.

A simple test was given to check the sum of all eigenvalues, and the Gerschgorin
circle theorem was proved that determines a region inside which all eigenvalues must
lie, though the region determined in this manner is far from optimal. Inner products, the
norm, and systems of orthogonal and orthonormal vectors were introduced, and the most
important eigenvalue and eigenvector properties of symmetric matrices and orthogonal
matrices were derived.

EXERCISES 4.1

In Exercises 1 through 8, find the characteristic polynomial
of the given matrix.

1.

⎡⎣2 1 3
1 0 1
0 1 1

⎤⎦.

2.

⎡⎣2 1 3
1 1 1
1 0 1

⎤⎦.

3.

⎡⎣ 1 0 2
−1 1 −1

0 2 1

⎤⎦.

4.

⎡⎣ 3 1 1
−2 2 1

1 −1 2

⎤⎦.

5.

⎡⎣−1 0 1
3 2 1
1 2 3

⎤⎦.

6.

⎡⎣ 4 1 −1
1 0 2

−1 1 2

⎤⎦.

7.

⎡⎢⎢⎣
1 1 −1 0
1 −1 1 0
1 −3 3 0

−1 2 −1 −1

⎤⎥⎥⎦.

8.

⎡⎢⎢⎣
−1 1 0 1
−1 2 −1 1

5 −3 4 −5
3 −2 3 −3

⎤⎥⎥⎦.

In Exercises 9 through 24 find the eigenvalues and eigen-
vectors of the given matrix.

9.

⎡⎣3 −2 2
6 −4 6
2 −1 3

⎤⎦.

10.

⎡⎣3 −1 1
4 −1 4
2 −1 4

⎤⎦.

11.

⎡⎣−3 2 −2
4 −1 4
8 −4 7

⎤⎦.

12.

⎡⎣ 3 −2 4
−4 5 −4
−4 4 −5

⎤⎦.

13.

⎡⎣−5 4 −1
−3 2 −1

6 −4 2

⎤⎦.

14.

⎡⎣0 1 −2
2 −1 2
2 −2 4

⎤⎦.

15.

⎡⎣−5 8 1
−3 6 1

6 −8 0

⎤⎦.

16.

⎡⎣−1 0 −2
−1 2 −1

4 0 5

⎤⎦.

17.

⎡⎣−1 0 2
−1 2 0
−1 0 2

⎤⎦.

18.

⎡⎣ 6 0 4
3 1 3

−8 0 −6

⎤⎦.
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19.

⎡⎣ 0 0 2
−1 1 2
−1 0 3

⎤⎦.

20.

⎡⎣ 4 0 2
2 2 2

−4 0 2

⎤⎦.

21.

⎡⎣4 0 −4
2 2 −4
2 0 −2

⎤⎦.

22.

⎡⎣ 3 0 1
2 1 1

−2 0 0

⎤⎦.

23.

⎡⎢⎢⎣
−1 −1 1 0

1 1 1 −1
1 3 −1 −1

−2 2 −2 1

⎤⎥⎥⎦.

24.

⎡⎢⎢⎣
0 1 0 −1
1 0 0 −1
1 −2 0 −1

−3 3 0 2

⎤⎥⎥⎦.

25. Prove that the eigenvalues of upper and lower trian-
gular matrices are equal to the elements on the lead-
ing diagonal. Show by example that, unlike the case of
diagonal matrices, an eigenvalue of an upper or lower
triangular matrix with algebraic multiplicity r has fewer
than r eigenvectors.

26. Apply the Gerschgorin circle theorem to one or more
of the matrices in Exercises 9 through 24 to verify that
the eigenvalues lie within or on the circles determined
by the theorem.

27. It can be shown that all the zeros of the polynomial

Pn(λ) = a0 + a1λ + a2λ
2 + · · · + anλ

n, an �= 0,

lie in the circle

|λ| < 1 + max
∣∣∣∣ak

an

∣∣∣∣ , k = 0, 1, 2, . . . , n − 1.

Verify this result by applying it to one or more of the
characteristic equations associated with the matrices in
Exercises 9 through 24.

The Routh–Hurwitz stability criterion

Let the real polynomial Pn(λ) be given by

Pn(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an

and form the determinants

�1 = a1, �2 =
∣∣∣∣a1 a3

1 a2

∣∣∣∣ , �3 =
∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣ , . . . ,

�n =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5 . . . a2n−1

1 a2 a4 . . . a2n−2

0 a1 a3 . . . a2n−3

. . . . . . . . . . . . . . .

0 0 0 0 an

∣∣∣∣∣∣∣∣∣∣
with ak = 0 for k > n.

Then, �r > 0 for r = 1, 2, . . . , n, if and only if every zero of
Pn(λ) has a negative real part.

28.

(a) Numerical computation shows that the matrix

A =
⎡⎣−2 1 5

2 3 1
0 4 2

⎤⎦
has the eigenvalues 5.7238, −1.3619 + 1.9328i , and
−1.3619 − 1.9328i . Apply the Routh–Hurwitz stability
criterion to confirm that not every zero of the charac-
teristic polynomial has a negative real part.

(b) Numerical computation shows that the matrix

A =
⎡⎣−2 −2 −3

3 −1 0
−4 0 −3

⎤⎦
has the eigenvalues −5.4873, −0.2563 − 1.4564i , and
−0.2563 + 1.4564i . Apply the Routh–Hurwitz stability
criterion to confirm that every zero of the characteristic
polynomial has a negative real part.

An n × n matrix A is said to be similar to an n × n matrix
B if there exists a nonsingular n × n matrix M such that
B = M−1AM. The relationship between A and B is said
to constitute a similarity transformation between the two
matrices.

29. If A and B are similar, show that detA = detB, and by
substituting B = M−1AM in detB and expanding the
result, show that similar matrices have the same eigen-
values.

30. Verify the result of Exercise 29 by direct calculation by
using

A =
⎡⎣3 1 −1

4 0 −1
4 −2 1

⎤⎦ and M =
⎡⎣1 4 1

1 0 1
2 1 0

⎤⎦
to show that both A and B have the eigenvalues −1, 2,
and 3.

31. Let the n × n elementary matrix E be obtained from
the unit matrix I by interchanging its ith and jth rows
(columns). By considering the product EQ, where Q is
an n × n orthogonal matrix, prove that an orthogonal
matrix remains orthogonal when its rows (columns) are
interchanged.
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4.2 Diagonalization of Matrices

Our purpose in this section will be to examine the possibility of diagonalizing an
n × n matrix A. The reason for this is to try to simplify the structure of A so that, in
some ways, it reflects the simple properties of a diagonal matrix. Diagonalization
finds many applications, some of which will be discussed later.

Let D be the general n × n diagonal matrixdiagonal matrix

D =

⎡⎢⎢⎢⎢⎣
λ1 0 0 . . . . 0
0 λ2 0 . . . . 0

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . λn

⎤⎥⎥⎥⎥⎦ . (13)

Then, as already seen in Section 4.1, the eigenvalues of D are the entries λ1, λ2, . . . ,

λn on its leading diagonal, and the corresponding n linearly independent eigenvec-
tors can be taken to be

x1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
0
·
·
0

⎤⎥⎥⎥⎥⎥⎥⎦ , x2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
0
·
·
0

⎤⎥⎥⎥⎥⎥⎥⎦ , . . . , xn =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
·
·
1

⎤⎥⎥⎥⎥⎥⎥⎦ . (14)

The rule for matrix multiplication shows that

Dm =

⎡⎢⎢⎢⎢⎣
λm

1 0 0 . . . . 0
0 λm

2 0 . . . . 0
. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . λm
n

⎤⎥⎥⎥⎥⎦ , (15)

for any positive integer m, so Dm is easily computed and will have the same set of
eigenvectors as D, though its eigenvalues will be λm

1 , λm
2 , . . . , λm

n .
In addition to these properties, it is obvious that detD = λ1 · λ2 · · · λn,

so D will be nonsingular provided no entry on its leading diagonal is zero.
As a result, when D is nonsingular, the rule for matrix multiplication shows that
DD−1 = I, where

D−1 =

⎡⎢⎢⎢⎢⎣
1/λ1 0 0 . . . . 0

0 1/λ2 0 . . . . 0
. . . . . . . . . . .

. . . . . . . . . . .

0 0 0 0 1/λn

⎤⎥⎥⎥⎥⎦ . (16)

We now state and prove the fundamental theorem on the diagonalization of n × n
matrices.

THEOREM 4.6 Diagonalization of an n × n matrix Let the n × n matrix A have n eigenvalues
λ1, λ2, . . . , λn, not all of which need be distinct, and let there be n corresponding

how to diagonalize
a matrix distinct eigenvectors x1, x2, . . . , xn, so that

Axi = λi xi , i = 1, 2, . . . , n.
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Define the matrix P to be the n × n matrix in which the ith column is the eigenvector
xi , with i = 1, 2, . . . , n, so that in partitioned form P = [x1 x2 · · · xn], and let D
be the diagonal matrix

D =

⎡⎢⎢⎢⎢⎣
λ1 0 0 . . . . 0
0 λ2 0 . . . . 0
. . . . . . . . . .

. . . . . . . . . .

0 0 0 . . . . λn

⎤⎥⎥⎥⎥⎦ ,

where the eigenvalue λi is in the ith position in the ith row. Then

P−1AP = D.

Proof Consider the product B = AP. Then, by expressing P in partitioned form,
we can write B as

B = [Ax1 Ax2 . . . Axn].

Using the fact that Axi = λi xi allows this to be rewritten as

B = [λ1x1 λ2x2 . . . λnxn] = PD,

showing that

PD = AP.

As the columns of P are linearly independent, P is nonsingular, so P−1 exists
and we can premultiply by P−1 to obtain

D = P−1AP,

and the theorem is proved.

General Remarks About Diagonalization
(i) An n × n matrix can be diagonalized provided it possesses n linearly indepen-

dent eigenvectors.
(ii) A symmetric matrix can always be diagonalized.

(iii) The diagonalizing matrix for a real n × n matrix A may contain complex
elements. This is because although the characteristic polynomial of A has real co-
efficients, its zeros either will be real or will occur in complex conjugate pairs.
(iv) A diagonalizing matrix is not unique, because its form depends on the order

in which the eigenvectors of A are used to form its columns.

A useful consequence of the diagonalized form of a matrix is that it enables it
to be raised to a positive integral power with the minimum of effort. This property
will be used later when the matrix exponential is introduced.

To see the ease with which an n × n matrix can be raised to a power when it is
diagonalizable, we start by writing A in the form A = PDP−1. We then have

A2 = (PDP−1)(PDP−1) = PDP−1PDP−1 = PDDP−1 = PD2P−1,
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so that, in general,

Am = PDmP−1, for m = 1, 2, . . . .

As evaluating Dm simply involves raising each entry on its leading diagonal to the
power m, the evaluation of Am only involves three matrix multiplications.

This last result was used without justification in Section 3.2(f) when a stochastic
matrix was raised to the power m (do not confuse the stochastic matrix P in that
section with the orthogonalizing matrix P just defined).

EXAMPLE 4.9 Diagonalize the matrix

A =
⎡⎣2 1 −1

3 2 −3
3 1 −2

⎤⎦ ,

and use the result to find A5.

Solution Matrix A was examined in Example 4.1 and shown to have the eigen-
values λ1 = 2, λ2 = 1, and λ3 = −1, and the corresponding eigenvectors

x1 =
⎡⎣1

1
1

⎤⎦ , x2 =
⎡⎣1

0
1

⎤⎦ , and x3 =
⎡⎣0

1
1

⎤⎦ .

Theorem 4.5 shows that a diagonalizing matrix P is given by

P =
⎡⎣1 1 0

1 0 1
1 1 1

⎤⎦ ,

and a routine calculation shows that

P−1 =
⎡⎣ 1 1 −1

0 −1 1
−1 0 1

⎤⎦ .

Before finding A5, and although it is unnecessary for what is to follow, it is
instructive to check that when the matrix P−1AP is formed, the eigenvalues ap-
pearing in the diagonal matrix D do so in the order in which the corresponding
eigenvectors of A have been used to form the columns of P. This is seen to be so in
this case because

D = P−1AP =
⎡⎣2 0 0

0 1 0
0 0 −1

⎤⎦.

Returning to the calculation of A5 and using the expressions for P, P−1, and D
in A5 = PD5P−1 gives

A5 =
⎡⎣1 1 0

1 0 1
1 1 1

⎤⎦⎡⎣25 0 0
0 15 0
0 0 (−1)5

⎤⎦⎡⎣1 1 0
1 0 1
1 0 1

⎤⎦ =
⎡⎣32 31 −31

33 32 −33
33 31 −32

⎤⎦.

Had the eigenvectors been arranged in a different order when constructing P,
a different but equivalent diagonal matrix would have been obtained. For example,
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if P had been written

P =
⎡⎣1 1 0

0 1 1
1 1 1

⎤⎦ ,

D would have become

D =
⎡⎣1 0 0

0 2 0
0 0 −1

⎤⎦,

though after P−1 was found and A5 = PD5P−1 was computed, the matrix A5 would,
of course, remain the same.

EXAMPLE 4.10 Diagonalize the matrix

A =

⎡⎢⎢⎣
0 0 1 1

−1 2 0 1
−1 0 2 1

1 0 −1 0

⎤⎥⎥⎦ .

Solution Matrix A was considered in Example 4.2, which showed that it had the
eigenvalues λ1 = 0, λ2 = 1, λ3 = 1, and λ4 = 2, and that although the eigenvalue 1
occurred with algebraic multiplicity 2, the matrix still had the four linearly inde-
pendent eigenvectors

(λ1 = 0) x1 =

⎡⎢⎢⎣
−1
−1
−1

1

⎤⎥⎥⎦ , (λ2 = 1) x2 =

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦ , (λ3 = 1) x3 =

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ ,

and

(λ4 = 2) x1 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ .

Using these eigenvectors to form P gives

P =

⎡⎢⎢⎣
−1 1 1 0
−1 1 0 1
−1 1 0 0

1 0 1 0

⎤⎥⎥⎦ ,

from which it follows that

P−1 =

⎡⎢⎢⎣
−1 0 1 1
−1 0 2 1

1 0 −1 0
0 1 −1 0

⎤⎥⎥⎦ .
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Because of the ordering of the eigenvectors, the diagonal matrix D will be

D =

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

⎤⎥⎥⎦ ,

where

P−1AP = D.

We saw in Theorem 4.4 that a real symmetric n × n matrix A with distinct eigen-
values has a set of n mutually orthogonal linearly independent eigenvectors. It fol-
lows at once that if when constructing the diagonalizing matrix for A the normalized
eigenvectors of A are used to form the columns of P, the resulting diagonalizing
matrix will be an orthogonal matrix. This is often advantageous, because the prop-
erties of orthogonal matrices can simplify subsequent calculations that may arise.
However, if an eigenvalue is repeated, the corresponding eigenvectors will not, in
general, be orthogonal to the other eigenvectors, so although there will still be a set
of n linearly independent eigenvectors, the set will no longer form an orthogonal set.

Because of the frequency with which symmetric matrices arise in applications,
and the fact that symmetric matrices with repeated eigenvalues are not unusual,
it is reasonable to ask if it is possible for symmetric matrices always to be diago-
nalized by an orthogonal matrix and, if so, how this can be achieved. The answer
to the question about the possibility of diagonalization by an orthogonal matrix
is in the affirmative. The method of arriving at an orthonormal set of vectors to
be used when constructing P involves using a generalization of the Gram–Schmidt
orthogonalization process introduced in Section 2.7 in the context of geometrical
vectors in R3.

As an n element matrix vector is simply a vector in a vector space, an exten-
sion of the Gram–Schmidt orthogonalization process to include n-element matrix
vectors can be used to construct an orthonormal set of n vectors from any set of
n linearly independent eigenvectors that are always associated with an n × n sym-
metric matrix A. The required generalization of the orthogonalization process that
leads to an orthonormal system is an immediate extension of the one derived in
Section 2.7, so the details of its derivation will be omitted.

Rule for the Gram–Schmidt orthogonalization process for matrix vectors

Let x1, x2, . . . , xn be a set of n element linearly independent nonorthogo-
nal matrix column vectors. Then an equivalent orthonormal set of vectors
p1, p2, . . . , pn can be constructed from the vectors x1, x2, . . . , xn, via an in-
termediate set of orthogonal nonnormalized vectors v2, v2, . . . , vn. The steps
involved in the determination of the vectors p1, p2, . . . , pn are as follows:

orthogonalization of a
set of linearly
independent vectors

p1 = x1/‖x1‖,
v2 = x2 − (p1 · x2)p1,

p2 = v2/‖v2‖,
vr = xr − {(p1 · xr )p1 + (p2 · xr )p2 + · · · + (pr−1 · xr )pr−1}
pr = vr/‖vr‖, for r = 2, 3, . . . , n.
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When the Gram–Schmidt orthogonalization process is applied to the eigen-
vectors of a real symmetric matrix A with repeated eigenvalues, the diagonaliz-
ing matrix P is constructed by using the vectors p1, p2, . . . , pn, obtained from the
preceding scheme after starting with any linearly independent set of eigenvectors
x1, x2, . . . , xn of A. Then, in partitioned form,

P = [p1 p2 . . . pn]

and, as before,

D = P−1AP,

where D is again a diagonal matrix with its diagonal elements equal to the eigen-
values of A arranged in the same order as the corresponding columns of P. This
time, however, entries on the leading diagonal will be repeated as many times as
the multiplicity of the eigenvalues concerned.

EXAMPLE 4.11 Use the Gram–Schmidt orthogonalization process to construct an orthonormal set
of vectors from the vectors

x1 =
⎡⎣1

1
1

⎤⎦ , x2 =
⎡⎣ 1

0
−1

⎤⎦ , and x3 =
⎡⎣1

2
0

⎤⎦ .

Solution In this case the Gram–Schmidt orthogonalization process involves the
three vectors x1, x2, and x3, so a set of orthonormal vectors p1, p2, and p3 is given
by the scheme

p1 = x1/‖x1‖
v2 = x2 − (p1 · x2)p1

p2 = v2/‖v2‖
v3 = x3 − {(p1 · x3)p1 + (p2 · x3)p2}
p3 = v3/‖v3‖.

A series of straightforward calculations gives

p1 =
⎡⎣1/

√
3

1/
√

3
1/

√
3

⎤⎦ , and v2 =
⎡⎣ 1

0
−1

⎤⎦− 0 p1 =
⎡⎣ 1

0
−1

⎤⎦ , so p2 =
⎡⎣ 1/

√
2

0
−1/

√
2

⎤⎦ ,

and, finally,

v3 =
⎡⎣1

2
0

⎤⎦−
√

3

⎡⎣1/
√

3
1/

√
3

1/
√

3

⎤⎦− 1/
√

2

⎡⎣ 1/
√

2
0

−1/
√

2

⎤⎦ =
⎡⎣−1/2

1
−1/2

⎤⎦ ,

so

p3 =

⎡⎢⎣−1/
√

6√
(2/3)

−1/
√

6

⎤⎥⎦ .
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EXAMPLE 4.12 Construct an orthogonal diagonalizing matrix for the symmetric matrix

A =
⎡⎣4 0 0

0 1 2
0 2 1

⎤⎦ .

Solution This has the distinct eigenvalues λ1 = −1, λ2 = 3, and λ1 = 4, so the cor-
responding eigenvectors x1, x2, and x3 are orthogonal. Simple calculations show
that

x1 =
⎡⎣ 0

−1
1

⎤⎦ , x2 =
⎡⎣0

1
1

⎤⎦ , and x3 =
⎡⎣1

0
0

⎤⎦ .

The normalized eigenvectors are

x̂1 =
⎡⎣ 0

−1/
√

2
1/

√
2

⎤⎦ , x̂2 =
⎡⎣ 0

1/
√

2
1/

√
2

⎤⎦ , and x̂3 =
⎡⎣1

0
0

⎤⎦ ,

so the diagonalizing matrix P and the corresponding diagonal matrix D are

P =
⎡⎣ 0 0 1

−1/
√

2 1/
√

2 0
1/

√
2 1/

√
2 0

⎤⎦ and D =
⎡⎣−1 0 0

0 3 0
0 0 4

⎤⎦ .

EXAMPLE 4.13 Construct an orthogonal diagonalizing matrix for the real symmetric matrix

A =
⎡⎣−1 2 4

2 2 −2
4 −2 −1

⎤⎦ .

Solution This has the eigenvalues λ1 = −6, λ2 = 3, and λ3 = 3, so as the eigen-
value 3 has multiplicity 2, the corresponding set of eigenvectors x1, x2, and x3 will
not be orthogonal. The eigenvectors x1, x2, and x3 are easily shown to be

x1 =
⎡⎣−2

1
2

⎤⎦ , x2 =
⎡⎣1

2
0

⎤⎦ , and x3 =
⎡⎣ 0

−2
1

⎤⎦ .

Applying the Gram–Schmidt orthogonalization process to vectors x1, x2, and x3, as
in Example 4.11, after some straightforward calculations we arrive at the orthonor-
mal set

p1 =
⎡⎣−2/3

1/3
2/3

⎤⎦ , p2 =
⎡⎣1/

√
5

2/
√

5
0

⎤⎦ , and p3 =
⎡⎣ 4/(3

√
5)

−2/(3
√

5)√
5/3

⎤⎦ .

In this case an orthogonal diagonalizing matrix is

P =
⎡⎣−2/3 1/

√
5 4/(3

√
5)

1/3 2/
√

5 −2/(3
√

5)
2/3 0

√
5/3

⎤⎦ ,
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and the corresponding diagonal matrix is

D =
⎡⎣−6 0 0

0 3 0
0 0 3

⎤⎦ .

To close this section we state the important Cayley–Hamilton theorem, which
is true for all square matrices, though before considering the theorem we first define
a matrix polynomial.

A matrix polynomial involving an n × n matrix A is an expression of the form

Am + b1Am−1 + b2Am−2 + · · · + bm−1A + bmI,

in which m is an integer and b1, b2, . . . , bm are real or complex numbers.

THEOREM 4.7 The Cayley–Hamilton theorem Let Pn(λ) be the characteristic polynomial of an
arbitrary n × n square matrix A. Then A satisfies its own characteristic equation,
and so is a solution of the matrix polynomial equation Pn(A) = 0.a matrix satisfies its

own characteristic
equation

Proof For simplicity, we only prove the theorem for real symmetric matrices,
though it is true for every n × n matrix. If A is a real n × n symmetric matrix, then
from Theorem 4.6 we may write A = PDP−1. Let the characteristic polynomial of
A be

Pn(λ) = (−1)n{λn + c1λ
n−1 + · · · + cn−1λ + cn}.

Then replacing λ by A converts Pn(λ) to the matrix polynomial

Pn(A) = (−1)n{An + c1An−1 + · · · + cn−1A + cnI},
but Ar = PDr P−1, so

Pn(A) = (−1)n{P{Dn + c1Dn−1 + · · · + cn−1D + cnIn}P−1}.
The ith row of the matrix polynomial Dn + c1Dn−1 + · · · + cn−1D + cnI is

simply λn
i + c1λ

n−1
i + · · · + cn−1λi + cn, but this is Pn(λi ), and it must vanish for

i = 1, 2, . . . , n because λi is an eigenvalue of A. Thus, Dn + c1Dn−1 + · · · + cn−1D +
cnI = 0, showing that Pn(A) = P{0}P−1 = 0, and the result is proved.

EXAMPLE 4.14 Verify the Cayley–Hamilton theorem for the matrix

A =
[

2 1
5 2

]
.

Solution The characteristic polynomial is P2(λ) = λ2 − 4λ − 1, and

A2 =
[

9 4
20 9

]
, so P2(A) =

[
9 4
20 9

]
− 4

[
2 1
5 2

]
−
[

1 0
0 1

]
=
[

0 0
0 0

]
.

Finding A−1 from the Cayley–Hamilton theorem

If the n × n matrix A is nonsingular, the following interesting result can be
obtained directly from the Cayley–Hamilton theorem. Let the characteristic
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polynomial of A be Pn(λ) = (−1)n{λn + c1λ
n−1 + · · · + cn−1λ + cn}, so from

Theorem 4.7

An + c1An−1 + · · · + cn−1A + cnI = 0.

The matrix A−1 exists because by hypothesis A is nonsingular, so premulti-
plication of the preceding equation by A−1, followed by a rearrangement of
terms, allows A−1 to be expressed in terms of powers of A through the result

A−1 = (−1/cn){An−1 + c1An−2 + · · · + cn−1I}. (17)

EXAMPLE 4.15 Use the result of equation (17) to find A−1 for the nonsingular matrix

A =
[

2 1
5 2

]
.

Solution Matrix A was considered in Example 4.14, where it was found that the
characteristic polynomial P2(λ) = λ2 − 4λ − 1, so in terms of (17) we see that c1 =
−4 and c2 = −1. Thus,

A−1 = −1/(−1)
{[

2 1
5 2

]
− 4

[
1 0
0 1

]}
=
[−2 1

5 −2

]
.

Summary This section has described how an n × n matrix can be diagonalized when it possesses
n linearly independent eigenvectors. The diagonalization was shown not to be unique,
since its form depends on the order in which the eigenvectors are used to construct the
diagonalizing matrix P.

Sometimes, when a linearly independent set of n vectors has been obtained, it is
desirable to replace it by an equivalent set of n orthogonal or orthonormal vectors. The
section closed by showing how this can be accomplished by means of the Gram–Schmidt
orthogonalization procedure.

EXERCISES 4.2

In Exercises 1 through 12, find a diagonalizing matrix P for
the given matrix, in each case using the fact that the zeros
of the characteristic polynomial are small integers that can
be found by trial and error.

1.

⎡⎣−2 −3 −1
1 2 1
3 3 2

⎤⎦ .

2.

⎡⎣ 3 1 4
−4 −2 −4
−1 −1 2

⎤⎦ .

3.

⎡⎣3 1 −2
6 2 −6
4 1 −3

⎤⎦.

4.

⎡⎣−6 −10 −4
2 3 2
7 10 5

⎤⎦ .

5.

⎡⎣−1 2 −2
2 −1 2
2 −2 3

⎤⎦ .

6.

⎡⎣ 14 2 8
−8 −3 −4

−26 −4 −15

⎤⎦.

7.

⎡⎣ 5 −2 2
2 1 2

−2 2 1

⎤⎦ .

8.

⎡⎣ 12 4 6
−6 −2 −3

−22 −8 −11

⎤⎦ .

9.

⎡⎣ 2 0 0
1 −1 2

−2 0 1

⎤⎦.

10.

⎡⎣ 12 −4 8
−6 2 −4

−20 8 −14

⎤⎦ .

11.

⎡⎣−6 2 −4
−4 0 −4

4 −2 2

⎤⎦ .

12.

⎡⎣−7 0 −6
3 −1 3
9 0 8

⎤⎦.

In Exercises 13 through 16 use the Gram–Schmidt orthogo-
nalization process with the given set of vectors to find (a) an
equivalent set of orthogonal vectors and (b) an orthonormal
set.
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13.

⎡⎣1
1
1

⎤⎦ ,

⎡⎣0
1
1

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ .

14.

⎡⎣2
1
1

⎤⎦ ,

⎡⎣ 1
−1

1

⎤⎦ ,

⎡⎣0
2
1

⎤⎦ .

15.

⎡⎣−1
1
0

⎤⎦ ,

⎡⎣ 2
1

−1

⎤⎦ ,

⎡⎣ 1
−2

2

⎤⎦ .

16.

⎡⎣−1
2
0

⎤⎦ ,

⎡⎣ 1
1

−1

⎤⎦ ,

⎡⎣ 1
−1

1

⎤⎦ .

In Exercises 17 through 22 find an orthogonal diagonalizing
matrix P for the given symmetric matrix.

17.

⎡⎣3 0 0
0 3 1
0 1 3

⎤⎦ .

18.

⎡⎣5 1 0
1 5 0
0 0 2

⎤⎦ .

19.

⎡⎣4 1 0
1 4 0
0 0 3

⎤⎦ .

20.

⎡⎣2 1 1
1 2 1
1 1 2

⎤⎦ .

21.

⎡⎣4 2 0
2 4 0
0 0 2

⎤⎦ . 22.

⎡⎣4 1 1
1 4 1
1 1 4

⎤⎦ .

23. Verify by direct calculation that the matrix in Exercise 1
satisfies the Cayley–Hamilton theorem.

24. Verify by direct calculation that the matrix in Exercise 7
satisfies the Cayley–Hamilton theorem.

In Exercises 25 through 28 use (17) to find A−1 and check
the result by showing that AA−1 = I.

25. A =
[

2 3
−1 4

]
.

26. A =
[

5 1
3 −2

]
.

27. A =
⎡⎣ 2 1 0

−2 1 2
0 −1 −2

⎤⎦ .

28. A =
⎡⎣1 0 2

3 1 0
0 2 4

⎤⎦ .

4.3 Special Matrices with Complex Elements

In the previous section it was seen that one way in which matrices with complex
elements can occur is when the eigenvectors of an arbitrary n × n matrix are used
to construct a diagonalizing matrix. This is not the only reason for considering
n × n matrices with complex elements, because the following three special types of
matrices arise naturally in applications of mathematics to physics and engineering,
and elsewhere.

Hermitian, skew-Hermitian, and unitary matrices

Let A = [ai j ] be an n × n matrix with possibly complex elements. Then:

A is called an Hermitian matrix if A
T = A, so that akj = a jk;

A is called a skew-Hermitian matrix if A
T = −A, so that akj = −a jk;

U is called a unitary matrix if U
T = U−1.

The basic properties of these three types of matrices follow almost directly from
their definitions.

Basic Properties of Hermitian, Skew-Hermitian,
and Unitary Matrices

1. The elements on the leading diagonal of an Hermitian matrix are real, because
aii = aii , and this is only possible if aii is real.

2. The elements on the leading diagonal of a skew-Hermitian matrix are either
purely imaginary or 0. This follows from the fact that aii = −aii , so the real
part of aii must equal its negative, and this is only possible if aii is purely
imaginary or 0.
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3. If the elements of an Hermitian matrix are real, then the matrix is a real
symmetric matrix, because then A

T = AT, and the definition of an Hermitian
matrix reduces to the definition of a real symmetric matrix.

4. If the elements of a skew-Hermitian matrix are real, then the matrix is a skew-
symmetric matrix, because then the definition of a skew-Hermitian matrix
reduces to the definition of a skew-symmetric matrix.

5. Any n × n matrix A of the form A = B + iC, where B is a real symmetric
matrix and C is a real skew-symmetric matrix, is an Hermitian matrix. This
follows directly from Properties 3 and 4.

6. Any n × n matrix A can be written in the form A = B + C, where
B is Hermitian and C is a skew-Hermitian. To see this we write
A = (1/2)(A + A

T
) + (1/2)(A − A

T
), and then set B = (1/2)(A + A

T
) and

C = (1/2)(A − A
T

). Then B
T = (1/2)(AT + A) = (1/2)(A + A

T
) = B and

CT = (1/2)(AT − A) = −(1/2)(A − A
T

) = −C, showing that B is Hermitian
and C is skew-Hermitian.

7. A real unitary matrix is an orthogonal matrix, because in that case A
T = AT,

causing the definition of a unitary matrix to reduce to the definition of an
orthogonal matrix.

8. The determinant of a unitary matrix is ±1. This result is established in essen-
tially the same way as the result of Theorem 4.4(i), so the argument will not
be repeated.

EXAMPLE 4.16 The following are examples of Hermitian, skew-Hermitian, and unitary matrices.

Hermitian matrix :

A =
⎡⎣ 3 2 + 5i −7 + 3i

2 − 5i 0 1 − i
−7 − 3i 1 + i 4

⎤⎦ .

Skew-Hermitian matrix:

B =
⎡⎣ 4i −3 − 2i −6 − 4i

3 − 2i −2i 5
6 − 4i −5 0

⎤⎦ .

Unitary matrix:

U =

⎡⎢⎢⎢⎢⎣
1 + i

2
−1 + i

2
0

1 + i
2

1 − i
2

0

0 0 1

⎤⎥⎥⎥⎥⎦ .

It can be seen from Properties 3, 4, and 7 that Hermitian, skew-Hermitian, and
unitary matrices are, respectively, generalizations of symmetric, skew-symmetric,
and orthogonal real-valued matrices. Accordingly, it is to be expected that some of
the properties exhibited by these real-valued matrices are shared by their complex
generalizations, and this is indeed the case as we now show.
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THEOREM 4.8 Eigenvalues of Hermitian, skew-Hermitian, and unitary matrices

(i) The eigenvalues of an Hermitian matrix are real.
(ii) The eigenvalues of a skew-Hermitian matrix are either purely imaginary or 0.

(iii) The eigenvalues λ of a unitary matrix are all such that |λ| = 1.

Proof

(i) Apart for the need to introduce the complex conjugate operation, the proof
is essentially the same as that of Theorem 4.4 for symmetric matrices, and so it is
omitted.

(ii) Let x be the eigenvector of A corresponding to the eigenvalue λ, so Ax = λx.
Then xTAx = λxTx, from which we have

λ = xTAx/xTx,

but xTx = x1x1 + x2x2 + · · · + xnxn is real. However, A = −AT, so xTAx =
−xTAx, so we can write

λ = xTAx/xTx = −xTAx/xTx.

The product xTx is real, so this last result shows that the complex number λ equals
the negative of its complex conjugate, and this is only possible ifλ is purely imaginary
or 0, so the proof is complete.
(iii) Apart from the need to introduce the complex conjugate operation, the proof

is essentially that of Theorem 4.5(iii), so it will be omitted.

The location of the eigenvalues of these complex matrices and of their corre-
sponding real forms are illustrated in Fig. 4.3.

Imaginary axis

Unitary and orthogonal
matrix eigenvalues are
located on the unit circle

Real axis

Hermitian and symmetric
matrix eigenvalues are
located on the real axis

i

0−1 1

−i
Unit circle

Skew-Hermitian and
skew-symmetric matrix
eigenvalues are located
on the imaginary axis

FIGURE 4.3 The location of the eigenvalues of Hermitian, skew-Hermitian, and
unitary matrices in the complex plane.
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If the definitions of an inner product and a norm are generalized, the concept
of orthogonality can be extended to include vectors with complex elements. These
generalizations have many applications, but they will only be used here to prove
the orthogonality of the rows and columns of unitary matrices.

As the norm of a vector is essentially its length and so must be nonnegative, the
previous definition of a norm in terms of an inner product must be modified in such
a way that the inner product and norm of a complex vector coincide with those for a
real vector when purely real vectors are considered. This is achieved by introducing
the complex conjugate operation into the definition of an inner product.

Inner product of complex vectors

Let w = [w1, w2, . . . , wn]T and z = [z1, z2, . . . , zn]T be two column vectors
with complex elements. Then the inner product of the column vectors w and
z, again denoted by w · z, is defined as w · z = wTz, so that

w · z = w1z1 + w2z2 + · · · + wnzn. (18)

Norm of complex vectors

The norm of a vector z, again denoted by ‖z‖, is defined as the nonnegative
number

‖z‖ = (z · z)1/2 = (zTz)1/2

= (z1z1 + z2z2 + · · · + znzn)1/2

= (|z1|2 + |z2|2 + · · · + |zn|2)1/2.

(19)

It can be seen from the preceding definition that the inner product of two
arbitrary complex vectors is a complex number. However, the definition of the
norm of a complex vector z is a real nonnegative number, as would be expected.

EXAMPLE 4.17 If w = [1 + 2i, 3 − i, i]T and z = [2 + i, 1 − i, 1 + 3i]T, find w · z and ‖z‖.

Solution w · z = (1 + 2i)(2 + i) + (3 − i)(1 − i) + i(1 + 3i) = 11 − 6i , and ‖z‖ =
[|2 + i |2 + |1 − i |2 + |1 + 3i |2]1/2 = 171/2.

We are now in a position to generalize the concept of an orthonormal system
of real vectors to a system of complex vectors that will be called a unitary system if
the vectors satisfy the following conditions.

A unitary system

A set of complex vectors z1, z2, . . . , zn is said to form a unitary system if

zi · z j = zT
i z j =

{
0 if i �= j
1 if i = j.

(20)
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THEOREM 4.9 The eigenvectors of a unitary matrix The rows and columns of a unitary matrix
each form a unitary system of vectors.

Proof By definition the n × n matrix U is unitary if U
T = U−1, so that U

T
U = I.

The element in the ith row and jth column of I is the inner product xi · x j = xT
i x j ,

where xi and x j are the ith and jth columns of U. Consequently,

xT
i x j =

{
0 if i �= j
1 if i = j,

showing that the columns of U form a unitary system. The rows also form a uni-

tary system, because taking the transpose of U
T

U we find that (U
T

U)T = UTU =
IT = I.

Summary Matrices with complex elements arise in a variety of different applications, and from among
these matrices, the most important are Hermitian, skew-Hermitian, and unitary matrices.
Hermitian and skew-Hermitian matrices are the complex analogues of real symmetric and
skew-symmetric matrices, respectively, and unitary matrices are the complex analogue of
real orthogonal matrices. This section derived and illustrated by means of examples the
most important properties of these matrices, and then introduced the inner product and
norm of matrices with complex elements.

EXERCISES 4.3

In Exercises 1 through 4 write the given matrix as the sum
of an Hermitian and a skew-Hermitian matrix.

1.

⎡⎣ 1 + i 3 + i 3 + 2i
−1 + 3i 2 4 + i
−3 − 2i 2 + 3i 4 + 2i

⎤⎦.

2.

⎡⎣ 0 3 + i 1 + 2i
1 − 5i 1 + i 2
1 + 4i −2i 3

⎤⎦.

3.

⎡⎣ 4 − 2i 1 + i 2 + 2i
−1 − 3i 1 + 2i 4

0 2 0

⎤⎦.

4.

⎡⎣3 + i 4 − i 5 + 2i
2 + i 1 + 2i 2
−1 2i 4 − i

⎤⎦.

In Exercises 5 through 8 find the eigenvalues of the
Hermitian matrices and hence confirm the result of
Theorem 4.8(a) that they are real.

5.
[

1 2 − i
2 + i 2

]
.

6.
[

2 2 + 2i
1 − 2i 3

]
.

7.
[

3 2 − 3i
2 + 3i 1

]
.

8.
[ −4 2 − 2i

2 + 2i 3

]
.

In Exercises 9 through 12 find the eigenvalues of the skew-
Hermitian matrices and hence confirm the result of Theo-
rem 4.8(b) that they are purely imaginary.

9.
[

i 3 + i
−3 + i 2i

]
.

10.
[

3i 2 − i
−2 − i 0

]
.

11.
[

0 3 + 2i
−3 + 2i 0

]
.

12.
[

4i 2 + 3i
−2 + 3i i

]
.

13. Show the following matrix is unitary:[
1/

√
2 −i/

√
2

i/
√

2 1/
√

2

]
.

In Exercises 14 and 15 show the matrices are unitary, find
their eigenvalues and eigenvectors, and confirm that the
eigenvalues all lie on the unit circle.

14.
[

(i − 1)/
√

2 (1 − i)/
√

2
(i − 1)/

√
2 (i − 1)/

√
2

]
.

15.
[

(1 + i)/
√

2 −(1 + i)/
√

2
(1 + i)/

√
2 (1 + i)/

√
2

]
.
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4.4 Quadratic Forms

A homogeneous polynomial P(x) of degree two of the form

P(x) ≡ a11x2
1 + a22x2

2 + · · · + annx2
n + 2a12x1x2

+ 2a13x1x3 + · · · + 2an−1,nxn−1xn,
(21)

in which the coefficients ai j and the variables in x(x1, x2, . . . , xn) are real num-
bers, is called a real quadratic form in the variables x1, x2, . . . , xn. The termreal quadratic form
homogeneous of degree two or, more precisely, algebraically homogeneous of de-
gree two, means that each term in P is quadratic in the sense that it involves a
product of precisely two of the variables x1, x2, . . . , xn. The terms involving the
products xi xj with i �= j are called the mixed product or cross-product terms.

Real quadratic forms

A real quadratic form P(x) is a homogeneous polynomial in the real variables
x1, x2, . . . , xn of the form shown in (21). If A is a real symmetric n × n matrix
and x is an n-element column vector defined as

x =

⎡⎢⎢⎢⎢⎣
x1

x2

·
·

xn

⎤⎥⎥⎥⎥⎦ and A =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . a1n

a12 a22 . . . a2n

. . . . . . . . . .

. . . . . . . . . .

a1n a2n . . . ann

⎤⎥⎥⎥⎥⎦ , (22)

then P(x) can be written in the matrix form

P(x) ≡ xTAx. (23)

There is no loss of generality in requiring A to be a symmetric matrix, because if
the coefficient of a cross-product term xi xj equals bi j , this can always be rewritten as
bi j = 2ai j allowing the terms ai j to be positioned symmetrically about the leading di-
agonal, as shown in the matrix A in (22). Exercise 30 at the end of this section shows
how the definition of a real quadratic form can be extended to any real n × n matrix.

EXAMPLE 4.18 Express the quadratic form

P(x) ≡ 3x2
1 − 2x2

2 + 4x2
3 + x1x2 + 3x1x3 − 2x2x3

as the matrix product P(x) = xTAx.

Solution By defining x and A as

x =
⎡⎣x1

x2

x3

⎤⎦ , A =
⎡⎣ 3 1/2 3/2

1/2 −2 −1
3/2 −1 4

⎤⎦ ,

we can write P(x) = xTAx.
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Quadratic forms arise in various ways; for example, in mechanics a quadratic
form can describe the ellipsoid of inertia of a solid body, the angular momentum of
a solid body rotating about an axis, and the kinetic energy of a system of moving
particles. Other areas in which quadratic forms occur include the geometry of conics
in two space dimensions and of quadrics in three space dimensions, optimization
problems, crystallography, and in the classification of partial differential equations
(see Chapter 18).

We now give a general definition of a quadratic form that allows both the matrix
A and the vector x to contain complex elements.

General quadratic forms

Let the elements of an n × n matrix A = [ai j ] and an n-element column vectorquadratic form and
vectors with
complex elements

z be complex numbers. Then a quadratic form P(z) involving the variables
z1, z2, . . . , zn of vector z is an expression of the form

P(z) = zTAz =
n∑

i=1, j=1

ai j zi zj . (24)

This definition is seen to include real quadratic forms, because when the elements
of A and z are real, result (24) reduces to the real quadratic form defined in (23).

The structure of a quadratic form becomes clearer if a change of variables is
made that removes the mixed product terms, leaving only the squared terms. This
is called the reduction of the quadratic form to its standard form, also known as its
canonical form. The next theorem shows how such a simplification can be achieved.

THEOREM 4.10 Reduction of a quadratic form Let the n × n real symmetric matrix A have the
eigenvalues λ1, λ2, . . . , λn, and let Q be an orthogonal matrix that diagonalizes A,

how to reduce a
quadratic form to
a sum of squares

so that QTAQ = D, where D is a diagonal matrix with the eigenvalues of A as the
elements on its leading diagonal. Then the change of variable x = Qy, involving the
column vectors x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T, transforms the real
quadratic form P(x) ≡ xTAx into the standard form

P(x) ≡
n∑

i=1, j=1

ai j xi xj = λ1 y2
1 + λ2 y2

2 + · · · + λn y2
n.

Proof The proof uses the fact that because Q is an orthogonal matrix, QTAQ = D.
Substituting x = Qy into the real quadratic form xTAx gives

P(x) ≡ xTAx = (Qy)TAQy

= yTQTAQy

= yTDy = λ1 y2
1 + λ2 y2

2 + · · · + λn y2
n.

It follows immediately from Theorem 4.10 that the standard form of P(x) is
determined once the eigenvalues of A are known and, when needed, the trans-
formation of coordinates between x and y is given by x = Qy or, equivalently, by
y = QTx.



212 Chapter 4 Eigenvalues, Eigenvectors, and Diagonalization

The next example provides a geometrical interpretation of Theorem 4.10 in
the context of rigid body mechanics. In order to understand its implications it is
necessary to know that if an origin O is taken at an arbitrary point inside a solid
body, and an orthogonal set of axes O{x1, x2, x3} is located at O, nine moments and
products of inertia of the body can be defined relative to these axes and displayed
in the form of a 3 × 3 inertia matrix. The moment of inertia of the body about any
line passing through the origin O is proportional to the length of the segment of
the line that lies between O and the point where it intersects a three-dimensional
surface defined by a quadratic form determined by the inertia matrix.

When the surface determined by the inertia matrix is scaled so the length of the
line from O to its point of intersection with the surface equals the reciprocal of the
moment of inertia about that line, the surface is called the ellipsoid of inertia. If
the orientation of the O{x1, x2, x3} axes is chosen arbitrarily, the resulting quadratic
form will be complicated by the presence of mixed product terms, but a suitable
rotation of the axes can always remove these terms and lead to the most convenient
orientation of the new system of axes O{y1, y2, y3}. In the geometry of both conics
and quadrics, and also in mechanics, new axes obtained in this way that lead to the
elimination of mixed product terms are called the principal axes, and it is because
of this that Theorem 4.10 is often known as the principal axes theorem.

EXAMPLE 4.19 The ellipsoid of inertia of a solid body is given by

P(x) ≡ 4x2
1 + 4x2

2 + x2
3 − 2x1x2.

Find its standard form in terms of a new orthogonal set of axes O{y1, y2, y3}, and
find the linear transformation that connects the two sets of coordinates.

quadratic forms and
principal axes

Solution The quadratic form P(x) can be written as xTAx by defining

x =
⎡⎣x1

x2

x3

⎤⎦ and A =
⎡⎣ 4 −1 0

−1 4 0
0 0 1

⎤⎦ .

The eigenvalues of A are λ1 = 1, λ2 = 5, and λ3 = 3, so the standard form of P(x)
is

P(x) ≡ y2
1 + 5y2

2 + 3y2
3 .

The eigenvalues and corresponding normalized eigenvectors of A are

λ1 = 1, x̂1 =
⎡⎣0

0
1

⎤⎦ , λ2 = 5, x̂2 =
⎡⎣−1/

√
2

1/
√

2
0

⎤⎦ , λ3 = 3, x̂3 =
⎡⎣1/

√
2

1/
√

2
0

⎤⎦ ,

so the orthogonal diagonalizing matrix for A is

Q =
⎡⎣0 −1/

√
2 1/

√
2

0 1/
√

2 1/
√

2
1 0 0

⎤⎦ ,

and the change of variables between x and y determined by x = Qy becomes

x1 = (−y2 + y3)/
√

2, x2 = (y2 + y3)/
√

2, x3 = y1.

The equation P(x) = constant is seen to be an ellipsoid for which O{y1, y2, y3} are
the principal axes.
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EXAMPLE 4.20 Reduce the quadratic part of the following expression to its standard form involv-
ing the principal axes O{y1, y2}, and hence find the form taken by the complete
expression in terms of y1 and y2:

x2
1 + 4x1x2 + 4x2

2 + x1 − 2x2.

Solution The quadratic part of the expression is x2
1 + 4x1x2 + 4x2

2 , and this can be
expressed in the form xTAx by setting

x =
[

x1

x2

]
and A =

[
1 2
2 4

]
.

The eigenvalues and eigenvectors of A are

λ1 = 5, x1 =
[

1
2

]
and λ2 = 0, x2 =

[−2
1

]
,

so the orthogonal diagonalizing matrix is

Q =
[

1/
√

5 −2/
√

5
2/

√
5 1/

√
5

]
and D =

[
5 0
0 0

]
.

Making the variable change x = Qy shows the standard form of the quadratic
terms to be 5y2

1 . The variables x1 and x2 are related to y1 and y2 by the expressions
x1 = y1/

√
5 − 2y2/

√
5 and x2 = 2y1/

√
5 + y2/

√
5, so x1 − 2x2 = −(3y1 + 4y2)/

√
5.

In terms of the principal axes involving the coordinates y1 and y2, the complete
expression x2

1 + 4x1x2 + 4x2
2 + x1 − 2x2 reduces to

x2
1 + 4x1x2 + 4x2

2 + x1 − 2x2 = 5y2
1 − (3y1 + 4y2)/

√
5.

Quadratic forms P(x) are classified according to the behavior of the sign of
P(x) when x is allowed to take all possible values. In terms of vector spaces, this
amounts to saying that if the vector x in P(x) is an n vector, then x ∈ Rn.

Classification of quadratic forms

Let P(x) be a quadratic form. Then:

how to classify
quadratic forms

1. P(x) is said to be positive definite if P(x) > 0 for all x �= 0 in Rn, with
P(x) = 0 if, and only if, x = 0. P(x) is said to be negative definite if in
this definition the inequality sign > is replaced by <.

2. P(x) is said to be positive semidefinite if P(x) ≥ 0 for all x �= 0 in Rn,
and to be negative semidefinite if in this definition the inequality sign ≥
is replaced by ≤.

3. P(x) is said to be indefinite if it satisfies none of the above conditions.

It is an immediate consequence of Theorem 4.10 that if P(x) is associated with
a real symmetric matrix A, then:

(a) P(x) is positive definite if all the eigenvalues of A are positive, and it is negative
definite if all the eigenvalues of A are negative.

(b) P(x) is positive semidefinite if all the eigenvalues of A are nonnegative, and
it is negative semidefinite if all the eigenvalues of A are nonpositive. So, in each
semidefinite case, one or more of the eigenvalues may be zero.
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(c) P(x) is indefinite if at least one eigenvalue is opposite in sign to the others. In
this case, depending on the choice of x, P(x) may be either positive or negative.

EXAMPLE 4.21 The following are examples of different types of standard forms associated with a
3 × 3 matrix:

x2
1 + 2x2

2 + 5x2
3 is positive definite;

−(2x2
1 + 7x2

2 + 4x2
3 ) is negative definite;

4x2
1 + 3x2

3 is positive semidefinite (it is positive, but irrespective of the value
of x2 �= 0 it can vanish when x �= 0);
−(2x2

1 + x2
3 ) is negative semidefinite (it is negative, but irrespective of the

value of x2 �= 0 it can vanish when x �= 0);
3x2

1 − 2x2
2 + x2

3 is indefinite (it can be positive or negative).

Further, and more detailed, information relating to the material in Sections 4.1 to
4.4 is to be found in the appropriate chapters of references [2.1] and [2.5] to [2.12].

Summary A real quadratic form involving the n real variables x1, x2, . . . , xn is a homogeneous poly-
nomial of degree two in these variables. Such forms arise in many different ways, one of
which occurs in optimization problems where a reduction to a sum of squares simplifies
the task of finding an optimum least squares solution. In this section it was shown that
a real quadratic form arises when studying the mechanics of solid bodies, since there a
set of principal axes O{x1, x2, x3} is used to simplify the description of the body in terms
of its inertia about each of the three axes. The reduction of a quadratic form to a sum of
squares both simplifies the analysis of its properties and also enables it to be classified as
being positive or negative definite, semipositive or seminegative, or of indefinite type, all
of which classifications have important implications in applications.

EXERCISES 4.4

In Exercises 1 through 6 find the symmetric matrix A that
is associated with the given quadratic form.

1. x2
1 + 4x1x3 − 6x2x3 + 3x2

2 − 2x2
3 .

2. 5x2
1 − 2x2

2 − 5x2
3 − 4x2x3.

3. −2x2
1 + 3x2

2 − 2x1x3 + 4x2x3.
4. x2

1 + 3x2
2 − 2x1x2 + 4x2x4 − 2x3x4 + x2

3 + 6x2
4 .

5. 3x2
1 − 4x1x2 − 6x2x3 − 2x2x4 + 2x2

3 + 8x2
4 .

6. x2
1 + x2

2 + 4x2
3 − 3x2

4 − x1x2 + 2x2x4 + 2x3x4.

In Exercises 7 through 10 write down the quadratic form
associated with the given matrix.

7.

⎡⎢⎢⎣
2 4 4 0
4 1 2 1
4 2 −1 2
0 1 2 3

⎤⎥⎥⎦.

8.

⎡⎢⎢⎣
1 −3 2 1

−3 2 0 2
2 0 −3 0
1 2 0 4

⎤⎥⎥⎦.

9.

⎡⎢⎢⎣
0 2 −4 2
2 3 1 0

−4 1 2 1
2 0 1 7

⎤⎥⎥⎦.

10.

⎡⎢⎢⎣
1 −2 4 3

−2 3 1 2
4 1 5 0
3 2 0 3

⎤⎥⎥⎦.

In Exercises 11 through 18 use hand computation to reduce
the quadratic form to its standard form, and use the reduc-
tion to classify it. Confirm the reduction by using computer
algebra.

11. (5/2)x2
1 + x1x3 + x2

2 + (5/2)x2
3 .

12. 4x2
1 + x2

2 + 2x2x3 + x2
3 .

13. 4x2
1 + 4x2

2 + 2x2x3 + 4x2
3 .

14. (3/2)x2
1 − x1x3 + x2

2 + (3/2)x2
3 .

15. (3/2)x2
1 + x1x3 − x2

2 + (3/2)x2
3 .

16. (1/2)x2
1 + x1x3 + 2x2

2 + (1/2)x2
3 .

17. 2x2
1 + x2

2 − 4x2x3 + x2
3 .

18. 2x2
1 + 2x2

2 + 2x2x3 + 2x2
3 .

In Exercises 19 through 24 use computer algebra to reduce
the quadratic form on the left to its standard form. Use the
result to identify the conic section described by the equation
as a circle, an ellipse, or a hyperbola.

19. 3x2
1 − 6x1x2 + 9x2

2 = 3.
20. 8x2

2 − x2
1 + 20x1x2 = 12.



Section 4.5 The Matrix Exponential 215

21. 5x2
1 + 4x1x2 − 10x2

2 = 1.
22. 10x2

1 + 2x1x2 + 5x2
2 = 4.

23. 13x2
1 + 18x1x2 + 10x2

2 = 9.
24. 2x2

1 + 16x1x2 + 5x2
2 = 4.

In Exercises 25 through 29 use hand computation to reduce
the quadratic part of the expression to its standard form in-
volving the principal axes O{y1, y2}, and find the form taken
by the complete expression in terms of y1 and y2. Confirm
the reduction by using computer algebra.

25. x2
1 + 8x1x2 + x2

2 + 3x1 − 2x2.
26. x2

1 − 8x1x2 + x2
2 + 2x1 + 3x2.

27. −2x2
1 + 4x1x2 + x2

2 + 4x1 − x2.
28. (8/5)x2

1 − (8/5)x1x2 + (2/5)x2
2 + 2x1 + 4x2.

29. (35/17)x2
1 + (8/17)x1x2 + (50/17)x2

2 + 4x2.
30. By using the definitions of a symmetric and a

skew-symmetric matrix, generalize the definition of a
quadratic form by proving that the quadratic form as-
sociated with any real n × n matrix A can be written
xTBx, where B is the symmetric part of A.

4.5 The Matrix Exponential

It is shown in Chapter 6 that the matrix exponential can be used when solving
systems of linear first order differential equations. As this approach uses matrix
diagonalization when determining what is called the matrix exponential involving
an arbitrary n × n diagonalizable matrix, it is convenient to introduce the matrix
exponential in this chapter.

To motivate what is to follow, we notice that the first order homogeneous linear
differential equation

dx/dt = ax (a = constant) (25)

has the general solution

x = ceat (26)

where c is an arbitrary constant.
Let us now consider the system of n linear first order homogeneous differential

equations

dx1/dt = a11x1 + a12x2 + · · · a1nxn

dx2/dt = a21x1 + a22x2 + · · · a2nxn

· · · · · ·
dxn/dt = an1x1 + an2x2 + · · · annxn

(27)

Setting

x =

⎡⎢⎢⎢⎣
x1

x2

··
xn

⎤⎥⎥⎥⎦ and A =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . . a1n

a21 a22 . . . . a2n

. . . . . . . . .

. . . . . . . . .

an1 an2 . . . . ann

⎤⎥⎥⎥⎥⎦
allows the system of differential equations in (27) to be written in the matrix form

dx/dt = Ax, (28)

where dx/dt = [dx1/dt, dx2/dt, . . . , dxn/dt]T (see Section 3.2(d)).
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As the single differential equation (25) has the solution (26), it is reasonable
to ask whether it is possible to express the solution of the system of differential
equations in (28) in the form

x = eAt C. (29)

For this to be possible it is necessary to give meaning to the expression eAt , which is
called the matrix exponential, with t as a parameter. Our objective in the remainderthe matrix exponential
of this section will be to give a brief introduction to the matrix exponential and to
use the definition to determine its most important properties in preparation for
their use in Chapter 6.

The starting point for this generalization of the exponential function is the
familiar result

eat =
∞∑

m=0

amtm

m!

= 1 + at + a2t2

2!
+ a3t3

3!
+ · · · . (30)

If A is an n × n constant matrix with real coefficients we take as an intuitive defini-
tion of the matrix exponential eAt the infinite series of matrices

eAt = I + At + A2 t2

2!
+ A3 t3

3!
+ · · · . (31)

In adopting (31) as a possible definition of the matrix exponential, we have
set A0 = I and chosen to vary the convention that a scalar multiplier of a matrix is
placed in front of the matrix by writing At, A2t2, . . . , instead of tA, t2A2, . . . . This
notation has been adopted to make the appearance of the arguments that follow
parallel as closely as possible those for the familiar single real variable case. Some
books adopt this convention but make no mention of it, while others adhere strictly
to the convention that a scalar multiplier is placed before a matrix and write

etA = I + tA + t2

2!
A2 + t3

3!
A3 + · · · .

The matrix exponential in (31) is an n × n matrix, each element of which is an
ordinary infinite series. So to show that eAt is convergent, it will be sufficient to show
that an infinite sum of the required form containing the term of greatest absolute
value in A is convergent. Let us consider the matrix product A2. Then the term c(2)

rs

in the r th row and sth column of A2 is c(2)
rs = ar1a1s + ar2a2s + · · · + arnans , so if the

magnitude of the largest term in A is M, it follows that |ars | ≤ M, and |c(2)
rs | ≤ nM2.

A similar argument shows that if |c(3)
rs | is the corresponding term in the matrix A3,

then c(3)
rs = c(2)

r1 a1s + c(2)
r2 a2s + · · · + c(2)

rn ans and so |c(3)
rs | ≤ n2 M3. Either by induction

or by inspection, we see that the magnitude of the term c(m)
rs in the r th row and sth

column of Am obeys the inequality |c(m)
rs | ≤ nm−1 Mm.

An overestimate of the magnitude of the term in the r th row and sth column
of eAt is provided by the series

1 + t M + t2nM2/2! + t3n2 M3/3! + · · · + tmnm−1 Mm/m! + · · · .
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Setting um = tmnm−1 Mm/m! and applying the ratio test shows that for all fixed t

L = lim
m→∞ |um+1/um| = lim

m→∞ tnM/(m + 1) = 0,

so the series is absolutely convergent for all fixed t . Thus, (26) serves as a satisfactory
definition of the matrix exponential, and because it is absolutely convergent for all
fixed t the series can be differentiated and integrated term by term with respect
to t .

The matrix exponential

If A is an n × n constant matrix with real coefficients, the matrix exponential
eAt is defined by the infinite seriesthe formal

definition of eAt

and its properties

eAt = In + At + A2 t2

2!
+ A3 t3

3!
+ · · · , (32)

which is absolutely convergent for all fixed t .

The absolute convergence of the infinite series defining the matrix exponential
allows it to be differentiated term by term, so

d[eAt ]/dt = A + A2t + A3 t2

2!
+ · · · = A

{
I + At + A2 t2

2!
+ A3 t3

3!
+ · · ·

}
= AeAt .

We have established the fundamental result that

d[eAt ]/dt = AeAt , (33)

and hence by repeated differentiation that

dn[eAt ]/dtn = AneAt . (34)

Setting t = 1 in (33) shows that

eA = I + A + A2 1
2!

+ A3 1
3!

+ · · · , (35)

whereas setting t = 0 shows that e0 = I.

EXAMPLE 4.22 Find eAt given that

A =
⎡⎣3 0 0

0 −2 0
0 0 4

⎤⎦ .

Solution As A is a diagonal matrix

Am =
⎡⎣3m 0 0

0 (−2)m 0
0 0 4m

⎤⎦ ,
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so substituting into (32) gives

eAt =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦+
⎡⎣3 0 0

0 −2 0
0 0 4

⎤⎦ t +
⎡⎣32 0 0

0 (−2)2 0
0 0 42

⎤⎦ t2

2!
+ · · · ,

showing that

eAt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
m=0

3mtm

m!
0 0

0
∞∑

m=0

(−2)mtm

m!
0

0 0
∞∑

m=0

4mtm

m!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎣e3t 0 0

0 e−2t 0
0 0 e4t

⎤⎦ .

EXAMPLE 4.23 Find eA and eAt , and show by direct differentiation that d[eAt ]/dt = AeAt , given
that

A =

⎡⎢⎢⎣
0 2 1 1
0 0 3 −2
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ .

Solution

A2 =

⎡⎢⎢⎣
0 0 6 −3
0 0 0 3
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , A3 =

⎡⎢⎢⎣
0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , and An = 0 for n > 3.

Substituting into (32) and adding the scaled matrices gives

eAt =

⎡⎢⎢⎣
1 2t t + 3t2 t − (3/2)t2 + t3

0 1 3t −2t + (3/2)t2

0 0 1 t
0 0 0 1

⎤⎥⎥⎦ .

Setting t = 1 in this result, we find that

eA =

⎡⎢⎢⎣
1 2 4 1/2
0 1 3 −1/2
0 0 1 1
0 0 0 1

⎤⎥⎥⎦ .

Differentiation of the terms in the matrix eAt gives

d[eAt ]/dt =

⎡⎢⎢⎣
0 2 1 + 6t 1 − 3t + 3t2

0 0 3 −2 + 3t
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ ,

and as this is equal to AeAt , it confirms the result d[eAt ]/dt = AeAt .
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It was possible to sum the infinite series of matrices in Example 4.22 because only
a diagonal matrix was involved, so its powers could be determined immediately.
The situation was different in Example 4.23 because An = 0 for n > 3 so that only a
finite sum of matrices was involved. Matrices such as those in Example 4.23, which
vanish when raised to a finite power, are called nilpotent matrices.

If A is neither diagonal nor nilpotent, but is diagonalizable, in order to deter-
mine Am it is first necessary to find the diagonalizing matrix P for A. Then, if D is
the diagonalized form of A, so that D = P−1AP, it follows that A = PDP−1 and

A2 = (PDP−1)(PDP−1) = PD2P−1, A3 = AA2 = (PDP−1)(PD2P−1)

= PD3P−1,

so that in general,

Am = PDmP−1.

Using this result in the matrix exponential gives

eAt = I + (PDP−1)t + PD2P−1 t2

2!
+ · · · ,

and writing I = PP−1 reduces this to

eAt = P
{

In + Dt + D2 t2

2!
+ D3 t3

3!
+ · · ·

}
P−1. (36)

The form of eA follows directly from this by setting t = 1.

EXAMPLE 4.24 Determine eAt given that

A =
[−2 −3

6 7

]
,

and use the result to find eA.

Solution The eigenvalues and eigenvectors of A are

λ1 = 1, x1 =
[−1

1

]
and λ2 = 4, x2 =

[
1

−2

]
,

so the diagonalizing matrix

P =
[−1 1

1 −2

]
and P−1 =

[−2 −1
−1 −1

]
, while D =

[
1 0
0 4

]
.

Substituting these matrices into (36) gives

eAt = P
[[

1 0
0 1

]
+
[

1 0
0 4

]
t +

[
1 0
0 42

]
t2

2!
+
[

1 0
0 43

]
t3

3!
+ · · ·

]
P−1

= P
[

et 0
0 e4t

]
P−1 =

[
(2et − e4t ) (et − e4t )

(2e4t − 2et ) (2e4t − et )

]
.
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Finally, setting t = 1 we find that

eA =
[

(2e − e4) (e − e4)
(2e4 − 2e) (2e4 − e)

]
.

So far, the properties of the matrix exponential have closely paralleled those
of the ordinary exponential, but there are significant differences, one of the most
important being that in general, even when A + B is defined, eAeB �= e(A+B). To
determine under what conditions the equality is true, we consider the matrix expo-
nentials eAt eBt and e(A+B)t and require their derivatives to be equal when t = 0.

Differentiating each expression once with respect to t gives

d[eAt eBt ]/dt = AeAt eBt + eAt BeBt and d
[
e(A+Bt)]/dt = (A + B)e(A+B)t ,

and these are seen to be equal when t = 0. Next, computing d2[eAt eBt ]/dt2 and
d2[e(A+B)t ]/dt2, we obtain

d2[eAt eBt ]/dt2 = A2eAt eBt + 2AeAt BeBt + eAt B2eBt

and

d2[e(A+B)t]/dt2 = (A + B)2e(A+B)t = (A2 + AB + BA + B2)e(A+B)t .

Setting t = 0 shows that these two expressions are only equal if AB = BA; that is,
the matrices A and B must commute, and the same condition applies when all higher
order derivatives are considered. This has established the fundamental result that

when does
eAeB = e(A+B) eAeB = e(A+B) if, and only if, AB = BA. (37)

Replacing B by −A in (37) gives

eAe−A = e0 = I, (38)

from which we see, as would be expected, that e−A is the inverse of eA, and also
that as e−A is nonsingular it always exists. This parallels the real variable situation,
because e−x exists for all finite x.

Having arrived at a satisfactory definition of eAt and determined its derivatives,
we are now in a position to define the antiderivative

∫
eAt dt as the matrix obtained

by integrating each element of eAt with respect to t , it being understood that when
this is done an arbitrary constant n × n matrix must always be added to the result
representing the arbitrary additative constant of integration that arises when each
term of eAt is integrated.

EXAMPLE 4.25 Find
∫

eAt dt given that A is the matrix in Example 4.21.

Solution It was shown in Example 4.21 that if

A =
⎡⎣3 0 0

0 −2 0
0 0 4

⎤⎦ then eAt =
⎡⎣e3t 0 0

0 e−2t 0
0 0 e4t

⎤⎦ ,
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so that ∫
eAt dt =

⎡⎣e3t/3 + c1 0 0
0 −e−2t/2 + c2 0
0 0 e4t/4 + c3

⎤⎦
=
⎡⎣e3t/3 0 0

0 −e−2t/2 0
0 0 e4t/4

⎤⎦+
⎡⎣c1 0 0

0 c2 0
0 0 c3

⎤⎦ ,

where c1, c2, and c3 are arbitrary constants.

Applications of the matrix exponential to ordinary differential equations are to be
found in reference [3.15].

Summary The matrix exponential eAt arises as the natural extension of the exponential function when
solving a system of linear first order constant coefficient differential equations in the matrix
form dx/dt = Ax. This section has described how eAt can be calculated in simple cases
and shown that eAeB = eA+B if, and only if, AB = BA. A different way of finding eAt using
the Laplace transform is given later in Section 7.3(b).

EXERCISES 4.5

1. Given that

A =

⎡⎢⎢⎣
0 3 1 0
0 0 2 1
0 0 0 3
0 0 0 0

⎤⎥⎥⎦ ,

show that it is nilpotent and find the smallest power for
which An = 0.

2. Given that

A =

⎡⎢⎢⎣
0 1 2 2
0 0 3 1
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ ,

find eAt .
3. Given that

A =
[

0 2
0 0

]
and B =

[
0 0
3 0

]
,

show that A and B do not commute, and by finding
eAt , eBt , and e(A+B)t , verify that eAt eBt �= e(A+B)t .

In Exercises 4 through 9, find eAt .

4. A =
[

0 1
1 0

]
.

5. A =
[

m 0
0 n

]
.

6. A =
[

0 −c
c 0

]
.

7. A =
[−2 2

2 1

]
.

8. A =
⎡⎣3 −2 2

6 −4 6
2 −1 3

⎤⎦.

9. A =
⎡⎣0 1 −2

2 −1 2
2 −2 4

⎤⎦.

10. By considering the definition of eAt show, provided the
square matrices A and B commute, that

AeBt = eBt A.

11. By considering the definition of eAt show that∫
e−At dt = −A−1e−At + C = e−At A−1 + C, where C is

an arbitrary constant matrix that is conformable for ad-
dition with A.

12. Show that if the square matrices A and B commute,
then the binomial theorem takes the form

(A + B)n =
n∑

k=0

(
n
k

)
AkBn−k.
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CHAPTER 4

TECHNOLOGY PROJECTS

Project 1

Verifying and Using the Cayley–Hamilton
Theorem

The purpose of this project is to verify the Cayley--Hamilton
theorem in a particular case by constructing an arbitrary
6 × 6 non-singular matrix A and, after finding its charac-
teristic polynomial, showing by direct calculation that A
satisfies its own characteristic matrix polynomial equation.
The matrix polynomial equation is then to be used to com-
pute the inverse matrix A−1, after which the inverse is to be
checked by showing that the product AA−1 = I. The project
then explores the way in which this approach fails when A
is singular.

1. Construct an arbitrary 6 × 6 matrix A and check
that det A �= 0 to ensure that it has an inverse
A−1.

2. Find the characteristic polynomial for matrix A.
3. Show by direct calculation that A satisfies its

own characteristic matrix polynomial equation.
4. Use the characteristic matrix polynomial equa-

tion to find A−1, and check its correctness by
showing that the product AA−1 = I.

5. Replace the last row of A by the entries in the
row above to form a matrix B that is singular,
and find the characteristic polynomial for B.

6. Try to use the characteristic matrix polynomial
equation for B to find B−1, and comment on the
way in which this approach fails.

Project 2

Diagonalization of a Matrix

This project involves the diagonalization of a 5 × 5
matrix A when two of its five eigenvalues are equal,
but there are five linearly independent eigenvectors.

1. Find a diagonalizing matrix for

A =

⎡⎢⎢⎢⎣
13 31 30 51 −40
32 62 64 104 −88

−28 −56 −58 −88 80
−17 −33 −34 −55 48
−13 −25 −26 −37 38

⎤⎥⎥⎥⎦ .

2. Diagonalize the matrix B = 1
2 A, and comment

on the relationship between the diagonalizing
matrices for A and B.

Project 3

Orthogonal Vectors Computed
by the Gram–Schmidt Method

The purpose of this project is to develop a com-
puter algebra procedure that generalizes the Gram--
Schmidt process to n-dimensional vectors. The exten-
sion is almost immediate and follows from the fact
that in the case of three-dimensional vectors one of
them, say a1, was taken as the first vector u1 of an or-
thogonal basis, the second vector u2 was derived from
a2 by subtracting from it the projection of u1 onto a2,
and, finally, the third vector u3 was obtained from a3

by subtracting from it both the projection of u1 onto
a3 and the projection of u2 onto a3.

Starting with a set of n linearly independent
vectors {a1, a2, . . . , an}, an orthogonal basis {u1,

u2, . . . , un} for this space is obtained by extending the
preceding method by setting

u1 = a1

u2 = a2 − a2.u1

u1.u1
u1

u3 = a3 − a3.u1

u1.u1
u1 − a3.u2

u2.u2
u2

...

un = an − an.u1

u1.u1
u1 − an.u2

u2.u2
u2 − · · · − an.un−1

un−1.un−1
un−1.

Write a computer algebra procedure that repro-
duces these results step by step for four-dimensional
vectors.

Check the procedure by applying it to the set
of linearly independent vectors a1 = [−1, −1, 1, 2],
a2 = [1, 0, 1, −2], a3 = [0, 1,−1, −1], and a4 =
[2, −1, 1, 1], and showing that the corresponding set
of orthogonal basis vectors is u1 = [−1, −1, 1, 2],
u2 = [ 3

7 , − 4
7 , 11

7 ,− 6
7 ], u3 = [− 11

26 , 3
13 , 3

26 ,− 2
13 ], and

u4 = [ 2
7 , 4

7 , 2
7 , 2

7 ].
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Define two other sets of linearly independent
vectors and, after applying your procedure, verify
that the resulting sets of vectors {u1, u2, u3, u4} are
orthogonal.

Project 4

Reduction of a Quadratic Form
to Standard Form

The purpose of this project is to find a transfor-
mation that reduces a given quadratic form in four
variables to a sum of squares.

1. Given the quadratic form x2
2 − x2

1 − 2x1x2 −
2x1x3 + 2x1x4 − 2x3x4, find a transformation
that reduces it to a sum of squares.

2. Find the simplified quadratic form produced by
the transformation in Step 1.

Project 5

The Hubble Space Telescope
and Quadratic Forms

When the Hubble space telescope in orbit around
the earth is required to photograph a particular neb-
ula it has to be rotated until it is pointing in the correct
direction. As it is a rigid body, the kinetic energy W
required to rotate it at an angular velocity ω about
a suitable axis is given by W = 1

2 Iω2, where I is the
moment of inertia of the telescope about the axis of
rotation. Because the telescope has an irregular shape,
the moment of inertia I will depend on the axis of ro-
tation, and a convenient way of representing the value
of I about all possible axes through a given point in
the telescope is by means of what is called the ellipsoid
of inertia.

The ellipsoid of inertia for a given rigid body of
mass m relative to a fixed point in the body is a three-
dimensional plot of the moment of inertia relative to
all possible axes of rotation passing through the point.
It is shown in texts on mechanics that this plot is an
ellipsoidal surface, with the property that the length
of the straight line drawn from the center of the el-
lipsoid to its surface is inversely proportional to the
radius of gyration k of the body about that line, where
I = mk2.

Given that an ellipsoid of inertia has the form

16x2 − 4xy + 37y2 − 12xz + 18yz + 11z2 = 12,

use matrix methods to find a linear transformation
from the variables x, y, and z to new variables X, Y,
and Z that reduces the expression to one of the
form

X2

a2
+ Y2

b2
+ Z2

c2
= 1.

Hence find the radii of gyration 1/a, 1/b, and 1/c
about the principal axes of the ellipsoid that form its
three mutually orthogonal axes about which there is
symmetry.

Project 6

Dynamical Systems and Logging Operations

Discrete dynamical systems are used to model sit-
uations in engineering, control theory, physics, ecol-
ogy, and elsewhere that can be considered to evolve
stage by stage, with each stage dependent on the pre-
vious one. For example, a logging operation to supply
a saw mill in a specific area of forest, with tree replant-
ing and the availability of a limited supply of logs from
outside the area, can be described by a simple dy-
namical system that models the way the output of cut
timber is influenced by the competition between the
felling of trees, the importing of a limited amount of
logs, and the regeneration of the forest.

In the simplest case the long-term behavior of a
dynamical system can be represented mathematically
by the matrix equation

xk+1 = Axk, for k = 0, 1, 2, . . . ,

where A is an n × n matrix, and xk is an n element
column vector whose elements describe the physical
characteristics of the system at the kth stage. In a log-
ging operation n = 2, and xk = [Tk, Rk]T, where Tk is
the amount of timber remaining after k years and Rk

is the amount of replanted timber that has matured
after k years.

In general, let A be diagonalizable with the real
eigenvalues λ1, λ2, . . . , λn, and let the corresponding
linearly independent eigenvectors be u1, u2, . . . , un.
Then, if x0 describes the initial state of the system,
since the eigenvectors form a basis for the system we
may set x0 = c1u1 + c2u2 + . . . + cnun. Use the repre-
sentation of x0 to find a general expression for xk in
terms of the eigenvalues, and comment on the approx-
imate form taken by xk as k becomes large.
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Given that

A

interpret the meaning of the coefficients of A in
the context of a logging operation. Starting with

. generate the first 15 vectors xk, com-

pare the results with the approximation found ear-
lier, and comment on the result in terms of a logging
operation.

Suggest a physical dynamical system where A is
a 3 × 3 matrix. Define a suitable numerical matrix A
and initial vector x0, generate the first 15 vectors xk,
and interpret the results in terms of the model.
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5C H A P T E R

First Order Differential Equations

Differential equations are fundamental to the study of engineering and physics, and
this chapter marks the start of our discussion of this important topic. Typically, in an

electrical problem, the dependent variable i (t) in an ordinary differential equation might
be the current flowing in a circuit at time t, in which case the independent variable would
be the time. In all such examples, the nature of i (t) depends on the current flow at the
start, and the specification of information of this type is called an initial condition for the
differential equation. Similarly, in chemical engineering, a dependent variable m(t) might
be the amount of a chemical produced by a reaction at time t. Here also the independent
variable would be the time t, and to determine m(t) in any particular case it would be
necessary to specify the amount of m(t) present at the start, that for convenience is usually
taken to be when t = 0.

Many physical problems are capable of description in terms of a single first order or-
dinary differential equation, while other more complicated problems involve coupled first
order differential equations, that after the elimination of all but one of the independent vari-
ables, can be replaced by a single higher order equation for the remaining dependent vari-
able. This happens, for example, when determining the current in an R-L-C electrical circuit.

Thus first order ordinary differential equations can be considered as the building blocks
in the study of higher order equations, and their properties are particularly important and
easy to obtain when the equations are linear. The study and properties of the specially
simple class of equations called constant coefficient equations is very important, as it
forms the foundation of the study of higher order constant coefficient equations that will
be developed later and have many and varied applications.

Motivation for the study of ordinary differential equations in general is provided by
considering a number of typical problems that give rise to different types of differential
equation. The first application involves the determination of orthogonal trajectories. A
typical example of orthogonal trajectories arises in steady state two-dimensional temper-
ature distributions, where one family of trajectories corresponds to the lines along which
the temperature is constant, while the other family corresponds to lines along which heat
flows. Other examples considered are the radioactive decay of a substance, the logistic
equation and its connection with population growth, damped oscillations, the shape of a
suspended power line, and the bending of beams.

The chapter starts by defining an mth order ordinary differential equation, of which a
first order equation is a special case. Various important terms are defined, and the physical
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significance of initial and boundary conditions for differential equations are introduced
and explained.

The geometrical interpretation of the derivative dy/dx as the slope of a curve is used
in Section 5.3 to develop the concept of the direction field associated with the first order
equation dy/dx = f (x, y). This concept is particularly useful as it leads to a geometrical
picture showing the qualitative behavior of all solutions of the differential equation. It will
be seen later that the idea underlying a direction field forms the basis of the simple Euler
method for the numerical solution of an initial value problem.

First order equations are considered, separable equations are defined and solved,
and some other special types of equation are introduced that arise in applications, of which
the most important is the general linear first order differential equation. Its solution
is found by using what is called an integrating factor. The first order linear differential
equation is important, because the structure of its solution is typical of linear differential
equations of all orders.

Another special first order equation that is considered is the Bernoulli equation. The
Bernoulli equation is an important type of nonlinear equation with many applications,
and in a sense it stands on the border between linear and nonlinear first order differential
equations. An application of the Bernoulli equation is outlined in the text, and another
more detailed one is to be found in the Exercise set at the end of Section 5.8.

The chapter ends by considering the important and practical questions concerning
the existence and uniqueness of solutions of dy/dx = f (x, y).

5.1 Background to Ordinary
Differential Equations

An ordinary differential equation (ODE) is an equation that relates a function
y(x) to some of its derivatives y(r)(x) = dr y/dxr . It is usual to call x the in-

dependent variable and y the dependent variable, and to write the most general
ordinary differential equation as

F
(

x, y, y(1), y(2), . . . , y(n)
)

= 0. (1)

The number n in (1) is called the order of the ordinary differential equation, and
it is the order of the highest derivative of y that occurs in the equation. A class
of ODEs of particular importance in engineering and science, because of their
frequency of occurrence and the extensive analytical methods that are available for
their solution, are the linear ordinary differential equations.

The most general nth order linear differential equation can be writtennth order linear
variable coefficient
equation

a0(x)
dn y
dxn

+ a1(x)
dn−1 y
dxn−1

+ · · · + an−1(x)
dy
dx

+ an(x)y = f (x), (2)

with a0(x) �= 0 and we will consider it to be defined over some interval a ≤ x ≤ b.
The functions a0(x), a1(x), . . . , an(x), called the coefficients of the equation, are
known functions, and the known function f (x) is called the nonhomogeneous term.
The name forcing function is also sometimes given to f (x), because in applica-
tions it represents the influence of an external input that drives a physical system
represented by the differential equation. Equation (2) is called homogeneous if
f (x) ≡ 0.
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It will be seen later that the solution of the nonhomogeneous equation (2) is
related in a fundamental manner to the solution of its associated homogeneous
equation.

nth order linear
constant coefficient
equation

When one or more of the coefficients of (2) depend on x, it is called a variable
coefficient equation. Simpler than variable coefficient linear equations, but still of
considerable importance, are the linear equations in which the coefficients are the
constants a0, a1, . . . , an, so that (2) becomes

a0
dn y
dxn

+ a1
dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ an y = f (x) for a ≤ x ≤ b. (3)

Equations of this type are called constant coefficient linear equations.
If the interval a ≤ x ≤ b on which equations (2) and (3) are defined is not

specified, it is to be understood to be the largest one for which the equations have
meaning. Sometimes, in the case of (2), this interval is determined by the variable
coefficients ar (x), whereas in applications it is often determined by the nature of
the problem that restricts x to a specific interval.

An ordinary differential equation that is not linear is said to be nonlinear. Non-nonlinear equation
and degree linearity arises in ordinary differential equations because of the occurrence of a

nonlinear function of the dependent variable y that sometimes occurs in the form
of a power or a radical. The terms homogeneous and nonhomogeneous have no
meaning for nonlinear equations.

A term that is also in use, mainly as an indication of the complexity to be
expected of a solution, is the degree of an equation. The degree is the greatest power
to which the highest order derivative in the differential equation is raised after the
radicals have been cleared from expressions involving the dependent variable y.

EXAMPLE 5.1 (a) The ODE

dy
dx

+ 2xy = sin x

is a linear variable coefficient nonhomogeneous first order equation.
(b) The ODE

(1 − x2)
d2 y
dx2

− 2x
dy
dx

+ 6y = 0, with −1 < x < 1,

is a linear variable coefficient homogeneous second order equation.
(c) The ODE

d2 y
dx2

+ a
dy
dx

+ by = sin ωx, with ω = constant,

is a linear constant coefficient nonhomogeneous second order equation.
(d) The ODE

d2θ

dt2
+ k sin θ = 0, with k = constant

is a nonlinear second order equation because θ occurs nonlinearly in the function
sin θ .
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(e) The ODE

k
d2 y
dx2

= f (x)[1 + (dy/dx)2]3/2, with k > 0 a constant

is a nonlinear second order equation of degree 2 involving a power and a radical.

A solution of an ordinary differential equation is a function y = �(x) that,
when substituted into the equation, makes it identically zero over the interval on
which the equation is defined. A solution of an nth order equation that contains n
arbitrary constants is called the general solution of the equation. If the arbitrarygeneral and particular

solutions, and integral
curves

constants in the general solution are assigned specific values, the result is called a
particular solution of the equation.

For obvious reasons the solution of an ordinary differential equation is also
called an integral curve. A solution that cannot be obtained from the general solu-
tion for any choice of its arbitrary constants is called a singular solution. In the casesingular solution
of linear equations all possible solutions of the equation can be obtained from the
general solution, so linear equations have no singular solutions. Nonlinear equa-
tions possess a more complicated structure that often allows the existence of one
or more singular solutions.

EXAMPLE 5.2 (a) The general solution of the linear constant coefficient nonhomogeneous
equation

d2 y
dx2

− 4y = x

is y = Ae2x + Be−2x − x/4, where A and B are arbitrary constants. This is easily
checked, because substituting for y in the equation leads to the identity x ≡ x.

(b) The nonlinear equation (
dy
dx

)2

+ y2 = 1

has the general solution y = sin(x + A). However, y = ±1 are also seen to be solu-
tions, though as these cannot be obtained from the general solution for any choice
of A, they are singular solutions.

The linear equation (2) is often written in the more compact form

L[y] = f (x), (4)

linear operator where L is the linear operator

L[·] ≡ a0(x)
dn

dxn
+ a1(x)

dn−1

dxn−1
+ · · · + an−1(x)

d
dx

+ an(x), (5)

with coefficients that may or may not be functions of x. Only when L[·] acts on an
n times differentiable function does it produce a function.
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Equation (2) is called linear because if y1 and y2 are any two solutions of the ho-
mogeneous form of the equation L[y] = 0, the linear combination y = C1 y1 + C2 y2

where C1 and C2 are constants is also a solution. In terms of the differential operator
L[·] this property becomes L[C1 y1 + C2 y2] = C1L[y1] + C2L[y2], and it follows
directly from the linearity of the differentiation operation, because

dm

dxm
(y1 + y2) = dmy1

dxm
+ dmy2

dxm
,

for m = 0, 1, . . . , n, with d0 y/dx0 ≡ y.
If y1(x), y2(x), . . . , ym(x) are solutions of the nth order homogeneous equa-

tion L[y] = 0, with m ≤ n and C1, C2, . . . , Cm arbitrary constants, the linear combi-
nation

y(x) = C1 y1(x) + C2 y(x) + · · · + Cmym(x)

linear superposition is called a linear superposition of the m solutions, and it is also a solution of the
homogeneous equation.

Later we will define the linear independence of a set of functions over an interval
and show that the homogeneous form of (2) has precisely n linearly independent
solutions y1(x), y2(x), . . . , yn(x), and that its general solution is

yc(x) = C1 y1(x) + C2 y(x) + · · · + Cn yn(x), (6)

where C1, C2, . . . , Cn are arbitrary constants. This general solution of the homoge-
neous form of equation (2) is called the complementary function or the comple-
mentary solution of (2). A function yp(x) that is a solution of the nonhomogeneous

complementary
solution, particular
integral, and
complete solution equation (2) but contains no arbitrary constants is called a particular integral of (2).

The complete solution y(x) of equation (2) is

y(x) = yc(x) + yp(x). (7)

In applications of ordinary differential equations the values of the arbitrary
constants in specific problems are obtained by choosing them so the solution satisfies
auxiliary conditions that identify a particular problem.

Auxiliary conditions specified at a single point x = a, say, are called initial con-
ditions, because x often represents the time so that conditions of this type describe
how the solution starts. An initial value problem (i.v.p.) involves finding a solution
of a differential equation that satisfies prescribed initial conditions.

A different type of problem arises when the auxiliary conditions are specified at
two different points x = a and x = b, say. Conditions of this type are called bound-
ary conditions, because in such problems x usually represents a space variable, and

boundary and
initial conditions

the solution is required to be determined between two boundaries located at x = a
and x = b where boundary conditions are prescribed. A boundary value problem
(b.v.p.) involves finding a solution of a differential equation that satisfies prescribed
boundary conditions.
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EXAMPLE 5.3 (a) The linear nonhomogeneous ordinary differential equation

d2 y
dx2

+ y = x

has the general solution y = A cos x + B sin x + x. This equation together with
the initial conditions y(0) = 0, y′(0) = 0 specified at the point x = 0 constitutes an
initial value problem for y. Choosing A and B to satisfy these initial conditions
shows the unique solution of this i.v.p. to be y = x − sin x for x ≥ 0.

(b) The linear homogeneous ordinary differential equation

d2 y
dx2

+ y = 0

has the general solution y = A cos x + B sin x. This equation together with the
conditions y(0) = 0, y′(π/3) = 3 specified at the two different points x = 0 and x =
π/3 constitutes a boundary value problem for y. Choosing Aand B to satisfy these
conditions shows that this b.v.p. has the unique solution y = 6 sin x for 0 < x < π/3.

(c) Consider the linear homogeneous ordinary differential equation

d2 y
dx2

− y = 0 defined for x ≥ 0,

which is easily seen to have the general solution y = Aex + Be−x. Imposing the
boundary conditions y(0) = 1 and y(+∞) = 0 constitutes a boundary value prob-
lem for y in which one condition is at x = 0 and the other is at plus infinity. The
condition at infinity can only be satisfied if A= 0, so matching the solution y = Be−x

to the condition y(0) = 1 shows that this b.v.p. has the unique (only) solutionunique and
nonunique
solutions

y = e−x.
(d) It is possible for a boundary value problem to have a unique solution as in

(b), more than one solution, or no solution at all. More will be said about this later,
but for the moment we give a simple example that shows why a boundary value
problem may have many solutions or no solution.

The general solution of (b) is y = A cos x + B sin x, so if the boundary condi-
tions y(0) = 0 and y(π) = 0 are imposed we find that A= 0 and B is indeterminate,
so it may be assigned any value. In this case a solution certainly exists, as it is given
by y = B sin x, but B is arbitrary, so there is more than one solution. When more
than one solution can be found that satisfies the auxiliary conditions, the solution
is said to be nonunique.

If, in this example, the boundary conditions are replaced by y(0) = 0 and
y(π) = 1, no choice of constants A and B can make the general solution satisfy
the boundary conditions, so in this case there is no solution.

Summary This section introduced the concept of an nth order ordinary differential equation, and the
initial and boundary conditions that such equations are often required to satisfy. Emphasis
was placed on linear equations and, in particular, on the structure of the solution of a
linear first order equation, because the structure of the solution of this fundamental type
of equation is shared by the solutions of all higher order linear equations.
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EXERCISES 5.1

In Exercises 1 through 10, determine the order and degree
of the equation and classify it as homogeneous linear, non-
homogeneous linear, or nonlinear.

1. y′′′ + 3y′′ + 4y′ − y = 0.
2. y′′ + 4y′ + y = x sin x.
3. y′′ + x(y′)2 = cosh x.
4. (y′′)3/2 + xy′ = [(1 + x)y′].

5. y′′ + 3y′ + 2y = x2 sin y.
6. y(4) + x2√y = 3 + x3.
7. y′ + 3xy = 1 + x2.
8. y′′ + y = tan(y′).
9. (2 + x2)y′ + x(1 − y2) = 0.

10. y′/y + sin x = 3.

5.2 Some Problems Leading to Ordinary
Differential Equations

Before we develop methods for the solution of ordinary differential equations, it
will be helpful to examine some simple geometrical and physical problems that lead
to ODEs. There are many such problems, so we only consider some representative
examples.

(a) A Geometrical Problem:
Orthogonal Trajectories
The equation

F(x, y, c) = 0,

where the real variable c is a parameter, defines a one-parameter family of curves
in the (x, y)-plane. This means that assigning a specific value to c determines a
particular curve in the (x, y)-plane, and a different value of c will determine a
different curve. It often happens that the equation F(x, y, c) = 0 defines y implicitly
in terms of x, so that the equation cannot be solved explicitly as y = f (x, c).

A curve that intersects every member of a one-parameter family of curves
orthogonally (at right angles) is called an orthogonal trajectory of the family. Aorthogonal trajectory
geometrical problem that often occurs is how to find a family of curves that form
orthogonal trajectories to a given family.

When some applications of conformal mapping to two-dimensional physical
problems are considered in Chapter 17, it will be seen that orthogonal trajectories
arise in the study of steady state heat conduction, fluid dynamics, and electromag-
netic theory. In heat conduction (see Chapter 18), one family of curves represents
lines of constant temperature called isotherms, and their orthogonal trajectoriesisotherms, heat flow,

streamlines,
equipotentials, and
flux lines

then represent heat flow lines. In two-dimensional fluid dynamics, orthogonal tra-
jectories express the relationship between the curves followed by fluid particles
called streamlines, and the associated equipotential lines along which a function
called the fluid potential is constant. In two-dimensional electromagnetic theory an
analogous situation arises where one family of curves describes lines of constant
electric potential, again called equipotential lines, and the family of orthogonal
trajectories that describes what are then called flux lines.
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family 1 family 2

π/2

FIGURE 5.1 Two typical families of orthogonal
trajectories.

Two typical families of orthogonal trajectories are illustrated in Fig. 5.1, and
if these curves are related to steady state heat flow, family 1 could represent the
isotherms and family 2 the heat flow lines.

Two specific examples of families of orthogonal trajectories are shown in
Fig. 5.2, where in case (a) the curves are given by

x2 + y2 = c2 and y = kx (with c and k real).

The first equation describes a family of concentric circles centered on the origin,
and the second family that forms their orthogonal trajectories comprises all the
straight lines that pass through the origin.

In case (b) the curves are given by

x2 − y2 = c and xy = k (with c and k real),

where the two families of curves are families of mutually orthogonal rectangular
hyperbolas.

(b)

x0

y

(a)

x

y

0

FIGURE 5.2 Specific examples of orthogonal trajectories.
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In general the equation

F(x, y, c) = 0, (8)

with c a parameter, describes a family of curves. To find their orthogonal trajectories
we first need to obtain the differential equation for the family of curves determined
by (8). This can be done by differentiating (8) with respect to x and then eliminating
c between (8) and the equation with dy/dx to arrive at a differential equation of
the form

dy
dx

= f (x, y). (9)

If the family of curves described by this differential equation is to be orthogonal
to another family, the products of the gradients of every pair of intersecting curves
must equal −1. So the gradient dy/dx of the family of curves that are mutually
orthogonal to those of (9) must be such that

dy
dx

= − 1
f (x, y)

. (10)

This is the differential equation of the required family of orthogonal trajectories.
In general (10) can often be solved by the method of separation of variables that
will be discussed later.

(b) Chemical Reaction Rates and
Radioactive Decay
In many circumstances, for a limited period of time, the rate of reaction of a chemical
process can be considered to be proportional only to the amount Q of the chemical
that is present at a given time t . The differential equation governing such a process
then has the form

dQ
dt

= kQ, (11)

where k ≥ 0 is a constant of proportionality. This is a homogeneous linear first order
differential equation.

An analogous situation applies to the radioactive decay of an isotope for which
the decay takes place at a rate proportional to the amount of radioactive isotope
that is present at any given instant of time. The equation governing the amount Q
of the isotope as a function of time t is also of the form shown in (11), but instead
of the amount growing as in the previous case, it is decreasing, so as in this case the
constant of proportionality is usually denoted by a positive number λ, the equation
for radioactive decay takes the form

dQ
dt

= −λQ. (12)
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It is not difficult to see by inspection that the general solution of (12) is

Q = Q0e−λt ,

half-life
where Q0 is the amount of the isotope present at the start when t = 0. The so-called
half-life Th of an isotope is the time taken for half of it to decay away, so setting
Q = (1/2)Q0 in the above result shows the half-life to be given by Th = (1/λ) ln 2.

(c) The Logistic Equation:
Population Growth
In the study of phenomena involving the rate of increase of a quantity of interest,
it often happens that the rate is influenced both by the amount of the quantity that
is present at any given instant of time and by the limitation of a resource that is
necessary to enable an increase to occur. Such a situation arises in a population of
animals that compete for limited food resources, leading to the so-called predator–
prey situations where an animal (the predator) feeds on another species (the prey)
with the effect that overfeeding leads to starvation. This in turn leads to a reduction
in the number of predators that in turn can lead to a recovery of the food stock. Simi-
lar situations arise in manufacturing when there is competition for scarce resources,
and in a variety of similar situations.

To model the situation we let P represent the amount of the quantity of interest
present at a given time t , and M represent the amount of resources available at the
start. Then a simple model for this process is provided by the differential equation

dP
dt

= kP(M − P), (13)

in which k is a constant of proportionality. When constructing this equation the
assumption has been made that the rate of increase dP/dt is proportional to both
the amount P that is present at time t and to the amount M− P that remains.
Equation (13) is called the logistic equation, and it is nonlinear because of thelogistic equation
presence of the term −kP2 on the right, though it is easily integrated by the method
of separation of variables to be described later.

(d) A Differential Equation that Models
Damped Oscillations
Mechanical and electrical systems, and control systems in general, can exhibit oscil-
latory behavior that after an initial disturbance slowly decays to zero. The process
producing the decay is a dissipative one that removes energy from the system, and it
is called damping. To see the prototype equation that exhibits this phenomenon wedamping
need only consider the following very simple mechanical model. A mass M rests on
a rough horizontal surface and is attached by a spring of negligible mass to a fixed
point. The mass–spring system is caused to oscillate along the line of the spring by
being displaced from its equilibrium position by a small amount and then released.
Figure 5.3a shows the system in its equilibrium configuration, and Fig. 5.3b shows
it when the mass has been displaced through a distance x from its rest position.
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m m

(a) (b)
L L x

FIGURE 5.3 Mass–spring system.

If t is the time, the acceleration of the mass is d2x/dt2, so the force acting due
to the motion is Md2x/dt2. The forces opposing the motion are the spring force,
assumed to be proportional to the displacement x from the equilibrium position,
and the frictional force, assumed to be proportional to the velocity dx/dt of the
mass M. If the spring constant of proportionality is p and the frictional constant
of proportionality is k, the two opposing forces are kdx/dt due to friction and px
due to the spring. Equating the forces acting along the line of the spring and taking
account of the fact that the spring and frictional forces oppose the force due to the
acceleration shows the equation of motion to be the homogeneous second order
linear equation

M
d2x
dt2

= −k
dx
dt

− px,

or

d2x
dt2

+ a
dx
dt

+ bx = 0, (14)

where a = k/M and b = p/M.
If an external force Mf (t) is applied to the spring, the equation governing the

damped oscillations becomes the linear nonhomogeneous second order equation

d2x
dt2

+ a
dx
dt

+ bx = f (t).

An equation of the same form as (14) governs the oscillation of the charge q in
the R–L–C electric circuit shown in Fig. 5.4. The open circuit is shown in Fig. 5.4a
with the plates of the capacitor C carrying initial charges Q and −Q, while Fig. 5.4b
shows the circuit when the switch S has been closed, causing a current i to flow due
to a charge is q at time t .

The respective potential drops in the direction of the arrow across the resistor
R, the inductance L, and the capacitor C are V = i R, where i = dq/dt , Ldi/dt ,

Q −Q

S

(a)

L i

R

C
q −q

S

(b)

L

R

C

FIGURE 5.4 An R–L–C circuit.
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FIGURE 5.5 Suspended cable.

and q/C. Applying Kirchhoff’s law, which requires the sum of the potential drops
around the circuit to be zero, gives

L
di
dt

+ Ri + q
C

= 0.

Eliminating i by using the result i = dq/dt leads to the following homogeneous
linear second order equation for q:

LC
d2q
dt2

+ RC
dq
dt

+ q = 0.

This ODE is of the same form as (14) with a = R/L and b = 1/LC.

(e) The Shape of a Suspended Power Line:
The Catenary
An analysis of the forces acting on a power line attached to pylons as shown in
Fig. 5.5, or on the suspension cable of a cable car, shows the shape of the cable to
be determined by the solution y(x) of the nonlinear differential equation

d2 y
dx2

= a
√

1 + (dy/dx)2.

The shape taken by the cable is called a catenary, after the Latin word catena,
meaning chain. Although this equation will not be solved here, it is not difficult to
show that its solution is a hyperbolic cosine curve.

(f) Bending of Beams
An analysis of the forces and moments acting on a horizontal beam of uniform
construction made from a material with Young’s modulus E and supported at its
two end points, with the moment of inertia of its cross-section about the central
horizontal axis of the beam equal to I, leads to the following equation for the vertical
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w(x)
load

undeflected shape

x0

y

y

y = y(x) deflected shape

FIGURE 5.6 Deflection of a loaded beam.

deflection y caused by the weight of the beam and any loads it is supporting:

EI d2 y/dx2

[1 + (dy/dx)2]3/2
= M(x). (15)

Here M(x) is the bending moment that acts to one side of a point x in the beam. If a
distributed load of line density w(x) acts along the beam creating a load

∫ b
a w(x)dx

on the segment from x = a to x = b, as represented in Fig. 5.6, it can be shown that
M(x) and w(x) are related by the result

d2 M
dx2

= −w(x). (16)

Using this result in (15) shows that the deflection y(x) is determined by the solution
of the nonlinear fourth order equation

d2

dx2

{
EId2 y/dx2

[1 + (dy/dx)2]3/2

}
= w(x), (17)

in which the product EI is called the flexural rigidity of the beam. If the bending isflexural rigidity
small and the term (dy/dx)2 can be neglected, (17) simplifies to the linear fourth
order constant coefficient equation

d4 y
dx4

= w(x)
EI

,

which can be solved by direct integration.
Many applications of ordinary differential equations to physical problems are

to be found in reference [3.6].

Summary This section has provided mathematical and physical examples of problems that give rise
to ordinary differential equations, some with initial conditions and others with boundary
conditions. The logistic equation was seen to be nonlinear and first order, whereas others
such as the equation governing radioactive decay and the equation describing damped
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oscillations were seen to be linear and of first and second order, respectively. The beam
equation is nonlinear, though when the bending is small it was seen to reduce to a simple
linear fourth order equation that could be solved by direct integration.

EXERCISES 5.2

1. Derive the differential equation that describes the fami-
lies of circles that are tangent to both the x- and y-axes.

2. Derive the differential equation satisfied by all curves
such that the magnitude of the area under the curve
between any two ordinates at x = a and x = b is pro-
portional to the magnitude of the arc length of the
curve from x = a to x = b. Verify that the catenary
y(x) = kcosh (x/k − K) is such a curve, with k and K
parameters.

3.* A launch travels along the y-axis a constant speed
U, starting from the origin, and a police launch start-
ing from a point a > 0 on the x-axis pursues it at
a constant speed V > U. If t is the time measured
from the start of the pursuit, write down the differ-
ential equation that describes the pursuit path. At all
times the police launch steers toward the first launch.

5.3 Direction Fields

In certain applications of mathematics it is necessary to know the qualitative be-
havior of solutions of a general first order equation

dy
dx

= f (x, y) (18)

over the entire (x, y)-plane, when either no analytical solution is available or, if
one exists, it is too complicated to be useful. General properties of solutions of (18)
that are known throughout the (x, y)-plane are called global properties. A typicalglobal properties
global property might be that the solutions are known to be bounded for all x.

A numerical solution of (18) can always be obtained for any given initial con-
dition (see Chapter 19), but it is impracticable to obtain such solutions for a large
enough set of initial conditions simply to enable general the behavior of solutions
all over the (x, y)-plane to be understood.

A convenient answer to this problem involves constructing a graphical repre-
sentation of what is called the direction field of (18) at a conveniently chosen mesh
of points covering a region R of interest in the (x, y)-plane.

The idea involved is simple and starts by dividing the interval a ≤ x ≤ b into
m subintervals of equal length �x = (b − a)/m, and the interval c ≤ y ≤ d into n
subintervals of equal length �y = (d − c)/n. The mesh of points to be used to cover
R are then located at the points (xr , ys), where xr = a + r�x and ys = c + s�y with
r = 0, 1, . . . , m and s = 0, 1, . . . , n.

Once the mesh has been chosen, the function f (x, y) is evaluated at each of
the points (xr , ys). It follows directly that the number f (xr , ys) associated with the
point (xr , ys) is the gradient (slope) of the integral curve (solution curve) that passes
through that point. Accordingly, the next step is to construct through each point
(xr , ys), a small straight line segment making an angle θrs = Arctan f (xr , ys) with
the x-axis, as in Fig. 5.7a.
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FIGURE 5.7 (a) The construction of a direction field vector at the point
(xr , ys). (b) The direction field and integral curves for dy/dx = cos(x + y).

By the nature of their construction, each line segment that is drawn in this
manner is tangent to the integral curve that passes through the point through which
the segment is drawn. An examination of the pattern of the line segments indicates
the overall pattern of behavior of all of the integral curves passing through region R.
The assignment of a gradient f (x, y) to each point of R is said to define the direction
field of the ODE in (18) over R, and the method just described is its geometrical
interpretation at a finite number of points of R.

direction field

The graphical interpretation of a direction field can be used to obtain an ap-
proximation to the integral curve that passes through an initial point (x0, y0) in R.
This is accomplished by starting with the line segment through the point (x0, y0)
and then joining up successive line segments as they intersect one another. As the
construction of a direction field over a large region involves many calculations, it is
usual to construct them with the aid of a computer.

The direction field for the nonlinear first order equation

dy
dx

= cos(x + y)

over the region −4 ≤ x ≤ 4 and −8 ≤ y ≤ 5 is shown in Fig. 5.7b, to which have
been added some integral curves to show their relationship to the direction field.
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Summary The concept of a direction field of a first order differential equation dy/dx = f (x, y) was
introduced in this section. It is a graphical representation of the slope (gradient) of solution
curves of the differential equation where they pass through a rectangular mesh of points
inside a region of the (x, y)-plane where the solution of the differential equation is of
interest. It involves plotting at each mesh point (xi , yi ) a short segment of the tangent to
the solution curve with slope f (xi , yi ) that passes through that point, to which is added an
arrow showing the direction in which the solution is changing as x increases. A direction
field provides a geometrical representation of the global nature of the solution inside the
region of interest, and tracing successive line segments from one to another, starting from
any mesh point, provides a rough picture of the solution curve that originates from the
initial condition represented by that mesh point.

EXERCISES 5.3

In each of the following exercises, with the aid of a com-
puter algebra package: (a) Construct the direction field for
the given equation at a suitable number of mesh points,
(b) use the results of (a) to sketch some representative inte-
gral curves, and (c) compare an approximate integral curve
through a chosen initial point (x0, y0) with the exact solu-
tion found by requiring the given general solution to pass
through that point.

1. dy/dx = y + 2x; y = Cex − 2 − 2x.
2. dy/dx = y + 2 cos x; y = Cex − cos x + sin x.
3. dy/dx = 2x − y; y = Ce−x − 2 + 2x.
4. dy/dx = x(1 + y/2); y = C exp(x2/4) − 2.
5. dy/dx = y + x2; y = Cex − 2 − 2x − x2.

5.4 Separable Equations

Sometimes the function f (x, y) in the first order differential equation

dy
dx

= f (x, y) (19)

can be written as the product of a function F(x) depending only on x and a function
G(y) depending only on y, so that f (x, y) = F(x)G(y), allowing (19) to be written

dy
dx

= F(x)G(y). (20)

When (19) can be expressed in this simple form, its variables x and y are said to
be separable, and the equation itself to be of variables separable type. If we use
differential notation, (20) becomes

two forms of a
separable equation

1
G(y)

dy = F(x)dx, (21)

so provided G(y) �= 0, equation (21) can be solved by routine integration of the left
side with respect to y and of the right side with respect to x. Thus, in principle, the
solution of a first order differential equation in which the variables are separable
can always be found, though in practice the integrals involved may be difficult or
sometimes impossible to evaluate analytically.
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Separable first order equations

The differential equation

dy
dx

= f (x, y)

is said to be separable if it can be written in the form

dy
dx

= F(x)G(y),

or, in differential form,

1
G(y)

dy = F(x)dx.

EXAMPLE 5.4 Solve the logistic equation

dP
dt

= kP(M − P)

given in equation (13) of Section 5.2(c), assuming k > 0 and 0 ≤ P ≤ M. Find the

examples of
separable equations

solution of the initial value problem in which P = P0 when t = 0, and draw some
typical integral curves.

Solution The equation is separable and can be written in the differential form

dP
P(M − P)

= kdt.

If we write the left-hand side in partial fraction form, the equation becomes

dP
P

+ dP
(M − P)

= Mkdt,

and after integration we find that

ln
∣∣∣∣ P

M − P

∣∣∣∣ = Mkt + C,

where C is an arbitrary constant of integration. As the solution for P must lie in
the interval 0 ≤ P ≤ M, this result simplifies to

P = MA
A+ exp(−Mkt)

,

where A is an arbitrary constant.
The arbitrary constant A is related to C by A= eC, but as C is arbitrary, the

constant A is also arbitrary, so for simplicity we denote the arbitrary constant in this
last result by A without mentioning how it is related to C. In general, arithmetic
is not usually performed on arbitrary constants, so after algebraic manipulations,
either constants are renamed or the same symbol is used for a related constant.
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FIGURE 5.8 Integral curves for the logistic equation.

To solve the initial value problem we must find A such that P = P0 when t = 0,
from which it is easily seen that A= P0/(M − P0). The required particular solution
is thus

P = MP0

P0 + (M − P0) exp(−Mkt)
.

Representative integral curves of P(t)/M obtained from this expression using
P0/M = 1/4 and kM = 1, 2, 3, and 4 are shown in Fig. 5.8 for −2 ≤ t ≤ 2.

EXAMPLE 5.5 Solve the initial value problem for the equation expressed in differential form

x2 y2dx − (1 + x2)dy = 0, given that y(0) = 1.

Solution The equation is separable because it can be written

dy
y2

= x2

(1 + x2)
dx.

Integration gives ∫
dy
y2

=
∫

x2

(1 + x2)
dx,

and after the integrations have been performed this becomes

−1/y = x − Arctan x + C,

where C is an arbitrary constant of integration. This general solution will satisfy the
initial condition y(0) = 1 if C = −1, so the required solution is seen to be

y = 1/(Arctan x − x + 1).

EXAMPLE 5.6 Derive the differential equation that determines the orthogonal trajectories of the
one parameter family of curves y = Cxex, and solve it to find the equation of these
trajectories.

Solution The differential equation describing the family of curves y = Cxex is
found by first calculating y′(x), and then using the original equation to eliminate C
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from the result. We have

y′(x) = Cex(1 + x),

but from the original equation C = y/xex, so eliminating C between these two
results shows that the required differential is

y′(x) = y(1 + x)/x.

The product of the gradient y′(x) of curves belonging to this family and the
gradient of the family of orthogonal trajectories must equal −1 (see Section 5.2(a)),
so the differential equation of the orthogonal trajectories is the separable equation

dy
dx

= − x
y(1 + x)

.

After separation of the variables and integration, this becomes∫
ydy = −

∫
x

1 + x
dx,

so that

y2 = ln(1 + x)2 − 2x + C.

EXAMPLE 5.7 A circular metal radiator pipe has inner radius R1 and outer radius R2 (R2 > R1).
When operating under steady conditions the radial temperature distribution T(r)
in the metal wall of the pipe is known to be a solution of the ordinary differential
equation (see the heat equation in cylindrical polar coordinates in Section 18.5)

r
d2T
dr2

+ dT
dr

= 0.

(i) Find the radial temperature distribution in the pipe wall when the inner surface
is maintained at a constant temperature T1 and the outer surface is maintained at a
constant temperature T2.

(ii) Find the radial temperature distribution in the pipe wall when the inner surface
is maintained at a constant temperature T1 and heat is lost by radiation from the
outer surface according to Newton’s law of cooling that requires the heat flux across
the outer surface to be proportional to the difference in temperature between the
surface and the surrounding air at a temperature T2.

Solution

(i) Setting u = dT/dr the equation becomes the separable equation

r
du
dr

+ u = 0 and so
du
u

= −dr
r

,

from which it follows that

ln u = − ln r + ln A,

where for convenience the arbitrary integration constant has been written ln A.

Thus ur = A, so after substituting for u and again separating variables we have

dT
dr

= A
r

.
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A final integration gives the general solution

T(r) = A ln r + B,

where B is another arbitrary integration constant.
Matching the arbitrary constants A and B to the required conditions T(R1) =

T1 and T(R2) = T2 then gives the required solution

T(r) = T1 ln(R2/r) + T2 ln(r/R1)
ln(R2/R1)

.

(ii) The heat flux across the surface r = R2 is proportional to dT/dr at r = R2,
and this in turn is proportional to the temperature difference T(R2) − T2, so the
required boundary condition on the outer surface of the pipe is of the form(

dT
dr

)
r=R2

= −h[T(R2) − T2],

where the negative sign is necessary because heat is being lost across the surface
r = R2, and h is a constant depending on the metal in the pipe and the heat transfer
condition at its surface.

The general solution is still T(r) = A ln r + b, but now the arbitrary con-
stants A and B must be matched to the condition T(R1) = T1 on the inside wall
of the pipe, and to the above condition derived from Newton’s law of cooling.
When this is done the temperature distribution in the pipe is found to be

T(r) = T1 + hR2(T2 − T1)
1 + hR2 ln(R2/R1)

ln
(

r
R1

)
.

Summary This section introduced the important class of separable differential equations dy/dx =
F (x)G(y), so called because when written in the form dy/G(y) = F (x)dx the variables
are separated by the = sign; they can be integrated immediately provided antiderivatives
(indefinite integrals) of 1/G(y) and F (x) can be found. This method was used to integrate
the nonlinear logistic equation and to obtain the equation of some orthogonal trajectories.

EXERCISES 5.4

In Exercises 1 through 4 solve the given differential equa-
tion by hand and confirm the result by using computer
algebra.

1. 2yy′ = x(1 − 2y) with y(1) = 1.
2. 2x2 y2 y′ + y4 = 4 with y(1) = 3.
3. (x2 − 4)y′ = x(1 − 2y) with y(

√
5) = 1.

4. 2
√

(1 + x2)y′ = √
(1 − y2) with y(1) = 1.

In Exercises 5 through 14 find the general solution of the
given differential equation.

5.
√

(1 + x2)y′ − 3x
√

(y2 − 1) = 0.
6. e−3x y′ + x sin 2y = 0.
7. 2(1 + x)(1 + y)y′ + (y + 2)2 = 0.

8. 2(x − 1)y′ + (x2 − 2x + 3) cos2 y = 0.
9. (1 + 3y2)y′ + 2y ln |1 + x| = 0.

10. 2(1 − cos x)y′ + 3 sin y = 0.
11. (1 + x2)yy′ − x(y2 + y + 1) = 0.
12. (x2 + 9)y2 y′ − √

(4 − y2) = 0.
13. y′ctg x + 2y = 4.
14. (x + 1)y2 y′ = x(y2 + 4).

In Exercises 15 through 17 derive and then solve the differ-
ential equation that determines the orthogonal trajectories
to the given one parameter family of curves.

15. y = b + k(x − a) with a and b constants and k a pa-
rameter.
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16. x2 − 4y2 + y = c with c a parameter.
17. y = Cx2e2x with C a parameter.
18. A snowball of radius 2 inches is brought into a warm

room at a constant temperature above freezing point,
and it is found that after 6 hours it has melted to a ra-
dius of 1.5 inches. Assuming the melting occurs at a rate
proportional to the surface area, write down the differ-
ential equation determining the radius as a function of
time t in hours, and find the general expression for the
radius as a function of time. Comment on any deficiency
exhibited by this mathematical model.

19. A simple model called Malthus’ law for the change
in a bacterial population N(t) as a function of time t
involves assuming the rate of change is proportional
to the population present at time t . Write down the
differential equation governing N(t) if the constant
of proportionality is λ > 0, and find an expression for
N(t) given that initially N(0) = N0. Find λ if N(t1) = N1

when t = t1 and N(t2) = N2 when t = t2, with N1 > N2

and t2 > t1. Give a reason why this model is unrealistic
when t is large.

20. When a beam of light enters a parallel slab of trans-
parent material at right angles to its plane surface, its
intensity I decreases at a rate proportional to the inten-
sity I(x) at a perpendicular distance x into the material.
Given a slab of material where the intensity at a distance
h into the slab is 40% of the initial intensity, write down
the differential equation for I(x). Solve the equation
for I(x) and find the distance at which the intensity is
10% of its initial value.

21. The dating of a fossilized bone is based on the amount
of radioactive isotope carbon-14 present in the bone.

The method uses the fact that the isotope is produced in
the atmosphere at a steady rate by bombardment of ni-
trogen by cosmic radiation when it is absorbed into the
living bone. The process stops when the bone is dead,
after which the C-14 present in the bone decays expo-
nentially. Assuming the half-life of C-14 is 5600 years,
and a bone is found to contain 1/500th of the origi-
nal amount of C-14 that was present originally, deter-
mine its age. This approach is called radioactive carbon
dating.

22. A cylindrical tank of cross-sectional area A standing
in a vertical position is filled with water to a depth h.
At time t = 0 a circular hole of radius a in the bot-
tom of the tank is opened and water is allowed to
drain away under gravity. It is known from Torricelli’s
law that the speed of flow of the water through the
hole when the water in the tank has depth x is equal
to

√
2gx, this being the speed attained by a particle

falling freely from rest under gravity through a distance
x, where g is the acceleration due to gravity. Write
down the differential equation determining the wa-
ter height x(t) in the tank when t > 0, and solve the
equation for x(t). If water is added to the tank at a
rate V(t), write down the modified equation governing
the water height. If V(t) = V0 is constant, and the flow
into and out of the tank reaches equilibrium, find the
equilibrium height of the water in the tank. Remark: In
applications the expression

√
2gx is replaced by k

√
2gx,

with 0 < k < 1 a constant. The factor k allows for the
contraction of the jet after leaving the hole. In the case
of water k ≈ 0.6.

5.5 Homogeneous Equations

A function f (x, y) is said to be algebraically homogeneous of degree n, or simply
homogeneous of degree n, if f (t x, ty) = tn f (x, y) for some real number n and allhomogeneous

equation of degree n t > 0, for (x, y) �= (0, 0).

EXAMPLE 5.8 (a) If f (x, y) = x2 + 3xy + 4y2, then f (t x, ty) = t2(x2 + 3xy + 4y2) = t2 f (x, y),
so f (x, y) is homogeneous of degree 2.

(b) If f (x, y) = ln |y| − ln |x| for (x, y) �= (0, 0), then f (x, y) = ln |y/x|, so
f (t x, ty) = f (x, y), showing that f (x, y) is homogeneous of degree 0.

(c) If

f (x, y) = x3/2 + x1/2 y + 3y3/2

2x3/2 − xy1/2
, then f (t x, ty) = t0 f (x, y),

showing that f (x, y) is homogeneous of degree 0.
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(d) If

f (x, y) = x2 + 4y2 + sin(x/y), then f (t x, ty) = t2(x2 + 4y2) + sin(x/y),

so f (x, y) is not homogeneous, because although both the first group of terms and
the last term are homogeneous functions of x and y, they are not both homogeneous
of the same degree.

(e) If f (x, y) = tan(xy + 1), then f (t x, ty) = tan(t2xy + 1), so f (x, y) is not
homogeneous.

Homogeneous differential equations

The first order ODE in differential form

P(x, y)dx + Q(x, y)dy = 0

is called homogeneous if P and Q are homogeneous functions of the same
degree or, equivalently, if when written in the form

dy
dx

= f (x, y), the function f (x, y) can be written as f (x, y) = g(y/x).

The substitution y = ux will reduce either form of the homogeneous equation to
an equation involving the independent variable x and the new dependent variable u
in which the variables are separable. As with most separable equations the solution
can be complicated, and it is often the case that y is determined implicitly in terms
of x.

EXAMPLE 5.9 Solve

(y2 + 2xy)dx − x2 dy = 0.

Solution Both terms in the differential equation are homogeneous of degree 2, so
the equation itself is homogeneous. Differentiating the substitution y = ux gives

dy
dx

= u + x
du
dx

, or dy = udx + xdu.

After substituting for y and dy in the differential equation and cancelling x2,
we obtain the variables separable equation

u(u + 1)dx = xdu, or
du

u(u + 1)
= dx

x
.

This has the general solution

u = Cx
1 − Cx

, but y = ux and so y = Cx2

1 − Cx
,

where C is an arbitrary constant. In this case the general solution is simple and y is
determined explicitly in terms of x.
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EXAMPLE 5.10 Solve

dy
dx

= y2

xy − x2
.

Solution The equation is homogeneous because it can be written

dy
dx

= (y/x)2

(y/x) − 1
.

Making the substitution y = ux, and again using the result dy/dx = u + xdu/dx,
reduces this to the separable equation

u + x
du
dx

= u2

u − 1
, or

(
1 − 1

u

)
du = dx

x
.

Integration gives

u − ln |u| = ln |x| + ln |C|,
where C is an arbitrary integration constant. Finally, substituting u = y/x and sim-
plifying the result we arrive at the following implicit solution for y:

y = Cey/x.

An equation of the form

dy
dx

= ax + by + c
px + qy + r

is called near-homogeneous, because it can be transformed into a homogeneousnear-homogeneous
equation by means of a variable change that shifts the origin to the point of inter-
section of the two lines

ax + by + c = 0 and px + qy + r = 0.

EXAMPLE 5.11 Solve the initial value problem

dy
dx

= y + 1
x + 2y

with y(2) = 0.

Solution The equation is near-homogeneous and the lines y + 1 = 0 and x + 2y =
0 intersect at the point x = 2 and y = −1, so we make the variable change x =
X + 2 and y = Y − 1, as a result of which the equation becomes the homogeneous
equation

dY
dX

= Y
X + 2Y

.

Solving this as in Example 5.9 by setting Y = uX leads to the equation

−
(

1 + 2u
2u2

)
du = dX

X
,

with the solution

1/u = 2 ln |CuX |,
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where C is an arbitrary integration constant. If we set u = Y/X, this becomes

X = 2Y ln |CY|,
where C is an arbitrary constant. Returning to the original variables by substituting
X = x − 2, Y = y + 1, we arrive at the required general solution

x = 2 + 2(y + 1) ln |C(y + 1)|.
Although this is an implicit solution for y, if we regard y as the independent

variable and x as the dependent variable, solution curves (integral curves) are easily
graphed. Substituting the initial condition y = 0 when x = 2 in the general solution
shows that C = 1, so the solution of the initial value problem is

x = 2 + 2(y + 1) ln |y + 1|.

Summary This section introduced the special type of first order ordinary differential equation known
as an algebraically homogeneous equation. This name is frequently shortened to the term
homogeneous equation, though this must not be confused with the sense in which the
term homogeneous is used in Section 5.1. After showing how such equations can be
solved, it was shown how a simple linear change of variables changes a near-homogeneous
equation to a homogeneous equation that can then be solved.

EXERCISES 5.5

In Exercises 1 through 14 find by hand calculation the
general solution of the given homogeneous or near-
homogeneous equations and confirm the result by using
computer algebra.

1. y′ = y/(2x + y).
2. y′ = (2xy + y2)/(3x2).
3. y′ = (2x2 + y2)/xy.
4. y′ = (2xy + y2)/x2.
5. y′ = (x − y)/(x + 2y).

6. y′ = (x + 4y)/x.
7. y′ = (2x + y cos2(y/x))/(x cos2(y/x)).
8. y′ = 3y2/(1 + x2).
9. y′ = (x + y sin2(y/x))/(x sin2(y/x)).

10. y′ = 3x exp(x + 2y)/y.
11. y′ = (y + 2)/(x + y + 2).
12. y′ = (y + 1)/(x + 2y + 2).
13. y′ = (x + y + 1)/(x − y + 1).
14. y′ = (x − y + 1)/(x + y).

5.6 Exact Equations

The so-called exact equations have a simple structure, and they arise in many impor-
tant applications as, for example, in the study of thermodynamics. After definition
of an exact equation, a test for exactness will be derived and the general solution
of such an equation will be found.

Exact equations

The first order ODEdefinition of an
exact equation

M(x, y)dx + N(x, y)dy = 0



Section 5.6 Exact Equations 251

is said to be exact if a function F(x, y) exists such that the total differential

d[F(x, y)] = M(x, y)dx + N(x, y)dy.

It follows directly that if

M(x, y)dx + N(x, y)dy = 0 (22)

is exact, then the total differential

d[F(x, y)] = 0,

so the general solution of (22) must be

F(x, y) = constant. (23)

EXAMPLE 5.12 The total differential of F(x, y) = 3x3 + 2xy2 + 4y3 + 2x is

d[F(x, y)] = (∂ F/∂x)dx + (∂ F/∂y)dy

= (9x2 + 2y2 + 2)dx + (4xy + 12y2)dy,

so the exact differential equation

(9x2 + 2y2 + 2)dx + (4xy + 12y2)dy = 0

has the general solution

3x3 + 2xy2 + 4y3 + 2x = constant.

Three questions now arise:

(i) Is there a test for exactness?
(ii) If an equation is exact, is it possible to find its general solution?

(iii) If an equation is not exact, is it possible to modify it to make it exact?

There are satisfactory answers to the first two questions, and a less satisfactory
answer to the third question. We deal with the last question first.

It can be shown that an equation of the form (21) that is not exact can always
be made exact if it is multiplied by a suitable factor μ(x, y), called an integrating
factor, though there is no general method by which such an integrating factor can
be found. Fortunately, however, an integrating factor can always be found for a
variable coefficient linear first order ODE, and in the next section the integrating
factor will be derived for such an ODE and then used to find its general solution.

We now turn our attention to the first question. If F(x, y) = constant is a
solution of the exact differential equation

M(x, y)dx + N(x, y)dy = 0, (24)

then M(x, y) = ∂ F/∂x and N(x, y) = ∂ F/∂y. So, provided the derivatives ∂ F/

∂x, ∂ F/∂y, ∂2 F/∂x∂y, and ∂2 F/∂y∂x are defined and continuous in the region
within which the differential equation is defined, the mixed derivatives will be
equal so that ∂2 F/∂x∂y = ∂2 F/∂y∂x. This last result is equivalent to requiring that
∂ M/∂y = ∂ N/∂x in order that (24) is exact, so this provides the required test for
exactness.
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THEOREM 5.1 Test for exactness The differential equation

M(x, y)dx + N(x, y)dy = 0
a simple test for
exactness

is exact if and only if ∂ M/∂y = ∂ N/∂x.

EXAMPLE 5.13 Test for exactness the differential equations

(a) {sin(xy + 1) + xy cos(xy + 1)}dx + x2 cos(xy + 1)dy = 0.
(b) (2x + sin y)dx + (2x cos y + y)dy = 0.

Solution In case (a) M(x, y) = sin(xy + 1) + xy cos(xy + 1) and N(x, y) =
x2 cos(xy + 1), and ∂ M/∂y = ∂ N/∂x, so the equation is exact.

In case (b) M(x, y) = 2x + sin y and N(x, y) = 2x cos y + y but ∂ M/∂y �=
∂ N/∂x, so the equation is not exact.

Having established a test for exactness, it remains for us to determine how the
general solution of an exact equation can be found. The starting point is the fact
that if F(x, y) = constant is a solution of the exact equation

M(x, y)dx + N(x, y)dy = 0,

then ∂ F/∂x = M(x, y) and ∂ F/∂y = N(x, y).
Two expressions for F(x, y) can be obtained from these results by integrating

M with respect to x while regarding y as a constant, and integrating N with respect
to y while regarding x as a constant, because this reverses the process of partial
differentiation by which M and N were obtained. However, after integrating M it
will be necessary to add not only an arbitrary constant, but also an arbitrary function
f (y) of y, because this will behave like a constant when F is differentiated partially
with respect to x to obtain M. Similarly, after integrating N it will be necessary to
add not only an arbitrary constant, but also an arbitrary function g(x) of x, because
this will behave like a constant when F is differentiated partially with respect to y
to obtain N.

These two expressions for F will look different but must, of course, be identical.
The arbitrary function f (y) can be found by identifying it with any function only of
y that occurs in the expression for F obtained by integrating N, while the arbitrary
function g(x) can be found by identifying it with any function only of x that occurs
in the expression for F found by integrating M, where, of course, the true constants
introduced after each integration must be identical.

EXAMPLE 5.14 Show the following equation is exact and find its general solution:

{3x2 + 2y + 2 cosh(2x + 3y)}dx + {2x + 2y + 3 cosh(2x + 3y)}dy = 0.

Solution In this equation M(x, y) = 3x2 + 2y + 2 cosh(2x + 3y), and N(x, y) =
2x + 2y + 3 cosh(2x + 3y), so as My = Nx = 2 + 6 sinh(2x + 3y) the equation is
exact:

F(x, y) =
∫

M(x, y)dx =
∫

{3x2 + 2y + 2 cosh(2x + 3y)}dx

= x3 + 2xy + sinh(2x + 3y) + f (y) + C,
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and

F(x, y) =
∫

N(x, y)dy =
∫

{2x + 2y + 3 cosh(2x + 3y)}dy

= 2xy + y2 + sinh(2x + 3y) + g(x) + D.

For these two expressions to be identical, we must set f (y) ≡ y2, g(x) ≡ x3,
and D = C, so F(x, y) is seen to be

F(x, y) = x3 + 2xy + y2 + sinh(2x + 3y) + C,

and so the general solution is

x3 + 2xy + y2 + sinh(2x + 3y) = C,

where as C is an arbitrary constant we have chosen to write C rather than −C on
the right of the solution.

Summary This section introduced the class of first order ordinary differential equations known as exact
equations that arise in many different applications. It was then shown how the equality of
mixed derivatives yields a simple test for exactness.

EXERCISES 5.6

In Exercises 1 through 8 test the equation for exactness, and
when an equation is exact, find its general solution.

1. (a) {sin(3y) + 4x2 y}dx + {3x cos(3y) + y + 2x3}dy = 0;
(b) {4x3 + 3y2 + cos x}dx + {6xy + 2}dy = 0.

2. (a) {(2x + 3y2)−1/2 + 4y3 + 2x}dx + {3y/(2x + 3y2) +
12xy2}dy = 0;

(b) {cos(x + 3y2) + 4xy3}dx + {6y cos(x + 3y2) +
3x2 y2 + 2y}dy = 0.

3. (a) {sin x + x cos x + cosh(x + 2y)}dx + {3y2 +
2cosh(x + 2y)}dy = 0;

(b) {6x(2x2 + y2)1/2 + x2}dx + 2y(2x2 + y2)1/2dy = 0.
4. (a) {6x/(3x2 + y) + 4xy3}dx + {1/(3x2 + y) + 6x2 y2 +

3y2}dy = 0;
(b) {sin(xy)+ xy cos(xy)+ y2 sin(xy)}dx +{x2 cos(xy) +

cos(xy) − xy sin(xy)}dy = 0.

5. (a)
3x2

2
√

x3 + y2
dx +

{
y√

x3 + y2
+ 6y

}
dy = 0;

(b) {y/x + 2xsinh(y2)}dx + {ln x + 2x2 y cosh(y2)}
dy = 0.

6. (a) {4xy + 1/x}dx + {2x2 − 1/y}dy = 0;
(b) {6xy − 2/(x2 y)}dx + {3x2 − 2/(xy2)}dy = 0.

7. (a) {2xy + 6/x}dx + {x2 + 4/y}dy = 0;
(b) {2x/(2x + 3y2) − 2x2/(2x + 3y2)2 + 2}dx − 6x2 y/

(2x + 3y2)2dy = 0.
8. (a) {(5/2)x3/2 + 14y3}dx + {(3/2)

√
y + 42xy2}dy = 0;

(b) (y/x2) cos(y/x)dx + {(1/x) cos(y/x) + 6y exp(y2)}
dy = 0.

5.7 Linear First Order Equations

standard form of
linear first order
equation

The standard form of the linear first order differential equation is

dy
dx

+ P(x)y = Q(x), (25)
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where P(x) and Q(x) are known functions. An initial value problem (i.v.p) for a
linear first order ODE involves the specification of an initial condition

y(x0) = y0, (26)

where this last condition means that y = y0 when x = x0. Thus, the solution of the
initial value problem will evolve away from the point (x0, y0) in the (x, y)-plane as
x increases from x0.

To find the general solution of (25) we multiply the equation by a function μ(x),
still to be determined, to obtain

μ
dy
dx

+ μP(x)y = μQ(x), (27)

and seek a choice for μ that allows the left-hand side of (26) to be written as
d(μy)/dx.

With this choice of μ, equation (27) becomes

d(μy)
dx

= μQ(x), (28)

so integrating with respect to x and dividing by μ shows the general solution of (25)
to be

y(x) = C
μ(x)

+ 1
μ(x)

∫
μ(x)Q(x)dx, (29)

where C is an arbitrary integration constant. Notice that it is essential to include the
arbitrary integration constant immediately after the integration

∫
μ(x)Q(x)dx has

been performed, and before dividing by μ(x); otherwise, the form of the general
solution will be incorrect.

To make use of (29) it is necessary to determine the function μ(x) called the
integrating factor for the linear first order ODE in (24). By definitionintegrating factor

d(μy)
dx

= μ
dy
dx

+ μP(x)y,

so after expanding the left-hand side this becomes

μ
dy
dx

+ y
dμ

dx
= μ

dy
dx

+ μP(x)y.

Cancelling the terms μdy/dx and dividing by y gives the following variables sepa-
rable equation for the integrating factor μ(x):

dμ

dx
= μP(x).

This has the solution

μ(x) = Aexp
{∫

P(x)dx
}

,
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where A is an arbitrary integration constant. As μ multiplies the entire equation

finding the
integrating
factor

(27), the choice of A is immaterial, so for simplicity we will always set A = 1 and
take the integrating factor to be

μ(x) = exp
{∫

P(x)dx
}

. (30)

Inserting (30) into (29) shows the general solution of (25) to be

y(x) = C exp
{
−
∫

P(x)dx
}

+ exp
{
−
∫

P(x)dx
}∫

exp
{∫

P(x)dx
}

Q(x)dx.

(31)

If an initial value problem is involved in which the solution of (25) is required
subject to the initial condition y(x0) = y0, the value of the arbitrary constant C in
(31) must be chosen accordingly.

complementary
function, particular
integral, and
general solution

The form of the general solution in (31) is mainly of importance for theoretical
reasons, because it shows that the general solution is the sum of a complementary
function

yc(x) = C exp
{
−
∫

P(x)dx
}

(32)

that contains the arbitrary constant belonging to the general solution of (25), and
a particular integral

yp(x) = exp
{
−
∫

P(x)dx
}∫

exp
{∫

P(x)dx
}

Q(x)dx (33)

that contains no arbitrary constant and is determined by the nonhomogeneous term
Q(x).

Substitution of yc(x) into the homogeneous form of (25) given by

dy
dx

+ P(x)y = 0

shows that yc(x) is its general solution. The general solution of the nonhomoge-
neous equation (25) is now seen to be the sum of the general solution of the
homogeneous form of the equation, and a particular integral determined by the
nonhomogeneous term. It will be shown later that this is the pattern of the general
solution for all linear nonhomogeneous differential equations, no matter what their
order.

Rather than trying to remember the form of general solution given in (31),
it is better to obtain the solution by starting from the integrating factor μ(x) in
(30) and integrating result (28), while not forgetting to include the arbitrary con-
stant immediately after the integration before dividing by μ(x). For convenience,
the steps in the determination of the general solution of (25) can be listed as
follows.
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Rule for solving linear first order equations

STEP 1 If the equation is not in standard form and is written

a(x)
dy
dx

+ b(x)y = c(x),

divide by a(x) to bring it to the standard form

dy
dx

+ P(x)y = Q(x),

with P(x) = b(x)/a(x) and Q(x) = c(x)/a(x)
STEP 2 Find the integrating factor

μ(x) = exp
{∫

P(x)dx
}

.

STEP 3 Rewrite the original differential equation in the form

d(μy)
dx

= μQ(x).

STEP 4 Integrate the equation in Step 3 to obtain

μ(x)y(x) =
∫

μ(x)Q(x)dx + C.

STEP 5 Divide the result of Step 4 by μ(x) to obtain the required general
solution of the linear first order differential equation in Step 1.

STEP 6 If an initial condition y(x0) = y0 is given, the required solution of
the i.v.p. is obtained by choosing the arbitrary constant C in the
general solution found in Step 5 so that y = y0 when x = x0.

steps used when
solving a linear first
order equation

EXAMPLE 5.15 Solve the initial value problem

cos x
dy
dx

+ y = sin x, subject to the initial condition y(0) = 2.

Solution We follow the steps in the above rule.

STEP 1 When written in standard form the equation becomes

dy
dx

+ 1
cos x

y = tan x,

so P(x) = 1/ cos x and Q(x) = tan x.
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STEP 2 The integrating factor

μ(x) = exp
{∫

dx
cos x

}
= exp{ln |sec x + tan x|}

= sec x + tan x = 1 + sin x
cos x

.

STEP 3 The original differential equation can now be written

d
dx

[(
1 + sin x

cos x

)
y(x)

]
=
(

1 + sin x
cos x

)
tan x.

STEP 4 Integrating the result of Step 3 gives(
1 + sin x

cos x

)
y(x) =

∫ (
1 + sin x

cos x

)
tan xdx + C

=
∫

sec x tan xdx +
∫

tan2 xdx + C

= sec x + tan x − x + C = 1 + sin x
cos x

− x + C.

STEP 5 Dividing the result of Step 4 by the integrating factor μ(x) = (1 + sin x)/
cos x shows that the required general solution is

y(x) = C cos x
1 + sin x

+ 1 − x cos x
1 + sin x

,

for x such that 1 + sin x �= 0.
The complementary function is seen to be

yc(x) = C cos x
1 + sin x

,

and the particular integral is

yp(x) = 1 − x cos x
1 + sin x

.

STEP 6 The initial condition requires that y = 2 when x = 0, and the general
solution is seen to satisfy this condition if C = 1, so the solution of the i.v.p. is

y(x) = 1 + (1 − x) cos x
1 + sin x

.

EXAMPLE 5.16 An R–L circuit contains an inductor and resistor in series, and a current is made
to flow through them by applying a voltage across the ends of the circuit. If the
inductance varies linearly with time in such a way that L(t) = L0(1 + kt), find the
current i(t) flowing in the circuit when t > 0, given that a constant voltage V0 is
applied at time t = 0 when i(t) = 0.
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Solution The voltage change due to a current i(t) flowing through the inductance
is d(L(t)i)/dt , and from Ohm’s law the corresponding voltage change across the
resistance R is Ri , so as the sum of the these voltage changes must equal the imposed
constant voltage V0, the differential equation determining the current becomes

d
dt

(L(t)i) + Ri = V0 for t > 0.

Substituting for L(t) and rearranging terms we arrive at the following linear first
order variable coefficient nonhomogeneous equation for i(t)

di
dt

+
(

kL0 + R
L0(1 + kt)

)
i = V0

L0(1 + kt)
,

subject to the initial condition i(0) = 0.

In the notation of this section P(t) =
(

kL0 + R
L0(1 + kt)

)
and Q(t) = V0

L0(1 + kt)
, so

the integrating factor in Step 2 becomes

μ(t) = exp
{∫

P(t)dt
}

= (1 + kt)[kL0+R]/kL0 .

Using μ(t) and Q(t) in Step 4 and applying the initial condition i(0) = 0 then shows
that the current i(t) at a time t > 0 is determined by

i(t) =
(

V0

kL0 + R

)(
1 − (1 + kt)

(
kL0+R

kL0

))
.

Summary The study of the linear first order differential equation considered in this section is important
in its own right, and it also provides the key to understanding the nature of the solution of
linear higher order differential equations. It was shown how, after an equation is written
in standard form, it can be solved by means of an integrating factor that can be found
directly from the coefficient of y in the equation.

EXERCISES 5.7

In Exercises 1 through 10 find the general solution for the
linear first order differential equation, and check your result
by using computer algebra.

1. dy/dx + 2y = 1.
2. dy/dx + (1/x)y = x.
3. (x + 1)dy/dx + y = 2x(x + 1).
4. x2 dy/dx + xy = x2 sin x.
5. x2 dy/dx − 2xy = 1 + x.
6. sin x dy/dx − y cos x = 2 sin2 x.
7. x dy/dx + 2y = x2.
8. (x + 3)dy/dx − 2y = x + 3.
9. sin x dy/dx − y = 2 sin x.

10. sin x dy/dx + y = sin x.

In Exercises 11 through 16 solve the initial value problem
for the linear first order differential equation, and check
your result by using a computer algebra package.

11. x dy/dx − y = x2 cos x, with y(π/2) = π .
12. x2 dy/dx + 2xy = 2 + x, with y(1) = 1.
13. x dy/dx − 2y = 2 + x, with y(1) = 0.
14. x dy/dx + 2y = 2x4, with y(1) = 1.
15. sin x dy/dx + y cos x = 2 sin2 x, with y(π/2) = 0.
16. 2 dy/dx + y = x2, with y(0) = 1.
17. A 25-liter gas cylinder contains 80% oxygen and 20%

helium. If helium is added at a rate of 0.2 liters a sec-
ond, and the mixture is drawn off at the same rate,
how long will it be before the cylinder contains 80%
helium?

18. If in Exercise 17 the volume of the gas cylinder is 20 liters
and initially it contains 90% oxygen and 10% helium,
and the rate of supply of helium is q liters a second,
what must be the value of q if the cylinder is to become
80% full of helium in 1 minute?
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19. A particle of unit mass moves horizontally in a resisting
medium with velocity ν(t) at time t with a resistance
opposing the motion given by kν(t), with k > 0. If the
particle is also subject to an additional resisting force kt ,

write down the differential equation for ν(t), and hence
find the value of k if the motion starts with ν(0) = ν0,
and at time t = 1/k its velocity is ν(1/k) = 1

4 ν0.

5.8 The Bernoulli Equation

The Bernoulli equation is a nonlinear first order differential equation with the
standard form

standard form of the
Bernoulli equation

dy
dx

+ P(x)y = Q(x)yn, (n �= 1). (34)

The substitution

u = y1−n (35)

reduces (34) to the linear first order ODE

1
(1 − n)

du
dx

+ P(x)u = Q(x), (36)

and this can be solved by the method described in Section 5.7. Once the gen-
eral solution u(x) of (36) has been found, the general solution y(x) of (34) fol-
lows by returning to the original dependent variable by making the substitution
u = y1−n.

When using the general solution in (36) it is important to write the Bernoulli
equation in standard form before identifying P(x), Q(x), and n. However, if
the form of the equation corresponding to (36) is derived directly, starting from
the substitution u = y1−n, there is no need for the equation to be in standard
form.

The Bernoulli equation occurs in various applications of mathematics that in-
volve some form of nonlinearity. It occurs, for example, in solid and fluid mechanics,
where it is found to describe an important characteristic of special types of wave
that propagate through space as time increases. To appreciate how this ODE enters
into these problems, we consider a simple application to solid mechanics involving
a long bar made of a composite material or a polymer whose properties are such
that the extension caused by a force does not obey Hooke’s law, and so is not pro-
portional to the force. Materials of this type are said to be nonlinearly elastic. If
such a bar receives a blow at one end a disturbance will propagate along it at a
finite speed, so that at any instant of time there will be a region in the bar through
which the disturbance has passed, and a region ahead of the disturbance through
which it has still to pass. When the blow is not large, the propagating boundary
between these two regions is called a wavefront and t the function representing

wavefront and
acceleration
wave

the displacement at position x at any given time t will be continuous along the bar,
though its derivative with respect to x will be discontinuous across the wavefront.
The propagating jump in the derivative of the displacement with respect to x at the
wavefront as a function of time is called an acceleration wave, and we will denote it
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by a(t). For many nonlinear materials the magnitude a(t) of the acceleration wave
obeys a Bernoulli equation of the form

da
dt

+ μ(t)a = β(t)a2. (37)

It was shown by P. J. Chen (Selected Topics in Wave Propagation, Noordhoff,
Leyden, 1976, p. 29) that μ(t) depends on the material properties of the medium
through which the disturbance propagates and also the geometry involved, which
in a one-dimensional case may be plane, cylindrically, or spherically symmetric,
but that the function β(t) depends only on the material properties of the medium.
This same equation governs the behavior of acceleration waves in three space
dimensions and time.

Because of the effects of nonlinearity, in many materials it is possible for the
acceleration wave to strengthen as it propagates to the point at which the continuity
of the displacement function breaks down and what is called a shock wave forms.
When this occurs, the speed of propagation of disturbances and other physical
quantities become discontinuous across the shock wave, and this in turn can lead
to the fracture of the material. Once the material properties of such a medium are
specified together with the nature of the initial disturbance, the Bernoulli equation
in (37) can be used to determine whether or not a shock wave will form and, if it
does, the point along the bar where this occurs.

EXAMPLE 5.17 Solve the Bernoulli equation

da
dt

+ a = ta2,

and find a condition that determines when the solution becomes unbounded.

examples of the
Bernoulli equation

Solution The equation is in standard form with P(t) = 1, Q(t) = t , and n = 2.
Making the substitution u = 1/a corresponding to (35) and substituting into (36)
leads to the linear first order equation

du
dt

− u = −t.

Solving this by the method described in Section 5.7 gives

u(t) = Cet + 1 + t,

so transforming back to the variable a(t), we find that

a(t) = 1/(Cet + 1 + t).

The solution a(t) of the Bernoulli equation will become unbounded at t = tc
if tc is a solution of the equation C exp(tc) + 1 + tc = 0. This result shows that an
acceleration wave starting at time t = 0 will decay instead of evolving into a shock
wave if C > 0, because then the equation for tc has no positive solution, whereas a
shock wave will always form if C < 0.

Had a(t) represented the magnitude of an acceleration wave, the development
of an infinite gradient in the displacement corresponding to a(tc) = ∞ would indi-
cate shock formation.



Section 5.8 The Bernoulli Equation 261

EXAMPLE 5.18 Find the general solution of

dy
dx

− 2y = xy1/2.

Solution In terms of the standard form of the Bernoulli equation given in
(34), P(x) = −2, Q(x) = x, and n = 1/2. However, rather than substituting into
equation (36) to obtain a linear differential equation for u(x), we will derive it di-
rectly starting from the substitution u = y1/2, and differentiating it to find du/dx in
terms of dy/dx. We have

du
dx

= 1
2

y−1/2 dy
dx

= 1
2u

dy
dx

, so
dy
dx

= 2u
du
dx

.

Substituting for y and dy/dx in the Bernoulli equation and cancelling a factor
2u gives the following linear equation (compare it with (36) after substituting for
P(x), Q(x) and n):

du
dx

− u = 1
2

x.

The method of Section 5.6 shows this equation to have the general solution

u(x) = Cex − (1/2)(1 + x),

so as u = y1/2, the required general solution of the Bernoulli equation is

y(x) = [Cex − (1/2)(1 + x)]2.

JACOB BERNOULLI (1654–1705)
A Swiss mathematician born in Basel where he was professor of mathematics until his death. He
was a member of one of the most distinguished families of mathematicians in all of the history of
mathematics. His most important contributions were to the theory of probability and the
calculus and theory of elasticity. Other members of the family contributed to many different
parts of mathematics including hydrodynamics and the calculus of variations.

Summary In a sense, the Bernoulli equation, which is a nonlinear first order differential equation,
stands on the boundary between linear and nonlinear first order differential equations, so
for this and other reasons it is important in applications. It arises in different applications,
many of which themselves arise from problems bordering on linear and nonlinear regimes.
This section showed how a straightforward change of variable transforms a Bernoulli equa-
tion into a linear first order differential equation that can then be solved by the method of
Section 5.6.

EXERCISES 5.8

In Exercises 1 through 8 find the general solution of the
Bernoulli equation.

1. dy/dx + 2y = 2xy1/2.
2. dy/dx + y = 3y2.
3. dy/dx − y = 2xy3/2.

4. x dy/dx + y = xy2.
5. dy/dx + 2y sin x = 2y2 sin x.
6. x dy/dx + y = 2xy1/2.
7. x dy/dx − 2y = xy3/2.
8. dy/dx + 4xy = xy3.
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9. A model for the variation of a finite amount of stock
n(t) in a warehouse as a function of the time t caused
by the supply of fresh stock and its removal by demand
is

dn
dt

= (a − bn)n with the constants a, b > 0,

where n(0) = n0. Find n(t) and discuss the nature of the
change in the stock level as a function of time accord-
ing as n0 is less than a/b, equal to a/b, or greater than
a/b.

10.* This exercise concerns water in a canal of variable
depth with the x-axis taken along the canal in the
equilibrium surface of the water, and the y-axis verti-
cally downwards. Let the equilibrium depth of water
in a channel be h(x), and the cross-sectional area of
water in the canal be a slowly varying function W(x).
When a water wave advances along the channel into
water at rest there will be a change of acceleration
across the advancing line (wavefront) that separates
the disturbed water from the undisturbed water. Such
an advancing disturbance is called an acceleration

wave. If the change in acceleration across the wave-
front at point x along the channel is a(x), it can be
shown that the strength a(x) of the acceleration wave
obeys the Bernoulli equation

da
dx

+
(

3h′

4h
+ W′

2W

)
a + 3a2

2h
= 0.

If the initial condition for a(x) is a(0) = a0, then a
wave of elevation wave is one for which a0 < 0, and
a wave of depression is one for which a0 > 0. In this
approximation the wave will break, due to the water
surface becoming vertical at the wavefront if, after
propagating a critical distance xc along the channel,
the strength of the acceleration a(xc) = ∞.

(i) Find a(x) in terms of a0 = a(0), h0 = h(0) and
W0 = W(0).

(ii) Discuss the breaking and non-breaking of waves
of elevation and depression.

(iii) If the water shelves to zero at x = l, so that
h(l) = 0, find a condition that ensures the wave
breaks before x = l.

5.9 The Riccati Equation

The Riccati equation is an important nonlinear equation with the standard form

dy
dx

+ P(x)y + R(x)y2 = Q(x). (38)standard form of
the Riccati equation

Its significance derives from the fact that it stands at the boundary between linear
and nonlinear equations, and it occurs in various applications of mathematics that
involve nonlinear problems. The Riccati equation reduces to a linear first order
equation when R(x) ≡ 0, and to a Bernoulli equation when Q(x) ≡ 0.

Obtaining the general solution of a Riccati equation is difficult, but the task
is simplified if a particular solution is known, or can be found by inspection. If a
particular solution is y1(x) is known, then

(i) The substitution y = y1 + 1/u reduces the equation to a linear first order
equation.

(ii) The substitution y = y1 + u reduces the equation to a Bernoulli equation.substitutions that
simplify the
Riccati equation

(iii) The general substitution

y = 1
R(x)z

dz
dx
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reduces the Riccati equation to the linear homogeneous second order ODE

d2z
dx2

+
{

P(x) − R′(x)
R(x)

}
dz
dx

− R(x)Q(x)z = 0

discussed in Chapters 6 and 8.

Substitution (i) is often the most convenient one to use, as will be seen from the
next example.

EXAMPLE 5.19 Find the general solution of the Riccati equation

dy
dx

+ x2 y − xy2 = 1.

Solution Inspection shows that y1(x) = x is a particular solution, so we make the
substitution y = x + 1/u, from which it follows that

dy
dx

= 1 − 1
u2

du
dx

,

and after substitution for y and dy/dx in the Riccati equation it reduces to the linear
ODE

du
dx

+ x2u = −x.

Solving this by the method of Section 5.6 gives

u(x) = C exp(−x3/3) − exp(−x3/3)
∫

x exp(x3/3)dx,

where the integral in the last term cannot be expressed in terms of elementary
functions. Transforming back to the variable y(x) shows the general solution of the
Riccati equation to be

y(x) = x + exp(x3/3)
C − ∫

x exp(x3/3)dx
.

It is not unusual for solutions of ODEs to give rise to functions such as∫
x exp(x3/3)dx that have no representation in terms of known functions, because

not all functions have antiderivatives that are expressible in terms of elementary
functions.

JACOPO FRANCESCO (COUNT) RICCATI (1676–1754)
An Italian mathematician whose main contributions to mathematics were in the field of
differential equations, though he also contributed to geometry and the study of acoustics.

Additional information relevant to the material in Sections 5.4 to 5.9 is to be found
in the appropriate chapters of any one of references [3.3] to [3.5], [3.15], [3.16], and
[3.19]. A sophisticated and extremely enlightening discussion of ordinary differen-
tial equations is to be found in reference [3.1] that considers not only first order
equations, but also higher order equations and systems.



264 Chapter 5 First Order Differential Equations

Summary This section introduced the Riccati equation, of which the Bernoulli equation is a special
case. Solving the Riccati equation is difficult, but some substitutions were given that simplify
this task when one solution of the Riccati equation is already known, possibly by inspection.

EXERCISES 5.9

1. Show that the substitution y = y1 + 1/u reduces the
Riccati equation in (38) to a linear first order equation.

2. Show that the substitution y = y1 + u reduces the Riccati
equation in (38) to a Bernoulli equation.

In Exercises 3 through 6 verify that y1(x) is a solution of the
Riccati equation and use it to find the general solution of
the equation.

3. dy/dx + 2x2 y − 2xy2 = 1, with y1(x) = x.
4. dy/dx + 2y2 − y = 1, with y1(x) ≡ 1.

5. dy/dx − 2y2 + 3y = 1, with y1(x) ≡ 1.
6. dy/dx − 3x2 y + 3xy2 = 1, with y1(x) = x.
7. Verify that the substitution

y = 1
R(x)z

dz
dx

reduces the Riccati equation (38) to the linear homoge-
neous second order ODE

d2z
dx2

+
{

P(x) − R′(x)
R(x)

}
dz
dx

− R(x)Q(x)z = 0.

5.10 Existence and Uniqueness of Solutions

The questions of whether a solution to an initial value problem for a first order
differential equation can be found and, when a solution does exist, whether it is the
only solution are of fundamental importance in the theory of differential equations,
and also in their applications. Establishing that a solution to an initial value problem
can be found is called the existence problem, while ensuring that when a solution
exists it is the only one is called the uniqueness problem. To show that the questions
of existence and uniqueness arise even with very simple initial value problems we
examine the following two examples.

existence and
uniqueness

Let us consider the initial value problem

dy
dx

= 4
3

y1/4, with y(0) = −1,

involving a variables separable equation. Integration shows the general solution to
be

y3 = (x + C)4,

from which it can be seen that y is essentially nonnegative. Clearly there can be no
solution to this equation such that y = −1 when x = 0, so this is an example of an
initial value problem that has no solution. Had the initial condition been y(0) = 1
the unique solution would have been

y3 = (x + 1)4.

In fact this equation has a solution for any initial condition in which y(x) is
positive, but no solution when it is negative. This is hardly surprising, because had
we examined the function y1/4 carefully before proceeding with the integration we
would have seen that it is a complex number whenever y is negative. Sometimes,
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as here, an inspection of the initial condition and the equation can show in advance
whether or not the condition is appropriate, but more frequently constraints on
an initial condition that allow a solution to the differential equation to exist only
emerge when the form of the solution is known.

To illustrate nonuniqueness, we need only consider the differential equation

dy
dx

= 3y2/3, subject to the initial condition y(0) = 0.

The equation is variables separable, and integration shows it has the solution y = x3,
but this is not the only solution because it also has the singular, though somewhat
uninteresting, solution y = 0.

However, these are not the only two solutions, because for any a > 0 the func-
tion

y(x) =
{

0, x < a
(x − a)3, x ≥ a

is continuous, has a continuous first derivative, and satisfies both the differential
equation and the initial condition, showing that it also is a solution. As a > 0 is
arbitrary, we see that y(x) is a one-parameter family of solutions, so clearly this
initial value problem does not have a unique solution.

The following theorem on existence and uniqueness is stated without proof
(see, for example, references [3.1],[3.3],[3.4],[3.10] and [3.12]). It is important to ap-
preciate that though the conditions in the theorem are sufficient to ensure existence
and uniqueness, they are not necessary conditions, as examples can be constructed
that fail to satisfy the conditions of the theorem, but nevertheless have a unique
solution.

THEOREM 5.2 Existence and uniqueness of solutions Let f (x, y) be a continuous and bounded
function of x and y in a rectangular region R of the (x, y)-plane that contains a
given point (x0, y0). Then for some suitably small positive number h the initialconditions that

definitely ensure
existence and
uniqueness

value problem

dy
dx

= f (x, y), with y(x0) = y0

has at least one solution within the open interval x0 − h < x < x0 + h. If, in addition,
∂ f/∂y is continuous and bounded in R, the solution is unique in an open interval
centered on x0 that may lie within the interval x0 − h < x < x0 + h.

Let us apply this theorem to the initial value problem

dy
dx

= 3y2/3, with y(0) = 0,

that we have just shown does not have a unique solution. The function f (x, y) =
3y2/3 is continuous in any neighborhood of the origin where the initial condition
is given, but ∂ f/∂y = 2y−1/3 is unbounded at the origin. So the first condition of
Theorem 5.2 is satisfied but the second is not, showing that although this initial
value problem has a solution, it is not unique.
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Summary This section described what is meant by the existence of a solution of a differential equa-
tion, and the uniqueness of a solution that is usually expected in applications to physical
problems. A theorem, stated without proof, was given that guarantees both the existence
and uniqueness of a solution. However, the conditions of the theorem are more restrictive
than necessary, so equations can be found that while not satisfying the conditions of the
theorem nevertheless have a solution, and it is unique.

EXERCISES 5.10

In Exercises 1 through 6, find any points at which the imposi-
tion of initial conditions will not lead to a unique solution.

1. dy/dx = (1 − x)1/2.
2. dy/dx = xy + 1.

3. dy/dx = x2 + y2.
4. dy/dx = (x2 + y2 − 1)−1/2.
5. dy/dx = −y/x.
6. dy/dx = x ln|1 − y2|.



Section 5.10 Existence and Uniqueness of Solutions 267

CHAPTER 5

TECHNOLOGY PROJECTS

Project 1

Solution of First Order Linear
Differential Equation

The purpose of this project is to use computer algebra to
solve a first order equation step by step from first principles,
and then to obtain the same result by means of a computer
software ODE solver.

1. Given the linear first order differential equation

y′ � (3x2 sin x)y � 2x2 sin x,

use computer integration to find the general
solution by reproducing the steps in the rule for
the solution by means of an integrating factor
given in Section 5.6, and check the result by sub-
stitution into the differential equation.

2. Use a computer ODE solver to find the general
solution and confirm that it is the same as the
result obtained in step 1.

Project 2

Direction Fields and Integral Curves

The purpose of the following project is to gain insight into
the relationship between direction fields and integral curves
by using a computer package to plot the direction fields for
two nonlinear first order differential equations, and then
to add to the direction field plots some typical integral
curves obtained by using a standard numerical ODE solver
package.

1. Construct the direction field for the nonlinear
ODE

y′ � sin
1
2

x cos
1
2

x � y for �6 � x � 6,

�6 � y � 6.

2. Use a standard ODE numerical solver pack-
age to find the solutions (the integral curves)
through the points (�6, �4), (�6, �2), (�6, 2),

(�6, 4). Superimpose the integral curves on the
direction field and compare them with the ar-
rows in the direction field.

3. Repeat Steps 1 and 2, but this time using the
nonlinear ODE

y′ � x sin(y � 1)/(3 � cos x) for �6 � x � 6,

�6 � y � 6.

Project 3

Direction Fields and Isoclines

An isocline is a curve in the direction field of the differen-
tial equation y′ � f (x, y) at each point of which the slope of
the direction field has the same constant value. This means
that wherever a solution curve of the equation intersects
an isocline, its tangent will have the same slope. The iso-
clines of the differential equation y′ � f (x, y) are the curves
k � f (x, y), where k is the slope (gradient) of all solution
curves at the points where they intersect the isocline. In
general an isocline is not a solution curve and, depending
on the function f (x, y), there may be no isoclines for some
values of the constant k. The purpose of this project is to
construct the direction field for an ODE, and to superim-
pose on it some representative isoclines and solution curves
to illustrate their interrelationship.

1. Use computer algebra to construct the direction
field for the ordinary differential equation

y′ � x2 � y � 1 for �2 � x � 2, �2 � y � 2,

and superimpose on the direction field the
isoclines corresponding to k � �1, 0, 1, 2.
Verify that all arrows intersecting an isocline are
parallel.

2. Use a standard ODE numerical solver pack-
age to find the solutions through the points
(�2, �1.5), (�2, �0.5), (�2, 0.5), (�2, 1.5).
Superimpose the solution curves on the isoclines
found in Step 1 and confirm that the tangents to
solution curves where they intersect an isocline
are all parallel.

267
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6C H A P T E R

Second and Higher Order Linear
Differential Equations and Systems

Linear second order differential equations with constant coefficients are the simplest
of the higher order differential equations, and they have many applications. They are

of the general form y ′′ + Ay ′ + B y = F (x) with A and B constants and F (x), called the
nonhomogeneous term, a known function of x. The equation is called nonhomogeneous
when F (x) is not identically zero; otherwise, it is called homogeneous. All general solu-
tions are shown to be the sum of two quite different parts, one being a solution of the
homogeneous equation called the complementary function that contains the expected
two arbitrary constants of integration, and the other a special solution called a particular
integral that depends only on F (x) and contains no arbitrary constants.

Methods are developed for the solution of homogeneous and nonhomogeneous sec-
ond order equations and for the solution of associated initial value problems. Particular
attention is paid to the second order equations that describe oscillatory phenomena, be-
cause equations of this type arise in practical problems involving oscillations in electrical
circuits, in the description of many types of mechanical vibration, and elsewhere. It is
shown that in stable oscillatory motions the particular integral describes the start-up of an
initial value problem, after which it decays, leaving only the complementary function that
describes the long-term behavior known as the steady state solution.

The methods of solution for second order equations developed in this chapter include
the simplest one, called the method of undetermined coefficients; the powerful method
of variation of parameters; and a related method involving a function called the Green’s
function that is independent of the nonhomogeneous term F (x).

Various useful special cases of second order equations are considered, after which
higher order linear differential equations and first order systems are introduced and solved,
the solutions of which have the same general structure as the second order equations.
Matrix methods are introduced for the description and solution of first order systems
of equations. The chapter concludes with a discussion of linear autonomous systems of
equations, followed by a brief introduction to nonlinear autonomous systems that arise
in many practical problems and can lead to oscillatory solutions of a nonlinear nature.
The general behavior of solutions of both types of autonomous system is described in
an interesting and useful geometrical manner involving what are called trajectories in the
phase plane.

269
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6.1 Homogeneous Linear Constant Coefficient
Second Order Equations

The simplest general higher order homogeneous differential equation that occurs
in applications is the linear constant coefficient second order equation

d2 y
dx2

+ A
dy
dx

+ By = 0. (1)

Equations like this were derived in Section 5.2(d), where they were shown to
describe the motion of a mass–spring system subject to frictional resistance, and also
the variation of charge in an R–L–C electric circuit. The equation also describes the
pendulum-like motion of a load suspended from a crane that is set in motion when
the crane rotates to a new position and soon stops. The motion can be modeled
as shown in Fig. 6.1, where � is the length of the crane cable, m is the load, F is
the resisting frictional force exerted by the air due to motion, and θ is the angular
deflection of the cable from the vertical.

linear constant
coefficient second
order equation

The angular momentum of the load about a line through the support point of
the cable at O normal to the plane of motion is m�2(dθ/dt), so the rate of change
of angular momentum about O is m�2(d2θ/dt2). The moments acting to restore
the load to its equilibrium position at Q are due to the air resistance F opposing
the motion and the turning moment of the gravitational force mg about O. If the
air resistance acting on the load is proportional to the speed of the load, and the
constant of proportionality is μ, the resisting frictional force is F = μ�(dθ/dt),
so the restoring moment exerted by F about O is �F = μ�2(dθ/dt). The turning
moment exerted by the gravitational force mg about O is mg�sin θ , so equating the
rate of change of angular momentum to the sum of the two restoring moments gives

mg

l
θ

FIGURE 6.1 A deflected load supported by a
crane cable.
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the equation of motion

m�2 d2θ

dt2
= −μ�2 dθ

dt
− mg�sin θ.

The negative signs on the right are necessary because the restoring moments act in
the opposite sense to that of the rate of change of angular momentum.

When the angle of swing is small sin θ can be approximated by θ , and the
equation of motion simplifies to

d2θ

dt2
+ μ

m
dθ

dt
+ g

�
θ = 0.

Because of its many applications we start our discussion of higher order equa-
tions by examining the properties and general solution of equation (1).

Let y1(x) and y2(x) be any two solutions of (1). Then because each function
satisfies the differential equation, it follows that

d2 y1

dx2
+ A

dy1

dx
+ By1 = 0 and

d2 y2

dx2
+ A

dy2

dx
+ By2 = 0. (2)

Now consider the linear combination of the two solutions

y(x) = c1 y1(x) + c2 y2(x), (3)

where c1 and c2 are arbitrary constants. Substituting (3) into (1) and grouping terms
gives

d2[c1 y1 + c2 y2]
dx2

+ A
d[c1 y1 + c2 y2]

dx
+ B[c1 y1 + c2 y2]

= c1

[
d2 y1

dx2
+ A

dy1

dx
+ By1

]
+ c2

[
d2 y2

dx2
+ A

dy2

dx
+ By2

]
= 0,

because each of the bracketed groups of terms vanishes on account of (2). This has
shown that y(x) = c1 y1(x) + c2 y2(x) is also a solution of (1).

This last result is described by saying equation (1) allows the linear superpo-linear superposition,
dependence, and
independence

sition of solutions and it means that the sum of solutions is again a solution. Later
we will see that linear superposition of solutions is a fundamental property of all
homogeneous linear equations, including those with variable coefficients.

Two functions y1(x) and y2(x) are said to be linearly independent over an
interval a ≤ x ≤ b if the equation

c1 y1(x) + c2 y2(x) = 0 (4)

is only true for all x in the interval if c1 = c2 = 0. The functions are said to be linearly
dependent if (4) is true for some nonvanishing constants c1 and c2.

When the functions are linearly dependent, provided c1 �= 0, equation (4) can
be written

y1(x) = −c2

c1
y2(x),
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with a corresponding result

y2(x) = −c1

c2
y1(x),

if c2 �= 0, showing that in each case the linear dependence of the functions means
they are proportional. We have established the following simple test.

simple test for linear
independence

Test for linear independence of y1(x) and y2(x) over a ≤ x ≤ b

The two functions y1(x) and y2(x) will be linearly independent over a ≤ x ≤ b
if they are not proportional over the interval; otherwise, they will be linearly
dependent.

EXAMPLE 6.1 Apply the test for linear independence to the following pairs of functions.

(a) ex and e2x are linearly independent for all x because e2x/ex = ex is defined for
all x and ex is not a constant.

(b) ln x2 and ln x3 are linearly dependent for x > 0, because ln x2 = 2 ln x and
ln x3 = 3 ln x, so ln x2/ln x3 = 2/3 is a constant, and the logarithmic function is
defined for x > 0.

(c) sinh 2x and sinh x cosh x are linearly dependent for all x because sinh 2x =
2 sinh x cosh x.

The notion of the linear independence of functions is of special significance
when the functions are solutions of homogeneous differential equations. This is
because it will be seen later that all particular solutions of such differential equa-
tions can be represented in the form of suitable linear combinations of as many
linearly independent solutions as the equation allows. In fact, the number of lin-
early independent solutions is equal to the order of the differential equation, so
the second order differential equation (1) has two linearly independent solutions.
So, if y1(x) and y2(x) are linearly independent solutions of (1), and c1 and c2 are
arbitrary constants, the general solution of (1) from which all particular solutionsgeneral solution
can be obtained can be written

y(x) = c1 y1(x) + c2 y2(x). (5)

The justification of this assertion will be postponed until the nature of the
linearly independent solutions of (1) has been established.

EXAMPLE 6.2 Direct substitution of the functions y1(x) = sin 2x and y2(x) = cos 2x into the sec-
ond order differential equation

y′′ + 4y = 0

confirms that they are solutions. The functions are linearly independent for all x
because they are not proportional, so

y(x) = c1cos 2x + c2sin 2x

is the general solution of the differential equation.
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We will now find the general solution of (1), and when doing so use will be
made of the fact that if y(x) = ceλx, with c and λ constants, then

dy
dx

= d[ceλx]
dx

= cλeλx and
d2 y
dx2

= d2[ceλx]
dx2

= cλ2eλx.

Substituting these results into (1) leads to the equation

(λ2 + Aλ + B)eλx = 0.

However, the factor eλx is nonvanishing for all x, so after its cancellation this equa-
tion is seen to be equivalent to the quadratic equation for λ

λ2 + Aλ + B = 0. (6)

When the quadratic equation (6) has two distinct (different) roots λ1 and λ2,
the functions y1(x) = exp(λ1x) and y2(x) = exp(λ2x) will be linearly independent
for all x, because y1(x)/y2(x) = exp[(λ1 − λ2)x] is not constant. Thus, then exp(λ1x)
and exp(λ2x) are linearly independent solutions of (1), so the general solution is

y(x) = c1 exp(λ1x) + c2 exp(λ2x), (7)

where c1 and c2 are arbitrary constants.
It is now necessary to introduce the type of initial conditions that are appro-

priate for (1). As (1) is a second order differential equation, it relates y(x), y′(x),
and y′′(x), so it follows that suitable initial conditions will be the specification of
y(x) and y′(x) at some point x = a. Then the value of y′′(a) cannot be assigned
arbitrarily, because the differential equation itself will determine its value in terms
of y(a) and y′(a). The solution of (1) satisfying these initial conditions can be found
from the general solution (7) by determining c1 and c2 from the two equations:

Initial condition on y(x)
initial conditions

y(a) = c1 exp(λ1a) + c2 exp(λ2a),

Initial condition on y′(x)

y′(a) = λ1c1 exp(λ1a) + λ2c2 exp(λ2a).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

When we considered systems of linear algebraic equations in Chapter 3, it was
shown that equations (8) will determine c1 and c2 uniquely if the determinant of
the coefficients of c1 and c2 is nonvanishing. Thus, the specification of y(a) and y′(a)
will be appropriate as initial conditions if

� =
∣∣∣∣ exp(λ1a) exp(λ2a)
λ1 exp(λ1a) λ2 exp(λ2a)

∣∣∣∣ �= 0. (9)
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Expanding the determinant gives � = (λ2 − λ1) exp[(λ1 + λ2)a]. However, by
hypothesis λ1 �= λ2, while exp[(λ1 + λ2)a] never vanishes, so � �= 0. The particular
solution satisfying the initial conditions follows by using the values of c1 and c2

found from (8) in the general solution (7).

EXAMPLE 6.3 Find the solution of the initial value problem

y′′ + 4y = 0, if y(π/4) = 1 and y′(π/4) = 1.

Solution In Example 6.2 direct substitution has already been used to show that
cos 2x and sin 2x are linearly independent solutions of the differential equation, so
its general solution is

y(x) = c1cos 2x + c2sin 2x,

from which it follows by differentiation that

y′(x) = −2c1sin 2x + 2c2cos 2x.

Imposing the initial condition on y(x) at x = π/4 leads to the following equation
that must be satisfied by c1 and c2:

1 = c1cos π/2 + c2sin π/2.

Similarly, imposing the initial condition on y′(x) at x = π/4 leads to the second
condition that must be satisfied by c1 and c2:

1 = −2c1sin π/2 + 2c2cos π/2.

These equations have the solution c1 = −1/2 and c2 = 1, so the particular solution
satisfying the initial conditions y(π/4) = 1 and y′(π/4) = 1 is

y(x) = sin 2x − 1
2

cos 2x.

The quadratic equation determining the permissible values of λ in the expo-
nential solutions y1(x) = exp(λ1x) and y2(x) = exp(λ2x) of differential equation
(1), namely,

λ2 + Aλ + B = 0, (10)

is called the characteristic equation of the differential equation. Its two roots,characteristic
equation

λ1 = −A+ √
A2 − 4B

2
and λ2 = −A− √

A2 − 4B
2

, (11)

are the values of λ to be used in the general solution (7). When the roots λ1 and λ2

are real and distinct, the functions

y1(x) = exp(λ1x) and y2(x) = exp(λ2x) (12)

are said to form a basis for the solution space of (1). This means that the solution
of every initial value problem for (1) can be obtained from the linear combination
y(x) = c1 exp(λ1x) + c2 exp(λ2x) by assigning suitable values to c1 and c2.

A comparison of differential equation (1) and its characteristic equation (10)
shows the characteristic equation can be written down immediately from the dif-
ferential equation by simply replacing y by 1, dy/dx by λ and d2 y/dx2 by λ2. It is
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usual to use this method when obtaining the characteristic equation, as it avoids
the unnecessary intermediate steps involved when substituting y(x) = exp(λx).

Three different cases must now be considered, according to whether (i) λ1 and
λ2 are real and distinct (λ1 �= λ2), (ii) λ1 and λ2 are complex conjugates, or (iii) the
possibility, excluded so far, that λ1 and λ2 are real and equal, so λ1 = λ2 = μ, say.

Case (I) (Real and Distinct Roots)
This case corresponds to the condition A2 − 4B > 0, withhow a solution

depends on the roots

λ1 = −A+ √
A2 − 4B

2
and λ2 = −A− √

A2 − 4B
2

. (13)

No more need be said about this case because it has already been established that
the functions exp(λ1x) and exp(λ2x) form a basis for the solution space of (1), which
thus has the general solution

y(x) = c1 exp(λ1x) + c2 exp(λ2x).

Case (II) (Complex Conjugate Roots)
This case corresponds to the condition A2 − 4B < 0. A real solution y(x) corre-
sponding to complex conjugate roots λ1 and λ2 is only possible if the arbitrary con-
stants c1 and c2 are themselves complex conjugates. A routine calculation shows
that if λ1 = α + iβ and λ2 = α − iβ, with

α = −(1/2)A, β = (1/2)(4B − A2)1/2, (14)

the two corresponding linearly independent solutions are

y1(x) = eαx cos βx and y2(x) = eαx sin βx. (15)

A basis for the solution space of (1) is formed by the functions eαx cos βx and
eαx sin βx, corresponding to a general solution of the form

y1(x) = eαx[c1cos βx + c2sin βx]. (16)

The calculation required to establish the form of this result is left as an exercise.

Case (III) (Equal Real Roots)
This case corresponds to the condition A2 − 4B = 0, with

μ = λ1 = λ2 = −(1/2)A. (17)
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In this case only the one exponential solution

y1(x) = eμx (18)

can be found.
However, substitution of the function

y2(x) = xeμx (19)

into the differential equation shows that it is also a solution. The functions y1(x)
and y2(x) are linearly independent because y2(x)/y1(x) = x is not a constant, so
in this case a basis for the solution space of (1) is formed by the functions eμx and
xeμx, with the corresponding general solution

y(x) = (c1 + c2x)eμx. (20)

Summary of the forms of solution of y′′ + Ay′ + By = 0

Characteristic equation: λ2 + Aλ + B = 0summary of
types of solution

Case (I) A2 − 4B > 0. The general solution is

y(x) = c1 exp(λ1x) + c2 exp(λ2x), with

λ1 = −A+ √
A2 − 4B

2
and λ2 = −A− √

A2 − 4B
2

.

Case (II) A2 − 4B < 0. The general solution is

y1(x) = eαx[c1cos βx + c2sin βx], with

α = −(1/2)A and β = (1/2)(4B − A2)1/2.

Case (III) A2 = 4B. The general solution is

y(x) = (c1 + c2x)eμx, with μ = −(1/2)A.

EXAMPLE 6.4 Find the general solution and hence solve the stated initial value problem for

(i) y′′ + y′ − 2y = 0, with y(0) = 1 and y′(0) = 2;
(ii) y′′ + 2y′ + 4y = 0, with y(0) = 2 and y′(0) = 1;

(iii) y′′ + 4y′ + 4y = 0, with y(0) = 3 and y′(0) = 1.

Solution

(i) The characteristic equation is

λ2 + λ − 2 = 0,

with the roots λ1 = 1, λ2 = −2, so this is Case (I). The general solution is

y(x) = c1ex + c2e−2x.



Section 6.1 Homogeneous Linear Constant Coefficient Second Order Equations 277

The initial condition y(0) = 1 is satisfied if

1 = c1 + c2,

while the initial condition y′(0) = 2 is satisfied if

2 = c1 − 2c2.

These equations have the solution c1 = 4/3 and c2 = −1/3, so the solution of the
initial value problem is

y(x) = (4/3)ex − (1/3)e−2x.

(ii) The characteristic equation is

λ2 + 2λ + 4 = 0,

with A2 − 4B = −12, so this is Case (II) with α = −1 and β = √
3. The general

solution is

y(x) = e−x[c1cos(x
√

3) + c2sin(x
√

3)].

The initial condition y(0) = 2 is satisfied if 2 = c1, while the initial condition
y′(0) = 1 is satisfied if

1 = −2 + c2

√
3.

Solving these equations gives c1 = 2 and c2 = √
3, so the solution of the initial value

problem is

y(x) = e−x[
√

3 sin(x
√

3) + 2 cos(x
√

3)].

(iii) The characteristic equation is

λ2 + 4λ + 4 = 0,

with A2 − 4B = 0, so this is Case (III) with μ = −2. The general solution is

y(x) = (c1 + c2x)e−2x.

Using the initial condition y(0) = 3 shows that 3 = c1, whereas the initial condition
y′(0) = 1 will be satisfied if

1 = −6 + c2.

Solving these equations gives c1 = 3 and c2 = 7, so the solution of the initial value
problem is

y(x) = (3 + 7x)e−2x.

We now formulate the fundamental existence and uniqueness theorem for the
homogeneous linear second order constant coefficient differential equation (1).
This is a special case of a more general theorem that will be quoted later.

THEOREM 6.1 Existence and uniqueness of solutions of homogeneous second order constant
coefficient equations Let differential equation (1) have two linearly indepen-

existence and
uniqueness of
solutions

dent solutions y1(x) and y2(x). Then, for any x = x0 and numbers μ1 and μ2, a
unique solution of (1) exists satisfying the initial conditions

y(x0) = μ0, y(1)(x0) = μ1.
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Proof The existence of the solutions y1(x) and y2(x) was established when the
cases (I), (II), and (III) were examined. The nonvanishing of the determinant �

in (9) showed c1 and c2 to be uniquely determined by the given initial conditions
when the roots are real and distinct, so the solution of the initial value problem is
also unique. An examination of the form of the determinant � in cases (II) and
(III) establishes the uniqueness of the solution in the remaining two cases, though
the details are left as an exercise.

A different type of problem that can arise with second order equations occurstwo-point boundary
conditions when the solution is required to satisfy a condition at two distinct points x = a and

x = b, instead of satisfying two initial conditions. Problems of this type are called
two-point boundary value problems, because the points a and b can be regarded
as boundaries between which the solution is required, and at which it must satisfy
given boundary conditions. Problems of this type occur in the study of the bending
of beams that are supported in different ways at each end, and elsewhere (see
Section 8.10).

Typical two-point boundary value problems involve either the specification of
y(x) at x = a and at x = b, or the specification of y(x) at one boundary and y′(x) at
the other one. The most general two point boundary value problem involves finding
a solution in the interval a < x < b such that

y′′ + Ay′ + By = 0,

subject to the boundary condition at x = a

αy(a) + βy′(a) = μ,

and the boundary condition at x = b

γ y(b) + δy′(b) = K,

where α, β, γ, δ, μ, and K are known constants.

EXAMPLE 6.5 Solve the two-point boundary value problem

y′′ + 2y′ + 17y = 0, with y(0) = 1 and y′(π/4) = 0.

Solution The characteristic equation is

λ2 + 2λ + 17 = 0

with the complex roots λ1 = −1 + 4i and λ2 = −1 − 4i , so the general solution is

y(x) = e−x[c1cos 4x + c2sin 4x].

At the boundary x = 0 the general solution reduces to 1 = c1, whereas at the
boundary x = π/4 it reduces to 0 = −e−π/4 + 4c2e−π/4, showing that c2 = 1/4. So
the solution of the two-point boundary value problem is

y(x) = e−x
[

cos 4x + 1
4

sin 4x
]
, for 0 < x < π/4.

Summary This section introduced the homogeneous linear second order constant coefficient equa-
tion and explained the importance of the linear independence of solutions. It showed how
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for this second order equation the general solution can be expressed as a linear combi-
nation of the two linearly independent solutions that can always be found. The form of
the two linearly independent solutions was shown to depend on the relationship between
the roots of the characteristic equation. A fundamental existence and uniqueness theorem
was given and the nature of a simple two-point boundary value problem was explained.

EXERCISES 6.1

In Exercises 1 through 4 test the given pairs of functions for
linear independence or dependence over the stated inter-
vals.

1. (a) sinh2 x, cosh2 x, for all x.
(b) x + ln |x|, x + 2 ln |x|, for |x| > 0.
(c) 1 + x, x + x2, for all x.

2. (a) sin x, cos x, for all x.
(b) sin x cos x, sin 2x, for all x.
(c) e2x, xe2x , for all x.

3. (a) |x|x2, x3, for −1 < x < 1.
(b) sin x, tan x, for −π/4 ≤ x ≤ π/4.
(c) x|x|, x2, for x ≥ 0.

4. (a) sin x, | sin x|, for π ≤ x ≤ 2π .
(b) x3 − 2x + 4, −4x3 + 8x − 16, for all x.
(c) x + 2|x|, x − 2|x| for all x.

Find the general solution of the differential equations in
Exercises 5 through 20.

5. y′′ + 3y′ − 4y = 0. 6. y′′ + 2y′ + y = 0.

7. y′′ − 2y′ + 2y = 0. 8. y′′ + 2y′ + 2y = 0.

9. y′′ + 2y′ − 3y = 0. 10. y′′ + 5y′ + 4y = 0.

11. y′′ + 6y′ + 9y = 0. 12. y′′ − 2y′ + 4y = 0.

13. y′′ − 4y′ + 5y = 0. 14. y′′ + 3y′ + 3y = 0.

15. y′′ + 6y′ + 25y = 0. 16. y′′ − 4y′ + 20y = 0.

17. y′′ + 5y′ + 4y = 0. 18. y′′ + 4y′ + 5y = 0.

19. y′′ − 3y′ + 3y = 0. 20. y′′ + y′ + y = 0.

Solve initial value problems in Exercises 21 through 28 us-
ing the method of this section, and confirm the solutions for
even numbered problems by using computer algebra.

21. y′′ + 5y′ + 6y = 0, with y(0) = 1, y′(0) = 2.
22. y′′ + 4y′ + 5y = 0, with y(0) = 1, y′(0) = 3.
23. y′′ + 2y′ + 2y = 0, with y(0) = 3, y′(0) = 1.
24. y′′ + 6y′ + 8y = 0, with y(0) = 1, y′(0) = 0.
25. y′′ − 5y′ + 6y = 0, with y(0) = 2, y′(0) = 1.
26. y′′ − 3y′ + 3y = 0, with y(0) = 0, y′(0) = 2.
27. y′′ − 3y′ − 4y = 0, with y(0) = −1, y′(0) = 2.
28. y′′ − 2y′ + 3y = 0, with y(0) = 1, y′(0) = 0.

Solve the boundary value problems in Exercises 29 through
36 using the method of this section, and confirm the so-
lutions for even-numbered problems by using computer
algebra.

29. y′′ + 4y′ + 3y = 0, with y(0) = 1, y′(1) = 0.
30. y′′ + 4y′ + 4y = 0, with y(0) = 2, y′(1) = 0.
31. y′′ + 6y′ + 9y = 0, with y(−1) = 1, y′(1) = 0.
32. y′′ + 4y′ + 5y = 0, with y(−π/2) = 1, y′(π/2) = 0.
33. y′′ + 2y′ + 26y = 0, with y(0) = 1, y′(π/4) = 0.
34. y′′ + 2y′ + 26y = 0, with y(0) = 0, y′(π/4) = 2.
35. y′′ + 5y′ + 6y = 0, with y(0) = 0, y′(1) = 1.
36. y′′ + 2y′ − 3y = 0, with y(0) = 1, y′(1) = 1.

Theorem 6.1 ensures the existence and uniqueness of so-
lutions of initial value problems for the differential equa-
tion in (1), but does not apply to two-point boundary value
problems that may have no solution, a unique solution or
infinitely many solutions. In Exercises 37 and 38 use the
general solution of

y′′ + y = 0

to find if a solution exists and is unique, exists but is
nonunique, or does not exist for each set of boundary con-
ditions.

37. (a) y(0) = 0, y(π) = 0.

(b) y(0) = 1, y(2π) = 2.

(c) y′(0) = 1, y(π/4) = √
2.

38. (a) y(0)=1, y(π/2)=1.

(b) y(0) = 0, y′(π) = 0.

(c) y′(0) = 0, y′(π) = 0.

39. For what values of λ will the following two-point bound-
ary value problem have infinitely many solutions, and
what is the form of these solutions:

y′′ + λ2 y = 0, with y(0) = 0, y(π) = 0.

40. A particle moves in a straight line in such a way that
its distance x from the origin at time t obeys the dif-
ferential equation x′′ + x′ + x = 0. Assuming it starts
from the origin with speed 30 ft/sec, what will be its
distance from the origin, its speed, and its acceleration
after π/

√
3 seconds?

41. The angular displacement θ of a damped simple pen-
dulum obeys the equation θ ′′ + 2μθ ′ + (μ2 + p2)θ = 0,
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with 4p2 > μ2. Find the angular displacement θ(t), and
the time t and angular displacement when it first comes
to rest, given that it starts with θ = 0 and dθ/dt = α.

42. The top of a vibration damper oscillates in a straight
line in such a way that its position x from the origin at
time t obeys the differential equation x′′+ 2x′ + 4x = 0.
Given that it starts from the origin with speed U, find its
position as a function of U and t and the distance from
the origin when it first comes to rest.

43. The free oscillations of all physical systems giving rise
to oscillatory solutions obey an equation of the form
x′′ + 2μx′ + (μ2 + p2)x = 0 with p2 > 0. Given that
x(0) = 0, and (dx/dt)t=0 = Ap, solve the equation and
show that x(t) = Aexp(−μt) sin pt . Use this result to
prove that the ratio of the magnitude of successive ex-
trema of x(t) forms a geometric series with common
ratio r = exp[−μπ/(p)]. The number μπ/(p) is called
the logarithmic decrement of the oscillations.

6.2 Oscillatory Solutions

The nonhomogeneous constant coefficient second order equation

a0
d2 y
dt2

+ a1
dy
dt

+ a2 y = f (t), (21)

in which t can be regarded as the time and f (t) as an external input to the system, is
the simplest mathematical model capable of representing the oscillatory behavior
of a physical system.

It was shown in Section 5.2(d) that one way this equation can arise is when
describing the motion of a mass–spring system in which a mass moves on a rough
horizontal surface, with the motion resisted by a frictional force proportional to the
speed. Friction dissipates energy, so the motion will decay to zero as time increases
unless it is sustained by some external input of energy in the form of a forcing
function represented in (21) by the nonhomogeneous term f (t). The dissipationforcing function

and damping of energy due to friction, or to a friction-like effect in other applications, is called
damping, and in the R–L–C circuit considered in Section 5.2(d), where the charge
q on the capacitor was shown to satisfy a homogeneous form of equation (21) with
a0 = LC, a1 = RC, and a3 = 1, the damping was due to the dissipative (friction-like)
term a1 = RC.

Another way in which equation (21) can arise is when a cylindrical mass with
moment of inertia I about its axis of symmetry is mounted on a flexible shaft that can
be twisted about its axis, with the resistance to torsion (twisting) proportional to the
angle of twist θ , and damping proportional to the angular velocity dθ/dt about the
shaft. This occurs, for example, in a torsional pendulum and also in heavy rotating
machinery when a heavy flywheel is attached to a shaft. The equation governing
the torsional oscillations θ(t) as a function of the time t becomes

I
d2θ

dt2
+ k

dθ

dt
+ μθ = f (t),

where k and μ are constants and, as before, f (t) is a forcing function.
A comparison of the second order constant coefficient differential equations

that govern mechanical, electrical, and torsional oscillations leads to Table 6.1,
which relates analogous physical quantities in each of the different systems.

Many other physical situations can be represented by this same constant coef-
ficient second order differential equation with varying degrees of approximation. It
does, for example, provide a simple model that describes the effect of a fluctuating
vertical lift at the center of a flexible suspension bridge caused by gusts of wind. If
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TABLE 6.1 A Comparison of Second Order Constant Coefficient
Differential Equations

Electrical System with
Mechanical System Elements in Series Torsional System

Mass Inductance Moment of inertia
Damping constant Resistance Torsional damping constant
Spring constant Reciprocal of capacitance Shaft torsional constant
Applied force Applied voltage Applied torque

this effect is sustained, and the gusts come at the natural frequency of the bridge, the
amplitude of the oscillations can become dangerously large. On November 7, 1940,
in the state of Washington, this effect caused the failure of the Tacoma Narrows
Bridge over Puget Sound. Powerful gusting winds at around the natural frequency
of this excessively flexible bridge induced and then sustained vertical oscillations
of the bridge that reached an amplitude of 28 feet before the bridge snapped and
fell.

When analyzing the oscillatory nature of solutions of (21), and looking at the
effect of resonance that occurs if the natural frequency of oscillation of the system
coincides with the frequency of a periodic forcing function, it is helpful to have
in mind a mathematical model of a simple but typical mechanical system. The
mechanical system we will consider here is shown in Fig. 6.2, and it involves a
piece of heavy machinery that vibrates vertically and is mounted on a spring and
damper system to reduce the transmission of the vibrations to the foundations of
the building. The damper is usually a piston that moves in a viscous fluid, with the
resisting force considered to be proportional to the speed of the piston.

y(t)

Damper

M

F(t)

Vibrating
platform

FIGURE 6.2 A vibrating machine
mounted on a spring and damper system.
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If the mass of the machine is M, the displacement of the machine from the
floor at time t is y(t), the spring constant is k, the constant of proportionality for
the damper is μ, and the force exerted by the vibrating machine is F̃(t), the rate of
change of momentum d/dt{M(dy/dt)} must be equated to the frictional resistance
−μdy/dt , the restoring force of the spring −ky, and the external force F̃(t). So this
system, with the displacement y(t) as its one degree of freedom, is seen to satisfy
the differential equation

M
d2 y
dt2

= −μ
dy
dt

− ky + F̃(t).

For convenience this will be written in the standard form

d2 y
dt2

+ a
dy
dt

+ by = F(t), (22)

with a = μ/M, b = k/M, and F(t) = F̃(t)/M.
Differential equation (22) is nonhomogeneous, so its solution will be more

complicated than the solution of the homogeneous equation considered in the
previous section. The equation is linear, so as in Section 5.6 we will represent its
general solution as the sum

y(t) = yc(t) + yp(t), (23)

with yc(t) the general solution of the homogeneous form of equation (22)

d2 yc

dt2
+ a

dyc

dt
+ byc = 0, (24)

and yp(t) a particular solution of

d2 yp

dt2
+ a

dyp

dt
+ byp = F(t) (25)

that contains no arbitrary constants.
The justification for writing the general solution of (22) as y(t) = yc(t) + yp(t)

follows if we notice that (22) can be written

d2[yc + yp]
dt2

+ a
d[yc + yp]

dt
+ b[yc + yp] = F(t)

or, equivalently, as[
d2 yc

dt2
+ a

dyc

dt
+ byc

]
+ d2 yp

dt2
+ a

dyp

dt
+ byp = F(t),

where the group of terms in the bracket vanishes because of (24), while yp(t) satisfies
the remainder of the equation because of (25).

As in Section 5.6, the solution yc(t) will be called the complementary function,
and the solution yp(t) will be called a particular integral. It is important to recognizecomplementary

function and
particular integral

that the two arbitrary constants associated with the general solution of (22) occur
in the complementary function yc(t), whereas the particular integral yp(t) contains
no arbitrary constants.
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We now introduce the notation a = 2ζ and b = �2, when the characteristic
equation of (22) becomes

λ2 + 2ζλ + �2 = 0, (26)

with the roots

λ1 = −ζ + (ζ 2 − �2)1/2 and λ2 = −ζ − (ζ 2 − �2)1/2. (27)

The solution yc(t) of (22) will correspond to one of the Cases (I), (II), or (III)
of Section 6.1, but before determining its form in each of these cases we further
simplify the notation by setting k2 = ζ 2 − �2, so that

λ1 = −ζ + k and λ2 = −ζ − k. (28)

Case (I): k2 > 0 (ζ2 > Ω2)

The complementary function yc(t) is nonoscillatory and given by

yc(t) = exp(−ζ t){C1 exp(kt) + C2 exp(−kt)}. (29)

Case (II): k2 < 0 (ζ2 < Ω2)

If we set k2 = −ω2
0 the complementary function is seen to be oscillatory and given by

yc(t) = exp(−ζ t){C1cos ω0t + C2sin ω0t}. (30)

Case (III): k2 = 0 (Ω2 = ζ2)

The complementary function is nonoscillatory and given by

yc(t) = {C1 + C2t} exp(−ζ t). (31)

Cases (I) and (III) exhibit no oscillatory behavior. Case (I) is said to be overdamped
and Case (III) to be critically damped, because it marks the boundary betweencritical damping

and overdamping the overdamped behavior of Case (I) and the oscillatory behavior of Case (II).
The parameter ζ entering into the exponential factor exp(−ζ t) that is present
in all three cases is called the damping exponent and, provided ζ > 0, the factor
exp(−ζ t) will cause all three complementary functions to decay to zero as time
increases. This property of a complementary function with ζ > 0 has led to itstransient and

steady state
solutions

being called the transient solution of the differential equation. Accordingly,
after a suitable lapse of time, only the particular integral yp(t) will remain, and
this property is recognized by calling yp(t) the steady state solution, with the
understanding that it is the time-dependent solution that remains after the transient
solution has become vanishingly small.

Typical transient solution behavior in the critically damped case is shown in
Fig. 6.3 for different initial conditions, some of which can cause an initial increase
in the amplitude of yc(t) before it decays to zero. The behavior in the overdamped
case is similar to that in the critically damped case.
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yc(t)/yc(0)

1.5

1

0.5

1 2 3 4 t0

FIGURE 6.3 yc(t) in the critically damped case for
different initial conditions.

It is now necessary to determine the form of the particular integral yp(t), and
to do so the function F(t) must be specified. A vibration is periodic in nature, so
we shall model it by a nonhomogeneous term of the form

F(t) = Acos ωt, (32)

in which the amplitude Awill be considered to be fixed and the angular frequency
ω will be regarded as a parameter. The angular frequency ω is expressed in terms
of radians/unit time and corresponds to a time period of oscillation of T = 2π/ω

time units, while the frequency of the vibration 1/T = ω/2π measures the number
of cycles (vibrations) occurring in one time unit. If the unit of time T is 1 sec, the
frequency is measured in cycles/sec, called hertz (Hz), so 20 Hz is 20 cycles/sec.

Setting F(t) = Acos ωt in (22) shows that the differential equation to be con-
sidered is

amplitude and
angular frequency
of a vibration

d2 y
dt2

+ 2ζ
dy
dt

+ �2 y = Acos ωt. (33)

A systematic approach to the determination of particular integrals will be developed
in the next section, but here we will proceed from first principles. As equation (33)
has constant coefficients, and its nonhomogeneous term is Acos ωt , the way this
nonhomogeneous term can be obtained by differentiating a particular integral yp(t)
is if the particular integral is of the form

yp(t) = Csin ωt + Dcos ωt, (34)

unless ζ = 0 and � = ω (then try yp = t(Csin ωt + Dcos ωt).
Substituting (34) into (33) and collecting terms gives

[(�2 − ω2)C − 2ζωD]sin ωt + [(�2 − ω2)D + 2ζωC]cos ωt = Acos ωt.

This must be true for all t , but this will only be possible if the respective coefficients
of sin ωt and cos ωt on either side of the equation are identical, so

(�2 − ω2)C − 2ζωD = 0 and (�2 − ω2)D + 2ζωC = A.

Solving for C and D gives

C = 2Aωζ

(�2 − ω2)2 + 4ζ 2ω2
and D = A(�2 − ω2)

(�2 − ω2)2 + 4ζ 2ω2
, (35)
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so the required particular integral is

yp(t) = 2Aωζ

(�2 − ω2)2 + 4ζ 2ω2
sin ωt + A(�2 − ω2)

(�2 − ω2)2 + 4ζ 2ω2
cos ωt. (36)

A better understanding of the nature of this particular integral can be obtained
if it is rewritten. To accomplish this we return to (34) and write it as

yp(t) = (C2 + D2)1/2
[

C
(C2 + D2)1/2

sin ωt + D
(C2 + D2)1/2

cos ωt
]

, (37)

and then define an angle φ by the requirement that

sin φ = C
(C2 + D2)1/2

, and cos φ = D
(C2 + D2)1/2

, (38)

or by the equivalent expression

tan φ = C/D = 2ζω

�2 − ω2
. (39)

The trigonometric identity cos(ωt − φ) = cos ωtcos φ + sin ωtsin φ then allows
yp(t) to be expressed in the more convenient form

yp(t) = A
[(�2 − ω2)2 + 4ζ 2ω2]1/2

cos (ωt − φ). (40)

Using this form for yp(t) gives the simpler expression for the general solution

y(t) = yc(t) + A
[(�2 − ω2) + 4ζ 2ω2]1/2

sin (ωt − φ), (41)

where yc(t) is one of the Cases (I), (II), or (III), depending on the sign of ζ 2 − �2.
The angle φ, which by convention is required to lie in the interval 0 < φ < π , is

called the phase angle of the solution, and often the phase lag, because it representsphase angle and
phase lag the delay with which the steady-state solution (the output from the system) lags

behind the input to the system determined by F(t).
We have seen that provided ζ > 0, the transient solution yc(t) decays to zero as t

increases, leaving only the steady state solution yp(t). The steady state solution (41),
illustrated in Fig. 6.4, is a sinusoid with the same angular frequency as the function
F(t) = Asin (ωt) that forces the oscillations, but with an amplitude that depends
on both Aand the angular forcing frequency ω. The effect of the phase lag φ is seen
to shift the origin.

T = 2π/ω

φ/ω

yp(t)/P(ω)

yP(t) = P(ω)cos(ωt − φ)

t

1

0

−1

FIGURE 6.4 The steady state solution yp(t)/P(ω).
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If ζ < 0, the general solution y(t) will increase without bound as time increases,
and in physical problems this behavior is called instability. In effect, when ζ < 0,
energy is fed into the system as time increases, instead of it being removed by
friction.

The amplitude of the steady state solution isinstability,
amplification factor,
and resonance

P(ω) = A
[(�2 − ω2)2 + 4ζ 2ω2]1/2

, (42)

and P(ω)/A= [(�2 − ω2) + 4ζ 2ω2]−1/2 is called the amplification factor, because
it is the ratio of the amplitude of the solution (response) to the amplitude of the
forcing function (input). The amplification factor attains its maximum value Pmax

when ω = ωc, with ω2
c = �2 − 2ζ 2, in which case

Pmax = A
2ς(�2 − ζ 2)1/2

. (43)

The angular frequency ωc is called the resonant angular frequency of the system
that is said to experience resonance at the the frequency ωc. It is to avoid exciting
resonance that troops marching across a flexible suspension bridge are told to break
step. Conversely, it is for this same reason that when one pushes a swing, successive
pushes need to be synchronized with each oscillation if the amplitude of the motion
is to be built up. If ζ = 0, result (42) shows that resonance occurs when ω = �,
leading to an infinite amplification factor. The critical role played by damping in
limiting the amplitude of oscillations can be seen from (43).

Figures 6.5a and 6.5b show the variation of the scaled amplification factor
�2 P(ω)/Aand the phase angle φ as functions of ω/� for a range of values of ζ/�.

Care must always be exercised when finding the phase angle φ, because the
phase is required to lie in the interval 0 < φ < π , though the usual domain of
definition of the inverse tangent function is (−π/2, π/2).

The most extreme effect of resonance occurs when there is no damping (ζ = 0),
though this can never happen in physical problems because there are always some
dissipative effects. In the absence of damping, the natural angular frequency of
oscillations is �, and equation (42) shows that when the vibrations are forced by a

ζ/Ω = 0.8

ζ/Ω = 0.5

ζ/Ω = 0.2

ζ/Ω = 0.1
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1
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(a)

π

π/2

φ

0.5 1 1.5 2 ω/Ω

ζ/Ω = 0
ζ/Ω = 0.1
ζ/Ω = 0.3
ζ/Ω = 0.6
ζ/Ω = 1.1

0

(b)

FIGURE 6.5 (a) Amplitude as a function of ω/�. (b) Phase angle as a function of ω/�.
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FIGURE 6.6 (a) Variation of amplitude. (b) Variation of phase.

sinusoidal input of angular frequency ω, the amplitude of the steady state solution is

P(ω) = A
|�2 − ω2|1/2

.

This shows that P(ω) becomes infinite when the exciting angular frequency ω

equals the natural angular frequency �. The variation of �P(ω)/A as ω/� varies
is shown in Fig. 6.6a, while the corresponding variation of the phase is shown in
Fig. 6.6b for the limiting case ω → �.

To understand how the solution becomes unstable when ω = �, it is necessary
to consider the solution of

d2 y
dt2

+ �2 y = Asin �t, with y(0) = 0, (dy/dt) = 0, t = 0.

We find that

y(t) = A
2�2

(sin �t − �t cos �t),

and the variation of y(t) is shown in Fig. 6.7, from which it can be seen that when
the damping is zero, forcing at the resonant angular frequency causes the amplitude
of the oscillations to grow linearly with time.

An interesting and important property of oscillatory solutions under conditions
that allow dissipation to be ignored is to be found in the occurrence of beats in thebeats

t

y(t)

0

FIGURE 6.7 Linear growth of amplitude with
time when ζ = 0.
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steady state solution. Consider a solution of the form

y(t) = A
|�2 − ω2|1/2

[cos ωt − cos �t].

Subtracting the trigonometric identities cos(C − D) = cos Ccos D + sin Csin Dand
cos(C + D) = cos Ccos D − sin Csin D, and then setting C = (� + ω)/2 and D =
(� − ω)/2, gives

cos ωt − cos �t = 2sin
(

(� + ω)t
2

)
sin
(

(� − ω)t
2

)
,

so the solution becomes

y(t) = 2A
|�2 − ω2|1/2

sin
(

(� + ω)t
2

)
sin
(

(� − ω)t
2

)
.

This result can be written

y(t) = E(t) sin
(

(� + ω)t
2

)
, with E(t) = 2A

|�2 − ω2|1/2
sin
(

(� − ω)t
2

)
,

showing that when ω is close to �, the solution is in the form of a component with
the “high angular frequency” (� + ω)/2, modulated by an amplitude

E(t) = 2A
|�2 − ω2|1/2

sin
(

(� − ω)t
2

)
;

with the “low angular frequency” (� − ω)/2.
This solution is seen to be in the form of “pulses” at the higher angular frequency

(� + ω)/2 modulated by the lower angular frequency (� − ω)/2. A typical physical
example of beats can be experienced when listening to two sound waves with similar
frequencies �1 and �2 that interact. Then, provided the amplitudes are similar, the
sound at the higher frequency is heard as pulses that arrive at the lower frequency.
Figure 6.8 shows a typical situation where beats occur, and when listening to such
interacting sound waves the high frequency would be heard as a slow throbbing
sound.

EXAMPLE 6.6 Solve the initial value problem

4
d2 y
dt2

+ 4
dy
dt

+ 37y = 12cos t, with y(0) = 1, y′(0) = −2.

t

(Ω2 − ω2)
1/2y(t)/2A

0

FIGURE 6.8 The phenomenon of beats produced when
frequencies ω and � are close.
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Solution The characteristic equation is

4λ2 + 4λ + 37 = 0,

with the roots λ1 = −(1/2) + 3i and λ2 = −(1/2) − 3i , so the complementary func-
tion is

yc(t) = exp[−t/2](C1sin 3t + C2cos 3t).

When written in the standard form the differential equation becomes

d2 y
dt2

+ dy
dt

+ 37
4

y = 3cos t.

Comparison with (33) shows that ζ = 1/2, �2 = 37/4, A= 3, and ω = 1, so ω0 =
(�2 − ζ 2)1/2 = 3. Substituting these results into equations (35) gives C = 48/1105
and D = 396/1105, so the general solution is

an example showing
the makeup of a
typical solution

y(t) = exp[−t/2](C1sin 3t + C2cos 3t) + 48
1105

sin t + 396
1105

cos t.

Imposing the initial condition y(0) = 1 on y(t) gives

1 = C2 + (396/1105), so C2 = 709/1105.

Similarly, imposing the initial condition y′(0) = −2 on y(t) gives

−2 = 48/1105 − (1/2)C2 + 3C1, so C1 = −1269/2210.

Finally, substituting the values of C1 and C2 into the general solution shows that
the solution of the initial value problem is

y(t) = 1
2210

exp(−t/2)(1418cos 3t − 1269sin 3t) + 1
1105

(48sin t + 396cos t).

The steady state solution is

yp(t) = 1
1105

(48sin t + 396cos t) = 12√
1105

cos (t − φ),

where the phase lag φ = arctan C/D = arctan(48/396) = 0.1206 radians, and the
transient solution is

yc(t) = 1
2210

exp(−t/2)(1418cos 3t − 1269sin 3t).

On the following page, the transient solution yp(t) is shown in Fig. 6.9a, the
steady state solution yc(t) in Fig. 6.9b, and the complete solution y(t) of the initial
value problem in Fig. 6.9c.

Summary This section showed that the solution of a nonhomogeneous constant coefficient equation
where the independent variable is the time comprises two parts: one called the transient
solution, which describes the startup of the solution, and another called the steady state
solution, which describes the nature of the time-dependent solution that remains when
the transient solution has decayed sufficiently to become negligible.

The important case involving a sinusoidal forcing function was examined in detail, and
the terms amplitude, frequency, and phase angle of the solution were explained, together
with the important effect of resonance.
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FIGURE 6.9 (a) The transient solution. (b) The steady state solution. (c) The complete solution.

EXERCISES 6.2

In Exercises 1 through 7 solve the initial value problem us-
ing the methods of this section, and identify the steady state
and transient solutions. Confirm the results for the even
numbered problems by computer algebra and plot their so-
lutions for some interval 0 < t < T.

1. y′′ + 2y′ + 5y = 2 sin x, with y(0) = 1, y′(0) = 0.

2. y′′ + 2y′ + 5y = 3 sin x, with y(0) = 0, y′(0) = 0.

3. y′′ + 2y′ + y = sin x, with y(0) = 1, y′(0) = 0.

4. y′′ + 2y′ + y = sin 2x, with y(0) = 2, y′(0) = 0.

5. y′′ + 3y′ + 2y = sin 3x, with y(0) = 0, y′(0) = 1.

6. y′′ + 2y′ + 5y = sin x, with y(0) = 0, y′(0) = 1.

7. y′′ + 5y′ + 6y = Asin x, with y(0) = 3, y′(0) = 1.
8. Use the argument in Section 6.2 when establishing the

results in (35) to show that if the forcing function on the
right of (33) is replaced by A sin ωt , and the particular
integral is written

yp(t) = Csin ωt + Dcos ωt,

the constants C and D are given by

C = A(�2 − ω2)
(�2 − ω2)2 + 4ζ 2ω2

and D = 2ζωA
(�2 − ω2)2 + 4ζ 2ω2

,

and that the phase angle φ is such that

tan φ = − 2ζω

�2 − ω2
.

In Exercises 9 through 14 use the results of Exercise 8 when
solving the initial value problem. Find the phase angle and
identify the steady state and transient solutions.

9. y′′ + 5y′ + 6y = 2 cos x, with y(0) = 1, y′(0) = 1.
10. y′′ + 7y′ + 6y = 2 cos 3x, with y(0) = 2, y′(0) = 1.
11. y′′ + 6y′ + 9y = 2 cos 3x, with y(0) = 2, y′(0) = 2.
12. y′′ + 2y′ + 2y = cos 4x, with y(0) = 0, y′(0) = 2.
13. y′′ + 6y′ + 8y = 3 cos 2x, with y(0) = 4, y′(0) = 1.
14. y′′ + 2y′ + 5y = 3 cos 3x, with y(0) = 2, y′(0) = 3.
15. The fall of a loaded parachute is determined by the dif-

ferential equation

m
d2 y
dt2

+ kg
dy
dt

+ mg = 0,

where m is the weight of the payload in pounds, k is
the drag coefficient of the parachute, y(t) is its height
above the ground at time t in seconds, and g is the
acceleration due to gravity. Taking g = 32 ft/sec2, k =
10 lb/ft/sec, and the initial speed of fall at time t = 0
when the parachute opens 2000 ft above the ground
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to be dy/dt = −32 ft/sec (remember y(t) is measured
upward but the speed is downward), find y(t) and the
speed of fall at time t as functions of m. Use the result
to find the largest payload M in pounds if the speed of
fall on landing is not to exceed 24 ft/sec. Plot y(t) for
m = M and estimate the time of descent in this case.

16. Stokes’ law F = 6πaηu determines the drag F on a
sphere of radius a moving slowly through a fluid with
viscosity η at a speed u. Let the density of the sphere be
ρ1 and the fluid density be ρ2 (ρ1 > ρ2). Find the equa-
tion of motion of the sphere in terms of the distance x(t)
from its point of release, if it falls from rest in the fluid
at time t = 0. Solve the equation of motion to find x(t),
and hence the speed of fall, as functions of time. Suggest
how this result could be used to determine the viscosity
of oil in an experiment involving the release from rest
of a ball bearing that is allowed to fall vertically through
oil contained in a long glass cylinder.

17. A spherical container of radius a and density ρ1 is re-
leased from rest on the sea bed at a depth h below the
surface and allowed to float slowly upward in still water
of density ρ2, where ρ2 − ρ1 is small and ρ2 > ρ1. As-
suming that Stokes’ law in Exercise 16 applies, and the

viscosity of the water is η, find the distance x(t) of the
container from the sea bed as a function of time, and
use it to write down the equation determining the time
T when the container reaches the surface. Estimate this
time, and suggest how a more accurate value of T could
be obtained.

18. As ω → 1, from either above or below, so the solu-
tion x(t) of x′′ + x = sin ωt subject to the initial condi-
tions x(0) = x′(0) = 0 tends to the divergent resonance
solution illustrated in Fig. 6.7. Use computer algebra
to plot the solution for ω = 0.85, 0.95, 0.99, 1.0, 1.05,
and 1.1 to illustrate how the amplitude of the oscilla-
tions tends to a linear growth as ω → 1. Show that for
ω = 1, x = 1

2 (sin t − t cos t).
19. Typically, beats occur when two slowly varying oscilla-

tions with equal amplitudes and almost equal frequen-
cies are superimposed. Use computer algebra to plot
x(t) = cos ω1t + cos ω2t , with suitable values of ω1 and
ω2 and a sufficiently long time interval 0 ≤ t ≤ T, to
show a clear pattern of the beats. Find the equation de-
termining the high-frequency oscillation and the equa-
tions forming the envelope of the high-frequency com-
ponent.

6.3 Homogeneous Linear Higher Order Constant
Coefficient Equations

A Typical Example Leading to a
Fourth Order System
Linear nth order constant coefficient differential equations often arise as a result
of the elimination of all but one of the unknowns in a system of simultaneous lower
order differential equations. To see how this can happen, consider the longitudinal
motion of three equal particles of mass m, coupled together by four identical springs
each of unstrained length l with spring constant k, with the left and right ends of
the system clamped, as illustrated in Fig. 6.10.

Now suppose that the system oscillates in the direction of the springs, with
y1, y2, and y3 the displacements of the masses from their equilibrium positions, as
shown in Fig. 6.10. Equating the rate of change of momentum d/dt{m(dy1/dt)} of
the mass with coordinate y1 to the sum of the restoring force k(y2 − y1) due to
the second spring and the force k(y3 − y1) due to the third spring shows that the
equation of motion of the first mass is

m
d2 y1

dt2
= k(l − y1) + k(y2 − y1 − l) = k(y2 − 2y1).

Similar arguments applied to the second and third masses in this system with three
degrees of freedom (the coordinates y1, y2, and y3) gives the other two coupled
equations of motion,

m
d2 y2

dt2
= k(l + y1 − y2) + k(y3 − y2 − l) = k(y1 + y3 − 2y2)
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FIGURE 6.10 A three-mass–spring system with its ends clamped.

and

m
d2 y3

dt2
= k(l + y2 − y3) + k(4l − y3 − l) = k(4l + y2 − 2y3).

Eliminating any two of the three unknowns y1, y2, and y3 from these three
equations of motion leads to a homogeneous sixth order constant coefficient dif-
ferential equation for the remaining unknown. Initial conditions for the system are
the values yi (0) and y′

i (0) for i = 1, 2, and 3.
More complicated systems of this type are used to study one-dimensional waves

in various types of periodic structure ranging from chains of low-pass electrical filters
to the vibration of molecules in crystal lattices.

A different example that gives rise to a fourth order differential equation is the
modeling of a two degree of freedom vibration damper for a motor generator of
mass M. Unless damped, the vertical vibrations due to the periodic motion of the
pistons are passed to the foundations of the building and can cause unacceptable
vibrations throughout the building. One way of dealing with this problem is not
only to mount the motor generator on a spring and damper system, but also to
spring mount a smaller mass m on top of the motor generator, as in Fig. 6.11, and
to adjust the two spring constants and the mass m so that the vertical oscillations of
M are minimized and passed instead to the smaller mass m mounted on the motor
generator.

Let the mass M be connected to the foundation by a spring with spring con-
stant K, and let the spring constant of the spring supporting mass m be k. To make
the model more realistic, suppose that in addition there is a viscous damper fitted
between the mass M and the foundation that exerts a resistance proportional to
the speed of its displacement with constant of proportionality μ, and let the dis-
placements of the masses M and m from their equilibrium positions be x and y,
respectively. Suppose also that the vibrational force acting on M due to the opera-
tion of the motor generator is F(t).
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FIGURE 6.11 A two degree of freedom vibration system with a viscous damper.

The equation of motion of the mass M obtained by equating its rate of change of
momentum to the combined restoring forces of the two springs, the viscous damper,
and the vibrational force F(t) is

M
d2x
dt2

= −k(x − y) − Kx − μ
dx
dt

+ F(t),

and the equation of motion of the mass m obtained by equating its rate of change
of momentum to the restoring force exerted by the top spring is

m
d2 y
dt2

= −k(y − x).

Eliminating y between these two equations gives the fourth order constant
coefficient equation for x

d4x
dt4

+ α
d3x
dt3

+ (β + γ + γ δ/β)
d2x
dt2

+ αβ
dx
dt

+ γ δx = 1
M

(
γ F(t) + d2 F

dt2

)
,

where α = μ/M, β = k/m, γ = k/M, and δ = K/m.
Similarly, eliminating x between the two equations gives

d4 y
dt4

+ α
d3 y
dt3

+ (β + γ + γ δ/β)
d2 y
dt2

+ αβ
dy
dt

+ γ δy = γ

M
F(t).

When F(t) is a periodic force with frequency ω, and the constants k, K, and
m are adjusted to take account of resonance in the spring and damper mounting,
the system can be tuned so that the displacement x(t) is reduced almost to zero,
and the vibration is transferred instead to the mass m mounted on top of the motor
generator.
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General Homogeneous Higher Order
Constant Coefficient Equations
The homogeneous linear constant coefficient nth order equation

dn y
dxn

+ a1
dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ an y = 0 (44)

has properties that are similar to those of second order equations.
If y1(x), y2(x), . . . , yr (x) are any r solutions of (44), the linearity of the equation

means that the linear combination of functions

y(x) = c1 y1(x) + c2 y2(x) + · · · + cr yr (x),

with c1, c2, . . . , cr arbitrary constants, is also a solution. This linear superposition
property of solutions of the homogeneous equation is an extension of the samelinear superposition

in higher order
systems

property encountered in Section 6.1 when considering homogeneous constant co-
efficient second order equations. The proof of this property follows by substituting
y(x) into the left-hand side of (44), using the linearity of the differentiation opera-
tion

ds

dxs
(c1 y1 + c2 y2 + · · · + cr yr ) = c1

ds y1

dxs
+ c2

ds y2

dxs
+ · · · + cr

ds yr

dxs
,

for s = 0, 1, . . . , n, where d0 y/dx0 ≡ y and grouping terms, to obtain r expressions
of the form

ci

(
dnyi

dxn
+ a1

dn−1 yi

dxn−1
+ · · · + an−1

dyi

dx
+ anyi

)
.

Each of these expressions vanishes, because the yi (x) are solutions of the ho-
mogeneous equation, so the result of substituting y(x) into the left side of (44) is
to reduce it to zero, showing that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cr yr (x)

is a solution.
It will be shown later that the homogeneous equation (44) has n linearly in-

dependent solutions y1(x), . . . , yn(x), and that these form a basis for its solutionbasis, solution space,
and general solutions space. This means that every particular solution of (44) can be written as

y(x) = c1 y1(x) + c2 y2(x) + · · · + cn yn(x), (45)

for some choice of constants c1, c2, . . . , cn. It is because of this property that (45) is
called the general solution of (44).

A more general test for linear independence than the one in Section 6.1 is
needed to ensure that the n solutions y1(x), y2(x), . . . , yn(x) of (44) form a basis
for the solution space. To obtain this test we must first extend the earlier definition
of linear independence in a natural way to a set of functions g1(x), g2(x), . . . , gn(x)
defined over an interval a ≤ x ≤ b. The set of functions will be said to be linearly
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independent over the interval if for all x in the interval,

k1g1(x) + k2g2(x) + · · · + kngn(x) = 0 (46)

is only true if k1 = k2 = · · · = kn = 0; otherwise, the set of functions will be said to
be linearly dependent.

linear independence
and dependence

As the test will be needed later for solutions of linear differential equations
more general than (44), it will be derived for the variable coefficient differential
equation

a0(x)
dn y
dxn

+ a1(x)
dn−1 y
dxn−1

+ · · · + an−1(x)
dy
dx

+ an(x)y = 0, (47)

where the coefficients ai (x) are continuous functions of x for a ≤ x ≤ b. The test
will also apply to solutions of (44), because a constant is a special case of a continuous
function.

The derivation starts from the fact that if the functions y1(x), y2(x), . . . , yn(x)
are solutions of the nth order equation (47) with continuous coefficients over an
interval a ≤ x ≤ b, then they will be everywhere continuous and differentiable at
least n − 1 times over this same interval. By definition, the functions will be linearly
independent over the interval a ≤ x ≤ b if the equation

c1 y1(x) + c2 y2(x) + · · · + cn(x)yn(x) = 0 (48)

is only true if c1 = c2 = · · · = cn = 0 for all x in the interval. Differentiating the
equation n − 1 times gives

c1 y1(x) + c2 y2(x) + . . . + cn(x)yn(x) = 0

c1 y(1)
1 (x) + c2 y(1)

2 (x) + · · · + cn y(1)
n (x) = 0

· · · · · · · · · · · · · · · · · · · · ·
c1 y(n−1)

1 (x) + c2 y(n−1)
2 (x) + · · · + cn y(n−1)

n (x) = 0.

(49)

This homogeneous system of equations can only have the null solution c1 = c2 =
· · · = cn = 0 that is necessary to ensure the linear independence of the functions
y1(x), y2(x), . . . , yn(x) if the determinant W of the coefficients is nonvanishing, for
a ≤ x ≤ b. This shows that the required condition for linear independence is W �= 0,
for a ≤ x ≤ b, whereWronskian

determinant

W =

∣∣∣∣∣∣∣∣∣
y1(x) y2(x) . . . yn(x)

y(1)
1 (x) y(1)

2 (x) . . . y(1)
n (x)

· · · · · · · · · · · · · · ·
y(n−1)

1 (x) y(n−1)
2 (x) . . . y(n−1)

n (x)

∣∣∣∣∣∣∣∣∣ . (50)

The determinant W is called the Wronskian of the set of functions y1(x),
y2(x), . . . , yn(x), and it is named after the Polish mathematician who introduced
the condition. We have proved the following theorem concerning the linear inde-
pendence of solutions of homogeneous linear differential equations with continuous
coefficients.
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JOZEF MARIA WRONSKI (1778–1853)
A Polish philosopher and mathematician now remembered only because of his introduction of
the functional determinant called the Wronskian.

THEOREM 6.2 Wronskian test for linear independence Let y1(x), y2(x), . . . , yn(x) be n − 1 times
differentiable solutions of a homogeneous linear nth order differential equation
with continuous coefficients that is defined over an interval a ≤ x ≤ b. Then a nec-
essary and sufficient condition for the functions to be linearly independent solutionsthe Wronskian

test for linear
independence

of the differential equation is that their Wronskian W is nonvanishing over this in-
terval. The solutions will be linearly dependent over the interval if W vanishes
identically.

EXAMPLE 6.7 (a) The set of continuous functions cosh x, sinh x, 1 is linearly independent,
because the Wronskian

W =
∣∣∣∣∣∣
cosh x sinh x 1
sinh x cosh x 0
cosh x sinh x 0

∣∣∣∣∣∣ = sinh2 x − cosh2 x = −1, for all x.

(b) The set of continuous functions 1, x, x2, (1 + x)2 is linearly dependent because
the Wronskian

W =

∣∣∣∣∣∣∣∣
1 x x2 (1 + x)2

0 x 2x 2 + 2x
0 1 2 2
0 0 0 0

∣∣∣∣∣∣∣∣ = 0 for all x.

This result is obvious without appeal to Theorem 6.2, because setting y1 = 1,
y2 = x, y3 = x2, and y4 = (1 + x)2, we have y4 = y1 + 2y2 + y3, showing that y4 is a
linear combination of y1, y2, and y3.

It should be understood that when Theorem 6.2 is used as a general test for
the linear independence of an arbitrary set of functions u1, u2, . . . un defined over
an interval I, the vanishing of their Wronskian is a necessary condition for their
linear independence over the interval, but it is not a sufficient condition if any of
the functions involved are discontinuous within the interval.

It is the requirement in Theorem 6.2 that the functions be solutions of a homo-
geneous linear differential equation with continuous coefficients that ensures that
the vanishing of the Wronskian is both a necessary and sufficient condition for their
linear independence, though the details of the proof of this are omitted.

An initial value problem for the nth order linear differential equations (44) andinitial value problem
and initial conditions (47) at a point x = x0 involves specifying the initial conditions y(x0) = k0, y(1)(x0) =

k1, . . . , y(n−1)(x0) = kn for y(x), and its first n − 1 derivatives at the point x0, where
the constants k1, k2, . . . , kn can be specified arbitrarily. The derivative y(n)(x0) cannot
be specified as an initial condition, because it is determined by the differential
equation itself once the stated initial conditions have been given.

The following is the fundamental existence and uniqueness theorem for linear
higher order differential equations.

THEOREM 6.3 Existence and uniqueness of solutions Let the coefficients of the homogeneous
differential equation (47) be continuous functions over an interval a < x < b that
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contains the point x0 and a0(x) �= 0 in (a, b). Then a unique solution exists on this
interval that satisfies the initial conditions

y(x0) = k0, y(1)(x0) = k1, . . . , y(n−1)(x0) = kn.

Proof A proof of the existence of solutions of initial value problems for linear
higher order variable coefficient differential equations is beyond the level of this
first account, and so will be omitted. However, the existence and uniqueness of
solutions of initial value problems for constant coefficient equations will follow

existence and
uniqueness
of solutions

from the subsequent work in which the form of the general solution will be found
and its constants matched so that it satisfies the initial conditions.

It remains for us to establish the uniqueness of the initial value problem for
linear higher order variable coefficient equations with continuous coefficients. Let
us consider equation (47), and write its general solution

y(x) = c1 y1(x) + c2 y2(x) + · · · + cnyn(x).

Differentiating this result n − 1 times, and after each differentiation substituting
the initial conditions, leads to the following system of simultaneous equations:

c1 y1(x0) + c2 y2(x0) + · · · + cn(x)yn(x0) = k0

c1 y(1)
1 (x0) + c2 y(1)

2 (x0) + · · · + cn y(1)
n (x0) = k1

· · · · · · · · · · · · · · · · · · · · ·
c1 y(n−1)

1 (x0) + c2 y(n−1)
2 (x0) + · · · + cn y(n−1)

n (x0) = kn−1.

This nonhomogeneous system of linear equations will have a unique solution for
the constant coefficients c1, c2, . . . , cn provided the determinant of the coefficients
does not vanish. The determinant is simply the Wronskian W(x0), and by hypothesis
the n solutions are linearly independent, so W(x0) �= 0 for a ≤ x ≤ b. Consequently,
the coefficients c1, c2, . . . , cn are uniquely determined and, when substituted into
the general solution, lead to a unique solution of the initial value problem.

To solve the homogeneous constant coefficient equation

dn y
dxn

+ a1
dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ any = 0, (51)

we proceed as with a second order equation and seek solutions of the form y(x) =
ceλx, with c and λ constants. Substituting y(x) into (51) leads to the result

(λn + a1λ
n−1 + a2λ

n−2 + · · · + an)eλx = 0,

after which cancellation of the nonvanishing factor eλx shows λ may be any of the
roots of the characteristic equationcharacteristic equation

for higher order
equations

λn + a1λ
n−1 + a2λ

n−2 + · · · + an = 0. (52)

This polynomial of degree n has n roots λ1, λ2, . . . , λn that either will all be
real or, if some are complex, will occur in complex conjugate pairs. To each root
λi there will correspond a solution yi (x), and the linearly independent solutions
y1(x), y2(x), . . . , yn(x) form a basis for the solution space. An arbitrary linear com-
bination of the n basis functions forms the complementary function for (51).



298 Chapter 6 Second and Higher Order Linear Differential Equations and Systems

Rules for constructing the complementary function of an nth order constant
coefficient differential equation

The differential equationhow to construct
the complementary
function

dn y
dxn

+ a1
dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ an y = 0

with real coefficients a1, a2, . . . , an has the characteristic equation

λn + a1λ
n−1 + a2λ

n−2 + · · · + an = 0,

with the n roots λ1, λ2, . . . , λn.
1. To a single real root λ = α there corresponds the single solution eαx,

with Aan arbitrary constant.
2. Substitution shows that to a real root λ = α with multiplicity r (repeated

r times) there correspond the r linearly independent solutions

eαx, xeαx, . . . , xr−1eαx.

3. To a pair of complex conjugate roots λ = α ± iβ there correspond the
two solutions

eαx cos βx and eαx sin βx.

4. To a pair of complex conjugate roots λ = α ± iβ repeated s times, there
correspond the 2s solutions

eαx cos βx, eαx sin βx, eαxx cos βx, eαxx sin βx, . . .

. . . , eαxxs−2 cos βx, eαxxs−2 sin βx, eαxxs−1 cos βx,

eαxxs−1 sin βx.

5. The general solution of the differential equation is an arbitrary linear
combination of all solutions produced by the preceding rules.

To see why the functions in Rules 2 and 4 are solutions of the differential
equation, we consider a typical case in which the differential equation has a real
root λ = μ with multiplicity 2. Removing the factor (λ − μ)2 from the characteristic
polynomial allows it to be written

λn + a1λ
n−1 + a2λ

n−2 + · · · + an = (λ − μ)2Q(λ),

where Q(λ) is a polynomial of degree n − 2 in λ that does not vanish when λ = μ.
Differentiating this result with respect to λ gives

nλn−1 + (n − 1)a1λ
n−2 + · · · + an−1 = 2(λ − μ)Q(λ) + (λ − μ)2Q′(λ),

and setting λ = μ reduces this to

nμn−1 + (n − 1)a1μ
n−2 + · · · + an−1 = 0.
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As the multiplicity of the root is 2, and eμx is known to be a solution, it is necessary
to show that xeμx is also a solution. This will follow if when xeμx is substituted into
the differential equation the result becomes an identity.

Setting y(x) = xeμx and differentiating m times gives y(m) = mμm−1eμx +
μmxeμx. Substituting this into the left-hand side of the differential equation leads
to the result

(nμn−1 + (n − 1)a1μ
n−2 + · · · + an−1)eμx + (μn + a1μ

n−1 + · · · + an−1μ + an)xeμx,

but this is zero because we have shown that the coefficient of eμx is zero, and the
coefficient of xeμx vanishes because μ is a root of the characteristic equation. Thus,
xeμx satisfies the differential equation identically and so is a solution. The functions
eμx and xeμx are linearly independent because they are not proportional.

The same form of argument can be extended to the case whenλ = μ is a real root
of arbitrary multiplicity, whereas the linear independence of the solutions follows
from Theorem 6.2. A similar argument can be used when a pair of complex conjugate
roots occurs with arbitrary multiplicity, though the details of these extensions are
left as exercises.

EXAMPLE 6.8 Find the general solution of

(i) y′′′ − 2y′′ − 5y′ + 6y = 0;
(ii) y′′′ + 2y′′ + 4y′ = 0;

(iii) y(iv) + y′′ − 2y = 0.

Solution

(i) The characteristic equation is

some typical examples

λ3 − 2λ2 − 5λ + 6 = 0.

Inspection shows that λ = 1 is a root, so dividing the characteristic equation by the
factor (λ − 1) shows that the other two roots are the solutions of λ2 − λ − 6 = 0,
which are λ = −2 and λ = 3. Thus, from Rule 1 the general solution is

y(x) = C1ex + C2e−2x + C3e3x.

(ii) The characteristic equation is

λ3 + 2λ2 + 4λ = 0 or λ(λ2 + 2λ + 4) = 0,

from which we see that λ = 0, or λ = −1 ± i
√

3.
Combining Rules 1 and 3 shows the general solution to be

y(x) = C1 + e−x(C2cos(x
√

3) + C3sin(x
√

3)).

(iii) The characteristic equation is

λ4 + λ2 − 2 = 0.

This is a biquadratic equation, so if we set m = λ2, this becomes m2 + m − 2 = 0,
with the solutions m = −2 and m = 1. Thus, λ can take the values 1, −1, i

√
2, and

−i
√

2. Combining Rules 1 and 3 shows the general solution to be

y(x) = C1ex + C2e−x + C3cos(x
√

2) + C4sin(x
√

2).



300 Chapter 6 Second and Higher Order Linear Differential Equations and Systems

EXAMPLE 6.9 Find the general solution of a homogeneous equation with the characteristic
equation

λ3(λ + 4)2(λ2 + 2λ + 5)2 = 0.

Solution In this equation the real root λ = 0 occurs with multiplicity 3, the real
root λ = −4 occurs with multiplicity 2, and the pair of complex conjugate roots
(λ = −1 + 2i) and (λ = −1 − 2i) occur with multiplicity 2.

The terms to be included in the general solution corresponding to the repeated
root λ = 0 follow by setting λ = 0 and r = 3 in Rule 2 to obtain

D1 + D2x + D3x2.

Similarly, the terms to be included corresponding to the repeated root λ = −4
follow by setting α = −4 and r = 2 in Rule 2 to obtain

K1e−4x + K2xe−4x,

where K1 and K2 are arbitrary constants.
Finally, the terms to be included because of the repeated complex conjugate

roots follow by setting α = −1, β = 2, and s = 2 in Rule 4 to obtain

e−x{E1cos 2x + F1sin 2x + E2xcos 2x + F2xsin 2x}.
Collecting terms shows that the general solution is

y(x) = D1 + D2x + D3x2 + K1e−4x + K2xe−4x

+e−x{E1cos (2x) + F1sin (2x) + E2xcos (2x) + F2xsin (2x)}.
This general solution contains nine arbitrary constants, as would be expected be-
cause the characteristic polynomial is of degree 9.

EXAMPLE 6.10 Solve the initial value problem

y′′′ − 2y′′ − 5y′ + 6y = 0, with y(0) = 1, y′(0) = y′′(0) = 0.

Solution The general solution was shown in Example 6.8 (i) to be

y(x) = C1ex + C2e−2x + C3e3x.

The initial conditions require that

(y(0) = 1) 1 = C1 + C2 + C3

(y′(0) = 0) 0 = C1 − 2C2 + 3C3

(y′′(0) = 0) 0 = C1 + 4C2 + 9C3.

The solution of this system of equations is C1 = 1, C2 = 1/5, C3 = −1/5, so the
solution of the initial value problem is

y(x) = ex + 1
5

e−2x − 1
5

e3x.

EXAMPLE 6.11 Solve the initial value problem

y′′′ + 2y′′ + 4y′ = 0, with y(0) = 0, y′(0) = 1, y′′(0) = 0.

Solution The general solution was found in Example 6.8 (ii) to be

y(x) = C1 + e−x(C2cos (x
√

3) + C3sin (x
√

3)).
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The initial conditions require that

(y(0) = 0) C1 + C2 = 0

(y′(0) = 1) 1 = −C2 + C3

√
3

(y′′(0) = 0) 0 = C2 + C3

√
3.

These equations have the solution C1 = 1
/

2, C2 = −1
/

2, and C3 = √
3/6, so the solu-

tion is

y(x) = 1
2

+
√

3
6

e−x sin x
√

3 − 1
2

e−x cos x
√

3.

Summary This section extended the discussion of linear second order constant coefficient equations
to higher order equations, and showed how the characteristic equation again determines
the nature of the solutions that enter into the complementary function. The concept of
linearly independent functions was extended, and it was shown that the set of linearly
independent functions associated with a higher order equation forms a basis for its solution
space. The Wronskian was defined and shown to provide a test for the linear independence
of a set of solutions of a higher order equation. Rules were given for construction of the
complementary function of an nth order constant coefficient equation, and then applied
to some typical examples.

EXERCISES 6.3

1. Use the Wronskian test to prove the linear indepen-
dence of the functions
ex, xex, x2ex for |x| < ∞.

2. Use the Wronskian test to prove the linear indepen-
dence of the functions
sin x, exsin x, excos x.

3. Test the following functions for linear independence:
3, −x, x2, (1 + 2x)2.

4. Test the following functions for linear independence:
1, ln x, ln x1/2, ex for x = 0.

In Exercises 5 through 12 show that the given functions form
a basis for the associated differential equation. Write down
the general solution, state the interval in which it is defined,
and, where required, solve the given initial value problem.

5. xy′′ − y′ − 4x3 y = 0; cosh x2 and sinh x2.
6. xy′′ − y′ + 4x3 y = 0; sin x2 and cos x2.

7. y′′′ + 3y′′ + 9y′ − 13y = 0; ex, e−2xcos 3x, e−2xsin 3x.

Solve the initial value problem for which y(0) = 1, y′(0) = 0,

and y′′(0) = 0.

8. x3 y′′′ − x2 y′′ + 2xy′ − 2y = 0; x, x2, x ln |x|.
Solve the initial value problem for which y(1) = 1, y′(1) = 1,

and y′′(1) = 0.

9. (8x2 + 1)y′′ − 16xy′ + 16y = 0; 2x, 8x2 − 1.

10. y′′ − 16xy′ + (64x2 − 8)y = 0; exp(4x2), 2x exp(4x2).
11. [4 − 2x cot(x/2)]y′′ − xy′ + y = 0; x/2, sin(x/2).
12. 3x3 y′′ + xy′ − y = 0; 3x, 3x exp[1/(3x)].

In Exercises 13 through 18 solve the initial value problems
using the five stated rules for the construction of the comple-
mentary function and, when available, use computer algebra
to check the results.

13. y′′′ + y′′ − 4y = 0, with y(0) = 1, y′(0) = 1, y′′(0) = 0.

14. y′′′ + 3y′′ − 4y = 0, with y(1) = −1, y′(1) = 0,

y′′(1) = 1.

15. y′′′ + 3y′′ + 7y′ + 5y = 0, with y(0) = 1, y′(0) = 0,

y′′(0) = 0.

16. y′′′ − 2y′′ + 5y′ + 26y = 0, with y(0) = 0, y′(0) = 1,

y′′(0) = 1.

17. y(iv) − y′′ − 2y = 0, with y(0) = 1, y′(0) = 0, y′′(0) = 0,

y′′′(0) = 0.

18. y(iv) − y′′ − 6y = 0, with y(0) = 0, y′(0) = 1, y′′(0) = 0,

y′′′(0) = 0.

19.* A gyrostatic pendulum is a pendulum bob (mass) sus-
pended by a light inextensible string from a fixed point,
with the bob allowed to swing around its equilibrium
position. If the displacement of the bob from its equi-
librium position is small, the x and y coordinates of the
bob as a function of time t can be shown to satisfy the
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coupled differential equations

d2x
dt2

+ a
dy
dt

+ c2x = 0 and
d2 y
dt2

− a
dx
dt

+ c2 y = 0,

with a > 0. Find the general solution for x(t) and y(t).
By examination of the constants in the general solu-
tion identify two situation in which the motion of the
bob will be in a circle (a circular pendulum), in each
case commenting on the angular velocity of the bob.

20.* The discharge of capacitor in the primary circuit of an
induction coil with a closed secondary circuit is oscil-
latory and governed by the equations

L
dx
dt

+ M
dy
dt

+ 1
C

∫
xdt = f (t) and

M
dx
dt

+ N
dy
dt

= 0,

where L, M, N, and C are all positive constants and
f (t) is a forcing function. Find the differential equa-
tion satisfied by the discharge x(t), and show that when
LN − M2 is small and positive the complementary
function for the discharge x(t) exhibits rapid oscilla-
tions.

Background material

21.* Let y1(x) and y2(x) be two linearly independent solu-
tions of the differential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0,

defined on some interval I. Then the Abel formula for
the Wronskian is

W(y1(x), y2(x)) = W(y1(x0), y2(x0))

× exp
(

−
∫ x

x0

a1(t)
a0(t)

dt
)

,

where x0 is any point in the interval I . Verify this result
for the differential equation

x2 y′′ − 2xy′ − 4y = 0,

given that two linearly independent solutions over any
interval that does not contain the origin are l/x and x4.
Conclude that the choice of the point x0 entering into
the constant factor W(y1(x0), y2(x0)) is immaterial.

22.* Complete the details of the following outline proof
of the Abel formula. Show that the derivative of the
Wronskian of the functions in Exercise 21 can be
written

W(y1(x), y2(x))′ = y1(x)y′′
2 − y2(x)y′′

1 (x).

Use the fact that y1(x) and y2(x) are solutions of the
differential equation to show that

W′ = −a1(x)
a0(x)

W,

and by integrating over the interval x0 ≤ t ≤ x derive
the result

W(y1(x), y2(x)) = W(y1(x0), y2(x0))

× exp
(

−
∫ x

x0

a1(t)
a0(t)

dt
)

.

6.4 Undetermined Coefficients:
Particular Integrals

Like the nonhomogeneous second order constant coefficient differential equation
considered in Section 6.2, a particular integral yp(x) of the nonhomogeneous linear
higher order constant coefficient differential equation

dn y
dxn

+ a1
dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ an y = f (x) (53)

is a solution of the equation that does not contain arbitrary constants, so

dn yp

dxn
+ a1

dn−1 yp

dxn−1
+ · · · + an−1

dyp

dx
+ an yp = f (x).
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The complementary function yc(x) associated with (53) is the general solutionparticular integral,
complementary
function, and
undetermined
coefficients

of the homogeneous form of the equation

dn yc

dxn
+ a1

dn−1 yc

dxn−1
+ · · · + an−1

dyc

dx
+ an yc = 0,

considered in Section 6.3. It follows from the definitions of yc(x) and yp(x) and the
linearity of the equation that the general solution y(x) of (53) can be written

y(x) = yc(x) + yp(x). (54)

A particular integral of (53) can be found by the method of undetermined
coefficients whenever the nonhomogeneous term f (x) is a linear combination of
elementary functions such as polynomials, exponentials, and sine or cosine func-
tions.

The method depends for its success on recognizing the general form of a func-
tion that when substituted into the left-hand side of (53) yields the general form of
the nonhomogeneous term f (x) on the right-hand side. Undetermined coefficients
are involved because although the general form of a particular integral yp(x) can
be guessed from the function f (x), any multiplicative constants (the undetermined
coefficients) involved will not be known. Their values are found by substituting the
possible form for yp(x) into the left-hand side of (53) and equating the undeter-
mined coefficients of terms on the left of the equation to the known coefficients
of corresponding terms in f (x) on the right. The approach is illustrated in the
following example.

EXAMPLE 6.12 Find the general solution of

y′′ + 5y′ + 6y = 4e−x + 5sin x.

Solution The general solution is

y(x) = yc(x) + yp(x),

where yc(x) is the complementary function satisfying the homogeneous form of the
equation

y′′
c + 5y′

c + 6yc = 0,

and yp(x) is a particular integral that corresponds to the nonhomogeneous term
4e−x + 5sin x.

The characteristic equation is

λ2 + 5λ + 6 = 0,

with the roots λ1 = −2 and λ2 = −3 corresponding to the linearly independent
solutions e−2x and e−3x, so the complementary function is

yc(x) = C1e−2x + C2e−3x,

where C1 and C2 are arbitrary constants.
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To find a particular integral, we notice first that neither the term e−x nor the term
sin x is contained in the complementary function. This means that the only form
of particular integral yp(x) that can produce the nonhomogeneous term 4e−x +
5sin x is

yp(x) = Ae−x + Bsin x + Ccos x,

where A, B, and C are the undetermined coefficients that must be found.undetermined
coefficients Substituting this expression for yp(x) into the differential equation leads to the

result

(Ae−x − Bsin x − Ccos x) + 5(−Ae−x + Bcos x − Csin x)

+ 6(Ae−x + Bsin x + Ccos x) = 4e−x + 5sin x.

When we collect terms involving e−x, sin x, and cos x this becomes

2Ae−x + 5(B − C)sin x + 5(B + C)cos x = 4e−x + 5sin x.

If yp(x) is a particular integral, this expression must be an identity (true for
all x), but this is only possible if the coefficients of corresponding functions of x on
either side of the equation are identical. Equating corresponding coefficients gives

(coefficients of e−x) 2A= 4, so A= 2

(coefficient of sin x) 5(B − C) = 5

(coefficient of cos x) 5(B + C) = 0.

Solving the last two equations for B and C gives B = 1/2, C = −1/2, so the
particular integral is

yp(x) = 2e−x + (1/2)sin x − (1/2)cos x.

Substituting yc(x) and yp(x) into y(x) = yc(x) + yp(x) shows that the general solu-
tion is

y(x) = C1e−2x + C2e−3x + 2e−x + (1/2)sin x − (1/2)cos x.

A complication arises if a term in the nonhomogeneous term f (x) is contained
in the complementary function, as illustrated in the next example.

EXAMPLE 6.13 Find a particular integral of the equation

y′′ + y′ − 12y = e3x.

Solution This equation has the complementary function

yc(x) = C1e3x + C2e−4x,

so e3x is contained in both the nonhomogeneous term and the complementary
function.

An attempt to find a particular integral of the form yp(x) = Ae3x will fail,
because e3x is a solution of the homogeneous form of the equation, so its substitution
into the left-hand side of the differential equation will lead to the contradiction
0 = e3x. To overcome this difficulty we need to seek a more general particular
integral that, when substituted into the differential equation, produces a multiple
of e3x whose scale factor can be equated to the coefficient of the nonhomogeneous
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term and other terms that cancel. As exponentials are involved, a natural choice is
yp(x) = Axe3x.

Differentiation of yp(x) gives

y′
p(x) = Ae3x + 3Axe3x and y′′

p(x) = 6Ae3x + 9Axe3x.

Substituting these results into the differential equation gives

6Ae3x + 9Axe3x + Ae3x + 3Axe3x − 12Axe3x = e3x,

so after cancellation of the terms in Axe3x this reduces to

7Ae3x = e3x,

showing that A= 1/7. So the required particular integral is

yp(x) = 1
7

xe3x.

Table 6.2 lists the form of particular integral that correspond to the most com-
mon nonhomogeneous terms. Each of its entries can be constructed by using ar-
guments similar to the one just given. When the nonhomogeneous term is a linear
combination of terms in the table, the form of yp(x) is found by adding the forms
of the corresponding particular integrals.

EXAMPLE 6.14 Find the general solution of

y′′′ − 5y′′ + 6y′ = x2 + sin x.

Solution The characteristic equation issome typical examples

λ3 − 5λ2 + 6λ = 0, or λ(λ2 − 5λ + 6) = 0,

with the roots λ1 = 0, λ2 = 2, and λ3 = 3, so the complementary function is

yc(x) = C1 + C2e2x + C3e3x.

The function x2 on the right-hand side is not contained in the complementary
function, but there is no undifferentiated term involving y(x) in the equation, so
from Step 2(b) in Table 6.2 the appropriate form of particular integral correspond-
ing to this term is

Ax + Bx2 + Cx3.

The function sin x is not contained in the complementary function, so the form
of particular integral appropriate to this term is seen from Step 4(a) to be

Dsin x + Ecos x.

Combining these two forms shows that the general form of yp(x) is

yp(x) = Ax + Bx2 + Cx3 + Dsin x + Ecos x.

Substituting yp(x) into the differential equation gives

(6C − Dcos x + Esin x) − 5(2B + 6Cx − Dsin x − Ecos x)

+ 6(A+ 2Bx + 3Cx2 + Dcos x − Esin x) = x2 + sin x.
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TABLE 6.2 Particular Integrals by the Method of Undetermined Coefficients

The method applies to the linear constant coefficient differential equation

dn y
dxn + a1

dn−1 y
dxn−1

+ · · · + an−1
dy
dx

+ an y = f (x),

which has the characteristic equation

λn + a1λ
n−1 + · · · + an−1λ + an = 0,

with the roots λ1, λ2, . . . , λn, and the complementary function

yc(x) = C1 y1(x) + C2 y2(x) + · · · + Cn yn(x),

where y1(x), y2(x), . . . , yn(x) are the linearly independent solutions of the homogeneous equation ap-
propriate to the nature of the roots.

1. f (x) = constant. (λ �= 0)

Include in yp(x) the constant term K.

2. f (x) = a0 + a1x + a2x2 + · · · + amxm.

(a) If the left-hand side of the differential equation contains an undifferentiated term y(x),
include in yp(x) the polynomial

A0xm + A1xm−1 + · · · + Am.

(b) If the left-hand side of the differential equation contains no undifferentiated function of
y(x), and the lowest order derivative is ds y/dxs , include in yp(x) the polynomial

A0xm+s + A1xm+s−1 + · · · + Amxs.

3. f (x) = Peax .

(a) If eax is not contained in the complementary function, include in yp(x) the term

Beax .

(b) If the complementary function contains the terms eax, xeax, . . . , xmeax , include in yp(x)
the term

Bxm+1eax .

4. f (x) contains terms in cos px and/or sin px.

(a) If cos px and/or sin px are not contained in the complementary function, include in yp(x)
the terms

Pcos px + Qsin px.

(b) If the complementary function contains the terms x cos px and/or x sin px, include in yp(x)
terms of the form

x2(Pcos px + Qsin px).

(continued )

how to find a
particular integral
using undetermined
coefficients
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TABLE 6.2 (continued )

(c) If the complementary function contains the terms x2 cos px and/or x2 sin px, include in
yp(x) terms of the form

x3(Pcos px + Qsin px).

5. f (x) contains terms in epx cos qx and/or epx sin qx.

(a) If epx cos qx and/or epx sin qx are not contained in the complementary function, include
in yp(x) terms of the form

epx(Rcos qx + Ssin qx).

(b) If the complementary function contains xepx cos qx and/or xepx sin qx, include in yp(x)
terms of the form

x2epx(Rcos qx + Ssin qx).

6. The required particular integral yp(x) is the sum of all the terms produced by identifying each
term belonging to f (x) with one of the types of term listed above.

7. The values of the undetermined coefficients K, A0, A1, . . ., Am, B, P, Q, R, and S are found
by substituting yp(x) into the differential equation, equating the coefficients of corresponding
functions on either side of the equation to make the result an identity, and then solving the
resulting simultaneous equations for the undetermined coefficients.

Equating coefficients of corresponding functions on each side of this expression
to make it an identity, we have

(constant terms) 6C − 10B + 6A= 0,

(terms in x) −30C + 12B = 0,

(terms in x2) 18C = 1,

(terms in sin x) 5D − 5E = 1,

(terms in cos x) 5D + 5E = 0.

Solving these simultaneous equations gives A= 19/108, B = 5/36, C = 1/18, D =
1/10, and E = −1/10, so the particular integral is

yp(x) = 19
108

x + 5
36

x2 + 1
18

x3 + 1
10

sin x − 1
10

cos x.

Combining this with the complementary function shows the general solution to be

y(x) = C1 + C2e2x + C3e3x + 19
108

x + 5
36

x2 + 1
18

x3 + 1
10

sin x − 1
10

cos x.

The existence and uniqueness of solutions of initial value problems for nonho-
mogeneous linear differential equations are guaranteed by the following theorem,
which is a direct extension of Theorem 6.3.
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THEOREM 6.4 Existence and uniqueness of solutions of nonhomogeneous linear equations Let
the coefficients and nonhomogeneous term of differential equation (53) be contin-
uous functions over an interval a < x < b that contains the point x0. Then a uniquemore on existence and

uniqueness: this time
for nonhomogeneous
equations

solution exists on this interval that satisfies the initial conditions

y(x0) = k0, y(1)(x0) = k1, . . . , y(n−1)(x0) = kn−1.

Proof As before, the proof of the existence of solutions of variable coefficient
equations will be omitted, while the existence of solutions of constant coefficient
equations has already been established. This only leaves the proof of uniqueness
that follows along the same lines as those of Theorem 6.3, with y(x) replaced by

y(x) = c1 y1(x) + c2 y2(x) + · · · + cn(x) + yp(x),

and the system of equations determining c1, c2, . . . , cn replaced by

c1 y1(x0) + c2 y2(x0) + · · · + cn(x)yn(x0) = k0 − yp(x0)

c1 y(1)
1 (x0) + c2 y(1)

2 (x0) + · · · + cn y(1)
n (x0) = k1 − y′

p(x0)

. . . . . . . . . . .

c1 y(n−1)
1 (x0) + c2 y(n−1)

2 (x0) + · · · + cn y(n−1)
n (x0) = kn−1 − y(n−1)

p (x0).

The constants c1, c2, . . . , cn are uniquely determined by this system because, as
with Theorem 6.3, the determinant of the coefficients is the Wronskian and so is
nonvanishing for x = x0.

EXAMPLE 6.15 Solve the initial value problem

y′′ + 4y′ + 3y = e−x, with y(0) = 2, y′(0) = 1.

Solution The characteristic equation is

λ2 + 4λ + 3 = 0,

with the roots λ1 = −1 and λ2 = −3, so the complementary function is

yc(x) = C1e−x + C2e−3x.

The nonhomogeneous term e−x is contained in the complementary function,
so by Step 3(b) in Table 6.2 we must seek a particular integral of the form

yp(x) = Axe−x.

Substituting the expression for yp(x) into the differential equation gives

(−2Ae−x + Axe−x) + 4(Ae−x − Axe−x) + 3Axe−x = e−x, or 2Ae−x = e−x,

showing that A= 1/2. So, in this case, the particular integral is yp(x) = (1/2)xe−x

and the general solution is

y(x) = C1e−x + C2e−3x + (1/2)xe−x.

The initial condition y(0) = 2 will be satisfied if

2 = C1 + C2,

and the initial condition y′(0) = 1 will be satisfied if

1/2 = −C1 − 3C2,
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so C1 = 13/4 and C2 = −5/4. Substituting these values for C1 and C2 in the general
solution gives the solution of the initial value problem

y(x) =
(

13
4

+ 1
2

x
)

e−x − 5
4

e−3x.

Summary The determination of particular integrals for nonhomogeneous equations is important, and
the method of undetermined coefficients that was described in this section is the simplest
method by which they can be found. The method is only applicable to nonhomogeneous
terms formed by a sum of polynomials, exponentials, trigonometric functions, and certain
of their combinations. It depends for its success on recognizing the general form of function
that, when substituted into the left of the differential equation, produces terms of the type
found in the nonhomogeneous term on the right. The method involves substituting a
linear combination of such terms with arbitrary constant multipliers (the undetermined
coefficients) into the left of the equation and matching the constants so the terms that
result are identical to the terms on the right.

EXERCISES 6.4

Find the general solutions of the following differential equa-
tions.

1. y′′ + 2y′ − 3y = 4 + x + 4e2x.

2. y′′ + 4y′ + 4y = 2 − sin 3x.

3. y′′ + 2y′ + y = 5 + x2ex.

4. y′′ − 4y′ + 4y = 3x2 + 2e3x.

5. y′′ + 4y′ + 4y = sin x − 2 cos x.

6. y′′ + 4y′ + 5y = sin x.

7. y′′ + 2y′ + 2y = 1 + x + e−x.

8. y′′′ + 5y′′ + 6y′ = 3 sin x + 5x + x2.

9. y′′′ + 2y′′ + 2y′ = 2 − 4x2.

10. y′′ + 2y′ + 2y = sin x.

11. y′′ − 7y′ + 12y = x + e2x + e3x.

12. y′′ + 4y′ + 5y = 3 + 2e−2x.

13. y′′ + 2y′ − 8y = 3xcos 4x.

14. y′′ + 2y′ − 15y = 3 + 2xsin x.

15. y′′ + 9y = 2 cos 3x + sin 3x.

16. y′′ − 4y = 3e2x + 4e−2x.

17. y′′ + 3y′ + 2y = x2 + 3e−2x.

18. y′′′ + y′′ + 3y′ − 5y = 4e−x.

19. y′′ + 4y′ + 5y = e−2xsin x.

20. y′′ + 4y′ + 5y = x2 − e−2xcos x.

In Exercises 21 through 28 solve the initial value problems.
Where the characteristic equation is of degree 3, at least one
root is an integer and can be found by inspection.

21. y′′ + 6y′ + 13y = e−3xcos x, with y(0) = 2, y′(0) = 1.

22. y′′ − 4y′ + 5y = e2xcos x, with y(0) = 0, y′(0) = 2.

23. y′′ + 9y = 7 + 2sin 3x − 4cos 3x, with y(0) = −1,

y′(0) = 1.

24. y′′ + 4y′ + 5y = x + sin x, with y(0) = − 1, y′(0) = 0.

25. y′′ − 2y′ + 5y = 1 + e−x, with y(0) = 2, y′(0) = 1.

26. y′′ + 4y′ + 5y = 2 + e−2x sin x, with y(0) = 0, y′(0) = 0.

27. y′′′ + y′′ − 2y = 3 + 2 cos x, with y(0) = 0, y′(0) = 1,

y′′(0) = −1.

28. y′′′ + y′′ − y′ − y = 2 + e−x, with y(0) = 1, y′(0) = 1,

y′′(0) = 0.

6.5 Cauchy–Euler Equation

One of the simplest linear variable coefficient differential equations is the homo-
geneous second order Cauchy–Euler equation, whose standard form isCauchy–Euler equation

x2 d2 y
dx2

+ a1x
dy
dx

+ a2 y = 0. (55)
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The solution of this homogeneous equation can be reduced to a simple algebraic
problem by seeking a solution of the form

y(x) = Axm, (56)

where A is an arbitrary constant, and the permissible values of m are to be deter-
mined.

Differentiating y(x) to obtain

dy
dx

= mAxm−1 and
d2 y
dx2

= m(m − 1)Axm−2 (57)

and substituting these expressions into the Cauchy–Euler equation gives the fol-
lowing quadratic equation for m:

m(m − 1) + a1m + a2 = 0. (58)

When this equation has two distinct real roots m = α and m = β, the general
solution of (55) is

y(x) = C1xα + C2xβ, (59)

but if the two roots are real and equal with m = μ, the general solution of (55) is

y(x) = C1xμ + C2xμ ln |x|, (60)

where C1 and C2 are arbitrary real constants.
If the equation for m has the complex conjugate roots m = α ± iβ, substitution

confirms that the general solution of (55) is

y(x) = C1xα cos(β ln |x|) + C2xαsin(β ln |x|). (61)

The second solution xμ ln |x| in (60) can be obtained from the method of
Section 6.7 by using the known solution y1(x) = xμ to find a second linearly in-
dependent solution y2(x). The form of solution (61) follows from writing the gen-
eral solution as y(x) = Aexp(α + iβ) + Bexp(α − iβ), with A an arbitrary complex
constant and B its complex conjugate so that y(x) is real.

EXAMPLE 6.16 Find the general solution of

x2 d2 y
dx2

+ 3x
dy
dx

+ 2y = 0 for x �= 0.

Solution The equation for m is

m(m − 1) + 3m + 2 = 0,

with the roots m = −1 ± i . The general solution is thus

y(x) = C1x−1cos (ln |x|) + C2x−1sin (ln |x|).
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Summary The Cauchy–Euler equation is the simplest linear variable coefficient equation for which a
closed form analytical solution can be found. The solution is obtained by recognizing that
it must be of the form y(x) = Axm and finding the permissible values of m.

EXERCISES 6.5

Find the general solutions of the following Cauchy–Euler
equations.

1. x2 y′′ + 3xy′ − 3y = 0.

2. x2 y′′ + 3xy′ + 5y = 0.

3. x2 y′′ + 5xy′ + 9y = 0.

4. x2 y′′ − 3xy′ − 5y = 0.

5. x2 y′′ + 3xy′ − 8y = 0.

6. x2 y′′ + 2xy′ + 4y = 0.

7. x2 y′′ + 6xy′ + 4y = 0.

8. x2 y′′ + xy′ + 4y = 0.

9. x2 y′′ + 4xy′ + 4y = 0.

10. x2 y′′ + 3xy′ + 6y = 0.

11. With the change of variable x = et , we find using the
chain rule that

dy
dx

= 1
x

dy
dt

and
d2 y
dx2

= 1
x2

(
d2 y
dt2

− dy
dt

)
.

Use these results to show that this change of variable
transforms a Cauchy–Euler equation into a constant co-
efficient equation, and solve Exercise 3 by this method.

12. Use the substitution y(x) = Axm to solve the third or-
der Cauchy–Euler equation

x3 y′′′ − 3x2 y′′ + 6xy′ − 6y = 0.

13. Use the substitution of Exercise 11 to solve the Cauchy–
Euler equation in Exercise 12.

14. Express dy/dx, d2 y/dx2, and d3 y/dx3 in terms of
dy/dt , d2 y/dt2, and d3 y/dt3 if ax + b = et . Use the sub-
stitution to show that the general solution of

(2x + 3)3 y′′′ + 3(2x + 3)y′ − 6y = 0

is

y(x) = C1(2x + 3) + C2(2x + 3)1/2 + C3(2x + 3)3/2

for x > 0.

6.6 Variation of Parameters
and the Green’s Function

Variation of Parameters
The method of variation of parameters, perhaps more properly called variation of
constants, is a powerful method used to find a particular integral of a linear dif-
ferential equation once its complementary function is known. In what follows the
method will be developed for a general linear second order variable coefficient dif-
ferential equation, though it is easily extended to include linear variable coefficient
differential equations of any order.

As linear constant coefficient equations are a special case of variable coeffi-
cient equations, the method enables particular integrals to be found for all linear
equations. The method also has the advantage that no special cases arise due to the
nonhomogeneous term being included in the complementary function.

Consider the general linear second order differential equation

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x), (62)

idea underlying the
method of variation
of parameters

defined on some interval α ≤ x ≤ β over which a(x), b(x), and f (x) are defined
and continuous. Let y1(x) and y2(x) be two known linearly independent solutions
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of the homogeneous form of (62), so the complementary function is

yc(x) = C1 y1(x) + C2 y(x). (63)

The idea underlying the method of variation of parameters, and from which it
derives its name, is to replace the constants C1 and C2 by the unknown functions
u1(x) and u2(x), and then to seek a particular integral of the form

yp(x) = u1(x)y1(x) + u2(x)y2(x). (64)

Two equations are needed in order to determine u1(x) and u2(x), and the first
of these is obtained as follows. Differentiation of (64) gives

y′
p(x) = u1(x)y′

1(x) + u2(x)y′
2(x) + u′

1(x)y1(x) + u′
2(x)y2(x),

so by requiring u1(x) and u2(x) to be such that the last two terms vanish, we have

y′
p(x) = u1(x)y′

1(x) + u2(x)y′
2(x), (65)

subject to the condition

u′
1(x)y1(x) + u′

2(x)y2(x) = 0. (66)

Equation (66) is the first condition to be imposed on u1(x) and u2(x), and a
second condition is obtained as follows. Differentiating (65) gives

y′′
p(x) = u1(x)y′′

1 (x) + u2(x)y′′
2 (x) + u′

1(x)y′
1(x) + u′

2(x)y′
2(x), (67)

so substituting (64), (65), and (67) into (62), followed by grouping terms, gives

u1[y′′
1 + a(x)y′

1 + b(x)y1] + u2[y′′
2 + a(x)y′

2 + b(x)y2] +
+ u′

1 y′
1 + u′

2 y′
2 = f (x). (68)

As y1(x) and y2(x) are both solutions of differential equation (62) with f (x) = 0,
the expressions multiplying u1(x) and u2(x) both vanish identically, reducing (68)
to the second condition on u1(x) and u2(x),

u′
1 y′

1 + u′
2 y′

2 = f (x). (69)

The functions u1(x) and u2(x) can now be found by solving equations (66) and
(69). Solving these for u′

1(x) and u′
2(x) gives

u′
1(x) = −y2(x) f (x)

W(x)
and u′

2(x) = y1(x) f (x)
W(x)

, (70)

where

W(x) =
∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣ = y1 y′
2 − y′

1 y2 (71)

is the Wronskian of y1(x) and y2(x) and so is never zero.
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After integration, results (70) become

u1(x) = −
∫

y2(x) f (x)
W(x)

dx and u2(x) =
∫

y1(x) f (x)
W(x)

dx. (72)

Finally, combining (64) and (72), we find thatthe general solution

y(x) = −y1(x)
∫

y2(x) f (x)
W(x)

dx + y2(x)
∫

y1(x) f (x)
W(x)

dx. (73)

This result represents the general solution of (62), because each indefinite inte-
gral has associated with it an additive arbitrary constant, and if these are −C1 and C2,
say, they include in y(x) the complementary function yc(x) = C1 y1(x) + C2 y2(x).
When these constants are set equal to zero result (73) reduces to the particular
integral yp(x).

how to apply the
method of variation
of parameters

Rule for the method of variation of parameters

1. Write the differential equation in the standard form

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x).

2. Find two linearly independent solutions y1(x) and y2(x) of the homoge-
neous form of the differential equation and construct the equations

u′
1(x)y1(x) + u′

2(x)y2(x) = 0 and u′
1 y′

1 + u′
2 y′

2 = f (x).

3. Solve the equations in Step 2 for u′
1(x) and u′

2(x) and integrate to find
u1(x) and u2(x), each with an arbitrary additive constant of integration.

4. The general solution of the differential equation is then given by

y(x) = u1(x)y1(x) + u2(x)y2(x).

Or, alternatively, after finding y1(x) and y2(x):
5. Substitute into

y(x) = −y1(x)
∫

y2(x) f (x)
W(x)

dx + y2(x)
∫

y1(x) f (x)
W(x)

dx,

where

W(x) =
∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣ = y1 y′
2 − y′

1 y2.

6. The result of Step 5 becomes the particular integral yp(x) if the arbitrary
integration constants are set equal to zero.
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The example that follows shows how the method of variation of parameters
deals automatically with the presence of a nonhomogeneous term in the comple-
mentary function of a constant coefficient equation.

EXAMPLE 6.17 Find the general solution of the second order differential equation

y′′ + 2y′ + y = xe−x.

Solution The characteristic equation is

λ2 + 2λ + 1 = 0,

with the repeated root λ = −1. Thus, the complementary function is

a simple example that
could also be solved
by undetermined
coefficients

yc(x) = C1e−x + C2xe−x.

Two linearly independent solutions are thus

y1(x) = e−x and y2(x) = xe−x,

while the nonhomogeneous term is f (x) = xe−x. The Wronskian

W(x) =
∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣ = e−x(e−x − xe−x) + e−xxe−x = e−2x,

so substituting in (73) shows that the particular integral is

yp(x) = −e−x
∫

x2dx + xe−x
∫

xdx = 1
6

x3e−x.

The general solution is

y(x) = C1e−x + C2xe−x + 1
6

x3e−x.

This result could, of course, have been found by the method of undetermined co-
efficients.

The next example shows how the method of variation of parameters determines
a particular integral for a constant coefficient equation whose particular integral
could not have been found by using undetermined coefficients.

EXAMPLE 6.18 Find the general solution of the differential equation

y′′ + y = csc x

in any interval in which x �= nπ , for n = 1, 2, . . . .an example that
could not be solved
by undetermined
coefficients

Solution It follows at once that the complementary function is

yc(x) = C1 cos x + C2sin x,

so two linearly independent solutions are

y1(x) = cos x and y2(x) = sin x.

The Wronskian W(x) = y1 y′
2 − y′

1 y2 = cos2x + sin2x = 1, and f (x) = 1/ sin x,
so substituting into (73) shows that the particular integral is

yp(x) = − cos x
∫

dx + sin x
∫

cot xdx.
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As
∫

cot x dx = ln |sin x|,
yp(x) = −x cos x + sin x ln |sin x|,

and the general solution is

y(x) = C1cos x + C2sin x − xcos x + sin x ln |sin x|,
in any interval in which x �= nπ , for n = 1, 2, . . . , because ln |sin nπ | = ∞. Although
this is a constant coefficient equation, it is unlikely that its particular integral could
have been found by the method of undetermined coefficients.

The last example shows how the method of variation of parameters determines
a particular integral for a linear second order variable coefficient equation.

EXAMPLE 6.19 Find the general solution of the second order variable coefficient equation

x2 y′′ − 3xy′ + 4y = ln x (x > 0).

Solution This is a Cauchy–Euler equation, and the method of Section 6.5 showsapplication to a
variable coefficient
equation

that its complementary function is

yc(x) = C1x2 + C2x2 ln x, for x > 0,

so two linearly independent solutions are

y1(x) = x2 and y2(x) = x2 ln x for x > 0.

A routine calculation shows the Wronskian W(x) = x3. Before identifying
f (x) the equation must be written in the standard form with the coefficient of y′′

equal to 1. Dividing the differential equation by x2 to bring it into the standard
form shows that f (x) = (ln x)/x2.

Substitution into (73) then gives

yp(x) = −x2
∫

(ln x)2

x3
dx + x2 ln x

∫
ln x
x3

dx.

Integration by parts shows that∫
(ln x)2

x3
= −1

2
(ln x)2

x2
− 1

2
ln x
x2

− 1
4x2

and
∫

ln x
x3

dx = −1
2

ln x
x2

− 1
4x2

,

so using these results in the expression for yp(x) gives

yp(x) = 1
4

+ 1
4

ln x (x > 0).

The general solution is thus

y(x) = C1x2 + C2x2 ln x + 1
4

+ 1
4

ln x (x > 0).

Although the complementary function of a Cauchy–Euler equation is easily
determined, a particular integral is usually sufficiently complicated that its gen-
eral form cannot be guessed and so must be found by the method of variation of
parameters.
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Finally, we remark that an application of the method of variation of parameters
to the equation

y′′ + y = (1 + x2)1/2

gives a particular integral in the form

yp(x) = − cos x
∫

(sin x)(1 + x2)1/2dx + sin x
∫

(cos x)(1 + x2)1/2dx.

Neither of the two integrals involved can be evaluated in terms of known
functions, so if an analytical solution is needed it must be obtained in series form.

what happens if an
integral has no
known antiderivative

The Maclaurin series for the functions (sin x)(1 + x2)1/2 and (cos x)(1 + x2)1/2 are

(sin x)(1 + x2)1/2 = x + 1
3

x3 − 1
5

x5 + · · · and

(cos x)(1 + x2)1/2 = x − 1
3

x4 − 13
90

x6 + · · · .

Integrating these results and substituting in the expression for yp(x) gives

yp(x) = −(cos x)
(

1
2

x2 + 1
12

x4 − 1
30

x6 + · · ·
)

+ sin x
(

x − 1
15

x5 + 13
630

x7 + · · ·
)

.

Let y(x) satisfy the differential equation

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x), (74)

defined on an interval α ≤ x ≤ β, and let a be any point inside this interval. Then
the general solution of (74) given in (73) can be put into a convenient form for
solving the initial value problem for (74) when the initial conditions are y(a) = 0
and y′(a) = 0.

We start from the general solution in (73)

y(x) = −y1(x)
∫

y2(x) f (x)
W(x)

dx + y2(x)
∫

y1(x) f (x)
W(x)

dx. (75)

Next, we rewrite the indefinite integral
∫ y2(x) f (x)

W(x) dx as the definite integral with a
variable upper limit

∫ x
a

y2(t) f (t)
W(t) dt and an arbitrary fixed lower limit x = a. In this

result, the additive arbitrary integration constant associated with the indefinite
integral has been replaced by the arbitrary constant a in the lower integration
limit. The implications of the lower limit will become apparent when an initial
value problem is considered. A corresponding result holds for the second indefinite
integral in (75). Using these results, taking the functions y1(x) and y2(x) under the
respective integral signs as they are not involved in the integrations, and combining
the integrals allows the general solution y(x) to be written in the form

y(x) =
∫ x

a

y1(t)y2(x) − y1(x)y2(t)
W(t)

f (t)dt. (76)
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Setting x = a in this result shows that y(a) = 0. Differentiation of (76) with
respect to x using Leibniz’s rule

d
dx

∫ q(x)

p(x)
g(x, t)dt = dq

dx
g(x, q) − dp

dx
g(x, p) +

∫ q(x)

p(x)

∂

∂x
g(x, t)dt

gives

y′(x) = y1(x)y2(x) − y1(x)y2(x)
W(x)

f (x) +
∫ x

a

y1(t)y′
2(x) − y′

1(x)y2(t)
W(t)

dt.

The first term on the right vanishes, and setting x = a causes the integral to vanish,
so we have shown that y′(a) = 0. Consequently, the integralvariation of

parameters and
initial value
problems y(x) =

∫ x

a

y1(t)y2(x) − y1(x)y2(t)
W(t)

f (t)dt

solves the initial value problem

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x), with y(a) = y′(a) = 0.

EXAMPLE 6.20 Use result (76) to solve the initial value problem

y′′ + 4y = 1 + cos 2x, with y(0) = y′(0) = 0.

Solution Two linearly independent solutions of the homogeneous equation are
y1(x) = sin 2x and y2(x) = cos 2x, so W(t) = −2(sin2 2t + cos2 2t) = −2. Substitut-
ing into (76) with f (t) = 1 + cos 2t gives

y(x) =
∫ x

0

1
2 (sin 2xcos 2t − sin 2tcos 2x)(1 + cos 2t)dt,

and so

y(x) = 1
4 (1 − cos 2x + xsin 2x).

The Green’s Function
An important result that can be derived from the general solution of (74) when
expressed in the form given in (75) is obtained by considering a boundary value
problem for the equation written in the standard form

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x), (77)

and defined over the interval a ≤ x ≤ b.
Evaluating the first integral in (75) over the interval b ≤ t ≤ x, changing the

sign by reversing the limits of integration, and then evaluating the second integral
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over the interval a ≤ t ≤ x gives

y(x) = y2(x)
∫ x

a

y1(t)
W(t)

f (t)dt + y1(x)
∫ b

x

y2(t)
W(t)

f (t)dt. (78)

As y2(x) is not involved in the first integral, and y1(x) is not involved in the second
integral, they may be taken under the respective integral signs so that (78) becomes

y(x) =
∫ x

a

y1(t)y2(x)
W(t)

f (t)dt +
∫ b

x

y1(x)y2(t)
W(t)

f (t)dt. (79)

This can be written

y(x) =
∫ b

a
G(x, t) f (t)dt, (80)

where the function G(x, t) is called the Green’s function for differential equationthe Green’s function
(77) defined over the interval a ≤ x ≤ b and is defined as

G(x, t) =

⎧⎪⎪⎨⎪⎪⎩
y1(t)y2(x)

W(t)
, a ≤ t ≤ x

y1(x)y2(t)
W(t)

, x ≤ t ≤ b.

(81)

Inspection of (81) shows G(x, t) to be a continuous function of x for a ≤ x ≤ b.
Differentiation of G(x, t) with respect to x gives

Gx(x, t) =

⎧⎪⎪⎨⎪⎪⎩
y1(t)y′

2(x)
W(t)

, a ≤ t ≤ x

y′
1(x)y2(t)

W(t)
, x ≤ t ≤ b.

(82)

Examination of (82) shows that as t increases across t = x, the function Gx(x, t) is
discontinuous and experiences the jump

Gx(x, x+) − Gx(x, x−) = y′
1(x)y2(x) − y1(x)y′

2(x)
W(x)

= −W(x)
W(x)

= −1,

where x+ is the limit at t decreases to x and x− is the limit as t increases to x.
Now let y1(x) and y2(x) be two linearly independent solutions of the homoge-

neous differential equation, with y1(x) such that at x = a it satisfies the homoge-
neous boundary condition

k1 y1(a) + K1 y′
1(a) = 0,

and y2(x) such that at x = b it satisfies the homogeneous boundary condition

k2 y2(b) + K2 y′
2(b) = 0.

Then G(x, t) is seen to satisfy these same homogeneous boundary conditions,
and differentiation of (80) with respect to x, again using Leibniz’s rule, shows that
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the solution y(x) also satisfies these homogeneous boundary conditions. Combining
results shows that

y(x) =
∫ b

a
G(x, t) f (t)dt with G(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1(t)y2(x)

W(t)
, a ≤ t ≤ x

y1(x)y2(t)
W(t)

, x ≤ t ≤ b

(83)

is the solution of the boundary value problem for the nonhomogeneous linear
second order equation

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = f (x),

subject to the homogeneous boundary conditions

k1 y(a) + K1 y′(a) = 0 with k2 y(b) + K2 y′(b) = 0.

When using this approach, unless the Green’s function itself is required, it
is usually more convenient to obtain the solution directly from result (78). The
advantage of the Green’s function is that it characterizes all the essential features
of the differential equation without reference to the nonhomogeneous term f (x),
so that once it is known (80) solves the homogeneous boundary value problem for
any function f (x).

Properties of the Green’s function defined over the interval a ≤ x ≤ b

Consider the boundary value problem

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = 0,

fundamental
properties of the
Green’s function

subject to the boundary conditions

k1 y(a) + K1 y′(a) = 0 and k2 y(b) + K2 y′(b) = 0

The Green’s function in (81) has the following properties:

1. The piecewise defined Green’s function G(x, t) satisfies the differential
equation in the respective intervals a ≤ x < t and t < x ≤ b.

2. G(x, t) is a continuous function of x for a ≤ x ≤ b.
3. G(x, t) satisfies the homogeneous boundary conditions.
4. The function Gx(x, t) is continuous for a ≤ x < t and t < x ≤ b, but it

is discontinuous across x = t where it experiences the jump

Gx(x, x+) − Gx(x, x−) = −1.
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EXAMPLE 6.21 Find the Green’s function for the differential equation

x2 y′′ − 2xy′ + 2y = 3x2

and use it to solve the boundary value problem when y(1) = 0 and y′(2) = 0.

Solution The homogeneous form of the equation is a Cauchy–Euler equation, and
the method of Section 6.5 shows that it has the two linearly independent solutions
y1(x) = x and y2(x) = x2, so the general solution is y(x) = ax + bx2.

For the solution y1(x) we must use the form of this solution that satisfies the left
boundary condition y(1) = 0, and this is easily seen to be y1(x) = x − x2. For the
linearly independent solution y2(x) we must use the form of solution y(x) = ax +
bx2 that satisfies the right boundary condition y′(2) = 0. As y′(x) = a + 2bx, the
condition y′(2) = 0 shows that y2(x) = 4x − x2. Using these results the Wronskian
becomes W(t) = 3t2.

The Green’s function for this differential equation defined by (81) is

G(x, t) =

⎧⎪⎪⎨⎪⎪⎩
(t − t2)(4x − x2)

3t2
, 1 ≤ t < x

(4t − t2)(x − x2)
3t2

, x < t ≤ 2.

To find the function f (x) we must write the equation in the standard form
where the coefficient of y′′ is 1, so

y′′ − 2
x

y′ + 2
x2

y = 3,

showing that f (x) = 3. It now follows from (78), or from (80), that

y(x) = (4x − x2)
∫ x

1

(t − t2)
3t2

3dt + (x − x2)
∫ 2

x

(4t − t2)3
3t2

dt,

and so

y(x) = x2(3 ln x − 2 − 4 ln 2) + 2x(1 + 2 ln 2).

It is easily checked that this is the required solution, because y(1) = 0, y′(2) = 0,
and y(x) satisfies the differential equation.

More information and examples relating to the material in Sections 6.1 to 6.6
can be found in any one of the references [3.3], [3.4], [3.15], and [3.16].

Summary This section described the powerful method of variation of parameters that enables the
general solution of a linear nonhomogeneous equation to be found from the linearly inde-
pendent solutions (the basis functions) that enter into its complementary function. It takes
automatic account of nonhomogeneous terms that contain one or more basis functions,
and it enables particular integrals, and hence general solutions, to be found where the
method of undetermined coefficients fails. It was shown how the general solution ob-
tained by the method of variation of parameters can be rewritten in terms of a Green’s
function that characterizes all of the essential features of the differential equation without
reference to the nonhomogeneous term. Knowledge of the Green’s function enables a ho-
mogeneous boundary value problem to be solved for any given nonhomogeneous term
on the right of the equation.
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EXERCISES 6.6

In Exercises 1 through 13 find the general solution.

1. y′′ + y′ − 2y = xex .
2. y′′ − 5y′ + 6y = x2e3x .
3. y′′ + 5y′ + 6y = x2e−2x .
4. y′′ + 4y′ + 4y = xsin x.
5. y′′ − 2y + y = 2ex/x.
6. y′′ +4y′ +5y= e−2x sin x.
7. y′′ + 4y′ + 5y =

xe−2x cos x.

8. y′′ − 4y′ + 4y = e2x/x.
9. y′′ + 16y = x2ex .

10. y′′ + 16y = sec x.
11. y′′ + 3y′ + 2y =

3/(1 + ex).
12. y′′ + y = tan x.
13. y′′ + y = sec2 x.

In Exercises 14 through 18 verify that the functions y1(x)
and y2(x) are linearly independent solutions of homoge-
neous form of the stated differential equation, and use them
to find a particular integral and a general solution of the
given equation.

14. x2 y′′ − 4xy′ + 6y = 2x + ln x, where y1(x) = x2 and
y2(x) = x3.

15. x2 y′′ + 3xy′ − 3y = √
x, where y1(x) = x and

y2(x) = x−3.
16. x2 y′′ + 3xy′ − 8y = 2 ln x, where y1(x) = x2 and

y2(x) = x−4.
17. (1 − x2)y′′ − xy′ + 4y = x, where y1(x) = 2x2 − 1 and

y2(x) = x(x2 − 1)1/2.
18. (1 − x2)y′′ − 2y′ = 1, where y1(x) = 1 and y2(x) = x +

2 ln(x − 1).

In Exercises 19 through 22 use result (76) to solve the stated
initial value problem.

19. x2 y′′ − 3xy′ + 3y = 2x2 ln x, with y(1) = 0 and
y′(1) = 0.

20. y′′ + 5y′ + 6y = xe−2x , with y(1) = 0 and y′(1) = 0.
21. y′′ + y = 2 sec2 x, with y(0) = 0 and y′(0) = 0.
22. y′′ + 4y′ + 5y = x, with y(0) = 0 and y′(0) = 0.

In Exercises 23 through 26 find the Green’s function for the
given differential equation, subject to the associated homo-
geneous boundary conditions.

23. y′′ = f (x), with y(0) = 0 and y(1) = 0.
24. y′′ = f (x), with y(0) = 0 and y′(1) = 0.
25. y′′ + λ2 y = f (x), with y(0) = 0 and y(1) = 0.
26. y′′ + λ2 y = f (x), with y(0) = 0 and y′(1) = 0.

In Exercises 27 through 30 solve the given boundary value
problem by means of a suitable Green’s function.

27. x2 y′′ + xy′ − y = x2e−x , with y(1) = 0 and y(2) = 0.
28. x2 y′′ + 2xy′ − 2y = x3, with y(1) = 0 and y(2) = 0.
29. x2 y′′ − 3xy′ + 3y = x2 ln x, with y′(1) = 0 and y(2) = 0.
30. x2 y′′ − 3xy′ = x2, with y(1) = 0 and y(2) = 0.

6.7 Finding a Second Linearly Independent
Solution from a Known Solution:
The Reduction of Order Method

In working with homogeneous linear second order variable coefficient equations,
it can happen that one solution y1(x) is known and it is necessary to find a sec-
ond linearly independent solution y2(x). The method we now describe, called the
reduction of order method, involves seeking a second solution of the form

y2(x) = u(x)y1(x), (84)

where the function u(x) is to be determined. Provided u(x) is not constant, the
solutions y1(x) and y2(x) will be linearly independent, because y1(x) and y2(x) will

reduction of order
method

not be proportional.
The method will be developed using the homogeneous second order variable

coefficient equation in the standard form

d2 y
dx2

+ a(x)
dy
dx

+ b(x)y = 0. (85)
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Differentiating (84) gives

dy2

dx
= du

dx
y1 + u

dy1

dx
, and

d2 y2

dx2
= d2u

dx2
y1 + 2

du
dx

dy1

dx
+ u

d2 y1

dx2
. (86)

Substituting (84) and (86) into (85) and grouping terms gives

y1u′′ + (2y′
1 + ay1)u′ + (y′′

1 + ay′
1 + by1)u = 0. (87)

As y1(x) is a solution of (85), the factor y′′
1 + ay′

1 + by1 multiplying u is zero,
causing the equation to be reduced to

d2u
dx2

= −
(

2y′
1

y1
+ a(x)

)
du
dx

. (88)

The substitution v = du/dx reduces (88) to the first order variables separable equa-
tion

dv
dx

= −
(

2y′
1

y1
+ a(x)

)
v, (89)

and it is from this reduction of order of the differential equation that the method
derives its name.

Separating variables and integrating (89) we find that∫
dv
v

= −
∫ (

2y′
1

y1
+ a(x)

)
dx + ln C,

or

ln(v/C) = −
∫ (

2y′
1

y1
+ a(x)

)
dx,

so

v(x) = C
exp{− ∫ a(x)dx}

y2
1

. (90)

As v = du/dx, integration of (90) gives

u(x) = C
∫ [

exp{− ∫ a(x)dx}
y2

1

]
dx + D,

where D is another arbitrary constant.
The arbitrary constant D can be set equal to zero, because when u(x) is sub-

stituted in (84) the constant D will simply scale the solution y1(x). Furthermore, as
any constant C that scales u(x) will scale each term in the differential equation, its
value is immaterial, so for convenience we set C = 1. Thus, the expression for u(x)
is given by

u(x) =
∫ [

exp{− ∫ a(x)dx}
y2

1

]
dx. (91)
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Using this expression for u(x) in (84) shows that the second linearly indepen-
dent solution is

y2(x) = y1(x)
∫ [

exp{− ∫ a(x)dx}
y2

1

]
dx. (92)

Thus, in terms of y1(x), the general solution of (85) can be written

y(x) = C1 y1(x) + C2 y1(x)
∫ [

exp{− ∫ a(x)dx}
y2

1

]
dx, (93)

where C1 and C2 are arbitrary constants.

EXAMPLE 6.22 Given that y1(x) = e−3x is a solution of y′′ + 6y′ + 9y = 0, find a second linearly
independent solution, and hence find the general solution.

Solution The equation is in standard form with a(x) = 6 and y1(x) = e−3x, so

u(x) =
∫ (

exp{− ∫ 6 dx}
exp(−6x)

)
dx =

∫
dx = x,

showing that

y2(x) = xe−3x.

This result is to be expected, because the linear constant coefficient equation cor-
responds to case (III) with μ = −3. The general solution is thus

y(x) = (C1 + C2x)e−3x.

EXAMPLE 6.23 Given that y1(x) = x2 is a solution of x2 y′′ − 3xy′ + 4y = 0 for x > 0, find a second
linearly independent solution, and hence find the general solution.

Solution Writing the equation in standard form (85) shows that a(x) = −3/x, so

u(x) =
∫

exp{− ∫ {−3/x)dx}
x4

dx =
∫

exp{ln x3}
x4

dx

=
∫

dx
x

= ln x,

from which it follows that the second linearly independent solution is

y2(x) = x2 ln x for x > 0.

The general solution is

y(x) = x2(C1 + C2 ln x).

The reduction of order method can lead to an expression for u(x) that cannot be
integrated analytically. In such cases, in order to find an analytical approximation to
y2(x), the integrand in (92) must be expanded in powers of x and integrated term by
term. This approach will be used in Chapter 8 in connection with series solutions of
second order variable coefficient linear differential equations. See references [3.3]
and [3.4].
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Summary It is often the case that one solution of a linear second order variable-coefficient homoge-
neous variable-coefficient equation can be found, often by inspection, though a second
linearly independent solution cannot be found in similar fashion. This section showed how
a known solution can be used to find a second linearly independent solution. It was shown
that the second linearly independent solution of the original second order equation is
determined in terms of a first order equation, and it is this feature that has caused this
approach to be called the reduction of order method.

EXERCISES 6.7

In the following exercises, verify that y1(x) is a solution of
the given differential equation and use it to find a second
linearly independent solution.

1. y′′ − 5y′ − 14y = 0 with y1(x) = e7x .
2. y′′ + 4y = 0, with y1(x) = sin 2x.
3. y′′ + 4y′ + 5y = 0, with y1(x) = e−x cos x.
4. x2 y′′ + 3xy′ + y = 0, with y1(x) = 1/x.
5. x2 y′′ − xy′ + y = 0, with y1(x) = x.

6. x2 y′′ + xy′ + y = 0, with y1(x) = cos(ln x).
7. xy′′ + 2y′ + xy = 0, with y1(x) = sin x/x.
8. x2 y′′ + xy′ + (x2 − 1/4)y = 0, with y1(x) = sin x/

√
x.

9. x2(ln x − 1)y′′ − xy′ + y = 0, with y1(x) = x.
10. (1 − x cot x)y′′ − xy′ + y = 0, with y1(x) = x.

(Hint: When finding
∫−a(x)dx, make the substitution u =

sin x − xcos, and in the final integral make the substitution
v = sin x/x.)

6.8 Reduction to the Standard Form
u′′ + f (x)u = 0

When studying the properties of second order variable coefficient equations it is
sometimes advantageous to reduce the equation

y′′ + a(x)y′ + b(x)y = 0 (94)

to the standard form for a second order equationthe standard form of
a linear variable
coefficient equation u′′ + f (x)u = 0, (95)

from which the first derivative term u′ is missing. This reduction has many uses,
one of which occurs in Section 8.6 when we derive the analytical form of Bessel
functions of fractional order.

To accomplish the reduction we seek a solution of (94) of the form

y(x) = u(x)v(x), (96)

and then try to choose v(x) so the first derivative term in u vanishes. Differentia-
tion of y = uv gives y′ = uv′ + u′v and y′′ = u′′v + 2u′v′ + uv′′, so substitution into
equation (94) gives

u′′v + (2v′ + av)u′ + (v′′ + av′ + bv)u = 0. (97)

This result shows that the first derivative term u′ will vanish if v(x) is such that

2v′ + av = 0, (98)
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which has the solution

v(x) = exp
[
−1

2

∫
a(x)dx

]
. (99)

From (98) we have v′ = −(1/2)av and v′′ = −(1/2)(a′v + av′), so eliminating
v′ and v′′ from (97) gives

u′′ +
[
−1

2
a′(x) − 1

4
a2(x) + b(x)

]
u = 0. (100)

Because of its importance, we record this result in the form of a theorem.

THEOREM 6.5 Reduction to the standard form u′′ + f (x)u = 0 The substitution

y(x) = u(x)v(x) , with
how to perform
the reduction

v(x) = exp
[
−1

2

∫
a(x)dx

]
,

reduces the differential equation

y′′ + a(x)y′ + b(x)y = 0

to

u′′ + f (x)u = 0,

where

f (x) = −1
2

a′(x) − 1
4

a2(x) + b(x).

EXAMPLE 6.24 Reduce the equation

4x2 y′′ + 4xy′ + (16x2 − 1)y = 0

to standard form and hence find the general solution.

Solution Dividing the differential equation by 4x2 to reduce it to the form given
in (94) shows that a(x) = 1/x and b(x) = 4 − 1/(4x2). Applying the result of
Theorem 6.5 then shows that

v(x) = exp
[
−1

2

∫
(1/x)dx

]
= x−1/2 and f (x) = 4.

The equation for u(x) is thus u′′ + 4u = 0 with the general solution

u(x) = C1cos 2x + C2sin 2x,
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but y(x) = u(x)v(x) = x−1/2u(x), so the general solution is

y(x) = C1

√
1
x

cos 2x + C2

√
1
x

sin 2x.

See references [3.3] and [3.4].

Summary The study of the properties of some homogeneous linear variable coefficient equations of
the form y ′′ + a(x)y ′ + b(x)y = 0 is simplified if a change of variable can be found that
reduces them to an equivalent form u′′ + f (x)u = 0. This section showed how such a
change of variable can be found, and used it to solve a variable coefficient equation for
which the two linearly independent functions entering into its general solution are by no
means obvious.

EXERCISES 6.8

Reduce the equations in Exercises 1 and 2 to standard form,
but do not attempt to find their general solutions.

1. x2 y′′ − xy′ + 9xy = 0.
2. x2 y′′ + xy′ + (x2 − 9)y = 0.

In Exercises 3 through 7 reduce the equation to standard
form and hence find its general solution.

3. y′′ − 2y′ + y = 0.
4. y′′ + 4y′ + 3y = 0.
5. y′′ − 4y′ + 5y = 0.

6. x2 y′′ + xy′ + (36x2 − 1)
y = 0.

7. xy′′ + 2y′ + xy = 0.

6.9 Systems of Ordinary Differential Equations:
An Introduction

Physical problems that give rise to ordinary differential equations often do so in
the form of coupled systems of first order linear differential equations, or systems
of second order equations that are more easily treated if reduced to a first order
system. A very simple example of this type was encountered in Section 5.2(d), where
two first order equations were derived that linked the current i and the charge q
flowing in an R–L–C circuit at time t . In that case it was convenient to eliminate
the current i to obtain a simple second order equation for the current q that could
be solved by the methods of Section 6.1 and 6.2.

Another example is the three-loop electric circuit shown in Fig. 6.12. In the
circuit H is an inductance; C1 and C2 are capacitances; R1, R2, and R3 are resistors;
V0 is an applied voltage; i1, i2, and i3 are circulating currents; and q2 and q3 are the
charges on the respective capacitances C1 and C2.

i2

H q2 q3
C1 C 2

V0

R1 R2 R3i1 i3

FIGURE 6.12 A three-loop electric circuit with an applied voltage.
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Applying Kirchhoff’s laws (see Section 5.2(d)) to each loop when the switch is
closed leads to the three coupled equations

H
di1

dt
+ R1(i1 − i2) = V0

R2i2 + R1(i2 − i1) + q2C1 = 0

R3i3 + R2(i3 − i2) + q3C2 = 0.

Using the results i2 = dq2/dt and i3 = dq3/dt reduces these equations to the cou-
pled system of first order equations

an electrical problem
leading to a first
order system

H
di1

dt
+ R1i1 − R1

dq2

dt
= V0

(R1 + R2)
dq2

dt
− R1i1 + q2C1 = 0

(R2 + R3)
dq3

dt
− R2

dq2

dt
+ q3C2 = 0

for i1, q2, and q3. When these are solved the currents i2 and i3 follow from i2 = dq2/dt
and i3 = dq3/dt .

An example of a different kind is provided by the two degree of freedom
vibration system with a damper in Fig. 6.11 that was shown to lead to the two
coupled second order equations

M
d2x
dt2

= −k(x − y) − Kx − μ
dx
dt

+ F(t)

and

m
d2 y
dt2

= −k(y − x).

Instead of eliminating first y and then x to obtain two fourth order differential
equations for x and y, respectively, a different approach is to reduce these two equa-
tions to a system of four first order equations by introducing first order derivatives
of x and y as new variables.

To do this we set w = dx/dt and z = dy/dt , and as a result obtain the simulta-
neous system of four first order equations

dx
dt

= w

dy
dt

= z

M
dw
dt

+ (k + K)x − ky + μw = F(t)

m
dz
dt

+ ky − kx = 0.

This reduction of a higher order differential equation, or a coupled system of
differential equations, to a first order system is often useful. In Chapter 19 this
approach is used when seeking the numerical solution of higher order differentiala general

homogeneous
first order system

equations by means of the Runge–Kutta method. This method provides accurate
numerical solutions of first order differential equations that may be either linear
or nonlinear, and it can be adapted to solve higher order differential equations by
reducing them to a coupled system of first order equations.
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A general system of n first order linear variable coefficient differential equa-
tions involving the n dependent variables x1(t), x2(t), . . . , xn(t) that are functions
of the independent variable t (in applications t is often the time), the variable coef-
ficients ai j (t), and the nonhomogeneous terms f1(t), f2(t), . . . , fn(t) has the form

x′
1(t) = a11(t)x1(t) + a12(t)x2(t) + · · · + a1n(t)xn(t) + f1(t)

x′
2(t) = a21(t)x1(t) + a22(t)x2(t) + · · · + a2n(t)xn(t) + f2(t)

. . . . . . . . . . .

x′
n(t) = an1(t)x1(t) + an2x2(t) + · · · + ann(t)xn(t) + fn(t).

(101)

System (101) is said to be homogeneous when all the functions fi (t) are zero,
and to be nonhomogeneous when at least one of them is nonzero. It is a linear system
because it is linear in the functions x1(t), x2(t), . . . , xn(t) and their derivatives, and
it is a variable coefficient system whenever at least one of the coefficients ai j (t) is a
function of t ; otherwise, it becomes a constant coefficient system.

An initial value problem for system (101) involves seeking a solution of (101)
such that at t = t0 the variables x1(t), x2(t), . . . , xn(t) satisfy the initial conditions

x1(t0) = k1, x2(t0) = k2, . . . , xn(t0) = kn, (102)

where k1, k2, . . . , kn are given constants.
Matrix notation allows system (101) to be written in the concise form

x′(t) = A(t)x(t) + b(t), (103)

or more simply asmatrix notation
for systems

x′ = Ax + b,

where a prime again indicates differentiation with respect to t , and the matrices in
(103) are defined as

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)
...
...

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , x′(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

x′
1(t)

x′
2(t)
...
...

x′
n(t)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

A(t) =

⎡⎢⎢⎢⎢⎣
a11(t) a12(t) · · · · · · a1n(t)

a21(t) a22(t) · · · · · · a2n(t)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

an1(t) an2(t) · · · · · · ann(t)

⎤⎥⎥⎥⎥⎦ , b(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

f1(t)

f2(t)
...
...

fn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(104)

The n × 1 vector x(t) is called the solution vector, the n × n matrix A(t) is called
the coefficient matrix, and the n × 1 vector b(t) is called the nonhomogeneous term
of the system.
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System (103) becomes an initial value problem for the solution x(t) when at
t = t0 the vector x(t) is required to satisfy the initial condition

x(t0) =

⎡⎢⎢⎢⎢⎢⎢⎣

k1

k2
...
...

kn

⎤⎥⎥⎥⎥⎥⎥⎦ , (105)

where x(t0) is the initial vector and k1, k2, . . . , kn are given constants.

EXAMPLE 6.25 Express in matrix form the initial value problem

x′
1 = 2x1 − x2 + 4 − t2

x′
2 = −x1 + 2x2 + 1, with x1(0) = 1 and x2(0) = 0.

Solution The system of equations can be written

x′(t) = A x(t) + b(t)

where

x(t) =
[

x1

x2

]
, A =

[
2 −1

−1 2

]
, and b(t) =

[
4 − t2

1

]
,

and the initial vector is

x(0) =
[

1
0

]
.

As A is a constant matrix and b(t) �= 0, this is a constant coefficient nonhomoge-
neous system.

In what follows, our main objective will be to develop matrix methods for thesolution by
elimination: a first
approach

solution of initial value problems for systems of first order linear constant coefficient
differential equations. Before developing a matrix approach, we first describe a
simple way of solving system (102) when no more than three equations are involved.
The method is straightforward and does not use matrix algebra, but it is often useful,
and the examples that are solved show that systems can have oscillatory solutions
even when no oscillatory term is present in the nonhomogeneous term.

The approach used is called solution by elimination, because it involves elim-
inating all but one of the dependent variables in order to arrive at a single higher
order equation for the remaining variable, say x1(t). Once x1(t) has been found, it is
used in the system of equations to determine sequentially the remaining variables
x2(t), x3(t), . . . , xn(t). The method will be illustrated by means of examples.

EXAMPLE 6.26 Solve by elimination the initial value problem of Example 6.25.

Solution The equations involved are

x′
1 = 2x1 − x2 + 4 − t2

x′
2 = −x1 + 2x2 + 1.
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The method will be to eliminate the dependent variable x2 between the two equa-
tions to obtain a single second order equation for x1. After solving for x1, the
dependent variable x2 will be found by substituting for x1 in the first equation.
Thus, the solution of this system of two first order equations will involve the solu-
tion of a single second order equation, and it will be through this equation that the
two arbitrary constants expected to occur in the general solution of the system will
enter.

Differentiation of the first equation belonging to the system gives

x′′
1 = 2x′

1 − x′
2 − 2t,

and after substituting for x′
2 from the second equation in the system, this becomes

x′′
1 = 2x′

1 + x1 − 2x2 − 1 − 2t.

Solving the first equation belonging to the system for x2 gives

x2 = 2x1 + 4 − t2 − x′
1,

so using this result to eliminate x2 from the second order equation for x1 shows that
x1 satisfies the equation

x′′
1 − 4x′

1 + 3x1 = 2t2 − 2t − 9.

Solving this equation by any method, say by the method of undetermined co-
efficients, gives

x1(t) = C1e3t + C2et − 53
27

+ 10
9

t + 2
3

t2,

where C1 and C2 are arbitrary constants of integration.
It now remains for us to find x2, and this is accomplished by substituting for x1

in the first equation, which can be written in the form x2 = 2x1 + 4 − t2 − x′
1. As a

result we find that

x2(t) = −C1e3t + C2et − 28
27

+ 8
9

t + 1
3

t2,

so the general solution of the nonhomogeneous system is

x1(t) = C1e3t + C2et − 53
27

+ 10
9

t + 2
3

t2,

and

x2(t) = −C1e3t + C2et − 28
27

+ 8
9

t + 1
3

t2.

To solve the initial value problem, C1 and C2 must be chosen such that x1(0) = 1
and x2(0) = 0. Setting t = 0 in the general solution and using these initial conditions,
we find that C1 and C2 must satisfy the equations

1 = C1 + C2 − 53
27

and 0 = −C1 + C2 − 28
27

,

with the solution C1 = 26/27 and C2 = 2. Thus, the required solution of the initial
value problem is

x1(t) = 26
27

e3t + 2et − 53
27

+ 10
9

t + 2
3

t2,
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and

x2(t) = −26
27

e3t + 2et − 28
27

+ 8
9

t + 1
3

t2.

Unlike first order linear differential equations whose complementary function
can only contain an exponential function, systems of such equations can give rise
to periodic solutions even when these do not occur in the nonhomogeneous term.
This is illustrated by the next example.

EXAMPLE 6.27 Solve by elimination the system of differential equations

x′
1 + 2x1 − x2 = 1 + e−t , x′

2 + x1 + 2x2 = 3,

subject to the initial conditions x1(0) = 5/2 and x2(0) = −1/2.

Solution Proceeding as in the previous example by differentiating the first equa-
tion with respect to t and substituting for x′

2 from the second equation gives

x′′
1 + 2x′

1 + x1 + 2x2 − 3 = −e−t .

Substituting for x2 from the first equation belonging to the system then shows that
x1 must satisfy the second order differential equation

x′′
1 + 4x′

1 + 5x1 = 5 + e−t ,

with the general solution

x1(t) = C1e−2t cos t + C2e−2t sin t + 1 + (1/2)e−t .

Finally, solving the first equation belonging to the system for x2 and substituting
for x1, we have

x2(t) = −C1e−2t sin t + C2e−2t cos t + 1 − (1/2)e−t .

Thus, the general solution of the system is

x1(t) = C1e−2t cos t + C2e−2t sin t + 1 + (1/2)e−t

and

x2(t) = −C1e−2t sin t + C2e−2t cos t + 1 − (1/2)e−t .

To satisfy the initial conditions, the arbitrary constants C1 and C2 must be
chosen such that x1(0) = 5/2 and x2(0) = −1/2. Inserting these conditions into the
preceding general solution leads to the equations

5/2 = C1 + 3/2 and − 1/2 = C2 + 1/2, so that C1 = 1 and C2 = −1.

The solution of the initial value problem is then given by

x1(t) = e−2t (cos t − sin t) + 1 + 1
2

e−t

and

x2(t) = −e−2t (sin t + cos t) + 1 − 1
2

e−t .

This example illustrates the way in which oscillatory terms can enter into the
solution through a higher order equation satisfied by one of the dependent variables,
although they may not be present in the nonhomogeneous terms.
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As a final example of the elimination method, we consider a homogeneous
system of three equations to show how this simple method becomes more diffi-
cult when the number of equations is greater than two, and also to demonstrate
how care must then be taken with the determination of the arbitrary constants of
integration.

EXAMPLE 6.28 Find the general solution of the system of equations

x′
1 = x2 + x3, x′

2 = x1 + x3, and x′
3 = x1 + x2.

Solution Differentiating the first equation with respect to t and substituting for
x′

2 and x′
3 from the second and third equations and using the first equation shows

that x1 satisfies the second order equation

x′′
1 − x′

1 − 2x1 = 0,

with the solution

x1(t) = C1e−t + C2e2t ,

where C1 and C2 are arbitrary constants of integration.
Substituting for x1(t) in the second equation belonging to the system, differenti-

ating the result with respect to t , and then substituting for x′
3 from the third equation

belonging to the system shows that x2 satisfies the nonhomogeneous second order
equation

x′′
2 − x2 = 3C2e2t ,

with the solution

x2(t) = C2e2t + C3e−t + C4et .

It now appears that an anomalous situation has arisen, because when seekinghow to resolve the
problem of the
arbitrary constants

a solution of a system of three equations, four arbitrary integration constants have
appeared. This apparent inconsistency will be resolved shortly, so for the moment
we continue working with this form of solution for x2(t).

Subtracting the first two equations belonging to the system gives

x′
1 − x′

2 = x2 − x1.

After substituting for x1(t) and x2(t) in this equation and cancelling terms, this is
seen to reduce to −C4et = C4et . As et �= 0 for any t , it follows that C4 = 0, and
the apparent inconsistency has been resolved because now only the three arbitrary
constants C1, C2, and C3 appear in the general solutions for x1(t) and x2(t).

In fact, no further integration is required to determine x3(t), because substitut-
ing x1(t) and x2(t) into the first equation belonging to the system and solving for
x3(t) gives

x3(t) = −(C1 + C3)e−t + C2e2t .

Thus, the general solution of the system is given by

x1(t) = C1e−t + C2e2t

x2(t) = C2e2t + C3e−t

x3(t) = −(C1 + C3)e−t + C2e2t .
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Summary This section has shown how a system of first order equations can arise from a typical elec-
trical problem. A matrix notation for systems was introduced, and an elementary method
for solving small systems of equations using elimination was described that avoided the
use of matrices. This method was seen to lead to more arbitrary constants in the gen-
eral solution than the number of equations involved, but a simple argument resolved this
difficulty.

EXERCISES 6.9

Solve Exercises 1 through 6 by elimination.

1. 2x′
1 = x1 − x2, 2x′

2 = 3x1 + 5x2.
2. x′

1 = −10x1 − 18x2, x′
2 = 6x1 + 11x2.

3. x′
1 = 2x1 − 12x2, 2x′

2 = 3x1 − 8x2, with x1(0) = 0 and
x2(0) = 1.

4. x′
1 = 3x2 + t, x′

2 = 2x1 + x2 − 3, with x1(0) = 1 and
x2(0) = 1.

5. x′
1 = 2x2 + 4x3 + 3e−t , x′

2 = x1 + x2 − 2x3 + 1, x′
3 = −2x1 +

5x3, with x1(0) = 1, x2(0) = 0, and x3(0) = 0.
6. x′

1 = − 2x1 + 2x2 + 2x3 + 3et , x′
2 = −x1 − x2 − 2x3 + 1,

x′
3 = x1 + 2x2 + 3x3 − 3, with x1(0) = 1, x2(0) = 1, and

x3(0) = 0.

6.10 A Matrix Approach to Linear Systems
of Differential Equations

We will now consider some general properties of the variable coefficient system

x′(t) = A(t)x(t) + b(t), (106)

where the matrices x(t), A(t), and b(t) are as defined in (103).
A solution of system (106) is a vector x(t) with elements x1(t), x2(t), . . . , xn(t)

that when substituted in system (106) satisfies it identically. Thus, a solution of the
initial value problem in Example 6.26 is the vector

a solution in
matrix form

x(t) =
[

x1(t)
x2(t)

]
=

⎡⎢⎢⎣
26
27

e3t + 2et − 53
27

+ 10
9

t + 2
3

t2

−26
27

e3t + 2et − 28
27

+ 8
9

t + 1
3

t2

⎤⎥⎥⎦ .

Structure of Solutions of Homogeneous Systems
(a) Linear superposition of solutions

The properties of linear homogeneous systems of differential equations are similar
to those of a single linear higher order homogeneous differential equation. A most
important property that is common to both is that a linear superposition of solu-
tions of a linear homogeneous system of variable-coefficient first order differential
equations is itself a solution of the homogeneous system.

This result is easily proved. Let Ψ1(t),Ψ2(t), . . . ,Ψm(t) be any m solutions of
the linear homogeneous system x′(t) = A(t)x(t), and taking C1, C2, . . . , Cm to be
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any set of m arbitrary constants form the vector Ψ(t) = C1Ψ1(t) + C2Ψ2(t) + · · · +
CmΨm(t). Then

Ψ(t)′ = (C1Ψ1 + C2Ψ2 + · · · + CmΨm)′ = C1Ψ1
′ + C2Ψ2

′ + · · · + CmΨm
′ ,

so the system Ψ(t)′ = A(t)Ψ(t) becomes

C1Ψ1
′ + C2Ψ2

′ + · · · + CmΨm
′ = A(C1Ψ1 + C2Ψ2 + · · · + CmΨm)

= C1AΨ1 + C2AΨ2 + · · · + CmAΨm.

Consequently, as Ψ′
i (t) = A(t)Ψi (t), we have shown that Ψ(t) is also a solution of

the homogeneous system, and the result is proved.

(b) Existence and uniqueness

We now state without proof the fundamental theorem on the existence and unique-
ness of the solution to the initial value problem for a system of linear variable
coefficient first order differential equations. (See, for example, references [3.4] and
[3.5].)

THEOREM 6.5 Existence and uniqueness of solutions of linear systems Let the vector x(t) with
the n elements xi (t) (i =1, 2, . . . , n) be the solution of the nonhomogeneous variable
coefficient system of first order linear differential equations

x′(t) = A(t)x(t) + b(t),

where the functions ai j (t) (i, j = 1, 2, . . . , n) forming the elements of A(t) and
the elements fi (t) (i = 1, 2, . . . , n) forming the elements of the vector b(t) are
continuous functions in some interval a < t < b. Furthermore, let the elements of
x(t) satisfy the initial conditions xi (t0) = ki (i = 1, 2, . . . , n), where the ki are given
constants and t0 is any point such that a < t0 < b. Then the solution of the initial
value problem exists and is unique for all t such that a < t < b.

(c) Fundamental matrix and a test for linear
independence of solutions

As with single higher order linear differential equations, the general solution of a
homogeneous system will be constructed by the forming a linear combination of all
possible linearly independent solutions of the system. For this reason it is necessary
to know how many linearly independent solutions belong to a given homogeneous
system, and how to test the linear independence of a set of solutions. The answers
to these two fundamental questions are provided by the next two theorems, the
results of which should be remembered. As the proofs of these theorems may be
omitted at a first reading, they are given at the end of this section.

THEOREM 6.6 Linearly independent solutions of a homogeneous system Let the elements ai j (t)
(i, j = 1, 2, . . . , n) of the n × n matrix A(t) be continuous in the interval a < t < b.
Then the linear homogeneous system

x′ = A(t)x
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possesses n linearly independent solutions Ψ1(t), Ψ2(t), . . . ,Ψn(t), and every so-
lution of the system is expressible as a linear combination of the form

Ψ(t) = C1Ψ1(t) + C2Ψ2(t) + · · · + CnΨn(t)

for some choice of the constants C1, C2, . . . , Cn.

An n × n matrix Φ(t) whose columns are any n linearly independent solution
vectors of the homogeneous system x′ = A(t)x is called a fundamental matrix fora fundamental matrix
the system, and Theorem 6.6 shows that the general solution of the system can
always be written in the form

x(t) = Φ(t)C,

where C is an n-element column vector with arbitrary constant elements C1,
C2, . . . , Cn.

Clearly, a fundamental matrix is not unique, because any of its columns may be
replaced by a linear combination of its columns and the result will remain a funda-
mental matrix. This follows because if the columns of a determinant are replaced
by linear combinations of its columns, the value of the determinant is unaltered, so
if initially the determinant was nonsingular, it will remain nonsingular.

THEOREM 6.7 Determinant test for the linear independence of solution vectors Let the column
vectors Ψm(t) (m= 1, 2, . . . , n), whose elements �

(m)
1 (t), �

(m)
2 (t), . . . , �(m)

n (t), be n
a determinant test for
linear independence
of solution vectors

solutions of the homogeneous system

x′ = A(t)x,

in which the elements ai j (t) (i, j = 1, 2, . . . , n) of the n × n matrix A(t) are continu-
ous functions for a < t < b. Then the n vectors Ψm(t) (m = 1, 2, . . . , n) are linearly
independent solutions for a < t < b if, for some t0 in the interval, the determinant

�(t0) =

∣∣∣∣∣∣∣∣∣∣∣

�
(1)
1 (t0) �

(2)
1 (t0) · · · �

(n)
1 (t0)

�
(1)
2 (t0) �

(2)
2 (t0) · · · �

(n)
2 (t0)

...
...

...
...

�
(1)
n (t0) �

(2)
n (t0) · · · �

(n)
n (t0)

∣∣∣∣∣∣∣∣∣∣∣
�= 0,

and the vectors Ψm(t) (m = 1, 2, . . . , n) form a basis for solutions of the system.
Furthermore, if �(t0) �= 0, then �(t) �= 0, for all t in a < t < b.

EXAMPLE 6.29 Find a set of linearly independent solution vectors for the system

x′
1 = x2 + x3, x′

2 = x1 + x3 and x′
3 = x1 + x2,

and construct a fundamental matrix.
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Solution In Example 6.28 the solution of this system was shown to be

x1(t) = C1e−t + C2e2t

x2(t) = C2e2t + C3e−t

x3(t) = −(C1 + C3)e−t + C2e2t .

Writing this solution in the form x(t) = Φ(t)C determined by Theorem 6.7, we
obtain ⎡⎣ x1(t)

x2(t)
x3(t)

⎤⎦ =
⎡⎣ e−t e2t 0

0 e2t e−t

−e−t e2t −e−t

⎤⎦⎡⎣C1

C2

C3

⎤⎦ .

Thus, a fundamental matrix for the system, that is, a matrix whose columns are
linearly independent solution vectors of the system, can be taken to be

�(t) =
⎡⎣ e−t e2t 0

0 e2t e−t

−e−t e2t −e−t

⎤⎦ ,

provided the solution vectors corresponding to the columns of this matrix are lin-
early independent. The test for this is provided by Theorem 6.7, and as it is easily
shown that det Φ(t) = −3. So it follows from Theorem 6.7 that the three column
vectors

�1(t) =
⎡⎣ e−t

0
−e−t

⎤⎦ , �2(t) =
⎡⎣ e2t

e2t

e2t

⎤⎦ , and �3(t) =
⎡⎣ 0

e−t

−e−t

⎤⎦
are, indeed, linearly independent solution vectors.

Proofs of Theorems 6.6 and 6.7

Proof of Theorem 6.6 Consider any set of n linearly independent column vectors
v1, v2, . . . , vn, each with constant elements, and for some t0 in a < t0 < b use them
as initial conditions in the set of initial value problems

x′ = A(t)x with x(t0) = vm, for m = 1, 2, . . . , n.

By the existence and uniqueness theorem, each of these initial value problems has
a unique solution Ψm(t) defined on a < t < b.

To establish the linear independence of these solutions on a < t < b, we sup-
pose, if possible, that constants C1, C2, . . . , Cn can be found such that

C1Ψ1(t) + C2Ψ2(t) + · · · + CnΨn(t) = 0

for every t in the interval. Setting t = t0, this result becomes

C1v1 + C2v2 + · · · + Cnvn = 0,

but as the vm are linearly independent, this can only be true if C1 = C2 = · · · =
Cn = 0, so we have proved that the solutions Ψm(t) (m = 1, 2, . . . , n) are linearly
independent over the interval.

We must now show that for some constants C1, C2, . . . , Cn, not all of which are
zero, every solution of the system x′ = A(t)x can be written

Ψ(t) = C1Ψ1(t) + C2Ψ2(t) + · · · + CnΨn(t),

and in particular this result must be true when t = t0.
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Define a matrix Φ(t) whose columns are the n linearly independent vectors
Ψ1(t), Ψ2(t), . . . ,Ψn(t), where the elements of Ψm(t) are �

(m)
1 (t), �(m)

2 (t), . . . ,

�
(m)
n (t), for m = 1, 2, . . . , n, so

Φ(t) =

⎡⎢⎢⎢⎢⎢⎣
�

(1)
1 (t) �

(2)
1 (t) · · · �

(n)
1 (t)

�
(1)
2 (t) �

(2)
2 (t) · · · �

(n)
2 (t)

...
...

...
...

�
(1)
n (t) �

(2)
n (t) · · · �

(n)
n (t)

⎤⎥⎥⎥⎥⎥⎦ .

Now set t = t0 and consider the matrix equation

Φ(t0)C = Ψ(t0),

where C is a column vector with the n elements C1, C2, . . . , Cn. Expanding the
expression on the left and grouping terms shows that

Φ(t0)C = C1Ψ1(t0) + C2Ψ2(t0) + · · · + CnΨn(t0),

and so

C1Ψ1(t0) + C2Ψ2(t0) + · · · + CnΨn(t0) = Ψ(t0).

The existence of a unique set of constants C1, C2, . . . , Cn, not all of which are zero,
follows from the fact that detΦ(t0) �= 0, because of the linear independence of its
columns.

As Ψ(t) and C1Ψ1(t) + C2Ψ2(t) + · · · + CnΨn(t) are both solutions of the same
initial value problem

x′ = A(t)x with x(t0) = Ψ(t0),

the existence and uniqueness theorem shows that Ψ(t) = C1Ψ1(t) + C2Ψ2(t)1 +
· · · + CnΨn(t) for all t such that a < t < b, and the theorem is proved.

Proof of Theorem 6.7 The proof is in two parts. First we show that if the vectors
are linearly independent, then detΦ(t) �= 0 for all t in the interval. Then we assume
the converse, namely that Φ(t) is a fundamental matrix, and show this implies
detΦ(t) �= 0 for all t in the interval. The fact that every solution of the system can
be expressed as a linear combination of the n linearly independent solutions will
then follow from Theorem 6.6.

If Φ(t) is a matrix whose columns are solution vectors and det Φ(t) �= 0, then
the vectors are linearly independent. To show this, suppose constants C1, C2, . . . , Cn

can be found such that

C1Ψ1(t) + C2Ψ2(t) + · · · + CnΨn(t) = 0

for all t in the interval a < t < b. Then for any t0 in the interval, setting t = t0 the
equation can be written

Φ(t0)C = 0,

where C is a column matrix with elements C1, C2, . . . , Cn. As det Φ(t0) �= 0, the
only solution of this homogeneous system of algebraic equations is C1 = C2 =
· · · = Cn = 0, so the column vectors must be linearly independent for all t in the
interval.

We must now consider the converse situation and suppose that Φ(t) is a fun-
damental matrix. Then, if Ψ(t) is a solution of the system, from the definition of
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a fundamental solution a unique constant vector C can always be found such that
Ψ(t) = Φ(t)C for all t in the interval. To find C we need only set t = t0 in this last
result, because as det Φ(t0) �= 0 the homogeneous system of algebraic equations
must have a unique solution. The result is true for each t0 in the interval, and so it
follows that det Φ(t) �= 0 over the interval a < t < b.

As the set of n vectors Ψm(t) (m = 1, 2, . . . , n) is linearly independent, it fol-
lows from Theorem 6.6 that every solution of the system is expressible as a linear
combination of these vectors, so they form a basis for solutions of the system.

For more information about the material in Sections 6.9 and 6.10 see, for ex-
ample, references [3.3], [3.4], and [3.16].

Summary The linear superposition of matrix vector solutions was shown to be permissible, and the
concept of a fundamental matrix was introduced, the columns of which contained n linearly
independent solution vectors of a linear system of n first order equations. The fundamental
matrix had the property that the general solution of the system could be expressed in terms
of its product with a column vector containing n arbitrary constants. A determinant test
was then developed that established when a set of n solution vectors was suitable to form
the columns of a fundamental matrix—that is, to form a basis for the solution set of the
system.

EXERCISES 6.10

In Exercises 1 through 6, verify by substitution that the func-
tions x1(t) and x2(t) are solutions of the given system of
equations. By writing the solution in matrix form, find a fun-
damental matrix for the system and verify that its columns
are linearly independent.

1. x′
1 = x1 + x2, x′

2 = −x1 + x2;
x1(t) = et (C1 cos t + C2 sin t), x2(t) = et (C2 cos t −
C1 sin t).

2. x′
1 = 2x1 + x2, x′

2 = −2x1;
x1(t) = et (C1 cos t + C2 sin t), x2(t) = (C2 − C1)et cos t −
(C1 + C2)et sin t .

3. x′
1 = x1 − 2x2, x′

2 = x1 − x2;
x1(t)=C1 cos t +C2 sin t, x2(t)= (1/2)(C1 −C2) cos t +
(1/2)(C1 + C2) sin t .

4. x′
1 = −3x1 − x2, x′

2 = 3x1 + x2;
x1(t) = C1 + C2e−2t , x2(t) = −3C1 − C2e−2t .

5. 2x′
1 = 2x1 − x2, x′

2 = x1 + 2x2;
x1(t) = C1e3t/2 cos t/2 + C2e3t/2 sin t/2,

x2(t) = −(C1 + C2)e3t/2 cos t/2 + (C1 − C2)e3t/2 sin t/2.
6. 2x′

1 = −x1 + x2, x′
2 = x1 − x2;

x1(t) = C1 + C2e−3t/2, x2(t) = C1 − 2C2e−3t/2.

6.11 Nonhomogeneous Systems

A nonhomogeneous variable coefficient system of first order linear differential
equations can be written

x′ = A(t)x + b(t). (107)

Its general solution can be expressed as the sum of the general solution of the
associated homogeneous system x′ = Ax that will contain the arbitrary constants,
and a particular solution free from arbitrary constants that can be taken to be any
solution of the nonhomogeneous equation x′ = Ax + b. This result is recorded and
proved in the next theorem.
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The Structure of the Solution
THEOREM 6.8 Structure of the solution of x′ = A(t)x + b(t) Let Φ(t) be a fundamental matrix for

the homogeneous linear first order system x′ = A(t)x, and let P(t) be any solution
nonhomogeneous
system and the
structure of the
solution

of the nonhomogeneous system x′ = A(t)x + b(t). Then the general solution of
the nonhomogeneous system is x(t) = Φ(t)C + P(t), with C an n-element column
matrix with arbitrary constants C1, C2, . . . , Cn as elements.

Proof The result is almost immediate and follows by substitution. Setting x =
Φ(t)C + P(t), we have x′ = Φ′(t)C + P′(t), so after substitution into the system of
differential equations we find that

Φ′(t)C + P′(t) = AΦ(t)C + AP(t) + b(t).

However, Φ′(t)C = A(t)Φ(t)C, and by definition P(t) is any solution of x′ =
A(t)x + b(t), so P′(t) = AP(t) + b(t), showing that substitution of the general
solution into the equation leads to an identity, so the theorem is proved.

It is important to recognize that solutions of nonhomogeneous linear systems
do not have the linear superposition property of solutions of homogeneous systems,
and so they do not form a vector space.

EXAMPLE 6.30 Find the solution of the initial value problem for the nonhomogeneous system of
equations

x′
1 + 2x1 + 4x2 = 1 + 2t, x′

2 + x1 − x2 = 3t

subject to the initial conditions x1(0) = 56/9 and x2(0) = −13/9, and verify the
results of Theorem 6.8.

Solution Using the elimination method, the solution of the system can be shown
to be

x1(t) = 2/9 + (7/3)t + 2e2t + 4e−3t and x2(t) = −4/9 − (2/3)t − 2e2t + e−3t ,

and in matrix form this becomes[
x1(t)
x2(t)

]
︸ ︷︷ ︸

x(t)

=
[

e2t 4e−3t

−e2t e−3t

]
︸ ︷︷ ︸

Φ(t)

[
2
1

]
︸︷︷︸

C

+
[

2/9 + (7/3)t
−4/9 − (2/3)t

]
︸ ︷︷ ︸

P(t)

.

Inspection of this form of solution identifies the fundamental matrix Φ(t) con-
taining exponentials, a column vector C with elements C1 = 2 and C2 = 1, and a
particular solution P(t) of the nonhomogeneous system represented by the last ma-
trix vector. It is easily checked that the vector P(t), which contains no constants, is
a particular solution of the system.

Matrix Methods of Solution
We now describe a number of matrix methods for the solution of both homogeneous
and nonhomogeneous constant coefficient systems of linear first order differential
equations.
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(a) Solution by diagonalization when A has
real eigenvalues

Having already illustrated the elementary elimination method for solving a small
system of equations, we now describe the powerful and systematic matrix diagonal-
ization method that can be used with systems involving any number of differential
equations.

Consider a general nonhomogeneous constant coefficient system

x′ = Ax + b(t) (108)

where A is a constant coefficient n × n matrix with real eigenvalues and n linearly
independent eigenvectors. The approach we will use is to try to find a transformation
of the dependent variables x1, x2, . . . , xn forming the elements of vector x, which

solution by
diagonalization
when eigenvalues
are real

creates a new set of variables u1, u2, . . . , un that form the elements of a vector u
with the property that system (108) can be written as

u′ = Du + h, (109)

where D is a diagonal matrix and h is an n-element column vector with elements
that depend on the elements in the nonhomogeneous term b(t).

If such a transformation can be found, the equations in the system will have been
uncoupled, because each equation for u1, u2, . . . , un can then be solved individually.
When u1, u2, . . . , un are known, reversing the transformation will give the solution
x1(t), x2(t), . . . , xn(t) of system (108).

Such a transformation has already been provided by Theorem 4.6. It was shown
there that if a matrix P is constructed with the n eigenvectors of A as its columns,
then P−1AP = D, where D is a diagonal matrix with the eigenvalues of A arranged
along its leading diagonal in the same order as the corresponding eigenvectors
appear in P.

Adopting this approach, setting

x = Pu, (110)

and substituting in (108) gives

Pu′ = APu + b(t), (111)

where when differentiating x(t) use has been made of the fact that P is a constant
matrix. The linear independence of the n eigenvectors forming the columns of P
ensures the existence of the inverse matrix P−1, so premultiplying (111) by P−1

gives

u′ = P−1APu + P−1b(t),

but P−1AP = D, so system (108) has been transformed into the uncoupled system

u′ = Du + P−1b(t). (112)

The required solution vector x(t) follows from the result x(t) = Pu.
Before giving an example, it is necessary to consider whether systems exist

for which this method will fail. The answer to this question is not difficult to find,
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because the method depends for its success on the diagonalization of A, and this in
turn requires that A have n linearly independent eigenvectors. Consequently, we see
that the method will fail if the n × n matrix A has fewer than n linearly independent
eigenvectors, because then the diagonalizing matrix P cannot be constructed. This
situation occurs when A has multiple eigenvalues but an eigenvalue with multiplicity
r has associated with it fewer than r linearly independent eigenvectors. A typical
matrix with this property is

A =
⎡⎣1 5 7

0 1 1
0 −1 −1

⎤⎦ .

In this case the eigenvalue λ = 1 occurs with multiplicity 1 and the eigenvalue
λ = 0 with multiplicity 2, but the matrix has only the two linearly independent
eigenvectors

(λ = 1), x1 =
⎡⎣ 1

0
0

⎤⎦ and (λ = 0, twice), the single eigenvector x2 =
⎡⎣−2

−1
1

⎤⎦ .

EXAMPLE 6.31 Use diagonalization to solve the nonhomogeneous system

x′
1(t) + 2x1 + 4x2 = 2t − 1, x′

2(t) + x1 − x2 = sin t.

Solution The system can be written in the form x′ = Ax + b(t) with

x =
[

x1

x2

]
, A =

[−2 −4
−1 1

]
, and b(t) =

[
2t − 1
sin t

]
.

Matrix A has the two eigenvalues and eigenvectors

λ1 = 2, x1 =
[−1

1

]
, λ2 = −3, x2 =

[
4
1

]
.

The diagonalizing matrix is thus

P =
[−1 4

1 1

]
, so P−1 =

[−1/5 4/5
1/5 1/5

]
,

and from the order in which the eigenvectors have been entered as the columns of
P, it follows without further computation that

D = P−1AP =
[

2 0
0 −3

]
.

We have

P−1b(t) =
[

1/5 − (2/5)t + (4/5) sin t

−1/5 + (2/5)t + (1/5) sin t

]
,

so, corresponding to (112) the transformed system becomes[
u′

1

u′
2

]
=
[

2 0
0 −3

] [
u1

u2

]
+
[

1/5 − (2/5)t + (4/5) sin t

−1/5 + (2/5)t + (1/5) sin t

]
.

In component form these are seen to be the uncoupled equations

u′
1 = 2u1 + 1/5 − (2/5)t + (4/5) sin t
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and

u′
2 = −3u2 − 1/5 + (2/5)t + (1/5) sin t.

The solution of the uncoupled equations is easily shown to be

u1(t) = C1e2t − (4/25) cos t − (8/25) sin t + (1/5)t

u2(t) = C2e−3t − (1/50) cos t + (3/50) sin t + (2/15)t − 1/9,

where C1 and C2 are arbitrary constants. If we use these as the elements of the
column vector U, the required solution is given by x(t) = Pu, and so[

x1(t)
x2(t)

]
=
[−1 4

1 1

][
C1e2t − (4/25) cos t − (8/25) sin t + (1/5)t

C2e−3t − (1/50) cos t + (3/50) sin t + (2/15)t − 1/9

]
.

In component form the solution becomes

x1(t) = −4/9 + (1/3)t + (2/25) cos t + (14/25) sin t − C1e2t + 4C2e−3t

x2(t) = −1/9 + (1/3)t − (9/50) cos t − (13/50) sin t + C1e2t + C2e−3t .

(b) Solution by diagonalization when A has
complex eigenvalues

When the diagonalization method is used to solve a system in which A has pairs
of complex conjugate eigenvalues, the approach only differs from the case involv-
ing real eigenvalues in that the arbitrary constants introduced at the integration
stage are complex. When A has real coefficients and complex eigenvalues exist,
they must do so in complex conjugate pairs, so after integrating an equation cor-
responding to the complex eigenvalue λ = α + iβ, we must introduce a complex
integration constant C1 + iC2. Then, to make the solution real, when integrating
the equation corresponding to the complex conjugate eigenvalue λ̄ = α − iβ the
complex conjugate integration constant C1 − iC2 must be introduced.

EXAMPLE 6.32 Use diagonalization to solve the system of nonhomogeneous equations

solution by
diagonalization
when eigenvalues
are complex

x′
1(t) = x1 + 2x2 + x3 + 1

x′
2(t) = x2 + x3 + t

x′
3(t) = 2x1 + x3 + 2t.

Solution The matrix A is

A =
⎡⎣1 2 1

0 1 1
2 0 1

⎤⎦ ,

and its eigenvalues and eigenvectors are

λ1 = 3, x1 =
⎡⎣2

1
2

⎤⎦ , λ2 = i, x2 =
⎡⎣ −i

1
−1 + i

⎤⎦ , λ3 = −i, x3 =
⎡⎣ i

1
−1 − i

⎤⎦ .
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The diagonalizing matrix

P =
⎡⎣2 −i i

1 1 1
2 −1 + i −1 − i

⎤⎦ and

P−1 =

⎡⎢⎣ 1/5 1/5 1/5

−1/10 + 3i/10 2/5 − i/5 −1/10 − i/5

−1/10 − 3i/10 2/5 + i/5 −1/10 + i/5

⎤⎥⎦ .

The order in which the columns of P are arranged shows without further computa-
tion that when diagonalized, A will become the matrix

D =
⎡⎣ 3 0 0

0 i 0
0 0 −i

⎤⎦ .

This is because D can be written down immediately without the need to calculate
D = P−1AP, because the order in which the eigenvalues are arranged along the
leading diagonal of D is the order in which their corresponding eigenvectors form
the columns of A.

If we write the system as

x′ = Ax + b(t),

with

x =
⎡⎣ x1(t)

x2(t)
x3(t)

⎤⎦ and b(t) =
⎡⎣ 1

t
2t

⎤⎦ ,

and set x(t) = Pu, the system becomes

Pu′ = APu + b(t),

so

u′ = P−1APu + P−1b(t) or u′ = Du + P−1b(t).

A simple calculation then gives

P−1b(t) =
⎡⎣ 1/5 + 3t/5

−1/10 + 3i/10 + t/5 − 3i t/5
−1/10 − 3i/10 + t/5 + 3i t/5

⎤⎦ ,

so writing u′ = Du + P−1b(t) in component form shows that the uncoupled equa-
tions become

u′
1(t) = 3u1 + 1/5 + 3t/5

u′
2(t) = iu2 − 1/10 + 3i/10 + t/5 − 3i t/5

u′
3(t) = −iu3 − 1/10 − 3i/10 + t/5 + 3i t/5.

Solving the first equation involves no complex numbers and so gives rise to the
solution

u1(t) = −2/15 − t/5 + C1e3t .
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However, the other two equations are complex, so remembering that the complex
integration constant in the third equation must be the complex conjugate of the
one in the second equation leads to the results

u2(t) = 3t/5 − 1/10 − 7i/10 + i t/5 + (C2 + iC3)(cos t + isin t)

u3(t) = 3t/5 − 1/10 + 7i/10 − i t/5 + (C2 − iC3)(cos t − isin t).

Combining these results gives

u =
⎡⎣ −2/15 − t/5 + C1e3t

3t/5 − 1/10 − 7i/10 + i t/5 + (C2 + iC3)(cos t + isin t)
3t/5 − 1/10 + 7i/10 − i t/5 + (C2 − iC3)(cos t − isin t)

⎤⎦ ,

so finally, using x(t) = Pu, we arrive at the required solution

x1(t) = −5/3 + 2C1e3t + 2C2sin t + 2C3 cos t

x2(t) = −1/3 + t + C1e3t + 2C2cos t − 2C3 sin t

x3(t) = 4/3 − 2t + 2C1e3t + (2C3 − 2C2) sin t − (2C2 + 2C3) cos t.

(c) Solution of a homogeneous system
by the matrix exponential
For the sake of completeness, we now show how, when A is diagonalizable, the
solution of the homogeneous constant coefficient system x′ = Ax can be solved by
means of the matrix exponential, and we indicate how the method can be extendedsolution using the

matrix
exponential

to enable the solution to be found when A is not diagonalizable. As the Laplace
transform method to be described later deals with the solution of initial value prob-
lems for linear equations automatically and is simpler to use, the ideas involved will
only be outlined. Nevertheless, the matrix exponential is both useful and important
when working with systems of equations, so it is necessary to make some mention
of it here.

We consider the initial value problem

x′ = Ax subject to the initial condition x(t0) = v, (113)

where A is an n × n constant matrix and v is an arbitrary n-element constant column
vector. Then the existence and uniqueness theorem guarantees that a solution cer-
tainly exists in some open interval containing t0. If we define a vector x(t) = etAv,
and set

etA = In + tA + t2

2!
A2 + t3

3!
A3 + . . . ,

then

dx/dt = d(etA)/dt v
= AetAv
= Ax,



Section 6.11 Nonhomogeneous Systems 345

so the solution of the initial value problem in (113) can be represented in the form

x(t) = etAv. (114)

We saw in Section 4.5 that etA is easily computed when A is diagonalizable,
but before using this result we first review the ideas that are involved. If A is
diagonalizable to a matrix D, a matrix P exists such that A = PDP−1, where the
columns of P are the eigenvectors of A, and the elements of D are the correspond-
ing eigenvalues of A. Thus, A2 = PDP−1 PDP−1 = PD2P−1, and by extending this
argument we have the general result Am = PDmP−1, for m = 1, 2 . . . . Using this
property in the definition of the matrix exponential etA given above allows it to be
written

etA = P[In + tD
t2

2!
D2 + t3

3!
D3 + . . .]P−1.

Consequently, if

D =

⎡⎢⎢⎣
λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . . . . .

0 0 0 · · · λn

⎤⎥⎥⎦ ,

then

D j =

⎡⎢⎢⎢⎣
λ

j
1 0 0 . . . 0

0 λ
j
2 0 . . . 0

. . . . . . . . . .

0 0 0 . . . λ
j
n

⎤⎥⎥⎥⎦ ,

and so

etA = P

⎡⎢⎢⎢⎢⎣
∑∞

j=0
λ

j
1 t j

j! 0 0 . . . 0

0
∑∞

j=0
λ

j
2 t j

j! 0 . . . 0
. . . . . . . . . . . . .

0 0 0
∑∞

j=0
λ

j
nt j

j!

⎤⎥⎥⎥⎥⎦P−1,

and this shows that

etA = P

⎡⎢⎢⎢⎣
exp(λ1t) 0 0 . . . 0

0 exp(λ2t) 0 . . . 0

. . . . . . . . . . . . .

0 0 0 . . . exp(λnt)

⎤⎥⎥⎥⎦P−1. (115)

We have shown that the matrix exponential etA is simply another way of repre-
senting a fundamental matrix for system (113). So, provided A can be diagonalized
and has real eigenvalues, etA can be written down immediately by using result
(115).
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EXAMPLE 6.33 Use the matrix exponential to solve the system

x′
1(t) = −2x1 + 6x2

x′
2(t) = −2x1 + 5x2.

Solution The matrix A is

A =
[−2 6

−2 5

]
,

and its eigenvalues and eigenvectors are

(λ1 = 1) x1 =
[

2
1

]
, (λ2 = 2) x2 =

[
3/2
1

]
.

The diagonalizing matrix

P =
[

2 3/2
1 1

]
, P−1 =

[
2 −3

−2 4

]
,

and

D =
[

1 0
0 2

]
.

So from (115) we have

etA =
[

2 3/2
1 1

] [
et 0
0 e2t

] [
2 −3

−2 4

]
,

and after evaluating the matrix products we obtain

etA =
[

4et − 3e2t , −6et + 6e2t

2et − 2e2t , −3et + 4e2t

]
.

Defining a two-element column matrix C with the arbitrary constants C1 and
C2 as elements allows the general solution to be written as

x(t) = etAC =
[

4et − 3e2t , −6et + 6e2t

2et − 2e2t , −3et + 4e2t

][
C1

C2

]
,

so

x(t) =
[

(4C1 − 6C2)et + (6C2 − 3C1)e2t

(2C1 − 3C2)et + (4C2 − 2C1)e2t

]
.

In component form the solution is

x1(t) = (4C1 − 6C2)et + (6C2 − 3C1)e2t

x2(t) = (2C1 − 3C2)et + (4C2 − 2C1)e2t .

The method applies equally well to the situation in which matrix A is real but
the eigenvalues occur in complex conjugate pairs, as shown by the next example.
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EXAMPLE 6.34 Use the matrix exponential to solve the system

x′
1(t) = −3x1 − 4x2 and x′

2(t) = 2x1 + x2.

Solution The matrix A is

A =
[−3 −4

2 1

]
and its eigenvalues λ1, λ2 and eigenvectors x1 and x2 are

λ1 = −1 + 2i, x1 =
[−1 + i

1

]
, λ2 = −1 − 2i, x2 =

[−1 − i
1

]
.

So

P =
[−1 + i −1 − i

1 1

]
, P−1 =

[−i/2 1/2 − i/2
i/2 1/2 + i/2

]
,

D =
[−1 + 2i 0

0 −1 − 2i

]
,

and consequently

etA = P

[
e−t (cos 2t + isin 2t) 0

0 e−t (cos 2t − isin 2t)

]
P−1

=
[

e−t (cos 2t − sin 2t) −2e−t sin 2t

e−t sin 2t e−t (cos 2t + sin 2t)

]
.

If we use this expression for etA in x(t) = etAC, the general solution becomes

x(t) =
[

e−t (cos 2t − sin 2t) −2e−t sin 2t

e−t sin 2t e−t (cos 2t + sin 2t)

][
C1

C2

]
.

In component form this reduces to

x1(t) = C1e−t cos 2t − (C1 + 2C2)e−t sin 2t

x2(t) = (C1 + C2)e−t sin 2t + C2e−t cos 2t.

When A is not diagonalizable, it is still possible to compute eA by writing
eA = eKeL, where A is the sum of a diagonal matrix K and a nilpotent matrix L
(a square matrix that when raised to a finite power becomes the null matrix), because
under these circumstances the matrices eK and eL commute and eK+L = eKeL. The
next example illustrates this approach.

EXAMPLE 6.35 Find etA given that

A =
[

4 1
0 4

]
and use it to solve the homogeneous system

x′
1(t) = 4x1 + x2 and x′

2(t) = 4x2.

Solution Matrix A is not diagonalizable, because the repeated eigenvalue λ = 4
only gives rise to a single eigenvector. However, tA can be written as the sum of
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the following diagonal matrix tK and nilpotent matrix tL:

tA = tK + tL, where tK =
[

4t 0
0 4t

]
and tL =

[
0 t
0 0

]
.

It is easily checked that (tL)2 = 0 and the matrices tK and tL commute, so etA =
etKetL. It follows from this that

etK =
[

e4t 0
0 e4t

]
, and etL =

[
1 0
0 1

]
+
[

0 t
0 0

]
=
[

1 t
0 1

]
,

so we arrive at the result

etA =
[

e4t 0
0 e4t

] [
1 t
0 1

]
=
[

e4t te4t

0 e4t

]
.

The exponential matrix etA is a fundamental matrix for the system, so as the
general solution is given by x(t) = etAC,

x(t) =
[

e4t te4t

0 e4t

] [
C1

C2

]
=
[

C1e4t + C2te4t

C2e4t

]
.

In component form the solution becomes

x1(t) = C1e4t + C2te4t and x2(t) = C2e4t .

The nilpotent matrix L in the last example was seen to give rise to the second
linearly independent solution te4t corresponding to the eigenvalue λ = 4 that oc-
curred with multiplicity 2. If in a larger system with a repeated eigenvalue λ and
a nondiagonalizable matrix A it had been necessary to raise a nilpotent matrix to
the power r before it became the null matrix, then in addition to a term of the form
eλt appearing in etA, the repeated eigenvalue would also give rise to the linearly
independent terms teλt , t2eλt , . . . , t (r−1)eλt .

(d) Variation of parameters

A particular integral can be found from the general solution of the homogeneous
form of a constant coefficient system by a direct generalization of the method of
variation of parameters described in Section 6.6. If the system isthe matrix exponential

and variation of
parameters x′ = Ax + b(t), (116)

to find a particular integral xp(t) we set

xp(t) = etAu(t), (117)

where the vector u(t) is to be determined.
Then, as x′

p(t) = AetAu(t) + etAu′(t), substituting for xp(t) in system (106) gives

AetAu(t) + etAu′(t) = AetAu(t) + b(t),

so after cancelling the terms AetAu(t) and premultiplying the result by e−tA, the
inverse of etA because etA and e−tA commute, we find that

u′(t) = e−tAb(t), (118)

from which u(t) now follows.
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In the equation for u(t) the matrix exponential e−tA is determined from etA

by changing the sign of t . The expression on the right of (118) is simply a column
vector with elements that are known functions of t , so the components of (118) can
be integrated separately to find the elements u1(t), u2(t), . . . , un(t) of U(t). Then,
when U(t) is known, the particular integral follows from (117).

The general solution of (116) is the sum of the solution of the homogeneous
form of the system and the particular integral xp(t).

EXAMPLE 6.36 Use the method of variation of parameters to solve the nonhomogeneous system.

x′
1(t) = −2x1 + 6x2 + t

x′
2(t) = −2x1 + 5x2 − 1.

Solution The homogeneous form of this system was obtained in Example 6.33,
where it was shown that

etA =
[

4et − 3e2t −6et + 6e2t

2et − 2e2t −3et + 4e2t

]
,

so

e−tA =
[

4e−t − 3e−2t −6e−t + 6e−2t

2e−t − 2e−2t −3e−t + 4e−2t

]
.

As

b(t) =
[

t
−1

]
, we have e−tAb(t) =

[
2(3 + 2t)e−t − 3(2 + t)e−2t

(3 + 2t)e−t − 2(2 + t)e−2t

]
,

but u′(t) = e−tAb(t), so

u′
1(t) = 2(3 + 2t)e−t − 3(2 + t)e−2t

u′
2(t) = (3 + 2t)e−t − 2(2 + t)e−2t .

When these equations are integrated, the arbitrary constants of integration can
be set equal to zero, because if they are nonzero the terms they introduce are of
the same type as the solution of the homogeneous system, so they can be absorbed
into it. As a result, integration gives

u1(t) = −2(5 + 2t) + 3
2

(
5
2

+ t
)

e−2t

and

u2(t) = −(5 + 2t)e−t +
(

5
2

+ t
)

e−2t .

Finally, if we set xp(t) = etAu(t) with u1(t) and u2(t) taken as the elements of u(t),
the particular integral becomes

xp(t) =

⎡⎢⎢⎣−25
4

− 5
2

t

−5
2

− t

⎤⎥⎥⎦ .
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The solution xc(t) of the homogeneous system (the complementary function)
found in Example 6.33 was

xc(t) =
[

(4C1 − 6C2)et + (6C2 − 3C1)e2t

(2C1 − 3C2)et + (4C2 − 2C1)e2t

]
,

so the solution of the nonhomogeneous system x(t) = xc(t) + xp(t) is given by

x1(t) = (4C1 − 6C2)et + (6C2 − 3C1)e2t − 25
4

− 5
2

t

x2(t) = (2C1 − 3C2)et + (4C2 − 2C1)e2t − 5
2

− t.

General Remark
The way in which combinations of arbitrary constants appear when we multiply
functions in the general solution of a homogeneous system of differential equations
is determined by the method of solution. So, for example, when we solve a system
by elimination, the choice of variable to be eliminated first will influence the form
of the result, as will the ordering of the eigenvectors when diagonalizing the matrix
A. A combination of arbitrary constants is simply an arbitrary constant, though the
ratio of all similar combinations of constants multiplying corresponding functions
in different forms of the solution must be the same.

This can be illustrated by considering the solution of the homogeneous form of
the equation in Example 6.36 that was found to be

x1(t) = (4C1 − 6C2)et + (6C2 − 3C1)e2t

x2(t) = (2C1 − 3C2)et + (4C2 − 2C1)e2t .

This solution can be written in an equivalent but different-looking form by setting
K1 = 2C1 − 3C2 and K2 = 6C2 − 3C1, where K1 and K2 are themselves arbitrary
constants. After changing the constants in this manner the solution becomes

x1(t) = 2K1et + K2e2t

and

x2(t) = K1et + 2
3

K2e2t ,

and other equivalent forms are also possible.
The above remarks should be remembered when comparing solutions to prob-

lem sets with the solutions given at the end of the book. As a particular integral
contains no arbitrary constants, its form remains the same irrespective of the man-
ner in which it has been determined.

An account of the material in this section is to be found in references [3.5] and
[3.15].

Summary The structure of the solution of a linear nonhomogeneous system of equations was ex-
plained, and a matrix method of solution was developed for constant coefficient systems
that depended on the diagonalization of the coefficient matrix. The cases of real and com-
plex eigenvalues of the coefficient matrix were examined separately, and it was shown how
systems of equations with real coefficient matrices can lead to solutions involving trigono-
metric functions. A different method of solution was then developed using the concept of
the matrix exponential.
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EXERCISES 6.11

In Exercises 1 through 6 find a fundamental matrix and the
general solution of the system.

1. x′
1 = −x2, x′

2 = 2x1.
2. x′

1 = −x1 − 5x2, x′
2 = x1 − 5x2.

3. x′
1 = −3x1 − 4x2, x′

2 = 2x1 + x2.
4. x′

1 = −x1 − 4x2, x′
2 = x1 + 4x2.

5. x′
1 = 2x2, x′

2 = −2x3, x′
3 = 2x2.

6. x′
1 = −3x2, x′

2 = −3x3, x′
3 = 3x2.

In Exercises 7 through 18 find the general solution of the
system by diagonalization.

7. x′
1 = −10x1 − 18x2 + t , x′

2 = 6x1 + 11x2 + 3.
8. x′

1 = −2x2 + sin t , x′
2 = −2x1 − t .

9. x′
1 = x1 − x2 + cos t , x′

2 = −x1 + x2 + e3t .
10. x′

1 = x2 + e−t , x′
2 = −x1 + 2x2 − 4.

11. x′
1 = 2x1 + 3x2 − sin t , x′

2 = x1 − 2x2.
12. x′

1 = −x1 − 2x2 + cos t , x′
2 = x1 + x2 + 4.

13. x′
1 = −2x1 + 2x2 + 2x3 + sin t , x′

2 = −x2 + 3, x′
3 = −2x1 +

4x2 + 3x3.
14. x′

1 = x1 + 2x2 + 3 + 2t , x′
2 = x2 + t , x′

3 = 2x1 + x3 + 1.
15. x′

1 = x1 + 2x2 + x3 + t , x′
2 = x2 − x3 + 2, x′

3 = 2x1 +
x3 + 2t .

16. x′
1 = x2 + t , x′

2 = x3, x′
3 = x2.

17. x′
1 = x1 + 2x2 + x3 + 2e−t , x′

2 = x2 + x3 + t , x′
3 = 2x1 +

x3 + 2t .
18. x′

1 = x2 + 5, x′
2 = x3 + t , x′

3 = x2 + 2t .

Solve Exercises 19 through 26 by means of the matrix ex-
ponential.

19. 2x′
1 = x1 − x2, 2x′

2 = 3x1 + 5x2.

20. x′
1 = −10x1 − 18x2, x′

2 = 6x1 + 11x2.
21. x′

1 = −x2, x′
2 = 2x1.

22. x′
1 = 2x1 − 12x2, 2x′

2 = 3x1 − 8x2.
23. x′

1 = 7x1 − 34x2, x′
2 = 2x1 − 9x2.

24. x′
1 = −x1 − 5x2, x′

2 = x1 − 5x2.
25. x′

1 = −3x1 − 4x2, x′
2 = 2x1 + x2.

26. x′
1 = −x1 + 2x2, x′

2 = x1 + x2.

Solve Exercises 27 through 30 by the method of variation
of parameters.

27. x′
1 = 10x1 + 18x2 + sin t , x′

2 = −6x1 − 11x2 + t .
28. x′

1 = −x2 + 3e4t , x′
2 = −2x1 + x2 − 2.

29. x′
1 = 3x1 + 4x2, x′

2 = −2x1 − x2 − t2.
30. x′

1 = −x2 + 5, x′
2 = x1 + 2x2 − 1.

Solve the initial value problems 31 through 36 by any of the
methods in this chapter.

31. x′
1 = x2 + 1, x′

2 = 2x1 − x2 + t , with x1(0) = 1,
x2(0) = 0.

32. x′
1 = 3x2 + t , x′

2 = 2x1 + x2 − 3, with x1(0) = 1,
x2(0) = 1.

33. x′
1 = 2x1 + x2 − et , x′

2 = − 2x1 − x2 − 3, with x1(0) = 0,
x2(0) = 1.

34. x′
1 = −3x1 − x2 + 3t , x′

2 = x1 − x2 − 3, with x1(0) = 1,
x2(0) = 3.

35. x′
1 = −3x1 − 5x2 − 12x3 + sin t , x′

2 = −2x1 + 1, x′
3 =

x1 + x2 + 2x3 − t , with x1(0) = 1, x2(0) = 0, x3(0) = −1.
36. x′

1 = −2x1 + 2x2 + 2x3 + 3et , x′
2 = −x1 − x2 − 2x3 + 1,

x′
3 = x1 + 2x2 + 3x3 − 3, with x1(0) = 1, x2(0) = 1,

x3(0) = 0.

6.12 Autonomous Systems of Equations

Autonomous Systems, the Phase Plane,
Stability, and Linear Systems
The general form of a nonlinear system of two simultaneous first order differential
equations for the functions x(t), y(t) that depend on the time t is

dx
dt

= f1(x, y, t)

dy
dt

= g1(x, y, t).
(119)
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This system is linear and nonhomogeneous if

f1(x, y, t) = a(t)x(t) + b(t)y(t) + h(t)

and
g1(x, y, t) = c(t)x(t) + d(t)y(t) + k(t),

and homogeneous if, in addition, h(t) = k(t) ≡ 0.
If the dependence of the functions f1 and g1 on the time t is only through

the functions x(t) and y(t), the time dependence is implicit and f1 = f (x, y) and
g1 = g(x, y), causing the system of equations in (119) to become

dx
dt

= f (x, y)

dy
dt

= g(x, y).
(120)

Systems of this type are called autonomous, and they describe physical phenomenaautonomous and
nonautonomous
systems

such as chemical reactions that, provided all conditions remain the same, will yield
identical results whenever the reactions are repeated. It is because of this that
autonomous systems are sometimes said to be time invariant systems. This situation
should be contrasted with the nonautonomous behavior of an electrical circuit
containing temperature-dependent elements that will cause its behavior to vary as
the ambient temperature changes with time.

A point (x0, y0) where both of the derivatives dx/dt and dy/dt in (120) vanish,
so thatequilibrium or

critical point (
dx
dt

)2

+
(

dy
dt

)2

= 0,

is called an equilibrium point or a critical point of the system.
If the differential equations in (120) are solved subject to the initial conditions

x0 = x(t0), y0 = y(t0) imposed at time t = t0, it is convenient to regard (x(t), y(t))
as a point in the (x, y)-plane that traces out a curve as t increases. Such curves, along
which the time t can be regarded as a parameter, are called trajectories or paths, and
sometimes orbits in the (x, y)-plane. The (x, y)-plane itself is then called the phase
plane. Associated with each trajectory is the direction in which the point (x(t), y(t))
moves as t increases, and in the phase plane these directions are usually indicated
by adding arrows to trajectories. The pattern of trajectories associated with a given
autonomous system of equations is called the phase portrait of the system.

trajectories or paths

phase portrait
The reason why in autonomous systems the time t can be regarded as a param-

eter can be seen by dividing the second equation in (120) by the first to obtain the
differential equation

dy
dx

= g(x, y)
f (x, y)

, (121)

in which t is absent. Had the nonautonomous system of equations in (119) been
treated in similar fashion, dy/dx would have exhibited an explicit dependence on
the time.
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FIGURE 6.13 A depression in a surface
surrounded by an elevated rim.

At an equilibrium point (x0, y0) of the system in (120), the vanishing of both
f and g causes dy/dx in (121) to become indeterminate at that point, so initial
conditions imposed at an equilibrium point cannot determine a unique solution.
This has the effect that on passing through an equilibrium point, a point moving
along one trajectory can move onto a different trajectory.

At an equilibrium point of an autonomous system, a physical system repre-
sented by the equations is in an equilibrium state. This state is said to be stable if,
when the system is subjected to arbitrarily small disturbances, it always remains
in the neighborhood of the same equilibrium state. If, however, the result of arbi-
trarily small disturbances is to make the system change to a different equilibrium
state, to make the displacement grow unrestrictedly, or, depending on the displace-
ment, to make the system sometimes return to the original equilibrium state and
sometimes to cause the displacement increase unrestrictedly, the state is said to bestability, instability,

and asymptotic
stability

unstable.
A dynamical analogy illustrating stable and unstable situations is provided by

considering Fig. 6.13, which represents a depression in a surface surrounded by an
elevated rim, beyond which the level of the surface falls away steadily. A ball placed
at the bottom of the depression is in a stable equilibrium state, because after any
small displacement gravity will cause it to try to return to the equilibrium state. If,
however, the displacement is large the motion will be unstable, because the ball
will leave the depression and roll away indefinitely as time increases. Every point
on the top of the rim represents an unstable equilibrium state because, depending
on the direction of the displacement, the ball may move to another point on the
rim, return to the depression, or roll away indefinitely. So this system has one stable
equilibrium state at the bottom of the depression, and an infinite number of unstable
states around the top of the rim.

Stability and asymptotic stability

The notion of stability can be made more precise by introducing the function
�(t) that measures the distance in the phase plane of a point (x(t), y(t)) on a
trajectory at time t from an equilibrium point at (x0, y0), where

�(t) =
√

(x(t) − x0)2 + (y(t) − y0)2.
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(i) The equilibrium point (x0, y0) is said to be stable if for every arbitrarily small
number ε > 0, a number δ > 0 can be found such that if

√
x2

0 + y2
0 < δ, then �(t) < ε

for all time t .
(ii) The equilibrium point (x0, y0) is said to be asymptotically stable if it is stable

in the sense of (i) and a number α can be found such that if
√

x2
0 + y2

0 < α, then
�(t) → 0 as t → ∞.

The implication of these definitions is that when an equilibrium point (x0, y0)
is stable, a trajectory starting close to (x0, y0) will remain close to it, but if the
point is asymptotically stable any trajectory starting close to (x0, y0) will eventually
converge to the equilibrium point as t → ∞. Asymptotically stable equilibrium
points can be said to attract trajectories, so such points are called attractors, whereas
equilibrium points from which the distance function �(t) increases without bound
as t increases are said to repel trajectories.

In the dynamical example just given, in the absence of friction, the point at the
bottom of the depression will be a stable state, because after a small displacement
the ball will forever move around the lowest point. If, however, friction is present,
the lowest point of the depression will be an asymptotically stable state, because
after any small displacement the ball will eventually come to rest at the lowest
point.

Interest in autonomous systems centers around the fact that trajectories in
phase space provide qualitative information about the entire class of solutions
of the system and, in particular, about properties of solutions when f and g are
nonlinear and no analytical solution can be found.

A classical example of a nonlinear autonomous system is the predator–prey
system of equations introduced and studied by Volterra and Lotka around 1930.predator–prey

problem They considered the ecological situation in which an isolated colony of foxes and
rabbits coexist, with the foxes eating the rabbits and the rabbits feeding on a plen-
tiful supply of vegetation. When the rabbits are numerous, the foxes are well fed
and their numbers will grow, but when the number of foxes increases to the point
where the rabbit population declines, the number of foxes will begin to fall, giving
the rabbit population an opportunity to regenerate. This process, it was postulated,
could explain the nonlinear cyclic variation in fox and rabbit populations that is
observed in nature. This predator–prey model involving foxes and rabbits will be-
come nonautonomous if some external factors are introduced that reduce the fox
and rabbit populations by some other means.

To derive the predator–prey equations, let x(t) be the number of rabbits present
at time t . Then, as vegetation is plentiful, without foxes the rabbit population will
grow at a rate proportional to the number of rabbits, so we can write

dx
dt

= ax,

where a > 0 is a constant. Assuming that the rate at which foxes eat rabbits is
proportional to the product of the number of rabbits x(t) and the number of foxes
y(t) present at time t , the rabbit population described by the preceding equation
must be modified to allow for this reduction, and so it becomes

dx
dt

= ax − bxy,

where b > 0 is a constant.
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The differential equation governing the fox population y(t) is derived in a
similar manner, but now the number of foxes decreases as the rabbit population
decreases, leading to a differential equation of the form

dy
dt

= −cy + dxy,

where c > 0 and d > 0 are constants. The classical predator–prey equations are the
two nonlinear autonomous equations

dx
dt

= x(a − by)

dy
dt

= y(xd − c).
(122)

This nonlinear autonomous system has no analytical solution, so either indi-
vidual solutions must be found by numerical computation (see Section 19.7), or
phase-plane methods must be used to determine the qualitative behavior of solu-
tions of this system. An obvious feature of the predator–prey system of equations
is that an equilibrium state exists when dx/dt = dy/dt = 0, and this occurs at the
origin (0, 0) and when x = c/d and y = a/b. The first equilibrium state is of no
interest because then neither rabbits nor foxes are present, but in the other equilib-
rium state the rabbit and fox populations will remain static, though deviations from
this situation can be expected to initiate nonlinear oscillations in the population
numbers.

The predator–prey model, although simple and developed initially for ecolog-
ical reasons, can be modified and applied to other situations such as the spread of
an infectious disease, the competition between industries for a raw material that is
in limited supply, or when industries compete for the same market.

When the functions f (x, y) and g(x, y) in (120) are nonlinear, or are compli-
cated in other ways, to help understand the behavior of the system the functions f
and g are often linearized about an equilibrium point at (x0, y0) that is of interest.linearization
This involves expanding f and g about (x0, y0) as two-variable Taylor series expan-
sions, and then replacing f and g in (120) by the linear terms in these expansions.

If, for example, (x0, y0) is an equilibrium point of the system of equations in
(120), then f (x0, g0) = 0 and g(x0, y0) = 0, and expanding f and g about the point
(x0, y0) gives

f (x, y) = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + higher order terms

and

g(x, y) = gx(x0, y0)(x − x0) + gy(x0, y0)(y − y0) + higher order terms.

Substituting only the first order terms from these expansions into system (120)
simplifies it to the constant coefficient linear autonomous system

d(x − x0)
dt

= fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

and

d(y − y0)
dt

= gx(x0, y0)(x − x0) + gy(x0, y0)(y − y0). (123)
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Setting X = x − x0 and Y = y − x0, we can write these equations in the matrix
form

dz
dt

= J(x0, y0)z, (124)

where

z =
[

X
Y

]
and J(x0, y0) =

[
fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

]
.

The matrix J(x0, y0) is called the Jacobi matrix of the system at the point (x0, y0),Jacobi matrix of
the system and we will see later how the eigenvalues of J(x0, y0) determine the nature of the

equilibrium point at (x0, y0).
It is reasonable to suppose that when the neglected remainder terms in the

Taylor series expansions of f and g are suitably small, the behavior of this linearized
system of equations in some neighborhood of the equilibrium point at (x0, y0) will
be qualitatively similar to that of the original nonlinear system.

As an illustration of the linearization process, let us now linearize the predator–
prey equations in (122) about the equilibrium point at x = c/d and y = a/b. Iden-
tifying f (x, y) with x(a − by) and g(x, y) with y(dx − c), substituting into the Jaco-
bian J(x0, y0) with x0 = c/d and y0 = a/b, and setting X = x − c/d and Y = y − a/b
leads to the linearized predator–prey equations

dX
dt

= −bc
d

Y

dY
dt

= ad
b

X.

(125)

These equations are easily integrated to give the following equation for the trajec-
tories in the (X, Y) phase plane:

X2 + (cb2/ad2)Y2 = k2, where k is an integration constant.

Reverting to the original variables shows that after linearization, each trajectory
in the (x, y) phase plane that is close to the equilibrium point is a member of the
family of ellipses

(x − c/d)2 + (cb2/ad2)(y − a/b)2 = k2, (126)

which have their common center at the point (c/d, a/b) in the (x, y) phase plane.
This shows that in a neighborhood of the equilibrium point the phase portrait of the
predator–prey system can be expected to be approximated by this family of ellipses.

This result indicates that close to the equilibrium condition, the rabbit and
fox populations can be expected to exhibit a cyclic variation with respect to time.
This conclusion follows from the fact that as the time t increases, starting at an
initial point on a trajectory where x0 = x(t0), y0 = y(t0) at a time t = t0, the point
(x(t), y(t)) will move around the ellipse that passes through this point until after
a suitable interval of time it returns to its starting point. In this case linearization
has produced elliptical trajectories centered on the equilibrium point, so in the
nonlinear case the trajectories can be expected to be distorted ellipses.

Before considering nonlinear autonomous systems we will determine the na-
ture of the equilibrium points associated with the general linear two variable
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autonomous system, which in standard notation can be written

dx
dt

= ax + by

dy
dt

= cx + yd,

(127)

where a, b, c, and d are constants, and the second term dy on the right of the second
equation is not to be confused with the differential dy.

Setting dx/dt = dy/dt = 0 in (127) and solving for x and y shows the origin to
be the only equilibrium point if∣∣∣∣a b

c d

∣∣∣∣ = ad − bc �= 0. (128)

When the (127) is integrated once, it yields what is called a first integral of the
system. A first integral is not a solution of the system, because although it is an
equation that connects x(t) and y(t), it does not express either function explicitly in
terms of t . First integrals are useful because they are easier to obtain than solutions
of general autonomous systems, and they provide qualitative information about the
general behavior of the set of all solutions. This can be seen from the first integral
of the linearized predator–prey system in (125) because, although this did not yield
a solution in terms of t , it did confirm that the linearized system exhibits a periodic
behavior of the two populations in a neighborhood of the equilibrium point.

A simple example of a linear autonomous system can be derived from any
physical system, be it electrical, mechanical, or otherwise, that can be represented
by the homogeneous constant-coefficient second order equation

d2 y
dt2

+ a
dy
dt

+ by = 0. (129)

Setting dy/dt = x, we can write the second order equation as the linear au-
tonomous system

dx
dt

= −ax − by

dy
dt

= x, (130)

with t as a parameter, or to the equivalent variables separable equation
dy
dx

= − x
ax + by

, (131)

where now only x and y are present.
As a special case, when a = 0 and b = n2, result (131) becomes

dy
dx

= − x
n2 y

,

for which a first integral is seen to be

x2 + n2 y2 = k2.

This represents a family of elliptical trajectories all centered on the equilibrium
point of the system that is located at the origin. The argument used earlier in
connection with the linearized predator–prey equations shows that solutions of the
system (131) when a = 0 and b = n2 must be periodic. This is to be expected, because
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with these values of a and b equation (129) describes undamped simple harmonic
oscillations. In this simple case, as x = dy/dt ,

dy√
k2 − n2 y2

= dt,

and after integration this gives

y(t) = (k/n) sin[n(t + t0)],

which is the general solution of (129) for a = 0 and b = x2.
When we considered the linearized predator–prey equations, the family of el-

lipses around the equilibrium point that were found represented an approximation
to the phase portrait of the system in a neighborhood of the equilibrium point. In
this case, however, system (130) is linear, so no linearization is involved and the
family of elliptical trajectories forms the true phase portrait of system (130).

The linear autonomous system (127) can be written in the matrix form

dx/dt = Jx, (132)

where

x =
[

x
y

]
, J =

[
a b
c d

]
. (133)

This system was studied in detail in Section 6.10, where it was seen that its
solution depends on the eigenvalues of J determined by the characteristic equation∣∣∣∣a − λ b

c d − λ

∣∣∣∣ = λ2 − (a + d)λ + (ad − bc) = 0. (134)

Setting α = a + d and β = ad − bc, the characteristic equation in (134) becomes

λ2 − αλ + β = 0, (135)

with the discriminant � = (a − d)2 + 4bc.
The pattern of the trajectories of the autonomous system in (132), equivalently

(127), is determined completely by the eigenvalues λ1 and λ2 of J and their associ-
ated eigenvectors: that is to say, by the fundamental solutions of the system. If the
eigenvalues are real and λ1 �= λ2, a matrix P can always be found that simplifies the
system by reducing J to a diagonal matrix D through the result P−1JP = D, with λ1

and λ2 the elements on the leading diagonal of D (see Section 4.2). The transfor-
mation x = Pu with u = [u, v]T then reduces (132) to the simpler form du/dt = Du,
showing that du/dt = λ1u and dv/dt = λ2v.

These equations have the general solution

u = Aeλ1t and ν = Beλ2t , (136)

so the form of the trajectories about the equilibrium point at the origin in the (u, v)
phase plane is seen to depend on both the signs of the eigenvalues λ1 and λ2 and
their magnitudes.
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When the discriminant � > 0, the eigenvalues λ1 and λ2 will be real, and then
there are three cases to consider.

(i) Unstable nodes: λ1 and λ2 are positive

Examination of the solution in (136) shows that the trajectories must take one of the
two forms illustrated in Figs. 6.14a and 6.14b. In this case the equilibrium point at
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v

u

v

u

v

(a) (b)

(c) (d)

(e) (f)

FIGURE 6.14 (a,b) Unstable nodes. (c,d) Stable nodes. (e,f) Saddle points.
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the origin is called a node. As the eigenvalues are both positive, a point (u(t), v(t))
on a trajectory moves away from the origin as t increases, so this type of equilibrium
point is called an unstable node.

(ii) Stable nodes: λ1 and λ2 are negative

Examination of the solution in (136) shows that the trajectories must take one of

types of critical point

the two forms illustrated in Figs. 6.14c and 6.14d, where the equilibrium point at the
origin is again called node. This time, as the eigenvalues are both negative, a point
(u(t), v(t)) on a trajectory will move toward the origin as t increases, so in this case
the equilibrium point is called a stable node.

(iii) Saddle points: λ1 and λ2 have opposite signs

Examination of the solution in (136) shows that the trajectories take one of the
two forms illustrated in Figs. 6.14e and 6.14f, where the equilibrium point is called
a saddle point. The eigenvalues are real and have opposite signs, so as t increases a
point (u(t), v(t)) on a branch of a hyperbola will move toward the origin and then
away again, showing that a saddle point represents an instability. The two diagonal
straight lines that form degenerate hyperbolas are each called a separatrix in the
phase portrait, because they separate the phase plane into four distinct regions, and
a solution in any one of these regions cannot be related to a solution in a different
region.

(iv) Degenerate node: Equal eigenvalues λ = λ1 = λ2

When the discriminant � = 0 the eigenvalues coincide, so λ = λ1 = λ2. In this case
the Jacobi matrix J cannot be diagonalized, but system (132) can always be reduced
to the form du/dt = Su, where

S =
[

λ 0
1 λ

]
and u =

[
u
v

]
,

and this has the general solution

u = Aeλt and ν = (At + B)eλt . (137)

An examination of solution (137) shows that when λ > 0, the trajectories are
qualitatively similar to the general pattern seen in case (i), corresponding to an
equilibrium point that is an unstable node. When λ < 0 the trajectories are qual-
itatively similar to the general pattern seen in case (ii), corresponding to a stable
node. Equilibrium points with nodes of this type that arise from coincident eigen-
values are called degenerate nodes, so the ones where λ > 0 are called unstable
degenerate nodes, and the ones where λ < 0 are called stable degenerate nodes.

Typical patterns of trajectories at unstable degenerate nodes are shown in
Figs. 6.15a and 6.15b and at stable degenerate nodes in Figs. 6.15c and 6.15d.
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FIGURE 6.15 (a,b) Unstable degenerate nodes. (c,d) Stable degenerate nodes.

(v) Focus or spiral point: Complex conjugate eigenvalues

If the discriminant � < 0, the eigenvalues will be the complex conjugates with λ1 =
ξ + iη and λ2 = ξ − iη. Diagonalization of J then produces a system of equations
of the form du/dt = Cu, where

C =
[

ξ η

−η ξ

]
and u =

[
u
v

]
.

This system is easily shown to have the general solution

u = eξ t (A sin ηt − B cos ηt) and v = eξ t (B sin ηt + A cos ηt),

(138)

which defines spiral trajectories about the equilibrium point. In this case the equi-
librium point is called a focus or a spiral point. The direction in which a point
(u(t), v(t)) along a spiral as t increases is determined by the sign of ξ . When ξ > 0
the point moves away from the origin as t increases, so the equilibrium point is then
called either an unstable focus or an unstable spiral point. Conversely, when ξ < 0,
the point moves toward the origin as t increases, so in this case the equilibrium point
is called a stable focus or a stable spiral point. Figure. 6.16a shows an unstable focus
and Figure. 6.16b a stable focus. Spirals may evolve in either a clockwise or a coun-
terclockwise direction, and this can be determined by the direction of the vector
with components (dx/dt, dy/dt) at any point on the spiral (see Example 6.39).
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FIGURE 6.16 (a) An unstable focus. (b) A stable focus.
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FIGURE 6.17 A center located at the origin.

(vi) Center: Purely imaginary complex
conjugate eigenvalues
If in the characteristic equation (135) α = a − d = 0 and the discriminant � < 0,
the eigenvalues will be purely imaginary complex conjugates. Setting ξ = 0 in (138)
shows that the trajectories become a family of ellipses centered on the origin, as
shown in Fig. 6.17. In this case the equilibrium point at the origin is called a center,
and the corresponding solutions are considered to be stable because they remain
bounded for all time. It follows from this that the equilibrium point in the linearized
predator–prey system is a center.

EXAMPLE 6.37 Locate and identify the nature of the equilibrium point of the system

dx
dt

= −x,
dy
dt

= −x − 2y,

and draw some typical trajectories.

Solution The equilibrium point is located at the origin, and its nature can be
identified by examining the eigenvalues of the Jacobi matrix J that follows by setting
f (x, y) = −x and g(x, y) = −x − 2y. We have

J =
[−1 0

−1 −2

]
,

and this has the eigenvalues λ1 = −1 and λ2 = −2. As the eigenvalues are real, and
both are negative, it follows from Case (ii) that the equilibrium point at the origin is
a stable node. To draw trajectories it is necessary to solve this system, and a routine
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x

y

FIGURE 6.18 Trajectories in the neighborhood
of the stable node at the origin.

calculation shows that

x = −C1e−t and y = C1e−t + C2e−2t .

Eliminating t , we find that the equation of the trajectories is

y = −x + (C2/C2
1 )x2.

This equation describes a family of parabolas that at the origin are all tangent
to the degenerate parabola y = −x that forms a separatrix marking a boundary
between phase curves with different properties. Some typical trajectories are shown
in Fig. 6.18, where the arrows indicate that the node is stable.

It is important to recognize that as the node is a singularity of the system where
dy/dx is indeterminate, a point moving along a trajectory that passes through the
node cannot leave it on a different trajectory.

EXAMPLE 6.38 Locate and identify the nature of the equilibrium point of the system

dx
dt

= −x − y − 2,
dy
dt

= −x + y − 4,

and draw some typical trajectories.

Solution The equilibrium point occurs when −x − y − 2 = 0 and −x + y − 4 = 0,
corresponding to x = −3, y = 1. For convenience we shift the equilibrium point to
the origin in the (X, Y) phase plane by making the change of variables X = x + 3
and Y = y − 1, when the system becomes

dX
dt

= −X − Y,
dY
dt

= −X + Y.

The nature of the equilibrium point that is now located at the origin in the (X, Y)
phase plane can be identified by examining the eigenvalues of the Jacobi matrix

J =
[−1 −1

−1 1

]
,

which are easily seen to be λ1 = −√
2 and λ2 = √

2. As the eigenvalues are real,
and opposite in sign, it follows from Case (iii) that the equilibrium point at the
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origin is a saddle point. To draw trajectories it is necessary to solve this system of
equations.

After some calculations, the equation of the family of trajectories determined
by dY/dX = (X − Y)/(X + Y) is found to be given by

Y 2 + 2XY − X 2 = c,

where the constant c is determined by the point in the phase plane through which
a trajectory is required to pass.

The general equation of a conic is

AX 2 + 2BXY + CY 2 + DX + EY + F = 0,

and this represents an ellipse if B2 − AC < 0, a parabola if B2 − AC = 0, and
a hyperbola if B2 − AC > 0. So comparing the equation of the trajectories with
the general form of a conic, we see that B2 − AC > 0, so it describes a family of
hyperbolas.

This family of hyperbolas with parameter c is centered on the origin, and solving
for Y gives

Y = −X +
√

2X 2 + c and Y = −X −
√

2X 2 + c,

where for any given value of c, each equation represents one pair of hyperbolas.
Some typical hyperbolas are shown in Fig. 6.19, where the upper and lower

branches correspond to different values of c in the first equation, and the left
and right branches correspond to other values of c in the second equation. The
asymptotes, which represent degenerate hyperbolas, are seen by inspection of these
equations to be given by Y = (

√
2 − 1)X and Y = −(

√
2 + 1)X. Each of these is a

separatrix in the phase portrait of the system, and a solution in any one of the four
regions into which these lines divides the phase plane cannot connect with a solution
in any other region.

The simplest way to determine the direction along the upper and lower hyper-
bolic trajectories as t increases is to find the direction of the vector (dX/dt, dY/dt)
on a trajectory. For example, when X = 0, we see from the differential equations
that the direction of the vector along a trajectory that crosses the Y-axis has the
components (−Y, Y). This shows that when Y > 0 the vector is directed upward
and toward the left, whereas when Y < 0 it is directed downward and toward the

X

Y

FIGURE 6.19 Trajectories around the saddle
point at the origin in the (X, Y) phase plane.
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right. The direction of the arrows on the left and right hyperbolic trajectories are
determined in similar fashion by finding the direction of the vector (dX/dt, dY/dt)
that crosses the X-axis where Y = 0.

The pattern of the trajectories around the saddle point in the original coordinate
system is obtained by translating the picture in Fig. 6.19 to the point (−3, 1).

EXAMPLE 6.39 Locate and identify the equilibrium point of the system

dx
dt

= −x + 2y + 1,
dy
dt

= −2x − y + 2,

and sketch some trajectories.

Solution The equilibrium point occurs when −x + 2y + 1 = 0 and −2x − y +
2 = 0, corresponding to x = 1 and y = 0. For convenience we shift the equilibrium
point to the origin in the (X, Y) phase-plane by making the change of variables
X = x − 1 and Y = y, when the system becomes

dX
dt

= −X + 2Y,
dY
dt

= −2X − Y.

The nature of the equilibrium point that is now located at the origin in the
(X, Y) phase plane can be identified by examining the eigenvalues of the Jacobi
matrix

J =
[−1 2

−2 −1

]
,

which follows from setting f (X, Y) = −X + 2Y and g(X, Y) = −2X − Y.
The eigenvalues are λ1 = −1 + 2i and λ2 = −1 − 2i , so as these are complex

conjugates with negative real parts, it follows from Case (v) that the equilibrium
point at the origin in the (X, Y) phase plane is a stable focus. This means that the
trajectories spiral into the origin as t increases, so the only question that remains is
whether the spiral is clockwise or counterclockwise.

Figure 6.20 shows two possible spirals, where in Fig. 6.20a the direction around
the spiral is conterclockwise, while in Fig. 6.20b it is clockwise. Arguing as in
Example 6.38, and considering the vector with components (dX/dt, dY/dt) where
the spiral crosses the X-axis, by setting Y = 0 we find that the vector has compo-
nents (−X, −2X). As this vector is directed downward and for x > 0 to the left, it

X

Y

(a)

X

Y

(b)

FIGURE 6.20 Two stable foci in the (X, Y) phase plane. (a) Counterclockwise spiral. (b) Clockwise
spiral.
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follows that the trajectories must spiral clockwise into the origin, so Fig. 6.20b is
the only possible phase portrait for this system.

This information is sufficient to enable trajectories to be sketched, but as the
general solution of the system is easily found to be

X(t) = e−t (c1sin 2t − c2cos 2t), Y(t) = e−t (c1cos 2t + c2sin 2t),

it is not difficult to construct accurate spiral trajectories.
The pattern of trajectories for the original autonomous system is obtained by

translating the pattern in Fig. 6.20b to the point (1, 0) in the (x, y) phase plane.

If it is only necessary to identify the nature of the equilibrium point at the origin
belonging to the linear autonomous system,

dx
dt

= ax + by

dy
dt

= cx + dy,

results (i) to (vi) can be summarized as follows:identification of
critical points

(a) A node if (a + d)2 ≥ 4(ad − bc) > 0; stable if a + d < 0 and unstable if
a + d > 0.

(b) A saddle point if ad − bc < 0.
(c) A focus if (a + d)2 < 4(ad − bc); stable if a + d < 0 and unstable if a + d > 0.
(d) A center if a + d = 0 and ad − bc > 0.

(vii) Nonlinear autonomous systems

If the nonlinear autonomous systemnonlinear autonomous
systems ⎧⎪⎪⎨⎪⎪⎩

dx
dt

= f (x, y)

dy
dt

= g(x, y)

(139)

has an equilibrium point at (x0, y0), the transformation X = x − x0, Y = y − y0 will
shift it to the origin in the (X, Y) phase plane. Accordingly, when considering an
equilibrium point of system (139), we will always assume that such a translation has
been made.

It is plausible to expect that when the nonlinear system in (139) has an equilib-
rium point at the origin, and in some sense the system is close to a linear system, then
the nature of the equilibrium point at the origin will be the same in both systems.
To make more precise the meaning of the term close, we restrict consideration to
functions f and g that can be written

f (x, y) = ax + by + F(x, y)

g(x, y) = cx + dy + G(x, y),
(140)
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where ad − bc �= 0 and the nonlinear terms F and G are such that

lim
x→0,y→0

F(x, y)√
x2 + y2

= 0 and lim
x→0,y→0

G(x, y)√
x2 + y2

= 0. (141)

This conjecture concerning the relationship between the equilibrium points of
a nonlinear and a related linear autonomous system can be shown to be correct,
subject only to a single qualification. Specifically, if the linearized system

dx
dt

= ax + by

dy
dt

= cx + dy
(142)

has a node, a saddle point, or a focus at the origin, then so also has the nonlinear
system in (140). The qualification that must be added is that if the equilibrium point
at the origin of the linearized system in (142) is a center, then the corresponding
nonlinear system in (140) has an equilibrium point at the origin that is either a center
or a focus.

The reason why a center of the linear system (142) may be either a center of a
focus of the nonlinear system (140) is not difficult to understand. Conditions (c) and
(d) at the end of section (vi) show that the criteria identifying a focus and a center in
the linear case are closely related, and it is due to the insensitivity of the lineariza-
tion process that it fails to distinguish between them when a nonlinear autonomous
system is considered. No proof of these statements will be offered here, as this
involves methods that do not belong to this first account of autonomous systems.
However, a detailed proof of the nature of the relationship between the types of
equilibrium points in nonlinear and linearized systems, together with other impor-
tant results due to Liapunov, Poincaré, and others, can be found in the references
at the end of the book.

Nonlinear autonomous systems possess an important property that is not shared
by linear systems. This is that in the phase plane a curve � may exist, not enclosing
an equilibrium point, with the property that a trajectory starting from a point either
inside or outside � is attracted to � and spirals into it as t increases. A curve � of this
type, to which trajectories are attracted, is called a limit cycle for the system. Clearly,
although a limit cycle represents a stable oscillatory solution, it is not one that is
asymptotically stable. This statement is essentially the substance of the Poincaré–
Bendixson theorem, the details of which can be found in the references at the end
of the book.

HENRI POINCARÉ (1854–1912)
An outstanding French mathematician who studied in the Ecole Polytechnique in France before
proceeding to study in the Ecole Nationale Superieure des Mines in Paris and receiving his
doctorate from the University of Paris in 1879. He was appointed to the chair of physical and
experimental mechanics at the Sorbonne and later to the chairs of mathematical physics and
then the chair of mathematical astronomy. He made fundamental contributions to almost all of
mathematics and was probably the last of the mathematical geniuses about whom it could truly
be said that he knew all that was then known about mathematics.
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It was proved separately by Bendixson that if in system (139) the functions
f and g have continuous partial derivatives for all x and y, and fx + fy is either
positive or negative in some region � of the phase plane, then the system has no
limit cycle in �. Although the proof of this result is not difficult, it will not be given
here. The result is useful for establishing the nonexistence of limit cycles in given
regions of the phase plane.

A theorem that gives sufficient, though not necessary, conditions for the exis-
tence of a limit cycle for a special type of autonomous system is Liénard’s theorem.
The theorem is now stated without proof.

THEOREM 6.9 Liénard’s theorem Write the linear equation

d2x
dt2

+ f (x)
dx
dt

+ g(x) = 0

as the first order Liénard system

conditions identifying
a limit cycle: Liénard’s
theorem

dx
dt

= y

dy
dt

= −g(x) − f (x)y.

Let f (x) and g(x) satisfy the following conditions:

(i) f (x) and g(x) are continuous functions with continuous first derivatives for
all x.

(ii) g(x) is an odd function that is positive for x > 0 and f (x) is an even function.
(iii) the function F(x) = ∫ x

0 f (ξ)dξ , which is an odd function, has precisely one
positive root at x = α, with F(x) < 0 for 0 < x < α, F(x) > 0 and nondecreasing
for x > α, and F(x) → ∞ as x → ∞.

Then the Liénard system possesses a unique closed curve � enclosing the origin
in the phase plane, with the property that every trajectory spirals toward � as
t → ∞.

An application of this theorem will be made later to the van der Pol equationvan der Pol equation
and phase portraits

d2x
dt2

+ ε(x2 − 1)
dx
dt

+ x = 0, (143)

which provides a classical example of a limit cycle. The equation itself was derived
in the 1920s by Balthazar van der Pol when studying self-sustained oscillations in
vacuum tubes, and it was his work that prompted Liénard to study corresponding
problems in nonlinear mechanics.

The task of finding the complete phase portrait of a nonlinear autonomous sys-
tem, usually called the global phase portrait, can be difficult. This is because non-
linear systems may have more than one equilibrium point, and while linearization
techniques provide information in a neighborhood of each of these points (with
the exception of centers), they provide very little information about the general
phase portrait or any separatrix that may occur, and no information at all about the
existence of a limit cycle, though Liénard’s theorem helps in the linear case.
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The Predator–Prey Problem
The predator–prey equations have been shown to have a single physically meaning-
ful equilibrium point at (c/d, a/b) in the phase plane, where the linearized form of
the equations has a center with elliptical trajectories surrounding it. In view of the
fact that when the linearized form of a nonlinear system identifies an equilibrium
point as a center, the associated nonlinear system may have either a center or a
focus, a more careful examination is necessary in the predator–prey case before it is
possible to state with certainty that (c/d, a/b) is a center and that cyclic variations
in the populations take place. In more advanced accounts of nonlinear autonomous
systems, theorems exist that can resolve this ambiguity, but here we will make use of
a simple device that in this and other straightforward cases will suffice to distinguish
between the two possibilities.

The idea is simple, and it involves asking how many times a trajectory will
intersect a straight line drawn through the equilibrium point at (c/d, a/b). If the

more on the
predator–prey
problem

equilibrium point is a center, a trajectory can only intersect this line twice, but if it
is a focus (a spiral point) it will intersect it infinitely many times.

Dividing the second of the predator–prey equations in (122) by the first equa-
tion, rearranging terms, and integrating gives∫

(a − by)
y

dy =
∫

(xd − c)
x

dx,

and so

a ln y + c ln x − by − xd = k,

where k is an integration constant. To proceed further, we consider a typical case
where a = 1, b = 1, c = 2, and d = 1, when the predator–prey system will have an
equilibrium point at (2, 1) in the phase plane, and the equation determining the
trajectories becomes

ln y + 2 ln x − y − x = k.

Let us now select a convenient trajectory through any point in the first quadrant
that does not coincide with the equilibrium point. It is convenient to choose the
point (1, 1), when it follows from the above equation that k = −2, so the equation
of the trajectory through this point becomes

ln y + 2 ln x − x = −3.

We may choose any test line through the equilibrium point, but it is simplest
to choose the line y = 1 that passes through the equilibrium point of the system at
(2, 1) in the phase plane. Setting y = 1 in the preceding equation reduces it to

2 ln x − x = −3,

so if this equation has only two real roots the equilibrium point will be a center,
but if it has infinitely many it will be a focus. Graphing y = 2 ln x − x and y = −3
to determine where they intersect, we find that only two intersections occur, with
one at x ≈ 0.25 and the other at x ≈ 6.85. This shows that in this model of the
predator–prey system the equilibrium point at (2, 1) must be a center.

A similar argument applies to any other choice of nonnegative coefficients a, b,
c, and d. This demonstrates that the equilibrium point of the predator–prey system
located at (2, 1) in the first quadrant of the phase plane is, indeed, a center.
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FIGURE 6.21 (a) The phase plane for the system through the point (1, 1) with an equilibrium point at
(2, 1). (b) The variation of x(t) showing the cycle time to be approximately 4.7 time units. (c) A general
family of trajectories, each with the same equilibrium point.

Negative rabbit and fox populations have no physical significance, so no atten-
tion need be paid to the saddle point located at the origin of the phase plane, but
notice that each axis is a separatrix belonging to the saddle point. Accordingly, the
computer-generated phase portrait in the first quadrant is shown in Fig. 6.21a, with
a = 1, b = 1, c = 2, and d = 1, the rabbit population along the horizontal axis, and
the fox population along the vertical axis. The equilibrium point is shown as P. To
find the period of this cycle of events, it is sufficient to find the period of either x(t) or
y(t). The variation of x(t) is shown in Fig. 6.21b with t along the horizontal axis and
x along the vertical axis, from which the period is seen to be approximately T ≈ 4.7
time units. Figure 6.21c shows a general family of trajectories for this system, each
with a different period.

The Undamped and Damped Simple Pendulum
The geometry of the simple pendulum is illustrated in Fig. 6.22, where a mass m is
attached to the end of a light rigid rod of length l that is pivoted at the end opposite
to the mass and allowed to oscillate under gravity. The equation of motion, when
damping proportional to dθ/dt is present, can be written

study of the
undamped and
damped pendulum

ml2 d2θ

dt2
+ 2mlk

dθ

dt
+ mgl sin θ = 0,
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FIGURE 6.22 (a) Small oscillations.
(b) Stable equilibrium. (c) Inverted
pendulum—unstable equilibrium.

where k > 0 is a constant. Here, to simplify the associated characteristic equation,
the constant of proportionality for wind resistance has been set equal to 2ml k. This
is equivalent to setting μ = 2mk/l in the equation of motion for a damped pendulum
derived at the start of Section 6.1.

The undamped pendulum

Let us start by considering the undamped case k = 0. Introducing the new vari-
able x = dθ/dt , we see the nonlinear autonomous system determining the motion
to be

dx
dt

= −
(g

l

)
sin θ and

dθ

dt
= x,

with equilibrium points on the θ-axis where sin θ = 0. This shows there are infinitely
many equilibrium points along the θ -axis at θ = ±nπ , for n = 0, 1, . . . . Accord-
ingly, because of the periodicity of sin θ , only the interval −π ≤ θ ≤ π need be
considered.

If we write sin θ = θ + (sin θ − θ), the system becomes

dx
dt

= −
(g

l

)
θ −

(g
l

)
(sin θ − θ)

dθ

dt
= x.
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The nonlinear term (g/ l) (sin θ − θ) satisfies the condition in (141), so when the
equilibrium point at the origin is considered, the Jacobi matrix becomes

J =
[

0 −g/ l
1 0

]
.

This has the purely imaginary eigenvalues λ1 = −i
√

(g/ l) and λ2 = i
√

(g/ l), so
the equilibrium point of the linearized system located at the origin is a center.
An argument similar to the one used with the predator–prey equations can be
used to show that any trajectory starting at a point on the line θ = 0 in the interval
−π < θ < π will intersect the x-axis twice, so the equilibrium point of the nonlinear
system is also a center. This confirms the expected result that the pendulum will
perform periodic oscillations.

Next we must consider the equilibrium point at (π, 0), and to do this we shift
the origin of the system to this point by setting u = θ − π . This causes the equa-
tion dx/dt = −(g/ l) sin θ to become dx/dt = (g/ l) sin u, so the system can now be
written

du
dt

= x

dx
dt

=
(g

l

)
u +

(g
l

)
(sin u − u).

The nonlinear term again satisfies the conditions in (141), so the nature of this
equilibrium point is determined by the eigenvalues of the Jacobi matrix J, which
now becomes

J =
[

0 g/ l
1 0

]
.

This has the real eigenvalues λ1 = −√(g/ l) and λ2 = √
(g/ l), so as these are of op-

posite sign the equilibrium point at (π, 0) is seen to be a saddle point. An analogous
argument shows that the equilibrium point at (−π, 0) is also a saddle point, so the
nonlinear system also has saddle points at (±π, 0).

A repetition of these arguments shows the equilibrium points at (±2nπ, 0) all
to be centers, and the equilibrium points at ((2n + 1)π, 0) all to be saddle points. A
computer plot of some typical trajectories is shown in Fig. 6.23a.

An examination of Fig. 6.23a explains the significance of these centers and
saddle points. As the angular displacement of the pendulum is indeterminate up
to a multiple of 2π , each center represents the stable nonlinear oscillations that
occur in Fig. 6.22a when the pendulum never becomes inverted. Similarly, each
saddle point represents the unstable position of the inverted pendulum shown in
Fig. 6.22c. As the oscillations are nonlinear, each different closed curve about a
center represents a nonlinear oscillation with a different period. Each dashed curve
is a separatrix forming a boundary between phase curves with different properties.

An important and useful result is obtained by writing

d2θ

dt2
= dx

dt
= dθ

dt
dx
dθ

= x
dx
dθ

.
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FIGURE 6.23 (a) The phase portrait for the undamped pendulum.
(b) The phase portrait for the damped pendulum.

Using this result the equation of motion becomes

ml2x
dx
dθ

+ mglsin θ = 0,

so after integration we have

1
2

ml2
(

dθ

dt

)2

− mglcos θ = C,

where C is an integration constant.
This first integral of the equation of motion expresses the conservation of energy

in the system, which is possible because when k = 0 there is no dissipation of energy
due to friction.

The damped pendulum

When damping occurs (k > 0), the nonlinear autonomous system governing the
oscillations of the pendulum becomes

dθ

dt
= x and

dx
dt

= −2kx
l

−
(g

l

)
sin θ.
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Considering the equilibrium point that again occurs at the origin, we write the
system as

dθ

dt
= x

dx
dt

= −2kx
l

−
(g

l

)
θ −

(g
l

)
(sin θ − θ).

Then, proceeding as before, we see that the nature of the equilibrium point at
the origin is determined by the eigenvalues of the Jacobi matrix

J =
[−2k/ l −g/ l

1 0

]
.

The characteristic equation of J is

λ2 + (2k/ l)λ + g/ l = 0,

so as λ = −k/ l ±
√

k2 − lg/ l, and as k > 0, the eigenvalues are real and negative
when k > g/ l, corresponding to overdamped oscillations. When (k/ l)2 < g/ l the
eigenvalues are complex conjugates with negative real parts, corresponding to the
asymptotically stable oscillatory case. So, when friction is present, the equilibrium
point at the origin is seen to be an asymptotically stable focus. In time, friction will
cause the oscillations to decay to zero, causing the pendulum to come to rest in the
positions shown in Fig. 6.23b.

EXAMPLE 6.40 Locate and classify the equilibrium points of the nonlinear autonomous system

dx
dt

= 4 − x2 − 4y2 and
dy
dt

= xy.

Solution The equilibrium points occur when 4 − x2 − 4y2 = 0 and xy = 0, so the
points are located at (0, −1), (0, 1), (2, 0), and (−2, 0). Let us consider the equilib-
rium point at (0, 1) and shift the origin to this point by setting Y = y − 1 and X = x.
The system now becomes

dX
dt

= −8Y − X 2 − 4Y 2 and
dY
dt

= X + XY.

Setting X = rcos θ , Y = rsin θ , we easily see that conditions (141) are satisfied,
so the nature of the equilibrium point at (0, 1) will be determined by the eigenvalues
of the Jacobi matrix

J =
[

0 −8
1 0

]
.

These satisfy the characteristic equation λ2 + 8 = 0, so as they are purely imaginary,
the equilibrium point of the linearized system that is located at (0, 1) must be a
center, and arguments similar to those used with the pendulum problem confirm
that the nonlinear system also has a center at (0, 1).
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FIGURE 6.24 (a) The origin is a center. (b) The origin is an unstable focus.

It is left as an exercise to use similar arguments to show that the equilibrium
point at (0, −1) is also a center and the equilibrium points at (−2, 0) and (2, 0) are
saddle points.

The inability of a linearized system to reflect the difference between a center
and a focus in the nonlinear system from which it is derived is best illustrated by
means of computer-generated phase portraits. The following two systems only differ
in the power of x associated with dx/dt , and each has the same linearized form that
indicates the existence of a center at the origin of the phase plane:

(i)
dx
dt

= −4y + x2 and
dy
dt

= 4x + y2

and

(ii)
dx
dt

= −4y + x3 and
dy
dt

= 4x + y2.

However, the nonlinear phase portrait of system (i) in Fig. 6.24a shows that the
system does, indeed, have a center located at the origin in the phase plane, but the
nonlinear phase portrait of system (ii) in Fig. 6.24b shows that the system has an
unstable focus at the origin.

A typical example of a limit cycle is provided by the van der Pol equation

d2x
dt2

+ ε(x2 − 1)
dx
dt

+ x = 0.

If we set f (x) = ε(x2 − 1) and g(x) = x in Liénard’s theorem, it is easily seen that
the conditions of the theorem are satisfied provided F(x) = ∫ x

0 ε(ξ 2 − 1)dξ has
precisely one positive root x = α with F(x) < 0 for 0 < x < α, and F(x) is such
that it is positive and nondecreasing for x > α with F(x) → ∞ as x → ∞. This
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FIGURE 6.25 Phase portraits for the van der Pol equation with ε = 0.9 and the variation of x(t) with
t . (a) A trajectory starting outside the limit circle. (b) A trajectory starting inside the limit cycle. (c) The
limit cycle. (d) The periodicity of x(t) as a function of t .

is seen to be the case, because F(x) = 1
3ε(x3 − 3x), so the theorem ensures the

existence of a limit cycle for the van der Pol equation provided ε > 0.
Figure 6.25a shows a computer-generated phase portrait for the van der Pol

equation with ε = 0.9, where the trajectory starting from an initial point at t = 0
outside the limit cycle (the parallelogram-shaped closed curve) is attracted inward
toward the limit cycle. Figure 6.25b shows the corresponding situation when the
initial point lies inside the limit cycle, where here the trajectory is attracted outward
toward the limit cycle. Figure 6.25c shows the limit cycle itself. A plot of x(t) against
t is shown in Fig. 6.25d, from which the solution is seen to become periodic, with a
period of approximately 6.5 time units, after the time t = 5.

More examples of the phase plane are to be found in references [3.3] to [3.5],
whereas a more extensive and advanced account is to be found in references [3.1],
[3.2], and [3.13].
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Summary An autonomous system involving the variables x(t) and y(t), where the parameter t is
usually the time, are systems of the form dx/dt = f (x, y) and dy/dt = g(x, y), where the
dependence of the f and g on t is implicit. Critical points of such systems were defined and
the concept of a trajectory, or path, was introduced leading to the notion of a phase por-
trait. Stability, instability, and asymptotic stability were defined, and the classical predator–
prey problem was used to illustrate ideas. Linearization of the functions f and g led to the
identification of different types of critical points for linear autonomous systems. These ideas
were extended to nonlinear autonomous systems where it was possible for trajectories to
spiral in or out until they entered a closed loop called a limit cycle, where the solution
became periodic, though nonlinear. These ideas were illustrated by application to the full
nonlinear predator–prey problem, the pendulum problem, and the van der Pol equation.

EXERCISES 6.12

In Exercises 1 through 6, locate and identify the nature of
the equilibrium point and sketch the pattern of the trajec-
tories.

1. dx/dt = y, dy/dt = x.
2. dx/dt = x + 2, dy/dt = −x + 2y − 8.
3. dx/dt = x − 2y, dy/dt = 4x − 3y.
4. dx/dt = x − y, dy/dt = 2x − y.
5. dx/dt = x + 3y − 4, dy/dt = −6x − 5y + 22.
6. dx/dt = 2y − x, dy/dt = 3x + 6.

In Exercises 7 through 9 locate the equilibrium points of
the given nonlinear autonomous system and, where possi-
ble, use linearization to identify their nature.

7. dx/dt = x2 − y2 − 4, dy/dt = y.
8. dx/dt = 2 + y − x2, dy/dt = x2 − xy.

9. dx/dt = x + y + y2, dy/dt = 2x + y.
10. Locate and identify the equilibrium points of

dx/dt = −x + xy, dy/dt = 3y − 2xy + x.

11. Show that the only equilibrium point of the van der Pol
equation

d2x
dt2

+ ε(x2 − 1)
dx
dt

+ x = 0

is located at the origin. By linearizing the equation
about the origin, find conditions that must be imposed
on ε in order that (a) the equilibrium point be an unsta-
ble spiral, (b) that it be an unstable node, and (c) that
it be a center. Relate your results to the phase portraits
in Fig. 6.25.
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CHAPTER 6

TECHNOLOGY PROJECTS

The purpose of the first two projects is to use a computer algebra phase portrait package to
construct the phase portraits for linear and nonlinear systems, and to examine the nature of the limit
cycles in the van der Pol equation for different choices of the parameter ε and the initial conditions.

Project 1

Phase Portraits

Use a computer phase portrait package to construct
the phase portraits for the following systems about
the origin:

(a)
dx
dt

= 2x2 3y,
dy
dt

= x + 2y.

(b)
dx
dt

= x + 2y,
dy
dt

= x 3y.

(c)
dx
dt

= 2x 3y,
dy
dt

= x + 2y.

(d)
dx
dt

= 2x 4y,
dy
dt

= 4x 2y.

(e)
dx
dt

= x + 3y2,
dy
dt

= x + 2y.

Project 2

The Limit Cycle of the van der Pol Equation

Use a computer algebra phase portrait package to
construct integral curves for the van der Pol equation

x′′ + ε(x2 1)x′ + x = 0

for ε = 0.5, 1.0, and 1.5, starting trajectories from
points inside and outside the limit cycle shown in
Fig. 6.25.

Project 3

Period of Oscillation of a Nonlinear
Pendulum

The nonlinear equation of motion of a simple pendu-
lum when the mass of the pendulum rod is neglected
is

mφ′′ + (mg/ l) sin φ = 0,

where a prime denotes differentiation with respect to
the time t , m is the mass of the pendulum bob, g is
the acceleration due to gravity, l is the length of the
pendulum, and φ is the angle of deflection of the pen-
dulum from the vertical. When the maximum angle
of deflection of the pendulum from the vertical is θ ,
the period of oscillation T is given by the complete
elliptic integral

T = 4

√
l
g

∫ π/2

0

du

(1 sin2(u) sin2( 1
2θ))1/2

. (I)

1. Use the numerical integration facility of
MAPLE to find (T/4)

√
(g/ l) for some specific θ .

2. Expand the integrand of (I) as a Maclaurin se-
ries in u and integrate term by term to find a
series representation                    for (T/4)

√
(g/ l) in terms

of powers of sin θ .
3. Set θ  = 2π/5 and approximate the result in Part

2 by taking the first N terms, with N = 2m and
m = 1, 2, . . . . By repeatedly doubling N and
comparing the estimate of (T/4)

√
(g/ l) with the

result obtained in Part 1, find how many terms
must be used in the approximation if the result
is to agree to four decimal places.

378



7C H A P T E R

The Laplace Transform

Many problems in engineering and physics can be described in terms of the evolution
of solutions of linear differential equations subject to initial conditions. An important

group of these problems involves constant coefficient differential equations, and equations
like these can be solved very easily by using the Laplace transform.

The Laplace transform is an integral transform that changes a real variable function
f (t) into a function F (s) of a variable s through

F (s) =
∫ ∞

0
e−st f (t)dt,

where in general s is a complex variable.
The importance of the Laplace transform in the study of initial value problems for

linear constant coefficient differential equations is that it replaces the operation of inte-
grating a differential equation in f (t) by much simpler algebraic operations involving F (s).
Unlike previous methods, where first a general solution is found, and then the constants in
the complementary function are chosen to match the initial conditions, when the Laplace
transform method is used the initial conditions are incorporated from the start. The task
of finding the function f (t) from its Laplace transform F (s) is called inverting the trans-
form, and when working with constant coefficient equations we can accomplish this by
appeal to tables of Laplace transform pairs—that is, to a table listing a function f (t) and
its corresponding Laplace transform F (s).

The fundamental ideas underlying the Laplace transform are derived, along with its
operational properties, which are illustrated by examples. Initial value problems for ordinary
differential equations are solved by the Laplace transform, which is then applied to systems
of equations and to certain variable coefficient equations. The chapter concludes with
applications of the Laplace transform to a variety of problems, the last of which is the heat
equation.

7.1 Laplace Transform: Fundamental Ideas

Let the real function f (t) be defined for a ≤ t ≤ b, and let the function K(t, s)
of the variables t and s be defined for a ≤ t ≤ b and some s. When it exists, the

379
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integral
∫ b

a f (t)K(t, s)dt is a function of the single variable s, so denoting the inte-
gral by F(s) we can write

F(s) =
∫ b

a
K(t, s) f (t)dt. (1)

The function F(s) in (1) is called an integral transform of f (t), the function
K(t, s) is the kernel of the transform, and s is the transform variable. The limits a
and b may be finite or infinite, and when at least one limit is infinite the integral
in (1) becomes an improper integral.

When it exists, the Laplace transform F(s) of a real function f (t) with domain
of definition 0 ≤ t < ∞ is defined as the integral transform (1) with the kernel
K(t, s) = e−st , the interval of integration 0 ≤ t < ∞, and s a complex variable such
that Re s < c for some nonnegative constant c, so that

F(s) =
∫ ∞

0
e−st f (t)dt. (2)

Throughout the present chapter the transform variable s will be considered
to be a real variable, and c will be chosen such that the integral in (2) converges.
However, when the general problem of recovering a function f (t) from its Laplace
transform F(s) is considered in Chapter 16, it will be seen that s must be allowed to
be a complex variable. The advantage of restricting s to the real variable case in this
chapter is that the recovery of many useful and frequently occurring functions f (t)
from their Laplace transforms F(s) can be accomplished in a very simple manner
without the use of complex variable methods.

The reason for interest in integral transforms in general, and the Laplace trans-
form in particular, will become clear when the solution of initial value problems for
differential equations is considered. It will then be seen that the Laplace transform
replaces integrations with respect to t by simple algebraic operations involving F(s),
so provided f (t) can be recovered from F(s) in a simple manner, the solution of an
initial value problem can be found by means of straightforward algebraic operations.

Clearly the kernel e−st will only decrease as t increases if s > 0, and the Laplace
transform of f (t) will only be defined for functions f (t) that decrease sufficiently
rapidly as t → ∞ for the integral in (2) to exist. In general, if the function to be
transformed is denoted by a lowercase letter such as f , then its Laplace transform
will be denoted by the corresponding uppercase letter F , as in (2). It is convenient
to denote the Laplace transform operation by the symbol L, so that symbolically
F(s) = L{ f (t)}.

The Laplace transform

Let f (t) be defined for 0 ≤ t < ∞. Then, when the improper integral exists,
the Laplace transform F(s) of f (t), written symbolically F(s) = L{ f (t)}, isformal definition of

the Laplace transform defined as

F(s) =
∫ ∞

0
e−st f (t)dt.
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EXAMPLE 7.1 Find L{eat } where a is real.

Solution From (2) we have

L{eat } =
∫ ∞

0
e−st eat dt

=
[

−e−(s−a)t

s − a

]t→∞

0

= lim
t→∞

[
−e−(s−a)t

s − a

]
+ 1

s − a

= 1
s − a

,

provided s > a, for only then will the limit in the first term vanish. This has shown
that L{eat } = F(s) = 1/(s − a) for s > a, where it is necessary to include the in-
equality s > a to ensure the convergence of the integral.

PIERRE SIMON LAPLACE (1749–1827)
A French mathematician of remarkable ability who made contributions to analysis, differential
equations, probability, and celestial mechanics. He used mathematics as a tool with which to
investigate physical phenomena, and made fundamental contributions to hydrodynamics, the
propagation of sound, surface tension in liquids, and many other topics. His many contributions
had a wide-ranging effect on the development of mathematics.

The two functions f (t) and F(s) are called a Laplace transform pair, and forLaplace transform
pair and inverse
transform

all ordinary functions, given F(s) the corresponding function f (t) is determined
uniquely, just as f (t) determines F(s) uniquely. This relationship is expressed
symbolically by using the symbol L−1 to denote the operation of finding a func-
tion f (t) with a given Laplace transform F(s). This process is called finding the
inverse Laplace transform of F(s). In terms of the foregoing example, we have
L{eat } = 1/(s − a) and L−1{1/(s − a)} = eat . This is a particular case of the gen-
eral result that, by definition, the inverse Laplace transform acting on the Laplace
transform of the function returns the original function, so we can write

L−1{L{ f (t)}} = f (t).

A sufficient condition for the existence of the Laplace transform of a function
f (t) is that the absolute value of f (t) can be bounded for all t ≥ 0 byhow to be sure a

Laplace transform
exists | f (t)| ≤ Mekt , (3)

for some constants M and k. This means that if numbers M and k can be found such
that

|e−st f (t)| ≤ Me(k−s)t ,

then

L{ f (t)} =
∫ ∞

0
e−st f (t)dt ≤ M

∫ ∞

0
e(k−s)t dt = M/(s − k).
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TABLE 7.1 Laplace Transform Pairs

f (t) F(s) = L{ f (t)} Condition on s

1. 1 1/s s > 0
2. t 1/s2 s > 0
3. tn (n = 1, 2, . . .) n!/sn+1 s > 0
4. ta (a > −1) �(a + 1)/sa+1 s > a
5. eat 1/(s − a) s > a
6. tneat (n = 1, 2, . . .) n!/(s − a)n+1 s > a
7. H(t − a) e−as/s s ≥ a
8. δ(t − a) e−as s > 0, a > 0
9. sin at a/(s2 + a2) s > 0

10. cos at s/(s2 + a2) s > 0
11. t sin at 2as/(s2 + a2)2 s > 0
12. t cos at (s2 − a2)/(s2 + a2)2 s > 0
13. eat sin bt b/[(s − a)2 + b2] s > a
14. eat cos bt (s − a)/[(s − a)2 + b2] s > a

15.
1

2a3 sin at − 1
2a2 t cos at 1/(s2 + a2)2 s > 0

16.
1

2a
sin at + 1

2
t cos at s2/(s2 + a2)2 s > 0

17. 1 − cos at a2/[s(s2 + a2)] s > 0
18. at − sin at a3/[s2(s2 + a2)] s > 0

19. sinh at a/(s2 − a2) s > |a|
20. cosh at s/(s2 − a2) s > |a|
21.

1
2a3 sinh at + 1

2a2 t cosh at 1/(s2 − a2)2 s > |a|

22.
1

2a
t sinh at s/(s2 − a2)2 s > |a|

23.
1

2a
sinh at + 1

2
t cosh at s2/(s2 − a2)2 s > |a|

24. sinh at − sin at 2a3/(s4 − a4) s > |a|
25. cosh at − cos at 2a2s/(s4 − a4) s > |a|

The integral on the right will be convergent provided s > k > 0, so when this is true
the Laplace transform F(s) = L{ f (t)} will exist. It should be clearly understood
that (3) is only a sufficient condition for the existence of a Laplace transform, and
not a necessary one, because Laplace transforms can be found for functions that
do not satisfy condition (3). For example, the function f (t) = t−1/4 does not satisfy
condition (3), but its Laplace transform exists and is a special case of entry 4 in
Table 7.1.

The preceding inequality implies that when L{ f (t)} exists, F(s) must be such
that lims→∞ F(s) = 0. In addition, the condition L{ f (t)} ≤ M/(s − k) implies that
F(s) cannot be the Laplace transform of on ordinary function f (t) unless F(s) → 0
as s → ∞. For example, F(s) = (s2 − 1)/(s2 + 1) is not a Laplace transform of an
ordinary function. Exceptions to this condition are functions like the delta function,
which is defined in Section 7.2, though there the delta function will be seen to
involve integration, and so it is not a function in the usual sense.

The Laplace transform is a linear operation, and the consequence of this im-
portant and useful property is expressed in the following theorem.
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THEOREM 7.1 Linearity of the Laplace transformation Let the functions f1(t), f2(t), . . . , fn(t)
have Laplace transforms, and let c1, c2, . . . , cn be any set of arbitrary constants.
Thenfundamental linearity

property

L{c1 f1(t) + c2 f2(t) + · · · + cn fn(t)} = c1L{ f1(t)} + c2L{ f2(t)} + · · ·
+ cnL{ fn(t)}.

Proof The proof is simple and follows directly from the fact that integration is a
linear operation, so the integral of a sum of functions is the sum of their integrals.
Thus, ∫ ∞

0
e−st {c1 f1(t) + c2 f2(t) + · · · + cn fn(t)}dt

= c1

∫ ∞

0
f1(t)e−st dt + c2

∫ ∞

0
f2(t)e−st dt + · · · + cn

∫ ∞

0
fn(t)e−st dt

= c1L{ f1(t)} + c2L{ f2(t)} + · · · + cnL{ fn(t)}.

This theorem has many applications and its use is essential when working with the
Laplace transform.

EXAMPLE 7.2 Find the Laplace transform of f (t) = c1eat + c2e−at , and use the result to find
L{sinh at} and L{cosh at}.

Solution Applying Theorem 7.1 and the result L{eat } = 1/(s − a) from Exam-some examples
ple 7.1, we find that

L{c1eat + c2e−at } = c1L{eat } + c2L{e−at } = c1/(s − a) + c2/(s + a).

As sinh at = (eat − e−at )/2 and cosh at = (eat + e−at )/2,L{sinh at} is obtained from
the preceding result by setting c1 = 1/2 and c2 = −1/2, and L{cosh at} is obtained
by setting c1 = c2 = 1/2, when we obtain

L{sinh at} = a/(s2 − a2) and L{cosh at} = s/(s2 − a2),

for s > |a| ≥ 0. Notice that because s must be be positive, but in sinh at and cosh at
the number a may be either positive or negative, the relationship between s and a
necessary to ensure that the convergence of the integrals must be s > |a| ≥ 0, and
not s > a > 0.

The process of finding an inverse Laplace transformation involves reversing
the foregoing argument and seeking a function f (t) that has the required Laplace
transform F(s). Where possible, this is accomplished by simplifying the algebraic
structure of F(s) to the point at which it can be recognized as the sum of the Laplace
transforms of known functions of t .

EXAMPLE 7.3 Find the inverse Laplace transform of

F(s) = 4s + 10
s2 + 6s + 8

.
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Solution Expanding the Laplace transform in terms of partial fractions gives

4s + 10
s2 + 6s + 8

= 1
s + 2

+ 3
s + 4

,

so

L−1{F(s)} = L−1
{

4s + 10
s2 + 6s + 8

}
= L−1

{
1

s + 2

}
+ 3L−1

{
1

s + 4

}
.

Using the result of Example 7.1 we find that

f (t) = L−1
{

4s + 10
s2 + 6s + 8

}
= e−2t + 3e−4t .

EXAMPLE 7.4 Find (a) L{1} and (b) L{t}.

Solution

(a) By definition,

L{1} =
∫ ∞

0
e−st dt = 1

s
, for s > 0.

(b) By definition,

L{t} =
∫ ∞

0
e−st tdt =

(
− t

s
e−st − e−st

s2

)∞

t=0
= 1

s2
, for s > 0.

EXAMPLE 7.5 Find L{sin at}.

Solution By definition,

L{sin at} =
∫ ∞

0
e−st sin atdt = lim

k→∞

∫ k

0
e−st sin atdt

= lim
k→∞

(−e−sk(a cos ak + s sin ak)
s2 + a2

)
+ a

s2 + a2

= a
s2 + a2

for s > 0,

where the condition s > 0 is required to ensure that the limit is finite as k → 0. This
has shown that

L{sin at} = a
s2 + a2

for s > 0.

In the next example we find L{tn}, and in the process introduce an integral that will
be useful later in Chapter 8 when finding series solutions of linear second order
variable coefficient differential equations.

EXAMPLE 7.6 Find L{tn} for n = 1, 2, . . . .

Solution By definition

L{tn} =
∫ ∞

0
e−st tndt.
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To evaluate this integral we will make use of integration by parts to establish a
recursion (recurrence) relation from which the result for arbitrary positive integral
n can be found.

Accordingly, we define I(n, s) as

I(n, s) =
∫ ∞

0
e−st tndt = lim

k→∞

∫ k

0

−tn

s
d
dt

(e−st )dt

and use integration by parts to express this as

= lim
k→∞

[−tne−st

s

]k

t=0
+ n

s

∫ ∞

0
tn−1e−st dt

=
(

n
s

)
I(n − 1, s), for s > 0.

This has established the recursion relation

I(n, s) = (n/s)I(n − 1, s),

satisfied by the integral I(n, s).
As I(0, s) = ∫∞

0 e−st dt = 1/s, by setting n = 1 in the recursion relation we find
that

I(1, s) = (1/s)I(0, s) = 1/s2, for s > 0.

Similarly, setting n = 2 in the recursion relation shows that

I(2, s) = (2/s)I(1, s) = 2 · 1/s3 = 2!/s3, for s > 0,

and an inductive argument shows that

I(n, s) = n!/sn+1.

In terms of the Laplace transform notation, we have shown that

L{tn} = n!/sn+1 for n = 0, 1, 2, . . . , for s > 0.

Notice that setting s = 1 in the general result of Example 7.3 enables n! to be
expressed as the integral

n! =
∫ ∞

0
e−t tndt, for n = 0, 1, 2, . . . .

This provides a way of representing factorial n in terms of an integral, and it is our
first encounter with a special case of the Gamma function that will be required later.first encounter with

the Gamma function The gamma function, denoted by �(x) for x > 0, is defined by the integral

�(x) =
∫ ∞

0
e−t t x−1dt. (4)

In terms of the earlier notation, when the restriction that n is an integer is removed,
and n is replaced by a positive real variable x, we can write

�(x + 1) =
∫ ∞

0
e−t t xdt = I(x, 1),

but

I(x, 1) = xI(x − 1, 1) = x�(x) for x > 0,
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so combining results shows that the gamma function satisfies the fundamental re-
lation

�(x + 1) = x�(x) for x > 0. (5)

It is easily seen from this that

�(n + 1) = n! for n = 0, 1, 2, . . . ,

so as �(x) is defined for all positive x the gamma function provides a generalization
of the factorial function n! for positive non-integer values of n. It will be seen later
that the gamma function, which belongs to the general class of functions called
higher transcendental functions, occurs frequently throughout mathematics.

Discontinuous Functions
Because the Laplace transform is defined in terms of an integral, it is possible to
find Laplace transforms of discontinuous functions. Suppose, for example, that a
function g(t) is discontinuous at t = a, as in Fig. 7.1. Then, provided it converges,
the integral defining the Laplace transform of g(t) is given by

L{g(t)} = lim
ε→0

∫ a−ε

0
e−st g(t)dt + lim

δ→0

∫ ∞

a+δ

e−st g(t)dt, (6)

where ε and δ are both positive. For simplicity, the upper limit in the first integral is
usually denoted by a− and the lower limit in the second integral by a+. These are,
respectively, the limits of integration to the left and right of t = a.

An important discontinuous function that finds numerous applications in
connection with the Laplace transform, and elsewhere, is the unit step function
f (t) = H(t − a) with a ≥ 0, known also as the Heaviside step function. The unitHeaviside step

function step function is defined as

H(t − a) =
⎧⎨⎩

0 if t < a
(a ≥ 0).

1 if t > a
(7)

A related function that is also of considerable importance is the unit pulse function,

y = g(t)

y

y(a + 0)

y(a − 0)

0 a t

FIGURE 7.1 A discontinuous function g(t).
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y

1

0 a t

y = H(t − a)

(a)

y

1

0 a b t

y = H(t − a) − H(t − b)

(b)

FIGURE 7.2 (a) The unit step function y = H(t − a). (b) The unit pulse
function y = p(t) = H(t − a) − H(t − b).

y

0 a a

y = f(t)

t

y

0

y = H(t − a) f(t)

t

y

0 a b

y = [H(t − a) − H(t − b)] f(t)

t

(a) (b) (c)

FIGURE 7.3 The effect on f (t) of multiplication by H(t − a) and H(t − a) − H(t − b).

defined as

p(t) = H(t − a) − H(t − b), with b > a ≥ 0. (8)

The function p(t) operates like a “switch,” because it switches on at t = a and
off at t = b. Graphs of these two functions are shown in Fig. 7.2.

If a function f (t) is multiplied by a unit step function, the function f (t)
can be considered to be “switched on” at time t = a, in the sense that the product
H(t − a) f (t) is zero for t < a and f (t) for t > a. Similarly, multiplication of f (t) byswitching functions

on and off with the
Heaviside step
function

a unit pulse function “switches on” the function f (t) at time t = a and “switches it
off” at time t = b. This property is illustrated in Fig. 7.3, where Fig. 7.3(a) shows the
original function f (t), Fig. 7.3(b) shows the product H(t − a) f (t), and Fig. 7.3(c)
the product {H(t − a) − H(t − b)} f (t).

In the next example we make use of result (6) to find the Laplace transforms
of the unit step function and the unit pulse function.

EXAMPLE 7.7 Find (a) L{H(t − a)} and (b) L{H(t − a) − H(t − b)}.

Solution

(a) By definition

L{H(t − a)} =
∫ ∞

a
e−st dt

=
(

−e−st

s

)∞

t=a
= e−as

s
for s > a ≥ 0.
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(b) Using result (a) we have

L{H(t − a) − H(t − b)} =
∫ b

a
e−st dt

=
∫ ∞

a
e−st dt −

∫ ∞

b
e−st dt

= e−as − e−bs

s
for s > b > a ≥ 0.

EXAMPLE 7.8 Find (a) L{t3 − 4t + 5 + 3 sin 2t} and (b) L−1{(s4 + 5s2 + 2)/[s3(s2 + 1)].

Solution

(a) Using Theorem 7.1 together with the Laplace transform pairs found in the
previous examples, we have

L{t3 − 4t + 5 + 2 sin 3t} = L{t3} − 4L{t} + L{5} + 3L{sin 2t}
= 6/s4 − 4/s2 + 5/s + 6/(s2 + 4)

= (5s5 + 2s4 + 20s3 − 10s2 + 24)/[s4(s2 + 4)].

(b) Simplifying the transform by means of partial fractions gives

s4 + 5s2 + 2
s3(s2 + 1)

= 2
s3

+ 3
s

− 2
s

s2 + 1
.

Taking the inverse Laplace transform of each term on the right and using the lin-
earity property of the Laplace transform, we find that

L−1
(

s4 + 5s2 + 2
s3(s2 + 1)

)
= L−1

{
2
s3

}
+ L−1

{
3
s

}
− 2L−1

{
s

s2 + 1

}
.

Finally, using the transform pairs established in the previous examples, we have

L−1
{

s4 + 5s2 + 2
s3(s2 + 1)

}
= t2 + 3 − 2 cos t.

To make further progress with the Laplace transform it is necessary to have
available a table of Laplace transform pairs for the most commonly occurring func-
tions. Theorems to be developed later will enable such a table to be extended in
a straightforward manner, so that transforms and inverse Laplace transforms of
more complicated functions can be found.

Table 7.1 provides a list of the most useful Laplace transform pairs involving
elementary functions. All of these entries can be established either by means of
routine integration, or by the combination of simpler results, with the sole exception
of the delta function δ(t − a) in entry 8. The derivation of this result is to be found
in Section 7.2 after the delta function has been defined.

The example that now follows illustrates how entry 15 can be found from entries
9 through 12.
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EXAMPLE 7.9 Find L−1{1/(s2 + a2)2} by combining related entries in Table 7.1.

Solution Our objective will be to use the linearity property of the Laplace trans-
form to express 1/(s2 + a2)2 as a linear combination of terms that we hope will be
found listed in the column F(s) of Table 7.1. If this is possible, the inverse Laplace
transform can then be found by adding the inverse transform of each expression in
partial fraction representation of F(s). A routine calculation shows that F(s) can
be written as

1
(s2 + a2)2

= 1
2a3

(
a

s2 + a2

)
− 1

2a2

(
s2 − a2

(s2 + a2)2

)
,

so from using entries 9 and 12 in Table 7.1 we have

L−1
{

1
(s2 + a2)2

}
= 1

2a3
sin at − 1

2a2
t cos at,

and this is entry 15 in the table.

Summary The Laplace transform of a function f (t) has been defined. A condition has been given
that ensures the existence of the transform, and the concept of a Laplace transform pair
has been introduced. The transform has been shown to have the fundamental property
of linearity, and some simple transform pairs have been found directly from the definition.
The Heaviside unit step function H (t − a), which jumps from zero for 0 ≤ t < a to unity
for t > a, has been introduced and used. The section closed with a table of useful Laplace
transform pairs.

EXERCISES 7.1

In Exercises 1 through 4 use the definition of the Laplace
transform to obtain the stated result.

1. Show that L{t2} = 2/s3 for s > 0.
2. Show that L{teat } = 1/(s − a)2 for s > a.
3. Find L{eiat }, and by equating the real and imaginary

parts show that L{sin at} = a/(s2 + a2) and L{cos at} =
s/(s2 + a2) for s > 0.

4. Show that L{sinh at} = a/(s2 − a2) for s > |a|.
In Exercises 5 through 20 use Table 7.1 of Laplace transform
pairs to find L{ f (t)}.
5. f (t) = te2t .

6. f (t) = 2 sin 3t − cos 3t.

7. f (t) = t − t2 + t3.

8. f (t) = e3t (sin t − cos t).
9. f (t) = e−2t (cos 2t − sin 2t).

10. f (t) = t(sin 2t − cos 2t).
11. f (t) = tcosh 3t − sinh 3t.

12. f (t) = sinh t − t cos t.

13. f (t) = e−t cos 2t − t.

14. f (t) = 2t2 − 3t + 4 cos 3t.

15. f (t) = H(t − π/2)et sin t.

16. f (t) = H(t − 3π/2)(sin t − 3 cos t).
17. f (t) = [H(t − π/2) − H(t − π)]t.
18. f (t) = [1 − H(t − π/2)]t.
19. f (t) = H(t − π/2)e−t cos t.

20. f (t) = [1 − H(t − π/2)]e3t .

In Exercises 21 through 30 use Table 7.1 of Laplace trans-
form pairs to find L−1{F(s)}.
21. F(s) = (s2 − 1)/[s(s2 + 4)].
22. F(s) = (s2 + 3s + 1)/[s(s2 − 4)].
23. F(s) = (3s + 5)/[s(s2 + 9)].
24. F(s) = (s2 − 4)/[(s2 + 1)(s2 − 1)].
25. F(s) = (s3 − 1)/[(s + 2)2(s2 − 9)].
26. F(s) = (s2 + s + 1)/[(s2 + 4)(s2 − 9)].
27. F(s) = s2/[(s − 1)2(s + 1)].
28. F(s) = s/(s − 1)3.
29. F(s) = (s2 + 4)/[(s2 − 9)(s − 1)].
30. F(s) = (s2 + 1)/[(s + 1)(s + 2)(s + 3).

In Exercises 31 through 36 find the Laplace transform of
the function f (t) shown in graphical form.
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31.

ta 2a

1

−1

f(t )

f(t ) = 0, t > 2a

0

FIGURE 7.4

32.

tπ/2 π 3π/2

1

−1

f(t )
f(t ) = 0, t > 3π/2

f(t ) = sin t

0

FIGURE 7.5

33.

t1

k

f(t) f(t) = k, t > 1

f(t) = kt

0

FIGURE 7.6

34.
f(t)

t0

1

π/2 π

f(t) = 0, t > π

f(t) = sin t

FIGURE 7.7

35.

0 a 2a t

f(t)

k

f(t) = 0, t > 2a

FIGURE 7.8

36.
f(t)

ka

0

−ka

a 2a t

f(t) = 0, t > 2a

FIGURE 7.9

7.2 Operational Properties of the
Laplace Transform

In the previous section the Laplace transform of a basic list of commonly occur-
ring functions f (t) was recorded as the list of Laplace transform pairs in Table 7.1.
To use the Laplace transform to solve initial value problems for linear differential
equations and systems it is necessary to establish a number of fundamental prop-
erties of the transform known as its operational properties. This name is given to
properties of the transform itself that relate to the way it operates on any function
f (t) that is transformed, rather than to the effect these properties of the transform
have on specific functions f (t).

This means that operational properties are general properties of the Laplace
transform that are not specific to any particular function f (t) or to its transform
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F(s). An important example of an operational property has already been en-
countered in Theorem 7.1, where the linearity property of the transformation was
established.

Some operational properties, such as the scaling and shift theorems that will
be proved later, save effort when finding the Laplace transform of a function or
inverting a transform, whereas others such as the transform of a derivative are
essential when applying the Laplace transform to solve initial value problems for
differential equations.

The way derivatives transform is used to find how the homogeneous part of a
linear differential equation is transformed, and we will see later that it also shows
how the initial conditions for the differential equation enter into the transformed
equation. Table 7.1 of Laplace transform pairs is needed when transforming the
nonhomogeneous term in the differential equation.

THEOREM 7.2 Transform of a derivative Let f (t) be continuous on 0 ≤ t < ∞, and let f ′(t) be
piecewise continuous on every finite interval contained in t ≥ 0. Then if L{ f (t)} =

transforming
derivatives

F(s),

L{ f ′(t)} = s F(s) − f (0).

Proof Using integration by parts, and assuming that f satisfies the sufficiency
condition for the existence of a Laplace transform, we have

L{ f ′(t)} =
∫ ∞

0
e−st f ′(t)dt = lim

k→∞

∫ k

0
e−st f ′(t)dt

= lim
k→∞

[e−st f (t)]k
0 − lim

k→∞

∫ k

0
−se−st f (t)dt

= lim
k→∞

[e−sk f (k) − f (0)] + s F(s)

= s F(s) − f (0),

where limk→∞ e−sk f (k) = 0 because of condition (3).

THEOREM 7.3 Transform of a higher derivative Let f (t) be continuous on 0 ≤ t < ∞, and let
f ′(t), f ′′(t), . . . , f (n−1)(t) be piecewise continuous on every finite interval contained
in t ≥ 0. Then if L{ f (t)} = F(s),

L{ f (n)(t)} = sn F(s) − sn−1 f (0) − sn−2 f ′(0) − · · · − s f (n−2)(0) − f (n−1)(0).

Proof The proof uses repeated integration by parts, but otherwise is analogous
to the one used in Theorem 7.2, so the details are left as an exercise.

The two most frequently used results are those of Theorem 7.2 and the result from
Theorem 7.3 corresponding to n = 2, so for convenience we record these here.

The Laplace transform of first and second derivatives

L{ f ′(t)} = s F(s) − f (0). (9a)

L{ f ′′(t)} = s2 F(s) − s f (0) − f ′(0). (9b)
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THEOREM 7.4 Transform of f ′ when f is discontinuous at t = a Let f (t) be continuous on
0 ≤ t < a and on a < t < ∞, and let it have a simple jump discontinuity at t = a
with the value f−(a) to the immediate left of a at t = a− and the value f+(a) to the
immediate right of t = a at a+. Then if L{ f (t)} = F(s),

L{ f ′(t)} = s F(s) − f (0) + [ f−(a) − f+(a)]e−as .

Proof Using integration by parts, as in Theorem 7.2, we have

L{ f ′(t)} =
∫ a−

0
e−st f ′(t)dt + lim

k→∞

∫ ∞

a+
e−st f ′(t)dt

= [e−st f (t)]a−
0 + lim

k→∞
[e−sk f (k) − e−as f+(a)] + s F(s)

= s F(s) − f (0) + [ f−(a) − f+(a)]e−as .

The next example illustrates the application of results (8) and (9) to a simple initial
value problem.

EXAMPLE 7.10 Solve the initial value problem

y′′ + 3y′ + 2y = sin 2t, where y(0) = 2 and y′(0) = −1.

Solution Because of the linearity of the equation and of the Laplace transform
operation, taking the Laplace transform of the differential equation we have

L{y′′} + 3L{y′} + 2L{y} = L{sin 2t}.
Setting L{y(t)} = Y(s), and using the initial conditions y(0) = 2 and y′(0) = −1, we
find from (9a,b) that

L{y′′} = s2Y(s) − 2s + 1,

and

L{y′} = sY(s) − 2.

Entry 9 in Table 7.1 shows thatL{sin 2t} = 2/(s2 + 4), so combining these results
enables the transformed differential equation to be written

s2Y(s) − 2s + 1 + 3[sY(s) − 2] + 2Y(s) = 2
s2 + 4

,

or as

(s2 + 3s + 2)Y(s) = 2s3 + 5s2 + 8s + 22
s2 + 4

.

Solving for the Laplace transform of the solution gives

Y(s) = 2s3 + 5s2 + 8s + 22
(s2 + 4)(s2 + 3s + 2)

.

When expressed in partial fraction form, Y(s) becomes

Y(s) = −5
4

1
s + 2

+ 17
5

1
s + 1

− 1
20

2
s2 + 4

− 3
20

s
s2 + 4

.
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Using the linearity property when taking the inverse Laplace transform, we have

L−1{Y(s)} = −5
4
L−1

{
1

s + 2

}
+ 17

5
L−1

{
1

s + 1

}
− 1

20
L−1

{
2

s2 + 4

}
− 3

20
L−1

{
s

s2 + 4

}
,

so using Table 7.1 to identify the four transforms involved shows that the solution
of the initial value problem is

y(t) = −5
4

e−2t + 17
5

e−t − 1
20

sin 2t − 3
20

cos 2t, for t > 0.

This example illustrates a fundamental difference between the solution of an
initial value problem obtained by using the Laplace transform and that obtained
by the previous methods that have been developed. In the other methods, when
solving an initial value problem, first a general solution was found, and then the
arbitrary constants were matched to the initial conditions. However, in the Laplace
transform approach the initial conditions are incorporated when the equation is
transformed, so the inversion of Y(s) gives the required solution of the initial value
problem immediately.

As the structure of the solution in Example 7.10 is typical of the structure
obtained when solving all initial value problems for ordinary differential equations
by means of the Laplace transform, a closer examination of it will help understand
how the solution is generated.

Returning to the point where the equation was transformed, the result can be
rewritten as

(s2 + 3s + 2)︸ ︷︷ ︸Y(s) = 2s + 5︸ ︷︷ ︸ + 2
s2 + 2︸ ︷︷ ︸

Transformed homogeneous equation Transformed initial Transformed nonhomogeneous
with y′′, y′, and y replaced, respectively, conditions term
by s2, s, and 1

Setting G(s) = 1/(s2 + 3s + 2), and denoting the transformed initial conditions by
I(s) and the transformed nonhomogeneous term by R(s), the above result can be
solved for Y(s) and written in the form

Y(s) = G(s)I(s) + G(s)R(s). (10)

This shows how the transform G(s), called in engineering applications the
transfer function associated with the differential equation, modifies the transformtransfer function
of the initial conditions and the transform of the nonhomogeneous term to arrive at
the transform Y(s) of the solution. The name transfer function comes from the fact
that when all the initial conditions are zero, so I(s) = 0, the only term generating
a solution is the forcing function (the nonhomogeneous term), so (10) describes
how the effect of the input is transferred to the output (the solution). In terms of
Example 7.10 we can write

G(s) = Y(s)
R(s)

= L{y(t)}
L{sin 2t}

= L{output}
L{input} . (11)
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In control theory the transfer function of a system characterizes the behavior of the
entire system.

We now develop the most important operational properties of the Laplace
transform, starting with the first shift theorem, also called the s-shift theorem.

THEOREM 7.5 The first shift theorem or the s-shift theorem Let L{ f (t)} = F(s) for s > γ . Then
the Laplace transform of eat f (t) is obtained from F(s) by replacing s by s − a,

the s-shift theorem where s − a > γ . Thus,

L{eat f (t)} = F(s − a) for s − a > γ.

Conversely, the inverse transform

L−1{F(s − a)} = eat f (t).

Proof From the conditions of the theorem, L{ f (t)} = ∫∞
0 e−st f (t)dt for s > γ , so

L{e−at f (t)} =
∫ ∞

0
e−st eat f (t)dt =

∫ ∞

0
e−(s−a)t f (t)dt = F(s − a) for s − a > γ.

The converse result follows by reversing this argument to arrive at the result

L−1{F(s − a)} = eat f (t).

EXAMPLE 7.11 Use Theorem 7.5 to find L{eat tn}, L{eat cos bt}, and L{eat t sin bt}.

Solution Using the Laplace transforms of tn, cos bt , and t sin bt listed as entries 3,
10, and 11 in Table 7.1, with a replaced by b in entries 10 and 11, and then replacing
s by s − a we find that

L{eat tn} = n!
(s − a)n+1

for s > 0, L{eat cos bt} = (s − a)
[(s − a)2 + b2]

for s > a,

and

L{eat t sin bt} = 2b(s − a)
[(s − a)2 + b2]2

for s > a.

EXAMPLE 7.12 Use Theorem 7.5 to find L−1{1/(s2 + 4s + 13)}.

Solution Completing the square in the denominator we have

L−1
{

1
s2 + 4s + 13

}
= L−1

{
1

(s + 2)2 + 32

}
.

A comparison with entry 13 in Table 7.1 shows that

L−1{1/(s2 + 4s + 13)} = 1
3

e−2t sin 3t.

We now derive the second shift theorem, also called the t-shift theorem, in which
use will be made of the unit step function H(t − a).
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 y

k

0 ta

(b)

y = H(t − a) f(t − a)

FIGURE 7.10 The relationship between f (t) and H(t − a) f (t − a).

THEOREM 7.6 The second shift theorem or the t-shift theorem Let L{ f (t)} = F(s). Then

the t-shift theorem L{H(t − a) f (t − a)} = e−as F(s)

and, conversely,

L−1{e−as F(s)} = H(t − a) f (t − a).

Proof Before proving the theorem it is necessary to understand the precise mean-
ing of H(t − a) f (t − a). This can be seen by examining Fig. 7.10. The unit step func-
tion H(t − a) is zero until t = a, when it jumps to the value 1 and thereafter remains
constant for t > a. The function f (t − a) is simply the function f (t) with its origin
shifted to t = a, so it can be considered to be the function f (t) translated to the
right by an amount a. Thus, H(t − a) f (t − a) is a function that is zero until t = a,
after which it reproduces the function f (t) translated to the right by an amount a.

The result of the theorem is obtained as follows:

L{H(t − a) f (t − a)} =
∫ ∞

0
e−st H(t − a) f (t − a)dt =

∫ ∞

a
e−st f (t − a)dt.

If we make the change of variable τ = t − a, this becomes

L{H(t − a) f (t − a)} = e−as
∫ ∞

0
e−sτ f (τ )dτ

and so

L{H(t − a) f (t − a)} = e−as F(s).

The converse result follows by reversing this argument.

EXAMPLE 7.13 Use Theorem 7.6 to find (a) L{H(t − 4) sin(t − 4)}, (b) to show that L{H(t − a)} =
e−as/s in agreement with entry 7 in Table 7.1, and (c) to find L−1{se−as/(s2 + b2)}.

Solution (a) From entry 9 in Table 7.1 we have L{sin t} = 1/(s2 + 1), so applying
Theorem 7.6 with a = 4 gives

L{H(t − 4) sin(t − 4)} = e−4s/(s2 + 1).

(b) Setting f (t) = 1 in Theorem 7.6 and using the fact that L{1} = 1/s gives

L{H(t − a)} = e−as/s.
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(c) Entry 10 in Table 7.1 shows that L{cos bt} = s/(s2 + b2), so using this in Theo-
rem 7.6 gives

L−1{se−as/(s2 + b2)} = H(t − a) cos[b(t − a)].

The next example makes use of Theorem 7.6 when solving an initial value problem.

EXAMPLE 7.14 Solve the initial value problem

y′′ + 3y′ + 2y = H(t − π) sin 2t with y(0) = 1 and y′(0) = 0.

Solution Setting L{y(t)} = Y(s), transforming the differential equation, and in-
corporating the initial conditions as in Example 7.10 gives

s2Y(s) − s + 3(sY(s) − 1) + 2Y(s) = 2e−πs

s2 + 4
,

or

(s2 + 3s + 2)Y(s) = s + 3 + 2e−πs

s2 + 4
.

As s2 + 3s + 2 = (s + 1)(s + 2), this last result can be written in the form

Y(s) = s + 3
(s + 1)(s + 2)

+ 2e−πs

(s2 + 4)(s + 1)(s + 2)
.

It is now necessary to invert Y(s), and to accomplish this some algebraic ma-
nipulation will be necessary if we are to identify terms on the right with entries in
Table 7.1. When expressed in terms of partial fractions, after a little manipulation
Y(s) becomes

Y(s) = 2
s + 1

− 1
s + 2

+ e−πs
(

2
5

1
s + 1

− 1
4

1
s + 2

− 1
20

2
s2 + 4

− 3
20

s
s2 + 4

)
.

Each term can now be identified as the transform of an entry in Table 7.1, though
as the last four terms are multiplied by e−πs their inverse Laplace transforms will
need to be obtained by using Theorem 7.6. As a result, y(t) = L−1{Y(s)} becomes

y(t) = 2e−t − e−2t + H(t − π)

×
(

2
5

e−(t−π) − 1
4

e−2(t−π) − 1
20

sin 2(t − π) − 3
20

cos 2(t − π)
)

,

for t > 0. A graph of this solution is shown in Fig. 7.11, from which it can be seen
that in the interval 0 < t < π the solution y(t) only involves the first two terms, and
so decays exponentially. At t = π the forcing function sin 2t is switched on, after
which all the exponential terms decay to zero as t → ∞, leaving only the periodic
steady state solution.

THEOREM 7.7 Differentiation of a transform: Multiplication of f (t) by tn Let L{ f (t)} = F(s).
Then

differentiating a
transform

L{tn f (t)} = (−1)n dn F(s)
dsn

.
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FIGURE 7.11 The solution y(t) showing the influence of the
forcing function after t = π .

Proof By definition ∫ ∞

0
e−st f (t)dt = F(s),

so differentiating under the integral sign with respect to s gives

dF(s)
ds

=
∫ ∞

0

∂(e−st )
∂s

f (t)dt,

and so

dF(s)
ds

=
∫ ∞

0
(−t)e−st f (t)dt = −

∫ ∞

0
e−st t f (t)dt,

which is the result of the theorem when n = 1. Each subsequent differentiation will
introduce a further factor (−t) into the integrand, leading the general result of the
theorem.

EXAMPLE 7.15 Use Theorem 7.7 to find (a) L{t sin at} and (b) L{t eat cos bt}.

Solution (a) Entry 9 in Table 7.1 shows that L{sin at} = a/(s2 + a2) for s > 0, so
from Theorem 7.7

L{t sin at} = (−1)
d
ds

a
(s2 + a2)

= 2as
(s2 + a2)2

for s > 0,

in agreement with entry 11 in Table 7.1.
(b) Entry 14 in Table 7.1 shows that L{eat cos bt} = (s − a)/[(s − a)2 + b2] for s >

a, so from Theorem 7.7

L{t eat cos bt} = (−1)
d
ds

(s − a)
[(s − a)2 + b2]

= (s − a)2 − b2

[(s − a)2 + b2]2
for s > a.

These examples show that, in many cases, less effort is involved finding transforms by
means of Theorem 7.7 than by direct use of the definition of the Laplace transform.
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THEOREM 7.8 Scaling theorem Let L{ f (t)} = F(s). Then if k > 0,

scaling a transform

L{ f (kt)} = 1
k

F
(

s
k

)
.

Proof The result follows by setting u = kt in the definition of the Laplace trans-
form, because

{ f (kt)} =
∫ ∞

0
e−st f (kt)dt

= 1
k

∫ ∞

0
e−s(u/k) f (u)du

= 1
k

∫ ∞

0
e−(s/k)udu

= 1
k

F
(

s
k

)
.

EXAMPLE 7.16 If L{ f (t)} = e−3s(1 − 2s)/(2s2 − s + 1), find { f (3t)}.

Solution In this case k = 3 > 0, so from Theorem 7.8, replacing s by s/3 inL{ f (t)}
and multiplying the result by 1/3 gives

L{ f (3t)} = 1
3

e−s(1 − 2s/3)
(2(s/3)2 − s/3 + 1)

= e−s(3 − 2s)
2s2 − 3s + 9

.

Many functions whose Laplace transform is required are periodic functions
with period T, though they are not necessarily continuous functions for all t > 0.
In the Laplace transform, where only the behavior of a function f (t) for t > 0 is
involved, a periodic function with period T is defined as a function f (t) with the
property that T is the smallest value for which

f (t + T) = f (t) for all t > 0. (12)

An example of a piecewise continuous function f (t) with period T that is defined
for t > 0 is shown in Fig. 7.12.

0 T 2T 3T t

y = f(t)
y

FIGURE 7.12 A function f (t) with period T.
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THEOREM 7.9 Transform of a periodic function with period T Let f (t) be a periodic function

transforming a
periodic function

with period T such that
∫ T

0 e−st f (t)dt is finite. Then

L{ f (t)} = 1
1 − e−Ts

∫ T

0
e−st f (t)dt for s > 0.

Proof In the definition of the Laplace transform we divide the interval of inte-
gration into subintervals of length T and write

L{ f (t)} =
∫ T

0
e−st f (t)dt +

∫ 2T

T
e−st f (t)dt + · · · ·

Then, because of the periodicity of f (t), the function f (t) will be the same in each
integral. Consequently, changing the variable in the (r + 1)th integral to t = τ + rT
with r = 0, 1, 2, . . . gives∫ T

0
e−s(τ+rT) f (τ )dτ = e−rsT

∫ T

0
e−sτ f (τ )dτ for r = 0, 1, 2, . . .

= e−rsT
∫ T

0
e−st f (t)dt,

where the dummy variable τ has been replaced by t . Substituting this result into
the original integral gives

L{ f (t)} = [1 + e−Ts + e−2Ts + · · ·]
∫ T

0
e−st f (t)dt,

which is finite because we have assumed that
∫ T

0 e−st f (t)dt is finite. The bracketed
terms form a geometrical series with the common ratio e−Ts < 1, so its sum is
1/(1 − e−Ts), and thus

L{ f (t)} = 1
1 − e−Ts

∫ T

0
e−st f (t)dt, for s > 0,

and the proof is complete.

The necessity of the condition in Theorem 7.9 that
∫ T

0 e−st f (t)dt is finite arises
because periodic functions exist for which this integral is divergent.

EXAMPLE 7.17 Find the Laplace transform of the square wave shown in Fig. 7.13.

Solution As the function is discontinuous with period 2a we compute the integral
in Theorem 7.9 in two parts as∫ 2a

0
e−st f (t)dt =

∫ a

0
ke−st dt +

∫ 2a

a
(−k)e−st dt

= k
s

(1 − e−as) + k
5

(e−2as − e−as)

= k
s

(1 + e−2as − 2e−as).
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FIGURE 7.13 A square wave with period 2a.

Then from Theorem 7.9 we have

L{ f (t)} = k(1 + e−2as − 2e−as)
s(1 − e−2as)

= k(1 − e−as)
s(1 + e−as)

= k(eas/2 − e−as/2)
s(eas/2 + e−as/2)

= ksinh(as/2)
s cosh(as/2)

= k
s

tanh(as/2) for s > 0.

EXAMPLE 7.18 Use Theorem 7.9 to show that L{sin t} = 1/(s2 + 1) and Theorem 7.8 to show that
L{sin at} = a/(s2 + a2).

Solution The function f (t) = sin t is periodic with period 2π and
∫ 2π

0 e−st sin tdt
is finite, so from Theorem 7.9 we have

L{sin t} = 1
(1 − e−2πs)

∫ 2π

0
e−st sin tdt

= 1
(1 − e−2πs)

(
1

s2 + 1
− e−2πs

s2 + 1

)
= 1

s2 + 1
for s > 0.

Setting k = a in Theorem 7.8 and using the preceding result gives

L{sin at} = 1
a

1
[(s/a)2 + 1]

= a
s2 + a2

for s > 0.

EXAMPLE 7.19 Find the Laplace transform of the solution of the initial value problem

y′′ + 3y′ + 2y = f (t), where y(0) = y′(0) = 0

and f (t) is the square wave in Example 7.17.

Solution Transforming the equation as in Examples 7.10 and 7.14 and using the
result of Example 7.17 gives

s2Y(s) + 3sY(s) + 2Y(s) = k
s

tanh(as/2),
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so

Y(s) = k tanh(as/2)
s(s2 + 3s + 2)

.

The convolution operation

Let the functions f (t) and g(t) be defined for t ≥ 0. Then the convolution
of the functions f and g denoted by ( f ∗ g)(t), and in abbreviated form by
( f ∗ g), is defined as the integral

( f ∗ g)(t) =
∫ t

0
f (τ )g(t − τ )dτ.

The change of variable v = t − τ followed by the replacement of the dummyconvolution and the
convolution theorem variable v by t shows that the convolution operation is commutative, so

( f ∗ g)(t) = (g ∗ f )(t). (13)

EXAMPLE 7.20 Find (t2 ∗ cos t) and (cos t ∗ t2) and hence confirm the equality of these two convo-
lution operations. Compare the effort required in each case.

Solution We have

(t2 ∗ cos t) =
∫ t

0
τ 2 cos(t − τ )dτ

=
∫ t

0
τ 2[cos t cos τ + sin t sin τ ]dτ

= cos t
∫ t

0
τ 2 cos τdτ + sin t

∫ t

0
τ 2 sin τdτ

= 2(t − sin t).

Similarly,

(cos t ∗ t2) =
∫ t

0
cos τ (t − τ )2dτ

= t2
∫ t

0
cos τdτ − 2t

∫ t

0
τ cos τdτ +

∫ t

0
τ 2 cos τdτ

= 2(t − sin t).

While confirming that the convolution operation is commutative, this example also
shows that sometimes calculating ( f ∗ g)(t) is simpler than calculating (g ∗ f )(t).

The convolution operation has various uses, one of the most important of which
occurs in the following important theorem that expresses the relationship between
the product of two Laplace transforms F(s) and G(s) and the convolution of their
transform pairs f (t) and g(t).
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THEOREM 7.10 The convolution theorem Let L{ f (t)} = F(s) and L{g(t)} = G(s). Then

L{( f ∗ g)(t)} = F(s)G(s)

or, equivalently,

L
{∫ t

0
f (τ )g(t − τ )dτ

}
= F(s)G(s).

Conversely,

L−1{F(s)G(s)} =
∫ t

0
f (τ )g(t − τ )dτ.

Proof From the definition of the Laplace transform and the convolution opera-
tion, we have

L{( f ∗ g)(t)} =
∫ ∞

0
e−st

[ ∫ t

0
f (τ )g(t − τ )dτ

]
dt.

Inspection of Fig. 7.14 shows that interchanging the order of integration allows the
integral to be written as

L{( f ∗ g)(t)} =
∫ ∞

0
f (τ )

[ ∫ ∞

τ

e−st g(t − τ )dt
]

dτ.

Using the second shift theorem reduces the inner integral to e−st G(s), so that

L{( f ∗ g)(t)} =
∫ ∞

0
G(s)e−sτ f (τ )dτ

= G(s)
∫ ∞

0
e−sτ f (τ )dτ

= G(s)F(s).

The converse result follows if we reverse the argument to find the inverse Laplace
transform of F(s)G(s).

τ

0

τ = t

t

FIGURE 7.14 Region of integration for
Theorem 7.10.
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EXAMPLE 7.21 Use Theorem 7.10 to find (a) L{t2 ∗ cos t} and (b) L−1{s/(s2 + a2)2}.

Solution

(a) L{t2} = 2/s3 and L{cos t} = s/(s2 + a2), so from Theorem 7.10

L{t2 ∗ cos t} = L{t2}L {cos t} = 2s
(s2 + a2)

.

(b) Writing

s
(s2 + a2)2

= 1
(s2 + a2)

s
(s2 + a2)

shows that in Theorem 7.10 we may take

F(s) = 1
(s2 + a2)

and G(s) = s
(s2 + a2)

.

So as L−1{F(s)} = (1/a) sin at and L−1{G(s)}= cos at , it follows from Theorem 7.10
that

L−1{s/(s2 + a2)2} = (1/a)(sin at ∗ cos at)

= 1
a

∫ t

0
sin aτ cos a(t − τ )dτ

= 1
2a

t sin at,

in agreement with entry 11 in Table 7.1.

When evaluating convolution integrals of this type, instead of expanding a term
such as cos a(t − τ ) and sin a(t − τ ) using integration by parts, it is often quicker to
replace sin at and cos at by

sin at = (eiat − e−iat )/(2i) and cos a(t − τ ) = (
ei(t−τ ) + e−i(t−τ ))/2

before performing the integrations, and again using these identities to interpret the
result in terms of trigonometric functions.

EXAMPLE 7.22 Solve the initial value problem

y′′ + 4y′ + 13y = 2e−2t sin 3t with y(0) = 1 and y′(0) = 0.

Solution Before we solve this initial value problem, it should be noted that the
complementary function is

yc(t) = e−2t (C1 cos 3t + C2 sin 3t),

so the nonhomogeneous term 2e−2t sin 3t is contained in yc(t). It will be seen that,
unlike the special cases that arise when determining a particular integral by the
method of undetermined coefficients, this situation does not give rise to a special
case when the solution is obtained by means of the Laplace transform.

Transforming the equation in the usual way gives

s2Y(s) − s + 4(sY(s) − 1) + 13Y(s) = 6
s2 + 4s + 13

,
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and so

Y(s) = s + 4
s2 + 4s + 13

+ 6
(s2 + 4s + 13)2

.

Writing s + 4 = s + 2 + (2/3)3 allows Y(s) to be rewritten as

Y(s) = s + 2
(s + 2)2 + 32

+ 2
3

3
(s + 2)2 + 32

+ 6
[(s + 2)2 + 32]2

.

Taking the inverse Laplace transform of Y(s) and using entries 13 and 14 of Table 7.1
leads to the result

y(t) = e−2t
[

cos 3t + 2
3

sin 3t
]

+ L−1{6/[(s + 2)2 + 32]2}.

To find L−1{6/[(s + 2)2 + 32]2}, we first write this as

6
[(s + 2)2 + 32]2

= 2
3

(
3

(s + 2)2 + 32

)(
3

(s + 2)2 + 32

)
,

and then, from entry 13 in Table 7.1, we find thatL−1{3/[(s + 2)2 + 32]} = e−2t sin 3t .
An application of Theorem 7.10 shows that

L−1{6/[(s + 2)2 + 32]2} = 2
3

(e−2t sin 3t ∗ e−2t sin 3t)

= 2
3

∫ t

0
e−2τ sin 3τe−2(t−τ ) sin 3(t − τ )dτ

= 2
3

e−2t
∫ t

0
sin 3τ sin 3(t − τ )dτ

= 2
3

e−2t
(

1
6

sin 3t − 1
2

t cos 3t
)

.

Substituting this result in the expression for y(t) shows that the solution of the initial
value problem is

y(t) = e−2t
(

cos 3t + 7
9

sin 3t − 1
3

t cos 3t
)

, for t > 0.

Although the previous example could have been solved by the method of un-
determined coefficients, the next two examples cannot be solved in this manner.
The first involves a special type of equation called an integral equation, and theintegral equation
second an integro-differential equation.

An equation of the form

y(t) = f (t) + λ

∫ t

0
K(t, τ )y(τ )dτ (14)

is called a Volterra integral equation, where λ is a parameter and K(t, τ ) is called
the kernel of the integral equation. Equations of this type are often associated
with the solution of initial value problems. The Laplace transform is well suited
to the solution of such integral equations when the kernel K(t, τ ) has a special
form that depends on t and τ only through the difference t − τ , because then
K(t, τ ) = K(t − τ ) and the integral in (14) becomes a convolution integral.
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An examination of the Volterra integral equation in (14) shows it to be essen-
tially the integral form of an initial value problem, and it relates the solution y(t) at
the current time t to an integral of the past history of the solution over the interval
[0, t].

The following is a simple example of a problem that leads to a Volterra integral
equation. Determine the amount of a manufactured material contained in a store
from time t = 0 until time t , if the only supply of material comes immediately from
the manufacturer and it begins degrading exponentially with time from the moment
it enters the store. Let the amount of material present at time t = 0 be Q and the
amount present in the store at time t be y(t), and suppose it degrades exponentially
as e−kt with k > 0. Then, by time t , the amount of material that entered the store at
time τ but has not degraded is e−k(t−τ ) y(τ ). Thus the amount of material present at
time t is determined by the solution of the Volterra integral equation

y(t) = Qe−kt +
∫ t

0
e−k(t−τ ) y(τ )dτ.

By using the method of solution explained in the next example, the solution of this
problem is easily shown to be

y(t) = Qe−(k−1)t .

EXAMPLE 7.23 Solve the Volterra integral equation

y(t) = 2e−t +
∫ t

0
sin(t − τ )y(τ )dτ.

Solution The Laplace transform of the integral equation is

Y(s) = 2
s + 1

+ L
∫ t

0
sin(t − τ )y(τ )dτ,

and after applying Theorem 7.10 to the last term the equation for Y(s) becomes

Y(s) = 2
s + 1

+ Y(s)
s2 + 1

.

Solving for Y(s) and expanding the result in partial fractions shows that

Y(s) = 2(s2 + 1)
s2(s + 1)

= 2
s2

− 2
s

+ 4
s + 1

.

Taking the inverse Laplace transform shows the solution to be

y(t) = 2t − 2 + 4e−t , for t > 0.

The next example is a differential equation of an unusual type, because the
function y(t) occurs not only as the dependent variable in the differential equa-
tion, but also inside a convolution integral that forms the nonhomogeneous term.
Equations of this type that involve both the integral of an unknown function and its
derivative are called integro-differential equations. These equations occur in manyintegro-differential

equation applications of mathematics, one of which arises in the continuum mechanics of
polymers, where the dynamical response y(t) of certain types of material at time
t depends on a derivative of y(t) and the time-weighted cumulative effect of what
has happened to the material prior to time t . For obvious reasons materials of this
type are called materials with memory.
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An example of an integro-differential equation was obtained in Section 5.3(d)
when considering the R–L–C circuit in Fig. 5.4, though at the time this was not
recognized. When the circuit was closed, and the charge q on the capacitor was
allowed to flow causing a current i(t) in the circuit, the equation determining i(t)
was shown to be

L
di
dt

+ Ri + q
C

= 0.

To recognize that this is an integro-differential equation, we use the result that
at time t we have q = ∫ t

0 i(τ )dτ , so the equation determining i(t) becomes the
integro-differential equation

L
di
dt

+ Ri + 1
C

∫ t

0
i(τ )dτ.

In this case it was possible to reduce this to a second order constant coefficient
differential equation for i(t), but in other more complicated cases a reduction of
this type may not be possible.

EXAMPLE 7.24 Solve the equation

y′′ + y =
∫ t

0
sin τy(t − τ )dτ,

subject to the initial conditions y(0) = 1 and y′(0) = 0.

Solution Taking the Laplace transform in the usual way gives

s2Y(s) − s + Y(s) = L
∫ t

0
sin τy(t − τ )dτ.

The last term is the Laplace transform of a convolution integral, so from Theo-
rem 7.10 it follows that

L
{∫ t

0
sin τy(t − τ )dτ

}
= L{sin t}L{y(t)}

= Y(s)
s2 + 1

.

Using this result in the transformed equation, solving for Y(s), and expanding the
result using partial fractions gives

Y(s) = s2 + 1
s(s2 + 2)

= 1
2

1
s

+ 1
2

s
(s2 + 2)

.

After the inverse Laplace transform is taken, the solution becomes

y(t) = 1
2

(1 + cos
√

2t), for t > 0.

THEOREM 7.11 The transform of an integral Let f (t) be a piecewise continuous function such
that | f (t)| ≤ Mekt for k > 0 and all t ≥ 0. Then, if L{ f (t)} = F(s),

transforming an
integral

L
{∫ t

0
f (τ )dτ

}
= F(s)

s
for s > k,
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and, conversely,

L−1{F(s)/s} =
∫ t

0
f (τ )dτ.

Proof The condition | f (t)| ≤ Mekt is sufficient to ensure the existence of the
Laplace transform F(s), so writing h(t) = ∫ t

0 f (τ )dτ we have

|h(t)| ≤
∫ t

0
| f (τ )|dτ ≤ M

∫ t

0
ekτ dτ ≤ M

ekt

k
for t ≥ 0.

This result shows that |h(t)| grows no faster than | f (t)| as t → ∞, so the existence
of the Laplace transform Y(s) ensures the existence of the Laplace transform of
h(t). Using the fundamental result from the calculus that h′(t) = f (t) together with
Theorem 7.2 means that, apart from points where f (t) is discontinuous,

F(s) = L{ f (t)} = L{h′(t)} = sL{h(t)} = sL
{∫ t

0
f (τ )dτ

}
,

and so

L
{∫ t

0
f (τ )dτ

}
= F(s)

s
.

The converse result follows by taking the inverse Laplace transform and the proof
is complete.

EXAMPLE 7.25 Find (a) L{∫ t
0 τ cos aτdτ } and (b) L−1{1/[s(s2 + a2)]}.

Solution (a) As L{t cos at} = (s2 − a2)/(s2 + a2)2 for s > 0, an application of
Theorem 7.11 shows that

L
{∫ t

0
τ cos aτdτ

}
= s2 − a2

s(s2 + a2)2
for s > 0.

(b) We can write

1
s(s2 + a2)

= 1
s2 + a2

1
s
.

So if we set F(s) = 1/(s2 + a2), for which f (t) = L−1 F(s) = (1/a) sin at , it follows
from Theorem 7.11 that

L−1
{

F(s)
s

}
= L−1

{
1

s(s2 + a2)

}
=
∫ t

0

1
a

sin aτdτ

= 1
a2

(1 − cos at),

in agreement with entry 17 of Table 7.1.
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THEOREM 7.12 The integral of a transform Let f (t)/t be piecewise continuous, defined for t ≥ 0

integrating a
transform

and such that | f (t)/t | ≤ Me−kt for t ≥ 0. Then if L{ f (t)/t} = G(s) for s > k, and
L{ f (t)} = F(s),

L
{

f (t)
t

}
=
∫ ∞

s
F(u)du

and, conversely,

L−1{G(s)} = −1
t
L−1{G′(s)}.

Proof We have

G(s) =
∫ ∞

0
e−st f (t)

t
for s > k.

However, from Theorem 7.7,

G′(s) =
∫ ∞

0
e−st (−t)

f (t)
t

dt = −
∫ ∞

0
e−st f (t)dt = −F(s),

so after integration we have∫ ∞

s
F(u)du = −

∫ ∞

s
G′(u)du = G(s) − G(∞)

To proceed further we now make use of the fact that the condition | f (t)/t | ≤
Me−kt implies that G(s)lim s→∞ = 0, showing that

G(s) = L{ f (t)/t} =
∫ ∞

s
F(u)du for s > k.

The converse result follows by taking the inverse Laplace transform and using
the fact thatL−1{G(s)} = f (t)/t together with the resultL{ f (t)} = F(s) = −G′(s).

EXAMPLE 7.26 Find

(a) L
{

sin at
t

}
and (b) L−1

{
ln
(

s + a
s + b

)}
.

Solution (a) The function (sin at)/t is defined and finite for all t > 0, so Theo-
rem 7.12 can be applied. If we use the fact that L{sin at} = a/(s2 + a2), it follows
from the first part of Theorem 7.12 that

L
{

sin at
t

}
=
∫ ∞

s

a
u2 + a2

du

= π/2 − Arctan (s/a)

= Arctan (a/s).

(b) If we set

G(s) = ln
(

s + a
s + b

)
,
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differentiation gives

G′(s) = b − a
(s + a)(s + b)

= 1
s + a

+ 1
s + b

,

from which we see that

L−1{G′(s)} = e−at − e−bt .

From the second part of Theorem 7.11 we have

L−1{G(s)} = L−1
{

ln
(

s + a
s + b

)}
= −1

t
L−1{G′(s)}

= (e−bt − e−at )/t.

The conditions of Theorem 7.11 assert that method used to derive this result is
permissible if L−1{G(s)} is defined and finite for t ≥ 0. We see from the preceding
result that L−1{G(s)} is defined and finite for t > 0 and limt→0[(e−bt − e−at )/t] =
a − b, so the conditions of the theorem are satisfied and we have shown that

L−1
{

ln
(

s + a
s + b

)}
= (e−bt − e−at )/t.

The theorem that follows shows how the initial values f (0), f ′(0), . . . , of a suit-
ably differentiable function f (t) can be found directly from its Laplace transform
F(s). An example of the use of the theorem is to be found in Section 7.3(d) when
determining the Laplace transform of a function known only as the solution of a
differential equation.

THEOREM 7.13 The initial value theorem Let L{ f (t)} = F(s) be the Laplace transform of an n
times differentiable function f (t). Then

relating initial values
and the transform

f (r)(0) = lim
s→∞

{
sr+1 F(s) − sr f (0) − sr−1 f ′(0) − · · · − s f (r−1)(0)

}
,

r = 0, 1, . . . , n.

In particular,

f (0) = lim
s→∞{s F(s)}, f ′(0) = lim

s→∞{s2 F(s) − s f (0)}
f ′′(0) = lim

s→∞{s3 F(s) − s2 f (0) − s f ′(0)}.

Proof The theorem follows directly from Theorem 7.3 by first replacing n by r + 1
and rewriting the result as

f (r)(0) = sr+1 F(s) − sr f (0) − · · · − s f (r−1)(0) − L{ f (r+1)(t)
}
.

Then, provided f (r+1)(t) satisfies the sufficiency condition for the existence of a
Laplace transform given in (3), it follows that for some M > 0 and k > 0

L{ f (r+1)(t)
}

< M/(s − k) for s > k and r = 0, 1, . . . , n.

As a result,

lim
s→∞

{
f (r+1)(t)

} = 0,

and the theorem is proved.
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y(t) = (1/h)[H(t − a) − H(t − a − h)]

Area = h(1/h) = 1

y

1/h

0 a a + h t

FIGURE 7.15 δ(t − a) = limh→0 y(t).

EXAMPLE 7.27 Given that F(s) = 2as/(s2 + a2)2, use Theorem 7.13 to find f (0), f ′(0), and f ′′(0).
Use f (t) =L−1{F(s)} = t sin at to confirm the results by direct differentiation.

Solution From Theorem 7.13

f (0) = lim
s→∞{s F(s)} = lim

s→∞
2as2

(s2 + a2)2
= 0,

f ′(0) = lim
s→∞{s2 F(s) − s f (0)} = lim

s→∞
2as3

(s2 + a2)2
= 0,

f ′′(0) = lim
s→∞{s3 F(s) − s2 f (0) − s f ′(0)} = lim

s→∞
2as4

(s2 + a2)2
= 2a.

These results are easily confirmed by differentiation of f (t) = t sin at .

The last operational property to be considered concerns the Dirac delta func-
tion, usually abbreviated to the delta function and sometimes called the unit impulse
function. The Dirac delta function, named after the Oxford University Nobel lau-
reate mathematical physicist P. A. M. Dirac and denoted by δ(t − a), is actually a
limiting mathematical operation, and not a function as its name implies. For our pur-
poses the delta function can be considered to be the limit of a rectangular “pulse”
of height h and width 1/h in the limit as h → ∞. Thus the area of the graph rep-
resenting the pulse remains constant at 1 as h → ∞, while its height increases to
infinity and its width decreases to zero. The graphical representation of such a pulse
f (t) = δ(t − a) located at t = a, before proceeding to the limit, is shown in Fig. 7.15.

We adopt the following definition of the delta function in terms of the unit step
function.

The delta function

The delta function located at t = a and denoted by δ(t − a) is defined as thethe delta or
impulse function limit

δ(t − a) = lim
h→0

1
h

[H(t − a) − H(t − a − h)].
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The operational property of the delta function, usually called its filtering prop-
erty and sometimes its sifting property, is represented by the following theorem.

THEOREM 7.14 Filtering property of the delta function Let f (t) be defined and integrable over all
intervals contained within 0 ≤ t < ∞, and let it be continuous in a neighborhood

a useful property of
the delta function

of a. Then for a ≥ 0

∫ ∞

0
f (t)δ(t − a)dt = f (a).

Proof From the definition of the delta function,∫ ∞

0
f (t)δ(t − a)dt = lim

h→0

∫ a+h

a

f (t)
h

dt,

so applying the mean value theorem for integrals we have∫ ∞

0
f (t)δ(t − a)dt = lim

h→0

[
h
(

1
h

)
f (th)

]
,

where a < th < a + h. In the limit as h → 0 the variable th → a, showing that∫ ∞

0
f (t)δ(t − a)dt = f (a),

and the theorem is proved.

Consideration of the definition of the delta function suggests that, in a sense,
δ(t − a) is the derivative of the unit step function H(t − a), though the justifica-
tion of this conjecture requires arguments involving generalized functions that are
beyond the scope of this account.

In mechanical problems the delta function is used to represent an impulse,
defined as the integral of a large force applied locally for a very short time. The
delta function has many other applications, such as the distribution of point masses
along a supporting beam, whereas in electrical systems it can be used to represent
the brief application of a very large voltage, or the sudden discharge of energy
contained in a capacitor.

A purely formal derivation of the Laplace transform of the delta function pro-
ceeds as follows. By definition,

L{δ(t − a)} =
∫ ∞

0
e−stδ(t − a)dt.

An application of the filtering property of Theorem 7.14 reduces this to

L{δ(t − a)} = e−as . (15)

As a special case we have

L{δ(t)} = 1. (16)
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FIGURE 7.16 The solution y(t) as a function of the time t .

EXAMPLE 7.28 Solve the initial value problem

y′′ + 3y′ + 2y = δ(t − 1) − δ(t − 2) with y(0) = y′(0) = 0.

Solution Taking the Laplace transform in the usual way and using result (15) gives

(s2 + 3s + 2)Y(s) = e−s − e−2s,

and so

Y(s) = e−s − e−2s

s2 + 3s + 2
= e−s − e−2s

s + 1
− e−s − e−2s

s + 2
.

Inverting the transform using Theorem 7.6 (the t-shift theorem) shows that

y(t) = H(t − 1)[e1−t − e2−2t ] − H(t − 2)[e2−t − e4−2t ].

A graph of this solution is given in Fig. 7.16. The graph shows that a physical system
represented by the given differential equation subject to the equilibrium initial
conditions y(0) = y′(0) = 0 is at rest until it is excited by the delta function at time
t = 1 and then, after peaking just before t = 2, it is excited in the opposite sense
by the delta function at time t = 2, after which the solution decays to zero as t
increases, corresponding to the system returning to rest.

The Laplace transform is also discussed in references [3.4], [3.8], [3.9], [3.17],
and [3.20]; tables of Laplace transform pairs are to be found in references [G.1],
[G.3], [3.11], and [3.14]. An advanced account of the Laplace transform is to be
found in reference [3.19].

PAUL ADRIEN DIRAC (1902–1984)
An English mathematical physicist who introduced the delta function in a fundamental paper
on quantum mechanics presented to the Royal Society of London in 1927. Together with the
German physicist Erwin Schrodinger he shared the Nobel Prize for physics because of
contributions made to quantum mechanics.

Summary This section has been concerned with what are known as the operational properties of the
Laplace transform. These are general properties of the transform itself that can be applied
to any function f (t) that possesses a Laplace transform, or to any function F (s) that is the
Laplace transform of a function f (t). It will be seen later that these properties can be used
to extend the table of Laplace transforms given at the end of Section 7.1, and when using
the Laplace transform to solve differential equations.
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EXERCISES 7.2

Exercises involving the transformation
of derivatives

1. Prove that L{ f ′′(t)} = s2 F(s) − s f (0) − f ′(0).
2. Prove that L{ f ′′′(t)} = s3 F(s) − s2 f (0) − s f ′(0) −

f ′′(0).
3. Given that f (0) = 1, f ′(0) = 0, f ′′(0) = 1, findL{ f ′′′(t)}.
4. Given that f (0) = 0, f ′(0) = 2, f ′′(0) = 2, f ′′′(0) = −4,

find L{ f (4)(t)}.

5. Given that f (t) =
⎧⎨⎩

sin t, 0 ≤ t < π/2
, find L{ f (t)}.

t = 0, t ≥ π/2

6. Given that f (t) =
⎧⎨⎩

sin t, 0 ≤ t < π/2
, find L{ f (t)}.

1, t ≥ π/2
7. Solve y′′ − 3y′ + 2y = cos t, with y(0) = 1, y′(0) = −1.
8. Solve y′′ + 5y′ + 4y = exp(−t), with y(0) = 1,

y′(0) = 0.
9. Solve y′′ + 8y′ − 9y = t, with y(0) = 2, y′(0) = 1.

10. Solve y′′ + 5y′ + 6y = 1 + t2, with y(0) = 0, y′(0) = 0.

Exercises involving the first shift theorem (s-shift)

11. Find L{(2 + t3)e−2t }.
12. Find L{e−3t cos 2t}.
13. Find L{e−t t sin 2t}.
14. Find L{(1 + t2)e−4t }.
15. Find L{e2t sin 3t}.
16. Find L{e−4t sinh 3t}.
17. Find L−1{1/(s2 − 4s + 13)}.
18. Find L−1{s/(s2 + 4s + 13)}.
19. Find L−1{(1 − 3s)/(s2 + 2s + 5)}.
20. Find L−1{1/[s(s2 − 2s + 5)]}.
21. Find L−1{s/[(s + 1)(s2 − 4s + 13)]}.
22. Find L−1{3/(s2 + 6s + 25)}.
23. Find L−1{3(s2 + 4)/[s(s2 + 4s + 8)]}.
24. Find L−1{2/[(s + 3)2(s2 + 8s + 20)]}.

Exercises involving graphing functions
with a t-shift

25. Sketch f (t) = H(t − 2)(1 + t).
26. Sketch f (t) = H(t − π) sin t + H(t − 2π).
27. Sketch f (t) = [H(t − π) − H(t − 2π)] cos t .
28. Sketch f (t) = ∑4

r=0 H(t − r).
29. Sketch f (t) = H(t − π) cos(t − π).
30. Sketch f (t) = H(t − 1)(t − 1)2.

31. Sketch f (t) = [H(t − 1) − H(t − 2)](t − 1)2.
32. Sketch f (t) = H(t − π/2) cos(t − π/2).

Exercises involving the second shift
theorem (t-shift)

33. Find L{H(t − 3)(t − 3)3}.
34. Find L{H(t − 1) sin(t − 1)}.
35. Find L{H(t − 3π/2) sin 2(t − 3π/2)}.
36. Find L{H(t − π/2)(t − π/2)3 − H(t − 3π/2)

× (t − 3π/2)3}.
37. Find L{H(t − 4) sinh 3(t − 4)}.
38. Find L{H(t − 1)(t − 1) sin(t − 1)}.
39. Find L−1{s e−2s/(s2 + 4)}.
40. Find L−1{e−πs/3/(s2 + 9)}.
41. Find L−1{e−πs/2(s + 1)/(s2 + 4s + 5)}.
42. Find L−1{e−2s(s2 + s + 1)/[s(s + 2)2]}.
43. Find L−1{e−4s(s + 3)/(s2 + 4s + 13)}.
44. Find L−1{e−3ss2/[s(s2 + 4s + 8)]}.
45. Solve y′′ + 5y′ + 6y = H(t − π) cos(t − π), with y(0)

= 1, y′(0) = 0.
46. Solve y′′ − 5y′ + 6y = t H(t − 1), with y(0) = 0, y′(0)

= 0.
47. Solve y′′ − 5y′ + 6y = 1 + t H(t − 2), with y(0) = 0,

y′(0) = 1.
48. Solve y′′ − 6y′ + 10y = t H(t − 3), with y(0) = 1,

y′(0) = 1.
49. Solve y′′ + 2y′ + 10y = e−t H(t − 1), with y(0) = −1,

y′(0) = 0.
50. Solve y′′ − y′ − 2y = e−t H(t − 1), with y(0) = 1,

y′(0) = 0.

Exercises involving differentiation of transforms

51. Find L{t2e3t sin t}.
52. Find L{te−t sin 4t}.

53. Find L{t3e2t sin 2t}.
54. Find L{t2e3t cos 2t}.

Exercises involving scaling

55. If L{ f (t)} = e−3s(s2 − 1)/(s4 − a4), find L{ f (2t)}.
56. If L{ f (t)} = (s + 1)(s2 + 2)/(s2 + 4)2, find L{ f (3t)}.
57. If L{ f (t)} = 1/[s2(s2 + 4)], find L{ f (t/3)}.
58. If L{ f (t)} = (s2 − 4)/[(s2 + 4)2], find L{ f (t/2)}.

Exercises involving the Laplace transform
of periodic functions

In Exercises 59 through 66 find the Laplace transform of
the periodic function f (t).
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59.

0 k 2k 2k 2k 2k t

f(t )

1

periodic with
period 2k

FIGURE 7.17

60.

π/a 2π/a 3π/a

1

0

f(t )
f(t) = sin(αt)

t

periodic with
period 2π/a

FIGURE 7.18

61.

f(t )

2k

0 2k 4k 6k 8k

periodic with
period 4k

t

FIGURE 7.19

62.

f(t )

1

0 π/k 2π/k t

periodic with
period π/k

f(t ) = ⎢sin kt⎥

FIGURE 7.20

63.

0 a 2a 3a 4a

f(t )

k

t

periodic with
period a

FIGURE 7.21

64.

f(t)

3k

2k

k

0 a 2a 3a t

FIGURE 7.22

65.

periodic with
period 2a

f(x)

k

−k

0 2aa 3a 4a 5a t

FIGURE 7.23

66.

f(t )

1

0 a 2a 3a 4a 5a t

k

k3

k2

FIGURE 7.24

Exercises involving the convolution operation

67. Find (e−t ∗ e−2t ).
68. Find (t ∗ sin t).
69. Find (t2 ∗ sin t).

70. Find (t ∗ e−t ).
71. Find (cos t ∗ cos t).
72. Find (sin 2t ∗ sin 2t).

Exercises involving the convolution theorem

73. Find L{t ∗ e−2t }.
74. Find L{2t ∗ cos 2t}.
75. Find L{e−t sin t ∗ t}.
76. Find L{e−2t cos t ∗ et }.

77. FindL−1{1/[s2(s2 + 4)]}.
78. Find L−1{1/(s2 − 9)2}.
79. Find L−1{s2/(s2 − 1)2}.
80. Find L−1{s/(s2 − 4)2}.
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Exercises involving integral equations

81. Solve y(t) = sin t +
∫ t

0
sin(t − τ )y(τ )dτ .

82. Solve y(t) = cos t +
∫ t

0
sin[2(t − τ )]y(τ )dτ .

83. Solve y(t) = t2 +
∫ t

0
cos(t − τ )y(τ )dτ .

84. Solve y(t) = e−2t +
∫ t

0
cos(t − τ )y(τ )dτ .

Exercises involving integro-differential equations

85. Solve y′ + 4y = 4
∫ t

0
sin τy(t − τ )dτ, with y(0) = 1.

86. Solve y′ + y =
∫ t

0
e−2τ y(t − τ )dτ, with y(0) = 3.

87. Solve y′′ − y =
∫ t

0
sinh τy(t − τ )dτ, with y(0) = 1,

y′(0) = 0.

88. Solve y′′ − 4y = 2
∫ t

0
sinh 2τy(t − τ )dτ, with y(0) = 1,

y′(0) = 0.

Exercises involving the transform of an integral

89. Find L
{∫ t

0
τ 2 sin 2τdτ

}
.

90. Find L
{∫ t

0
e2τ cos τdτ

}
.

91. Find L−1{1/(s2 + a2)2}.
92. Find L−1{s/(s2 + a2)}.

Exercises involving an integral of a transform

93. Find L
{

sinh 2t
t

}
.

94. Find L
{

1 − cos 3t
t

}
.

95. Find L−1

{
ln
(

s2 − a2

s2

)}
.

96. Find L−1

{
ln
(

s2 + a2

s2

)}
.

Exercises involving the initial value theorem

In Exercises 97 through 100 use the initial value theorem to
find f (0), f ′(0), and f ′′(0) from F(s), and verify the result
by differentiation of f (t) = L−1{F(s)}.
97. F(s) = (s2 + 6)/{s(s2 + 9)}.
98. F(s) = s/(s2 + 6s + 9).
99. F(s) = (s − 1)/(s2 − 4s + 4).

100. F(s) = (2s2 + s − 12)/{s(s + 2)(s + 3)}.

Exercises involving the delta function

101. Evaluate
∫ ∞

0

(
1 − 3 sin2 t

t

)
δ(t − π/2)dt.

102. Evaluate
∫ 4

0
sin2 tδ(t − 2π)dt .

103. Evaluate
∫ ∞

0

3∑
n=1

{(
sin nt

t

)
δ
[
t − (2n + 1)

π

2

]}
dt.

104. Evaluate
∫ ∞

0
{[H(t − 1) − H(t − 2)]t +

cos(t − 3π)δ(t − 3π)}dt .

105. Solve y′′ + 9y = 1 + δ(t − 1), with y(0) = 0, y′(0) = 0.
106. Solve y′′ + 4y′ + 4y = δ(t − 1), with y(0) = 1,

y′(0) = 1.
107. Solve y′′ + 2y′ + y = sin t + δ(t − π), with y(0) =

y′(0) = 0.
108. Solve y′′ − 4y′ + 3y = e−t + 3δ(t − 2), with y(0) =

y′(0) = 0.
109. Solve y′′ + 4y = 1 − H(t − 1) + δ(t − 2), with y(0) =

1, y′(0) = 0.
110. Solve y′′ + 3y′ + 2y = δ(t − 1), with y(0) = 0,

y′(0) = 1.

7.3 Systems of Equations and Applications
of the Laplace Transform

(a) Solution of Systems of Linear First Order
Equations by the Laplace Transform
The Laplace transform can be used to solve initial value problems for systems of
linear first order differential equations by introducing the Laplace transform of
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each dependent variable that is involved, solving the resulting algebraic equations
for each transformed dependent variable, and then inverting the results.

As a system of linear higher order differential equations can always be reduced
to a system of first order equations by introducing higher order derivatives as new
dependent variables, the solution of a system of linear first order equations can be
considered to be the most general case.

The example that follows, involving two simultaneous first order equations,solving systems of
equations illustrates the approach to be used in all cases, but by restricting the number of

equations and using simple nonhomogeneous terms (forcing functions) the algebra
is kept to a minimum.

EXAMPLE 7.29 Solve the initial value problem

x′ − 2x + y = sin t

y′ + 2x − y = 1,

with x(0) = 1, y(0) = −1.

Solution We define the transforms of the dependent variables x(t) and y(t) to be

L{x(t)} = X(s), L{y(t)} = Y(s).

Transforming the system of equations in the usual way leads to the following system
of linear algebraic equations for X(s) and Y(s):

s X(s) − 1 − 2X(s) + Y(s) = 1/(s2 + 1)

sY(s) + 1 + 2X(s) − Y(s) = 1/s.

Solving these for X(s) and Y(s) gives

X(s) = (s − 1)(s3 + s2 + 2s + 1)
s2(s − 3)(s2 + 1)

and Y(s) = −(s4 − s3 + 3s2 + s + 2)
s2(s − 3)(s2 + 1)

.

Expressing these results in terms of partial fractions, we find that

X(s) = 4
9

1
s

+ 1
3

1
s2

− 1
5

1
s2 + 1

− 2
5

s
s2 + 1

+ 43
45

1
s − 3

and

Y(s) = 5
9

1
s

+ 2
3

1
s2

+ 1
5

1
s2 + 1

− 3
5

s
s2 + 1

− 43
45

1
s − 3

.

Finally, taking the inverse transform gives the solution

x(t) = 4
9

+ 1
3

t − 1
5

sin t − 2
5

cos t + 43
45

e3t

and

y(t) = 5
9

+ 2
3

t + 1
5

sin t − 3
5

cos t − 43
45

e3t for t > 0.

This method can be used for any number of simultaneous linear differential
equations, though the complexity of both the algebraic manipulation and the as-
sociated inversion problem increases rapidly when more than two equations are
involved.
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A typical example of the way systems of first order equations arise in practice
is provided by considering a chemical reaction that converts a raw chemical into
an end product, via several intermediate reactions. The simplest situation involves
chemical reactions that are irreversible, so that once a product has been produced
the chemical process cannot be reversed, causing the new product to revert to a
previous one.

Let us derive the system of equations governing such a process when three
intermediate reactions are involved, each of which is irreversible, with each reaction
proceeding at a rate that is proportional to the amount of material to be converted
from one stage to the next. Denote the raw chemical by Aand the end product by
E, with the intermediate products denoted by B, C, and D, and let the reaction
rates (the constants of proportionality) from A→ B, B → C, C → D, and D → E
be k1, k2, k3, and k4, respectively. Then if the amounts of chemicals A, B, C, D, and
E present at time t are x, y, u, v, and w, the production and removal of the chemical
products involved is described as follows.

Reaction Reaction Rate of Removal Reaction Rate of Production

A→ B
(

dx
dt

)
A→B

= −k1x
(

dy
dt

)
A→B

= k1x

B → C
(

dy
dt

)
B→C

= −k2 y
(

du
dt

)
B→C

= k2 y

C → D
(

du
dt

)
C→D

= −k3u
(

dv
dt

)
C→D

= k3u

D → E
(

dv
dt

)
D→E

= −k4v
(

dw
dt

)
D→E

= k4v

Combining these results gives

dx
dt

=
(

dx
dt

)
A→B

= −k1x

dy
dt

=
(

dy
dt

)
A→B

+
(

dy
dt

)
B→C

= k1x − k2 y

du
dt

=
(

du
dt

)
B→C

+
(

du
dt

)
C→D

= k2 y − k3u

dv
dt

=
(

dv
dt

)
C→D

+
(

dv
dt

)
D→E

= k3u − k4v.

If the amount of raw material Apresent at the start is Q, the initial conditions
for the system are seen to be

x(0) = Q, y(0) = 0, u(0) = 0, v(0) = 0, and w(0) = 0.

Provided no additional by-products are produced during the reactions, it follows
from the conservation of mass that x + y + u + v + w = Q, and so

w = Q − x − y − u − v.
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Taking the Laplace transform of this system of first order linear equations and
using the stated initial conditions leads to the transformed system

s X(s) + k1 X(s) = Q

sY(s) − k1 X(s) + k2Y(s) = 0

sU(s) − k2Y(s) + k3U(s) = 0

sV(s) − k3U(s) + k4V(s) = 0,

where L{x(t)} = X(s), L{y(t)} = Y(s), L{u(t)} = U(s), and L{v(t)} = V(s).
Solving for the Laplace transforms, we have

X(s) = Q
s + k1

, Y(s) = k1 Q
(s + k1)(s + k2)

, U(s) = k1k2 Q
(s + k1)(s + k2)(s + k3)

,

and

V(s) = k1k2k3 Q
(s + k1)(s + k2)(s + k3)(s + k4)

.

After expressing these Laplace transforms in terms of partial fractions the
required solutions are seen to be

x(t) = Qe−k1t , y(t) = k1 Q
k1 − k2

(e−k1t − e−k2t )

and

u(t) = k1k2 Q
(

1
(k2 − k1)(k3 − k1)

e−k1t + 1
(k1 − k2)(k3 − k2)

e−k2t

+ 1
(k1 − k3)(k2 − k3)

e−k3t
)

with v(t) similarly defined. The amount of the end product w(t) produced at time
t follows from

w(t) = Q − x(t) − y(t) − u(t) − v(t).

We now outline a matrix method of solution of initial value problems for systems
of linear first order differential equations, of which Example 7.29 is a typical case.solving systems of

equations in
matrix form

Let us consider the system

d
dt

x(t) = Ax(t) + b(t), (17)

where

x(t) =

⎡⎢⎢⎢⎢⎣
x1(t)
x2(t)

·
·

xn(t)

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . . .

. . . . . . . . . . .

an1 an2 · · · ann

⎤⎥⎥⎥⎥⎦ , b(t) =

⎡⎢⎢⎢⎢⎣
b1(t)
b2(t)

·
·

bn(t)

⎤⎥⎥⎥⎥⎦ ,

subject to the initial conditions x1(0) = x1, x2(0) = x2, . . . , xn(0) = xn.
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Define L{x1(t)} = X1(s), L{x2(t)} = X2(s) . . . , L{xn(t)} = Xn(s), L{b1(t)} =
B1(s), L{b2(t)} = B2(s), . . . , L{bn(t)} = Bn(s), and set

Z(s) =

⎡⎢⎢⎢⎢⎣
X1(s)
X2(s)

·
·

Xn(s)

⎤⎥⎥⎥⎥⎦ , c(s) =

⎡⎢⎢⎢⎢⎣
B1(s)
B2(s)

·
·

Bn(s)

⎤⎥⎥⎥⎥⎦ and v =

⎡⎢⎢⎢⎢⎣
x1

x2

·
·

xn

⎤⎥⎥⎥⎥⎦ .

Then taking the Laplace transform of (17) and using the result L{x′
r (t)} = s X(s) −

xr , for r = 1, 2, . . . , n, we arrive at the system

sZ(s) − v = AZ(s) + c(s)

or, equivalently,

(sI − A)Z(s) = v + c(s),

where I is the n × n unit matrix. Premultiplying this last result by (sI − A)−1 gives

Z(s) = [sI − A]−1[v + c(s)]. (18)

Finally, taking the inverse Laplace transform of (18) we obtain the solution x(t)
of the initial value problem in the form

x(t) = L−1{[sI − A]−1[v + c(s)]}. (19)

EXAMPLE 7.30 Solve the initial value problem of Example 7.29 by using result (19).

Solution Making the necessary identifications we have

I =
[

1 0
0 1

]
, A =

[
2 −1

−2 1

]
, v =

[
1

−1

]
, c(s) =

[
1/(s2 + 1)

1/s

]
,

so (18) becomes

Z(s) =
[

s
[

1 0
0 1

]
−
[

2 −1
−2 1

]]−1 [[ 1
−1

]
+
[

1/(s2 + 1)
1/s

]]
,

or

Z(s) =
[

s − 2 1
2 s − 1

]−1 [(s2 + 2)/(s2 + 1)
(1 − s)/s

]
.

The inverse of the first matrix in this product is

[
s − 2 1

2 s − 1

]−1

=

⎡⎢⎢⎢⎣
s − 1

s(s − 3)
−1

s(s − 3)

−2
s(s − 3)

s − 2
s(s − 3)

⎤⎥⎥⎥⎦ ,

so

Z(s) =

⎡⎢⎢⎢⎣
s − 1

s(s − 3)
−1

s(s − 3)

−2
s(s − 3)

s − 2
s(s − 3)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

s2 + 2
s2 + 1

1 − s
s

⎤⎥⎥⎦ .
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After forming the matrix product this becomes

Z(s) =

⎡⎢⎢⎢⎢⎣
(s − 1)(s3 + s2 + 2s + 1)

s2(s − 3)(s2 + 1)

−(s4 − s3 + 3s2 + s + 2)
s2(s − 3)(s2 + 1)

⎤⎥⎥⎥⎥⎦ .

The inverse transforms involved are, of course, the same as the ones in Exam-
ple 7.29, so, as would be expected, the solution is the same as before, apart from
a change of notation involving the replacement of x(t) and y(t) by x1(t) and x2(t)
giving

x1(t) = 4
9

+ 1
3

t − 1
5

sin t − 2
5

cos t + 43
45

e3t

and

x2(t) = 5
9

+ 2
3

t + 1
5

sin t − 3
5

cos t − 43
45

e3t for t > 0.

(b) Determination of etA by Means
of the Laplace Transform
The matrix solution of system (17) given in (19) has an interesting and useful con-
sequence, because it provides a different and efficient way of finding the matrix
exponential etA. To see how this comes about, notice that from equation (114) in
Section 6.10(c) the solution of the homogeneous system of equations

x′ = Ax, (20)

subject to the initial condition x(0) = v, can be written

x(t) = etA v. (21)

Setting c(s) = 0 (corresponding to b(t) = 0) reduces solution (19) to

x(t) = L−1{[sI − A]−1}v, (22)

so comparison of (21) and (22) shows that

e tA = L−1{[sI − A]−1}. (23)

We have established the following theorem.

THEOREM 7.15 Determination of etA by means of the Laplace transform Let A be a real n × n
matrix with constant elements. Then the exponential matrix

finding the matrix
exponential by the
Laplace transform

etA = L−1{[sI − A]−1}.

The following examples show how Theorem 7.15 determines etA in the cases
when A is diagonalizable with real eigenvalues, when it is diagonalizable with com-
plex conjugate eigenvalues, and also when it is not diagonalizable.

EXAMPLE 7.31 Use Theorem 7.15 to find etA when

A =
[−2 6
−2 5

]
.
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Solution Matrix A has the distinct eigenvalues 1 and 2, and so is diagonalizable.

[sI − A] =
[

s + 2 −6
2 s − 5

]
so

[sI − A]−1 =

⎡⎢⎢⎢⎣
s − 5

s2 − 3s + 2
6

s2 − 3s + 2

−2
s2 − 3s + 2

s + 2
s2 − 3s + 2

⎤⎥⎥⎥⎦ .

Expressing each element of this matrix in terms of partial fractions and taking the
inverse Laplace transform gives

etA =
[

4et − 3e2t −6et + 6e2t

2et − 2e2t −3et + 4e2t

]
,

in agreement with the result in Example 6.33.

EXAMPLE 7.32 Use Theorem 7.14 to find etA when

A =
[−3 −4

2 1

]
.

Solution Matrix A has the complex conjugate eigenvalues −1 ± 2i .

[sI − A] =
[

s + 3 4
−2 s − 1

]
,

so

[sI − A]−1 =

⎡⎢⎢⎢⎣
s − 1

s2 + 2s + 5
−4

s2 + 2s + 5

2
s2 + 2s + 5

s + 3
s2 + 2s + 5

⎤⎥⎥⎥⎦ .

Expressing each element of this matrix in terms of partial fractions and taking the
inverse Laplace transform gives

etA =
[

e−t (cos 2t − sin 2t) −2e−t sin 2t
e−t sin 2t e−t (cos 2t + sin 2t)

]
,

in agreement with the result of Example 6.34.

EXAMPLE 7.33 Use Theorem 7.14 to find etA when

A =
[

4 1
0 4

]
.

Solution Matrix A has the repeated eigenvalue 4 and is not diagonalizable.

[sI − A] =
[

s − 4 −1
0 s − 4

]
,
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so

[sI − A]−1 =

⎡⎢⎢⎣
1

s − 4
1

(s − 4)2

0
1

s − 4

⎤⎥⎥⎦ .

Taking the inverse of the elements of this matrix, we find that

etA =
[

e4t te4t

0 e4t

]
,

in agreement with the result of Example 6.35.

(c) The Weighting Function
To introduce the concept of a weighting function, which has important engineering
applications, we consider the differential equation

a0
dn y
dtn

+ a1
dn−1 y
dtn−1

+ · · · + an y = f (t), (24)

subject to the initial conditions y(0) = y′(0) = · · · = y(n−1)(0) = 0. We shall denote
by w(t) the solution of equation (24) when f (t) = δ(t), and call it the weighting
function associated with the equation. Thus the solution w(t) can be regarded as theweighting function

and its uses output from a system described by equation (24) that is produced by the impulsive
input (nonhomogeneous term) δ(t) applied at time t = 0 when the system is at rest.
The weighting function w(t) is the solution of the equation

a0
dnw
dtn

+ a1
dn−1w
dtn−1

+ · · · + anw = δ(t), (25)

with w(t) = 0 for t < 0.
Let us now consider the output y(t) from a system described by (24) produced

by an arbitrary input f (t), subject to the homogeneous initial conditions y(0) =
y′(0) = · · · = y(n−1)(0) = 0. Taking the Laplace transform of (24) we find that

G(s)Y(s) = F(s), (26)

where

G(s) = a0sn + a1sn−1 + · · · + an−1s + an, Y(s) = L{y(t)} and F(s) = L{ f (t)}.
Setting W(s) = L{w(t)}, taking the Laplace transform of (25), and using the fact
that w(t) and all its derivatives vanish for t < 0 leads to the result

G(s)W(s) = 1. (27)

Eliminating G(s) between (26) and (27) relates the Laplace transform of the
output Y(s) to the Laplace transform F(s) of the input by the equation

Y(s) = W(s)F(s). (28)
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Taking the inverse Laplace transform of (28) and using the convolution theorem
gives

y(t) =
∫ t

0
w(τ ) f (t − τ )dτ. (29)

This form of the solution of (24) explains why w(t) is called the weighting function,
because (29) shows how the input y(t − τ ) at time t − τ is weighted by the function
w(τ ) over the interval 0 ≤ τ ≤ t in the integral determining y(t).

The determination of the weighting function has the advantage that once it has
been found, the solution of (24), subject to the conditions that y(0) = y′(0) = · · · =
y(n−1)(0) = 0, is always expressible as result (29) for every nonhomogeneous term
f (t). It is instructive to compare this result, which applies to a linear differential
equation of any order, to the one in (76) of Section 6.6, which was obtained by
applying the method of variation of parameters to a second order equation with
homogeneous initial conditions when t = a. The weighting function is also some-
times called the Green’s function for an initial value problem for a homogeneous
differential equation.

The modification that must be made to result (29) to take account of initial
conditions for y(t) that are not all zero at t = 0 is to be found in Exercise 25 at the
end of this section.

EXAMPLE 7.34 Find the weighting function for the equation

y′′ + 2y′ + 5y = sin t

and use it to solve the equation subject to the initial condition y(0) = y′(0) = 0.

Solution The weighting function w(t) is the solution of

w′′ + 2w′ + 5w = δ(t)

with w(0) = w′(0) = 0. Taking the Laplace transform and setting L{w(t)} = W(s)
gives

s2W(s) + 2sW(s) + 5W(s) = 1,

so

W(s) = 1
s2 + 2s + 5

.

Taking the inverse Laplace transform, we find that

w(t) = L−1{W(s)} = 1
2

e−t sin 2t for t ≥ 0.

The solution of the differential equation with y(0) = y′(0) = 0 now follows
from (29) as

y(t) =
∫ t

0
w(τ ) sin(t − τ )dτ

= 1
2

∫ t

0
e−τ sin 2τ sin(t − τ )dτ

= 1
5

sin t − 1
10

cos t + e−t

20
(2 cos 2t − sin 2t).
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The concept of a weighting function can be generalized to include systems of equa-
tions, though then more than one weighting function must be introduced, and the
solution of each dependent variable becomes the sum of convolution integrals of the
type given in (29). The ideas involved are illustrated by considering the following
system of equations involving x(t) and y(t):

x′ + ax + by = f1(t)

y′ + cx + dy = f2(t), (30)

subject to the initial conditions x(0) = y(0) = 0.
It is necessary to introduce a weighting function for each of the variables x(t)

and y(t) corresponding first to f1(t) = δ(t) and f2(t) = 0, and then to f1(t) = 0 and
f2(t) = δ(t). Let wx1(t) and wy1(t) be the weighting functions corresponding to

w′
x1 + awx1 + bwy1 = δ(t)

w′
y1 + cwx1 + dwy1 = 0,

(31)

and wx2(t) and wy2(t) be the Green’s functions corresponding to

w′
x2 + awx2 + bwy2 = 0

w′
y2 + cwx2 + dwy2 = δ(t),

(32)

where wx1(0) = wx2(0) = wy1(0) = wy2(0) = 0.
The notation used here indicates that wx1(t) is the x response and wy1(t) the y

response to the input f1(t) = δ(t) and f2(t) = 0, and wx2(t) is the x response and
wy2(t) the y response to the input f1(t) = 0 and f2(t) = δ(t). Then, because the
equations are linear, to obtain the solution x(t) subject to the initial conditions
x(0) = y(0) = 0, it is necessary to add the contribution due to wx1(t) to the one due
to wx2(t), and similarly for the solution y(t).

This leads to the solution in the form

x(t) =
∫ t

0
wx1(τ ) f1(t − τ )dτ +

∫ t

0
wx2(τ ) f2(t − τ )dτ (33a)

and

y(t) =
∫ t

0
wy1(τ ) f1(t − τ )dτ +

∫ t

0
wy2(τ ) f2(t − τ )dτ. (33b)

Once the weighting functions have been found, equations (33) give the solution
of system (30) for any choice of functions f1(t) and f2(t), subject to the initial
conditions x(0) = y(0) = 0.

EXAMPLE 7.35 Find weighting functions for the equations

x′ + 2x − y = f1(t)

y′ − 2x + y = f2(t)

and use them to solve the system subject to the initial conditions x(0) = y(0) = 0
when (a) f1(t) = sin t and f2(t) = 2 and (b) f1(t) = cos t and f2(t) = 0.

Solution (a) From (31) the functions wx1(t) and wy1(t) satisfy

w′
x1 + 2wx1 − wy1 = δ(t)

w′
y1 − 2wx1 + wy1 = 0,
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so taking the Laplace transform of these equations we have

(s + 2)L{wx1(t)} − L{wy1(t)} = 1

(s + 1)L{wy1(t)} − 2L{wx1(t)} = 0.

Solving for L{wx1(t)} and L{wy1(t)} gives

L{wx1(t)} = s + 1
s(s + 3)

and L{wy1(t)} = 2
s(s + 3)

.

Taking the inverse Laplace transforms, we find that

wx1(t) = 1
3

+ 2
3

e−3t and wy1(t) = 2
3

− 2
3

e−3t for t ≥ 0.

Similarly, solving the equations for wx2(t) and wy2(t) corresponding to (32), we
obtain

wx2(t) = 1
3

− 1
3

e−3t and wy2(t) = 2
3

+ 1
3

e−3t for t ≥ 0.

The solution of the system subject to the initial conditions x(0) = y(0) = 0,
f1(t) = sin t , and f2(t) = 2 now follows from (33) as

x(t) =
∫ t

0
wx1(τ ) sin(t − τ )dτ + 2

∫ t

0
wx2(τ )dτ

and

y(t) =
∫ t

0
wy1(τ ) sin(t − τ )dτ + 2

∫ t

0
wy2(τ )dτ.

After the integrations are performed, the solution is found to be

x(t) = 1
9

+ 2
3

t + 13
45

e−3t + 1
5

sin t − 2
5

cos t

and

y(t) = 8
9

+ 4
3

t − 13
45

e−3t − 1
5

sin t − 3
5

cos t for t > 0.

(b) Similarly, the solution when f1(t) = cos t and f2(t) = 0 is given by

x(t) =
∫ t

0
wx1(τ ) cos(t − τ )dτ

and

y(t) =
∫ t

0
wy1(τ ) cos(t − τ )dτ,

so after performing the integrations,

x(t) = −1
5

e−3t + 2
5

sin t + 1
5

cos t

and

y(t) = 1
5

e−3t + 3
5

sin t − 1
5

cos t for t > 0.
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(d) Differential Equations with Polynomial
Coefficients
The Laplace transform can be applied to linear differential equations with polyno-special variable

coefficient
differential
equations

mial coefficients to find the solution of an initial value problem in the usual way,
and also to deduce the Laplace transform of a function from its defining differen-
tial equation. This last situation is useful when the integral defining the Laplace
transform of a function f (t) cannot be evaluated directly. First, however, we use
Theorems 7.3 and 7.7 to find the transform of a product of a power of t and a
derivative of f (t).

THEOREM 7.16 L{tm f (n)(t)} Let f (t) be n times differentiable with L{ f (t)} = F(s). Then

L{tm f (n)(t)
} = (−1)m dm

dsm
[sn F(s) − sn−1 f (0) − sn−2 f ′(0)

− sn−3 f ′′(0) − · · · − f (n−1)(0)].

Useful special cases are:

(i) L{t f (t)} = −F ′(s)

(ii) L{t f ′(t)} = −s F ′(s) − F(s)

(iii) L{t f ′′(t)} = −s2 F ′(s) − 2s F(s) + f (0)

(iv) L{t2 f ′(t)} = s F ′(s) + 2F(s)

(v) L{t2 f ′′(t)} = s2 F ′′(s) + 4s F ′(s) + 2F(s)

Proof The results of the theorem are direct consequences of Theorems 7.3 and
7.7. We prove the general result, from which the special cases all follow. From
Theorem 7.3 we have

L{ f (n)(t)
} = sn F(s) − sn−1 f (0) − sn−2 f ′(0) − sn−3 f ′′(0) − · · · − f (n−1)(0),

whereas from Theorem 7.7 L{tmg(t)} = (−1)m dm

dsm G(s), where L{g(t)} = G(s). The
main result of the theorem now follows by setting g(t) = f (n)(t) in this last result.

(i) L{exp(−t2)} and its connection
with the error function

We will use the differential equation satisfied by y(t) = exp(−t2) to show thatLaplace transform of
the error function

L{exp(−t2)} = 1
2

√
π exp(s2/4)[1 − erf(s/2)],

where

erf s = 2√
π

∫ s

0
exp(−u2)du
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is a special function called the error function. The error function arises in the theory
of heat conduction (see Section 7.3(f) and Chapter 18), in chemical diffusion pro-
cesses, statistics, and elsewhere.

An attempt to find L{exp(−t2)} directly from the definition fails because the
integral cannot be evaluated in terms of elementary functions, so some other method
must be used. If we set y(t) = exp(−t2), it is easily shown that y(t) satisfies the first
order variable coefficient equation

dy
dt

+ 2ty = 0,

subject to the initial condition y(0) = exp(0) = 1.
Setting L{y(t)} = Y(s) and taking the Laplace transform of the differential

equation gives

sY(s) − y(0) + 2L{ty(t)} = 0.

However, y(0) = 1, and from result (i) of Theorem 7.15 (or directly from Theo-
rem 7.7) L{ty(t)} = −Y′(s), so using these results in the preceding equation shows
that the Laplace transform satisfies the differential equation

dY
ds

− 1
2

sY = −1
2
.

The integrating factor for this linear first order equation is μ(s) = exp(−s2/4), so
after multiplication of the equation by μ(s) the result becomes

d
ds

[exp(−s2/4)Y(s)] = −1
2

exp(−s2/4).

Integrating over the interval 0 ≤ u ≤ s gives (after the introduction of the dummy
variable u) ∫ s

0

d
du

[exp(−u2/4)Y(u)]du = −1
2

∫ s

0
exp(−u2/4)du,

or

exp(−s2/4)Y(s) − Y(0) = −1
2

∫ s

0
exp(−u2/4)du.

From the definition Y(s) = ∫∞
0 e−st exp(−t2)dt , we find that Y(0) = ∫∞

0 exp(−t2)dt .
The integral determining Y(0) is a standard result,

∫∞
0 exp(−t2)dt = √

π/2, so mak-
ing use of this we find that

Y(s) =
√

π

2
exp(s2/4)

[
1 − 1√

π

∫ s

0
exp(−u2/4)du

]
.

The change of variable u = 2v brings this last result into the form

Y(s) =
√

π

2
exp(s2/4)

[
1 − 2√

π

∫ s/2

0
exp(−v2)dv

]
.

If we now define the error function as

erf(x) = 2√
π

∫ x

0
exp(−v2)dv,
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the Laplace transform Y(s) becomes

Y(s) = L{exp(−t2)} =
√

π

2
exp(s2/4)[1 − erf(s/2)].

The function erfc (x), defined as

erfc(x) = 1 − erf(x),

is called the complementary error function, so in terms of this function the transform
Y(s) becomes

Y(s) =
√

π

2
exp(s2/4)erfc(s/2).

This method of determining the Laplace transform was successful because the
differential equation satisfied by Y(s) happened to be simpler than the differential
equation satisfied by y(t).

(ii) Laplace transform of the Bessel function J0(t)
and the series expansion of J0(t)

The following linear second order differential equation, called Bessel’s equation,Laplace transform of
a Bessel function

t2 d2 y
dt2

+ t
dy
dt

+ (t2 − v2)y = 0,

contains a parameter v that is a constant. It has many applications, one of which
is to be found in Chapter 18, where it enters into the solution of a vibrating cir-
cular membrane. The properties of its solutions are developed in some detail in
Sections 8.6 and 8.7 of Chapter 8.

For each constant value v, Bessel’s equation has two linearly independent solu-
tions denoted by Jv(t) and Yv(t), called, respectively, Bessel functions of order v of
the first and second kind. We now use the Laplace transform to find L{J0(t)}, and
then to find a power series expansion for J0(t) that will be obtained in a completely
different way in Section 8.6. When v = 0, Bessel’s equation reduces to

t
d2 J0

dt2
+ dJ0

dt
+ t J0 = 0,

and we will now find L{J0(t)} subject to the initial condition J0(0) = 1.
A second initial condition follows by setting t = 0 in the differential equation

that gives J ′
0(0) = 0, though this result will not be needed in what is to follow as the

condition is implied later when the initial value Theorem 7.13 is used.
Taking the Laplace transform of Bessel’s equation of order zero, setting

L{J0(t)} = Y(s), and using the results of Theorem 7.16, we obtain

−s2Y′(s) − 2sY(s) + 1 + sY(s) − 1 − Y′(s) = 0,

and after simplification this shows that Y(s) satisfies the first order differential
equation

dY
ds

+ s
s2 + 1

Y(s) = 0.
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Separating the variables and integrating gives∫
dY
Y

= −
∫

s
s2 + 1

ds,

and so

Y(s) = C
(s2 + 1)1/2

.

We now know the form of Y(s), apart from the magnitude of the constant C. To find
the constant we use the initial value theorem (Theorem 7.13), which shows that we
must have

J0(0) = lim
s→∞[sY(s)],

but from the initial condition J0(0) = 1, so

1 = lim
s→∞

sC
(s2 + 1)1/2

= C,

and thus

L{J0(t)} = 1
(s2 + 1)1/2

for s > 0.

This result can be used to obtain a series expansion for J0(t) by first writing it
as

L{J0(t)} = 1
s

(
1 + 1

s2

)−1/2

,

and then expanding the result by the binomial theorem to obtain

L{J0(t)} = 1
s

− 1
2

1
s3

+ 3
8

1
s5

− 5
16

1
s7

+ · · · ·

Finally, taking the inverse Laplace transform of each term and adding the results,
we arrive at the series expansion of J0(t):

J0(t) = 1 − t2

4
+ t4

64
− t6

2304
+ · · · ·

If the general term in the expansion of 1
s (1 + 1

s2 )−1/2 is found, and the result
is combined with entry 3 of Table 7.1, it is not difficult to show that J0(t) can be
written as

J0(t) =
∞∑

n=0

(−1)nt2n

22n(n!)2
.

(iii) L{ sin
√

t}

We now show how L{sin
√

t} = Y(s) can be found from the differential equation
satisfied by the function sin

√
t , and how in this case a different form of argument

from the one used in (ii) must be employed to determine the constant of integration
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in the expression for Y(s). It is easily seen that y(t) = sin
√

t is a solution of

4t
d2 y
dt2

+ 2
dy
dt

+ y = 0,

and clearly y(0) = 0. WritingL{y(t)} = Y(s), transforming the equation using result
(iii) of Theorem 7.16, and incorporating the initial condition y(0) = 0 leads to the
following first order differential equation for Y(s):

dY
ds

=
(

1 − 6s
4s2

)
Y.

Integration of this variables separable equation gives

Y(s) = Cs−3/2 exp[−1/(4s)],

so it only remains to determine the value of the constant C.
In this case the initial value theorem is of no help in determining C, so to

accomplish this we return to the definition of the Laplace transform:

L{sin
√

t} = Y(s) =
∫ ∞

0
e−st sin

√
tdt.

The intuitive argument we now use can be made rigorous, but as the details of
its justification are not appropriate here, they will be omitted. Inspection of the
integrand shows that as | sin

√
t | ≤ 1 for all t , when s is large and positive the expo-

nential function will only be significant close to the origin where the function sin
√

t
can be approximated by

√
t . So for large s the integral can be approximated by

L{sin
√

t} ≈
∫ ∞

0
e−st t1/2dt,

= �(3/2)
s3/2

=
√

π

2s3/2
,

where entry 4 of Table 7.1 has been used together with the result �(3/2) =
1
2�(1/2) = 1

2

√
π that will be proved later in Section 8.5 of Chapter 8.

Comparing the original expression for Y(s) when s is large with this last result
gives C = 1

2

√
π , so

L{sin
√

t} =
√

π

2s3/2
exp[−1/(4s)], for s > 0.

This form of argument used to determine the behavior of the integral as s → ∞,
where the approximation approaches arbitrarily close to the exact value as s in-
creases, is called an asymptotic argument (see, for example, reference [3.3]).

(e) Two-Point Boundary Value Problems:
Bending of Beams

boundary value
problems and the
bending of beams

The Laplace transform is ideally suited to the solution of initial value problems
because of the way the initial values of a function enter into the Laplace transform
of its derivatives. It can, however, also be used to solve certain types of two-point
boundary value problems, as we now show. It will be helpful to use a simple physical
example to illustrate the method of approach, so we will consider the case of a
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FIGURE 7.25 Clamped beam supporting a point load.

uniform horizontal beam of mass M and length a that is clamped at each end and
supports a point load Q at a distance 2a/3 from one end, as illustrated in Fig. 7.25.

The beam equation was introduced in Section 5.2(f) and is

EI
d4 y
dx4

= w(x).

Here x is measured along the axis of the undeflected beam, y(x) is the vertical
deflection, E is the Young’s modulus of the material of the beam, I is the second
moment of the area of the beam about an axis normal to the x- and y-axes, and w(x)
is the transverse load per unit length of the beam, which in this case is an isolated
point mass Q located at x = 2a/3. The boundary conditions for a clamped beam
are

y(0) = y′(0) = 0 and y(a) = y′(a) = 0,

because neither deflection nor bending can occur at the ends, so both y(x) and y′(x)
vanish at x = 0 and x = a.

The function w(x) can be expressed as

w(x) = M
a

+ Qδ(x − 2a/3), for 0 ≤ x ≤ a,

where the point load Q is represented by the delta function that only makes a
contribution at x = 2a/3.

Transforming the equation, setting L{y(x)} = Y(s), and this time writing x in
place of t , because it is conventional to denote a length by x, we find

EI [s4Y(s) − s3 y(0) − s2 y′(0) − sy′′(0) − y′′′(0)] = L{w(x)}.
However,

L{w(x)} = M
as

+ Qe−2as/3,

so using this in the preceding equation, incorporating the two known initial condi-
tions y(0) = y′(0) = 0, and rearranging terms, we find that

Y(s) = M
aEI

1
s5

+ Q
EI

e−2as/3

s4
+ 1

s3
y′′(0) + 1

s4
y′′′(0).

Taking the inverse Laplace transform of this expression gives

y(x) = M
24aEI

x4 + Q
6EI

(x − 2a/3)3 H(x − 2a/3) + 1
2

x2 y′′(0) + 1
6

x3 y′′′(0).
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We must now solve for the unknown initial conditions y′′(0) and y′′′(0) by
requiring this expression to satisfy the two remaining boundary conditions at x = a,
namely, y(a) = y′(a) = 0. The condition y(a) = 0 gives

0 = Ma
4EI

+ Qa
27EI

+ 3y′′(0) + ay′′′(0),

and the condition y′(a) = 0 gives

0 = Ma2

6EI
+ Q

18EI
+ y′′(0) + 1

2
ay′′′(0),

so solving for y′′(0) and y′′′(0), we obtain

y′′(0) = a
108EI

(9M + 8Q) and y′′′(0) = − 1
54EI

(27M + 14Q).

The required solution is then given by

y(x) = M
24aEI

x4 + Q
6EI

(x − 2a/3)3 H(x − 2a/3) + a
216EI

(9M + 8Q)x2

− 1
324EI

(27M + 14Q),

for 0 ≤ x ≤ a.
This same form of approach can be used for other two-point boundary value

problems, but its success depends on the ability to solve for the unknown initial
values in terms of the given boundary conditions.

(f) An Application of the Laplace Transform
to the Heat Equation
The Laplace transform can also be used to solve certain types of partial differential
equation, involving two or more independent variables. Although the solution of
partial differential equations (PDEs) forms the topic of Chapter 18, it will be in-
structive at this early stage to introduce a simple example that illustrates how the
transform can be used for this purpose, and the way the result of Section 7.3d(i)
enters into the solution.

The one-dimensional heat equation is the partial differential equationa first encounter with
a partial differential
equation: the heat
equation

1
κ

∂T
∂t

= ∂2T
∂x2

,

where T(x, t) is the temperature in a one-dimensional heat-conducting solid at
position x at time t , and κ is a constant that describes the thermal conductivity
property of the solid. This is a partial differential equation because it is a differential
equation that involves the partial derivatives of the dependent variable T(x, t). The
physical situation modeled by this equation can be considered to be a semi-infinite
slab of metal with a plane face on which the origin of the x-axis is located, with the
positive half of the axis directed into the slab. This situation is illustrated in Fig. 7.26.

We will consider the situation where for t < 0 all of the metal in the slab is at
the temperature T = 0 and then, at time t = 0, the plane face of the slab is suddenly
brought up to and maintained at the constant temperature T = T0. The problem is
to find the temperature inside the slab on any plane x = constant at any time t > 0,
knowing that physically the temperature must remain finite for all x > 0 and t > 0.
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FIGURE 7.26 A semi-infinite metal slab.

The approach will be to take the Laplace transform of the dependent variable
T(x, t) in the heat equation with respect to the time t , as a result of which an
ordinary differential equation with x as its independent variable will be obtained
for the transformed variable that will then depend on both the Laplace transform
variable s and x. After this ordinary differential equation has been solved for the
transformed variable, the inverse Laplace transform will be used to recover the
time variation, and so to arrive at the required solution as a function of x and t .

Before proceeding with this approach we notice first that if the Laplace trans-
form is applied to the independent variable t in the function of two variables T(x, t),
the variable x will behave like a constant. Consequently, the rules for transforming
derivatives of functions of a single independent variable also apply to a function of
two independent variables. So, using the notation T(x, s) = tL{T(x, t)} to denote
the Laplace transform of T(x, t) with respect to the time t , it follows directly from
the formula for the transform of a derivative in (9a) that

tL{∂T(x, t)} = sT(x, s) − T(x, 0).

To proceed further we must now use the condition that at time t = 0 the material
of the slab is at zero temperature, so T(x, 0) = 0, as a result of which

tL{∂T(x, t)/∂t} = sT(x, s).

Next, as x is regarded as a constant, we have

tL{∂2T(x, t)/∂x2} = ∂2T(x, s)
∂x2

.

Using these results when taking the Laplace transform of the heat equation
with respect to t , and making use of the linearity property of the transform, gives

sT(x, s) = κ
d2T(x, s)

dx2
,

where we now use an ordinary derivative with respect to x because in this differential
equation s appears as a parameter so x can be considered to be the only independent
variable. When the differential equation is written

T ′′ − s
κ

T = 0,

using a prime to denote a derivative with respect to x, it is seen to have the general
solution

T(x, s) = Aexp
[√

s
κ

x
]

+ Bexp
[
−
√

s
κ

x
]
.
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As a Laplace transform must vanish in the limit s → +∞, we must set A= 0,
so the Laplace transform of the temperature is seen to be given by

T(x, s) = Bexp
[
−
√

s
κ

x
]
.

In this case, the rejection of the term with the positive exponent in the general
solution for T(x, s) corresponds to the physical requirement that the temperature
remain finite for x > 0 and t > 0.

To determine B we now make use of the boundary condition on the plane face
of the slab that requires T(0, t) = T0, from which it follows that tL{T(0, t)} = T0/s.
Thus, the Laplace transform of the solution with respect to the time t is seen to be

T(x, s) = T0

s
exp

[
−
√

s
κ

x
]
.

To recover the time variation from this Laplace transform it is necessary to find
tL−1{T(x, s)}. As T(x, s) is not the Laplace transform of an elementary function
listed in our table of transform pairs, the solution T(x, t) must be found by means
of the Laplace inversion integral. In Chapter 16 on the Laplace inversion integral,
it is shown in Example 16.6 that

tL−1{e−k
√

s} = k

2
√

π t3
exp

{
−k2

4t

}
.

So, setting k = x/κ2 in this result and using it with Theorem 7.11 to invert the
Laplace transform T(x, s) shows that the solution is

T(x, t) = T0 erfc
{

x

2
√

κt

}
, for x > 0, t > 0.

The use of integral transforms is discussed in reference [4.4].

Summary The Laplace transform has been applied to systems of differential equations, and the results
extended to systems in matrix form. Various applications have been made to some useful
variable coefficient ordinary differential equations, and to the important partial differential
equation that describes one-dimensional unsteady heat flow.

EXERCISES 7.3

(a) Exercises involving systems of equations

1. Solve

x′ + 5x − 2y = 1 and y′ − 5x + 2y = 3

given x(0) = 0, y(0) = 2.

2. Solve

x′ − x − y = cos t and y′ + x + y = cos t

given x(0) = 1, y(0) = 1.

3. Solve

x′ + x + y = 2 and y′ + x − y = 1

given x(0) = −1, y(0) = 1.

4. Solve

x′ + x + 2y = e−t and y′ + 2x + y = 1 given

x(0) = 0, y(0) = 0.

5. Solve

x′ − x + 3y = 1 + t and y′ + x − y = 2 given

x(0) = 2, y(0) = −2.
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6. Solve

x′ + x + y = sin 2t and y′ + x − y = 1 given

x(0) = 0, y(0) = 0.

7. Solve

x′ + x − z = 1, y′ − x + y = 1, z′ + y − x = 0,

given that x(0) = 1, y(0) = 0, z(0) = 1.

8. Solve

x′ + x − y = 1, y′ − y + 2z = 0, z′ + x − y = sin t,

given x(0) = 1, y(0) = 0, z(0) = 2.

9. Solve

x′ − z = et , y′ − z = 2, z′ − x = 1, given x(0) = 0,

y(0) = 1, z(0) = 0.

10. Solve

x′ + z = 3, y′ + x = 1, z′ − x = sin t, given

x(0) = 1, y(0) = 0, z(0) = 1.

(b) Exercises involving etA

In Exercises 11 through 24 find etA for the given matrix A.

11. A =
[

1 3
1 −1

]
.

12. A =
[−2 4

3 2

]
.

13. A =
[

3 6
2 −1

]
.

14. A =
[

3 7
3 −1

]
.

15. A =
[

4 −5
4 0

]
.

16. A =
[

3 4
3 −1

]
.

17. A =
[

2 −4
1 2

]
.

18. A =
[−2 3

5 0

]
.

19. A =
[

6 −1
0 6

]
.

20. A =
[

2 3
0 4

]
.

21. A =
[−2 4

0 −2

]
.

22. A =
[

1 4
3 0

]
.

23. A=
⎡⎣5 10 7

0 −1 −1
0 2 2

⎤⎦.

24. A =
⎡⎣1 0 0

1 3 2
1 2 3

⎤⎦.

(c) Exercises involving the weighting function

In Exercises 26 through 32 find the weighting function when
a single equation is involved, and the four weighting func-
tions when a pair of equations is involved. Use the weighting
function(s) to solve the given differential equation(s).

25. Show that if the initial conditions for equation (24) are
y(0) = y0, y′(0) = y1, . . . , y(n−1) = yn−1, the solution

can be written in the form

y(t) =
∫ t

0
w(τ )[y0(t − τ ) − h(t − τ )]dτ.

Here y0(t) is the solution of the equation with the ini-
tial conditions y(0) = y′(0) = · · · = y(n−1)(0) = 0, and
h(t) = {H(s)/G(s)}, with H(s) the polynomial pro-
duced by the nonvanishing initial values of the deriva-
tives, so that the transformed equation corresponding
to (26) becomes

G(s)Y(s) + H(s) = F(s).

26. y′′ − 4y′ + 3y = cos t , given y(0) = 0 and y′(0) = 0.
27. y′′ + 2y′ + 2y = e2t , given y(0) = 0 and y′(0) = 0.
28. y′′ + 4y′ + 13y = cos 2t , given y(0) = 0 and y′(0) = 0.
29. y′′ + 6y′ + 5y = e−t , given y(0) = 0 and y′(0) = 0.
30. Use the result of Exercise 25 to solve

y′′ − 2y′ − 3y = 1 + sin t, given y(0) = 1

and y′(0) = −1.

31. x′ − 3x + 2y = e−t , y′ + 3x − 4y = 3, with x(0) =
y(0) = 0.

32. x′ + 2x − y = sin t, y′ − 2x + y = 2, with x(0) =
y(0) = 0.

(d) Differential equations with polynomial
coefficients

33. Use the fact that y(x) = sin ax satisfies the differential
equation

y′′ + a2 y = 0 with y(0) = 0, y′(0) = a

to derive L{sin ax} from the differential equation.
34. Use the fact that y(x) = 1 − cos ax satisfies the differ-

ential equation

y′′ + a2 y = a2 with y(0) = 0, y′(0) = 0

to derive L{1 − cos ax} from the differential equation.
35.* The Laguerre equation

xy′′ + (1 − x)y′ + ny = 0,

with n = 0, 1, 2, . . . a parameter, has polynomial
solutions y(x) = Ln(x) called Laguerre polynomials.
These polynomials are used in many branches of math-
ematics and physics, and also in connection with nu-
merical integration. By taking the Laplace transform
of the differential equation find L{Ln(x)} and hence
show that

L4(x) = 24 − 96x + 72x2 − 16x3 + x4.

36.* The Hermite equation

y′′ − 2xy′ + 2ny = 0,
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with n = 0, 1, 2, . . . a parameter, has polynomial solu-
tions y(x) = Hn(x) called Hermite polynomials. Like
the Laguerre polynomials, these polynomials are also
used in mathematics and physics, and in connection
with numerical integration. By transforming the equa-
tion and using the initial conditions y(0) = H4(0) = 12
and y′(0) = 0, find L{H4(x)}, and hence show that

H4(x) = 16x4 − 48x2 + 12.

37.* The Bessel function y(x) = J0(ax) satisfies the differ-
ential equation

xy′′ + y′ + axy = 0

subject to the initial conditions y(0) = J0(0) = 0. De-
rive L{J0(ax)} from the differential equation and con-
firm the result by usingL{J0(x)} = 1/(s2 + 1)1/2 in con-
junction with the scaling theorem.

38.* The Bessel function y(x) = J1(x) satisfies the differ-
ential equation

x2 y′′ + xy′ + (x2 − 1)y = 0 with J1(0) = 0 and

J1
′(0) = 1/2.

By taking the Laplace transform of the differential
equation show that L{J1(x)} = C{1 − s/(s2 + 1)1/2},
and deduce that C = 1.

(e) Exercises involving two-point boundary
value problems

39. Solve x′′ + x = sin 2t with x(0) = 0 and x(π/2) = 1.
40. Using the notation of Section 7.3(e), solve the beam

equation

EI
d4 y
dx4

= w(x)

for the uniform cantilevered beam of mass M and
length a shown in Fig. 7.27, where a point mass Q is
located at a distance a/3 from the clamped end. The
boundary conditions to be used are

y(0) = y′(0) = 0 and y′′(a) = y′′′(a) = 0.

Q

0

a/3

a

0

y

x

FIGURE 7.27 Cantilevered beam with a point load.

41. Using the notation of Section 7.3(e), solve the beam
equation

EI
d4 y
dx4

= w(x)

for the uniform beam of mass M and length a with
clamped ends shown in Fig. 7.28, where a point mass
Q is located at a distance 3a/4 from the left-hand end.
The boundary conditions to be used are

y(0) = y′(0) = 0 and y(a) = y′(a) = 0.

Q

0

y

3a/4

xa

FIGURE 7.28 Supported beam with clamped ends
and a point load.

42. Using the notation of Section 7.3(e), solve the beam
equation

EI
d4 y
dx4

= w(x)

for the uniform beam of mass M and length a shown in
Fig. 7.29 that is clamped at the end x = 0 and supported
at the end x = a, where a point mass Q is located at a
distance a/4 from the right-hand end. The boundary
conditions to be used are

y(0) = y′(0) = 0 and y(a) = y′′(a) = 0.

Q

0

y

3a/4

x

a

FIGURE 7.29 Beam clamped at one end and supported
at the other with a point load.

( f) Physical problems to be solved
by computer algebra

43. In an R–L–C circuit the current i(t) and charge q(t)
resulting from a constant voltage E0 applied at time
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t = 0, when i(0) = 0 and q(0) = 0, are determined by
the equations

L
di
dt

+ Ri + q
C

= E0 and i = dq
dt

.

Find i(t), and comment on its form depending on
the sign of R2C − 4L. Choose representative values of
R, L, C corresponding to each of the foregoing cases
and plot i(t) in a suitable interval 0 ≤ t ≤ T.

44. Figure 6.10 in Section 6.3 illustrates three particles of
equal mass joined by identical springs that oscillate in
a straight line, with each end of the system clamped.
In a representative case, the nondimensional equations
determining the magnitudes of the displacements y1(t),
y2(t), and y3(t) are

3
d2 y1

dt2
= y2 − 2y1 + y3, 3

d2 y2

dt2
= y3 − 2y2 + y1,

3
d2 y3

dt2
= y1 − 2y3 + y2.

Find y1(t), y2(t), and y3(t) given that y1(0) = 1, y′
1(0) =

0, y2(0) = 2, y′
2(0) = 1, y3(0) = 3, y′

3(0) = 0.
45. If, similar to the example in Section 7.3(a), an irre-

versible reaction converts a molecule of chemical A into
a molecule of chemical D, via molecules of chemicals B
and C, the governing equations in terms of the respec-

tive reaction rates k1, k2, and k3 are

dx
dt

= −k1x,
dy
dt

= k1x − k2 y, and
dz
dt

= k2 y − k3z,

where x, y, and z are the number of molecules of A, B,
and C present at time t . If Q molecules of Aare present
at time t = 0, the number of molecules of D present at
time t is w(t) = Q − x(t) − y(t) − z(t). Find w(t)/Q as
a function of t given that k1 = 2, k2 = 3, and k3 = 3,
and plot the result for 0 ≤ t ≤ 5. Find the percentage of
chemical A that has been transformed into chemical D
at the instants of time t = 1, 2, and 3.

46. In the following nondimensional equations, x(t) and
y(t) represent the magnitudes of the currents flowing in
the primary and secondary windings of a transformer,
when initially x(0) = 0, y(0) = 0 and at time t = 0 the
primary winding is subjected to an exponentially decay-
ing voltage of magnitude e−t :

dx
dt

+ 1
3

dy
dt

+ 3x = e−t ,
dx
dt

+ 3
dy
dt

+ 9y = 0.

Find x(t) and y(t), and by plotting the magnitudes of
the currents show that x(t) is always positive and after
peaking decays to zero, while y(t) is initially negative,
but after becoming positive it decays to zero faster than
x(t).

7.4 The Transfer Function, Control Systems,
and Time Lags

The study of engineering systems of all types whose behavior is determined by
linear ordinary differential equations is often carried out by examining what is
called the system transfer function. Typically, a system is governed by a linear nth
order constant coefficient ordinary differential equation whose solution or output,
also called the response of the system, we will denote by u0(t) and whose forcing
function, or input, is a known function we will denote by ui (t), where t is the time.

A typical example of a simple system has already been encountered in Fig. 6.2,
where the spring-mounted and damped vibrating machine has an input F(t) and
an output y(t) that are related by

d2 y
dt2

+ a
dy
dt

+ by = F(t).

An nth order system may be governed by the equation

an
dnu0

dtn
+ an−1

dn−1u0

dtn−1
+ · · · + a0u0 = ui ,

which can be represented graphically as in Fig. 7.30, where F[.] is the differential
operator

F[.] ≡ an
dn

dtn
+ an−1

dn−1

dtn−1
+ · · · + a0. (34)
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F[ui(t)]
u0(t)ui(t)

FIGURE 7.30 Block-diagram representation of equation (34).

More generally, in linear systems the input itself may be the solution of another
linear differential equation, in which case the system relating the response u0(t) to
the input ui (t) becomes

an
dnu0

dtn
+ an−1

dn−1u0

dtn−1
+ · · · + a0u0 = bm

dmui

dtm
+ bm−1

dm−1ui

dtm−1
+ · · · b0ui , (35)

where n ≥ m and the coefficients ar and bs are constants.
The transfer function of a system is defined as the quotient of the Laplace trans-

forms of the system output and the system input, when all of the initial conditions
are taken to be zero. This last condition means that when the Laplace transform is
used to transform a differential equation we may set L{dr u/dtr } = srU(s). So, after
transforming (35), we obtain

(ansn + an−1sn−1 + · · · + a0)U0(s) = (bmsm + bm−1sm−1 + · · · b0)Ui (s), (36)

where U0(s) = L{u0(t)} and Ui (s) = L{ui (t)}. The transfer function G(s) = U0(s)/
Ui (s) becomes the rational function of the transform variable s

G(s) = bmsm + bm−1sm−1 + · · · b0

ansn + an−1sn−1 + · · · a0
. (37)

Let us now set G(s) = N(s)/D(s), where N(s) is the polynomial in s of degree
m in the numerator of G(s), and D(s) is the polynomial in s of degree n in the
denominator. The polynomial D(s) is called the characteristic polynomial of the
system, and D(s) = 0 is called the characteristic equation of the system. The order
of the system in (37) is the degree n of the polynomial D(s).

As the coefficients of D(s) are real, it follows that the roots of the characteristic
equation, called the poles of the transfer function G(s), either are all real or, if
complex, they must occur in complex conjugate pairs. When G(s) is expressed in
partial fraction form, this last observation implies that the system will be stable
provided all the roots of the characteristic equation have negative real parts. Here,
by stability, we mean that any bounded input to a system that is stable will result
in an output that is also bounded for all time, and this will be the case when every
root of D(s) = 0 has a negative real part. The requirement that n ≥ m imposed on
(35) is necessary in order to prevent unbounded behavior of the output caused by
the occurrence of delta functions.

It is important to recognize that systems describing quite different physical
phenomena can have the same transfer function, so transfer functions provide a
means of examining a class of similar systems independently of their physical ori-
gin. It follows that for any given input with Laplace transform Ui (s), the Laplace
transform of the output U0(s) is given by

U0(s) = G(s)Ui (s). (38)

The time variation of the output of the system then follows by taking the inverse
Laplace transform of (38).
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EXAMPLE 7.36 Find the transfer function of the system with input ui (t) and output u0(t) de-
scribed by

4
d2u0(t)

dt2
+ 16

du0(t)
dt

+ 25u0(t) = 3
dui (t)

dt
+ 2ui (t),

and show it is stable.

Solution Taking the Laplace transform of the governing equation and assuming
all initial conditions to be zero gives

(4s2 + 16s + 25)U0(s) = (3s + 2)Ui (s),

so the system transfer function is

G(s) = U0(s)
Ui (s)

= 3s + 2
4s2 + 16s + 25

.

The system is of order 2, and its characteristic equation is

4s2 + 16s + 25 = 0.

The characteristic equation has the roots s1 = −2 − 3
2 i and s2 = −2 + 3

2 i , so as their
real parts are negative, the system is stable.

Systems that compare the difference between an input and an output, and
attempt to reduce the difference to zero to make the output follow the input, are
called control systems. A typical example is a temperature control system for a
chemical reactor in which the temperature is required to remain constant, but where
as the reaction progresses heat is released at variable rates, causing cooling to
become necessary.

A simple control system is illustrated in Fig. 7.31, where F is the system differ-
ential equation. The idea here is that an input ui is compared with the output u0,
called the feedback, and the difference ε = ui − u0, called the error signal, is then
used as an input to system F . The result is that u0 = ui when ε = 0. It is often nec-
essary to modify the feedback by passing u0 through another system G with output
v = G[u0], and then to use the the difference v − ui to drive F . The reason for this
is to improve the overall performance of a system, whose physical characteristics
may be difficult to alter, by using an easily modified feedback to make the system
more responsive and to reduce any tendency it may have for excessive oscillation.

EXAMPLE 7.37 A steering mechanism for a small boat comprises an input heading θi from the helm,
an amplifier for the error signal, and a servomotor to drive the rudder with moment
of inertia I that produces a resisiting torque proportional to the rate of change of
the output angle θ0. Derive the differential equation governing the system and find
its transfer function given that the feedback is the unmodified output θ0.

F[ε(t)]
u0(t)

u0(t)

ε(t)ui
ε = ui − u0

FIGURE 7.31 A typical feedback control system.
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Solution If the resisting torque is kdθ0/dt and the amplifier increases the magni-
tude of the error signal by a factor K, the system can be represented as in Fig. 7.31
with the governing differential equation

I
d2θ0

dt2
+ k

dθ0

dt
= K(θi − θ0).

Taking the Laplace transform of this equation gives

(Is2 + ks + K)L{θ0} = L{θi },
and so

L{θ0} = 1
Is2 + ks + K

L{θi }.

This result shows that the transfer function G(s) = 1/(Is2 + ks + K), so the system
will be stable provided the roots of the characteristic equation Is2 + ks + K = 0
have negative real parts. This will be the case since I > 0 and K > 0, but the steering
will oscillate about the required heading if 4I K > k2.

As the design of the boat determines I and k, any improvement of the steering
response can only be obtained by using a modified feedback signal instead of the
direct feedback θ0.

We close this section by mentioning an important consequence of the intro-
duction of a delay into an equation governing the response of a system. Consider a
vibrating system characterized by y(t) in which instantaneous damping proportional
to the velocity dy/dt occurs with coefficient of proportionality a1, and where there
is also present an additional time retarded damping of a similar type but with a time
lag τ and a coefficient of proportionality a2. Then, when a springlike restoring effect
is present with constant of proportionality a3, the governing equation takes the form

d2 y(t)
dt2

+ a1
dy(t)

dt
+ a2

dy(t − τ )
dt

+ a3 y(t) = 0. (39)

Because of the presence of the time-delayed derivative dy(t − τ )/dt , an equation
of this type is called a differential-difference equation.

If we now seek a solution of this equation by using the Laplace transform (or
by seeking solutions of the form y(t) = Aexp(λt), where Aand λ are constants) we
arrive at a characteristic equation of the form

s2 + a1s + a2s exp(−τ s) + a3 = 0. (40)

This is called an exponential polynomial in s, and its root will determine both the
stability and response of the system.

Without going into detail, by using Rouche’s theorem from complex analysis
it is not difficult to prove that exponential polynomials have an infinite number
of zeros. Consequently, the response of a system with a characteristic polynomial
in the form of an exponential polynomial will only be stable if all of its zeros
have negative real parts, and this can only be shown analytically. Methods exist
that can be used to determine when all the zeros of such exponential polynomials
have negative real parts. An interested reader will find a valuable discussion of
this subject in Section 13 of Differential-Difference Equations by R. Bellman and
K. Cooke, published by Academic Press in 1963.

It is necessary to ask in what way the infinite number of zeros of an exponential
polynomial of degree n approximate the n zeros of the ordinary polynomial of
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degree n when time lags are absent. This is a simpler question, and it can be answered
by appeal to Hurwitz’s theorem from complex analysis, though again the arguments
used go beyond this first account of the subject.

A result on exponential polynomials

Let Pτ (s) be an exponential polynomial of degree n in s with a time lag τ , and
let P0(s) be the corresponding constant coefficient polynomial when τ = 0. Then,
as τ → 0, so each of the n zeros si of P0(s) is approached arbitrarily closely by a
number of zeros of Pτ (s) equal in number to its multiplicity, and the remaining
infinite number of zeros of Pτ (s) can be made to lie outside a circle of arbitrarily
large radius centered on the origin.

As this result says nothing about how the zeros move as τ → 0, it is possible
for the system to be stable when τ lies in certain intervals and unstable otherwise.

EXERCISES 7.4

1. Find the transfer function for each of the following
systems. Determine the order of each system and find
which is stable.

(a)
d3u0

dt3
+ 3

d2u0

dt2
+ 16

du0

dt
− 20u0

= 2
d2ui

dt2
+ dui

dt
− 6ui .

(b)
d3u0

dt3
+ 4

d2u0

dt2
+ 14

du0

dt
+ 20u0

= 6
d2ui

dt2
− 13

dui

dt
+ 6ui .

(c) 9
d2u0

dt2
+ 6

du0

dt
+ 10u0 = 6

d2ui

dt2
+ 5

dui

dt
− 6ui .

2.* For safety reasons, a control system is often duplicated,
with the sensors for each system located in different po-
sitions, and in such cases the possibility of interaction
between the control systems must be considered. A typ-
ical case is illustrated in Fig. 7.32, where two identical
control systems are shown between which there is as-
sumed to be linear cross-coupling of the error signals.
This means that the respective actuating error signals
are ε′

1 = a11ε1 + a12ε2 and ε′
2 = a21ε1 + a22ε2, with the

coefficients ai j constants. Derive and discuss the equa-
tions governing the response of the system when

F(u0) = d2u0

dt2
+ 2ζ�

du0

dt
+ �2u0,

with ζ > 0 and � > 0.

u01(t)

u01(t)

ε1 = ui1 − u01 ε'1(t)ui1(t)
−

F[ε'2(t)]

F[ε'1(t)]

u02(t)

u02(t)

ε2 = ui2 − u02 ε'2(t)ui2(t)
− E

rr
or

 s
ig

na
l c

ro
ss
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ou

pl
in

g

FIGURE 7.32 Two interacting control systems.
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CHAPTER 7

TECHNOLOGY PROJECTS

The purpose of these projects is to use a computer algebra differential equation solver to find the
analytical solutions of initial value problems involving linear constant coefficient differential equations,
some of which contain either the Dirac delta function or the Heaviside step function. As all the initial
conditions are given at t = 0, the Laplace transform can also be used to solve these problems.

Project 1

Solving a Third Order Initial Value Problem

Use a computer algebra Laplace solver to solve the
initial value problem

x′′′ + 2x′′ x′ 2x = e t sin t, with x(0) = 1,

x′(0) = 1, and x′′(0) = 0.

Verify the result by using computer algebra (a) to
take the Laplace transform of the equation, (b) to
find the Laplace transform X(s) of the solution, and
(c) to invert the transform to find x(t).

Project 2

Solving an Equation with the Heaviside Step
Function in the Nonhomogeneous Term

Use a computer algebra Laplace solver to solve the
initial value problem

x′′ + 3x′ + 2x = {H(t 1) H(t 2)}t,
with x(0) = 1, x′(0) = 1.

Verify the result by using computer algebra (a) to take
the Laplace transform of the equation, (b) to find the
Laplace transform X(s) of the solution, and (c) to
invert the transform to find x(t). Plot the solution for
0 ≤ t ≤ 6.

Project 3

Solving an Equation with the Dirac Delta
Function in the Nonhomogeneous Term

Use a computer algebra Laplace solver to solve the
initial value problem

x′′ + 3x′ + 2x = 3e t + δ(t 2), with x(0) = 1,

x′(0) = 2.

Verify the result by using computer algebra (a) to

take the Laplace transform of the equation, (b) to
find the Laplace transform X(s) of the solution, and
(c) to invert the transform to find x(t).

Project 4

Solving a System

Solve the initial value problem for the system

dx
dt

= x(t) + 2y(t) + 3,
dy
dt

= 1 x(t) + y(t),

with x(0) = 1, y(0) = 0.

Verify the result by using computer algebra (a) to
take the Laplace transform of the system, (b) to solve
for the Laplace transforms X(s) and Y(s) of x(t) and
y(t), and then (c) to invert the transforms to find x(t)
and y(t).

Project 5

Examining the Properties of a Spring
Damper System

In an experiment, a wheel of mass M is mounted ver-
tically below a rigid plate to which it is attached by a
spring with spring constant k and a damper whose re-
sisting force is μ times the speed of its displacement. If
at time t the vertical displacement of the wheel from
its equilibrium position is x(t), and a force F(t) is ap-
plied to the wheel, its equation of motion is

M
d2x
dt2

+ μ
dx
dt

+ kx = F(t).

Set � = (k/M)1/2, = μ

2
√

kM
, and assume the wheel

is initially at rest, so that x(0) = 0 and (dx/dt)t=0 =
0. If a constant load F(t) = F0 is suddenly applied
to the wheel at the time t = 0, find an expression
for x(t)k/F0. Plot this expression for several values
of in the interval 0 < < 2 and comment on the
results.

442



8C H A P T E R

Series Solutions of Differential
Equations, Special Functions,
and Sturm–Liouville Equations

Linear second order variable coefficient equations arise in many applications, but only in
a few special cases is it possible to express their general solution of a finite linear com-

bination of elementary functions. As analytical, rather than purely numerical, information
about solutions is often essential, some other way must be found to represent the solutions
of such equations. The approach developed in this chapter involves seeking solutions of
certain types of equation in the form of power series, and in other cases using an approach
due to Frobenius that involves seeking solutions in the form of power series multiplied
by a factor xc, where c is not an integer. Applications are made to a number of typical
linear variable coefficient equations, and then to the important Legendre, Chebyshev, and
Bessel equations that lead in turn to Legendre and Chebyshev polynomials and to Bessel
functions.

Two-point boundary value problems, called Sturm–Liouville systems, that are defined
over an interval a ≤ x ≤ b and contain a parameter λ are introduced. It is shown that their
solutions only exist for an infinite number of special values of the parameter λ1, λ2, . . . ,
called the eigenvalues of the problem. Each solution ϕn(x) corresponding to an eigenvalue
λn is called an eigenfunction, and the eigenfunctions are shown to have the special property
of orthogonality with respect to a function w(x) called the weight function. This means
that if the set of eigenfunctions is {ϕn(x)}∞

n=1, the integral
∫ b

a ϕm(x)ϕn(x)w(x)dx is positive
when n = m and zero when n �= m. This property will be used extensively in Chapter 18
when solving partial differential equations.

Fundamental properties of eigenfunctions and eigenvalues are established for general
Sturm–Liouville systems, after which a number of frequently occurring and important
special cases are examined.

8.1 A First Approach to Power Series Solutions
of Differential Equations

The solutions of many differential equations can be expressed in terms of ele-
mentary functions such as sine, cosine, exponential, and logarithm, all of whose

mathematical properties are well known. When required, the analytical behavior
of solutions that involve elementary functions can be explored by making use of

443
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their familiar properties. Numerical solutions are obtained easily, either by using a
pocket calculator to find the values of the elementary functions involved, or through
the use of standard subroutines that form a part of all basic mathematical software
packages. With either a pocket calculator or a software package, the method of
calculating functional values is usually based on a series expansion of the function
concerned.

Most differential equations cannot be solved in terms of elementary functions,
yet some form of analytical solution is often needed rather than a purely numerical
one, so the fundamental question that then arises is how to obtain a solution in the
form of a series, when only the differential equation is known. It is the purpose
of this chapter to answer this question, and in the process to show how the form
of series solution obtained depends on what are called the singular points of the
differential equation.

We begin our approach to this problem by showing how series solutions can be
found for first and second order linear differential equations with initial conditions
specified at x = x0. The series we obtain will be in powers of x − x0, and they will be
said to be expanded about the point x0. The first order linear differential equation
will be assumed to be of the form

y′ + p(x)y = r(x) with y(x0) = y0, (1)

and the second order linear differential equation will be assumed to be of the form

y′′ + P(x)y′ + Q(x)y = R(x) with y(x0) = y0, y′(x0) = y1, (2)

where the functions p(x), r(x), P(x), Q(x), and R(x) can all be expanded as Taylor
series about the point x0.

Functions with this property are said to be analytic in a neighborhood of theanalytic in a
neighborhood point x0 or, more simply, to be analytic at x0. The method to be developed will be

seen to be capable of extension to a higher order linear differential equation in an
obvious manner, provided only that the coefficients of y and its derivatives that are
involved and the nonhomogeneous term are analytic at x0.

The approach is best illustrated by considering equation (1), and seeking a
solution about x0 of the formhow to find a power

series solution

y(x) = y(x0) + (x − x0)y′(x0) + (x − x0)2

2!
y′′(x0) + (x − x0)3

3!
y′′′(x0) + · · ·

=
∞∑

n=0

(x − x0)n

n!
y(n)(x0), with y(n)(x) = dn y/dxn.

(3)

Setting x = x0 in (1) gives

y(1)(x0) + p(x0)y(x0) = r(x0),

but y(x0) = y0, so

y(1)(x0) = r(x0) − p(x0)y(x0)

= r(x0) − p(x0)y0.
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To determine y(2)(x) we differentiate equation (1) once with respect to x to obtain

y(2)(x) + p(1)(x)y(x) + p(x)y(1)(x) = r (1)(x),

where p(1)(x) = p′(x) and r (1)(x) = r ′(x). Then, after setting x = x0 and using the
fact that y(1)(x0) = r(x0) − p(x0)y0, we find that

y(2)(x0) = r (1)(x0) − p(1)(x0)y0 − p(x0)[r(x0) − p(x0)y0].

Higher order derivatives y(n)(x0) can be computed in similar fashion by re-
peated differentiation of the original differential equation coupled with the use
of lower order derivatives that have already been determined. Once the values of
y(k)(x0) have been found for k = 1, 2, . . . , N, for some given integer N, substitution
into series (3) provides the required approximation to the power series solution of
the initial value problem for the differential equation up to terms of order (x − x0)N.
The existence and uniqueness of the solution are guaranteed by Theorem 5.2.

This method generates the Taylor series expansion of y(x) about the point x0

when x0 �= 0, and its Maclaurin series expansion when x0 = 0, though these series
are often simply called power series about x0 �= 0 and x0 = 0, respectively.

EXAMPLE 8.1 Find the first five terms in the series solution of

y′ + (1 + x2)y = sin x, with y(0) = a.

Solution As the initial condition is specified at x = 0, the power series solution is
an expansion about the origin and so is, in fact, a Maclaurin series. The functions
1 + x2 and cos x are analytic for all x, so the series expansion can certainly be found
about the origin.

Setting x = 0 in the equation and substituting for the initial conditions shows
that y′(0) = y(1)(0) = −a. Differentiation of the differential equation gives

y(2) + 2xy + (1 + x2)y(1) = cos x,

where y(2) = y′′, so setting x = 0 this becomes

y(2)(0) + y(1)(0) = 1,

but y(1)(0) = −a and so y(2)(0) = 1 + a. Repeating this process to find higher order
derivatives leads to the results y(3)(0) = −(1 + 3a), y(4)(0) = 9a, . . . . Substituting
these results into series (3) shows that, to terms of order x4, the required solution
takes the form

y(x) = a − ax + (1 + a)
x2

2!
− (1 + 3a)

x3

3!
+ 9a

x4

4!
+ · · · .

EXAMPLE 8.2 Find the first five terms in the series solution of

y′ + 4xy = 3ex−1, with y(1) = 1.

Solution In this case the functions x and ex−1 are analytic for all x, but as the
expansion is about x = 1, the power series solution that is obtained will be a Taylor
series expansion about the point x = 1. Setting x = 1 in the differential equation
and using the initial condition y(1) = 1 shows that y(1)(1) = −1.
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Differentiation of the differential equation gives

y(2) + 4y + 4xy(1) = 3ex−1,

so setting x = 1 and using the result y(1)(1) = −1 shows that y(2)(1) = 3.
Repeating this process leads to the results that y(3)(1) = −1 and y(4)(1) = −29,

so substituting into (3) shows that the Taylor series expansion of the solution up to
terms of order (x − 1)4 is

y(x) = 1 − (x − 1) + 3
2

(x − 1)2 − 1
6

(x − 1)3 − 29
24

(x − 1)4 + · · · .

This same method can be applied to a second order equation of the type shown
in (2), though a more general approach will be developed later to deal with the case
in which the first term is of the form a(x)y′′(x), and the expansion is about a point
x0 where a(x0) = 0.

EXAMPLE 8.3 Find the terms up to x5 in the series solution of

y′′ + xy′ + (1 − x2)y = x with y(0) = a, y′(0) = b.

Solution The coefficients x and (1 − x2) and the nonhomogeneous term x are
analytic for all x, so as the initial data is given at x = 0, a Maclaurin series solution
can be found.

Setting x = 0 in the equation and using the initial conditions y(0) = a and
y′(0) = b gives y(2)(0) = −a. Differentiating the differential equation we have

y(3) + y(1) + xy(2) − 2xy + (1 − x2)y(1) = 1,

so setting x = 0 and using the results y(2)(0) = −a and y(1)(0) = b shows that
y(3)(0) = 1 − 2b. A repetition of this process leads to the results y(4)(0) = 5a,

y(5)(0) = 14b − 4, . . . , so substituting into (3) shows that to terms of order x5 the
Maclaurin series expansion of the solution is

y(x) = a + bx − 1
2

ax2 +
(

1 − 2b
6

)
x3 + 5a

24
x4 +

(
7b − 2

60

)
x5 + · · · .

Summary Often a variable coefficient equation cannot be solved in terms of known functions, though
some form of analytical solution is still required. This section has shown how to overcome
this difficulty in some cases by finding a solution in terms of a power series expanded
about a point of interest x = a. The method was seen to work provided the functions in
the equation have Taylor series expansions about x = a. It will be shown later how to find
series solutions in a systematic manner, and also how to generalize this approach to other
types of equation.

EXERCISES 8.1

Find the first five terms in the power series solution of the
following initial value problems.

1. y′ + (1 + x2)y = x2, with y(0) = 1.

2. 2y′ + xy = 1 − x, with y(0) = 2.

3. y′ + (1 − 2x)y = x, with y(0) = −1.

4. 4y′ + (1 + x + x2)y = x, with y(0) = 3.

5. y′ + (x − 2x2)y = 1, with y(0) = 1.

6. y′ − 2xy = 1 − x, with y(0) = 2.

7. 3y′ + (1 − x2)y = 1, with y(0) = 2.

8. y′ + (1 + x)y = 1 + x2, with y(0) = 1.

9. y′′ − 2xy′ + x2 y = 0, with y(0) = a, y′(0) = b.

10. 2y′′ + 2(1 + x)y′ − y = 0, with y(0) = a, y′(0) = b.
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11. (1 + x2)y′′ + 3xy′ + (1 − x2)y = 1 + x, with y(0) = a,

y′(0) = b.

12. (1 + 3x2)y′′ + 2xy′ + 2xy = 1, with y(0) = a, y′(0) = b.

13. y′′ + 7y′ + x2 y = 0, with y(0) = a, y′(0) = b.

14. xy′′ + (1 + x)y′ + xy = b, with y(0) = a, y′(0) = 0.

15. 2y′′ + 3x2 y′ + (1 − x2)y = 2x, with y(0) = a, y′(0) = b.

16. 3y′′ + 2xy′ + (1 − 2x2)y = 1 + 2x, with y(0) = a,

y′(0) = b.

8.2 A General Approach to Power Series
Solutions of Homogeneous Equations

The method developed in Section 8.1 works satisfactorily if only the first few terms
in a power series solution are required, but it has the disadvantage that a separate
calculation is required each time a coefficient is determined. The present section
shows how in many cases this difficulty can be overcome by introducing a systematic
and simple way of generating arbitrarily many terms in a power series solution of
the homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0 (4)

about a point x0, when a(x), b(x), and c(x) are polynomials with a(x0) �= 0.
The approach enables the coefficients of the power series solution to be deter-

mined by means of a recurrence relation that relates a few consecutive coefficients
in the series. This has the advantage that once the first few coefficients in the series
expansion have been found, the rest can be generated by means of the recurrence
relation.

There will be no loss of generality if the approach is based on an expansion
about the origin, because if one is required about an arbitrary point x = x0, the
change of variable X = x − x0 will shift the point x = x0 to X = 0. For example,
suppose a solution of

y′′ + (2 + 3x)y′ + x2 y = 0

is required about the point x = 1, corresponding to the specification of the initial
conditions for y(1) and y′(1) at x = 1. Setting X = x − 1 and y(x) = Y(x − 1) =
Y(X), it follows that y(1) = Y(0), dy/dx = dY/dX, d2 y/dx2 = d2Y/dX2, and x =
X+ 1, so in terms of the new variables X and Y the equation and initial conditions
become

Y ′′ + (5 + 3X)Y ′ + (1 + X)2Y = 0, with Y(0) = y(1), Y ′(0) = y′(1).

Setting X = x − 1 in the power series solution of this equation expanded about
X = 0 reduces it to the solution of the original equation expanded about x = 1.

The approach we now describe involves seeking a solution in the form of a
general power series

y(x) =
∞∑

n=0

anxn (5)

and finding a relationship between the coefficients an by substituting (5) into the
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homogeneous differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0. (6)

We will assume that the coefficients a(x), b(x), and c(x) in the differential equation
are polynomials in x, and so are analytic at x = 0, and also that a(0) �= 0. If (5) is
to be a solution of (6), it must satisfy the differential equation for all x, but this will
only be possible if, after combining terms, the coefficient of each power of x in the
new power series is zero. It will be seen later that it is this last requirement that
leads to the determination of the coefficients an in terms of a recurrence relation.

Before illustrating the approach by means of an example, we first find expres-
sions for the derivatives y′(x) and y′′(x) that will be needed in the calculation.
Writing out the first few terms of y(x) in (5) gives

y(x) = a0 + a1x + a2x2 + a3x3 + · · · =
∞∑

n=0

anxn. (7)

Differentiating this expression term by term with respect to x, which is permitted
for x inside the interval of convergence of the series, we arrive at the result

y′(x) = a1 + 2a2x + 3a3x2 + · · · =
∞∑

n=1

nanxn−1, (8)

and after a further differentiation we have

y′′(x) = 2a2 + 2 · 3a3x + 3 · 4a4x2 + · · · =
∞∑

n=2

n(n − 1)anxn−2. (9)

In what is to follow it will be important to remember that the summation in (8)
starts at n = 1, whereas the summation in (9) starts at n = 2.

EXAMPLE 8.4 Find the recurrence relation that must be satisfied by coefficients in the series
solution of the differential equation

y′′ + 2xy′ + (1 + x2)y = 0

when the expansion is about the origin. Solve the initial value problem for this
differential equation given that y(0) = 3 and y′(0) = −1.

Solution Substituting y(x) = ∑∞
n=0 anxn into the differential equation and using

(8) and (9) gives

∞∑
n=2

n(n − 1)anxn−2 + 2x
∞∑

n=1

nanxn−1 + (1 + x2)
∞∑

n=0

anxn = 0.
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Taking the factor 2x in the second term and the factor x2 in the third term under
their respective summation signs allows the equation to be written in the form

∞∑
n=2

n(n − 1)anxn−2 +
∞∑

n=1

2nanxn +
∞∑

n=0

anxn +
∞∑

n=0

anxn+2 = 0.

The powers of x in the first and last summations are different from those in the
middle two summations, so before combining the summations in order to find the
coefficient of each power of x, it will first be necessary to change the power of x in
the first and last terms from n − 2 and n + 2 to n.

In the first summation we set m = n − 2, causing the summation to become

∞∑
m=0

(m + 2)(m + 1)am+2xm.

However, m is simply a summation index that can be replaced by any other symbol,
so we will replace it by n to obtain the equivalent expression

∞∑
n=0

(n + 2)(n + 1)an+2xn.

Similarly, by setting m = n + 2 in the last summation, and then replacing m by n,
we find that

∞∑
n=0

anxn+2 becomes
∞∑

n=2

an−2xn.

We now substitute these last two results into the series solution of the differen-
tial equation to obtain

∞∑
n=0

(n + 2)(n + 1)an+2xn +
∞∑

n=1

2nanxn +
∞∑

n=0

anxn +
∞∑

n=2

an−2xn = 0,

where now each summation involves xn, though not all summations start from n = 0.
Separating out the terms corresponding to n = 0 and n = 1, and collecting all

the remaining terms under a single summation sign in which the summation starts
from n = 2, this becomes

2a2 + a0 + (6a3 + 3a1)x +
∞∑

n=2

[(n + 2)(n + 1)an+2 + 3an + an−2]xn = 0.

As already remarked, if this power series is to be a solution of the differential
equation it must satisfy the equation identically for all x, but this will only be possible
if in the foregoing expression the coefficient of each power of x vanishes. Applying
this condition to the preceding series we find that for it to vanish identically for
all x,deriving and using a

recurrence relation
(coefficient of x0) 2a2 + a0 = 0

(coefficient of x) 6a3 + 3a1 = 0

and

(coefficient of xn) (n + 2)(n + 1)an+2 + 3an + an−2 = 0, for n ≥ 2.
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The first condition shows that

a2 = −1
2

a0,

while the second condition shows that

a3 = −1
2

a1,

where a0 and a1 are arbitrary constants.
The third condition is a recurrence relation (also called a recursion relation or

an algorithm) that in this case relates three coefficients whose indices differ by 2,
so given an−2 and an we can find an+2 for n = 2, 3, 4, . . . .

We now show how to determine the first few coefficients an by writing the
recursion relation in the form

an+2 = − [(2n + 1)an + an−2]
(n + 1)(n + 2)

and setting n = 2, 3, 4, . . . .

For n = 2, after using a2 = − 1
2 a0, we find that

a4 = − (5a2 + a0)
12

= a0

8
,

whereas for n = 3, after using a3 = − 1
2 a1, we find that

a5 = − (7a3 + a1)
20

= a1

8
.

Continuing this process generates the coefficients

a6 = − a0

48
, a7 = − a1

48
, a8 = a0

384
, a9 = a1

384
, . . . .

Thus, all the coefficients with even suffixes are determined in terms of the
arbitrary constant a0, whereas all the coefficients with odd suffixes are determined
in terms of the arbitrary constant a1.

Substituting these coefficients into the power series y(x) = ∑∞
n=0 anxn and

grouping terms gives

y(x) = a0

(
1 − 1

2
x2 + 1

8
x4 − 1

48
x6 + 1

384
x8 − · · ·

)

+ a1

(
x − 1

2
x3 + 1

8
x5 − 1

48
x7 + 1

384
x9 − · · ·

)
.

As the coefficients a0 and a1 are arbitrary, the functions represented by the series

y1(x) = 1 − 1
2

x2 + 1
8

x4 − 1
48

x6 + 1
384

x8 − · · ·
and

y2(x) = x − 1
2

x3 + 1
8

x5 − 1
48

x7 + 1
384

x9 − · · ·
are seen to be the two linearly independent solutions known to be associated with
a homogeneous linear second order equation. So all possible solutions of the dif-
ferential equation can be written in the form

y(x) = C1 y1(x) + C2 y2(x),
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with C1 and C2 arbitrary constants, where to reconcile this result with our previous
notation we notice that C1 and C2 have been written in place of a0 and a1.

To solve the initial value problem the constants C1 and C2 must be chosen such
that y(0) = 3 and y′(0) = −1, so

3 = C1 y1(0) + C2 y2(0) and −1 = C1 y′
1(0) + C2 y′

2(0),

but y1(0) = 1, y2(0) = 0, and differentiation of the expressions for y1(x) and y2(x)
shows that y′

1(0) = 0 and y′
2(0) = 1, so solving for C1 and C2 gives C1 = 3 and

C2 = −1, showing that the required solution to the initial value problem is

y(x) = 3y1(x) − y2(x).

The coefficients of the power series expansions for y1(x) and y2(x) in the last
example were sufficiently complicated that no attempt was made to deduce their
general forms and they were merely generated from the recurrence relation. The
next example is simpler, and we use it to illustrate the type of argument that is
necessary when attempting to arrive at the form of the general term in a power
series solution of a homogeneous linear differential equation. There are no specific
rules to follow when seeking the form of a general term in a series, and success
depends on experience and the ability to recognize the pattern of signs and numbers
forming the coefficients.

EXAMPLE 8.5 Find two linearly independent solutions of

y′′ + xy′ + y = 0,

when the series expansion is about the origin, and hence solve the initial value
problem for which y(0) = 1 and y′(0) = 0.

Solution Substituting results (7) to (9) into the differential equation gives

∞∑
n=2

n(n − 1)anxn−2 + x
∞∑

n=1

nanxn−1 +
∞∑

n=0

anxn = 0.

Shifting the summation index in the first term, taking the factor x under the second
summation and separating out the constant term, as in Example 8.4, gives

2a2 + a0 +
∞∑

n=1

[(n + 2)(n + 1)an+2 + (n + 1)an]xn = 0.

Equating the coefficient of each power of x to zero, as in Example 8.4, shows that

2a2 + a0 = 0, so a2 = −a0

2
,

and

(n + 2)(n + 1)an+2 + (n + 1)an = 0 for n ≥ 1,

but as n + 1 �= 0 this last condition reduces to the simpler recurrence relation

an+2 = − an

n + 2
, for n = 1, 2, . . . .
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It follows directly from the recurrence relation that all even coefficients are
multiples of a0 and all odd coefficients are multiples of a1 with

a3 = −a1

3
, a4 = −a2

4
= a0

2 · 4
, a5 = −a3

5
= a1

3 · 5
, a6 = −a4

6
= − a0

2 · 4 · 6
,

a7 = −a5

7
= − a1

3 · 5 · 7
, a8 = −a6

8
= a0

2 · 4 · 6 · 8
, a9 = −a7

9
= a1

3 · 5 · 7 · 9
, . . . ,

where a0 and a1 are arbitrary constants.
It is apparent that the pattern of coefficients with even suffixes differs from

the one for coefficients with odd suffixes, so each must be considered separately.
Starting with the coefficients with even suffixes, we use the fact that if m= 1, 2, . . . ,

then 2m is an even number. A little experimentation shows that the signs of the
terms with even suffixes are given by the factor (−1)m.

Noticing that a2, a4, a6, and a8 can be written in the form

a2 = (−1)a0

2
, a4 = 1

2 · 4
(−1)2 a0

222!
, a6 = −a0

2 · 4 · 6
= (−1)3a0

233!
,

a8 = (−1)4a0

2 · 4 · 6 · 8
= (−1)4a0

244!

suggests that if we set n = 2m, for m = 0, 1, 2, . . . , the even numbered terms can be
written

a2m = (−1)m

2mm!
a0.

A formal proof that this is the general coefficient in the series involving even powers
of x can be obtained by mathematical induction, but we leave this as an exercise.

It is now necessary to consider the coefficients with odd suffixes, and to do this
we use the fact that if m = 1, 2, 3, . . . , then 2m + 1 is an odd number. Noticing that
the coefficients a3, a5, a7, and a9 can be written

a3 = −a1

3
= (−1)2a1

3!
, a5 = a1

3 · 5
= (−1)2 2 · 4a1

1 · 2 · 3 · 4 · 5
= (−1)2 222!

5!
,

a7 = −a1

3 · 5 · 7
= (−1)3 2 · 4 · 6a1

1 · 2 · 3 · 4 · 5 · 6 · 7
= (−1)3 233!a1

7!
,

a9 = a1

3 · 5 · 7 · 9
= (−1)4 2 · 4 · 6 · 8a1

9!
= (−1)4 244!a1

9!

suggests that the coefficients in the series of odd powers of x can be written

a2m+1 = (−1)m 2mm!
(2m + 1)!

a1.

Here again we leave as an exercise the task of giving an inductive proof that this is,
indeed, the coefficient of the general term in the series involving odd powers of x.

The solution of the differential equation has now separated into two series, one
multiplied by a0 containing only even powers of x and the other multiplied by a1

containing only odd powers of x, so the solution becomes

y(x) = a0

∞∑
m=0

(−1)m x2m

2mm!
+ a1

∞∑
m=0

(−1)m 2mm!x2m+1

(2m + 1)!
.



Section 8.2 A General Approach to Power Series Solutions of Homogeneous Equations 453

As a0 and a1 are arbitrary constants, and the two series are not proportional, it
follows that two linearly independent solutions of the differential equation are

y1(x) =
∞∑

m=0

(−1)m x2m

2mm!
and y2(x) =

∞∑
m=0

(−1)m 2mm!x2m+1

(2m + 1)!
,

so the general solution is

y(x) = C1 y1(x) + C2 y2(x),

where C1 and C2 are arbitrary constants.
Using the series for y1(x) and y2(x), simple calculation gives y1(0) = 1, y′

1(0) =
0, y2(0) = 0, and y′

2(0) = 1, so the initial conditions y(0) = 1, y′(0) = 0 will be sat-
isfied if the constants C1 and C2 are such that

1 = C1 y1(0) + C2 y2(0) and 0 = C1 y′
1(0) + C2 y′

2(0).

This pair of equations has the solution C1 = 1 and C2 = 0, so the solution of
the initial value problem becomes

y(x) =
∞∑

m=0

(−1)mx2m

2mm!
.

Rewriting this as

y(x) =
∞∑

m=0

(−x2/2)m

m!
,

we recognize that the solution is simply y(x) = exp(−x2/2), so this series is known
to converge for all x.

Finally, to complete our examination of the two linearly independent solutions,
let us find the radius of convergence of the second solution y2(x). The formula for
the radius of convergence R based on the ratio test requires all powers of x to be
present, whereas the series y2(x) only contains odd powers of x, so we must modify
the series before using the test. All that is necessary is to set z = x2 and to write the
series in the form

y2(x) = x
∞∑

m=1

(−1)m 2mm!
(2m + 1)!

zm,

for now the radius of convergence of the series in z can be found. The coefficient
am of zm is

am = (−1)m 2mm!
(2m + 1)!

,

so the radius of convergence R is given by

R = lim
m→∞ 1/|am+1/am| = lim

m→∞

∣∣∣∣ am

am+1

∣∣∣∣ = lim
m→∞

(
2mm!

(2m + 1)!
(2m + 3)!

2m+1(m + 1)!

)
= lim

m→∞(2m + 3) = ∞.

As the series in z has an infinite radius of convergence, so also does the original
series involving odd powers of x. This means that the general solution

y(x) = C1 y1(x) + C2 y2(x)

is valid for all real x.
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An important application of the power series method of solution is to the
Legendre’s equation Legendre differential equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, (10)

in which α ≥ 0 is a real parameter. The equation arises in a variety of applica-
tions, but mainly in connection with physical problems in which spherical sym-
metry is present. It will be seen later that the equation finds its origin in the
study of Laplace’s equation when expressed in spherical coordinates. Solutions
of (10) are called Legendre functions, and they are examples of special functions,
or so-called higher transcendental functions, as distinct from elementary functions
such as sine, cosine, exponential, and logarithm. We first develop the series solu-
tions for arbitrary α ≥ 0, and then consider the cases α = n = 0, 1, 2, . . . , which
lead to a special class of polynomial solutions Pn(x) called Legendre polynomials
in which n is the degree of the polynomial. The important properties of Legen-
dre polynomials will be examined later when the topic of orthogonal functions is
introduced.

The coefficients of Legendre’s equation are all analytic at the origin and the
leading coefficient (1 − x2) only vanishes at x = ±1, so a power series solution can
be expected to exist in the interval −1 < x < 1. Substituting (7) to (9) in (10) leads
to the equation

(1 − x2)
∞∑

n=2

n(n − 1)anxn−2 − 2x
∞∑

n=1

nanxn−1 + α(α + 1)
∞∑

n=0

anxn = 0.

Proceeding as in Example 8.4, this can be rewritten as

∞∑
n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=2

n(n − 1)anxn −
∞∑

n=1

2nanxn + α(α + 1)
∞∑

n=0

anxn = 0,

so equating each coefficient to zero in the usual manner gives the following:
Coefficient of x0:

2a2 + α(α + 1)a0 = 0,

Coefficient of x:

6a3 − 2a1 + α(α + 1)a1 = 0,

Coefficient of xn for n ≥ 2:

(n + 2)(n + 1)an+2 − n(n − 1)an − 2nan + α(α + 1)an = 0.

Solving the first two equations gives

a2 = −α(α + 1)
2

a0 and a3 = [2 − α(α + 1)]
6

a1,

whereas the third result gives the recurrence relation

an+2 = − (α − n)(α + n + 1)
(n + 2)(n + 1)

an for n ≥ 2. (11)
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Straightforward calculations show that the first few coefficients are given by

a2 = −α(α + 1)
2!

a0, a3 = − (α − 1)(α + 2)
3!

a1,

a4 = (α − 2)α(α + 1)(α + 3)
4!

a0, a5 = (α − 3)(α − 1)(α + 2)(α + 4)
5!

a1,

a6 = − (α − 4)(α − 2)α(α + 1)(α + 3)(α + 5)
6!

a0.

Thus, the coefficients of the even powers of x are all multiples of a0, whereas
the coefficients of the odd powers of x are all multiples of a1, where a0 and a1 are
arbitrary real numbers. Substituting these coefficients into the series

y(x) = a0 + a1x + a2x2 + a3x3 + · · · =
∞∑

n=0

anxn

shows that the general solution of the Legendre differential equation can be written

y(x) = a0 y1(x) + a1 y2(x), (12)

where

y1(x) = 1 − α(α + 1)
2!

x2 + (α − 2)α(α + 1)(α + 3)
4!

x4 − · · · , (13)

and

y2(x) = x − (α − 1)(α + 2)
3!

x3 + (α − 3)(α − 1)(α + 2)(α + 4)
5!

x5 − · · · .

(14)

As the solutions y1(x) and y2(x) are not proportional, they must be linearly
independent solutions of the Legendre equation (10). We leave as an exercise the
task of showing that each series is convergent in the interval −1 < x < 1, so the
general solution (12) has this same interval of convergence.

Examination of the recurrence relation (11) shows that if α = n is a nonnegative
integer, the terms an+2 = an+4 = an+6 = · · · all vanish. Thus, if α = n is even, the
series y1(x) will reduce to a polynomial of degree n in even powers of x, whereas if
α = n is odd the series y2(x) will reduce to a polynomial of degree n in odd powers
of x.

The solution y(x) reduces to the following polynomials when n = 0, 1, 2, 3, 4:
Case n = 0:

y(x) = a0,

Case n = 1:

y(x) = a1x,

Case n = 2:

y(x) = a0(1 − 3x2),
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Case n = 3:

y(x) = a1

(
x − 5

3
x3
)

,

Case n = 4:

y(x) = a0

(
1 − 10x2 + 35

3
x4
)

.

When α is a nonnegative integer, after suitable scaling the foregoing polynomi-
als are denoted by Pn(x) and called Legendre polynomials of degree n. The standard
scaling adopted involves choosing the arbitrary multiplier of each polynomial such
that Pn(1) = 1 for n = 0, 1, 2, . . . . When this is done the first few Legendre polyno-
mials become

Even polynomials Odd polynomials

P0(x) = 1 P1(x) = x

P2(x) = 1
2

(3x2 − 1) P3(x) = 1
2

(5x3 − 3x)

P4(x) = 1
8

(35x4 − 30x2 + 3) P5(x) = 1
8

(63x5 − 70x3 + 15x)

Legendre polynomials

A general expression for Pn(x) can be obtained by writing the recurrence rela-
tion (11) in the form

ar = (r + 2)(r + 1)
(r − n)(n + r + 1)

ar+2 for r ≤ n − 2

and finding that

an = 1 · 3 · 4 · · · (2n − 1)
n!

= (2n)!
2n(n!)2

for n = 1, 2, 3, . . . ,

in order to make Pn(1) = 1. As a result, the following expressions for Pn(x) are
obtained.

For even polynomials:

P2n(x) =
n∑

r=0

(−1)r (4n − 2r)!
22nr !(2n − r)!(2n − 2r)!

x2n−2r , n = 0, 1, 2, . . . . (15a)

For odd polynomials:

P2n+1(x) =
n∑

r=0

(−1)r (4n − 2r + 2)!
22n+1r !(2n − r + 1)!(2n − 2r + 1)!

x2n−2r+1,

n = 0, 1, 2, . . . .

(15b)

Two alternative definitions of Legendre polynomials are to be found in Exercises
16 and 18 at the end of this section.

Results (15a, b) provide a general definition for a Legendre polynomial of any
order, though when only a few low order polynomials are required it is often more
convenient to generate them by means of the following recurrence relation that
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FIGURE 8.1 (a) Even Legendre polynomials. (b) Odd Legendre polynomials.

determines Pn+1(x) in terms of Pn(x) and Pn−1(x):

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0, (16)

for n = 1, 2, 3, . . . . A derivation of this recurrence relation is to be found in Exer-recurrence relation
for Legendre
polynomials

cise 17 at the end of this section.
As an example of the use of (16) we set n = 2 to obtain

P3(x) = 1
3

[5xP2(x) − 2P1(x)],

but P1(x) = x and P2(x) = 1
2

(3x2 − 1), so substituting these expressions, we find
P3(x) = 1

2 (5x3 − 3x).
Graphs of the first few Legendre polynomials Pn(x) are given in Fig. 8.1.

ADRIEN-MARIE LEGENDRE (1752–1833)
A French mathematician educated at a college in Paris whose remarkable mathematical ability
enabled him to be appointed to the position of professor of mathematics at a military school in
Paris. His work on the motion of projectiles in a resisting medium won him a prize offered by the
Royal Academy in Berlin. He was subsequently appointed professor at the Normal School in Paris
and his contributions as an analyst were second only to those of Laplace and Lagrange, who
were his contemporaries. In addition to his contributions to the development of the calculus, he
made major contributions to the study of elliptic functions.

For more information about Legendre polynomials, and for applications to bound-
ary value problems, see Chapters 5 and 8 of reference [3.7]. Recurrence relations
satisfied by Legendre polynomials and other orthogonal polynomials are to be
found in Chapter 22 of reference [G.1], and also in Chapter 18 of reference [G.3].

Another important and useful differential equation with a power series solution
is the Chebyshev equation,Chebyshev equation

(1 − x2)y′′ − xy′ + αy = 0. (17)

The coefficients are all analytic functions and the leading coefficient (1 − x2)
only vanishes at x = ±1, so a power series solution can be found in the interval
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−1 ≤ x ≤ 1. Proceeding as with Legendre’s equation we find

(1 − x2)
∞∑

n=2

n(n − 1)anxn−2 − x
∞∑

n=1

nanxn−1 + α

∞∑
n=0

anxn = 0,

or after a shift of summation index,
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=2

n(n − 1)anxn −
∞∑

n=1

nanxn + α

∞∑
n=0

anxn = 0.

If we combine summations, this becomes

(1 · 2a2 + αa0) + [2 · 3a3 + (α − 1)a1]x

+
∞∑

n=2

[
(n + 1)(n + 2)an+2 + (α − n2)an

]
xn = 0.

Equating the coefficients of each power of x to zero gives

a2 = − α

2!
a0, a3 = (1 − α)

3!
a1,

and the recurrence relation

an+2 = (n2 − α)
(n + 1)(n + 2)

an, n = 2, 3 . . . .

Thus,

a4 = (22 − α)
3 · 4

a2 = −α(22 − α)
4!

a0

a5 = (32 − α)
4 · 5

a3 = (1 − α)(32 − α)
5!

a1

. . . .

Using these coefficients in the original power series y(x) = ∑∞
n=0 anxn gives the

solution of the Chebyshev equation in the form

y(x) = a0 y0(x) + a1 y1(x),

where

y0(x) = a0

[
1 − α

2!
x2 − α(22 − α)

4!
x4 − α(22 − α)(42 − α)

6!
x6 − · · ·

]

and

y1(x) = a1

[
x + (1 − α)

3!
x3 + (1 − α)(32 − α)

5!
x5 + · · ·

]
.

In applications of this equation to approximation theory, numerical analysis, and
elsewhere, it is usual that α = m2, where m = 0, 1, 2, . . . . Inspection of y0(x) shows
that when m is even, the solution reduces to a polynomial of degree m in even
powers of x, whereas when m is odd y1(x) reduces to a polynomial of degree m in
odd powers of x.
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FIGURE 8.2 (a) Even Chebyshev polynomials. (b) Odd Chebyshev polynomials.

As the polynomials are solutions of a homogeneous differential equation, the
scale factors for each polynomial can be chosen arbitrarily, so by convention they
are chosen such that the term with the largest power of x is positive and the poly-
nomial is free from fractional coefficients. These polynomials are called ChebyshevChebyshev

polynomials polynomials, and they are denoted by Tn(x). The first six Chebyshev polynomi-
als are:

Even polynomials Odd polynomials

T0(x) = 1 T1(x) = x

T2(x) = 2x2 − 1 T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1 T5(x) = 16x5 − 20x3 + 5x

Using the forms for Tn+1(x), Tn(x) and Tn−1(x) obtained from y0(x) and y1(x),
it can be shown that Chebyshev polynomials obey the following recurrence
relation:recurrence relation

for Chebyshev
polynomials Tn+1(x) − 2xTn(x) + Tn−1(x) = 0. (18)

When used with the polynomials just listed, this recurrence relation is the simplest
way of generating higher order polynomials. Graphs of the first six Chebyshev
polynomials are shown in Fig. 8.2.

For applications of Chebyshev polynomials to numerical analysis see, for ex-
ample, references [8.3] to [8.5].

PAFNUTI LIWOWICH CHEBYSHEV (1821–1894)
A distinguished Russian mathematician who was professor of mathematics at the University of
Petrograd (now St. Petersburg). He made many contributions to analysis and number theory.
There are many variations of the transliteration of his name, the most common probably being
Tchebycheff.

Summary This section showed how to find a series solution, expanded about the origin, of a ho-
mogeneous linear second order variable coefficient differential equation with polynomial
coefficients, when the solution can be obtained in the form of a general power series with
unknown coefficients. By substituting this series into the differential equation, grouping
corresponding powers of x, and requiring the coefficient of each power of x to vanish
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identically, a recurrence relation connecting the unknown coefficients was obtained and
used to find the coefficients of the power series in terms of two arbitrary constants a0

and a1. The general solution was seen to be the sum of two linearly independent power
series with known coefficients, one multiplied by a0 and the other by a1. Two important
special cases were considered that gave rise to polynomial solutions of the important and
useful Legendre and Chebyshev equations.

EXERCISES 8.2

Find the first six terms in the power series expansion of each
of the following initial value problems.

1. y′′ + (x − x2)y′ + y = 0, with y(0) = 2, y′(0) = −3.
2. 2y′′ + xy′ + 2(1 + x)y = 0, with y(0) = −2, y′(0) = 1.
3. y′′ + (1 + x2)y′ + xy = 0, with y(0) = 1, y′(0) = −3.
4. y′′ − 3xy′ + 2y = 0, with y(0) = 1, y′(0) = 1.
5. (1 − x2)y′′ + xy′ − y = 0, with y(0) = 2, y′(0) = −1.
6. y′′ + x2 y′ + 2xy = 0, with y(0) = 3, y′(0) = −2.
7. y′′ + 2(1 − x)y′ − 3xy = 0, with y(0) = 1,

y′(0) = −1.
8. (1 − x)y′′ + 2xy′ + (1 + x)y = 0, with y(0) = 4,

y′(0) = −2.
9. (1 − 2x2)y′′ + 2y′ + 3y = 0, with y(0) = 1,

y′(0) = −1.
10. (1 + 2x2)y′′ + 3xy′ + y = 0, with y(0) = 2,

y′(0) = −2.
11. (2x2 − 1)y′′ + (1 + x)y′ + 2y = 0, with y(0) = 1,

y′(0) = 4.
12. y′′ + (1 + 2x)y′ + xy = 0, with y(2) = 1, y′(2) = 0.
13. (2 + x)y′′ + 3(1 + x)y′ + 2y = 0, with y(1) = 2,

y′(1) = −3.
14. (x2 − 2x + 2)y′′ + (x − 1)y′ − 3y = 0, with y(−1) = 1,

y′(−1) = 2.
15. (1 − x)y′′ + 2xy′ − 2xy = 0, with y(2) = 1, y′(2) = 5.
16. An alternative definition of the Legendre polynomial

Pn(x) is provided by the formula

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n,

called the Rodrigues formula. Use the formula to com-
pute P4(x) and P5(x).

17.* Set u = (x2 − 1)n and use repeated differentiation
of the Rodrigues formula to verify that Pn(x) is
a Legendre polynomial by showing it satisfies the
Legendre differential equation

(1 − x2)P′′
n (x) − 2xP′

n(x) + n(n + 1)Pn(x) = 0.

18.* The function

G(x, t) = (1 − 2xt + t2)−1/2

is called the generating function for Legendre poly-
nomials. It has the property that when expanded as a
power series in t the coefficient of tn is Pn(x), so that

G(x, t) = P0(x) + P1(x)t + P2(x)t2 + · · · .
Set u = −2xt + t2 and expand (1 + u)−1/2 by the bino-
mial theorem. Collect all the terms in x multiplying t5

and hence verify that the coefficient of t5 is P5(x).
19.* Show that the generating function defined in Prob-

lem 18 satisfies the differential equation

(1 − 2xt + t2)
∂G
∂t

− (x − t)G = 0

for arbitrary t . As the result must be an identity in t ,
the consequence of substituting

G(x, t) = P0(x) + P1(x)t + P2(x)t2 + · · ·
into the differential equation must be such that terms
in x multiplying each power of t vanish. Collect the
terms multiplying tn, and hence establish the Legen-
dre polynomial recurrence relation

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0

for n = 1, 2, . . . . This result is called the Bonnet recur-
rence relation.

20.* The electrostatic potential φ at a point in a vacuum
distant d from a charge Q is given by φ = Q/d. Use
the Legendre polynomial generating function

G(r, t) = 1
(1 − 2r t + t2)1/2

,

together with the result from elementary trigonometry

r =
(

r 2
1 + r 2

2 − 2r1r2 cos θ
)1/2

,

to show that the electrostatic potential at point A due
to a charge Q at B in Fig. 8.3 is given by

Q
r

= 1
r2

[
P0(cos θ) +

(
r1

r2

)
P1(cos θ)

+
(

r1

r2

)2

P2(cos θ) + · · ·
]

, for r1/r2 < 1.
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8.3 Singular Points of Linear
Differential Equations

In Section 8.2 the power series method was used to find a solution of a homogeneous
variable coefficient differential equation of the form

a(x)y′′ + b(x)y′ + c(x)y = 0. (19)

It was seen that the method could be applied about any point x0 at which the coeffi-
cients of the differential equation are analytic and a(x0) �= 0. Expressed differently,
when (19) is written in the standard form

y′′ + P(x)y′ + Q(x)y = 0, (20)

with

P(x) = b(x)
a(x)

and Q(x) = c(x)
a(x)

, (21)

the power series method can be applied to develop a solution about any point x0 at
which the functions P(x) and Q(x) are analytic.

Points where P(x) and Q(x) are analytic are called regular points of the dif-regular and singular
points ferential equation, and points where at least one is not analytic are called singular

points.
Equation (20) will be said to have a regular singular point at x0 if the functions

(x − x0)P(x) and (x − x0)2 Q(x)

are analytic at x0, and so have Taylor series expansions about x0. If at least one of
these functions is not analytic at x0, the point will be said to be an irregular singular
point.

EXAMPLE 8.6 Identify the nature of the singular points of the following equations:

(a) x2 y′′ + xy′ + (x2 − n2)y = 0
(b) (1 − x2)y′′ − 2xy′ + n(n + 1)y = 0, (n = 0, 1, 2, . . .)
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(c) (1 − x)y′′ + 2(x − 1)y′ + xy = 0
(d) (x − 1)3 y′′ + 3(x − 1)2 y′ + y = 0

Solution

(a) This is Bessel’s equation of order n in which the functions P(x) = 1/x and
Q(x) = (x2 − n2)/x2. Neither of these functions is analytic at the origin, so the
origin is a singular point of Bessel’s equation. However, as the functions xP(x) = 1
and x2 Q(x) = x2 − n2 are both analytic at the origin, it follows that x = 0 is a regular
singular point of Bessel’s equation.

(b) This is Legendre’s equation of order n in which P(x) = −2x/(1 − x2) and
Q(x) = n(n + 1)/(1 − x2). Neither of these functions is analytic at x = ±1, so these
points are the singular points of the Legendre equation. Let us consider the singular
point at x = 1. As the functions

(x − 1)P(x) = 2x/(1 + x) and (x − 1)2 Q(x) = n(n + 1)(x − 1)/(1 + x)

are both analytic at x = 1, it follows that this is a regular singular point of Legendre’s
equation. A similar argument shows that x = −1 is also a regular singular point of
the equation.

(c) In this case P(x) = −2 and Q(x) = x/(1 − x), and while P(x) is analytic for
all x the function Q(x) is not analytic at x = 1, so this is a singular point of the
equation. The functions (x − 1)P(x) = 2(1 − x) and (x − 1)2 Q(x) = x(1 − x) are
both analytic at x = 1, so x = 1 is a regular singular point of the equation.

(d) In this equation P(x) = 3/(x − 1) and Q(x) = 1/(x − 1)3 and neither function
is analytic at x = 1, so this is a singular point of the equation. We have

(x − 1)P(x) = 3 and (x − 1)2 Q(x) = 1
x − 1

,

and although the first of these functions is analytic for all x, the second is not analytic
at x = 1, so x = 1 is an irregular singular point of the equation.

In the next section the power series method will be generalized to arrive at
what is called the Frobenius method, which always generates two linearly indepen-
dent solutions about a regular singular point of equation (20). As the behavior of
solutions in a neighborhood of an irregular singular point can be shown to be very
erratic, no further consideration will be given to solutions near such points.

Sometimes it is more convenient to consider an equation with a regular singularshifting a singular
point point located at the origin rather at some other point x0 �= 0. In such cases a singular

point located at x0 can always be shifted to the origin by making the change of
variable X = x − x0, as in Section 8.2.

EXAMPLE 8.7 Shift the singular point of the following equation to the origin:

(x − 1)2 y′′ + 3(x + 2)y′ + 2y = 0.

Solution The equation has a regular singular point at x = 1, so we make the
variable change X = x − 1 and set y(x) = Y(x − 1) = Y(X). The equation then
becomes

X 2Y′′ + 3(X + 3)Y′ + 2Y = 0,

with a regular singular point now located at X = 0.
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To appreciate why an ordinary power series solution cannot be developedexample showing why
no power series
solution exists about
a singular point

around a regular singular point, it will be sufficient to consider the Cauchy–Euler
equation

x2 y′′ + 3xy′ + 2y = 0,

which has a regular singular point at the origin. This Cauchy–Euler equation was
solved analytically in Example 6.10, where its solution was found to be

y(x) = C1x−1 cos(ln |x|) + C2x−1 sin(ln |x|).
The reason that no power series solution exists in this case is seen to be the presence
of the factor x−1 and the function ln |x| in the analytical solution, neither of which
can be expanded in a power series about the origin.

Summary The regular and singular points of a general homogeneous second order linear variable
coefficient differential equation were defined and illustrated by example. It was shown
how, if necessary, a singular point occurring at x = a could be shifted to the origin, and
an example was used to demonstrate why an ordinary power series solution cannot be
developed around a regular singular point.

EXERCISES 8.3

Identify the nature of the singular points in each of the
following equations.

1. (1 − x)2 y′′ + 2(x − 1)y′ + y = 0.

2. x2 y′′ + 3x2 y′ + (1 + x2)y = 0.

3. (1 + x)2 y′′ + 2y′ + y = 0.

4. xy′′ + (1 − x)y′ + ny = 0 (n > 0).
5. (x + 4)3 y′′ + 2(x + 4)y′ + xy = 0.

6. (x2 − 4)y′′ + (x + 3)y′ − 5(x + 1)y = 0.

7. (3 − x)2 y′′ + 4y′ + cos x(3 − x2)y = 0.

8. x2 y′′ + 8y′ + 3xy = 0.

8.4 The Frobenius Method

A generalization of the power series method that was introduced by Frobenius
(1849–1917) enables a solution of a homogeneous linear differential equation to be
developed about a regular singular point. He considered the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0, (22)

and established the following result that is stated without proof.

THEOREM 8.1 Frobenius theorem Let x0 be a regular singular point of (22). Then, in some
interval 0 < x − x0 < d, the equation will always possess at least one solution of
the form

y(x) = (x − x0)c(a0 + a1(x − x0) + a2(x − x0)2 + · · · )
= (x − x0)c

∞∑
n=0

an(x − x0)n,

where a0 �= 0 and c is a real or complex number. A second linearly independentthe Frobenius
theorem and
method of solution

solution of similar form will exist that may contain a logarithmic term, though
with a different value of c and some other coefficients b0, b1, b2, . . . in place of
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the coefficients a0, a1, a2, . . . . Taken together, these two solutions form a basis of
solutions for the differential equation.

GEORG FERDINAND FROBENIUS (1849–1917)
A German mathematician whose main research was in group theory and analysis. He worked in
Zurich and Berlin and published his method for the series solution of linear ordinary differential
equations in 1873.

For simplicity, and because of their frequent occurrence, in what follows we will
develop the Frobenius method in terms of a slightly less general class of equations
by setting a(x) = x2 in (22). So we will consider the equation

x2 y′′ + b(x)y′ + c(x)y = 0, (23)

and write it in the standard form

y′′ + P(x)y′ + Q(x)y = 0, (24)

where

P(x) = p(x)
x

and Q(x) = q(x)
x2

, (25)

and assume that p(x) and q(x) are analytic functions at x = 0. So we will only
consider equations of the form (24) with regular singular points at the origin.

To determine the exponent c in Theorem 8.1 we substitute a solution of the
form

y(x) = xc
∞∑

n=0

anxn (26)

into equation (24), where c is to be determined along with the coefficients an.
When making this substitution we will need to use the following results obtained
by differentiation of (26):

y′(x) = ca0xc−1 + (c + 1)a1xc + (c + 2)a2xc+1 + · · · =
∞∑

n=0

(n + c)anxn+c−1 (27)

and

y′′(x) = c(c − 1)a0xc−2 + (c + 1)ca1xc−1 + (c + 2)(c + 1)a2xc + · · ·

=
∞∑

n=0

(n + c)(n + c − 1)anxn+c−2. (28)

As the functions p(x) and q(x) are assumed to be analytic at the origin, they
can be expanded as the Maclaurin series

p(x) = p0 + p1x + p2x2 + · · · and q(x) = q0 + q1x + q2x2 + · · · . (29)

Substituting (27) to (29) into (24) leads to the result

xc−2[c(c − 1)a0 + (c + 1)ca1x + · · ·]
+ (

p0 + p1x + p2x2 + · · · )xc−2(ca0 + (c + 1)a1x + · · ·)
+ xc−2(q0 + q1x + q2x2 + · · · )(a0 + a1x + a2x2 + · · · ) = 0.
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If (26) is to be a solution of (24), the coefficient of each power of x in this last
result must vanish to make it an identity. Collecting terms involving the same power
of x and equating their coefficients to zero will lead to a sequence of equations
connecting the coefficients an in (26), and equating the coefficient of the lowest
power of x to zero will give an equation from which c can be determined.

The lowest power of x in the preceding result is xc−2, so collecting terms in-
volving xc−2 and equating the coefficient of xc−2 to zero gives

[c(c − 1) + p0c + q0]a0 = 0.

As Theorem 8.1 requires a0 �= 0, it follows that c is determined by the equation

c(c − 1) + p0c + q0 = 0. (30)

This equation is called the indicial equation associated with differential equationindicial equation
(24), because it determines the permissible values of the index c to be used in the
solution given in Theorem 8.1.

The indicial equation of differential equation (24) can be constructed without
the need to make the substitution (26), because it is easily seen that

p0 = lim
x→0

[xP(x)] and q0 = lim
x→0

[x2 Q(x)]. (31)

For the class of equations of type (24) that all have a regular singular point at the
origin, the appropriate form of the Frobenius theorem follows from Theorem 8.1 if
we set x0 = 0.

It is important to notice that for a general equation (22) in which a(x) �= x2 the
indicial equation does not take the form given in (30). When this situation arises
the indicial equation must be obtained by substituting (26) into (22) and equating
to zero the coefficient of the lowest power of x that occurs in the expansion.

As the indicial equation is a quadratic equation in c, the following relationships
between its roots c1 and c2 are possible:

(a) Roots c1 and c2 are real and distinct and do not differ by an integer
(b) Roots c1 and c2 are real and differ by an integer
(c) Roots c1 and c2 are real and equal
(d) Roots c1 and c2 are complex conjugates

The reason for identifying these different cases is to be found in the following
theorem, which is stated without proof in terms of a differential equation with a
regular singular point located at the origin (see references [3.3] and [3.5]).

THEOREM 8.2 Forms of Frobenius solution depending on the nature of c1 and c2 Let a differen-
tial equation of the form

x2 y′′ + x[xP(x)]y′ + [x2 Q(x)]y = 0

have a regular singular point at x = 0. Let xP(x) and x2 Q(x) each be capable of
expansion as convergent power series in an interval |x| < d, where d > 0 is the
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smaller of the two radii of convergence, and suppose that

p0 = lim
x→0

[xP(x)] and q0 = lim
x→0

[x2 Q(x)].

Then in terms of the exponent c in (26), and the coefficients p0 and q0, the indicial
equation for the differential equation is

c(c − 1) + p0c + q0 = 0,

with two roots c1 and c2 that may be real or complex conjugates.
The two linearly independent solutions of the differential equation that exist

depend on the relationship between the roots of the indicial equation, and they
take the following forms.

Case (a) Real roots with c1 > c2 and c1 − c2 neither zero nor a positive integer

In the intervals −d < x < 0 and 0 < x < d the differential equation has two linearly
independent solutions of the formdifferent forms of

Frobenius solution
and examples

y1(x) = |x|c1

[
1 +

∞∑
n=1

anxn

]
and y2(x) = |x|c2

[
1 +

∞∑
n=1

bnxn

]
,

where the coefficients an are obtained by substituting c = c1 in the recurrence re-
lation connecting coefficients and then setting a0 = 1, and the coefficients bn are
obtained in similar fashion by substituting c = c2 in the recurrence relation, replac-
ing an by bn and setting b0 = 1.

Case (b) Real roots with c1 − c2 equal to a positive integer

In the intervals −d < x < 0 and 0 < x < d the differential equation has two linearly
independent solutions of the form

y1(x) = |x|c1

[
1 +

∞∑
n=1

anxn

]
and y2(x) = Ay1(x) ln |x| + |x|c2

∞∑
n=1

βnxn,

where the coefficients an are determined as in Case (a), and the coefficients A
and βn are found by substituting y(x) = y2(x) in the differential equation. Some
differential equations for which c1 − c2 is a positive integer have no logarithmic
term in their solution y2(x), in which case A= 0.

Case (c) Real roots with c1 = c2

In the intervals −d < x < 0 and 0 < x < d the differential equation has two linearly
independent solutions of the form

y1(x) = |x|c1

[
1 +

∞∑
n=1

anxn

]
and y2(x) = y1(x) ln |x| + |x|c1

∞∑
n=1

αnxn,
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where the coefficients an are determined as in Case (a), and the coefficients αn are
found by substituting y(x) = y2(x) into the differential equation.

Case (d) Complex conjugate roots

If c1 = λ + iμ and c2 = λ − iμ with μ �= 0, then in the intervals −d < x < 0 and
0 < x < d the two linearly independent solutions of the differential equation are
the real and imaginary parts of

y(x) = |x|λ+iμ

[
1 +

∞∑
n=1

anxn

]
,

where the coefficients an are determined as in Case (a).

It is important to recognize that the solutions in cases (a) to (d) of Theorem 8.2
all lie in intervals of the form 0 < x < d that do not contain the origin. A solution
in the interval −d < x < 0 can be obtained from the above results by replacing x
by −x and, depending on the relationship between the roots c1 and c2, seeking a
solution in the manner indicated in the illustrative examples that follow.

Case (a) Roots c1 and c2 Are Distinct
and Do Not Differ by an Integer

EXAMPLE 8.8 Find the solution of

2xy′′ + (x + 1)y′ + y = 0

in some interval 0 < x < d.

Solution As the coefficient of y′′ vanishes at x = 0 the origin must be a singular
point of this equation. When the differential equation is written in standard form
we find that P(x) = (x + 1)/(2x) and Q(x) = 1/(2x), so p0 = limx→0 xP(x) = 1/2
and q0 = limx→0 x2 Q(x) = 0, showing that the origin is a regular singular point of
the differential equation.

From (30) the indicial equation is seen to be

c(c − 1) + 1
2

c = 0, or c
(

c − 1
2

)
= 0,

showing that the permissible values of c are c = 0 and c = 1/2. As these values of
c are distinct and do not differ by an integer, the solution will be of the type given
in Theorem 8.2(a).

Setting

y(x) =
∞∑

n=0

anxn+c

and substituting into the differential equation in the usual way leads to the result

2
∞∑

n=0

(n + c)(n + c − 1)anxn+c−1 +
∞∑

n=0

(n + c)anxn+c +
∞∑

n=0

(n + c)anxn+c−1

+
∞∑

n=0

an xn+c = 0.



468 Chapter 8 Series Solutions of Differential Equations, Special Functions, and Sturm–Liouville Equations

Shifting the summation index in the first and third summations gives

2
∞∑

n=−1

(n + c + 1)(n + c)an+1xn+c +
∞∑

n=0

(n + c)anxn+c +
∞∑

n=−1

(n + c + 1)an+1xn+c

+
∞∑

n=0

anxn+c = 0,

and, finally, combining terms we arrive at the result

∞∑
n=−1

[2(n + c + 1)(n + c) + (n + c + 1)]an+1xn+c +
∞∑

n=0

(n + c + 1)anxn+c = 0.

Separating out the term corresponding to n = −1 allows this to be written

[2c(c − 1) + c]a0xc−1 +
∞∑

n=0

{[2(n + c + 1)(n + c) + (n + c + 1)]an+1

+ (n + c + 1)an}xn+c = 0.

To proceed further we must now equate to zero the coefficient of each power of
x. Equating to zero the coefficient of xc−1 simply gives the indicial equation, but
equating to zero the coefficient of xn+c for n = 0, 1, 2, . . . gives

(n + c + 1)(2n + 2c + 1)an+1 + (n + c + 1)an = 0.

As n + c + 1 �= 0 this recurrence relation can be written

an+1 = − an

2n + 2c + 1
.

Starting with the value c = 0, we find that

an+1 = − an

2n + 1
,

so

a1 = −a0, a2 = −a1

3
= a0

3
, a3 = −a2

5
= − a0

3 · 5
, a4 = −a3

7
= a0

3 · 5 · 7
,

a5 = −a4

9
= − a0

3 · 5 · 7 · 9
, a6 = − a5

11
= a0

3 · 5 · 7 · 9 · 11
, . . . .

Examination of a5 and a6 shows they can be written

a5 = −2 · 4 · 6 · 8
9!

a0 = − 24 · 4!
(2 · 4 + 1)!

a0

and

a6 = 25 · 5!
(2 · 5 + 1)!

a0.

These expressions suggest that the coefficient of the general term in the series is

an+1 = (−1)n+12nn!
(2n + 1)!

a0 for n = 0, 1, 2, . . . ,

and this is easily verified by mathematical induction. As we are considering the case
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in which c = 0, it follows from Theorem 8.2(a) that for some d1 > 0 one solution is

y(x) = a0

[
1 +

∞∑
n=0

(−1)n+12nn!
(2n + 1)!

xn+1

]
.

As the constant a0 �= 0 is arbitrary, we set a0 = 1 and take for a fundamental solution
of the differential equation

y1(x) = 1 +
∞∑

n=0

(−1)n+12nn!
(2n + 1)!

xn+1 for 0 < x < d1.

A second fundamental (linearly independent) solution follows by using the
other value c = 1/2, for which the recurrence relation becomes

an+1 = − an

2n + 2
.

Using this result and recognizing that the coefficients an are not the same as the
ones in y1(x), we find that

a1 = −a0

2
, a2 = − a1

2 · 2
= a0

22 · 2!
, a3 = − a2

2 · 3
= − a0

23 · 3!
,

a4 = − a3

2 · 4
= a0

24 · 4!
, . . . .

This pattern of coefficients suggests that the coefficient of the general term in
the series is

an = (−1)n

2nn!
a0,

and this also is easily verified by using an inductive argument. Setting the arbitrary
constant a0 = 1, it follows from Theorem 8.2(a) that for some d2 > 0 a second
fundamental solution is given by

y2(x) = x1/2
∞∑

n=0

(−1)n

2nn!
xn = x1/2e−x/2, for 0 < x < d2.

The solutions y1(x) and y2(x) form a basis for solutions of the differential equation in
an interval of the form 0 < x < d, where d = min{d1, d2}. Thus, the general solution is

y(x) = C1 y1(x) + C2 y2(x), for 0 < x < d,

where C1 and C2 are arbitrary constants. The value of d is

d = min{R1, R2},
where R1 and R2 are the radii of convergence of the series solutions for y1(x) and
y2(x), respectively. In this case R1 = R2 = ∞, so the general solution is valid for
x > 0.

Case (b) Roots c1 and c2 Are Real
and Differ by an Integer

EXAMPLE 8.9 Find the solution of

x2 y′′ + x(2 + x)y′ − 2y = 0

in some interval 0 < x < d.
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Solution The equation has a singular point at the origin, and writing it in standard
form shows that P(x) = (2 + x)/x and Q(x) = −2/x2. Thus,

p0 = lim
x→0

xP(x) = 2 and q0 = lim
x→0

x2 Q(x) = −2,

so the equation has a regular singular point at the origin. It follows from (30) that
the indicial equation is

c(c − 1) + 2c − 2 = 0, or c2 + c − 2 = 0.

The permissible values of c are thus c = −2 and c = 1, and these differ by an integer.
Substituting the series

y(x) =
∞∑

n=0

anxn+c

into the differential equation gives

∞∑
n=0

(n + c)(n + c − 1)anxn+c + 2
∞∑

n=0

(n + c)anxn+c +
∞∑

n=0

(n + c)anxn+c+1

− 2
∞∑

n=0

anxn+c = 0.

Shifting the index in the third summation so it starts from n = 1 and separating out
the terms multiplied by xc enables the equation to be written

a0(c2 + c − 2)xc +
∞∑

n=1

{[(n + c)(n + c + 1) − 2]an + (n + c − 1)an−1}xn+c = 0.

Proceeding as usual and equating the coefficient of xc to zero simply gives
the indicial equation, whereas equating the coefficient of xn+c to zero gives the
recurrence relation

an = (n + c − 1)
[2 − (n + c)(n + c + 1)]

an−1 for n = 1, 2, . . . .

Considering the larger root c = 1, as required by Theorem 8.2(b), we find that

an = n
[2 − (1 + n)(2 + n)]

an−1 for n = 1, 2, . . . .

So the first few coefficients are

a1 = −a0

4
, a2 = 2

[2 − 3 · 4]
a1 = a0

4 · 5
, a3 = − 3a2

[2 − 4 · 5]
= − a0

4 · 5 · 6
,

a4 = 4a3

[2 − 5 · 6]
= a0

4 · 5 · 6 · 7
, . . . .

As c = 1, setting the arbitrary constant a0 = 1, it follows from Theorem 8.2(b)
that for some d1 > 0 a fundamental solution of the differential equation is

y1(x) = x
(

1 − x
4

+ x2

4 · 5
− x3

4 · 5 · 6
+ x4

4 · 5 · 6 · 7
− · · ·

)
,
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or

y1(x) = x − x2

4
+ x3

4 · 5
− x4

4 · 5 · 6
+ x5

4 · 5 · 6 · 7
− · · · ,

with 0 < x < d.

Theorem 8.2(b) asserts that, corresponding to the smaller root c = −2, a second
fundamental solution is of the form

y2(x) = Cy1(x) ln x + x−2
∞∑

n=0

bnxn

= Cy1(x) ln x +
∞∑

n=0

bnxn−2.

To determine C and the coefficients bn, we substitute this solution into the original
differential equation, and because the result must be an identity in x, the coefficient
of each power of x must vanish.

Differentiation of the foregoing result gives

y′
2 = Cy′

1(x) ln x + Cy1(x)
x

+
∞∑

n=0

(n − 2)bnxn−3

and

y′′
2 (x) = Cy′′

1 (x) ln x + 2Cy′
1(x)
x

− Cy1(x)
x2

+
∞∑

n=0

(n − 2)(n − 3)bnxn−4.

Substituting these results into the differential equation and collecting terms leads
to the result

[x2 y′′
1 (x) + x(2 + x)y′

1(x) − 2y1(x)]C ln x + C[y1(x) + xy1(x) + 2xy′
1(x)]

+
∞∑

n=0

(n − 3)(n − 2)bnxn−2 +
∞∑

n=0

2(n − 2)bnxn−2 +
∞∑

n=0

(n − 2)bnxn−1

−
∞∑

n=0

2bnxn−2 = 0.

The coefficient of the logarithmic term vanishes, because y1(x) is a solution of
the differential equation, so the equation simplifies to

C[y1(x) + xy1(x) + 2xy′
1(x)]

+
∞∑

n=0

(n − 3)(n − 2)bnxn−2 +
∞∑

n=0

2(n − 2)bnxn−2 +
∞∑

n=0

(n − 2)bnxn−1

−
∞∑

n=0

2bnxn−2 = 0.

The terms corresponding to n = 0 cancel, and after shifting the summation
index in the third summation, we have

C[y1(x) + xy1(x) + 2xy′
1(x)] +

∞∑
n=1

(n − 3)(nbn + bn−1)xn−2 = 0.
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To find the form of the first group of terms C[y1(x) + xy1(x) + 2xy′
1(x)], we must

use the series solution for y1(x). As

y1(x) = x − x2

4
+ x3

4 · 5
− x4

4 · 5 · 6
+ · · · ,

differentiation gives

y′
1(x) = 1 − x

2
+ 3x2

20
− x3

30
+ · · · ,

and so

C[y1(x) + xy1(x) + 2xy′
1(x)] = 3Cx − Cx2

4
+ Cx3

10
− Cx4

40
+ · · · .

Using this result in the equation and expanding the first few terms in the sum-
mation involving the unknown coefficients bn shows that(

3Cx − Cx2

4
+ Cx3

10
− Cx4

40
+ · · ·

)
− (2b1 + 2b0)

1
x

− (2b2 + b1) + (4b4 + b3)x2

+ (10b5 + 2b4)x3 + (18b6 + 3b5)x4 + (28b7 + 4b6)x5 + (40b8 + 5b7)x6 + · · · = 0.

If we now equate to zero the coefficient of each power of x, we find that

b1 = −b0, b2 = −1
2

b1 = 1
2

b0, C = 0, b4 = −1
4

b3,

b5 = −1
5

b4 = 1
4 · 5

b3, b6 = −1
6

b5 = − 1
4 · 5 · 6

b3, . . . .

The condition C = 0 shows that in this case the second linearly independent
solution y2(x) does not contain a logarithmic term. The terms b1 and b2 are de-
termined as multiples of b0, and from Theorem 8.2(b) b0 �= 0, whereas for n > 3
all of the terms bn are seen to be multiples of b3, which is arbitrary because no
equation connects it with b0. Thus, the solution that has been generated appears to
contain two arbitrary constants instead of the one that would have been expected.
Substituting the bn into the general form of the solution, which with C = 0 has
reduced to

y2(x) =
∞∑

n=0

bnxn−2,

gives

y2(x) = b0

(
1
x2

− 1
x

+ 1
2

)
+ b3x

(
1 − x

4
+ x2

4 · 5
− x3

4 · 5 · 6
+ x4

4 · 5 · 6 · 7
− · · ·

)
.

The apparent incompatibility caused by the introduction of the two arbitrary
constants b0 and b3 is now resolved, because the series multiplied by b3 is simply the
first linearly independent solution y1(x). So, in this case, when seeking the second
linearly independent solution we have, in fact, generated a linear combination of the
first linearly independent solution y1(x) and another linearly independent solution
given by the expression

1
x2

− 1
x

+ 1
2
.
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Accordingly, we set b3 = 0 and b0 = 1, and take for the second linearly inde-
pendent solution

y2(x) = 1
x2

− 1
x

+ 1
2
,

and since only three terms are involved we see that y2(x) is defined for x > 0.
When closed form solutions such as y2(x) are obtained, they should always be

checked by substitution into the differential equation, and in this case it is easy to
check that y2(x) is, indeed, a solution.

It is a simple matter to show the radius of convergence of the series solution
y1(x) is infinite, so solutions y1(x) and y2(x) form a basis for the solution of the
differential equation whose general solution is

y(x) = C1 y1(x) + C2 y2(x), for x > 0,

where C1 and C2 are arbitrary constants.

Case (c) Equal Real Roots c1 = c2

EXAMPLE 8.10 Find the solution of

x2 y′′ + (x2 − x)y′ + y = 0,

in some interval 0 < x < d.

Solution This equation has a singular point at the origin, and when expressed in
standard form we see that P(x) = (x − 1)/x and Q(x) = 1/x2, so

p0 = lim
x→0

xP(x) = −1 and q0 = lim
x→0

x2 Q(x) = 1.

Thus, the origin is a regular singular point, and from (30) the indicial equation is
seen to be

c(c − 1) − c + 1 = 0, or (c − 1)2 = 0,

so the roots are c = 1 (twice).
Substituting the series

y(x) =
∞∑

n=0

anxn+c

into the differential equation gives

∞∑
n=0

(n + c)(n + c − 1)anxn+c +
∞∑

n=0

(n + c)anxn+c+1

−
∞∑

n=0

(n + c)anxn+c +
∞∑

n=0

anxn+c = 0.

Shifting the summation index in the second summation allows it to be written

∞∑
n=1

(n + c − 1)an−1xn+c,
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so using this in the preceding equation and separating out the terms corresponding
to n = 0 we find that

a0[c(c − 1) − c + 1]xc +
∞∑

n=1

{[(n + c)(n + c − 2) + 1]an + (n + c − 1)an−1}xn+c = 0.

As usual, equating the coefficient of xc to zero gives the indicial equation, and
equating the coefficient of xn+c to zero gives the recurrence relation

[(n + c)(n + c − 2) + 1]an = −(n + c − 1)an−1 for n = 1, 2, . . . .

Setting c = 1 this becomes

an = −an−1/n,

so

a1 = −a0, a2 = −1
2

a0 = 1
2!

a0, a3 = −1
3

a2 = 1
3!

a0

and, in general,

an = (−1)n

n!
for n = 0, 1, 2, . . . .

Setting the arbitrary constant a0 = 1 gives as a fundamental solution of the
equation

y1(x) =
∞∑

n=0

(−1)n

n!
xn+1 = xe−x.

The series for e−x converges for x > 0, so this result is valid for all x > 0.
Continuing, we now illustrate two different methods by which a second linearly

independent solution may be found.
Method 1. As the form of solution y1(x) is particularly simple, we will make

use of result (35) of Section 6.3 that asserts that if y1(x) is a solution of the equation

y′′ + P(x)y′ + Q(x)y = 0,

then a second linearly independent solution is given by the reduction of orderan example using
the reduction of
order method

formula

y2(x) = y1(x)
∫

exp[− ∫ P(x)dx]
[y1(x)]2

dx.

Substituting for y1(x) and P(x) gives∫
P(x)dx =

∫
(x − 1)

x
dx = x − ln x, so exp

[
−
∫

P(x)dx
]

= xe−x.

Thus,

y2(x) = y1(x)
∫

xe−x

x2e−2x
dx = y1(x)

∫
ex

x
dx.

To integrate this result we replace ex by its series expansion and integrate term by
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term to obtain

y2(x) = xe−x
∫ (

1 + x + x2

2! + x3

3! + x4

4! + · · ·
x

)
dx

= xe−x
(

ln x + x + x2

4
+ x3

18
+ x4

96
+ x5

600
+ · · ·

)
.

In order to compare this method with the one that is to follow, we rewrite this
result by replacing e−x by the first few terms of its series expansion to give

y2(x) = xe−x ln x + x
(

1 − x + x2

2!
− x3

3!
+ · · ·

)(
x + x2

4
+ x3

18
+ x4

96
+ x5

600
+ · · ·

)
.

Multiplying the two series together then shows that for some d2

y2(x) = xe−x ln x +
(

x2 − 3x3

4
+ 11x4

36
− 25x5

288
+ · · ·

)
, for 0 < x < d2,

where d2 is the radius of convergence of the bracketed series.
Method 2. Theorem 8.2(c) asserts that the second linearly independent solu-

tion has the form

y2(x) = y1(x) ln x + x2
∞∑

n=0

bnxn = y1(x) ln x +
∞∑

n=0

bnxn+2.

Substituting this result into the differential equation and collecting terms gives

[x2 y′′
1 (x) + (x2 − x)y′

1(x) + y1(x)] ln x + 2xy′
1(x) + xy1(x) − 2y1(x)

+
∞∑

n=0

(n + 2)(n + 1)bnxn+2 +
∞∑

n=0

(n + 2)bnxn+3 −
∞∑

n=0

(n + 2)bnxn+2

+
∞∑

n=0

bnxn+2 = 0.

Notice that the logarithmic term has vanished because y1(x) is a solution of the
differential equation.

Shifting the summation index in the second summation, we obtain

2xy′
1(x) + xy1(x) − 2y1(x) +

∞∑
n=0

(n + 2)(n + 1)bnxn+2

+
∞∑

n=1

(n + 1)bn−1xn+2 −
∞∑

n=1

(n + 2)bnxn+2 +
∞∑

n=0

bnxn+2 = 0.

Separating out the terms corresponding to n = 0 allows this to be written as

2xy′
1(x) + xy1(x) − 2y1(x) + b0x2 +

∞∑
n=1

(n + 1)[(n + 1)bn + bn−1]xn+2 = 0.

The terms involving y1(x) are now obtained by differentiation of the series

y1(x) = xe−x = x − x2 + x3/3 − x4/6 + x5/24 − · · · ,
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leading to

2xy′
1(x) + xy1(x) − 2y1(x) = −x2 + x3 − x4/2 + x5/6 − x6/24 + · · · .

Using this result in the above equation and expanding the terms involving bn

gives

(−x2 + x3 − x4/2 + x5/6 − x6/24 + · · ·) + b0x2 + 2(2b1 + b0)x3

+ 3(3b2 + b1)x4 + 4(4b3 + b2)x5 + 5(5b4 + b3)x6 + · · · = 0.

Finally, equating the coefficients of powers of x to zero gives

b0 − 1 = 0, 4b1 + b0 + 1 = 0, 9b2 + 3b1 − 1/2 = 0, . . . .

so that

b0 = 1, b1 = −3/4, b2 = 11/36, b3 = −25/288, . . . .

Substituting these coefficients into the general form of the solution again pro-
duces the second solution found by Method 1, though in this case Method 1 was
simpler.

When the indicial equation has either equal roots or roots differing by an
integer, and only the leading terms (the most significant ones) are required in the
second linearly independent solution y2(x), the reduction of order method is often
the simplest one to use. This approach is illustrated in the following example, and
it is typical of how best to proceed when the integrand in result (35) of Section 6.3
involves a quotient of polynomials.

EXAMPLE 8.11 Find the solution of

x2 y′′ + (x3 − x)y′ + y = 0

in some interval 0 < x < d.

Solution The equation has a singular point at the origin, and when it is written in
standard form, we find that P(x) = x − 1/x and Q(x) = 1/x2. Thus,

p0 = lim
x→0

xP(x) = −1 and q0 = lim
x→0

x2 Q(x) = 1,

so the origin is a regular singular point and the indicial equation is

c(1 − c) − c + 1 = 0 or (c − 1)2 = 0,

with the double root c = 1.
Making the substitution y(x) = ∑∞

n=0 anxn+c in the differential equation gives

∞∑
n=0

(n + c)(n + c − 1)anxn+c +
∞∑

n=0

(n + c)anxn+c+2 −
∞∑

n=0

(n + c)anxn+c

+
∞∑

n=0

anxn+c = 0.
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A shift of the summation index brings this to the form

(c2 − 2c + 1)xc + c2xc+1 +
∞∑

n=2

(n + c)(n + c − 1)anxn+c +
∞∑

n=2

(n + c − 2)an−2xn+c

−
∞∑

n=2

(n + c)anxn+c +
∞∑

n=2

anxn+c = 0,

and after combination of the summations this becomes

(c2 − 2c + 1)a0xc + c2a1xc+1 +
∞∑

n=2

{[(n + c)(n + c − 2) + 1]an

+ (n + c − 2)an−2}xn+c = 0.

Equating the coefficient of xc to zero gives the indicial equation with the double
root c = 1, and equating the coefficient of xc+1 to zero shows that a1 = 0, because
c = 1. Equating the coefficient of xn+c to zero leads to the recurrence relation

[(n + c)(n + c − 2) + 1]an + (n + c − 2)an−2 = 0 for n ≥ 2.

Setting c = 1 in the recurrence relation, we have

an = − (n − 1)
n2

an−2,

but as a1 = 0, it follows immediately that an = 0 for all odd n. As a result we have

a2 = − 1
22

a0, a4 = − 3
42

a2 = 3
22 · 42

a0, a6 = − 5
62

a4 = − 1 · 3 · 5
22 · 42 · 62

a0, . . . ,

so a fundamental solution is given by

y1(x) = x
(

1 − 1
22

x2 + 1 · 3
22 · 42

x4 − 1 · 3 · 5
22 · 42 · 62

x6 − · · ·
)

,

or for 0 < x < d1, where d1 is the radius of convergence of y1(x), by

y1(x) = x − 1
22

x3 + 1 · 3
22 · 42

x5 − 1 · 3 · 5
22 · 42 · 62

x7 + · · · .

The reduction of order method in (35) of Section 6.3 shows that

y2(x) = y1(x)
∫

exp
[− ∫ P(x)dx

]
[y1(x)]2

dx,

but exp[− ∫ P(x)dx] = exp(−x2/2), so

y2(x) = y1(x)
∫

exp(−x2/2)
[y1(x)]2

dx.

To find the leading terms in the expansion for y2(x) it is now necessary to replace
exp(−x2/2) and [y1(x)]2 by the first few terms of their series expansions and then
to convert the integrand to a polynomial that can be integrated term by term. We
have

y2(x) = y1(x)
∫

x
(
1 − 1

2 x2 + 1
8 x4 − 1

48 x6 + 1
384 x8 − · · ·)

x2
(
1 − 1

4 x2 + 3
64 x4 − 5

768 x6 + 35
49152 x8 − · · ·)2 dx.
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If the bracketed term in the denominator is now squared, the integral becomes

y2(x) = y1(x)
∫ (

1 − 1
2 x2 + 1

8 x4 − 1
48 x6 + 1

384 x8 − · · ·)
x
(
1 − 1

2 x2 + 5
32 x4 − 7

192 x6 + 169
24576 x8 − · · ·)dx.

Division of the two polynomials using long division, or writing the numerator as

1
x

(
1 − 1

2
x2 + 1

8
x4 + · · ·

)(
1 − 1

2
x2 + 5

32
x4 − · · ·

)−1

and multiplying the bracketed terms after using the binomial theorem to expand
the second bracket, converts the expression for y2(x) to

y2(x) = y1(x)
∫

1
x

(
1 − 1

32
x4 + 5

8192
x8 − · · ·

)
dx.

Integrating term by term, we find that for some d2 > 0, the first few terms of the
series solution y2(x) are

y2(x) = y1(x)
[

ln x − 1
128

x4 + 5
65536

x8 + · · ·
]

,

or

y2(x) = y1(x) ln x + x
(

1 − 1
4

x2 + 3
64

x4 − 5
768

x6

+ 35
4915

x8 − · · ·
)(

− 1
128

x4 + 5
65536

x8 + · · ·
)

.

After multiplication of the two series we obtain

y2(x) = y1(x) ln x −
(

1
128

x5 − 59
65536

x9 + · · ·
)

in some interval of the form 0 < x < d2, where d2 is the radius of convergence of
the bracketed series. The general solution is thus

y(x) = C1 y1(x) + C2 y2(x), for 0 < x < d,

where C1 and C2 are arbitrary constants and d = min{d1, d2}.

When using this approach it is important to ensure that sufficient terms are
retained in the intermediate calculations involving the polynomials for the final
result to be accurate to the required power of x.

Case (d) Complex Conjugate Roots
EXAMPLE 8.12 Find the solution of the Cauchy–Euler equation

x2 y′′(x) − xy′(x) + 10y(x) = 0

in some interval 0 < x < d.

Solution This equation has a singular point at the origin, and when expressed in
standard form P(x) = −1/x and Q(x) = 10/x2. We have

lim
x→0

xP(x) = −1 and lim
x→0

x2 Q(x) = 10,
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so the origin is a regular singular point. From (30) the indicial equation is seen to
be

c2 − 2c + 10 = 0

with the complex conjugate roots c = 1 ± 3i . Substituting

y(x) =
∞∑

n=0

anxn+c

into the differential equation leads to the result
∞∑

n=0

(n + c)(n + c − 1)anxn+c −
∞∑

n=0

(n + c)anxn+c +
∞∑

n=0

10anxn+c = 0.

After terms are collected under a single summation sign, this becomes
∞∑

n=0

[(n + c)(n + c − 2) + 10]anxn+c = 0.

Equating to zero the coefficient of xc, corresponding to n = 0, gives

(c2 − 2c + 10)a0 = 0,

but by hypothesis a0 �= 0, so this simply yields the indicial equation. Equating to
zero the coefficient of xn+c for n = 1, 2, . . . gives

(n + c)(n + c + 10)an = 0,

but as c = 1 ± 3i , the factor (n + c)(n + c + 10) �= 0 for any value of n, so it follows
that an = 0 for n = 1, 2, . . . . Thus, from Theorem 8.2(d), it follows that two linearly
independent solutions of the differential equation are obtained by taking the real
and imaginary parts of

y(x) = a0x1+3i = a0x exp{ln x3i } = a0x exp{3i ln x}
= a0x{cos(3 ln x) + i sin(3 ln x)}.

Setting the arbitrary constant a0 = 1 and taking the real and imaginary parts of
this last result shows that two linearly independent solutions are

y1(x) = x cos{3 ln x} and y2(x) = x sin{3 ln x},
each of which is defined for x > 0. These solutions form a basis for the solution of
the differential equation whose general solution is

y(x) = C1x cos{3 ln x} + C2x sin{3 ln x}, for x > 0,

where C1 and C2 are arbitrary constants.

More information about singular points and the Frobenius method can be found
in references [3.3] to [3.6].

Summary This section showed how the power series solutions considered previously must be modi-
fied if solutions are to be obtained in the form of expansions about regular singular points.
The method due to Frobenius for obtaining such solutions was then developed system-
atically and illustrated by examples, with particular attention being given to the various
special cases that arise depending on the relationship that exists between the roots of the
indicial equation.
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EXERCISES 8.4

In Exercises 1 and 2, shift the summation indices to com-
bine the given expressions into the sum of a finite number
of terms and a single summation.

1. (a) 2
∞∑

n=0

anxn+c + (1 + x)
∞∑

n=0

anxn+c−2.

(b) 3
∞∑

n=0

anxn+c + 2x2
∞∑

n=0

anxn+c−1.

2. (a) (x − x3)
∞∑

n=0

anxn+c + 3
∞∑

n=0

anxn+c−1.

(b) (x2 − x)
∞∑

n=0

anxn+c + 2
∞∑

n=0

anxn+c−2.

In Exercises 3 through 6, use long division and multiplica-
tion of series to find the first four terms of the given expres-
sions.

3. (a)
1

∞∑
n=0

(−1)nxn/(n + 1)

.

(b) (1 − x/2 + x2/4 − x3/8 + x4/16 − x5/32 + · · ·) exp(x).
(c) (1 − x/2 + x2/3 − x3/4 + x4/5 − · · ·)(1 − x +

x2/2 − x3/3 + x4/4 − · · ·).
4. (a) (1 + 2x + x2)/(3 − x + 2x4).

(b)

( ∞∑
n=1

xn

n2

)( ∞∑
n=1

(−1)n+1xn

(n + 1)

)
.

5. (a)
∫

1
x

(
1 − 3x + x2

2 − exp(x)

)
dx. (b)

∫
exp x

(x + x2 + x3)
dx.

6. (a)
∫

1
x2

(1 + 2x − x2)
(1 + x + 2x3)

dx. (b)
∫

1
x

exp(−x)
(1 − 2x + 2x2)

dx.

In Exercises 7 through 26, find two linearly independent so-
lutions for x > 0, and determine at least the first four leading
terms in the second solution y2(x).

7. 4x2 y′′ + 2xy′ + (x − 2)y = 0.

8. 3x2 y′′ − xy′ + (x + 1)y = 0.

9. 2x2 y′′ + xy′ − (2x + 1)y = 0.

10. 2x2 y′′ + xy′ − (3x + 1)y = 0.

11. (x2 − 1)y′′ + 2xy′ + y = 0.

12. 2x2 y′′ + 2xy′ + (x2 − 2)y = 0.

13. x(1 − x)y′′ + (1 − x)y′ − y = 0.

14. 2x2 y′′ − 2xy′ + (x2 + 2)y = 0.

15. x2 y′′ + (2x2 − x)y′ + y = 0.

16. x2 y′′ + 2(x2 − x)y′ + 2y = 0.

17. x2 y′′ + (x2 − 2x)y′ + 2y = 0.

18. x2 y′′ − xy′ + (x2 + 1)y = 0.

19. 16x2 y′′ + 8xy′ + (16x + 1)y = 0.

20. 2x2 y′′ + 2xy′ + (x − 2)y = 0.

21. x2 y′′ + (x2 − x)y′ − 3y = 0.

22. 4x2 y′′ − 2x2 y′ + (2x + 1)y = 0.

23. x2 y′′ + (x2 + x)y′ − 4y = 0.

24. 9x2 y′′ − 6xy′ + 2y = 0.

25. x2 y′′ − 4xy′ + 20y = 0.

26. 4x2 y′′ + 8xy′ + 5y = 0.

27. By shifting the critical point to the origin, find two lin-
early independent solutions of the following equation
in an interval of the form 0 < x + 1 < d:

2(x + 1)y′′ + y′ − (x + 1)y = 0.

28. By shifting the critical point to the origin, find two lin-
early independent solutions of the following equation
in an interval of the form 0 < x − 2 < d:

(x − 2)2 y′′ − (x − 2)y′ + (x2 − 4x + 5)y = 0.

8.5 The Gamma Function Revisited

The function �(x), called the gamma function, was introduced in (4) ofmore about the
Gamma function Section 7.1 in connection with the Laplace transform of ta when a is not an in-

teger, and it was defined in terms of the improper integral

�(x) =
∫ ∞

0
e−t t x−1 dt for x > 0. (32)

a fundamental result
It was shown that �(x) satisfies the recurrence relation

�(x + 1) = x�(x) for x > 0, (33)
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FIGURE 8.4 The function �(x) in the interval
0 < x < 5.
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FIGURE 8.5 The function �(x) in the interval
−3 < x < 4.

and that when x is a positive integer n the gamma function reduces to

�(n + 1) = n!. (34)

Thus, for any real x > 0, the function �(x) interpolates continuously between
successive values of n!, and so generalizes the factorial function to nonintegral
values of n. For obvious reasons the gamma function is sometimes called the
factorial function. Figure 8.4 shows a graph of �(x) in the interval 0 < x < 5.

The gamma function can be extended to x < 0 for x �= −1, −2, . . . , at which
point it becomes infinite. A graph of �(x) in the interval −3 < x < 4 is shown in
Fig. 8.5.

The value of �(1/2) is often needed, and it can be found by means of the
following method in which the integral defining �(1/2) is squared and converted to
a double integral that is easily evaluated. If the method used is unfamiliar the details
can be omitted, though the result given in (35) is useful and should be remembered.

From (32) we have

[�(1/2)]2 =
(∫ ∞

0
u−1/2e−udu

)(∫ ∞

0
v−1/2e−vdv

)
,

where the two dummy variables u and ν have been introduced to avoid confusion
when the product of integrals is combined.

Writing u = x2 and v = y2 allows this product of integrals to be written as

[�(1/2)]2 =
(∫ ∞

0
2e−x2

dx
)(∫ ∞

0
2e−y2

dy
)

= 4
∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy.

As the integral in terms of cartesian coordinates is only evaluated over the first
quadrant, changing to the polar coordinates (r, θ) by setting x = r cos θ, y = r sin θ ,
and using the result r2 = x2 + y2 reduces this last integral to

[�(1/2)]2 = lim
ρ→∞ 4

∫ π/2

0
dθ

∫ ρ

0
e−r2

rdr = 4 · (π/2) lim
ρ→∞

[
−1

2
e−r2

]ρ

0
= π.

Taking the square root shows thata useful special case

�(1/2) = √
π. (35)
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When x is a multiple of 1/2, repeated use of recurrence relation (33) combined
with result (35) allows �(x) to be simplified, as illustrated in the following example.

EXAMPLE 8.13 Find (a) �(7/2) and (b) �(−3/2).

Solution

(a) From (33) it follows that

�

(
7
2

)
= 5

2
�

(
5
2

)
= 5

2
· 3

2
�

(
3
2

)
= 5

2
· 3

2
· 1

2
�

(
1
2

)
= 15

8

√
π.

(b) Setting x = −3/2 in (33) gives(
−3

2

)
�

(
−3

2

)
= �

(
−1

2

)
,

whereas setting x = −1/2 in (33) gives

(
−1

2

)
�

(
−1

2

)
= �(1/2) = √

π.

So, combining these two results, we find that

�

(
−3

2

)
=
(

−2
3

)(
−2

1

)
�(1/2) = 4

3

√
π.

The reason for this re-examination of the gamma function is because it enables
the coefficients of a series expansion to be expressed in a concise form. For example,
it follows directly from (34) that the binomial coefficient

(
n
m

)
= n!

m!(n − m)!
= �(n + 1)

�(m + 1)�(n − m + 1)
. (36)

Expressing a binomial coefficient with integer entries in terms of the gamma
function offers no particular advantage over the use of factorials, but the preceding
result generalizes to the more useful result

(
α

m

)
= �(α + 1)

�(m + 1)�(α − m + 1)
(37)

when α is any nonnegative real number (not necessarily an integer). This expression
is often useful when performing numerical calculations.

As another example of the use of (33) we notice that we can write

a(a + 1)(a + 2) . . . (a + n) = �(a + n + 1)
�(a)

, (38)
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where n is a positive integer and the real number a > 0. Thus, for example, in terms
of the gamma function the following product becomes(

1
2

)(
3
2

)(
5
2

)(
7
2

)
= �

( 1
2 + 3 + 1

)
�
( 1

2

) = �
( 9

2

)
�
( 1

2

) .
Result (38) generalizes further to provide a concise representation of the prod-

uct of n + 1 factors c(c + d)(c + 2d) . . . (c + nd). By writing the product as

c(c + d)(c + 2d) . . . (c + nd) = dn+1
( c

d

) ( c
d

+ 1
) ( c

d
+ 2

)
· · ·
( c

d
+ n

)
,

and then setting a = c/d in (38), we arrive at the useful result

c(c + d)(c + 2d) . . . (c + nd) = dn+1 �
( c

d + n + 1
)

�
( c

d

) . (39)

EXAMPLE 8.14 The nth coefficient of a series is given by

an = 1 · 5 · 9 · 13 . . . (4n + 1)
2n

.

Express an in terms of the gamma function.

Solution Comparing the numerator of an with result (39) shows that it contains
n + 1 factors, and in the notation of (39) we have c = 1 and d = 4. Thus,

1 · 5 · 9 · 13 . . . (4n + 1) = 4n+1 �
(
n + 5

4

)
�
( 1

4

) ,

so dividing by 2n we find that

an = 4n+1 �
(
n + 5

4

)
2n�

( 1
4

) = 2n+2 �
(
n + 5

4

)
�
( 1

4

) .

Two special products of this type arise when working with series as, for example,
occurs in the case of Legendre polynomials. These products involve either the
product of consecutive pairs of odd numbers or the product of consecutive pairs of
even numbers. Although these products can be expressed in terms of the gamma
function, a convenient and concise double factorial notation is used. We define thethe double factorial
double factorial !! as follows:

1 · 3 · 5 · · · (2n + 1) = (2n + 1)!! and 2 · 4 · 6 · · · (2n) = (2n)!!. (40)

Alternative expressions for these double factorials in terms of the usual factorial
function are

(2n + 1)!! = (2n + 1)!
2nn!

and (2n)!! = 2nn!. (41)

The following relationship connecting gamma functions is sometimes useful:

�(x)�(1 − x) = π

sin πx
. (42)
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However, this result will not be proved here as it requires the techniques of complex
integration.

In passing, we mention a function B(x, y) called the beta function that is related
to the gamma function. The beta function, which has applications in statistics andthe beta function
elsewhere, is defined as the integral

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt with x > 0, y > 0. (43)

The following are the most important properties of the beta function:

Symmetry:

B(x, y) = B(y, x) (44)

Connection with the gamma function:relating gamma and
beta functions

B(x, y) = �(x)�(y)
�(x + y)

(45)

Relationship between beta functions:

B(x, y) =
(

y − 1
x + y − 1

)
B(x, y − 1) =

(
x + y

y

)
B(x, y + 1), (46)

Special values:

B(1, 1) = 1 and B(1/2, 1/2) = π. (47)

Outline proofs of results (42) to (44) will be found in the harder exercises at
the end of this section.

The gamma function in the complex plane is discussed in reference [6.7], and
general information about the gamma function and related functions is contained
in Chapter 6 of reference [G.1] and Chapter 11 of reference [G.3].

Summary The gamma function that was introduced earlier was seen to provide a natural extension
to arbitrary values of x of the factorial function n!, where n is an integer. In this section the
gamma function was examined in greater detail and some useful values were derived in
terms of π . The beta function was then defined and related to the gamma function.

EXERCISES 8.5

1. Express �(5/2), �(−5/2), and �(9/2) in terms of√
π .

2. Express �(−9/2), �(11/2), and �(−11/2) in terms
of

√
π .

3. Express �(5/4), �(−5/4), and �(7/4) in terms of ei-
ther �(1/4) or �(−1/4).

4. Express �(−7/4), �(9/4), and �(3/4) in terms of ei-
ther �(1/4) or �(−1/4).

5. Express the product 6 · 11 · 16 · 21 . . . (5n + 6) in terms
of the gamma function.

6. Express the product 1 · 3 · 5 · 7 · 11 . . . .(2n + 1) in
terms of the gamma function.
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7. Express the product 5 · 8 · 11 · 14 . . . (3n + 5) in terms
of the gamma function.

8. Express the product 4 · 8 · 12 · 16 . . . (4n + 4) in terms
of the gamma function.

9. Show that

�

(
1
2

− n
)

= (−1)n√π(
n − 1

2

)(
n − 3

2

)(
n − 5

2

)· · ·( 1
2

) .
10. Show that

�

(
n + 1

2

)
=
(

n − 1
2

)(
n − 3

2

)
· · ·
(

1
2

)√
π.

The following slightly harder exercises provide more infor-
mation about the gamma function.
11.* Use the result �(n + 1

2 ) = (n − 1
2 )�(n − 1

2 ) with the re-
sult of Exercise 9 to show that

�(2n) = 22n−1�(n)�
(
n + 1

2

)
√

π
.

12.* Show that �(x) = ∫ 1
0 (ln 1

u )x−1du for x > 0.

13.* Show that �(x) = 2
∫∞

0 e−u2
u2x−1du for x > 0.

14.* The function ψ(x), called the psi function or the
digamma function, is defined as

ψ(x) = d
dx

[ln �(x)].

Show that

ψ(x + 1) = ψ(x) + 1
x

for x > 0.

15.* Use the result of Exercise 14 to show that

ψ(x + n) = ψ(x) +
n−1∑
k=0

1
x + k

where n >1 is an integer.

16.* By making the variable change u = 1 − t in the inte-
gral defining B(x, y), show that B(x, y) = B(y, x).

17.* Integrate B(x, y) by parts to obtain the result of (46)
that

B(x, y) =
(

y − 1
x + y − 1

)
B(x, y − 1),

and use this result to obtain the second result of (46).
18.* Use the result of Exercise 17 to show that if m and n

are integers,

B(m, n) = (m − n)!(n − 1)!
(m + m − 1)!

= �(m)�(n)
�(m + n)

,

and so

B(m, n) = �(m)�(n)
�(m + n)

.

8.6 Bessel Function of the First Kind Jn(x)

In standard form, Bessel’s equation is writtenBessel’s equation

x2 d2 y
dx2

+ x
dy
dx

+ (x2 − ν2)y = 0, (48)

where ν ≥ 0 is a real number. Another useful form of Bessel’s equation that often
arises in applications is

x2 d2 y
dx2

+ x
dy
dx

+ (λ2x2 − ν2)y = 0. (49)

This form of the equation is obtained from (48) by first making the change of
variable x = λu, and then replacing u by x.

When developing the properties of Bessel functions in this section the standard
form of the equation given in (48) will be used. Applications of Bessel functions to
partial differential equations are made in Chapter 18.

Bessel’s equation has a singularity at the origin, and using the notation of
Section 8.4 with P(x) = 1/x and Q(x) = (x2 − ν2)/x2, we find that

p0 = lim xP(x) = 1
x→0

and q0 = lim
x→0

x2 Q(x) = −ν2,

showing that the origin is a regular singular point.
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The indicial equation is seen to be

c2 − ν2 = 0, (50)

so the roots c1 = ν and c2 = −ν are distinct when ν �= 0, and there is a repeated zero
root when ν = 0. Thus, when ν = 0, the second Frobenius solution will contain a
logarithmic term, whereas when c1 − c2 is an integer the second Frobenius solution
may or may not contain a logarithmic term. When c1 − c2 �= 0 is not an integer,
neither of the two linearly independent Frobenius solutions contains a logarithmic
term.

Substituting y(x) = ∑∞
r=0 ar xr+c into (48) gives

∞∑
r=0

(r + c)(r + c − 1)ar xr+c +
∞∑

r=0

(r + c)ar xr+c +
∞∑

r=0

ar xr+c+2 − ν2
∞∑

r=0

ar xr+c = 0.

Shifting the summation index in the third summation and collecting terms under a
single summation leads to the result

(c2 − ν2)a0xc + [(c + 1)2 − ν2]a1xc+1 +
∞∑

r=2

[(r + c + ν)(r + c − ν)ar + ar−2]xr+c = 0.

Equating the coefficients of powers of x to zero shows the following:

Coefficient of xc:

(c2 − ν2)a0 = 0 (the indicial equation, because a0 �= 0)

Coefficient of xc+1:

[(c + 1)2 − ν2]a1 = 0 (a condition on a1)

Coefficient of xr+c:

[(r + c)2 − ν2]ar + ar−2 = 0 (a recurrence relation) (51)

As (c + 1)2 − ν2 �= 0, it follows from the second result that a1 = 0, and then from
the recurrence relation (51) that ar = 0 for all odd r . As only even indices r are
involved in the recurrence relation, we set r = 2m with m = 0, 1, . . . , after which
substituting c = ν in the recurrence relation reduces it to

a2m = − 1
4m(m + ν)

a2m−2, for m = 1, 2, . . . . (52)

As a0 is arbitrary, we normalize the solution in the standard manner by setting

a0 = 1
2ν�(1 + ν)

,

after which the coefficients a2m become

a2 = − a0

22(1 + ν)
= − 1

22+ν1!�(2 + ν)
, a4 = − a2

222(2 + ν)
= 1

24+ν2!�(3 + ν)
, . . . ,

and, in general,

a2m = − (−1)m

22m+νm!�(m + 1 + ν)
, for m = 1, 2, . . . . (53)
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Using this result in the first Frobenius solution, which hereafter will be denoted by
Jν(x) and called a Bessel function of the first kind of order ν, givesthe Bessel function

Jν(x)

Jν(x) = xν
∞∑

m=0

(−1)mx2m

22m+νm!�(m + 1 + ν)
for x ≥ 0. (54)

When x < 0 the corresponding expression for Jν(x) follows from the preceding
result by reversing the sign of x in the series and replacing xν by |x|ν . The ratio test
shows the series for Jν(x) to be absolutely convergent for all x.

So far ν has been an arbitrary nonnegative number, but the standard convention
is that when ν is an integer it is denoted by n. Using the result that when ν = n the
gamma function �(m + 1 + n) = (m + n)! allows Jn(x) to be written in the simpler
form

Jn(x) =
∞∑

m=0

(−1)m x2m+n

22m+nm!(m + n)!
, for n = 0, 1, 2, . . . . (55)

It was because of this use of n that, to avoid confusion, the summation index in the
series was chosen to be m. The two most important special cases of (55) are:

Bessel function of the first kind of order zero:Bessel functions
J0(x) and J1(x)

J0(x) =
∞∑

m=0

(−1)m x2m

22m(m!)2
= 1 − x2

22(1!)2
+ x4

24(2!)2
− x6

26(3!)2
+ · · · (56)

Bessel function of the first kind of order 1:

J1(x) =
∞∑

m=0

(−1)m x2m+1

22m+1m!(m + 1)!
= x

2
− x3

231!2!
+ x5

252!3!
− x7

273!4!
+ · · · .

(57)

Graphs of J0(x), J1(x), and J2(x) are shown in Fig. 8.6.
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FIGURE 8.6 Graphs of the Bessel functions of the first
kind J0(x), J1(x), and J2(x).
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Having found Jν(x), which is one solution of Bessel’s equation (48), we must
now find a second linearly independent solution in order to arrive at a basis for
solutions of the equation, and hence to arive at the general solution. The nature
of a second linearly independent solution will depend on the value of ν, and the
simplest situation arises when ν is not an integer. In this case, because c2 = ν2, a
second linearly independent solution will follow from (54) by replacing ν by −ν.
Denoting this second solution by J−ν(x) we find that

J−ν(x) = |x|−ν
∞∑

m=0

(−1)m x2m

22m−νm!�(m + 1 − ν)
for x �= 0. (58)

When ν is not an integer, the general solution of Bessel’s equation (48) can begeneral solution of
Bessel’s equation written

y(x) = C1 Jν(x) + C2 J−ν(x), for x �= 0, (59)

with C1 and C2 arbitrary constants. The corresponding general solution of (49) is
then

y(x) = C1 Jν(λx) + C2 J−ν(λx), for x �= 0. (60)

The nature of the second linearly independent solution when ν = n will be
considered later. In the meantime we will show that when ν = n, the Bessel functions
Jn(x) and J−n(x) are linearly dependent. This is most easily seen by taking the limit
of (58) as ν → n. Gamma functions with negative integer arguments are infinite, so
the coefficients a2m in which they occur will all vanish, causing the summation to
start at the value m = n. Using the result �(m + 1 − n) = (m − n)! then shows that
the series for J−n(x) is

J−n(x) =
∞∑

m=n

(−1)m x2m−n

22m−nm!(m − n)!
,

and after a shift of the summation index this becomes

J−n(x) = (−1)n
∞∑

m=n

(−1)m x2m+n

22m+nm!(m + n)!
, for n = 1, 2, . . . . (61)

A comparison of (55) and (61) shows that J−n(x) is a constant multiple of Jn(x), so
the two functions Jn(x) and J−n(x) are linearly dependent. To be precise,

J−n(x) = (−1)n Jn(x) for n = 1, 2, . . . . (62)

The absolute convergence of the series for Jν(x) allows it to be differentiated
term by term. Using this fact, and comparing of the derivative of the series for J0(x)
with the series for J1(x), shows that

J ′
0(x) = −J1(x). (63)

This result is the simplest example of the many relationships that exist between
Bessel functions. The four most important results are the following:
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Relationships between derivatives of Jν(x):relationships between
derivatives and some
recurrence relations d

dx
[xν Jν(x)] = xν Jν−1(x) (64)

d
dx

[
x−ν Jν(x)

] = −x−ν Jν−1(x) (65)

Recurrence relations involving Jν(x):

Jν−1(x) + Jν+1(x) = 2ν

x
Jν(x) (66)

Jν−1(x) − Jν+1(x) = 2J ′
ν(x) (67)

We show next that these results are easily verified by substituting the series
solution for Jν(x) given in (54) into each relationship, though the direct derivation
of these relationships is a more complicated matter. An indication of one way in
which to arrive at these results without appealing to the series solution (54) is to be
found in the set of exercises at the end of this section.

To establish (64) we start by multiplying the series (54) for Jν(x) by xν to obtain

xν Jν(x) =
∞∑

m=0

(−1)m x2m+2ν

22m+νm!�(m + 1 + ν)
.

Differentiating this result and removing a factor xν from the summation gives

d
dx

[xν Jν(x)] = xν
∞∑

m=0

(−1)m x2m+ν−1

22m+ν−1�(m + ν)
,

but the series on the right-hand side is simply Jν−1(x), so we have shown that

d
dx

[xν Jν(x)] = xν Jν−1(x).

Result (65) is established in similar fashion by differentiating x−ν Jν(x).
The recurrence relations can be obtained as follows. Carrying out the indicated

differentiations and cancelling a factor xν in (64) and (65) gives

J ′
ν(x) = Jν−1(x) − ν

x
Jν(x) (64)′

and

J ′
ν(x) = ν

x
Jν(x) − Jν+1(x). (65)′

Results (66) and (67) now follow first by subtraction and then by addition of these
two results.

Result (66) is useful because it relates Jν(x) to Jν−1(x) and Jν+1(x), whereas
(64) and (65) can be used to evaluate certain integrals involving Jν(x), because by
integrating (64) and (65) we obtain

∫
xν Jν−1(x)dx = xν Jν(x) + C (68)
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and ∫
x−ν Jν+1(x)dx = −x−ν Jν(x) + C. (69)

EXAMPLE 8.15 Express J4(x) in terms of J0(x) and J1(x), and use the result to compute J4(6.2)
given that J0(6.2) = 0.20175 and J1(6.2) = −0.23292.

Solution Rearranging (66) gives

Jν+1(x) = 2ν

x
Jν(x) − Jν−1(x),

so setting ν = 3, 2, and 1 we have

J4(x) = 6
x

J3(x) − J2(x), J3(x) = 4
x

J2(x) − J1(x), and J2(x) = 2
x

J1(x) − J0(x).

Eliminating J2(x) and J3(x) between these results gives the required expression

J4(x) =
(

48
x3

− 8
x

)
J1(x) +

(
1 − 24

x2

)
J0(x).

Setting x = 6.2 and substituting the given values of J0(6.2) and J1(6.2) shows that
J4(6.2) = 0.32941.

Numerical values of Bessel functions are extensively tabulated, and subroutines
that enable their calculation for arbitrary values of their argument are found in most
computer algebra packages. See the references at the end of the chapter for some
of the most extensive tabulations of Bessel functions.

EXAMPLE 8.16 Evaluate ∫ (
x2 + 1

x

)
J1(x)dx.

Solution We write the integral as the sum of integrals∫ (
x2 + 1

x

)
J1(x)dx =

∫
x2 J1(x)dx +

∫
x−1 J1(x)dx

and consider each separately. Setting ν = 2 in (64) shows that

d
dx

[x2 J2(x)] = x2 J1(x),

so it follows at once that ∫
x2 J1(x)dx = x2 J2(x) + C.

The second integral is a little harder and requires the use of integration by parts.
Writing it as ∫

x−1 J1(x)dx =
∫

x−2[x J1(x)]dx,
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and noticing from (63) with ν = 1 that [x J1(x)]′ = x J0(x), we find that∫
x−1 J1(x)dx =

∫
x−2[x J1(x)]dx = −J1(x) +

∫
x−1x J0(x)dx,

and so ∫
x−1 J1(x)dx = −J1(x) +

∫
J0(x)dx.

No further simplification is possible because
∫

J0(x)dx cannot be expressed
in terms of simpler functions, though

∫ x
0 J0(u)du is available in tabular form and

it is easily evaluated numerically on a computer. However, we will see later that∫∞
0 Jn(x)dx = 1 for n = 0, 1, 2, . . . .

EXAMPLE 8.17 Evaluate
∫

x3 J0(x)dx.

Solution Writing the integrand as the product x3 J0(x) = x2[x J0(x)] and using (64)
with ν = 1 gives∫

x3 J0(x)dx =
∫

x2[x J0(x)]dx =
∫

x2 d
dx

[x J1(x)]dx.

Integration by parts then gives∫
x3 J0(x)dx = x3 J1(x) − 2x2 J2(x) + C.

It can be seen from Fig. 8.6 that the Bessel functions J0(x), J1(x), and J2(x)
are oscillatory in nature and resemble damped sinusoids. The recurrence relation
(66) implies that this same oscillatory property is true for all Jn(x). Although these
Bessel functions are not strictly periodic, in the sense that for any given n the zeros
of Jn(x) are not equally spaced along the x-axis, it can be shown that for fixed ν and
large x the function Jn(x) can be approximated by

Jν(x) ∼
√

2
πx

cos
(

x − νπ

2
− π

4

)
, (70)

where the symbol ∼ is to be read “is asymptotically equal to,” with the under-
standing that the term asymptotic is used here in the technical sense and means
that the ratio of the two sides of the expression tends to 1 as x → ∞. This last
result is an example of what is called an asymptotic expansion of the function Jν(x),asymptotic expansion

of Jν(x) and asymptotic expansions have the property that the larger x becomes, the more
accurate the asymptotic expansion becomes.

When the Bessel functions Jν(x) are required in a computer program, the
series solution (54) is used for small x, and different approximations are used for
large x and in the intermediate region between small and large x. Corresponding
approximations are used when the order ν of a Bessel function is large. The simplest
approximation to Jν(x) for small x, which follows from (54) by setting m = 0, is

Jν(x) ≈ 1
�(1 + ν)

(x
2

)ν

. (71)

The fact that the series for Jν(x) is an alternating series means that the maximum
magnitude of the error made when the series is truncated after n terms is the absolute
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TABLE 8.1 Zeros jn,r of Jn(x) for n = 0, 1, 2, 3

r j0,r j1,r j2,r j3,r

1 2.40482 3.83171 5.13162 6.38016
2 5.52007 7.01559 8.41724 9.76102
3 8.65372 10.17347 11.61984 13.01520
4 11.79153 13.32369 14.79595 16.22347
5 14.93091 16.47063 17.95982 19.40942
6 18.07106 19.61586 21.11700 22.58273

value of the (n + 1)th term. So, if the series

J0(x) = 1 − x2

22(1!)2
+ x4

24(2!)2
− x6

26(3!)2
+ · · ·

is truncated after the term in x4, the maximum error made is |−x6/[26(3!)2]| =
x6/[26(3!)2]. Consequently, if J0(x) is approximated by

J0(x) ≈ 1 − x2

22(1!)2
+ x4

24(2!)2
,

then in the interval 0 ≤ x ≤ a, the absolute value of the maximum error will not
exceed a6/[26(3!)2]. When Jν(x) is required to be accurate to a given number of
decimal places in an interval 0 ≤ x ≤ a, this simple estimate determines how many
terms must be retained in the series approximation for Jν(x).

When using Bessel functions in applications, it is often necessary to know the
location of the zeros of Jn(x), so for future reference Table 8.1 lists the first six zeroszeros of Bessel

functions Jn(x) of Jn(x) for n = 0, 1, 2, 3. In the table the r th zero of Jn(x) is denoted by jn,r , where
the first suffix indicates the order of the Bessel function and the second suffix the
number of the zero. As Jn(0) = 0 for n ≥ 1, the zeros j1,r , j2,r , and j3,r have been
numbered so the first entry to appear in each column is the first nonvanishing zero
of the function involved. Thus, although J1(0) = 0, the first entry to appear in the
column for j1,r is 3.83171, which it will be seen from Fig. 8.6 is the first nonvanishing
zero of J1(x).

Bessel Functions J±n/2(x)
The Bessel functions J±n/2(x) are particularly simple, despite the fact that the dif-
ference between the indices c1 = n/2 and c2 = −n/2 is an integer. The easiest
way to find the form of J±n/2(x) is to use the reduction to standard form given
in Lemma 6.1 of Section 6.3 to remove the first derivative term from Bessel’s
equation.

It follows from the lemma that the substitution u = x1/2 y reduces Bessel’s
equation

x2 y′′ + xy′ + (x2 − ν2)y = 0

to the standard form for a second order equation

u′′ +
(

1 − 4ν2 − 1
4x2

)
u = 0.
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If we now consider the cases of J1/2(x) and J−1/2(x), corresponding to ν2 = 1/4,
the differential equation simplifies to

u′′ + u = 0,

with the general solution

u(x) = C1 sin x + C2 cos x.

As y = x−1/2u, the general solution of Bessel’s equation of order ±1/2 becomes

y(x) = C1

√
1
x

sin x + C2

√
1
x

cos x.

The two functions in the general solution for y(x) are linearly independent, so
we take for the solutions forming a basis for the differential equation with ν = ±1/2
the functions J1/2(x) and J−1/2(x) given byBessel functions of

fractional order

J1/2(x) = C1

√
1
x

sin x and J−1/2(x) = C2

√
1
x

cos x.

The constants C1 and C2 are arbitrary, but to make these results compatible with
the normalization used for a0 when developing the series solution for Jν(x) we
compare these expressions with the asymptotic formula (70), from which we see it
is necessary to set C1 = C2 = √

(2/π), to obtain

J1/2(x) =
√

2
πx

sin x and J−1/2(x) =
√

2
πx

cos x. (72)

Expressions for J±n/2(x) now follow by use of recurrence relation (66). Thus,
for example, setting ν = 1/2 in (66) gives

J3/2(x) = 1
x

J1/2(x) − J−1/2(x) =
√

2
πx

(
sin x

x
− cos x

)
, (73)

and, similarly, setting ν = −1/2 gives

J−3/2(x) = −
√

2
πx

(
sin x + cos x

x

)
. (74)

We have shown that all Bessel functions J±n/2(x) with n an odd integer are
expressible in terms of elementary functions. The derivation of J±1/2(x) directly
from series (54) forms an exercise in the set at the end of this section.

FRIEDRICH WILHELM BESSEL (1784–1846)
A German mathematician who started his career as a clerk apprenticed to a mercantile office in
Bremen where he remained for a number of years. Using published observations he calculated
the orbit of Haley’s comet and submitted his calculations to the astronomer H.W.M. Olbers who
recognized his ability and, after recommending the work for publication, arranged for Bessel to
become an assistant in the observatory in Lilienthal. His major mathematical contribution was
the introduction, in a paper of 1824 devoted to planetary motions, of the class of transcendental
functions now known as Bessel functions.
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Summary Bessel’s equation was introduced and series solutions were obtained by the Frobenius
method for the Bessel function J ν(x) of the first kind of order ν. It was shown that Bessel
functions of the first kind of fractional order ±n/2, with n odd, could be expressed in terms
of products of sines and cosines and 1/

√
x.

EXERCISES 8.6

1. Write down the first six terms of the series expansion
for J2(x).

2. Write down the first six terms of the series expansion
for J3(x).

3. Derive result (65) by differentiating the product of
x−1/2 and the series for Jν(x) given in (54).

4. Determine how many terms must be retained in the
series for J0(x) for it to be accurate to four decimal
places over the interval 0 ≤ x ≤ 4.

5. Determine how many terms must be retained in the
series for J0(x) for it to be accurate to four decimal
places over the interval 0 ≤ x ≤ 2.

6. Determine how many terms must be retained in the se-
ries for J0(x) for it to be accurate to six decimal places
over the interval 0 ≤ x ≤ 1.

7. Determine how many terms must be retained in the se-
ries for J0(x) for it to be accurate to six decimal places
over the interval 0 ≤ x ≤ 2.

8. Determine how many terms must be retained in the
series for J1(x) for it to be accurate to four decimal
places over the interval 0 ≤ x ≤ 2.

9. Determine how many terms must be retained in the
series for J1(x) for it to be accurate to four decimal
places over the interval 0 ≤ x ≤ 3.

10. Integrate the first four terms in the series for J0(x)
term by term to obtain an approximation to∫ x

0
J0(t)dt.

Estimate the maximum magnitude of the error when
using the result in the interval 0 ≤ x ≤ a.

11. Integrate the first four terms in the series for J1(x)
term by term to obtain an approximation to∫ x

0
J1(t)dt.

Estimate the maximum magnitude of the error when
using the approximation in the interval 0 ≤ x ≤ a. In-
tegrate the integral analytically, and confirm that the
analytical result and the approximation are in agree-
ment.

The Bessel function Jν(λx) is a solution of x2 y′′ + xy′ +
(λ2x2 − ν2)y = 0. Establish the following results by making

the change of variable x = λX in results (64) to (67), and
then replacing X by x.

12.
d

dx
[xν Jν(λx)] = λxν Jν−1(λx).

13.
d

dx
[x−ν Jν(x)] = −λx−ν Jν+1(λx).

14.
d

dx
[Jν(λx)] = λ Jν−1(λx) − ν

x
Jν(λx).

15.
d

dx
[Jν(λx)] = −λ Jν+1(λx) + ν

x
Jν(λx).

16.
d

dx
[Jν(λx)] = λ

2
[Jν−1(λx) − Jν+1(λx)].

17. Jν(λx) = λx
2ν

[Jν−1(λx) + Jν+1(λx)].

18. Use (64)′ and (65)′ to show that

d
dx

[x Jν(x)Jν+1(x)] = x
[
J 2
ν (x) − J 2

ν+1(x)
]
.

19. Show that limx→0 J0(x) = 1, limx→0 Jn(x) = 0 for n =
1, 2, . . . and, limx→∞ Jn(x) = 0 for n = 0, 1, . . . , and
prove that ∫ ∞

0
J1(x)dx = 1.

20. Use the results in Exercise 19 with (67) to show that

1 =
∫ ∞

0
J1(x)ds =

∫ ∞

0
J3(x)dx = · · ·

=
∫ ∞

0
J2n+1(x)dx = · · · for n = 0, 1, . . . .

21. In Section 7.3(d)(ii) it was shown that the Laplace
transform of J0(x) was

L{J0(x)} = 1
(s2 + 1)1/2

.

Use this result to deduce the value of
∫∞

0 J0(x)dx, and
then use (67) together with the results of Exercise 20
to show that

1 =
∫ ∞

0
J0(x)dx =

∫ ∞

0
J1(x)dx =

∫ ∞

0
J3(x)dx = · · ·

=
∫ ∞

0
Jn(x)dx = · · · for n = 0, 1, 2, . . . .

22. Find (a)
∫

x3 J2(x)dx and (b)
∫

x−3 J4(x)dx.
23. Express

∫
J4(x)dx in terms of

∫
J0(x)dx.
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24. Express
∫

J5(x)dx in terms of J0(x), J2(x), and J4(x).
25. Express

∫
x J1(x)dx in terms of

∫
J0(x)dx.

26. Express
∫

x2 J0(x)dx in terms of
∫

J0(x)dx.

The exercises that follow, some of which are slightly harder,
provide background information about Bessel functions.

27.* By differentiating under the integral sign with respect
to x, integrating by parts, and combining results using
an elementary trigonometric identity, prove that

J0(x) = 1
π

∫ π

0
cos(x sin θ)dθ

is an integral representation of J0(x) by showing that
it satisfies Bessel’s equation of order zero

x J ′′
0 + J ′

0 + x J0 = 0.

28.* The function exp[ x
2 (t − 1

t )] is the generating function
for the Bessel functions Jn(x), and it has the property
that when it is expanded in powers of t (both positive
and negative),

exp
[

x
2

(
t − 1

t

)]
=

∞∑
n=−∞

Jn(x)tn.

Thus, Jn(x) is the coefficient of tn in the expansion of
the generating function in powers of t. Expand the ex-
ponential as the product of the series for exp[xt/2] and
exp[−x/(2t)], and hence derive the first three terms of
the series expansion of J0(x).

29.* Differentiate the generating function partially with re-
spect to x and equate the coefficients of tn on each side

of the identity to prove that

2J ′
n(x) = Jn−1(x) − Jn+1(x).

30.* Differentiate the generating function partially with re-
spect to t and equate the coefficients of tn−1 on each
side of the identity to prove that

2n
x

Jn(x) = Jn−1(x) + Jn+1(x).

31.* Substitute ν = 1/2 in (54) and (58), and hence show

that J1/2 =
√

2
πx sin x and J−1/2(x) =

√
2

πx cos x.

32.* Use (66) together with results (73) and (74) to show
that

J5/2(x) =
√

2
πx

[(
3
x2

− 1
)

sin x − 3
x

cos x
]

J−5/2(x) =
√

2
πx

[
3
x

sin x +
(

3
x2

− 1
)

cos x
]

J9/2(x) =
√

2
πx

[(
105
x4

− 45
x

+ 1
)

sin x

−
(

105
x3

− 10
x

)
cos x

]
and

J−9/2(x) =
√

2
πx

[(
105
x3

− 10
x

)
sin x

+
(

105
x4

− 45
x2

+ 1
)

cos x
]

.

8.7 Bessel Functions of the Second Kind Yν(x)

It was shown in the previous section that, with the exception of ν = 1/2, the two
Bessel functions Jν(x) and J−ν(x) of the first kind are only linearly independent
solutions of Bessel’s equation when the roots of the indicial equation differ by an
integer. So it remains for us to find a second linearly independent solution when
ν = n and n = 0, 1, 2, . . . . We begin by considering the case n = 0, corresponding
to the repeated root ν = 0, when it follows from Theorem 8.2(b) that the form of
solution to be expected in the case of Bessel’s equation of order zero

Bessel functions of
the second kind xy′′ + y′ + xy = 0 (75)

is

y2(x) = J0(x) ln x +
∞∑

r=0

br xr+1. (76)
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Differentiation of (76) gives

y′
2(x) = J ′

0(x) ln x + J0(x)
x

+
∞∑

r=0

(r + 1)br xr

and

y′′
2 (x) = J ′′

0 (x) ln x + 2J ′
0(x)
x

− J0(x)
x2

+
∞∑

r=0

(r + 1)rbr xr−1.

When these expressions are substituted into (75) the terms in J0(x) cancel, causing
the equation to reduce to

[x J ′′
0 (x) + J ′

0(x) + x J0(x)] ln x + 2J ′
0(x) +

∞∑
r=0

(r + 1)rbr xr

+
∞∑

r=0

(r + 1)br xr +
∞∑

r=0

br xr+2 = 0.

The logarithmic term vanishes because J0(x) is a solution of (75), so the coef-
ficients br are determined by the equation

2J ′
0(x) +

∞∑
r=0

(r + 1)rbr xr +
∞∑

r=0

(r + 1)br xr +
∞∑

n=0

br xr+2 = 0.

To proceed further it is necessary to determine J ′
0(x), but this can be found by differ-

entiating (56) in Section 8.6. After cancellation of a factor 2m from the numerator
and denominator of the resulting expression, and noticing that the summation now
starts from m = 1, it is found that

J ′
0(x) =

∞∑
m=1

(−1)m x2m−1

22m−1(m − 1)!m!
.

Combining this with the previous result gives
∞∑

m=1

(−1)m+1 x2m+1

22m(m + 1)!m!
+

∞∑
r=0

(r + 1)rbr xr +
∞∑

r=0

(r + 1)br xr +
∞∑

r=0

br xr+2 = 0.

Shifting the summation index in the last term and combining the summations
reduces this to

∞∑
m=1

(−1)m+1 x2m+1

22m(m + 1)!m!
+ b0 + 4b1x +

∞∑
r=2

{
(r + 1)2br + br−2

}
xr = 0.

We now make use of the fact that terms may be rearranged in an absolutely
convergent series in order to rewrite the last summation as a sum of even powers
of x and a sum of odd powers of x before combining the results. The preceding
equation then becomes

∞∑
m=1

(−1)m+1 x2m+1

22m(m + 1)!m!
+ b0 + 4b1x +

∞∑
m=1

{
(2m + 1)2b2m + b2m−2

}
x2m

+
∞∑

m=2

[4m2b2m−1 + b2m−3]x2m−1 = 0.
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Next we equate the coefficient of each power of x to zero in the usual man-
ner. As there is no constant term in the first summation, it follows that b0 = 0.
The recurrence relation in the second summation is (2m + 1)2b2m + b2m−2 = 0, so
together with the result b0 = 0 this implies that b2m = 0 for m = 0, 1, 2, . . . . Setting
the summation involving even powers of x to zero brings the equation into the form

∞∑
m=1

(−1)m+1 x2m+1

22m(m + 1)!m!
+ 4b1x +

∞∑
m=2

[
4m2b2m−1 + b2m−3

]
x2m−1 = 0.

We now equate to zero the coefficients of each remaining power of x, and
proceeding in this manner it is not difficult to show that the general coefficient
b2m−1 can be written

b2m−1 = (−1)m−1

22m(m!)2

(
1 + 1

2
+ 1

3
+ · · · + 1

m

)
, for m = 1, 2, . . . ,

so the second linearly independent solution is

y2(x) = J0(x) ln x +
∞∑

m=1

(−1)m−1 x2m

22m(m!)2

(
1 + 1

2
+ 1

3
+ · · · + 1

m

)
. (77)

Defining hm as

hm = 1 + 1
2

+ 1
3

+ · · · + 1
m

(78)

allows y2(x) to be written in the more convenient form

y2(x) = J0(x) ln x +
∞∑

m=1

(−1)m−1 hmx2m

22m(m!)2
. (79)

The series in (79) can be shown to converge, though as the logarithmic term becomes
infinite at the origin, result (79) is only finite for x > 0.

As any linear combination of two linearly independent solutions of a differen-
tial equation is itself a solution, it proves to be convenient to take as the second
solution of Bessel’s equation of order zero the function Y0(x) defined as the linear
combination

Y0(x) = 2
π

[y2(x) + (γ − ln 2)J0(x)], (80)

where the constant γ , called the Euler constant, is defined as

γ = lim
m→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

m
− ln m

)
, (81)

where γ = 0.577 215 664 901. . . . This constant is also called the Euler–Mascheroni
constant, and on occasion it is denoted by C and sometimes by ln γ .
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The function Y0(x), called the Bessel function of the second kind of order zero,the Bessel functions
Y0(x) and Yν(x) is defined as

Y0(x) = 2
π

[
J0(x)

(
ln

x
2

+ γ
)

+
∞∑

m=1

(−1)m−1 hm

22m(m!)2
x2m

]
. (82)

The reason for choosing this particular combination of functions in the definition of
Y0(x) is because of its convenient properties as x → ∞. The function Y0(x) is also
called the Neumann or Weber function of order zero and denoted by N0(x).

Some authors make a distinction in what they call a Bessel function of the
second kind, so there may be a difference between the Weber function Yn(x) and
the Neumann function Nn(x). Because of this, care must be exercised when using
these functions in software packages.

Bessel functions of the second kind of integral order can be defined in similar
fashion, but to make them compatible with the functions J−ν(x) introduced in
Section 8.6 the following definition is adopted:

Yν(x) = 1
sin νπ

[Jν(x) cos νπ − J−ν(x)] (83)

with

Yn(x) = lim
ν→n

Yν(x). (84)

Using this last result it is possible to show that for integral values of ν the
function Yn(x) is given by

Yn(x) = 2
π

Jn(x)
(

ln
x
2

+ γ
)

+ xn

π

∞∑
m=0

(−1)m−1(hm + hm+n)
22m+n m!(m + n)!

x2m

− 1
πxn

n−1∑
m=0

(n − m − 1)!
22m−nm!

x2m

(85)

where, by definition, h0 = 1. It follows from this that the Bessel functions Yn(x) and
Y−n(x) are linearly dependent, with

Y−n(x) = (−1)nYn(x).

Graphs of the first three Bessel functions of the second kind are shown in
Fig. 8.7.

When x is small the following approximations are useful:

Y0(x) ≈ 2
π

ln x and for ν > 0, Yν(x) ≈ −�(ν)
π

(
2
x

)ν

. (86)

For large x, however, the asymptotic approximation to Yν(x) isasymptotic form
for Yν(x)

Yν(x) ∼
√

2
πx

sin
[

x −
(

2ν + 1
4

)
π

]
. (87)
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FIGURE 8.7 Bessel functions Y0(x), Y1(x), and Y2(x) of
the second kind.

It follows from (86) and (87) that

lim
x→0

Yν = −∞ and lim
x→∞ Yν(x) = 0. (88)

The zeros of Yn(x) are needed when working with Bessel functions, so the
locations of the first six zeros of Yn(x) for n = 0, 1, 2, 3 are listed in Table 8.2. The
r th zero of the Bessel function Yn(x) is denoted by yn,r , so, for example, the secondzeros of Bessel

functions Yn(x) zero of Y1(x) is y1,2 = 5.42968.
It is a consequence of the definition of Yν(x) that for all ν the general solution

of Bessel’s equation in the standard form

x2 y′′ + xy′ + (x2 − ν2)y = 0 (89)

is

y(x) = C1 Jν(x) + C2Yν(x). (90)

Similarly, the general solution of Bessel’s equation in the form

x2 y′′ + xy′ + (λ2x2 − ν2)y = 0 (91)

is

y(x) = C1 Jν(λx) + C2Yν(λx). (92)

TABLE 8.2 Zeros yn,r of Yn(x) for n = 0, 1, 2, 3

r y0,r y1,r y2,r y3,r

1 0.89358 2.19714 3.38424 4.52702
2 3.95786 5.42968 6.79381 8.09755
3 7.08605 8.59601 10.02348 11.39647
4 10.22235 11.74915 13.20999 14.62308
5 13.36110 14.89744 16.37897 17.81846
6 16.50092 18.04340 19.53904 20.99728
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Many differential equations can be solved in terms of Bessel functions after a
suitable transformation of the dependent variable. In particular, the equation

y′′ +
(

1 − 2a
x

)
y′ +

[
b2c2x2c−2 +

(
a2 − ν2c2

x2

)]
y = 0 (93)

can be shown to have the solution

y(x) = xa Zν(bxc), (94)

where a, b, and c are numbers and Zν is any linear combination of Jν and Yν (see
Exercise 16 at the end of this section).

The following is an application of Bessel functions to a simple physical problem.
It illustrates how, in this case, the conditions of the problem only allow a Bessel
function of the first kind to be retained in the solution. The problem, which is a
classical one, can be stated as follows.

Find the radial temperature distribution T(r) in a wire of circular cross-section
with 0 ≤ r ≤ R, when the electrical conductivity is σ , the thermal conductivity is
K, and the wire carries a uniform current of density I amps per unit area of cross-
section. Assume that the temperature at the center of the wire is T0 and that the re-
sistance of the wire varies linearly with the temperature as αT(r), with α a constant.

In order to formulate the problem in mathematical terms, we begin with the fact
that the rate of heat generation in a unit volume of the wire is given by JI 2/σ heat
units, where J is a physical constant (typically the number of calories in a joule).
It follows from arguments given later in Chapter 18 that the equation determining
the radial steady state temperature distribution is

K
d2T
dr2

+ K
r

dT
dr

+ α JI 2

σ
T = − JI 2

σ
,

where the last term on the left takes account of the linear variation of resistance
with temperature, and the term on the right represents the heat generation due to
the current.

When divided by K, this is seen to be Bessel’s equation of order zero with a
nonhomogeneous term −JI 2/Kσ , and it is easily shown to have the general solution

T(r) = AJ0

(
Ir

√
α J
Kσ

)
+ BY0

(
Ir

√
α J
Kσ

)
− 1

α
,

with A and B arbitrary constants. As the temperature must remain finite at the
center of the wire, we must set B = 0 to remove the infinite value of Y0 when
r = 0. However, T(0) = T0, so A= T0 + 1/α and the required radial temperature
distribution becomes

T(r) =
(

T0 + 1
α

)
J0

(
Ir

√
α J
Kσ

)
− 1

α
for 0 ≤ r ≤ R.

Summary It was seen in the previous section that when n is an integer J n(x) and J −n(x) are linearly
dependent. This section has shown how a second linearly independent solution Yν(x)
can be constructed that for all ν is linearly independent of J ν(x), so the general solution
of Bessel’s equation can always be written y(x) = A J ν(x) + B Yν(x), where A and B are
arbitrary constants. The function Yν(x) is called a Bessel function of the second kind of
order ν.
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EXERCISES 8.7

In Exercises 1 through 10, find the general solution of the
differential equation.

1. x2 y′′ + xy′ + (x2 − 4)y = 0.
2. 4x2 y′′ + 4xy′ + (4x2 − 1)y = 0.
3. xy′′ + y′ + xy = 0.
4. xy′′ + y′ + λ2xy = 0.
5. xy′′ + y′ + 4x3 y = 0; substitute u = x2.
6. x2 y′′ + 3xy′ + (x2 + 1)y = 0; substitute y = u/x.
7. x2 y′′ + xy′ + 4(x2 − 1)y = 0.
8. xy′′ + y′ + 9x5 y = 0; substitute u = x3.
9. 4x2 y′′ + (16x2 + 1)y = 0; substitute y = x1/2u.

10. x2 y′′ + 5xy′ + (x2 + 4)y = 0; substitute y = u/x2.

Use (93) and (94) to find the solution of the differential
equations in Exercises 11 through 15.

11. x2 y′′ − xy′ + (4x4 − 3)y = 0.
12. xy′′ − 3y′ + xy = 0.
13. x2 y′′ − xy′ + (9x2 + 1)y = 0.
14. x2 y′′ − 5xy′ + (16x4 + 1)y = 0.

15. x2 y′′ − 3xy′ + (64x8 − 8)y = 0.
16. Verify that y(x) = xa Zν(bxc) is a solution of (93) by

substituting for y(x) in the differential equation and
showing that this leads to the equation

X 2 Z′′
ν (X) + XZ′

ν(X) + (X 2 − ν2)Zν(X) = 0,

with X = bxc. Hence, conclude that Zν(X) is either
Jν(X) or Yν(X), and so, because of the linearity of
the equation, Zν(X) = C1 Jν(X) + C2Yν(X) must be a
solution.

17. Use the substitution y(x) = x−νu(x) to convert the
equation

x2 d2 y
dt2

+ ax
dy
dx

+ (1 + k2x2)y = 0,

in which a is a parameter, into an equation for u(x).
Find the values of a and ν that make the equation in
u(x) Bessel’s equation of order zero. Use the result to
find the general solution y(x) that corresponds to this
value of a.

8.8 Modified Bessel Functions Iν(x) and Kν(x)

Replacing the independent variable x in Bessel’s equation by i x changes the differ-
ential equation to

x2 y′′ + xy′ − (x2 + ν2)y = 0, (95)

called Bessel’s modified equation of order ν.Bessel’s modified
equation It follows directly from Section 8.7 that Bessel’s modified equation has two

linearly independent complex solutions Jν(i x) and Yν(i x). These solutions are not
convenient to use, so the process of scaling and combining linearly independent solu-
tions of a linear differential equation to form other solutions is used to produce two
real linearly independent solutions denoted by Iν(x) and Kν(x). These are called,
respectively, modified Bessel functions of the first and second kinds of order ν.

The modification of Jν(i x) is straightforward, because from (54)

Jν(i x) =
∞∑

m=0

(−1)m(i x)2m+ν

22m+νm!�(m + 1 + ν)
= iν

∞∑
m=0

x2m+ν

22m+νm!�(m + 1 + ν)
,

so the factor iν is removed and the modified Bessel function of the first kind of
order ν is defined as the real function

Iν(x) =
∞∑

m=0

x2m+ν

22m+ν m!�(m + 1 + ν)
. (96)
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Unlike the series for Jν(x), the series for Iν(x) in (96) is no longer an alternating
series, though it converges rapidly. As with ordinary Bessel functions, provided ν

is not an integer, the general solution of Bessel’s modified equation (95) can be
writtenthe modified Bessel

functions Iν(x) and
Kν(x) y(x) = C1 Iν(x) + C2 I−ν(x). (97)

However, rather than use I−ν(x), in its place it is usual to introduce the real function
Kν(x) defined as the linear combination of real functions

Kν(x) =
(π

2

)( I−ν(x) − Iν(x)
sin νπ

)
, (98)

and to call Kν(x) the modified Bessel function of the second kind of order ν. It can
be seen from (98) that the functions Iν(x) and Kν(x) are linearly independent.

The definition of Kν(x) can be extended to the case in which ν is an integer n
by defining the function Kn(x) as

Kn(x) = lim
ν→n

(π

2

)( I−ν(x) − Iν(x)
sin νπ

)
. (99)

Because of this extension of the definition of Kν(x), the general solution of
Bessel’s modified equation (95) can always be written in the form

y(x) = C1 Iν(x) + C2 Kν(x), (100)

with no restriction placed on ν. The function Kν(x) is also sometimes called the
Kelvin function.

Similarly, when Bessel’s modified equation is written in the form

x2 y′′ + xy′ − (λ2x2 + ν2)y = 0, (101)

its general solution is given by

y(x) = C1 Iν(λx) + C2 Kν(λx), (102)

with no restriction placed on ν.
This definition of K0(x) leads to the expansion

K0(x) = −
[
ln

x
2

+ γ
]

I0(x) + x2/4
(1!)2

+
(

1 + 1
2

)
(x2/4)2

(2!)2

+
(

1 + 1
2

+ 1
3

)
(x2/4)3

(3!)2
+ · · · ,

(103)

with similar though more complicated expansions for Kn(x).
Graphs of I0(x) and I1(x) and of K0(x) and K1(x) are shown in Figs. 8.8 and 8.9,

respectively.
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FIGURE 8.8 Graphs of I0(x) and I1(x).
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FIGURE 8.9 Graphs of K0(x) and K1(x).

The following are useful properties of Iν(x) and Kν(x):

I0(0) = 1, In(0) = 0 for n = 1, 2, . . . , lim
x→0

Iν(x) = 0,

Kn(0) = ∞, lim
x→∞ Kn(x) = 0 for n = 0, 1, 2, . . . .

(104)

For small xasymptotic
expressions for
modified Bessel
functions Iν(x) ∼ 1

�(1 + ν)

(x
2

)ν

, K0(x) = −ln x and

Kν(x) ∼ �(ν)
2

(
2
x

)ν

for ν > 0,

(105)

whereas for large x

Iν(x) ≈ 1√
2πx

ex and Kν(x) ≈
√

π

2x
e−x. (106)

Results involving Bessel functions of the first and second kinds, together with
applications, are to be found in Chapter 5 of reference [3.7]. Chapters 9 to 11 of
Reference [G.1] and Chapter 17 of reference [G.3] give general information about
all types of Bessel functions. The standard encyclopedic work covering all aspects
of Bessel functions is reference [3.17].

Summary Modified Bessel functions were introduced, their series solutions were obtained, the general
solution was expressed in terms of Iν(x) and K ν(x), and asymptotic representations were
given.

EXERCISES 8.8

1. By differentiating the series for I0(x), show that
I ′

0(x) = I1(x).
2. Use the definition of Iν(x) to show that

Iν−1(x) − Iν+1(x) = 2ν

x
Iν(x) for ν ≥ 1.

3. Use the definition of Iν(x) to show that

Iν−1(x) + Iν+1(x) = 2I ′
ν(x) for ν ≥ 1.

4. Use Lemma 6.1 of Section 6.3 to reduce Bessel’s mod-
ified equation of order ν = 1/2 to standard form, and
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hence show that

I1/2(x) is proportional to
sinh x√

x
, and

I−1/2(x) is proportional to
cosh x√

x
.

5. Use asymptotic result (106) for Iν(x) when x is large
to find the constants of proportionality in Exercise 4,
and then use the result of Exercise 2 to find I3/2(x) and
I−3/2(x).

6. Use Lemma 6.1 of Section 6.3 to reduce Bessel’s mod-
ified equation of order ν = 1/2 to standard form, and
hence show that when x is large two linearly inde-
pendent solutions of the equation are proportional to
ex/

√
x and e−x/

√
x.

7. Deduce the expressions for I±1/2(x) and I±3/2(x) from
the corresponding results for J±1/2(x) and J±3/2(x) in
(72) to (74) of Section 8.6.

8. Use Abel’s formula in Exercise 6 of set 6.1 to show that
if y1 and y2 are any two linearly independent solutions
of Bessel’s modified equation, then

y1 y′
2 − y2 y′

1 = C/x,

where C is a constant introduced through the Abel
formula.

9. Set y1(x) = Iν(x) and y2(x) = I−ν(x) in the result of
Exercise 8, where ν is not an integer. Substitute the
series for Iν(x) and I−ν(x), and by finding the coeffi-
cient of 1/x on the left-hand side identify the coeffi-
cient C. Use the result

�(z)�(1 − z) = π

sin πz

to show that

Iν(x)I ′
−ν(x) − I ′

ν(x)I−ν(x) = − 2
πx

sin νx.

10. Use the definition of Kν(x) with the result of Exercise 9
to show that

Iν(x)K′
ν(x) − I ′

ν(x)Kν(x) = − 1
x

.

11.* The amplitude R(r) of the small symmetric vibrations
of a flexible annular disc a ≤ r ≤ b normal to its sur-
face with its outer edge free and its inner edge fixed to
a rod that oscillates along its length is governed by the
equation

d4 R
dr 4

+ 2
r

d3 R
dr 3

− 1
r 2

d2 R
dr 2

+ 1
r 3

dR
dr

− R = 0.

Show by expressing the equation as(
d2

dr 2
+ 1

r
d
dr

− 1
)(

d2

dr 2
+ 1

r
d
dr

+ 1
)

R = 0

that its general solution is

R(r) = AJ0(r) + BY0(r) + CI0(r) + DK0(r),

where A, B, C, and D are arbitrary constants.
12.* In partial differential equations that govern physical

phenomena with cylindrical and spherical polar co-
ordinates, the following equation describes the radial
variation R(r) of the solution as a function of the ra-
dius r (see Chapter 18):

d2 R
dr 2

+ 1
r

dR
dr

+
(

λ2 − n2

r 2

)
R = 0.

Here, λ is a parameter and n = 0, 1, 2, . . . . Show that
the general solution of the equation is

R(r) = AJn(λr) + BYn(λr).

Find the form of the solution of the following boundary
value problems, given that R(r) remains bounded, and
determine the permissible values of the parameter λ.

(i) 0 ≤ r ≤ a, for all n with the boundary conditions
R(a) = 0.

(ii) b ≤ r ≤ c, for all n with the boundary conditions
R(b) = R(c) = 0.

(iii) 0 ≤ r ≤ a, for all n with the boundary conditions
R(a) + kR′(a) = 0(k = const).

(iv) b ≤ r ≤ c, for n = 0 with the boundary conditions
R(b) = R′(c) = 0.

8.9 A Critical Bending Problem:
Is There a Tallest Flagpole?

The implication of the question posed in the section heading will have been ex-
perienced by anyone who has tried holding a long, thin, flexible rod in a vertical
position. If the rod is short, and its tip is given a small sideways displacement and
released, the rod will perform transverse oscillations until it reaches an equilibrium
position in a bent shape because of supporting its own weight. The longer the rod,
the larger the amplitude of these oscillations, and the greater the bending under its
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own weight when in equilibrium, until at some critical length the rod will bend until
its tip just touches the ground, after which it will remain in that position.

An idealization of this phenomenon can be modeled by a long, thin, flexibleBessel functions
and the bending of
a thin vertical rod

flagpole of uniform cross-section, the base of which is clamped in the ground so
the pole is vertical. We then ask at what length will the pole become unstable, so
that any displacement of the top of the pole will cause it to bend under its own
weight until the top of the pole touches and remains in contact with the ground?
This question can be posed in mathematical terms, and it is the one that will be
answered here.

The solution to this question will involve the use of Bessel functions, but the
linear differential equation involved will have to satisfy a two-point boundary con-
dition instead of the initial conditions we have considered so far. This means that
the existence and uniqueness of solutions to initial value problems guaranteed by
Theorem 6.2 no longer applies, so even when a solution can be found it may not be
unique — more will be said about this later.

Let us model the problem by considering a thin uniform flexible rod of length
L with a constant cross-section that is constructed from material with a Young’s
modulus of elasticity E, with the moment of inertia of a cross-section about a
diameter normal to the plane of bending equal to I. The line density along the rod
will be assumed to be constant and equal to w. The x-axis will be taken to be vertical
and to coincide with the undistorted axis of the rod, with its origin located at the
base of the rod. The horizontal displacement of the rod at a position x will be taken
to be y, as shown in Fig. 8.10.

It is known from Section 5.2(f) that if the moment acting on the rod at a position
x is M(x), the equation governing its transverse deflection y when in equilibrium is

EI
d2 y
dx2

= M(x). (107)

The shear on the rod at point x is the force exerted perpendicular to the axis of the
rod at x due to the weight of the rod extending from x to the top at P. As the length
of this part of the rod is L− x, and its line density is w, the weight of this section is

PL

W = w(L − x) sin θ

θ

y

x

yO

x

FIGURE 8.10 Equilibrium position of the
rod when bent under its own weight.
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given by w(L− x), so the component W of this force normal to the axis of the rod
at x is simply

W = w(L− x) sin θ, (108)

where θ is the angle of deflection of the rod from the vertical at point x, as shown
in Fig. 8.10.

It is known from mechanics that the shear on a rod is given in terms of the
moment M(x) by

dM
dx

= −W(x). (109)

We now make the approximation that the deflection at point x on the rod is small, so
sin θ ≈ tan θ = dy/dx, and by combining (107) to (109) we arrive that the govern-
ing equation for the deflection, which is the third order linear variable coefficient
differential equation

EI
d3 y
dx3

+ w(L− x)
dy
dx

= 0. (110)

Making the change of variable z = L− x brings (110) to the more convenient form

d3 y
dz3

+
( w

EI

)
z

dy
dz

= 0. (111)

To apply this to our problem it is necessary to determine appropriate boundary
conditions to be applied at the base and top of the rod. An obvious condition to
be applied at the base is that due to clamping the pole in a vertical position at the
origin, (dy/dx)x=0 = (dy/dz)z=L = 0. To arrive at a second condition we notice that
when the rod is bent and in equilibrium, there can be no bending moment at the
top of the rod, so it can have no curvature at that point. Recalling that the radius
of curvature ρ of a plane curve y = y(x) is

ρ = (1 + (y′)2)2/3

y′′ , (112)

we see that the rod will have no curvature at x = L (equivalently at z = 0) when
ρ = ∞, corresponding to (d2 y/dx2)x=L = (d2 y/dz2)z=0 = 0.

Setting u(z) = dy/dz, these two boundary conditions become

u(L) = 0 and (du/dz)z=0 = 0. (113)

Equation (111) is third order, but in terms of u(z) it is only second order, and we
have found two conditions on u(z) from which to determine u. Fortunately, we only
need to work with u(z) to solve our problem. This is because we will soon see that
the two-point boundary conditions (113) applied to the differential equation for u

d2u
dz2

+
( w

EI

)
zu = 0 (114)

will provide sufficient information for us to find the critical length at which bending
occurs.

Identifying equation (114) with (93) from Section 8.7, with x replaced by z,
shows that

1 − 2a = 0, 2c − 2 = 1, a2 − ν2c2 = 0, and b2c2 = w/EI, (115)
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so

a = 1/2, c = 3/2, ν = 1/3, and b = 2
3

√
w
EI

. (116)

Using this information in the solution (94) to equation (93) in Section 8.7 gives

u(z) = C1
√

z J1/3

(
2
3

√
w
EI

z3/2
)

+ C2
√

z J−1/3

(
2
3

√
w
EI

z3/2
)

. (117)

Noticing from (71) of Section 8.6 that for small z

Jν(z) ≈ 1
�(1 + ν)

( z
2

)ν

and J−ν(z) ≈ 1
�(1 − v)

( z
2

)−ν

,

we see that close to the top of the rod, that is, for small z, u(z) can be approximated
by

u(z) ≈ C1
z

�(4/3)

(
1
3

√
w
EI

)1/3

+ C2
1

�(2/3)

(
1
3

√
w
EI

)−1/3

.

Differentiation of this result gives

u′(z) ≈ C1
1

�(4/3)

(
1
3

√
w
EI

)1/3

,

but to satisfy the second boundary condition (du/dz)z=0 = 0, we must set C1 = 0,

causing solution (117) to reduce to

u(z) = C2
√

z J−1/3

(
2
3

√
w
EI

z3/2
)

. (118)

Applying the remaining boundary condition u(L) = 0 to (118) gives

0 = C2

√
L J−1/3

(
2
3

√
w
EI

L3/2
)

, (119)

and this will be satisfied if either C2 = 0 or J−1/3( 2
3

√ w
EI L3/2) = 0. The first condition

C2 = 0 corresponds to the unstable equilibrium configuration in which the rod is
vertical, and so must be rejected, whereas the second condition corresponds to the
required critical bending condition, and it will be satisfied when L is such that it
causes J−1/3 to vanish.

It is at this stage that we discover the boundary value problem does not have a
unique solution, because the asymptotic behavior of J−1/3 given in (70) of Section 8.6
shows that it has infinitely many zeros. To resolve this difficulty, and to find the
length at which critical bending occurs, we must now seek a selection criterion for
the length from outside the description of the physical situation provided by the
differential equation.

Such a criterion is not hard to find, because critical bending must occur at the
smallest value of L, say at Lc, that satisfies the condition

J−1/3

(
2
3

√
w
EI

L3/2
c

)
= 0, (120)

because if critical bending occurs when L = Lc, it will certainly occur at any larger
value of L.
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J−1/3(x)

4 6 8 x2

FIGURE 8.11 Graph of J−1/3(x) showing its first
few zeros.

A graph of J−1/3(x) is shown in Fig. 8.11, from which it can be seen that the first
zero α of J−1/3(x) occurs at around the value α ≈ 1.87, though numerical calcula-
tion provides the more accurate value α = 1.86635 . . . . However, this accuracy is
unnecessary, because the approximations made when modeling the physical situa-
tion introduce errors of sufficient magnitude that the value α ≈ 1.87 is adequate.

Using the value α = 1.87 shows that the length Lc for critical bending must
satisfy the formula

2
3

√
w
EI

L3/2
c ≈ 1.87,

which is equivalent to

Lc ≈ 1.99
(

EI
w

)1/3

.

This approximation shows, as would be expected, that if the rod is not cylin-
drically symmetric about its axis, the critical length Lc will depend on the plane in
which bending occurs, because the moment of inertia will depend on the direction
in which the rod bends. Thus, for example, the critical length of a rod with a rectan-
gular cross-section that bends in a plane parallel to one pair of its faces will differ
from the critical length when bending occurs in a plane parallel to its other pair of
faces. In such cases the model used is too simple, because twisting (torsion) will be
likely to occur, causing the rod always to buckle in such a way that Lc assumes its
smallest possible value.

The simplest case arises when the rod has a circular cross-section of radius a, for
then the moment of inertia of the cross-section about any diameter is I = πa4/4.
When this expression is substituted into the approximation for Lc, we obtain the
approximation

Lc ≈ 1.25
(

Ea4

w

)1/3

.

Summary In addition to involving Bessel functions, this idealization of a physical problem has il-
lustrated the way in which a mathematical approach can sometimes lead to more than
one solution, only one of which can be regarded as an approximation to the situation in
the real world. The choice of the appropriate solution was seen to be based on an addi-
tional physical consideration that was outside the original formulation of the mathematical
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problem. This situation is not unusual in applied mathematics, where the choice of solu-
tion is often based on stability considerations, a physically possible solution being stable,
whereas a nonphysical solution is unstable and so will not be observed. A different example
occurs in the study of shock waves in air where two solutions are mathematically possible,
though only one is physically realizable. In that case the selection principle is based on the
thermodynamics of the problem, though it can also be based on stability considerations.

8.10 Sturm–Liouville Problems, Eigenfunctions,
and Orthogonality

Mathematical models of physical situations arising in engineering and physics lead
to two-point boundary value problems for a function y(x) that is defined over an
interval a < x < b and satisfies a differential equation of the form

y′′(x) + P(x)y′(x) + (Q(x) + λR(x))y(x) = 0, (121)

in which λ is a parameter. This equation always has the solution y(x) ≡ 0, called
the trivial solution, but if it is to have nontrivial solutions (solutions that are not
identically zero) satisfying boundary conditions at x = a and x = b, the parameter
λ cannot be arbitrary. In what follows our purpose will be to find constant values of
λ for which nontrivial solutions exist satisfying given boundary conditions. It will be
seen later how these nontrivial solutions can be used to generalize series expansions
of arbitrary functions over the interval a < x < b that, along with other uses, are
needed in Chapter 18 when solving partial differential equations by the method of
separation of variables.

To proceed further we will write (121) in a more convenient form, and to this
end we simplify its first two terms using the method developed in Section 5.6 when
finding an integrating factor for a linear first order equation. Defining the function
p(x) as

p(x) = exp
[∫

P(x)dx
]

,

and multiplying (121) by p(x) gives

p(x)[y′′(x) + P(x)y′(x)] + p(x)(Q(x) + λR(x))y(x) = 0.

However,

p(x)[y′′(x) + P(x)y′(x)] = d
dx

[
p(x)

dy(x)
dx

]
,

so the equation becomes

d
dx

[
p(x)

dy(x)
dx

]
+ p(x)(Q(x) + λR(x))y(x) = 0.

Finally, setting q(x) = p(x)Q(x) and r(x) = p(x)R(x) allows equation (121) to be
written in the form

d
dx

[
p(x)

dy(x)
dx

]
+ [q(x) + λr(x)]y(x) = 0. (122)

In what follows p(x), q(x), r(x), and p′(x) will be assumed to be continuous
functions defined on a closed interval a ≤ x ≤ b on which p(x) > 0, r(x) > 0.
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Differential equations with these properties and written in this form are called
Sturm–Liouville equations, and the type of boundary conditions that are to be
imposed will be introduced after the following typical examples of these equations.

JACQUES CHARLES FRANÇOIS STURM (1803–1855) AND JOSEPH LIOUVILLE (1809–1882)
Sturm, who was born in Geneva, Switzerland, was Poisson’s successor in the Chair of Mechanics
in the Sorbonne. Much of his work was in algebra, where he worked on the determination of
intervals on the real line inside each of which was located one real root of a polynomial, though
he also worked on the study of heat flow introduced by his contemporary Joseph Fourier.
Liouville, a professor at the Collège de France, also studied algebraic problems and, in particular,
quadratic forms, though he also made contributions to elliptic functions and to complex analysis.
Sturm and Liouville, who were friends, collaborated on the eigenvalue and eigenfunction
problems raised by the study of heat flow, and together their work led to what is now called the
study of Sturm–Liouville systems.

Simple harmonic motion equation
examples of
Sturm–Liouville
equations

The differential equation describing undamped simple harmonic oscillations

y′′ + n2 y = 0 (123)

follows from (122) by setting p(x) = 1, q(x) = 0, r(x) = 1, and λ = n2.

The Legendre equation

The Legendre equation encountered in (10) of Section 8.2, usually written

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, (124)

follows from (122) by setting p(x) = 1 − x2, q(x) = 0, r(x) = 1, and λ = α(α + 1).

Bessel’s equation

When Bessel’s equation of order ν is written in its more general form

x2 y′′ + xy′ + (k2x2 − ν2)y = 0, (125)

the equation follows from (122) by setting p(x) = x, q(x) = −ν2/x, r(x) = x, and
λ = k2.

The Chebyshev equation

The Chebyshev equation of order ν is

(1 − x2)y′′ − xy′ + n2 y = 0, (126)

and the equation follows from (122) by setting p(x) = (1 − x2)1/2, q(x) = 0, r(x) =
(1 − x2)−1/2, and λ = n2.

For future reference, Table 8.3 lists p(x), q(x), r(x), and λ for the preceding
equations, together with three other named equations that find applications in nu-
merical analysis and elsewhere.
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TABLE 8.3 p(x), q(x), r(x) and λ for Some Named Equations

Name p(x) q(x) r(x) λ

Simple harmonic equation 1 0 1 n2

Legendre’s equation 1 − x2 0 1 α(α + 1)
Bessel’s equation x −ν2/x x k2

Bessel’s modified equation x −ν2/x −x k2

Laguerre equation xe−x 0 e−x n
Chebyshev equation (1 − x2)1/2 0 (1 − x2)−1/2 n2

Hermite equation e−x2
0 e−x2

2n

When the Sturm–Liouville equation (122) is associated with boundary condi-
tions at x = a and x = b, the equation itself together with the boundary conditions
form what is called a Sturm–Liouville problem. The boundary conditions that will
concern us here are the homogeneous boundary conditions,

A1 y(a) + A2 y′(a) = 0 and B1 y(b) + B2 y′(b) = 0, (127)

where the term homogeneous is used in the sense that the linear combinations of
y(x) and y′(x) at x = a and x = b are both equal to zero. There are three cate-
gories of Sturm–Liouville problems that arise, called regular, periodic, and singular
problems according to the nature of the boundary conditions and the behavior of
p(x) at the boundaries.

Regular Sturm–Liouville problems

Regular problems are those for which constant values of λ are sought corresponding
to each of which a nontrivial solution can be found for the Sturm–Liouville equation

(py′)′ + (q + λr)y = 0,

with p(x) > 0 continuous on a ≤ x ≤ b and subject to the boundary conditions

A1 y(a) + A2 y′(a) = 0 and B1 y(b) + B2 y′(b) = 0,

where in neither of the boundary conditions do both constant coefficients vanish.

Periodic Sturm–Liouville problems

This class of problems arises when p(x) and the boundary conditions involving y(x)
and y′(x) are periodic over the interval a ≤ x ≤ b. In this case constant values of λ

are sought corresponding to each of which a nontrivial solution can be found for
the Sturm–Liouville problem

(py′)′ + (q + λr)y = 0,

subject to the periodic boundary conditions

p(a) = p(b), y(a) = y(b), and y′(a) = y′(b).
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Singular Sturm–Liouville problems

In this class of problems constant values of λ are sought, corresponding to each of
which a nontrivial solution can be found for the Sturm–Liouville equation

(py′)′ + (q + λr)y = 0,

on a finite interval at one or or both ends of which p(x) or r(x) vanish, or on a semi-
infinite or infinite interval. The most frequently occurring problem of this type,
and the only one to be considered here, is the Sturm–Liouville problem defined
on a finite interval a ≤ x ≤ b, where the singular point is located at either x = a or
x = b, so that either p(a) = 0 or p(b) = 0. In such cases the boundary condition that
is often imposed at the singular point takes the form of the requirement that the
solution remains bounded there. Typically, this happens when a bounded solution of
Bessel’s equation of the form y(x) = AJ0(x) + BY0(x) is required over an interval
0 ≤ x ≤ a, because then the requirement that the solution remains bounded at the
singular point located at x = 0 means we must set B = 0 to exclude the infinite
value of Y0(x) at x = 0.

When dealing with Sturm–Liouville problems, each value of λ for which a
nontrivial solution can be found is called an eigenvalue of the problem, and the
corresponding solution y(x) is called an eigenfunction of the problem. Because
the Sturm–Liouville equation (122) is homogeneous, it follows that an eigenfunc-
tion can be multiplied by any constant factor and still remain an eigenfunction.
This simple but fundamental property will be used repeatedly, first when normal-
izing eigenfunctions and later when representing arbitrary functions defined over
an interval [a, b] in terms of series of eigenfunctions, as is done in Chapter 9 when
working with Fourier series. Such representations of functions are called eigenfunc-
tion expansions.

In most practical situations an eigenvalue is associated with an important phys-
ical characteristic of the problem, such as the frequency of vibration of a string or
of a metal plate. In such cases the eigenfunction can be considered to describe a
“snapshot” of a particular mode of vibration of the string or plate when it vibrates at
the frequency determined by the associated eigenvalue. This application, and oth-
ers that lead to Sturm–Liouville problems, will be developed in detail when partial
differential equations are discussed in the context of separation of variables.

A Regular Problem
EXAMPLE 8.18 Find the eigenvalues and eigenfunctions of the two-point boundary value problem

y′′ + λy = 0,

such that

y(0) = 0 and y′(π) = 0.

Solution The interval over which the eigenfunctions are defined is 0 ≤ x ≤ π .
We need to consider the three cases λ = 0, λ < 0, and λ > 0. The homogenous
boundary conditions in this problem are of the type given in (127) with A2 = 0
and B1 = 0, where the values of the constants A1 and B2 are immaterial provided
neither is zero.
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Case λ = 0

When λ = 0 the equation has the general solution

y(x) = C1x + C2,

so to satisfy the boundary condition y(0) = 0 we must have C2 = 0, and to satisfy
the boundary condition y′(π) = 0 we must have C1 = 0, giving rise to the trivial
solution y(x) ≡ 0. Thus, λ = 0 is not an eigenvalue of the problem.

Case λ < 0

If we set λ = −μ2, the general solution becomes

y(x) = C1eμx + C2e−μx,

so the imposition of the boundary conditions requires that

0 = C1 + C2 and 0 = μC1eμπ − μC2e−μπ .

After the elimination of C2, this last result can be written

0 = 2μC1 cosh μπ,

but μ > 0, so as cosh μπ �= 0, this is only possible if C1 = 0, so again we obtain the
trivial solution showing that the problem has no negative eigenvalues.

Case λ > 0

As λ > 0, it is convenient to set λ = μ2, when the general solution of the equation
becomes

y(x) = C1 cos μx + μC2 sin μx.

Applying the boundary condition y(0) = 0 to the general solution gives C1 = 0, and
applying the boundary condition y′(π) = 0 gives

μC2 cos μπ = 0,

so either C2 = 0 or cos μπ = 0. If we take C2 = 0, then as C1 = 0 we obtain the
trivial solution, so we must take C2 �= 0. The condition cos μπ = 0 is satisfied if
μπ is one of the zeros of the cosine function given by ± 1

2 (2n + 1)π, for n = 0, 1,

2, . . . .

Denoting the permitted values of μ by μn we arrive at the condition

μn = ±1
2

(2n + 1), with n = 0, 1, 2, . . . .

The eigenvalues of this problem corresponding to the parameter λ = μ2 are thus

λn = (2n + 1)2

4
, with n = 0, 1, 2, . . . ,

and the corresponding eigenfunctions are

yn(x) = sin
(2n + 1)x

2
with n = 0, 1, 2, . . . .

When writing down the form of the eigenfunction yn(x), we have set C2 = 1
because, as has already been remarked, an eigenfunction can be multiplied by any
constant nonzero factor and still remain an eigenfunction.
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This example has shown the existence of an infinite increasing sequence of pos-
itive eigenvalues μ2

n, corresponding to each of which there is a nontrivial solution of
the Sturm–Liouville problem, namely the eigenfunction yn(x) = sin μnx. If μ �= μn,
then the Sturm–Liouville problem only has the trivial solution y(x) ≡ 0.

A Periodic Problem
EXAMPLE 8.19 Find the eigenvalues and eigenfunctions of the Sturm–Liouville equation

y′′ + λy = 0

subject to the conditions

y(0) = y(L), y′(0) = y′(L).

Solution The interval over which the eigenfunctions are defined is 0 ≤ x ≤ L,
and as in Example 8.18 we must again consider the three cases λ = 0, λ < 0, and
λ > 0.

Case λ = 0

As in the previous problem, the general solution is

y(x) = C1x + C2,

so applying the boundary condition y(0) = y(L) leads to the result C2 = C1L+ C2,
from which it follows that C1 = 0. As y′(x) = C1 the boundary condition y′(0) =
y′(L) is automatically satisfied, showing that y(x) = C2, with C2 any nonzero con-
stant. This shows that in this case λ = 0 is an eigenvalue, and that y(x) = C2 (C2 is
an arbitrary nonzero constant) is the corresponding eigenfunction.

Case λ < 0

If we set λ = −μ2, the general solution becomes

y(x) = C1eμx + C2e−μx.

The boundary condition y(0) = y(L) leads to the condition

C1(1 − eμL) = C2(e−μL − 1),

and the boundary condition y′(0) = y′(L) leads to the condition

C1(1 − eμL) = −C2(e−μL − 1).

This last condition is only possible if C1 = 0, but then C2 = 0, so we again obtain
the trivial solution. Consequently, we conclude that this problem has no negative
eigenvalues.

Case λ > 0

Setting λ = μ2 the general solution of the equation becomes

y(x) = C1 cos μx + C2 sin μx.

The boundary condition y(0) = y(L) leads to the condition

C1(1 − cos μL) = C2 sin μL,
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and the boundary condition y′(0) = y′(L) leads to the condition

C2(1 − cos μL) = −C1 sin μL.

Eliminating C2 between these two equations and simplifying the result gives

2C1(1 − cos μL) = 0.

This condition is satisfied if either C1 = 0, or if cos μL = 1. If C1 = 0, then C2 = 0,
and we obtain the trivial solution, so the only other possibility is that cos μL = 1.
This last condition will be satisfied if μL is zero or an integer multiple of 2π , so

μL = ±2nπ for n = 0, 1, 2, . . . ,

or

μn = ±2nπ/L for n = 0, 1, 2, . . . .

As λ = μ2 the eigenvalues are seen to be

λn = 4n2π2/L2, for n = 0, 1, 2, . . . .

The corresponding eigenfunctions are

yn(x) = C1 cos μnx + C2 sin μnx,

or

yn(x) = C1 cos(2nπx/L) + C2 sin(2nπx/L), for n = 0, 1, 2, . . . ,

where not both constants C1 and C2 are zero. Because C1 and C2 are arbitrary, and
both the cosine function and the sine function satisfy the Sturm–Liouville equation
and the boundary conditions, by first setting C1 = 1 and C2 = 0 and then C1 = 0 and
C2 = 1 it is seen that in this case the single eigenvalue λn = 4n2π2/L2 has associated
with it the two distinct eigenfunctions

y(1)
n (x) = cos(2nπx/L) and y(2)

n (x) = sin(2nπx/L).

The eigenvalues in Sturm–Liouville problems are not always determined as
easily as in the previous examples, and this is illustrated by the next example.

EXAMPLE 8.20 Find the eigenvalues and eigenfunctions of the Sturm–Liouville equation

y′′ + λy = 0,

subject to the conditions

y(0) − y′(0) = 0, y(1) + y′(1) = 0.

Solution The interval over which the eigenfunctions are defined is 0 ≤ x ≤ 1, and
as before we must again consider the cases λ = 0, λ < 0, and λ > 0.

Case λ = 0

The general solution is

y(x) = C1x + C2,

so applying the boundary condition y(0) − y′(0) = 0 shows that C2 − C1 = 0, while
applying the boundary condition y(1) + y′(1) = 0 gives the condition 2C1 + C2 = 0.
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The only solution for these equations is C1 = C2 = 0 corresponding to the trivial
solution, so λ = 0 is not an eigenvalue of the problem.

Case λ < 0

Setting λ = −μ2 leads to the general solution

y(x) = C1eμx + C2e−μx.

Applying the boundary condition y(0) − y′(0) = 0 leads to the condition

C1(1 − μ) + C2(1 + μ) = 0,

and applying the boundary condition y(1) + y′(1) = 0 leads to the condition

C1[(1 + μ)eμ + C2(1 − μ)e−μ] = 0.

As a factor μ − 1 appears, we must consider the cases μ = 1 and μ �= 1 sepa-
rately. If μ = 1, the first equation gives C2 = 0, and the second one gives C1 = 0,
corresponding to the trivial solution. So μ = 1 is not an eigenvalue. If μ �= 1, elim-
inating C2 between these two equations leads to the condition

C1[(1 + μ)2eμ − (1 − μ)2e−μ] = 0.

As μ > 0, (μ + 1)2eμ > (μ − 1)2e−μ, showing that the bracketed term is non-
vanishing, from which we conclude that C1 = 0, and so C2 = 0, corresponding to the
trivial solution. Thus, this Sturm–Liouville problem has no negative eigenvalues.

Case λ > 0

Setting λ = μ2 leads to the general solution

y(x) = C1 cos μx + C2 sin μx.

Applying the boundary condition y(0) − y′(L) = 0 shows that

C1 − μC2 = 0,

and applying the boundary condition y(1) + y′(1) = 0 gives

C1 cos μ + C2 sin μ − μC1 sin μ + μC2 cos μ = 0.

Eliminating C1 between these two equations, we obtain

C2[2μ cos μ + (1 − μ2) sin μ] = 0.

The constant C2 cannot be zero, because then C1 = 0, corresponding to the
trivial solution, so μ must be a solution of the equation

2μ cos μ + (1 − μ2) sin μ = 0

or, equivalently, μn is a solution of the transcendental equation

tan μn = 2μn

μ2
n − 1

.

This equation can only be solved numerically, but approximate solutions can be
found graphically. Figure 8.12(a) shows graphs of y = tan μ and y = 2μ/(μ2 − 1),
and the required solutions μn are the values of μ at which the graphs intersect. It
has been shown that μ = 1 is not an eigenvalue, so the permissible values of μn are
all greater than 1. The vertical lines to the right of x = 1 are the asymptotes to the
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FIGURE 8.12 The roots of tan μ = 2μ/(μ2 − 1).

tangent function, and the vertical line at x = 1 is the asymptote to 2x/(x2 − 1), to
the right of which must lie all the solutions μn. The graph in Fig. 8.12b, drawn on
a larger scale, shows that the first two values of μ are approximately μ1 = 1.3 and
μ2 = 3.7. A numerical calculation using Newton’s method described in Chapter 19
gives the better approximations μ1 = 1.30654 and μ = 3.67319. It can be seen from
Fig. 8.12a that when n is large μn ≈ nπ .

A Singular Problem
EXAMPLE 8.21 Find the eigenvalues and eigenfunctions of Bessel’s equation

x2 y′′ + xy′ + (k2x2 − n2)y = 0

on the interval 0 ≤ x ≤ a on which the solution is bounded with y(a) = 0.

Solution This is a singular Sturm–Liouville problem, because when Bessel’s equa-
tion is written in the Sturm–Liouville form

d
dx

[
x

dy
dx

]
+
(

k2x2 − n2

x

)
y = 0,

with p(x) = x, q(x) = −n2/x, r(x) = x, and λ = k2 (see Table 8.3), it is seen that
p(0) = 0.

The general solution is

y(x) = C1 Jn(kx) + C2Yn(kx),

but Yn(kx) is infinite when x = 0, so for the solution to remain finite over the interval
0 ≤ x ≤ a we must set C2 = 0.

The solution now reduces to

y(x) = C1 Jn(kx),

so if the boundary condition y(a) = 0 is to be satisfied we must set

Jn(ka) = 0.

This condition will be satisfied if ka is one of the zeros of Jn(x). If we denote the
zeros of Jn(x) by jn,r , with r = 1, 2, . . . , it follows that k must be such that it assumes
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one of the values

kn = jn,r/a, with r = 1, 2, . . . .

Thus, the eigenvalues λn = k2
n are given by

λn = j2
n,r/a2,

and the corresponding eigenfunctions are

yr (x) = Jn( jn,r x/a), with r = 1, 2, . . . ,

where for convenience we have set C1 = 1. Table 8.1 lists the first six zeros of Jn(x)
for n = 0, 1, 2, 3. Thus if, for example, we consider the case n = 0, the corresponding
zeros are seen to be j0,1 = 2.4048, j0,2 = 5.5201 . . . , so the eigenvalues are λ1 =
5.7832/a2, λ2 = 30.4711/a2, . . . , and the corresponding eigenfunctions are

y1(x) = J0(2.4048x/a), y2(x) = J0(5.5201x/a), . . . .

Orthogonal and Orthonormal Systems
of Functions
When working with eigenfunctions it is useful to introduce the notions of orthogonal
and orthonormal systems of eigenfunctions that are defined as follows.

Let ϕ1(x), ϕ2(x), . . . be an infinite sequence of functions defined over the inter-
val a ≤ x ≤ b on which a function r(x) ≥ 0 is defined. Then the functions are said
to be orthogonal with respect to the weight function r(x) if

∫ b

a
r(x)ϕm(x)ϕn(x)dx = 0 for m �= n.

orthogonal and
orthonormal
systems

Clearly, the integral
∫ b

a r(x)ϕm(x)ϕn(x)dx > 0 when m = n, so we can define a num-
ber ‖ϕn(x)‖, called the norm of ϕn(x), where the square of the norm is defined as

‖ϕn(x)‖2 =
∫ b

a
r(x)ϕ2

n(x)dx.

Using this definition of the norm it is easy to see that the sequence of normalized
functions ϕ̂1(x) = ϕ1(x)/‖ϕ1(x)‖, ϕ̂2(x) = ϕ2(x)/‖ϕ2(x)‖, . . . has the property that

∫ b

a
ϕ̂m(x)ϕ̂n(x)r(x)dx = 0, for m �= n

and ∫ b

a
ϕ̂m(x)ϕ̂n(x)r(x)dx = 1, for m = n.

The sequence of functions ϕ̂1(x), ϕ̂2(x), . . . derived from the sequence of orthogonal
functions ϕ1(x), ϕ2(x), . . . by normalization is said to form an orthonormal sequence
of functions.
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In what follows the orthogonality of eigenfunctions will be used extensively,
but for the moment it will be sufficient to give a single elementary example of an
orthogonal sequence of functions.

EXAMPLE 8.22 Show that the sequence of functions

1, cos x, sin x, cos 2x, sin 2x, cos 3x, sin 3x, . . .

is orthogonal over the interval −π ≤ x ≤ π with respect to the weight function
r(x) = 1, and use it to construct an orthonormal sequence.

Solution The functions in this sequence occur in the Fourier series representation
of an arbitrary function f (x) defined over the interval −π ≤ x ≤ π that is discussed
in Chapter 9. Routine calculation shows that for m �= n,∫ π

−π

sin mx sin nx dx = 0,

∫ π

−π

cos mx cos nx dx = 0,

∫ π

−π

sin mx cos nx dx = 0,

and ∫ π

−π

1dx = 2π,

∫ π

−π

sin2 nxdx =
∫ π

−π

cos2 nxdx = π, n = 1, 2, . . . ,

while
∫ π

−π
1 · cos mxdx = ∫ π

−π
1 · sin mxdx = 0.

So the functions

1, cos x, sin x, cos 2x, sin 2x, cos 3x, sin 3x, . . .

are orthogonal over the interval −π ≤ x ≤ π with respect to the weight function
r(x) = 1. The respective norms are ‖1‖ = √

2π and ‖ sin nx‖ = ‖ cos nx‖ = √
π , so

the sequence of functions

1/
√

2π, (sin nx)/
√

π, (cos nx)/
√

π, with n = 1, 2, . . . ,

forms an orthonormal sequence.

Fundamental Properties of Eigenvalues
The theorem that follows lists the most important properties of the eigenvalues and
eigenfunctions of Sturm–Liouville problems. Apart from the important Rayleigh
quotient that occurs in Theorem 8.3 (5), the other properties are all qualitative and
their main use is to provide general information about eigenvalues that is often of
considerable value when working with physical problems.

important properties
of eigenvalues

For convenience, the proofs of all results in Theorem 8.3 that can be established
in a straightforward manner have been included in an appendix at the end of this
chapter. The proofs of the other results can be found in the references listed at the
end of the chapter. A reader who does not require the proofs that are given here
may omit them, though the properties themselves should be understood.

THEOREM 8.3 A Sturm–Liouville theorem

1. Regular and periodic Sturm–Liouville problems have an infinite number of
distinct real eigenvalues λ1, λ2, . . . , that can be arranged in order so that

λ1 < λ2 < λ3 < . . . ,
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where the smallest eigenvalue λ1 is finite, and

lim
n→∞ λn = ∞.

2. To each eigenvalue of a regular Sturm–Liouville problem there corresponds
only one eigenfunction that is unique apart from an arbitrary multiplicative
constant.

3. Let the eigenfunctions of a Sturm–Liouville problem on an interval a ≤ x ≤ b
with weight function r(x) be denoted by ϕ1, ϕ2, . . . , with the corresponding
eigenvalues λ1, λ2, . . . . Then, if ϕm and ϕn are eigenfunctions corresponding
to two distinct eigenvalues λm and λn (λm �= λn for m �= n), the functions are
orthogonal with respect to the weight function r(x), so

∫ b

a
r(x)ϕm(x)ϕn(x)dx = 0.

4. All the eigenvalues of a Sturm–Liouville problem are real.
5. Let λn be an eigenvalue of a regular Sturm–Liouville problem, with ϕn its

associated eigenfunction defined on an interval a ≤ x ≤ b. Then λn is given in
terms of the Sturm–Liouville functions p, q, r, and the boundary conditions
by the Rayleigh quotient

λn = −[pϕnϕ
′
n]b

a + ∫ b
a p(ϕ′

n)2dx − ∫ b
a qϕ2

n dx∫ b
a rϕ2

n dx
.

6. Let λn be an eigenvalue and ϕn be the corresponding eigenfunction of a reg-
ular Sturm–Liouville problem defined on a ≤ x ≤ b. Then if q(x) < 0 and
[p(x)ϕnϕ

′
n]b

a ≤ 0, all the eigenvalues are nonnegative.
7. The nth eigenfunction of a regular Sturm–Liouville problem defined on the

interval a ≤ x ≤ b has exactly n − 1 zeros lying strictly inside the interval.
8. Let two regular Sturm–Liouville problems defined on an interval a ≤ x ≤ b

be such that [p(x)ϕnϕ
′
n]b

a = 0 and differ only in their coefficients p(x). Fur-
thermore, let the problem with the coefficient p1(x) have the eigenvalues
λ

(1)
1 , λ

(1)
2 , . . . , and the problem with the coefficient p2(x) have the eigenvalues

λ
(2)
1 , λ

(2)
2 , . . . . Then, if p1(x) > p2(x),

λ(1)
n > λ(2)

n for n = 1, 2, . . . .

9. Let a regular Sturm–Liouville equation with q(x) < 0 be defined on an in-
terval a ≤ x ≤ b and have boundary conditions such that the first term in the
numerator of the Rayleigh quotient in Property 5 is zero. Then reducing the
length of the interval a ≤ x ≤ b will not reduce the value of any eigenvalue.

Remarks about Theorem 8.3

Property 1 ensures that the eigenvalues are distinct (λm �= λn if m �= n), that they
are infinite in number, and, because limn→∞ λn = ∞, that there can be no clustering
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of eigenvalues about a finite limit point. If, for example, the eigenvalues represent
the frequencies of vibration of a stretched string of finite length L, this means there
is a lowest frequency of vibration, but no upper limit to the frequency of vibration
of the string.

Property 2 says that to each distinct eigenvalue of a regular Sturm–Liouville
problem there corresponds only one eigenfunction, and it is unique apart from
a constant multiplicative factor. Notice that this only applies to regular Sturm–
Liouville problems, because in periodic Sturm–Liouville problems an eigenvalue
has associated with it two linearly independent eigenfunctions. This latter situation
occurred in Example 8.19, where the two eigenfunctions

y(1)
n (x) = cos(2nπx/L) and y(2)

n (x) = sin(2nπx/L)

were seen to correspond to the single eigenvalue λn = 4n2π2/L2. In such cases
there can only be two eigenfunctions to each eigenvalue, because the equation is
second order. The scaling of eigenfunctions by a constant is used repeatedly when
representing arbitrary functions in terms of series of eigenfunctions.

Property 3 is of fundamental importance because of the part played by orthog-
onality when developing arbitrary functions in terms of series of eigenfunctions
defined over some interval. It is the orthogonality of sine and cosine functions
illustrated in Example 8.22 that is used when working with Fourier series.

It will be seen later that the representation (expansion) of arbitrary functions
in terms of series of eigenfunctions is more general than in terms of power series.
This is because, unlike Taylor series whose coefficients are determined by repeated
differentiation of the function being expanded, the coefficients in series of eigen-
functions are determined in terms of integrals involving the function. This means
that the function can have finite discontinuities at points within its interval of rep-
resentation and still have an eigenfunction expansion.

Property 4 removes the necessity to check Sturm–Liouville problems for the
possibility that negative eigenvalues occur. Had this property been known in ad-
vance of Examples 8.18 to 8.21, it would have been unnecessary to have examined
the forms of solution corresponding to λ < 0.

Property 5 is useful when seeking qualitative properties of eigenvalues. The
result is not directly useful when trying to determine an eigenvalue because the
associated eigenfunction needs to be known. The main use of the Rayleigh quotient
arises when it is used in the following rather different form.

Let a function �(x) containing some arbitrary constants α, β, . . . satisfy the
boundary conditions of a Sturm–Liouville problem. Then with any choice of the
arbitrary constants, the Rayleigh quotient

−[p�n�
′
n]b

a + ∫ b
a p(�′

n)2 dx − ∫ b
a q�2

n dx∫ b
a r�2

n dx
(128)

provides an upper bound for the value of the smallest eigenvalue of the associated
Sturm–Liouville problem. If the arbitrary constants α, β, . . . are chosen to minimize
this expression, its value becomes the best estimate of the smallest eigenvalue that
can be obtained using that approximation. Furthermore, substituting the values of
the constants that minimize the Rayleigh quotient into the function �(x) provides a
corresponding approximation to the first eigenfunction. The actual value λ1 is only
attained when �(x) = ϕ1(x).

Property 6, together with Property 4, ensures that under the given conditions
the eigenvalues are both real and positive. In corresponding physical problems
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this result is usually to be expected on an intuitive basis, so the result provides
the mathematical justification for making such an assumption on purely physical
grounds.

Property 7 provides precise information about the number of zeros of a given
eigenfunction within the interval over which it is defined. It is well illustrated by
considering Figs. 8.1 showing graphs of Legendre polynomials. These show, for
example, that P3(x) has precisely three zeros in the interval −1 ≤ x ≤ 1, whereas
P4(x) has four zeros. It is important to recognize that these zeros lie strictly in-
side the interval, so that zeros that occur at either end of an interval are not
counted.

Property 8 means that if in a Sturm–Liouville problem p(x) is associated with
a characteristic feature of a physical system, then increasing p(x) increases each
eigenvalue of the system. For example, if p(x) is related to the density of a vibrating
string, then increasing the density while keeping all other parameters constant will
decrease the frequency of vibration, and increasing the tension will increase the
frequency.

Property 9 means that reducing the length of the interval a ≤ x ≤ b on which a
Sturm–Liouville problem is set cannot reduce the values of the eigenvalues. In fact,
it usually increases them. This is most easily understood in terms of a vibrating string
for which the eigenvalues of the associated Sturm–Liouville problem represent its
possible frequencies of vibration (see Chapter 18). In such a case shortening the
string, while leaving other parameters unchanged, will increase the frequency, as
any guitarist or violinist knows from experience.

EXAMPLE 8.23 An orthogonal system of sine functions The Sturm–Liouville problem considered
in Example 8.18, namely

y′′ + λy = 0 with y(0) = 0 and y′(π) = 0,

is such that p(x) = 1, q(x) = 0, and r(x) = 1. Its eigenvalues were shown to be

orthogonality and
weight functions

λn = (2n + 1)2/4, and its corresponding eigenfunctions were

ϕn(x) = sin
(2n + 1)x

2
, n = 0, 1, . . . .

Thus, from Theorem 8.3 (3), the functions ϕn(x) are orthogonal over the interval
0 ≤ x ≤ π with weight function r(x) = 1, and so∫ π

0
ϕm(x)ϕn(x)dx = 0 for m �= n.

The square of the norm is given by

‖ϕn(x)‖2 =
∥∥∥∥sin

(2n + 1)x
2

∥∥∥∥2

=
∫ π

0

(
sin

(2n + 1)x
2

)2

dx = π

2
,

so ‖ϕn(x)‖ = √
π/2.

EXAMPLE 8.24 Orthogonality of Legendre polynomials When written in Sturm–Liouville form,
Legendre’s equation becomes

[(1 − x2)y′]′ + λy = 0,

and it is defined over the interval −1 ≤ x ≤ 1, with p(x) = 1 − x2, q(x) = 0, and
r(x) = 1. The Legendre polynomial Pn(x) corresponds to λ = n(n + 1), so from
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Theorem 8.3 (3) we see that the Legendre polynomials are orthogonal with respect
to the weight function r(x) = 1, so that∫ 1

−1
Pm(x)Pn(x)dx = 0 for m �= n.

To determine the norm ‖Pn(x)‖ we make use of recurrence relation (16),

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

Replacing n by n − 1 and substituting for one of the factors Pn(x) in the integral
gives

‖Pn(x)‖2 =
∫ 1

−1
Pn(x)

{(
2n − 1

n

)
xPn−1(x) − n − 1

n
Pn−2(x)

}
dx

=
(

2n − 1
n

)∫ 1

−1
xPn−1(x)Pn(x)dx −

(
n − 1

n

)∫ 1

−1
Pn(x)Pn−2(x)dx

=
(

2n − 1
n

)∫ 1

−1
xPn−1(x)Pn(x)dx,

where the second integral has been set equal to zero because of the orthogonality of
Pn(x) and Pn−2(x). Using the recurrence relation to remove the term xPn(x) gives

‖Pn(x)‖2 =
(

2n − 1
n

)∫ 1

−1
Pn−1(x)

{(
n + 1

2n + 1

)
Pn+1(x) +

(
n

2n + 1

)
Pn−1(x)

}
dx

=
(

2n − 1
2n + 1

)∫ 1

−1
[Pn−1(x)]2 dx,

where the first integral vanishes because of the orthogonality of Pn(x) and Pn−1(x).
This has established the recurrence relation for norms

‖Pn(x)‖2 =
(

2n − 1
2n + 1

)
‖Pn−1(x)‖2.

Using this result to relate ‖Pn(x)‖2 to ‖P0(x)‖2 and cancelling factors shows that

‖Pn(x)‖2 =
(

2n − 1
2n + 1

)(
2n − 3
2n − 1

)(
2n − 5
2n − 3

)
· · ·
(

3
5

)(
1
3

)
‖P0(x)‖2

=
(

1
2n + 1

)
‖P0(x)‖2,

but ‖P0(x)‖2 = ∫ 1
−1 1dx = 2, so that

‖Pn(x)‖2 = 2
2n + 1

, and ‖Pn(x)‖ =
√

2
2n + 1

for n = 0, 1, . . . .

EXAMPLE 8.25 Orthogonality of Bessel functions Jn(x) When written in Sturm–Liouville form,
Bessel’s equation of order n becomes

[x J ′
n(kx)]′ +

(
k2x − n2

x

)
Jn(kx) = 0,

where p(x) = x, q(x) = −n2/x, r(x) = x, and λ = k2.
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The orthogonality of Bessel functions over an interval 0 ≤ x ≤ a takes a some-
what different form from that in the previous examples, because the orthogonality
is between Bessel functions of the same order, but with different arguments, rather
than between Bessel functions of different orders. If for fixed n the solution Jn(kx)
is required to satisfy the boundary condition

Jn(ka) = 0,

it follows, as in Example 8.21, that the permissible values of k are

kr = jn,r/a, with r = 1, 2, . . . ,

where jn,r is the r th zero of Jn(x), the first few of which are listed in Table 8.1.
Theorem 8.3 (3) then asserts that as the weight function r(x) = x, the orthogo-

nality condition is∫ a

0
x Jn

(
jn,r x

a

)
Jn

(
jn,s x

a

)
dx = 0 for r �= s.

The square of the norm of Jn( jn,r x
a ) is∥∥∥∥Jn

(
jn,r x

a

)∥∥∥∥2

=
∫ a

0
x
[

Jn

(
jn,r x

a

)]2

dx = a2

2
[Jn+1( jn,r )]2.

A proof of this last result is given in Appendix 2 at the end of the chapter.

EXAMPLE 8.26 Orthogonality of Chebyshev polynomials When written in Sturm–Liouville form,
the Chebyshev equation for the polynomial Tn(x) of degree n becomes

[(1 − x2)1/2 y′]′ + n2(1 − x2)−1/2 y = 0.

As the weight function is (1 − x2)−1/2, the orthogonality relation becomes∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx = 0 for m �= n.

The square of the norm of Tn(x) is given by

‖Tn(x)‖2 =
∫ 1

−1

[Tn(x)]2

√
1 − x2

dx

where ‖T0(x)‖2 = π and ‖Tn(x)‖2 = π/2 for n = 1, 2, . . . . As it is inappropriate to
include the proof of this result here, an outline proof is given in Exercise 31 at the
end of the section.

Accounts of Sturm–Liouville systems are to be found in references [3.3] and
[3.4] and in Chapter 5 of reference [3.7].

Summary The important idea of Sturm–Liouville systems was introduced, their relationship to eigen-
values and eigenfunctions was explained, and it was shown that the solutions of such sys-
tems comprise a system of functions that are orthogonal with respect to a suitable weight
function. The examples of Sturm–Liouville systems that were given included trigonometric,
Legendre, Chebyshev, and Bessel functions. Infinite sets of functions like these represent
generalizations to an infinite dimensional space of the elementary notion of the orthogo-
nality of vectors in the three-dimensional Euclidean space. The significance of the orthog-
onality of eigenfunctions will become clear later when arbitrary functions are expanded in
terms of eigenfunctions.
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EXERCISES 8.10

In Exercises 1 through 4, reduce the differential equation to
Sturm–Liouville form by the method used when reducing
equation (121) to the form in (122).

1. xy′′ + (1 − x)y′ + λy = 0.
2. y′′ − 2xy′ + λy = 0.
3. (1 − x2)y′′ − xy′ + λy = 0.
4. (1 − x2)2 y′′ − 2x(1 − x2)y′ + [λ(1 − x2) − m2]y = 0.

In Equations 5 through 14 find the eigenvalues and eigen-
functions of the differential equation.

5. y′′ + λy = 0, y(0) = 0, y(L) = 0.
6. y′′ + λy = 0, y′(0) = 0, y′(L) = 0.
7. y′′ + λy = 0, y′(0) = 0, y(1) = 0.
8. y′′ + λy = 0, y(0) = 0, y′(2π) = 0.
9. y′′ + λy = 0, y(0) = 0, y′(1) − 2y(1) = 0. Find numer-

ical estimates for the first two eigenvalues.
10. y′′ + λy = 0, y(0) = 0, y′(1) + y(1) = 0. Find numeri-

cal estimates for the first two eigenvalues.
11. y′′ + λy = 0, y(−1) = y(1), y′(−1) = y′(1).
12. y′′ + λy = 0, y(0) = y(1), y′(0) = y′(1).
13. x2 y′′ + xy′ + k2 y = 0, y(1) = 0, y(4) = 0.

(Hint: This is a Cauchy–Euler equation)
14. x2 y′′ + xy′ + 9k2 y = 0, y(1) = 0, y′(2) = 0.

(Hint: This is a Cauchy–Euler equation)

In Exercises 15 through 18, verify that the sets of functions
are orthogonal over their stated intervals with the weight
function r(x) = 1, and find their norms.

15. ϕn(x) = sin
(nπx

L

)
, n = 1, 2, . . (0 ≤ x ≤ L).

16. ϕn(x) = cos
(

(2n − 1)πx
2

)
, n = 1, 2, . . (0 ≤ x ≤ 1).

17. ϕn(x) = cos
(nπx

L

)
, n = 1, 2, . . (0 ≤ x ≤ L).

18. ϕn(x) = sin
(

(2n − 1)πx
4

)
, n = 1, 2, . . (0 ≤ x ≤ 2π).

19.* It is known from Example 8.18 that the Sturm–
Liouville problem

y′′ + λy = 0 with y(0) = 0, y′(π) = 0

has for its first eigenvalue λ1 = 1/4, and that the corre-
sponding eigenfunction is ϕ1(x) = sin x/2. Verify that
the function �(x) = x(2π − x) satisfies the bound-
ary conditions for y. By using this expression in the
form of the Rayleigh quotient given in (128), find
the corresponding upper bound for λ1 and compare
it with the exact value. Why is it that replacing �(x) by

�(x) = Cx(2π − x), where C is any nonzero constant,
leaves the estimate of the upper bound unchanged?

20.* Perform the calculation required in Exercise 19 using
the function�(x) = x2(1 − 2x

3π
), after first showing that

�(x) satisfies the boundary conditions. Compare the
value of the upper bound so obtained with the exact
value λ1 = 1/4. Suggest a reason why this approxima-
tion is not likely to yield a better lower bound than the
one obtained using the function �(x) in Exercise 19.

21.* The Sturm–Liouville form of Bessel’s equation of
order 1 is

[xy′]′ +
(

k2x − 1
x

)
y = 0,

where p(x) = x, q(x) = −1/x, r(x) = x, and λ = k2.
The bounded solution of this equation on the interval
0 ≤ x ≤ 1 subject to the condition y(1) = 0 is y(x) =
J1( j1,1x), where from Table 8.1 j1,1 = 3.8317 is the first
zero of J1(x). The inverted parabola �(x) = x(1 − x)
provides a reasonable approximation to the shape of
the required Bessel function for 0 ≤ x ≤ 1. Use this
expression in (128) to obtain an upper bound for the
first eigenvalue λ1 of the equation, and using the fact
that λ1 = j2

1,1 find an upper bound for j1,1. Compare
this estimate with the correct result.

22.* The Sturm–Liouville form of Bessel’s equation of
order 2 is

[xy′]′ +
(

k2x − 4
x

)
y = 0,

where p(x) = x, q(x) = −4/x, r(x) = x, and λ = k2.
The solution of this equation that is bounded on the in-
terval 0 ≤ x ≤ 1 and subject to the condition y(1) = 0
is y(x) = J2( j2,1x), where from Table 8.1 j2,1 = 5.1316
is the first zero of J2(x). Use the approximation �(x) =
x(1 − x) to obtain an upper bound for the first eigen-
value of the equation, and using the fact that λ1 = j2

2,1,
find an upper bound for j2,1. Compare this estimate
with the correct value.

23. The differential equation

L[y] = P(x)y′′ + Q(x)y′ + R(x)y = 0

has associated with it the adjoint differential equation
defined by

M[w] = [P(x)w]′′ − [Q(x)w]′ + R(x)w = 0.

A differential equation is said to be self-adjoint if the
differential equation and its adjoint are of the same
form. When this occurs, the differential operator com-
mon to both equations is also said to be self-adjoint.
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(a) Show that Bessel’s equation of order ν

x2 y′′ + xy′ + (x2 − ν2)y = 0

is not self-adjoint.
(b) Find the value of α that makes the following equa-

tion self-adjoint

(α sin x)y′′ + (cos x)y′ + 2y = 0.

24. Show that Legendre’s equation

(1 − x2)y′′ − 2xy′ − λy = 0

is self-adjoint.
25. Show that Bessel’s equation of order n in the form

x2 y′′ + xy′ − (x2 − n2)y = 0

is not self-adjoint, but that it becomes so when multi-
plied by 1/x.

26. Show that the Hermite equation in the form

y′′ − 2xy′ + λy = 0

is not self-adjoint, but that it becomes so when multi-
plied by exp[−x2].

27. Show that the Chebyshev equation in the form

(1 − x2)y′′ − xy′ + λy = 0

is not self-adjoint, but that it becomes self-adjoint
when multiplied by (1 − x2)−1/2.

28.* Let u(x) and v(x) be any two solutions of

d
dx

[
p(x)

dy
dx

]
+ q(x)y = 0

defined over the interval a ≤ x ≤ b. Prove Abel’s
identity

p(x)[u(x)v′(x) − u′(x)v(x)] = constant

for all x in the interval. As p(x) �= 0 in regular Sturm–
Liouville problems, what conclusion can be drawn
from Abel’s identity if (a) the constant is not zero and
(b) the constant is zero?
(Hint: Multiply the equations for u and v by suit-
able factors, subtract them, and integrate the resulting
equation over the interval a ≤ t ≤ x.)

29.* The Chebyshev polynomial Tn(x) can be defined as

Tn(x) = cos(n arc cos x), n = 0, 1, . . . .

Verify this by showing that this definition of Tn(x) sat-
isfies the Chebyshev differential equation

(1 − x2)y′′ − xy′ + n2 y = 0.

30.* Let y = Tn(x) = cos(n arc cos x) and set x = cos θ .
Use the fact that y(θ) satisfies the differential equa-
tion

d2 y
dθ 2

+ n2 y = 0

together with a change of variable back from θ to x to
show that this definition of Tn(x) satisfies the Cheby-
shev equation

(1 − x2)y′′ − xy′ + n2 y = 0.

31.* Show that if yn(θ) = cos nθ then∫ π

0
[yn(θ)]2dθ =

{
π, n = 0
1
2 π, n ≥ 1

.

By changing back from the variable θ to x, where x =
cos θ and using the definition of Tn(x) in Problem 30,
show that the square of the norm of Tn(x) is given by

‖Tn(x)‖2 =
∫ 1

−1

[Tn(x)]2

√
1 − x2

dx =
{

π, n = 0
1
2 π, n ≥ 1

.

8.11 Eigenfunction Expansions and Completeness

The orthogonality of a set of functions ϕ0(x), ϕ1(x), . . . over the interval a ≤ x ≤ b
with respect to a weight function r(x) allows them to be used to expand (represent)
a function f (x) over that same interval in terms of the functions ϕi (x) by expressing
it as the series

f (x) =
∞∑

m=0

amϕm(x) = a0ϕ0(x) + a1ϕ1(x) + . . . , (129)

where a0, a1, . . . are constants called the coefficients of the expansion.
The representation of functions in this manner is used in approximation theory,

in numerical analysis, and in the solution of partial differential equations by the
method of separation of variables to be described later (see Chapter 18). A series
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such as (129) is called a generalized Fourier series representation of f (x) or, when
the functions ϕn(x) are eigenfunctions, an eigenfunction expansion of f (x).

To see how the coefficients am in (129) are derived for a specific function f (x),
it is necessary to recall that

∫ b

a
r(x)ϕm(x)ϕn(x)dx = 0, m �= n, (130)

and

‖ϕn(x)‖2 =
∫ b

a
r(x)[ϕn(x)]2 dx. (131)

If the expansion (129) is multiplied by r(x)ϕn(x) and the result is integrated

eigenfunction
expansions

over the interval a ≤ x ≤ b, the orthogonality condition (130) causes every term
on the right for which m �= n to vanish, leaving only the term involving an, so using
(131) enables the result to be written∫ b

a
r(x)ϕn(x) f (x)dx = an

∫ b

a
r(x)[ϕn(x)]2dx = an‖ϕn(x)‖2.

This has established that the coefficients an are given by the formula

an =
∫ b

a r(x)ϕn(x) f (x)dx

‖ϕn(x)‖2
, n = 0, 1, . . . . (132)

The term-by-term integration of series (129) leading to (132) requires justifica-
tion, and this follows when the series is uniformly convergent.

Summary of Main Sets of Orthogonal Functions
1. Fourier series (see Chapter 9)

Interval of definition −π ≤ x ≤ π

Set of functions {1, cos nx, sin nx}, n = 1, 2, . . .

Weight r(x) = 1

Orthogonality
∫ π

−π

sin mx sin nx dx = 0, m �= n∫ π

−π

sin mx cos nx dx = 0,∫ π

−π

cos mx cos nx dx = 0, m �= n∫ π

−π

1 · sin mx dx = 0∫ π

−π

1 · cos mx dx = 0

Norms ‖1‖2 = 2π , ‖ cos nx‖2 = π , ‖ sin nx‖2 = π
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2. Legendre polynomials

Interval of definition −1 ≤ x ≤ 1

Set of functions P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), . . .

Recurrence relation (n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0

Weight r(x) = 1

Orthogonality
∫ 1

−1
Pm(x)Pn(x)dx = 0, m �= n

Norm ‖Pn(x)‖2 = 2
2n + 1

, n = 0, 1, . . . .

3. Bessel functions
Interval of definition 0 ≤ x ≤ a

Set of functions There is a set of orthogonal functions for each fixed n:
Jn( jn,r x/a), r = 1, 2, . . . , with jn,r the nth zero of Jn(x)

(see Table 8.1)

Weight r(x) = x

Orthogonality
∫ a

0
x Jn( jn,r x/a)Jn( jn,s x/a)dx = 0, r �= s

Norm ‖Jn( jn,r x/a)‖2 = 1
2 a2[Jn+1( jn,r )]2, r = 1, 2, . . .

4. Chebyshev polynomials

Interval of definition −1 ≤ x ≤ 1

Set of functions T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, . . .

Recurrence relation Tn+1(x) − 2xTn(x) + Tn−1(x) = 0

Weight (1 − x2)−1/2

Orthogonality
∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx = 0, m �= n

Norms ‖T0(x)‖2 = π, ‖Tn(x)‖2 = 1
2 π, n = 1, 2, . . . .

(See Exercises 30 and 31 in Exercise Set 18.10 for the derivation of the norms.)

EXAMPLE 8.27 A Fourier series Example 8.22 established the orthogonality of the set of
functions

a first example of a
Fourier series 1, cos x, sin x, cos 2x, sin 2x, . . .

over the interval −π ≤ x ≤ π with weight r(x) = 1. It is left as a simple exer-
cise to verify that these functions are the eigenfunctions of the Sturm–Liouville
problem

y′′ + λy = 0, y(−π) = y(π) = 0.

The Fourier series for a function f (x) is

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx),
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0 x

f(x)

1

−π/2−π π/2 π

FIGURE 8.13 The rectangular pulse.

where from (132), the Fourier coefficients are

a0 = 1
2π

∫ π

−π

f (x)dx, an = 1
π

∫ π

−π

f (x) cos nx dx

bn = 1
π

∫ π

−π

f (x) sin nxdx, n = 1, 2, . . . .

The formulas for the an and bn are called the Euler formulas for the Fourier coeffi-
cients.

In anticipation of Chapter 9, let us use these results to find the Fourier series
of the (discontinuous) rectangular pulse function

f (x) =
⎧⎨⎩

0, −π < x < −π/2
1, −π/2 < x < π/2
0, π/2 < x < π

shown in Fig. 8.13.
The discontinuities in f (x) cause no problem when deriving the coefficients an

and bn because integrals of finite discontinuous functions are well defined:

a0 = 1
2π

∫ π

−π

f (x) dx = 1
2π

∫ π/2

−π/2
1 dx = 1

2

an = 1
π

∫ π

−π

f (x) cos nx dx = 1
π

∫ π/2

−π/2
cos nx dx = 2

nπ
sin
(

1
2

nπ

)
=
{

0 if n is even

± 2
nπ

if n is odd.

A similar calculation shows that

bn = 1
π

∫ π/2

−π/2
sin nx dx =

[−1
nπ

cos nx
]π/2

−π/2
= 0, n = 1, 2, . . . .

Substituting for the coefficients in the Fourier series gives

f (x) = 1
2

+ 2
π

∞∑
n=1

(−1)n+1 cos(2n − 1)x
2n − 1

,

and so

f (x) = 1
2

+ 2
π

(
cos x − cos 3x

3
+ cos 5x

5
− · · ·

)
, −π ≤ x ≤ π.
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Notice that although f (x) is discontinuous at x = ±π/2, the Fourier series is defined
at these points and has the value 1/2.

This example illustrates the fact that a Fourier series expansion (and indeed
any eigenfunction expansion) of f (x) is defined for all x in its interval of definition,
including points where f (x) is discontinuous, or not even defined. Because of this
it is necessary to question the use of the equality sign in (129) and to reinterpret its
meaning at points of discontinuity of f (x). More will be said about this in Chapter
9 in connection with Fourier series.

Some comments will be offered later about the convergence of eigenfunction
expansions in general, and their behavior at points of discontinuity of f (x) when
the completeness of sets of orthogonal functions is discussed.

EXAMPLE 8.28 A Fourier–Legendre expansion The expansion of a function f (x) in terms of
Legendre polynomials Pn(x) over the interval −1 ≤ x ≤ 1 is called a Fourier–
Legendre expansion, and it takes the forma Fourier–Legendre

expansion

f (x) =
∞∑

n=0

an Pn(x) = a0 + a1 P1(x) + · · · . (133)

From (135) the coefficients an are determined by

an =
∫ b

a r(x)ϕn(x) f (x)dx

‖ϕn(x)‖2
=
[

2n + 1
2

] ∫ 1

−1
f (x)Pn(x)dx, n = 0, 1, . . . .

As any polynomial of degree m can be expressed as a linear combination of
P0(x), P1(x), . . . , Pm(x), it follows from the orthogonality condition that∫ 1

−1
xmPn(x)dx = 0 for n > m.

The Fourier–Legendre expansion of the discontinuous function

f (x) =
{

0, −1 < x < 0
1, 0 < x < 1

is determined as follows. From (133),

an =
(

2n + 1
2

)∫ 1

−1
f (x)Pn(x)dx =

(
2n + 1

2

)∫ 1

0
Pn(x)dx. (134)

If we substitute for Pn(x), it then follows that the first few coefficients in the expan-
sion are

a0 = 1
2
, a1 = 3

4
, a2 = 0, a3 = − 7

16
, . . . ,

so the required expansion is

f (x) = 1
2

P0(x) + 3
4

P1(x) − 7
16

P3(x) + · · · .

Here also this Fourier-Legendre expansion attributes a value to f (x) at its point of
discontinuity at x = 0, and a closer examination shows that the value determined
by the expansion is 1/2.
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EXAMPLE 8.29 Fourier–Bessel expansions A function f (x) can be expanded over the interval
0 ≤ x ≤ a in terms of the Bessel function Jn, with n fixed, to obtain a Fourier–Bessel
expansion of the forma Fourier–Bessel

expansion

f (x) =
∞∑

r=1

ar Jn( jn,r x/a) = a1 Jn( jn,1x/a) + a2 Jn( jn,2x/a) + · · · , (135)

where

ar =
(

2
a2

) ∫ a
0 Jn( jn,r x/a) f (x)dx

[Jn+1( jn,r )]2
(136)

An expansion of this type will be used in Chapter 18 when solving the oscillations
of a circular membrane, such as the membrane covering a circular drum head.

EXAMPLE 8.30 Fourier–Chebyshev expansions The Fourier–Chebyshev expansion of a function
f (x) over the interval −1 ≤ x ≤ 1 takes the form

a Fourier–Chebyshev
expansion

f (x) =
∞∑

n=0

anTn(x) = a0T0(x) + a1T1(x) + · · · , (137)

where

an =
∫ 1
−1

f (x)Tn(x)√
1 − x2

dx

‖Tn(x)‖2
, (138)

with

‖T0(x)‖2 = π and ‖Tn(x)‖2 = 1
2
π, n = 1, 2, . . . .

Any polynomial of degree m can be expressed as a linear combination of T0(x),
T1(x), . . . , Tm(x), so it follows from the orthogonality conditions that∫ 1

−1

xmTn(x)√
1 − x2

dx = 0 for n > m.

It is now necessary to comment on the interpretation of the equality sign in
(129) at points where f (x) is discontinuous. For expansions in terms of orthogonal
functions to be useful, they must be able to represent the class of functions that occur
in practical applications. This means that an orthogonal set of functions defined over
an interval a ≤ x ≤ b must always be able to be used to expand functions that are
piecewise continuous and differentiable at all but a finite number of points in the
interval. For conciseness we will denote this set of functions by PC. In addition, the
set of orthogonal functions must be sufficiently rich in functions that there is no
function of practical importance that cannot be expanded in this manner.

completeness and
convergence

Orthogonal (and orthonormal) sets of functions that have this property are
said to be complete, and the ones introduced so far can all be shown to have this
property of completeness. As sets of orthogonal functions are required to expand
both continuous and piecewise continuous functions that belong to class PC, the
convergence of these expansions must of necessity be more general in nature than
ordinary convergence. It is this more general form of convergence, which will be
introduced shortly, that will permit the equality sign in (129) to be interpreted in a
special sense at points where f (x) is discontinuous.
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The special type of convergence we now introduce is called convergence in the
norm, mean-square convergence, or L2 convergence. This form of convergence is
defined by requiring that if a sequence of functions f1(x), f2(x), . . . converges in the
mean to a function f (x), then

lim
n→∞ ‖ fn(x) − f (x)‖ = 0, (139)

or, more explicitly,

lim
n→∞

∫ b

a
r(x)[ fn(x) − f (x)]2 dx = 0. (140)

When interpreting (139) as (140) it is convenient to omit the square root in the
definition of the norm, as this simplifies analysis and does not influence the limit.

The sequence of functions fn(x) in this definition can be taken to be the nth
partial sum of the eigenfunction expansion (129),

fn(x) =
n∑

m=0

amϕm(x) = a0ϕ0(x) + a1ϕ1(x) + · · · , (141)

where from now on we will assume ϕ0(x), ϕ1(x), . . . to be an orthonormal set of
functions so that ‖ϕn(x)‖2 = 1, n = 0, 1, . . . . Such an orthonormal set of functions
will be complete with respect to the functions f (x) in C if every function in PC can
be approximated by (141). Convergence in the norm and ordinary convergence are
the same everywhere a function is continuous and differentiable.

We now state without proof the fundamental eigenfunction expansion theorem.

THEOREM 8.4 Eigenfunction expansion theorem Let f (x) and f ′(x) have at most a finite num-
ber of jump discontinuities in the interval a ≤ x ≤ b. Then the eigenfunction ex-
pansion (129) converges in the mean to f (x) at every point of continuity of f (x)a fundamental

eigenfunction
expansion
theorem

inside this interval, and to the value 1
2 [ f (c−) + f (c+)] at any point c where f (x)

is discontinuous.

This convergence property has already been demonstrated in Example 8.27,
where the Fourier series converged to the value 1/2 at the points where the function
was discontinuous. Figure 8.14 shows the result in the general case.

f(c+)
1/2[ f(c−) + f(c+)]

f(c−)

0 a c b x

y
y = f(x)

FIGURE 8.14 Convergence of an eigenfunction expansion
at a point of discontinuity.
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To develop the concept of completeness a little further, we substitute (129) into
(140) to obtain∫ b

a
r(x)[ fn(x) − f (x)]2dx =

∫ b

a
r(x)[ fn(x)]2dx − 2

∫ b

a
r(x) f (x) fn(x)dx

+
∫ b

a
r(x)[ f (x)]2dx =

∫ b

a
r(x)

[
n∑

s=0

asϕs(x)

]2

dx

− 2
n∑

s=0

as

∫ b

a
r(x) f (x)ϕs(x)dx +

∫ b

a
r(x)[ f (x)]2dx.

The orthogonality property of the set of eigenfunctions ϕs(x) reduces the first inte-
gral on the right to

∑n
s=0 a2

s , while the definition of as shows that the second term
on the right can be written −2

∑n
s=0 a2

s , so the result becomes∫ b

a
r(x)[ fn(x) − f (x)]2dx = −

n∑
s=0

a2
s +

∫ b

a
r(x)[ f (x)]2dx.

The integrands of both integrals are nonnegative, and the integral on the right
is ‖ f (x)‖2, so we have established the inequality

n∑
s=0

a2
s ≤

∫ b

a
r(x)[ f (x)]2dx = ‖ f (x)‖2 for all n ≥ 0. (142)

This result is called Bessel’s inequality, and it shows that the sum
∑n

s=0 a2
s has theBessel’s inequality

upper bound ‖ f (x)‖2 as n → ∞. As the terms of the series are nonnegative, the
series increases as n increases, so it follows that

∑n
s=0 a2

s converges as n → ∞.
If the system of orthonormal functions ϕs(x) is complete, result (139) must be

true for every function f (x) in the class PC, so that then limn→∞
∑n

s=0 a2
s = ‖ f (x)‖2.

Consequently, for complete orthonormal systems of functions

∞∑
s=0

a2
s = ‖ f (x)‖2 =

∫ b

a
r(x)[ f (x)]2dx. (143)

This result is called the Parseval relation.Parseval relation

THEOREM 8.5 Completeness of orthonormal systems Let ϕ0(x), ϕ1(x), . . . be a complete or-
thonormal set of functions with respect to the set C to which the functions f (x)
belong. Then the only continuous function in C that is orthogonal to every function
ϕn(x) is the zero function f (x) ≡ 0. Furthermore, if the restriction of continuity
is removed, the only functions that can be orthogonal to every function in the
orthonormal set are those with zero norm.

Proof In the first case the vanishing of the norm of f (x) implies that f (x) ≡ 0. In
the second case, the orthogonality of a function with respect to every eigenfunction
implies that the function must be degenerate, and although not identically zero,
must have a zero norm.

See Chapters 2 and 5 of reference [3.7] for information about eigenfunction
expansions and orthonormal sets of functions.
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Summary Eigenfunction expansions have been introduced, and the most important sets of orthog-
onal functions summarized together with their intervals of definition, weight functions,
and orthogonality relationships. Mean-square convergence has been defined and the fun-
damental eigenfunction theorem stated, and the notion of completeness of systems of
orthogonal functions has been explained and related to the Parseval relation.

Appendix 1 (Proofs of Theorem 8.3)
The study of Sturm–Liouville problems is made more concise by the introduction
of the notion of a differential operator L defined as

L ≡ d
dx

[
p(x)

d
dx

]
+ q(x), (144)

with the understanding that if y is a suitably differentiable function,

L[y] ≡ d
dx

[
p(x)

d
dx

]
y(x) + q(x)y(x). (145)

Differential operators, of which L is a special case, have the property that when
they operate on a function y they produce another function L[y]. For example, if

L ≡ d
dx

[
x

d
dx

]
+ 2,

and y(x) = e−x, then

L[e−x] = d
dx

[
x

d[e−x]
dx

]
+ 2e−x = d

dx
[−xe−x] + 2e−x = (1 + x)e−x.

In terms of the differential operator L in (144), the Sturm–Liouville equation
(122) with eigenvalue λ and corresponding eigenfunction ϕ becomes

L[ϕ] + λrϕ = 0, (146)

where ϕ satisfies suitable boundary conditions.
The proof of the results of Theorem 8.3 that can be given here is simplified by

appeal to the following theorem, which is important in its own right.

THEOREM 8.6 One-dimensional form of Green’s theorem Let L be the linear operator

L ≡ d
dx

[
p(x)

d
dx

]
+ q(x),

and, let u, v be any two twice differentiable functions defined on the interval
a ≤ x ≤ b. Then,

(i) ∫ b

a
uL[v]dx = [p(x)u(x)v′(x)]b

a −
∫ b

a
pu′v′ dx +

∫ b

a
quvdx

and
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(ii) ∫ b

a
{uL[v] − vL[u]}dx = [p(x){u(x)v′(x) − v(x)u′(x)}]b

a,

called the Lagrange identity. Furthermore, if u and v satisfy the boundary
conditions

A1φ(a) + A2φ
′(a) = 0 and B1φ(b) + B2φ

′(b) = 0,

where φ may be either u or v, then
(iii) ∫ b

a
{uL[v] − vL[u]}dx = 0.

Proof Result (i) is the one-dimensional form of Green’s first theorem, and result
(ii) is the one-dimensional form of Green’s second theorem. The three-dimensional
forms of these theorems are derived in Chapter 12, Section 12.2. Result (iii) is the
consequence of Green’s second theorem when u and v satisfy the stated boundary
conditions at the ends of the interval a ≤ x ≤ b.

The proof proceeds as follows. Differentiation of the product u(pv′) gives

[u(pv′)]′ = u(pv′)′ + u′(pv′),
so

u(pv′)′ = [puv′]′ − pu′v′.

Recalling the definition of L, we can write

uL[v] = [puv′]′ − pu′v′ + quv,

so integrating over the interval a ≤ x ≤ b gives∫ b

a
uL[v]dx = [p(x)u(x)v′(x)]b

a −
∫ b

a
pu′v′dx +

∫ b

a
quvdx,

which is result (i).
Result (ii) follows if we interchange u and v in (i) and subtract the result from

(i) to obtain ∫ b

a
{uL[v] − vL[u]}dx = [p(x){u(x)v′(x) − v(x)u′(x)}]b

a .

Result (iii) follows from (ii) if we notice that, provided A2 �= 0, it follows from the
boundary conditions at x = a that

u′(a) = −(A1/A2)u(a) and v′(a) = −(A1/A2)v(a),
so

[p(uv′ − vu′)]x=a = −(A1/A2)p(a)u(a)v(a) + (A1/A2)p(a)u(a)v(a) = 0,

and a similar argument shows that, provided B2 �= 0,

[p(uv′ − vu′)]x=b = 0.



536 Chapter 8 Series Solutions of Differential Equations, Special Functions, and Sturm–Liouville Equations

Thus, [p(uv′ − vu′)]b
a = 0, reducing result (ii) to∫ b

a
{uL[v] − vL[u]}dx = 0,

which is result (iii).
Result (iii) is obviously true if the boundary conditions simplify to

φ(a) = 0 and φ(b) = 0 or to φ′(a) = 0 and φ′(b) = 0,

and the modification to the proof needed to show that the result remains true if A2

and/or B2 is zero is left as an exercise.

JOSEPH LOUIS LAGRANGE (1736–1813)
Lagrange was born in Turin of French extraction and after working in Berlin for twenty years
moved to Paris. His many fundamental contributions to mathematics have led to his being
regarded as one of the most outstanding mathematicians of his time. He made contributions to
algebra, calculus, differential equations, the calculus of variations, and also to mechanics.

We now prove the results in Theorem 8.3 that are straightforward, and refer
to the references at the end of the chapter for details of the way in which the more
complicated results can be established.

Property 1. The proof of this property is difficult and so will be omitted,
but Examples 8.18 to 8.21 illustrate the existence of an ordered sequence of
eigenvalues in specific cases.
Property 2. In a regular Sturm–Liouville problem suppose, if possible, that
ϕ and ψ are eigenfunctions corresponding to the single eigenvalue λ. Then
each of these functions satisfies the Sturm–Liouville equation, while ϕ and ψ

both satisfy the boundary conditions at x = a so that

A1ϕ(a) + A2ϕ
′(a) = 0 and A1ψ(a) + A2ψ

′(a) = 0.

This pair of equations can be considered to determine A1 and A2 in terms
of ϕ and ψ at x = a. The equations are homogeneous, so there can only be
a nontrivial solution for A1 and A2 if the determinant of coefficients W =
ϕ(a)ψ ′(a) − ϕ′(a)ψ(a) vanishes, but this determinant is the Wronskian of
the solutions and can only vanish if ϕ is proportional to ψ , so the result is
established.
Property 3. Letϕm andϕn be eigenfunctions corresponding to the two distinct
eigenvalues λm and λn of the Sturm–Liouville problem

L[y] + λry = 0

defined on a ≤ x ≤ b and satisfying homogeneous boundary conditions of the
type given in (127). Then it follows that

L[ϕm] + λmrϕm = 0 and L[ϕn] + λnrϕn = 0.

Multiplying the first equation by ϕn and the second by ϕm, subtracting the
results, and integrating over the interval a ≤ x ≤ b gives∫ b

a
{ϕmL[ϕn] − ϕnL[ϕm]}dx + (λn − λm)

∫ b

a
rϕmϕn dx = 0.
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The first integral vanishes because of the result of Theorem 8.4 (iii), so

(λn − λm)
∫ b

a
rϕmϕndx = 0.

The result now follows because λn �= λm.
Property 4. The proof is by contradiction. Suppose, if possible, that λ =
α + iβ is a complex eigenvalue associated with the complex eigenfunction
� = ϕ + iψ . Then as � and λ satisfy the Sturm–Liouville equation, we have

[p(ϕ + iψ)′]′ + [q + (α + iβ)r ](ϕ + iψ) = 0.

This can be written

[pϕ′]′ + qϕ + αϕr − βψr + i{[pψ ′]′ + qψ + βϕr + αψr} = 0.

For this to be true, both real and imaginary parts of the equation must
vanish, so

[pϕ′]′ + qϕ + αϕr − βψr = 0 and [pψ ′]′ + qψ + βϕr + αψr = 0.

Multiplying the second equation by i , subtracting it from the first equation,
and collecting terms gives

[p(ϕ − iψ)′]′ + [q + (α − iβ)r ](ϕ − iψ) = 0,

showing that � = ϕ − iψ is an eigenfunction and λ = α − iβ is an eigenvalue.
As � and � are linearly independent eigenfunctions, it follows from Theorem
8.3 (3) that ∫ b

a
r��dx =

∫ b

a
r(ϕ2 + ψ2)dx = 0,

but this is impossible because by hypothesis r(x) ≥ 0 and ϕ2 + ψ2 > 0. Con-
sequently the assumption that an eigenvalue can be complex is false.
Property 5. Let λn be an eigenvalue and ϕn be the corresponding eigenfunc-
tion of the Sturm–Liouville equation

L[ϕn] + λnrϕn = 0.

Multiplication of this equation by ϕn, followed by integration over the interval
a ≤ x ≤ b, gives ∫ b

a
ϕnL[ϕn]dx + λn

∫ b

a
rϕ2

ndx = 0.

An application of Theorem 8.4 (i) with u = v = ϕn then gives the result

λn = −[pϕnϕ
′
n]b

a + ∫ b
a p(ϕ′

n)2dx − ∫ b
a rϕ2

ndx∫ b
a rϕ2

ndx
.

Property 6. This follows directly from Property 5 when q(x) < 0 and the
condition [pϕnϕ

′
n]b

a ≤ 0 is satisfied.
Property 7. We offer no proof of this result, though as already remarked it
is well illustrated by graphs of the Legendre polynomials shown in Fig. 8.1.
Property 8. This follows directly from Property 5 when the stated condi-
tions are imposed, because increasing p(x) will increase the numerator while
leaving all other terms unchanged.
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Property 9. No proof of this result is offered because it follows from the
form of argument used to establish the upper bound property of the Rayleigh
quotient given in (128).

Appendix 2 (Norm of Jn(x))
The square of the norm of the Bessel function Jn( jn,r x/a) is the definite integral

‖Jn( jn,r x/a)‖2 =
∫ a

0
x[Jn( jn,r x/a)]2dx = 1

2
a2[Jn+1( jn,r )]2,

and so the norm is

‖Jn( jn,r x/a)‖ = 1√
2

a[Jn+1( jn,r )]. (147)

This result is most easily derived by considering the case a = 1, and then changing
variables to obtain the foregoing more general result. Accordingly, we consider the
two Bessel equations in Sturm–Liouville form,

[xu′]′ + (
j2
n,r x − n2/x

)
u = 0 and [xv′]′ + (k2x − n2/x)v = 0,

defined on the interval 0 ≤ x ≤ 1 with bounded solutions that satisfy the boundary
conditions u(1) = v(1) = 0. These equations have the respective solutions u(x) =
Jn( jn,r x) and v(x) = Jn(kx).

Multiplying the first equation by u, the second by v, subtracting the second
equation from the first, and integrating over the interval 0 ≤ x ≤ 1 gives, after using
Theorem 8.6 (ii) and the result u′(x) = jn,r J ′( jn,r x),∫ 1

0
x Jn( jn,r x)Jn(kx)dx = jn,r Jn(k)J ′

n( jn,r )
k2 − j2

n,r
.

We now write this result as∫ 1

0
x Jn( jn,r x)Jn(kx)dx =

(
jn,r

k + jn,r

)(
Jn(k) − Jn( jn,r )

k − jn,r

)
J ′

n( jn,r ),

where the subtraction of Jn( jn,r ) in the bracketed term in the numerator leaves the
result unchanged because Jn( jn,r ) = 0.

Taking the limit as k → jn,r , reduces this result to∫ 1

0
x[Jn( jn,r x)]2dx = 1

2
[J ′

n( jn,r )]2, r = 1, 2, . . . .

It is inconvenient to work with J ′
n( jn,r ), so we relate Jn to Jn+1 by using recurrence

relation (65)′:

x J ′
n(x) = nJn(x) − x Jn+1(x).

Setting x = jn,r causes this to simplify to J ′
n( jn,r ) = −Jn+1( jn,r ), and so∫ 1

0
x[Jn( jn,r x)]2dx = 1

2
[Jn+1( jn,r )]2.

The more general result follows by making the change of variable x = z/a and then
replacing z by x.
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EXERCISES 8.11

In Exercises 1 through 3 expand the given polynomials in
terms of Legendre polynomials.

1. 4x3 − 2x2 + 1.
2. 3x3 + x2 − 4x.

3. x4 + 3x2 + 2x.

4. Represent x2, x3, and x4 in terms of Legendre polyno-
mials.

In Exercises 5 through 8 find the first four terms of the
Fourier–Legendre expansions of the given functions. In
each case graph the four term approximation to f (x) and
compare it with the graph of f (x).

5. f (x) =
{

1, −1 ≤ x ≤ 0
x, 0 < x ≤ 1.

6. f (x) =
{

1 + x, −1 ≤ x ≤ 0
1 − x, 0 < x ≤ 1.

7. f (x) =
⎧⎨⎩

0, −1 ≤ x < −1/2
1, −1/2 < x < 1/2
1/2, 1/2 < x < 1.

8. f (x) =
{−2x, −1 ≤ x < 0

x, 0 ≤ x ≤ 1.

9. Find the first four terms in the Fourier–Legendre ex-
pansion of ex .

10. Find the first four terms in the Fourier–Legendre ex-
pansion of e−x .

In Exercises 11 through 13 expand the given polynomials in
terms of Chebyshev polynomials.

11. 3x4 − 4x2 − x.
12. 4x3 + x2 − 3x + 1.

13. 2x4 − x3 + x + 3.

14. Represent x2, x3, and x4 in terms of Chebyshev poly-
nomials.

In Exercises 15 and 16 find the first four terms in the Fourier–
Chebyshev expansion of the given function. In each case
graph the four term approximation to f (x) and compare it
with the graph of f (x).

15. f (x) =
{

2 + x, −1 < x < 0
3, 0 < x < 1.

16. f (x) =
{−1, −1 < x < 0

2x − 1, 0 < x < 1.
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CHAPTER 8

TECHNOLOGY PROJECTS

Project 1

The Asymptotic Formulas for Jn(x) and Yn(x)

The purpose of this project is to compare plots of the Bessel
functions Jn(x) and Yn(x) with the results obtained from the
asymptotic formulas

Jn(x)

√
2

πx
sin x

1
2

nπ + 1
4
π and

Yn(x)

√
2

πx
sin x

1
4
π(2n + 1) .

Make combined plots of Jn(

( )
( )

x) and its asymptotic
form, and Yn(x) and its asymptotic form for 0 � x �30
for different values of n to illustrate the speed with
which the asymptotic approximation tends to the
function itself.

Project 2

Chebyshev Approximation

The purpose of this project is to make Chebyshev polyno-
mial approximations of different orders to an asymmetric
function f (x) to illustrate the rapidity with which they con-
verge to f (x).

1. Let f (x) = sin(5x)(1 + x2)1/4 for 1 � x � 1.
Approximate f (x) in terms of the Chebyshev
polynomials Tn(x) by the function fN(x):

fN(x) =
N∑

n=0

anTn(x).

Find the coefficients an numerically and make
simultaneous plots of f (x) and fN(x) for N =
3, 5, and 7 to show the convergence of fN(x) to
f (x) as N increases.

2. Repeat the calculations with a discontinuous
function of your own choice and comment on
the behavior of the approximation at the point
of discontinuity in the cases when N = 5, 10, 15,
20, 25, and 30. Compare your observations with
the remarks about the occurrence of the Gibbs
phenomenon in Fourier series in Chapter 9.

Project 3

Legendre Approximation

The purpose of this project is to make Legendre polynomial
approximations of different orders to the function f (x) in
Project 2 to illustrate the rapidity with which they converge
to f (x).

1. Let f (x) = sin(5x)(1 + x2)1/4 for 1 � x � 1.
Approximate f (x) in terms of the Legendre
polynomials Pn(x) by the function fN(x):

fN(x) =
N∑

n=0

an Pn(x).

Find the coefficients an numerically and make
simultaneous plots of f (x) and fN(x) for N =
3, 5, and 7 to show the convergence of fN(x) to
f (x) as N increases.

2. Repeat the calculations with a discontinuous
function of your own choice and comment on
the behavior of the approximation at the point
of discontinuity for the cases N = 5, 10, 15, 20,
25, and 30. Compare your observations with the
remarks about the occurrence of the oscillatory
behavior of approximations near a finite jump
discontinuity described in Chapter 9 on Fourier
series, where the effect is called the Gibbs
phenomenon.

Project 4

Bessel Function Approximation

The purpose of this project is to make Bessel function ap-
proximations of different orders to a function f (x) over a
given interval to illustrate the rapidity with which they con-
verge to f (x).

1. Approximate f (x) = (1 + x3)sin x over the in-
terval 0 � x � π in terms of the Bessel function
J1(x) by the function fN(x)

fN(x) =
N∑

r=1

ar J1( j1,r x/π),

540
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where j1,r is the r th zero of J1(x) listed in
Table 8.1. Find the coefficients an numerically
and make simultaneous plots of f (x) and fN(x)
for N = 3, 5, and 7 to show the convergence of
fN(x) to f (x) as N increases.

2. Repeat the calculation with a continuous func-
tion f (x) of your own choice. When making the
series expansion in terms of the Bessel function
Jn(x), use the value n = 0 if f (0) �= 0 and n = 1
if f (0) = 0.

541
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9C H A P T E R

Fourier Series

When analyzing situations as diverse as electrical oscillations, vibrating mechanical
systems, longitudinal oscillations in crystals, and many other physical phenom-

ena, Fourier series are found to arise naturally. Furthermore, the individual terms in a
Fourier series often have an important physical interpretation. In a vibrating mechani-
cal system, for example, each component of a Fourier series representation of the over-
all vibration represents a fundamental mode of vibration. The full Fourier series shows
how each mode contributes to the solution, and which are the most significant modes.
This information can often be used to advantage, either by showing how the modes
can be utilized to achieve a desired effect, or by using the information to enable sys-
tems to be constructed that minimize undesirable vibrations. It is for these and other
reasons that it is necessary for engineers and physicists to study the properties of Fourier
series.

9.1 Introduction to Fourier Series

AFourier series representation of a function f (x) over the interval −π ≤ x ≤ π

is an expression of the form

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

= a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + · · · , (1)

where the coefficients a0, a1, . . . , b1, b2, . . . are determined by the function f (x).
It is important to notice that the Fourier series representation of f (x) contains

two infinite sums, one of even functions (the cosines) and the other of odd functions
(the sines). It will be recalled that a function f (x) defined in the interval −L ≤ x ≤ L
is said to be an even function in the interval ifeven and odd function

f (−x) = f (x), (2)

545
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and to be an odd function in the interval if

f (−x) = − f (x). (3)

The cosine function is an even function because cos(−x) = cos x in agreement
with the definition in (2). As this is true for all x, the function cos x is an even function
for −∞ < x < ∞. Similarly, sin x is an odd function because sin(−x) = − sin x in
agreement with the definition in (3). This also is true for all x, so the function sin x
is an odd function for −∞ < x < ∞.

Most functions are neither even nor odd, but any function in an interval −L ≤
x ≤ Lcan be expressed as the sum of an even function and an odd function defined
over the interval. To see why this is, let f (x) be an arbitrary function defined over
the interval −L ≤ x ≤ L, and write it in the form

f (x) = 1
2

( f (x) + f (−x)) + 1
2

( f (x) − f (−x)) for −L ≤ x ≤ L. (4)

Then the function

h(x) = 1
2

( f (x) + f (−x)) (5)

is seen to be an even function, because h(−x) = h(x), whereas the function

g(x) = 1
2

( f (x) − f (−x)) (6)

is seen to be an odd function, because g(−x) = −g(x), so the assertion is proved.

EXAMPLE 9.1 Classify the following functions as even, odd, or neither.

(a) cosh x. (b) sinh x. (c) x2 + sin x. (d) 1 + x2 + 3x4.

Solution (a) As cosh(−x) = cosh x for all x, the function cosh x is an even func-
tion for all x. (b) As sinh(−x) = − sinh x for all x, the function sinh x is an odd
function for all x. (c) (−x)2 = x2, so x2 is an even function for all x, while sin x is an
odd function for all x, so the function x2 + sin x is neither even nor odd. In this case
the function x2 + sin x is already expressed as the sum of an even function and an odd
function. (d) Set f (x) = 1 + x2 + 3x4. Then f (−x) = 1 + (−x)2 + (−x)4 = f (x), so
f (x) is an even function. This result can be obtained by a different form of argu-
ment as follows. A constant does not change when the sign of x is changed, so all
constants are even functions and, in particular, 1 is an even function. The function
x2 has already been shown to be an even function, and the function 3x4 is an even
function because 3(−x)4 = 3x4. Thus, as the function 1 + x2 + 3x4 is a sum of three
even functions, it must be an even function.

deriving formulas
for an and bn

To arrive at a formula for the an in (1) corresponding to a given function f (x),
result (1) is first multiplied term by term by cos nx to obtain

f (x) cos nx = a0 cos nx + a1 cos x cos nx + a2 cos 2x cos nx + a3 cos 3x cos nx

+ · · · + an−1 cos(n − 1)x cos nx + an cos2 nx

+ an+1 cos(n + 1)x cos nx + · · · + b1 sin x cos nx

+ b2 sin 2x cos nx + · · · .
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Integrating this result over the interval −π ≤ x ≤ π gives∫ π

−π

f (x) cos nxdx = a0

∫ π

−π

cos nxdx + a1

∫ π

−π

cos x cos nxdx

+ a2

∫ π

−π

cos 2x cos nxdx + a3

∫ π

−π

cos 3x cos nxdx + · · ·

+ an−1

∫ π

−π

cos(n − 1)x cos nxdx + an

∫ π

−π

cos2 nxdx

+ an+1

∫ π

−π

cos(n + 1)x cos nxdx + · · · + b1

∫ π

−π

sin x cos nxdx

+ b2

∫ π

−π

sin 2x cos nxdx + · · · .

The orthogonality properties of the sine and cosine functions listed in entry
1 of the summary of main sets of orthogonal functions in Section 8.11 shows that
all integrals on the right with the exception of the one with the integrand cos2 nx
vanish, giving rise to the result∫ π

−π

f (x) cos nxdx = an

∫ π

−π

cos2 nxdx.

However,
∫ π

−π
cos2 nxdx = π , for n �= 0 and

∫ π

−π
1.dx = 2π , so

a0 = 1
2π

∫ π

−π

f (x)dx and an = 1
π

∫ π

−π

f (x) cos nxdx, for n = 1, 2, . . . .

A similar argument involving the multiplication of the Fourier series (1) by
sin nx followed by integration over the interval −π ≤ x ≤ π and use of the orthog-
onality properties of sin nx shows the coefficients bn are given by

bn = 1
π

∫ π

−π

f (x) sin nxdx, for n = 1, 2, . . . .

the Euler formulas
These results are the Euler formulas for the Fourier coefficients an and bn, and

for future reference they are now listed, together with the associated Fourier series
representation of f (x).

Fourier series representation of f (x) over the interval −π ≤ x ≤ π

Let the function f (x) be defined on the interval −π ≤ x ≤ π . Then the Fourier
coefficients an and bn in the Fourier series representation of f (x)

the Fourier series
representation

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx) (7)

are given by the Euler formulas

a0 = 1
2π

∫ π

−π

f (x)dx, an = 1
π

∫ π

−π

f (x) cos nxdx,

bn = 1
π

∫ π

−π

f (x) sin nxdx, . . . for n = 1, 2, . . . .
(8)
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The arguments used to derive the Euler formulas in (8) are not rigorous, because
the term by term integration needs to be justified and the convergence of the Fourier
series representation of f (x) to the function f (x) itself has not been examined, so
the use of an equality sign in (1) and (7) must be questioned.

JEAN BAPTISTE JOSEPH (BARON) FOURIER (1768–1830)
A remarkable French physicist who was also an outstanding mathematician. He was orphaned
at eight, and educated in a military school run by the Benedictines who then gave him a
lectureship in mathematics. He later moved to a chair at the Ecole Polytechnique in Paris, and
later to Grenoble where he was appointed Prefect by Napoleon. His experiments on heat
conduction while in Grenoble, suggested by Newton’s Law of Cooling, led him to propose his
law of heat conduction (Fourier’s Law) and to the publication of his most important Theorie
Analytique de la Chaleur in which he introduced the representation of arbitrary function over an
interval in terms of trigonometric functions, now called Fourier series. He was created a Baron by
Napoleon in 1808.

In fact, the preceding approach can be fully justified for all functions f (x) that
arise in practical situations, and we will see later that the equality sign can be used
wherever f (x) is continuous, whereas at points where f (x) experiences a finite
jump discontinuity the value assumed by the Fourier series representation is the
average of the values to the immediate left and right of the jump. It is for these
reasons that in more advanced accounts the equality sign in (7) is replaced by a
tilde ∼, because this indicates that a relationship exists between a function f (x)
and its Fourier series representation without indicating that it is necessarily a strict
equality. When this notation is used, the connection between f (x) and its Fourier
series is shown by writing

f (x) ∼ a0 +
∞∑

n=1

(an cos nx + bn sin nx). (9)

fundamental interval,
periodicity, and
periodic extension

The interval of integration −π ≤ x ≤ π used when deriving the Euler formulas
is called the fundamental interval of the Fourier series, and the Fourier coefficients
will always be defined provided the integral

∫ π

−π
f (x)dx exists. Although Fourier

series comprise only even and odd functions, results (4) to (6) allow a Fourier series
to represent arbitrary functions that are neither even nor odd.

A Taylor series expansion of a function f (x) about a point x0 requires the
function to be repeatedly differentiable at x0. However, the coefficients of a Fourier
series are defined in terms of definite integrals that are still defined when f (x) has
finite jump discontinuities in the fundamental interval, so the Euler formulas still
remain valid when f (x) is discontinuous. It is this property of a definite integral
that makes a Fourier series representation of a function more general than a Taylor
series expansion.

The properties of Fourier series reflect the periodicity of the sine and cosine
functions used in the expansion, where the period of a periodic function is defined
as follows. A function g(x) is said to be periodic with period T if

g(x + T) = g(x) (10)

for all x, and T is the smallest value for which (10) is true. A periodic function
g(x) may either be continuous or discontinuous, and an example of a continuous
periodic function with period T is shown in Fig. 9.1.
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T

g

x

T

0

FIGURE 9.1 A continuous periodic function
g(x) with period T.

The functions 1, cos nx, and sin nx in the Fourier series representation (7) of
f (x) are all periodic with period 2π , so the Fourier series representation of f (x)
defined on the interval −π < x < π is also periodic with period 2π . It does not
necessarily follow that outside the fundamental interval the function f (x) coincides
with its Fourier series representation, because the behavior of f (x) outside the
fundamental interval does not enter into the Euler formulas. Each representation of
f (x) in an interval of the form (2n − 1)π < x < (2n + 1)π , with n = 0, ±1, ±2, . . . ,
is called a periodic extension of the fundamental interval for f (x).

In Chapter 8, Example 8.22, the discontinuous rectangular pulse function

f (x) =
⎧⎨⎩

0, −π < x < −π/2
1, −π/2 < x < π/2
0, π/2 < x < π

was shown to be represented by the Fourier series

f (x) = 1
2

+ 2
π

[
cos x − cos 3x

3
+ cos 5x

5
− cos 7x

7
+ · · ·

]
for all x . (11)

If this function f (x) is defined for all x by the periodicity condition f (x + 2π) =
f (x), its graph takes the form shown in Fig. 9.2. Figure 9.3 shows the graph of the
first five terms of the Fourier series representation (11) in the fundamental interval.

This simple example emphasizes two important issues that always arise when
working with Fourier series representations of functions:

1. The need to interpret the equality sign in (7) at any point x = x0 in the fun-
damental interval where f (x) is discontinuous.

2. The fact that the Fourier series of a function and the periodic extensions of
the function will only coincide when the function f (x) is itself periodic with
a period equal to the fundamental interval.

−π −π/2 π/2 π 3π/2 5π/2 3π x0

1

−3π/2−5π/2−3π

Periodic extensionFundamental intervalPeriodic extension

f(x)

FIGURE 9.2 The periodic rectangular pulse function f (x).
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FIGURE 9.3 Graph of the first five terms of the
Fourier series of f (x).

An example of the difference that can arise between the behavior of a nonpe-
riodic function f (x) and its periodic extensions is illustrated in Fig. 9.4 in the case
of the function

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/2, x < −π

0, −π < x < −π/2
1, −π/2 < x < π/2
0, π/2 < x < π

1/4, x > π.

The periodic extensions of f (x) in its fundamental interval −π ≤ x ≤ π shown as
dashed lines are, of course, the same as those in Fig. 9.2, though in this case the
behavior of f (x) outside the fundamental interval is entirely different.

EXAMPLE 9.2 Find the Fourier series representation of

some illustrative
examples f (x) =

⎧⎨⎩
sin 2x, −π < x < −π/2
0, −π/2 ≤ x ≤ 0
sin 2x, 0 < x ≤ π.

Solution The function f (x) is continuous over the fundamental interval −π ≤ x ≤
π , but it is defined in piecewise manner, so the Fourier coefficients must be deter-
mined by integrating the Euler equations (8) in a corresponding manner. We have

a0 = 1
2π

∫ π

−π

f (x)dx = 1
2π

∫ −π/2

−π

sin 2xdx + 1
2π

∫ π

0
sin 2xdx

= 1
2π

[−(1/2) cos 2x]−π/2
−π + 1

2π
[−(1/2) cos 2x]π0 = 1

2π
+ 0 = 1

2π
.

−π π 3π x

1

0−3π

Periodic extensionFundamental intervalPeriodic extension

1/2
1/4

f(x)
Periodic extension of f(x)

FIGURE 9.4 A nonperiodic function defined for all x, and the periodic extensions of the
function in its fundamental interval.
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Similarly,

an = 1
π

∫ π

−π

f (x) cos nxdx = 1
π

∫ −π/2

−π

sin 2x cos nxdx + 1
π

∫ π

0
sin 2x cos nxdx

= −2
π

[
cos nπ + cos(nπ/2)

n2 − 4

]−π/2

−π

+ 2
π

[
cos nπ − 1

n2 − 4

]π

0
, for n �= 2

= −2[1 + cos(nπ/2)]
π(n2 − 4)

, for n �= 2.

As the denominator in the expression for an is zero when n = 2, in order to find a2

it is necessary to return to the Euler formula for an and set n = 2 before integrating,
when we obtain

a2 = 1
π

∫ −π/2

−π

sin 2x cos 2xdx + 1
π

∫ π

0
sin 2x cos 2xdx = 0 + 0 = 0.

The Euler formula for bn becomes

bn = 1
π

∫ π

−π

f (x) sin nxdx = 1
π

∫ −π/2

−π

sin 2x sin nxdx + 1
π

∫ π

0
sin 2x sin nxdx

= 1
2π

[
sin(n − 2)x

n − 2
− sin(n + 2)x

n + 2

]−π/2

−π

+ 1
2π

[
sin(n − 2)x

n − 2
− sin(n + 2)x

n + 2

]π

0

= 2
π

sin(nπ/2)
(n2 − 4)

, for n �= 2.

As the denominator in the expression for bn is zero for n = 2, to find b2 we must
set n = 2 in the Euler formula for b2 before integrating, as a result of which we find
that

b2 = 1
π

∫ −π/2

−π

sin2 2xdx + 1
π

∫ π

0
sin2 2xdx

= 1
4π

[2x − sin 2x cos 2x]−π/2
−π + 1

4π
[2x − sin 2x cos 2x]π0

= 1
4

+ 1
2

= 3
4
.

Combining the preceding results shows the first few Fourier coefficients to be

a0 = 1
2π

, a1 = 2
3π

, a2 = 0, a3 = − 2
5π

, a4 = − 1
3π

, a5 = − 2
21π

,

b1 = − 2
3π

, b2 = 3
4
, b3 = − 2

5π
, b4 = 0, b5 = 2

21π
, · · · .

When these coefficients are used, the first few terms of the Fourier series for f (x)
are seen to be

f (x) = 1
2π

+ 1
π

(
2
3

cos x − 2
5

cos 3x − 1
3

cos 4x − 2
21

cos 5x + · · ·
)

+ 1
π

(
−2

3
sin x + 3π

4
sin 2x − 2

5
sin 3x + 2

21
sin 5x + · · ·

)
.
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FIGURE 9.5 Fourier series approximation for
f (x).

This example illustrates how when a sine function (or a cosine function) with an
argument mx with m an integer occurs in a piecewise defined function, its Fourier
coefficients am and bm must be found from the Euler formulas with n set equal to
m before integration. Figure 9.5 shows a graph of this Fourier series approximation
to f (x) up to and including the terms in cos 5x and sin 5x.

It is useful to have a special name for finite approximations to Fourier series
such as the one used to construct the graph in Fig. 9.5. Because of this it is usual to
call the approximation

SN(x) = a0 +
N∑

n=1

(an cos nx + bn sin nx) (12)

Nth partial sum to the full Fourier series in (7) the Nth partial sum of the Fourier series. Thus, the
graph in Fig. 9.5 shows the fifth partial sum S5(x) of the function f (x) defined in Ex-
ample 9.2. The Fourier series in (7) is related to its Nth partial sum Sn(x) by the limit

f (x) = a0 +
∞∑

n=0

(an cos nx + bn sin nx) = lim
N→∞

SN(x). (13)

Not every function has a Fourier series involving an infinite number of terms,
as can be seen by considering the function f (x) = 1 + 2 sin x cos x. When this is
rewritten as f (x) = 1 + sin 2x, it is recognized that it is, in fact, its own Fourier series.

There is nothing special about the choice of −π ≤ x ≤ π as a fundamental
interval, and it is often necessary to take the fundamental interval to be −L ≤ x ≤ L.
Results (7) and (8) generalize immediately once it is recognized that the set of
functions

1, cos
πx
L

, cos
2πx

L
, cos

3πx
L

, . . . , sin
πx
L

, sin
2πx

L
, sin

3πx
L

, . . .

form an orthogonal set over the interval −L ≤ x ≤ L. This can be seen by using
routine integration to show that∫ L

−L
sin

mπx
L

cos
nπx

L
dx = 0 for all integers m and n, (14)

∫ L

−L
sin

mπx
L

sin
nπx

L
dx =

{
0 for m �= n
L for m = n

for all integers m and n, (15)
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and∫ L

−L
cos

mπx
L

cos
nπx

L
dx =

⎧⎪⎨⎪⎩
0 for m �= n
L for m = n �= 0
2L for m = n = 0.

for all integers m and n

(16)

The Fourier series of a function f (x) defined on the interval −L ≤ x ≤ L
becomes

f (x) = a0 +
∞∑

n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
, (17)

and the corresponding Euler formulas for the an and bn follow as before. The
coefficients an are obtained by multiplying (17) by cos nπx

L and integrating over
the interval −L ≤ x ≤ L, while the bn follow by multiplying (17) by sin nπx

L and
integrating over the same interval. The result is as follows, though the details are
left as an exercise.

Fourier series representation of f (x) over the interval −L ≤ x ≤ L

Let the function f (x) be defined on the interval −L ≤ x ≤ L. Then the FourierFourier series over
−L ≤ x ≤ L coefficients an and bn in the Fourier series representation of f (x)

f (x) = a0 +
∞∑

n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
(18)

are given by the Euler formulas

a0 = 1
2L

∫ L

−L
f (x)dx, an = 1

L

∫ L

−L
f (x) cos

nπx
L

dx,

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx, for n = 1, 2, . . . .

(19)

EXAMPLE 9.3 Find the Fourier series representation of f (x) = x + 1 for −1 ≤ x ≤ 1.

Solution In this case L = 1, so using integration by parts we find that

a0 = 1
2

∫ 1

−1
(x + 1)dx = 1, an =

∫ 1

−1
(x + 1) cos nπxdx = cos nπx

n2π2
+ x sin nπx

nπ

+ sin nπx
nπ

]1

−1
= 0

and

bn =
∫ 1

−1
(x + 1) sin nπxdx = sin nπx

n2π2
− x cos nπx

nπ
− cos nπx

nπ

]1

−1
= 2(−1)n+1

nπ
,
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FIGURE 9.6 The partial sum approximation
S10(x).

for n = 1, 2, . . . , where we have used the fact that sin nπ = 0 and cos nπ = (−1)n

for n a positive integer. Substituting these coefficients into (18) shows the required
Fourier series representation to be

f (x) = 1 + 2
π

∞∑
n=1

(−1)n+1

n
sin nπx, for −1 ≤ x ≤ 1.

A graph of the partial sum approximation S10(x) to f (x) is shown in Fig. 9.6.

As cosines are even functions and sines are odd functions, it is to be expected
that a Fourier series representation of an even function will only contain cosine
terms, whereas a Fourier series representation of an odd function will only contain
sine functions. These properties form the basis of the following result that simplifies
the task of finding Fourier series representations of even and odd functions.

Fourier series of even and odd functions

If f (x) is an even function defined on the interval −L ≤ x ≤ L, then

expanding even and
odd functions

f (x) = a0 +
∞∑

n=1

an cos
nπx

L
, with a0 = 1

L

∫ L

0
f (x)dx,

an = 2
L

∫ L

0
f (x) cos

nπx
L

dx

for n = 1, 2, . . . ; if f (x) is an odd function, then

f (x) =
∞∑

n=1

bn sin
nπx

L
, with bn = 2

L

∫ L

0
f (x) sin

nπx
L

dx,

for n = 1, 2, . . . ,

The justification of these results is as follows. To find the form taken by the Fourier
coefficients an of an even function, and why its Fourier coefficients bn vanish, we
will consider an even function f (x) defined over the interval −L ≤ x ≤ L.
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By definition,

a0 = 1
2L

∫ L

−L
f (x)dx = 1

2L

∫ 0

−L
f (x)dx + 1

2L

∫ L

0
f (x)dx.

Setting x = −u in the first integral on the right gives

1
2L

∫ 0

−L
f (x)dx = − 1

2L

∫ 0

L
f (−u)du.

As f is an even function, f (−u) = f (u), so using this result, changing the sign of
the integral by interchanging its limits, and then replacing the dummy variable u by
x gives

1
2L

∫ 0

−L
f (x)dx = 1

2L

∫ L

0
f (x)dx.

When this is combined with the original expression for a0 we find that

a0 = 1
L

∫ L

0
f (x)dx,

and a strictly analogous argument shows that

an = 2
L

∫ L

0
f (x) cos nπxdx for n = 1, 2, . . . .

The Fourier coefficients bn are given by

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx = 1
L

∫ 0

−L
f (x) sin

nπx
L

dx + 1
L

∫ L

0
f (x) sin

nπx
L

dx.

Setting x = −u in the integral taken over the interval −L ≤ x ≤ 0 gives

1
L

∫ 0

−L
f (x) sin

nπx
L

dx = − 1
L

∫ 0

L
f (−u) sin

(
−nπu

L

)
du.

We now use the fact that f is an even function, so f (−u) = f (u), together with
the fact that the sine function is an odd function. Reversal of the limits coupled with
changing the sign and replacing u by x gives

1
L

∫ 0

−L
f (x) sin

nπx
L

dx = − 1
L

∫ L

0
f (x) sin

nπx
L

dx.

Finally, using this result in the original expression for bn gives

bn = 1
L

∫ L

0
f (x) sin

nπx
L

dx − 1
L

∫ L

0
f (x) sin

nπx
L

dx = 0 for n = 1, 2, . . . ,

and the result is proved.
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f(x) = ⎢x⎥
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FIGURE 9.7 The function f (x) = |x| in
−L ≤ x ≤ L and two periodic extensions.

A similar argument shows that if f (x) is an odd function over −L ≤ x ≤ L,
then

an = 0 for n = 0, 1, 2, . . . ,

and

bn = 2
L

∫ L

0
f (x) sin

nπx
L

dx for n = 1, 2, . . . ,

and the results have been established.

EXAMPLE 9.4 Find the Fourier series representation of f (x) = |x| in the interval −L ≤ x ≤ L.

Solution The graph of this even function, together with two of its periodic exten-
sions outside the fundamental interval −L ≤ x ≤ L, is shown in Fig. 9.7.

The Euler formula for the coefficients an of the even function |x| defined as

|x| =
{−x for < 0

x for x ≥ 0

gives

a0 = 1
L

∫ L

0
xdx = L

2

and

an = 2
L

∫ L

0
x cos

nπx
L

dx = 2
L

⎡⎢⎣L2 cos
nπx

L
n2π2

+
Lnπx sin

nπx
L

n2π2

⎤⎥⎦
L

0

, for n = 1, 2, . . . .

a convenient
representation
of cos nπ

If we use the fact that sin nπ = 0 and cos nπ = (−1)n when n is a positive integer,
it then follows that

an = 2L
n2π2

[(−1)n − 1] for n = 1, 2, . . . ,

and so

an = − 4L
n2π2

when n is odd

and

an = 0 when n �= 0, is even.
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f(x) = x
2

−2

−2 2 4 6 x−4−6 0

f(x)

FIGURE 9.8 The function f (x) = x in
−2 ≤ x ≤ 2 and two periodic extensions.

Thus, the Fourier series representation of f (x) = |x| for −L ≤ x ≤ L is

f (x) = L
2

− 4L
π2

⎛⎜⎜⎝cos
π x
L

12
+

cos
3πx

L
32

+
cos

5πx
L

52
+ · · ·

⎞⎟⎟⎠ .

The sequence of positive odd numbers can be written in the form 2n − 1 with
n = 1, 2, . . . , so this last result can be expressed more concisely as

f (x) = L
2

− 4L
π2

∞∑
n=1

cos
(

(2n − 1)πx
L

)
(2n − 1)2

for −L ≤ x ≤ L.

EXAMPLE 9.5 Find the Fourier series representation of f (x) = x on the interval −2 ≤ x ≤ 2.

Solution A graph of f (x) and two of its periodic extensions outside the funda-
mental interval −2 ≤ x ≤ 2 is shown in Fig. 9.8.

Using the fact that L = 2, a straightforward calculation gives

bn = 1
2

∫ 2

−2
x sin

nπx
2

dx = 2
n2π2

[
sin

nπx
2

− 1
2

nπx cos
nπx

2

]2

−2

= −4 cos nπ

nπ
= 4(−1)n+1

nπ
,

and as the function is odd all the coefficients an = 0.
The required Fourier series representation is thus

f (x) = 4
π

⎛⎜⎝ sin
πx
2

1
− sin πx

2
+

sin
3πx

2
3

− · · ·

⎞⎟⎠ ,

which can be written in the more concise form

f (x) = 4
π

∞∑
n=1

(−1)n+1

n
sin

nπx
2

for −2 ≤ x ≤ 2.
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Summary Fourier series have been defined over more general intervals than −π ≤ x ≤ π and
the notion of a periodic extension has been introduced. Attention has been drawn to
the behavior of a Fourier series representation at a point of discontinuity of f (x), and the
expansion of even and odd functions has been considered.

EXERCISES 9.1

Find the period of each of the functions in Exercises 1
through 6.

1. cos x + sin 2x.
3. sin x cos x.

5. 3 sin
x
3

+ cos
x
2

.

2. 2 sin 2x − 3 cos
x
3

.

4. cos 2x sin x.
6. cos

x
3

+ 5 sin
x
4

.

In Exercises 7 through 10 (a) sketch the given function in
the interval −3a < x < 3a, and (b) in the intervals −3a <

x < −a and a < x < 3a, and state whether the function is
periodic.

7. f (x) =
{

0, x < a/2
1, x > a/2.

8. f (x) =
⎧⎨⎩

−1, −a < x < 0
f (x + 2a) = f (x).

2, 0 < x < a,

9. f (x) = a − |x|.
10. f (x) = | sin πx/a|.
In Exercises 11 and 12 make use of the trigonomet-
ric identities sin(A± B) = sin Acos B ± cos Asin B and
cos(A± B) = cos Acos B + sin Asin B to transform the
given functions into their (finite) Fourier series.

11. (a) sin x cos x. (b) 1 − 2 sin2 x. (c) sin 3x cos x.
12. (a) 4 cos 2x cos 5x. (b) sin x sin 2x. (c) cos2 2x − 1/2.

Verify the following definite integrals that were used when
developing a Fourier series representation over the interval
−L < x < L.

13.
∫ L

−L
sin

mπx
L

cos
nπx

L
dx = 0 for all integers m and n.

14.
∫ L

−L
sin

mπx
L

sin
nπx

L
dx =

⎧⎨⎩
0 for m �= n
L for m = n,

with m, n integers.

15.
∫ L

−L
cos

mπx
L

cos
nπx

L
dx

=
⎧⎨⎩

0 for m �= n
L for m = n �= 0
2L for m = n = 0 for all integers m and n.

16. Prove that the product of two even functions and of two
odd functions is an even function, and that the product
of an even and an odd function is an odd function.

17. Prove that the sum of two even functions is an even
function and the sum of two odd functions is an odd
function.

18. Prove that if f (x) is an odd function all the Fourier
coefficients an = 0.

19. Evaluate the following integrals that arise when find-
ing the Fourier series expansion of x over the interval
−L < x < L.

(a)
∫ L

−L
x sin

πx
L

dx. (b)
∫ L

−L
x sin

2πx
L

dx.

(c)
∫ L

−L
x sin

3πx
L

dx.

20. Evaluate the following integrals that arise when find-
ing the Fourier series expansion of x2 over the interval
−L < x < L.

(a)
∫ L

−L
x2 sin

πx
L

dx. (b)
∫ L

−L
x2 sin

2πx
L

dx.

(c)
∫ L

−L
x2 sin

3πx
L

dx.

The integrals in Exercises 21 and 22 arise when finding the
Fourier series expansion of eax over the interval −L < x <

L. Use the result cos nπ = (−1)n for integral values of n to
establish the stated result.

21.
∫ π

−π

eax sin nxdx = (−1)n+1 n(eaπ − e−aπ )
(a2 + n2)

for integral

values of n.

22.
∫ π

−π

eax cos nxdx = (−1)n a(eaπ − e−aπ )
(a2 + n2)

for integral

values of n.

In Exercises 23 through 35 find the Fourier series represen-
tation of the given function over the indicated fundamental
interval and use a computer to plot the indicated partial sum
Sn(x) over the fundamental interval.

23. f (x) =
{

a, −π < x < 0
b, 0 < x < π. Plot S10(x) for a = 3, b = 1.

24. f (x) =
{

x + 1, −1 < x < 0
x − 1, 0 < x < 1. Plot S10(x).

25. f (x) = 1 − |x|, −1 < x < 1. Plot S10(x).
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26. f (x) =
{

0, −2 < x < 0
x, 0 ≤ x < 2. Plot S8(x).

27. f (x) = | sin x|, −π ≤ x ≤ π (a fully rectified sine wave).
Plot S10(x).

28. f (x) =
{

ax, −π < x ≤ 0
bx, 0 ≤ x < π. Plot S8(x) for a = 1, b = 3.

29. f (x) =
{

0, −π ≤ x ≤ 0
sin x, 0 ≤ x ≤ π. Plot S8(x).

30. f (x) = x2, −π ≤ x ≤ π . Plot S8(x).

31. f (x) = x2, −2π ≤ x ≤ 2π . Plot S10(x).
32. f (x) = sin ax, −π ≤ x ≤ π with a not an integer. Plot

S10(x) for a = 0.7.
33. f (x) = cos ax, −π ≤ x ≤ π with a not an integer. Plot

S10(x) for a = 0.7.
34. f (x) = eax, −π ≤ x ≤ π . Plot S7(x) for a = 0.7.

35. f (x) =
⎧⎨⎩

0, −2π ≤ x < −π

sin x, −π ≤ x ≤ π

0, π ≤ x ≤ 2π. Plot S8(x).

9.2 Convergence of Fourier Series and Their
Integration and Differentiation

The general theory of the convergence of Fourier series is complicated and still
incomplete in some respects. Consequently, we will only derive some useful results
that can be obtained in a straightforward manner, and then state without proof
a convergence theorem due to the German mathematician P. G. L. Dirichlet
(1805–1859) that is sufficient for all practical applications of Fourier series.

Let us consider the nth partial sum

Sn(x) = a0 +
n∑

r=1

(ar cos r x + br sin r x), (20)

of the Fourier series for f (x) in (7) defined over the interval −π ≤ x ≤ π . Then,
provided the integral

∫ π

−π
[ f (x)]2dx exists and is finite, we have the obvious result∫ π

−π

[ f (x) − Sn(x)]2dx =
∫ π

−π

[ f (x)]2dx − 2
∫ π

−π

f (x)Sn(x)dx +
∫ π

−π

[Sn(x)]2dx.

(21)

From the definition of Sn(x) in (20), it follows that∫ π

−π

[Sn(x)]2dx =
∫ π

−π

[
a0 +

n∑
r=1

(ar cos r x + br sin r x)

]2

dx,

but the orthogonality of the sine and cosine functions reduces this to∫ π

−π

[Sn(x)]2dx =
∫ π

−π

a2
0dx +

n∑
r=1

[
a2

r

∫ π

−π

cos2 r xdx
]

+
n∑

r=1

[
b2

r

∫ π

−π

sin2 r xdx
]

= π

[
2a2

0 +
n∑

r=1

(
a2

r + b2
r

)]
. (22)

If f (x) is replaced by its Fourier series, a similar argument shows that∫ π

−π

f (x)Sn(x)dx = π

[
2a2

0 +
n∑

r=1

(
a2

r + b2
r

)]
, (23)

so combining (21) to (23) gives∫ π

−π

[ f (x) − Sn(x)]2dx =
∫ π

−π

[ f (x)]2dx − π

[
2a2

0 +
n∑

r=1

(
a2

r + b2
r

)]
. (24)
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The integral on the left of (24) is nonnegative, because its integrand is a squared
quantity, so it follows at once that for all n

2a2
0 +

n∑
r=1

(
a2

r + b2
r

) ≤ 1
π

∫ π

−π

[ f (x)]2dx,

so letting n → ∞ we arrive at the inequality

2a2
0 +

∞∑
r=1

(
a2

r + b2
r

) ≤ 1
π

∫ π

−π

[ f (x)]2dx. (25)

Bessel’s inequality This is Bessel’s inequality for Fourier series, and the restriction to functions
f (x) such that

∫ π

−π
[ f (x)]2dx exists and is finite implies that the series

2a2
0 +

∞∑
r=1

(
a2

r + b2
r

)
is convergent, so the coefficients in the associated Fourier series (7) must be such
that

lim
n→∞ an = 0 and lim

n→∞ bn = 0. (26)

the fundamental
Riemann–Lebesgue
lemma

This important result on the behavior of Fourier coefficients as n → ∞ is called the
Riemann–Lebesgue lemma, though its rigorous proof proceeds differently.

It is also a consequence of (24) that if the nth partial sum Sn(x) converges to
f (x) in the sense that

lim
n→∞

∫ π

−π

[ f (x) − Sn(x)]2dx = 0,

which is true for all functions f (x) encountered in applications, then

2a2
0 +

∞∑
r=1

(
a2

r + b2
r

) = 1
π

∫ π

−π

[ f (x)]2dx. (27)

This is the Parseval relation for Fourier series.Parseval relation

EXAMPLE 9.6 Apply the Parseval relation to the Fourier series of f (x) = |x| defined over the
interval −π ≤ x ≤ π .

Solution It follows from Example 9.4 with L = π that the Fourier series repre-
sentation of f (x) = |x| over the interval −π ≤ x ≤ π is

f (x) = π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

,

so that

a0 = π

2
, a2n−1 = − 4

π(2n − 1)2
, and a2n = 0 for n = 1, 2, . . . .

We have ∫ π

−π

[ f (x)]2dx =
∫ π

−π

x2dx = 2π3

3
,
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so as the integral is finite, provided Sn(x) converges in the norm to f (x), it follows
from the Parseval relation in (27) that

1
π

(
2π3

3

)
= 2

π2

4
+ 16

π2

∞∑
n=1

1
(2n − 1)4

.

After simplification this reduces to the well-known result

π4

96
=

∞∑
n=1

1
(2n − 1)4

= 1
14

+ 1
34

+ 1
54

+ 1
74

+ · · · .

The justification for applying the Parseval relation in this case is provided by
the following theorem. It can be confirmed by summing a large number of terms
and comparing the result with the known value of π4/96. For example, using n =
100 leads to the result π4/96 ≈ 1.01467801, while a direct calculation shows that
π4/96 = 1.01467803, so the two results agree to seven decimal places.

THEOREM 9.1 Convergence of Fourier series Let f (x) be continuous over the interval −L < x <

Lexcept possibly at a finite number of internal points x1, x2, . . . , at each point xn of
which the function has a finite jump discontinuity f (xn+) − f (xn−). Furthermore,
let the left- and right-hand derivatives f ′(xn−) and f ′(xn+) exist for n = 1, 2, . . . .
Then at points of continuity of f (x) its Fourier series converges uniformly to f (x),
and at each point of discontinuity it converges pointwise to

fundamental
convergence theorem

1
2

( f (xn−) + f (xn+)) for n = 1, 2, . . . .

If, in addition, f (x) has a right-hand derivative f ′(−L+) at the left end point of
the interval and a left-hand derivative f ′(L−) at the right end point of the interval,
then at x = ±L the Fourier series converges pointwise to

1
2

( f (−L+) + f (L−)).

In effect, this theorem says that if f (x) is piecewise continuous and bounded
over the interval −L < x < L with derivatives defined to the left and right of each
discontinuity, its Fourier series converges uniformly to f (x) wherever it is continu-
ous and to the mid-point of the jump where there is a discontinuity. If, in addition,
one-sided derivatives exist at the ends of the interval, then at both x = −L and
x = L the Fourier series converges to the average of the values of f (x) at the two
ends of the interval.

A consequence of this theorem that is sometimes useful is that it allows many
numerical series to be summed in closed form. Results of this type follow by choos-
ing a value of x for which the terms of the Fourier series take on a simple numerical
form, and equating the result to the appropriate value of f (x). At a point x = x∗

where f (x) is continuous the series will converge to f (x∗), and at a point x = x∗

where f (x) is discontinuous the series will converge to the mid-point of the jump.
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EXAMPLE 9.7 (a) Given that the step function

f (x) =
{−1, for −π < x < 0

1, for 0 < x < π

has the Fourier series

f (x) = 4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

,

find a series for π/4.
(b) Given that

f (x) =
{

0, for −π < x < 0
x2, for 0 ≤ x < π

has the Fourier series

f (x) = π2

6
+

∞∑
n=1

{[
2(−1)n

n2

]
cos nx + 1

π

[
(−1)n

(
2
n3

− π2

n

)
− 2

n3

]
sin nx

}
,

find a series for π2/6.

Solution

(a) The function f (x) graphed in Fig. 9.9 is seen to be discontinuous at x = 0
and to have different values at x = ± π . The average of the values of f (x) to the
immediate left and right of the discontinuity at x = 0 is zero, so the Fourier series
will converge to the value zero when x = 0. Setting x = 0 in the Fourier series
causes every term to vanish, so equating this to the value to which the Fourier
series converges at the origin yields the uninteresting result 0 = 0.how Fourier series

can be used to
sum series

To obtain a more interesting result, let us try setting x = π/2, which makes
sin (2n − 1)π

2 = (−1)n+1. The function f (x) is continuous at this point and equal
to 1, so its Fourier series will converge to the value 1 when x = π/2. Inserting this
value of x into the Fourier series and equating the result to 1 gives

1 = 4
π

(
1
1

− 1
3

+ 1
5

− · · ·
)

,

so

π

4
= 1

1
− 1

3
+ 1

5
− · · · =

∞∑
n=1

(−1)n+1

(2n − 1)
.

−π 0 π

1

−1

f(x)

x

FIGURE 9.9 The step function f (x).
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10

(a)

2 3−3 −2 −1

2

4

6

8

10

f

x

10

(b)

2 3−3 −2 −1

2

4

6

8

Sn

x

FIGURE 9.10 (a) The function f (x) and
(b) S10(x).

This series, known as Leibniz’ formula, converges very slowly, so it is not useful for
computing π .

(b) The function f (x) is graphed in Fig. 9.10(a), and S10(x) in Fig. 9.10(b). The
average of the values of f (x) at the end points of the interval −π < x < π is π2/2,
so setting x = π in the Fourier series and equating the result to π2/2 as required by
the last part of Theorem 9.2 gives

π2

2
= π2

6
+ 2

∞∑
n=1

1
n2

,

where we have used the fact that cos nπ = (−1)n and sin nπ = 0 for positive
integers n.

This result simplifies to the series

π2

6
= 1 + 1

22
+ 1

32
+ · · · =

∞∑
n=1

1
n2

,

which converges somewhat faster than the series in part (a).

Gibbs phenomenon

Examination of Fig. 9.3 and also Fig. 9.6 in Section 9.1 shows that when f (x) is
discontinuous, the graph of the partial sum Sn(x) of the Fourier series representation
of the function exhibits over- and undershoots close to the discontinuities. This is
called the Gibbs phenomenon, and it persists for all values of n. This behavior
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1

(a)

2 3−3 −2 −1

0.2

−0.2

0.6

0.4

0.8

Sn

x

1

1

(b)

2 3−3 −2 −1

0.2

−0.2

0.6

0.4

0.8

Sn

x

1

FIGURE 9.11 An example of the Gibbs
phenomenon with (a) n = 10, and (b) n = 20.

reflects the way the continuous function Sn(x) obtained from the Fourier series
approximates the behavior of f (x) at a point of discontinuity. Increasing n simply
moves the under- and overshoots closer to the discontinuity while leaving their size
approximately the same.

Figure 9.11 shows the Gibbs phenomena for the function

f (x) =
⎧⎨⎩

0, −π < x < −π/2
1, −π/2 < x < π/2
0, π/2 < x < π

for different partial sums Sn(x). The results should be compared with Fig. 9.3, which
shows the graph of S5(x).

We now state without proof two important theorems concerning the term-
by-term integration and differentiation of Fourier series that are often useful, but
before doing so we first define what are called Dirichlet conditions, which are sat-
isfied by most functions of practical importance.

A function f (x) is said to satisfy Dirichlet conditions on an interval −L < x < L
if it is bounded on the interval, has at most a finite number of maxima and minima,
and is continuous apart from a finite number of discontinuities in the interval.

THEOREM 9.2 Termwise integration of Fourier series The integral of any function f (x) satisfying

when a Fourier series
can be integrated

Dirichlet conditions on the interval −L ≤ x ≤ L can be obtained by term-by-term
integration of the Fourier series representation of f (x). So, if f (x) has the Fourier
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series representation

f (x) = a0 +
∞∑

n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for −L ≤ x ≤ L,

then ∫ x

−L
f (u)du = a0(x + L)

+ L
π

∞∑
n=1

[
an

n
sin
(nπx

L

)
− bn

n

(
cos

(nπx
L

)
+ (−1)n+1

)]
for −L ≤ x ≤ L.

THEOREM 9.3 Termwise differentiation of Fourier series Let f (x) be a continuous function on

when a Fourier series
can be differentiated

the interval −L ≤ x ≤ L such that f (−L) = f (L), and suppose also that f ′(x) is
piecewise continuous. Then for any x strictly inside the interval at which f ′′(x) exists,
the derivative of f (x) can be obtained by term-by-term differentiation of the Fourier
series representation of f (x). So, if f (x) has the Fourier series representation

f (x) = a0 + π

L

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for −L ≤ x ≤ L,

then

f ′(x) = π

L

∞∑
n=1

(
−nan sin

(nπx
L

)
+ nbn cos

(nπx
L

))
for −L < x < L,

except for points at where f ′(x) and f ′′(x) are not defined.

EXAMPLE 9.8 Use the Fourier series representation of the function

f (x) =
{−1, −π < x < 0

1, 0 < x < π

given in Example 9.7 to find a Fourier series representation of F(x) = ∫ x
−π

f (t)dt
in the interval −π < x < π , and relate the result to Example 9.4.

Solution As f (x) satisfies the conditions of Theorem 9.2, its Fourier series repre-
sentation may be integrated term by term to obtain the Fourier series representation
of

F(x) =
∫ x

−π

f (t)dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ x

−π

−1dt = −(x + π), for −π < x < 0∫ 0

−π

−1dt +
∫ x

0
1dt = x − π for 0 < x < π.
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From Example 9.7, the Fourier series representation of f (x) is

f (x) = 4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

,

so replacing x by the dummy variable t and integrating over the interval −π ≤ t ≤ x
gives

F(x) = 4
π

∞∑
n=1

∫ x

−π

sin(2n − 1)t
2n − 1

dt = − 4
π

[ ∞∑
n=1

cos(2n − 1)x
(2n − 1)2

−
∞∑

n=1

cos(2n − 1)π
(2n − 1)2

]
.

As cos(2n − 1)π = −1 for n = 1, 2, . . . , this reduces to

F(x) = − 4
π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

− 4
π

∞∑
n=1

1
(2n − 1)2

.

The numerical series on the right can be summed by applying the Parseval
relation to the Fourier series representation of f (x) to obtain

2 =
∞∑

n=1

(
4

π(2n − 1)

)2

, or
π2

8
=

∞∑
n=1

1
(2n − 1)2

.

Replacing the numerical series in F(x) by π2/8 reduces it to∫ x

−π

f (t)dt = − 4
π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

− 4
π

π2

8
= −π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

,

and so the required Fourier series representation is

F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ x

−π

−1dt = −(x + π), for −π < x < 0∫ 0

−π

−1dt +
∫ x

0
1dt = x − π, for 0 < x < π

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= −π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

.

Examination of F(x) shows that F(x) = |x| − π , so as a check we see that the
Fourier series representation of the function |x| in the interval −π ≤ x ≤ π can be
obtained by adding π to the Fourier series representation of F(x) to obtain

|x| = π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

, for − π ≤ x ≤ π,

in agreement with the result of Example 9.4 with L = π .

EXAMPLE 9.9 Given

f (x) =
⎧⎨⎩

sin 2x, −π ≤ x < −π/2
0, −π/2 ≤ x ≤ π/2
sin 2x, π/2 < x ≤ π,

find f ′(x) by differentiation of the Fourier series representation of f (x).
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Solution The function satisfies the conditions of Theorem 9.3, so its Fourier
series representation may be differentiated term by term to find the Fourier
series representation of f ′(x). It was shown in Example 9.2 that the Fourier se-
ries representation of f (x) is

f (x) = 1
2π

+ 1
π

(
2
3

cos x − 2
5

cos 3x − 1
3

cos 4x − · · ·
)

+ 1
π

(
−2

3
sin x + 3π

4
sin 2x − 2

5
sin 3x + · · ·

)
,

so differentiation shows the first few terms of the Fourier series for f ′(x) to be

f ′(x) = 1
π

(
−2

3
sin x + 6

5
sin 3x + · · ·

)
+ 1

π

(
−2

3
cos x + 3π

2
cos 2x − · · ·

)
,

where from the definition of f (x)

f ′(x) =
⎧⎨⎩

2 cos 2x, −π ≤ x < −π/2
0, −π/2 ≤ x ≤ π/2
2 cos 2x, π/2 < x ≤ π.

Summary The convergence of Fourier series has been examined, and it has been shown that
where f (x) is continuous its Fourier series representation converges to f (x), but where
it has a finite jump discontinuity it converges to the mid-point of the jump. The Bessel
inequality and the Parseval relation have been established, and conditions given for the
termwise integration and differentiation of a Fourier series.

EXERCISES 9.2

In Exercises 1 through 4, apply the Parseval relation to the
given function and its Fourier series to obtain a series rep-
resentation involving a power of π .

1. f (x) =
{−1, −π < x < 0

1, 0 < x < π

with f (x) = 4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

.

2. f (x) = x, −π < x < π

with f (x) = 2
∞∑

n=1

(−1)n+1 sin nx
n

.

3. f (x) = x2, −π ≤ x ≤ π,

with f (x) = π2

3
− 4

∞∑
n=1

(−1)n+1 cos nx
n2

.

4. f (x) = | cos x|, −π ≤ x ≤ π

with f (x) = 2
π

+ 4
π

∞∑
n=1

(−1)n+1 cos 2nx
(4n2 − 1)

.

5. Show that the Parseval relation for a function f (x) de-
fined on the interval −L < x < L takes the form

1
L

∫ L

−L
[ f (x)]2dx = 2a2

0 +
∞∑

n=1

(
a2

n + b2
n

)
.

6. Find the Fourier series for the function

f (x) =
{

0, −4 ≤ x < 0
4, 0 ≤ x < 4

and apply the Parseval relation in Exercise 5 to the re-
sult.

7. Use the Fourier series in Example 10.6(b) for the func-
tion

f (x) =
{

0, for −π ≤ x ≤ 0
x2, for 0 < x < π

to find a series for π 2/12.
8. Use the Fourier series for f (x) = | sin x|, for −π ≤ x ≤

π , to find a series for π/4.
9. Use the Fourier series for

f (x) =
{

0, for −1 < x < 0
x, for 0 ≤ x < 1

to find a series for π2/8.
10. Integrate the Fourier series of f (x) in Exercise 2 to find

the Fourier series of x2. What happens if the Fourier
series of f (x) is differentiated to find f ′(x)?
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11. Find the Fourier series of f (x) = π2 − x2 for −π ≤ x ≤
π and use it with Theorems 10.2 and 10.3 to find the
Fourier series of x and x(π2 − x2).

Exercises 12 through 18 are optional. Exercises 12 through
14 show how the partial sum

Sn(x) = a0 +
n∑

r=1

(ar cos r x + br sin r x),

of the Fourier series of a function f (x) defined over the
fundamental interval −π ≤ x ≤ π , and by periodic exten-
sion outside it, can be expressed as an integral. Exercises 15
through 17 provide an intuitive justification of Theorem 9.1.

12. Starting from the trigonometric identity

1
2

+
n∑

r=1

cos r x =
sin
[(

n + 1
2

)
x
]

2 sin
(

x
2

)
that formed Exercise 19 in Section 1.4, integrate the
identity first over the interval [−π, 0] and then over the
interval [0, π ] to show that

∫ 0

−π

sin
[(

n + 1
2

)
x
]

sin
(

x
2

) dx = π and

∫ π

0

sin
[(

n + 1
2

)
x
]

sin
(

x
2

) dx = π.

13. Substitute the Euler formulas for ar and br into Sn(x),
after first replacing the dummy variable x in each inte-
gral by the dummy variable u to avoid confusion with
the variable x in Sn(x). Combine all terms under a single
integral sign and, after simplifying the result using the
formula cos a cos b+ sin a sin b = cos(a − b), use the re-
sults of Exercise 12 to show that

Sn(x) = 1
π

∫ x+π

x−π

f (x − t)
sin
[(

n + 1
2

)
t
]

2 sin
(

t
2

) dt.

14. Use the periodicity of the integrand of Sn(x) in Exercise
13 to show that

Sn(x) = 1
π

∫ π

0
[ f (x − t) + f (x + t)]

sin
[(

n + 1
2

)
t
]

2 sin
(

t
2

) dt.

The function Dn(t) = sin[(n + 1
2 )t]/[2 sin( t

2 )] occurring
in the integrand of Sn(x) is called the Dirichlet kernel.

15. Use a computer to graph Dn(t) in Exercise 14 in the
interval −π ≤ t ≤ π , for n = 10, 15, 30. Confirm from
the graphs that when n is large Dn(t) only differs sig-
nificantly from zero in the interval −2π/(2n + 1) ≤ t ≤
2π/(2n + 1).

16. Use the conclusion of Exercise 15 together with the re-
sult ∫ π

−π

Dn(t)dt = π

established in Exercise 12 to give reasons why for large
n the Dirichlet kernel Dn(t) can be approximated by the
rectangular pulse function

�(t) =
⎧⎨⎩

0, −π ≤ t < −2π(2n + 1)
(2n + 1)/4, −2π/(2n + 1) ≤ t ≤ 2π/(2n + 1)
0, 2π/(2n + 1) < t ≤ π.

17. Use the result of Exercise 16, with

Sn(x) = 1
π

∫ π

0
[ f (x − t) + f (x + t)]Dn(t)dt

from Exercise 14, to suggest why in the limit as n → ∞
this confirms the convergence properties of Fourier se-
ries stated in Theorem 9.1.

18. By first setting f (x) = sin mx and then f (x) = cos mx
in the result of Exercise 17, with m a positive integer,
and using the fact that the functions sin mx and cos mx
are their own Fourier series on −π ≤ x ≤ π , deduce
that∫ π

0
sin mt Dn(t)dt =

∫ π

0
cos mt Dn(t)dt

=
{

0, n = 1, 2, . . . , m − 1
π/2, n = m, m + 1, . . . .

9.3 Fourier Sine and Cosine Series on 0 ≤ x ≤ L

A function f (x) that is specified on the interval 0 ≤ x ≤ L can be represented
in terms of a series either of sines or of cosines on the interval. These series are
obtained by first extending the definition of the function to the interval −L ≤ x ≤ L
in a suitable manner, and then restricting the Fourier series representation of the
extended function to the original interval 0 ≤ x ≤ L.
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Sine Series on 0 ≤ x ≤ L
Let a function f (x) specified on the interval 0 ≤ x ≤ L be extended to the interval
−L ≤ x ≤ L as an odd function by the requirement that f (−x) = − f (x) for −L ≤
x ≤ L. Then the odd function g(x) given by

g(x) =
{− f (−x), −L ≤ x ≤ 0

f (x), 0 ≤ x ≤ L,

and defined on the interval −L ≤ x ≤ L, coincides with the function f (x) on the
original interval 0 ≤ x ≤ L.

It follows from Theorem 9.1 and the Fourier series representation of functions
on the interval −L ≤ x ≤ L that

f (x) =
∞∑

n=1

bn sin
nπx

L
, for −L ≤ x ≤ L, (28)

where

bn = 2
L

∫ L

0
f (x) sin

nπx
L

dx, for n = 1, 2, . . . . (29)

As the functions f (x) and g(x) coincide for 0 ≤ x ≤ L, we see that by restricting
x to the interval 0 ≤ x ≤ L, series (28) is the required sine series. Result (28) with
the coefficients bn defined by (29) is called the sine series representation of f (x) on
the interval 0 ≤ x ≤ L, or sometimes the half-range sine series expansion of f (x).

Cosine Series on 0 ≤ x ≤ L
If f (x) is extended to the interval −L ≤ x ≤ L as an even function, by requiring
that f (−x) = f (x) for −L ≤ x ≤ 0, we can define an even function g(x) by

g(x) =
{

f (−x), −L ≤ x ≤ 0
f (x), 0 ≤ x ≤ L.

If we again use Theorem 9.1 with the Fourier series representation of functions on
the interval −L ≤ x ≤ L, it follows that

f (x) = a0 +
∞∑

n=1

an cos
nπx

L
, for −L ≤ x ≤ L (30)

where

a0 = 1
L

∫ L

0
f (x)dx and an = 2

L

∫ L

0
f (x) cos

nπx
L

dx, for n = 1, 2, . . . .

(31)

Here also the functions f (x) and g(x) coincide for 0 ≤ x ≤ L, so by restrict-
ing x to this interval (30) is seen to provide required cosine series representation
of f (x) on the interval 0 ≤ x ≤ L. Result (31) with the coefficients an defined by
(32) is called the cosine series representation of f (x) on the interval 0 ≤ x ≤ L, or
sometimes the half-range cosine series expansion of f (x).



570 Chapter 9 Fourier Series

Sine and cosine representations of f (x) on 0 ≤ x ≤ L

Let f (x) be defined on the interval 0 ≤ x ≤ L. Then the sine series represen-

Fourier expansions
only in terms of
sines or cosines

tation of f (x) is given by

f (x) =
∞∑

n=1

bn sin
nπx

L
, for 0 ≤ x ≤ L,

where

bn = 2
L

∫ L

0
f (x) sin

nπx
L

dx, for n = 1, 2, . . . ,

and the cosine series representation of f (x) is given by

f (x) = a0 +
∞∑

n=1

an cos
nπx

L
, for 0 ≤ x ≤ L,

where

a0 = 1
L

∫ L

0
f (x)dx and an = 2

L

∫ L

0
f (x) cos

nπx
L

dx,

for n = 1, 2, . . . .

EXAMPLE 9.10 Find the sine and cosine representations of f (x) = x for 0 ≤ x ≤ π .

Solution The sine series representation is given by

f (x) =
∞∑

n=1

bn sin nx,

where

bn = 2
π

∫ π

0
x sin nxdx, for n = 1, 2, . . . .

Integrating this last result, we find that

bn = (−1)n+1 2
n
,

so the required sine series representation is

f (x) = 2
∞∑

n=1

(−1)n+1 sin nx
n

for 0 ≤ x ≤ π.

The cosine series representation is given by

f (x) = a0 +
∞∑

n=1

an cos nx,
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where

a0 = 1
π

∫ π

0
xdx and an = 2

π

∫ π

0
x cos nxdx for n = 1, 2, . . . .

Integration gives

a0 = π

2
, while a2n−1 = − 4

π(2n − 1)2
, and a2n = 0 for n = 1, 2, . . . ,

so the cosine series representation is

f (x) = π

2
− 4

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

for 0 ≤ x ≤ π.

Summary It has been shown how a function f (x) defined on the interval 0 ≤ x ≤ L can be repre-
sented either in terms of a series involving only sine functions or as a series involving only
cosine functions. These special Fourier series, called either half-range sine or cosine Fourier
series, were obtained from the usual expansion over the interval −L ≤ x ≤ L by extending
the definition of f (x) to the interval −L ≤ x ≤ L in a suitable manner. As half-range Fourier
series are derived from ordinary Fourier series, their convergence properties are the same
as those of ordinary Fourier series.

EXERCISES 9.3

In Exercises 1 through 4 find the sine series for the given
function defined on the interval 0 ≤ x ≤ π .

1. f (x) = x2.

2. f (x) = | cos x|.
3. f (x) =

{
cos x, 0 < x ≤ π/2
0, π/2 < x ≤ π.

4. f (x) = (x − π)2/π 2.

In Exercises 5 through 8 find the cosine series for the given
function defined on the interval 0 ≤ x ≤ π .

5. f (x) =
{

cos x, 0 < x ≤ π/2
0, π/2 < x ≤ π.

6. f (x) = sin x.

7. f (x) =
{

sin x, 0 < x ≤ π/2
0, π/2 < x ≤ π.

8. f (x) = (x − π)2/π 2.

9. Use the sine series together with the orthogonality of
the functions sin nπx

L , for n = 1, 2, . . . , on the interval
0 ≤ x ≤ L to show that the Parseval relation for the
sine series takes the form

2
L

∫ L

0
[ f (x)]2dx =

∞∑
n=1

b2
n.

10. Use the cosine series together with the orthogonality
of the functions cos nπx

L , for n = 1, 2, . . . , on the inter-
val 0 ≤ x ≤ L to show that the Parseval relation for

the cosine series takes the form

2
L

∫ L

0
[ f (x)]2dx = 2a2

0 + 02 +
∞∑

n=1

a2
n.

11. Find the sine series representation of

f (x) = e−x, 0 < x < π.

12. Find the sine and cosine series representations of
f (x) = π − x on the interval 0 ≤ x ≤ π . Use them
with the results of Exercises 9 and 10 to show that

π2

6
=

∞∑
n=1

1
n2

and
π 4

96
=

∞∑
n=1

1
(2n − 1)4

.

Comment on which series representation converges
most rapidly to f (x).

13.* Explain why if f (x) and g(x) have Fourier series rep-
resentations for −π ≤ x ≤ π , the Fourier series repre-
sentations of f (x) ± g(x) can be obtained from those
for f (x) and g(x) by term-by-term addition or sub-
traction. By adding and subtracting the Fourier series
representations of∫ π

−π

[ f (x) + g(x)]dx and
∫ π

−π

[ f (x) − g(x)]dx,

obtain the generalized Parseval relation

1
π

∫ π

−π

f (x)g(x)dx = 2a0 A0 +
∞∑

n=1

(an An + bn Bn),
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where the an, bn are the Fourier coefficients of f (x)
and the An, Bn are the Fourier coefficients of g(x).

14.* Let f (x) defined for −π ≤ x ≤ π be approximated by
the nth partial sum of its Fourier series representation

Sn(x) = a0 +
n∑

m=1

(am cos mx + bm sin mx),

and let

�(x) = A0 +
n∑

m=1

(Am cos mx + Bm sin mx)

be any other approximation to f (x) with coefficients
Am and Bm. Show by expanding the square error

En =
∫ π

−π

[ f (x) − �n(x)]2dx

in terms of the Fourier series representation of f (x)
that En is minimized when Am = am and Bm = bm

for m = 0, 1, 2, . . . , n. This establishes the fact that
the Fourier series partial sum Sn(x) provides the
best trigonometric approximation to f (x) in the least
squares sense.

9.4 Other Forms of Fourier Series

In this section we introduce two other forms of Fourier series that prove useful.
The first is the Fourier series of a function f (x) defined over an interval a − L ≤
x ≤ a + Lwith a an arbitrary real number, and by periodicity outside it. Frequently
a = L, corresponding to the Fourier series over the interval 0 ≤ x ≤ 2L. The second
form of Fourier series considered uses the Euler identity eix = cos x + i sin x to
derive the complex form of the Fourier series, also often called the exponential
form of the Fourier series.

Fourier Series over a Shifted Interval
Routine integration shows the set of functions

1, sin
nπx

L
and cos

nπx
L

for n = 1, 2, . . .

form an orthogonal system over any interval of the form a − L ≤ x ≤ a + L, for
any real number a, and that∫ a+L

a−L
sin

mπx
L

cos
nπx

L
dx = 0 for all integers m and n,

∫ a+L

a−L
sin

mπx
L

sin
nπx

L
dx =

{
0 for m �= n
L for m = n, for all integers m and n,∫ a+L

a−L
cos

mπx
L

cos
nπx

L
dx =

⎧⎨⎩
0 for m �= n
L for m = n �= 0
2L for m = n = 0, for all integers m and n.

The following result is a direct consequence of these integrals, and it pro-
vides an extension of the definition of a Fourier series to the interval −L ≤
x ≤ L.

Fourier series over the interval a − L ≤ x ≤ a + L

A function f (x) defined on the interval a − L ≤ x ≤ a + L has the Fourier

Fourier series over
a shifted interval

series representation

f (x) = a0 +
∞∑

n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
, (32)
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where

a0 = 1
2L

∫ a+L

a−L
f (x)dx, an = 1

L

∫ a+L

a−L
f (x) cos

nπx
L

dx,

bn = 1
L

∫ a+L

a−L
f (x) sin

nπx
L

dx, for n = 1, 2, . . . .

(33)

EXAMPLE 9.11 Find the Fourier series representation of

f (x) =
{

x, 0 ≤ x ≤ π

π, π ≤ x < 2π.

Solution A graph of the function f (x) is shown in Fig. 9.12. Using (33) with
a = L = π gives

a0 = 1
2π

∫ 2π

0
f (x)dx = 3π

4
and an = 1

π

∫ 2π

0
f (x) cos nxdx,

from which it follows that

a2n−1 = − 2
π(2n − 1)2

and a2n = 0 for n = 1, 2, . . . .

The Euler formula for bn gives

bn = 1
π

∫ 2π

0
f (x) sin nxdx = −1

n
for n = 1, 2, . . . ,

so the required Fourier series is

f (x) = 3π

4
− 2

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

−
∞∑

n=1

sin nx
n

for 0 ≤ x < 2π.

Complex Fourier Series
The Euler identities eix = cos x + i sin x and e−i x = cos x − i sin x allow us to write

cos x = eix + e−i x

2
and sin x = eix − e−i x

2i
.

π

f(x)

π 2π 3π x0

FIGURE 9.12 The function f (x) defined for
0 ≤ x < 2π .
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When these results are used in the real variable Fourier series representation of
f (x) over the interval −L ≤ x ≤ L, it becomes

f (x) = a0 +
∞∑

n=1

[
an

(
einπx/L + e−inπx/L

2

)
+ bn

(
einπx/L − e−inπx/L

2i

)]
,

and after grouping terms we have

f (x) = a0 +
n∑

n=1

(
an − ibn

2

)
einπx/L +

n∑
n=1

(
an + ibn

2

)
e−inπx/L. (34)

If we now define

c0 = a0, cn = an − ibn

2
, and c−n = an + ibn

2
for n = 1, 2, . . . , (35)

the Fourier series representation of f (x) in (34) becomes

f (x) = lim
k→∞

k∑
n=−k

cneinπx/L for −L ≤ x ≤ L. (36)

This is the complex or exponential form of the Fourier series representation of f (x).
If real functions f (x) are considered, the Fourier coefficients an and bn are real,

and (35) then shows that cn and c−n are complex conjugates, because c−n = c̄n. To
proceed further we now make use of the fact that the functions exp(imπx/L) and
exp(−inπx/L) are orthogonal over the interval −L ≤ x ≤ L, because integration
shows that∫ L

−L
eimπx/Le−inπx/Ldx =

{
0, for m �= −n
2π for m = −n for m, n positive integers.

Multiplication of (36) by exp(−imπx/L), followed by integration over −L ≤ x ≤ L
and use of the above orthogonality condition gives

cn = 1
2L

∫ L

−L
f (x)e−inπx/Ldx, for n = 0, ±1, ±2, . . . . (37)

Collecting these results we arrive at the following definition.

The complex form of a Fourier series

Let the real function f (x) be defined on the interval −L ≤ x ≤ L. Then thethe complex or
exponential
form of a
Fourier series

complex Fourier series representation of f (x) is

f (x) = lim
k→∞

k∑
n=−k

cneinπx/L for −L ≤ x ≤ L,

where

cn = 1
2L

∫ L

−L
f (x)e−inπx/Ldx, for n = 0, ±1, ±2, . . . .
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As the complex form of a Fourier series was derived directly from the real
variable Fourier series, it follows directly that if f (x) is defined for a − L ≤ x ≤
a + L, then

f (x) = lim
k→∞

k∑
n=−k

cneinπx/L for a − L ≤ x ≤ a + L, (38)

with

cn = 1
2L

∫ a+L

a−L
f (x)e−inπx/Ldx, for n = 0, ±1, ±2, . . . . (39)

It is sometimes useful to separate out the coefficient c0 from the summation in
(36) (or in (38)) by writing

f (x) = c0 + lim
k→∞

k∑
n=−k

′
cneinπx/L, (40)

with the understanding that !′ indicates that the term corresponding to n = 0 has
been omitted from the summation.

When f (x) is real, so that c−n = cn, result (40) becomes

f (x) = c0 +
∞∑

n=1

[cneinπx/L + c̄ne−inπx/L]. (41)

Because the complex form of the Fourier series representation of a function
is derived from its real variable definition, the convergence properties of complex
Fourier series are the same as those already discussed for the real variable case.
So at points of continuity of f (x) the complex Fourier series converges uniformly
to f (x), while at points of discontinuity it converges to the mid-point of the jump
discontinuity.

EXAMPLE 9.12 Find the complex Fourier series representation of

f (x) =
⎧⎨⎩

0, −π < x < −π/2
1, −π/2 < x < π/2
0, π/2 < x < π.

Solution As the function f (x) is defined on the interval −π ≤ x ≤ π , we have
L = π , so the coefficients cn are given by

c0 = 1
2π

∫ π

−π

f (x)dx = 1
2π

∫ π/2

−π/2
1dx = 1

2

and

cn = 1
2π

∫ π

−π

f (x)e−inxdx = 1
2π

∫ π/2

−π/2
e−inxdx = 1

nπ

(
einπ/2 − e−inπ/2

2i

)
for n = ±1, ±2, . . . .

The coefficients cn reduce to the real values

cn = 1
nπ

sin
nπ

2
for n = ±1, ±2, . . . ,

so cn = c−n because cn is an even function of n. Consideration of the function
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sin(nπ/2) for integer values of n shows that

c2n−1 = (−1)n−1

π(2n − 1)
and c2n = 0 for n = 1, 2, . . . .

Thus, the complex Fourier series representation of f (x) is

f (x) = 1
2

+ lim
k→∞

k∑
n=−k

′
cn(einx + e−inx).

The real variable Fourier series representation of this function f (x) was derived in
Chapter 8, Example 8.22, and considered again at the start of Section 9.1. If cn is
used in the preceding result with einx + e−inx = 2 cos nx, the complex Fourier series
representation reduces to the real variable Fourier series representation

f (x) = 1
2

+ 2
π

∞∑
n=1

(−1)n+1 cos(2n − 1)x
(2n − 1)

that was obtained previously. This series, and the equivalent complex series, con-
verges uniformly to f (x) at points of continuity of f (x) and to the value 1/2 at the
discontinuities located at x = ±π/2.

EXAMPLE 9.13 Find the complex Fourier series representation of

f (x) =
{

0, 0 < x < 1
1, 1 < x < 4.

Solution The function f (x) is defined on the interval 0 ≤ x ≤ 2L, with 2L = 4, so
L = 2. Thus, the complex Fourier coefficients cn are given by

cn = 1
4

∫ 4

0
f (x)e−inπx/2dx = 1

4

∫ 4

1
e−inπx/2dx, for n = 0, ±1, ±2, . . . .

Setting n = 0 gives

c0 = 3
4
,

whereas

cn = i
2πn

[
1 − e−inπ/2], for n = ±1, ±2, . . . .

So the complex Fourier series representation of f (x) is

f (x) = c0 + lim
k→∞

k∑
n=−k

cneinπx/2,

with c0 and cn defined as shown.

Accounts of Fourier series and their general properties are to be found in refer-
ences [3.3] to [3.5] and also in [3.7], [3.16], and [4.2]. An advanced and encyclopedic
account of trigonometric series is given in reference [4.5].

Summary Other forms of Fourier series have been derived, first by stretching and shifting the interval
over which the expansion was required, and then by expressing the series in complex form.
As both results were derived from the ordinary Fourier series, their convergence properties
are the same as those of ordinary Fourier series.
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EXERCISES 9.4

In Exercises 1 through 4 find the Fourier series representa-
tion of the function f (x) over the given shifted interval.

1. f (x) =
{

0, 0 < x < π

1, π < x < 2π.

2. f (x) = 1 − x, 0 < x < 1.
3. f (x) = x, 0 < x < π .
4. f (x) = x2, π < x < 3π .

In Exercises 5 through 10 find the complex Fourier series

representations of the given function f (x) over the stated
interval.

5. f (x) = ex, −1 < x < 1.
6. f (x) = x2, 0 < x < 2π .
7. f (x) = ex, 0 < x < 1.
8. f (x) = sinh x, −π < x < π .
9. f (x) = ex, −π < x < π .

10. f (x) = cosh x, −1 < x < 1.

9.5 Frequency and Amplitude Spectra
of a Function

When Fourier series are applied to periodic physical phenomena with period T, it
is convenient to work in terms of the angular frequency ω0 defined as

ω0 = 2π

T
, (42)

where 1/T = ω0/2π measures the number of cycles (oscillations) occurring in one
time unit. For example, the period of the function sin 2x is T = π , so in this case
ω0 = 2.

interpreting Fourier
series representations
in a different way

The Fourier series representation of a function f (x) defined on the interval
−L ≤ x ≤ L with the corresponding period T = 2L has been shown to be

f (x) = a0 +
∞∑

n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
,

so as ω0 = π/L this can be written

f (x) = a0 +
∞∑

n=1

(an cos nω0x + bn sin nω0x), (43)

where

a0 = 1
2L

∫ L

−L
f (x)dx

an = 1
L

∫ L

−L
f (x) cos

nπx
L

dx = 1
L

∫ L

−L
f (x) cos nω0xdx for n = 1, 2, . . . , (44)

and

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx = 1
L

∫ L

−L
f (x) sin nω0xdx for n = 1, 2, . . . . (45)
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In terms of these results (43) becomes

f (x) = a0 +
∞∑

n=1

(
a2

n + b2
n

)1/2

[
an(

a2
n + b2

n

)1/2
cos nω0x + bn(

a2
n + b2

n

)1/2
sin nω0x

]
.

(46)

Using the trigonometric identity cos(P + Q) = cos P cos Q − sin P sin Q, and
defining

An = (
a2

n + b2
n

)1/2
and δn = Arctan (−bn/an), (47)

with An the amplitude and δn the phase, allows (46) to be written more concisely
in the amplitude and phase angle representation

f (x) = a0 +
∞∑

n=1

An cos(nω0x + δn). (48)

When the Fourier series representation of f (x) is expressed in this form, the
set of numbers

ω0, 2ω0, 3ω0, . . .

frequency spectrum,
amplitude, and
phase

is called the frequency spectrum of the function f (x). The number nω0 is called the
nth harmonic frequency of f (x), and the number δn the nth phase angle of f (x).
The set of numbers

A0, A1, A2, . . . ,

where A0 = |a0|, is called the amplitude spectrum of f (x), and the function

cos(nω0x + δn)

is called the nth harmonic of the function f (x). The amplitude spectrum can be
displayed graphically by drawing lines of height A0, A1, A2, . . . , against the respec-
tive harmonic frequencies ω0, 2ω0, 3ω0, . . . , as shown in the next example. This is
called a discrete spectrum, because the amplitude is only defined at the discrete
frequencies in the frequency spectrum.

Result (48) shows how f (x) is representable in terms of a linear combination
of harmonics, each weighted by an appropriate amplitude factor An.

EXAMPLE 9.14 Find the harmonics and amplitude spectrum of

f (x) =
{
π, −π < x < 0
π − x, 0 ≤ x ≤ π.

Solution In this case the function is defined on the interval −π ≤ x ≤ π , so L =
π, T = 2L = 2π , and ω0 = 2π/T = 1. The frequency spectrum becomes 1, 2, 3, . . . ,
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and the Fourier series representation in terms of frequency is

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx),

where

a0 = 1
2π

∫ 0

−π

πdx + 1
2π

∫ π

0
(π − x)dx = 3π

4
,

and

an = 1
π

∫ 0

−π

π cos nxdx + 1
π

∫ π

0
(π − x) cos nxdx = 1

πn2
[1 − (−1)n],

for n = 1, 2, . . . .

This last result simplifies to

a2n−1 = 2
π(2n − 1)2

, a2n = 0, for n = 1, 2, . . . .

Similarly,

bn = 1
π

∫ 0

−π

π sin nxdx + 1
π

∫ π

0
(π − x) sin nxdx = (−1)n

n
, for n = 1, 2, . . . .

Substituting the coefficients an and bn into the Fourier series gives

f (x) = 3π

4
+ 2

π

∞∑
n=1

cos(2n − 1)x
(2n − 1)2

+
∞∑

n=1

(−1)n sin nx
n

for −π ≤ x ≤ π.

To find the harmonics and the amplitude spectrum, it is necessary to group
together terms with corresponding frequencies. When this is done f (x) becomes

f (x) = 3π

4
+
(

2
π

cos x − sin x
)

+ 1
2

sin 2x +
(

2
9π

cos 3x − 1
3

sin 3x
)

+ 1
4

sin 4x +
(

2
25π

cos 5x − 1
5

sin 5x
)

+ · · · .

This shows, for example, that the fifth harmonic is proportional to

2
25π

cos 5x − 1
5

sin 5x.

The amplitudes are

A0 = |a0| = 3π

4
, A1 =

[(
2
π

)2

+ (−1)2

]1/2

,

A2 = 1
2
, A3 =

[(
2

9π

)2

+
(

−1
3

)2
]1/2

,

A4 = 1
4
, A5 =

[(
2

25π

)2

+
(

−1
5

)2
]1/2

, . . . .

In general

A2n−1 = 1
(2n − 1)

[
4

(2n − 1)2π2
+ 1

]1/2

and A2n = 1
2n

, for n = 1, 2, . . . .
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FIGURE 9.13 The amplitude spectrum of f (x)
as a function of frequency.

The first few numerical values of the amplitudes are

A0 = 2.356, A1 = 1.185, A2 = 0.5, A3 = 0.341, A4 = 0.25, A5 = 0.202,

A6 = 0.167, . . . ,

and the amplitude spectrum of f (x) is shown in Fig. 9.13. In Fig. 9.13 the am-
plitudes A0, A1, . . . , are represented by vertical lines of length A0, A1, . . . , corre-
sponding to the frequencies 0, 1, 2, . . . .

The phases δn = Arctan (−bn/an) are seen to be given by

δ1 = Arctan (π/2), δ2 = Arctan (−∞), δ3 = Arctan (3π/2),

δ4 = Arctan (−∞), δ5 = Arctan (5π/2), . . . .

The negative sign is required in the arctangent functions associated with phases with
even suffixes so that when the terms A2n cos(2nx + δ2n) are expanded, the functions
sin 2nx have a positive sign.

Summary It was shown how a Fourier series can be interpreted in a different way by introducing
an angular frequency ω0, combining sine and cosine terms with similar arguments into a
single cosine term with a phase angle, and calling the magnitude of the multiplier of the
cosine term the amplitude associated with the cosine term. A discrete plot of amplitude as
a function of frequency was then called the amplitude spectrum of the representation. This
form of representation is useful in many applications involving vibrations, because when the
response of a system is represented in this way, the square of the amplitude is proportional
to the energy in the system at that frequency, so the plot shows the distribution of energy
as a function of frequency.

EXERCISES 9.5

In the following exercises find the frequency and amplitude
spectrum of the given functions.

1. f (x) =
{

0, −2π < x < 0
x, 0 < x < 2π.

2. f (x) = x, −π/2 < x < π/2.

3. f (x) =
{

1, −π < x < 0
−3, 0 < x < π.

4. f (x) =
{−1, −π < x < 0

1, 0 < x < π.

5. f (x) = x2, −π/4 < x < π/4.
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9.6 Double Fourier Series

Fourier series representations extend in a natural way to functions f (x, y) of two
real variables x and y over the intervals −L1 ≤ x ≤ L1 and −L2 ≤ y ≤ L2, provided
f can be represented as a Fourier series in x when y is held constant, and as a Fourier
series in y when x is held constant.

To arrive at a double Fourier series representation for f (x, y), we first consider
y to be a constant and write f (x, y) as

f (x, y) =
∞∑

m=0

(
Am(y) cos

mπx
L1

+ Bm(y) sin
mπx

L1

)
, (49)

and then allow y to vary by replacing the Fourier coefficients Am(y) and Bm(y) by
their Fourier series representations

Am(y) =
∞∑

n=0

(
amn cos

nπy
L2

+ bmn sin
nπy
L2

)
(50)

and

extending Fourier
series to function
f (x, y) of two
variables

Bm(y) =
∞∑

n=0

(
cmn cos

nπy
L2

+ dmn sin
nπy
L2

)
.

Substituting (50) into (49) shows f (x, y) can be written as

f (x, y) =
∞∑

m=0

∞∑
n=0

(
amn cos

mπx
L1

cos
nπy
L2

+ bmn cos
mπx

L1
sin

nπy
L2

)

+
∞∑

m=0

∞∑
n=0

(
cmn sin

mπx
L1

cos
nπy
L2

+ dmn sin
mπx

L1
sin

nπy
L2

)
. (51)

The Fourier coefficients amn for m, n = 1, 2, . . . are found by multiplying (51) by
cos sπx

L1
and integrating over the interval −L1 ≤ x ≤ L1 to get∫ L1

−L1

f (x, y) cos
sπx
L1

dx =
∞∑

m=0

∞∑
n=0

[
amn cos

nπy
L2

∫ L1

−L1

cos
mπx

L1
cos

sπx
L1

dx
]

+
∞∑

m=0

∞∑
n=0

[
bmn sin

nπy
L2

∫ L1

−L1

cos
mπx

L1
cos

sπx
L1

dx
]

+
∞∑

m=0

∞∑
n=0

[
cmn cos

nπy
L2

∫ L1

−L1

sin
mπx

L1
cos

sπx
L1

dx
]

+
∞∑

m=0

∞∑
n=0

[
dmn sin

nπy
L2

∫ L1

−L1

sin
mπx

L1
cos

sπx
L1

dx
]

. (52)

The orthogonality of the functions cos mπx
L1

and sin sπx
L1

over the interval −L1 ≤
x ≤ L1 reduces (52) to∫ L1

−L1

f (x, y) cos
sπx
L1

dx =
∞∑

n=0

(
asnL1 cos

nπy
L2

+ bsnL1 sin
nπy
L2

)
. (53)

Multiplication of (53) by cos tπy
L2

followed by integration over the interval −L2 ≤
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y ≤ L2 reduces it further to∫ L2

−L2

[∫ L1

−L1

f (x, y) cos
sπx
L1

]
cos

tπy
L2

dy = ast L1L2,

so replacing s by m and t by n gives

amn = 1
L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) cos
mπx

L1
cos

nπy
L2

dxdy for m, n = 1, 2, . . . .

(54)

The coefficient a00 follows by setting m = n = 0 in (51) and integrating over the
intervals −L1 ≤ x ≤ L1 and −L2 ≤ y ≤ L2 to give

a00 = 1
4L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y)dxdy. (55)

It remains to find the coefficients am0 and a0n for m, n = 1, 2, . . . . Setting n = 0 in
(53), integrating over −L2 ≤ y ≤ L2, and then replacing s by m gives

am0 = 1
2L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) cos
mπx

L1
dxdy. (56)

The coefficients a0n for n = 1, 2, . . . follow by multiplying (51) by cos tπy
L1

, integrating
over the interval −L2 ≤ y ≤ L2, and then replacing t by n to obtain

a0n = 1
2L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) cos
nπy
L2

dxdy. (57)

Corresponding arguments show that for m, n = 1, 2, . . . ,

bmn = 1
L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) cos
mπx

L1
sin

nπy
L2

dxdy, (58)

cmn = 1
L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) sin
mπx

L1
cos

nπy
L2

dxdy, (59)

dmn = 1
L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) sin
mπx

L1
sin

nπy
L2

dxdy, (60)

where

bm0 = 0, c0n = 0, d0n = 0 and dm0 = 0, (61)

because the index zero causes the sine function to vanish in the integrands of the
integrals defining these constants.

Thus, the general double Fourier series representation of f (x, y) over the in-general and special
double Fourier series
representations

terval −L1 ≤ x ≤ L1 and −L2 ≤ y ≤ L2 is given by

f (x, y) =
∞∑

m=0

∞∑
n=0

(
amn cos

mπx
L1

cos
nπy
L2

+ bmn cos
mπx

L1
sin

nπy
L2

)

+
∞∑

m=0

∞∑
n=0

(
cmn sin

mπx
L1

cos
nπy
L2

+ dmn sin
mπx

L1
sin

nπy
L2

)
,

(62)

where the coefficients amn, bmn, cmn, and dmn are given by expressions (54) to (61).
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The following useful special cases arise according as the function f (x, y) is even
or odd in its variables.

Case (a) f (x, y) Is Even in x and y
In this case f (−x, y) = f (x, y) and f (x, −y) = f (x, y), so only the coefficients amn

are nonzero, leading to the double Fourier cosine series representation

f (x, y) = a00 +
∞∑

m=1

am0 cos
mπx

L1
+

∞∑
n=1

a0n cos
nπy
L2

+
∞∑

m=1

∞∑
n=1

amn cos
mπx

L1
cos

nπy
L2

.

(63)

As f (x, y) is even in both x and y, both limits of integration in the integrals defining
the amn in (54) to (57) can be changed to give

a00 = 1
L1L2

∫ L2

0

∫ L1

0
f (x, y)dxdy

am0 = 2
L1L2

∫ L2

0

∫ L1

0
f (x, y) cos

mπx
L1

dxdy, m = 1, 2, . . .

a0n = 2
L1L2

∫ L2

0

∫ L1

0
f (x, y) cos

nπy
L2

dxdy, n = 1, 2, . . .

amn = 4
L1L2

∫ L2

0

∫ L1

0
f (x, y) cos

mπx
L1

cos
nπy
L2

dxdy, m, n = 1, 2, . . . .

(64)

Case (b) f (x, y) Is Even in x and Odd in y
In this case f (−x, y) = f (x, y) and f (x, −y) = − f (x, y) so only the coefficients
bmn are nonzero, leading to the representation

f (x, y) =
∞∑

n=1

b0n sin
nπy
L2

+
∞∑

m=1

∞∑
n=1

bmn cos
mπx

L1
sin

nπy
L2

. (65)

As f (x, y) is even only in x, the limits of integration for x in integral (58) defining
the coefficients bmn can be changed to give

bmn = 2
L1L2

∫ L2

−L2

∫ L1

0
f (x, y) cos

mπx
L1

sin
nπy
L2

dxdy

= 4
L1L2

∫ L2

0

∫ L1

0
f (x, y) cos

mπx
L1

sin
nπy
L2

dxdy.

(66)
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Case (c) f (x, y) Is Odd in x and Even in y
In this case f (−x, y) = − f (x, y) and f (x, −y) = f (x, y), so only the coefficients
cmn are nonzero, leading to the representation

f (x, y) =
∞∑

m=1

cm0 sin
mπy

L1
+

∞∑
m=1

∞∑
n=1

cmn sin
mπx

L1
cos

nπy
L2

. (67)

As f (x, y) is even only in y, the limits of integration for y in integral (59) defining
the coefficients cmn can be changed to give

cmn = 2
L1L2

∫ L2

−L2

∫ L1

−L1

f (x, y) sin
mπx

L1
cos

nπy
L2

dxdy

= 4
L1L2

∫ L2

0

∫ L2

−L1

f (x, y) sin
mπx
L1

cos
nπy
L2

dxdy.

(68)

Case (d) f (x, y) Is Odd in x and y
In this case f (−x, y) = − f (x, y) and f (x, −y) = − f (x, y) so only the coefficients
dmn are nonzero, leading to the double Fourier sine series representation

f (x, y) =
∞∑

m=1

∞∑
n=1

dmn sin
mπx

L1
sin

nπy
L2

. (69)

As f (x, y) is odd in both x and y, both limits of integration for x and y in integral
(60) defining the coefficients dmn can be changed to give

dmn = 4
L1L2

∫ L2

0

∫ L1

0
f (x, y) sin

mπx
L1

sin
nπy
L2

dxdy. (70)

EXAMPLE 9.15 Find the double Fourier series representation of f (x, y) = xy over −2 ≤ x ≤ 2 and
−4 ≤ y ≤ 4.

Solution The function f (x, y) is odd in both x and y, so this corresponds to the
double Fourier sine series representation of case (d) with L1 = 2 and L2 = 4. From
(70) we have

dmn = 4
8

∫ 4

0

∫ 2

0
xy sin

mπx
2

sin
nπy

4
dxdy

= 1
2

[∫ 2

0
x sin

mπx
2

dx
] [∫ 4

0
y sin

nπy
4

dy
]

= 1
2

[−4(−1)m

mπ

] [−16(−1)n

nπ

]
= (−1)m+n 32

mnπ2
.
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Thus, the required double Fourier sine series representation is

f (x, y) = 32
π2

∞∑
m=1

∞∑
n=1

(−1)m+n 1
mn

sin
mπx

2
sin

nπy
4

,

for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 4. Notice that this same expression describes the
representation of f (x, y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4.

By analogy with the half-range sine and cosine series of Section 9.3, a function
f (x, y) defined in a region 0 ≤ x ≤ a, 0 ≤ y ≤ b can be extended to the region
−a ≤ x ≤ a, −b ≤ y ≤ b either as a function that is odd in both x and y, or as one
that is even in both x and y. If it is extended as an odd function, case (d) applies and
the representation in the first quadrant follows by restricting the result to 0 ≤ x ≤ a,

0 ≤ y ≤ b, whereas if it is extended as an even function, case (a) applies, when the
representation is again obtained by restricting the result to 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Suppose, for example, a double Fourier sine series representation of f (x, y) =
xy is required for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4. Then extending f (x, y) to the re-
gion −2 ≤ x ≤ 2, −4 ≤ y ≤ 4 as a function that is odd in both x and y leads to
Example 9.15, so the required representation is given by restricting the
double Fourier sine series of Example 9.15 to 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4. Similarly,
f (x, y) = xy can be represented by a double Fourier cosine series in 0 ≤ x ≤ 2
and 0 ≤ y ≤ 4 by extending it as f (x, y) = |x||y| for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 4.
As f (x, y) is even in both x and y, case (a) can be applied and the result again
restricted so that 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4.

A typical plot of a double Fourier series approximation to f (x, y) = xy for
0 ≤ x ≤ 2 and 0 ≤ y ≤ 4 provided by a partial sum of the double Fourier sine series
in Example 9.15 is shown in Fig. 9.14 for the case with m = n = 10. If, instead, the
cosine approximation had been used (see Exercise 6), the plot of the correspond-
ing approximation provided by the partial sum with m = n = 10 is shown in Fig.
9.15. The convergence of the double cosine series is seen to be the faster of the
two.
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FIGURE 9.14 A double Fourier sine series approximation to
f (x, y) = xy.
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FIGURE 9.15 A double Fourier cosine series approximation
to f (x, y) = xy.

Summary It was shown how an ordinary Fourier series representation can be extended in a natural
way to the expansion of functions f (x, y) of two variables. After the derivation of the gen-
eral expansion result, four useful special cases were examined and illustrated by example.
Unless f (x, y) is simple, the Fourier series approximation of functions of two variables can
require numerical integration when finding the Fourier coefficients, and many terms are
usually required to achieve good convergence, so in general it is necessary to perform such
calculations and to plot the result by computer.

EXERCISES 9.6

1. By setting y = 1 in f (x, y) = x2 y, with −π ≤ x ≤ π and
−π ≤ y ≤ π , show that the double Fourier series repre-
sentation of f (x, y) reduces to the ordinary Fourier se-
ries representation of f (x) = x2 for −π ≤ x ≤ π given
by

f (x) = π2

3
+ 4

∞∑
m=1

(−1)m cos mx
m2

In Exercises 2 through 9 find and plot double Fourier series
partial sum approximations to the given function.

2. f (x, y) = xy2, for −π ≤ x ≤ π and −π ≤ y ≤ π .
3. f (x, y) = x3 y, for −π ≤ x ≤ π and −π ≤ y ≤ π .

4. f (x, y) = x2 y2, for −π ≤ x ≤ π and −π ≤ y ≤ π .
5.* f (x, y) = sign(xy), for −π ≤ x ≤ π and −π ≤ y ≤ π ,

where sign u = 1 if u > 0 and sign u = −1 if u < 0.

6.* f (x, y) = |xy|, for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 4.

7.* f (x, y) = sign (xy) + xy, for −π ≤ x ≤ π and −π ≤
y ≤ π .

8.* f (x, y) = y| sin x|, for −π ≤ x ≤ π and −π ≤ y ≤ π .
9.* Extend f (x, y) = xy2, for 0 ≤ x ≤ π and 0 ≤ y ≤ π ,

to −π ≤ x ≤ π and −π ≤ y ≤ π as an odd function, and
hence find a double Fourier sine series representation
of f (x, y) for 0 ≤ x ≤ π and 0 ≤ y ≤ π .
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CHAPTER 9

TECHNOLOGY PROJECTS

The purpose of these projects is to use computer algebra to generate Fourier series for continuous
and discontinuous functions, to use computer graphics to examine their convergence to the functions
they represent, and to explore the nature of the Gibbs phenomenon.

Project 1

Finding Fourier Series and Plotting
Partial Sums

Use computer algebra to find the first 11 terms
a0, a1, . . . , a5, b1, b2, . . . , b5 of the Fourier series of

f (x) = (π2 − x2)e−x sin x for −π ≤ x ≤ π.

Plot the approximation to f (x) obtained by using
(a) the terms involving a0, a1, a2, b1, and b2 and (b) the
11 terms involving a0, . . . , a5, b1, . . . , b5 in the partial
sum approximation, and compare the results with the
graph of f (x).

Project 2

Examining the Gibbs Phenomenon

Use computer algebra to find the Fourier series rep-
resentation of the function

f (x) =
{

sin x − 1, −π < x < 0

sin x + 1, 0 < x < π.

By plotting the partial sum representations of
f (x) using different numbers of terms, demonstrate
the persistence of the overshoot and undershoot
caused by the Gibbs phenomenon as the number of
terms in the approximation increases.

Project 3

The Complex Fourier Series

Use computer algebra with the complex Fourier series
representation of a function to verify the coefficients
cn and c2n−1 found in Example 9.12. Plot different par-
tial sum approximations to f (x) and, as in Project 2,
demonstrate the persistence of the Gibbs phenomena
as the number of terms in the partial sum approxima-
tion increases.
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10C H A P T E R

Fourier Integrals and
the Fourier Transform

Fourier series enable functions and solutions of linear systems defined over a finite interval
to be represented as an infinite series of sines and cosines. This suffices for many physical

problems, but often the interval involved is either semi-infinite or infinite, in which case a
somewhat different representation becomes necessary. This happens, for example, when
working with the partial differential equations that describe heat conduction and diffusion
in a half-space for which Fourier series cannot be used.

The Fourier integral can be regarded as the limiting case of a Fourier series representa-
tion of a function f (x) defined over an interval −L < x < L as L → ∞. The meaning of the
integral representation when the function to be represented is discontinuous is considered,
and the special cases of the sine and cosine integral representations are introduced.

Fourier sine and cosine transforms are considered, tables of their transform pairs are
given, and the transform of derivatives is discussed. In anticipation of Chapter 18, an
application of the Fourier transform is made to the problem of the one-dimensional time
dependent heat equation.

10.1 The Fourier Integral

AFourier series has been shown to represent an arbitrary function f (x) over
an interval −L ≤ x ≤ L, and because the series is periodic with period 2L the

representation of f (x) in this fundamental interval is repeated by periodicity for
all x outside the interval. However, even if f (x) is defined outside the fundamental
interval, it does not necessarily follow that the function and its periodic extensions
coincide outside the interval. This means that if a nonperiodic function is to be
represented over an arbitrarily large interval, some generalization of a Fourier
series is required.

Letting L → ∞ in a Fourier series leads to the introduction of a different type
of representation called a Fourier integral representation, where the function f (x)
is defined for all x and need not be periodic. This representation forms the basis
of an integral transform called the Fourier transform that is similar to the Laplace
transform. As with the Laplace transform, one of the the main uses of the Fourier
transform is in the solution of differential equations.

589
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The derivation of the Fourier integral representation given here is heuristic,
because a rigorous one requires techniques that are not needed elsewhere in the
book. We start from the definition of a Fourier series of f (x) over an interval
−L ≤ x ≤ L given in (18) and (19) of Section 9.1 by writing

f (x) = a0 +
∞∑

n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
(1)

where

a0 = 1
2L

∫ L

−L
f (x)dx, an = 1

L

∫ L

−L
f (x) cos

nπx
L

dx,

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx for n = 1, 2, . . . .

(2)

Substituting the Fourier coefficients (2) into Fourier series (1) allows it to be written
in the integral form

f (x) = 1
2L

∫ L

−L
f (u)du + 1

L

∞∑
n=1

∫ L

−L
f (u) cos

nπ(u − x)
L

du. (3)

To proceed further, if the representation is to remain valid as L → ∞ the first
term must not become either infinite or indeterminate. This will certainly be true
if limL→∞

∫ L
−L | f (x)|dx is finite, because then the integral involved in the first term

will be absolutely convergent and the first term in (3) will vanish in the limit as
L → ∞. From now on we will assume this condition to be satisfied. We can now
write (3) as

f (x) = 1
L

∞∑
n=1

∫ L

−L
f (u) cos

nπ(u − x)
L

du. (4)

It is from this point onward that our derivation of the Fourier integral rep-
resentation becomes heuristic, because the arguments used to convert (4) to an
integral over the interval (−∞, ∞) are merely intuitive. A careful examination of
the convergence of the double integral involved would be necessary to provide a
rigorous justification.

Setting �nω = π/L, and defining the frequency ωn = nπ/L, allows (4) to be
rewritten as

1
π

∞∑
n=1

�nω

∫ L

−L
f (u) cos[ωn(u − x)]du. (5)

Examination of (5) suggests it is equivalent to the pre-limit sum approximation
used in the definition of the definite (Riemann) integral of the function

F(u) = 1
π

∫ L

−L
f (u) cos ω(u − x)du.

Using this last result in (5), and proceeding to the limit as L → ∞, we obtain

f (x) = 1
π

∫ ∞

0
dω

∫ ∞

−∞
f (u) cos ω(u − x)du, (6)

which is called the Fourier integral representation of f (x).
the Fourier integral
representation
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By defining the functions A(ω) and B(ω) as

A(ω) = 1
π

∫ ∞

−∞
f (u) cos ωudu and B(ω) = 1

π

∫ ∞

−∞
f (u) sin ωudu, (7)

the Fourier integral representation in (6) can be written in the simpler form

f (x) =
∫ ∞

0
[A(ω) cos ωx + B(ω) sin ωx]dω. (8)

The convergence properties of Fourier series recorded in Theorem 9.1 can
be shown to be transferred to the Fourier integral representation of f (x) if, in
addition to the integral of f (x) being absolutely convergent over (−∞, ∞), it also
satisfies certain other conditions. These conditions, called Dirichlet conditions, areDirichlet conditions
as follows:

(i) In any finite interval f (x) has only a finite number of maxima and minima
(ii) In any finite interval f (x) has only a finite number of bounded jump disconti-

nuities and no infinite jump discontinuities.

We now state the following theorem for the Fourier integral without proof.

PETER GUSTAV LEJEUNE DIRICHLET (1805–1859)
A German mathematician who studied under Gauss, was the son-in-law of Jacobi and
succeeded Gauss as Professor of Mathematics at Göttingen. He did much to make some of the
more abstruse contributions by Gauss better understood. His most important contributions
to mathematics were his major contribution to the understanding of the convergence of
Fourier series, and his work on number theory and the theory of potential.

THEOREM 10.1 Fourier integral theorem Let f (x) satisfy Dirichlet conditions, and suppose the
(sufficiency) conditions that f (x) be both integrable and absolutely integrable over
the interval −∞ < x < ∞ are both satisfied, so each of the integrals

∫∞
−∞ f (x)dx

and
∫∞
−∞ | f (x)|dx exists. Thenthe fundamental

Fourier integral
theorem

1
2

[ f (x + 0) + f (x − 0)] = 1
π

∫ ∞

0
dω

∫ ∞

−∞
f (u) cos ω(u − x)du

or, equivalently,

1
2

[ f (x + 0) + f (x − 0)] =
∫ ∞

0
[A(ω) cos ωx + B(ω) sin ωx]dω,

where

A(ω) = 1
π

∫ ∞

−∞
f (u) cos ωudu and B(ω) = 1

π

∫ ∞

−∞
f (u) sin ωudu.

EXAMPLE 10.1 Find the Fourier integral representation of f (x) = e−|x|.

Solution The function e−|x| satisfies the Dirichlet conditions, and
∫∞
−∞ |e−|x||dx =

2, so the integral of f (x) = e−|x| over (−∞, ∞) is absolutely convergent. This con-
firms that f (x) = e−|x| has a Fourier integral representation.
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The function e−|x| is even in x, so e−|u| cos ωu is also even, and

A(ω) = 1
π

∫ ∞

−∞
e−|u| cos ωudu = 2

π

∫ ∞

0
e−u cos ωudu = 2

π(1 + ω2)
.

As the function e−|u| sin ωu is odd in u,

B(ω) = 1
π

∫ ∞

−∞
e−|u| sin ωudu = 2

π

∫ ∞

0
e−u sin ωudu = 0,

so from (8) the Fourier integral representation of e−|x| is seen to be

e−|x| = 2
π

∫ ∞

0

cos ωx
1 + ω2

dω.

EXAMPLE 10.2 Find the Fourier integral representation of

f (x) =
{

e−x, x > 0
0, x < 0

and use Theorem 10.1 to find the value of the resulting integral when (a) x < 0,
(b) x = 0, and (c) x > 0.

Solution The function f (x) satisfies the Dirichlet conditions and the integral∫∞
−∞ | f (x)|dx = ∫∞

0 e−xdx = 1, so as the conditions of Theorem 10.1 are satisfied
the function has a Fourier integral representation.

We have

A(ω) = 1
π

∫ ∞

−∞
f (u) cos ωudu = 1

π

∫ ∞

0
e−u cos ωudu = 1

π(1 + ω2)

and

B(ω) = 1
π

∫ ∞

−∞
f (u) sin ωudu = 1

π

∫ ∞

0
e−u sin ωudu = ω

π(1 + ω2)
.

Substituting into (8) shows the Fourier integral representation to be

f (x) = 1
π

∫ ∞

0

cos ωx + ω sin ωx
1 + ω2

dω for −∞ < x < ∞.

Applying the results of Theorem 10.1 to this integral, we find that

π f (x) =
∫ ∞

0

cos ωx + ω sin ωx
1 + ω2

dω =
⎧⎨⎩

0, x < 0
π/2, x = 0
πe−x, x > 0.

When x = 0, this last result is seen to reduce to the familiar definite integral∫ ∞

0

dω

1 + ω2
= π

2
.

Special forms of the Fourier integral representation arise according to whether f (x)
is even or odd. When f (x) is an even function, f (u) sin ωu is an odd function of u,
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so B(ω) ≡ 0 and

A(ω) = 2
π

∫ ∞

0
f (u) cos ωudu, (9)

so that (8) simplifies to the Fourier cosine integral representation of f (x)

f (x) =
∫ ∞

0
A(ω) cos ωxdω. (10)

Similarly, when f (x) is an odd function, f (u) cos ωu is an odd function of u, so
A(ω) ≡ 0 and

B(ω) = 2
π

∫ ∞

0
f (u) sin ωudu, (11)

causing (8) to simplify to the Fourier sine integral representation of f (x) given by

f (x) =
∫ ∞

0
B(ω) sin ωxdω. (12)

Summary of Fourier integral representations

(a) An arbitrary function f (x) satisfying the conditions of Theorem 10.1 has
the general Fourier integral representationdifferent Fourier

integral
representations 1

2
[ f (x + 0) + f (x − 0)] =

∫ ∞

0
[A(ω) cos ωx + B(ω) sin ωx]dω.

(13)

(b) An even function f (x) satisfying the conditions of Theorem 10.1 has the
Fourier cosine integral representation

1
2

[ f (x + 0) + f (x − 0)] =
∫ ∞

0
A(ω) cos ωxdω. (14)

(c) An odd function f (x) satisfying the conditions of Theorem 10.1 has the
Fourier sine integral representation

1
2

[ f (x + 0) + f (x − 0)] =
∫ ∞

0
B(ω) sin ωxdω, (15)

where

A(ω) = 1
π

∫ ∞

−∞
f (u) cos ωudu and B(ω) = 1

π

∫ ∞

−∞
f (u) sin ωudu.

(16)
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Summary The Fourier integral representation of a function f (x) was introduced as the natural ex-
tension of a Fourier series representation as the interval of the representation extends to
become the interval −∞ < x < ∞. A fundamental representation theorem was given and
illustrated by example, and some useful special cases of the theorem were considered.

EXERCISES 10.1

Find the Fourier integral representation of the given func-
tions.

1. The rectangular pulse function f (x) =
{

1, |x| < 1
0, |x| > 1

(Fig. 10.1).

−1 10

f(x)

x

1

FIGURE 10.1 The rectangular pulse function.

2. The triangular function

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, |x| > a

b
(

1 + x
a

)
, −a ≤ x ≤ 0

b
(

1 − x
a

)
, 0 ≤ x ≤ a

(Fig. 10.2).

f(x)

−a

b

0 a x

FIGURE 10.2 The triangular function.

3. f (x) =
{

0, |x| > a
bx/a, −a ≤ x ≤ a

(Fig. 10.3).

−a

−b

b

0 a x

f(x)

FIGURE 10.3 The truncated straight line function.

4. f (x) =
⎧⎨⎩

0, x ≤ 0
sin x, 0 ≤ x ≤ π

0, x ≥ π

(Fig. 10.4).

0 π/2 xπ

f(x)

f(x) = sin x1

FIGURE 10.4 The asymmetric truncated sine
function.

5. f (x) =
{

(π/2) cos x, |x| < π/2
0, |x| > π/2

(Fig. 10.5).

0−π/2 π/2

π/2

x

f(x) = cos x

f(x)

FIGURE 10.5 The truncated cosine function.

6. f (x) =
{

(π/2) sin x, |x| < π/2
0, |x| > π/2

(Fig. 10.6).

−π/2

π/2

0 x

f(x) f(x) = π/2 sin x

−π/2 π/2

FIGURE 10.6 The truncated sine function.
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7. f (x) =
⎧⎨⎩

0, x < 0
cos x, 0 < x < π

0, x > π

(Fig. 10.7).

f(x) = cos x1

−1

0 xπ/2 π

f(x)

FIGURE 10.7 The asymmetric truncated cosine
function.

8. The hump function f (x) = 1/(1 + x2) (Fig. 10.8).
(Hint: Use the result of Example 10.16 with a change of
notation.)

x

1

0

f(x)

FIGURE 10.8 The hump function.

10.2 The Fourier Transform

The starting point for the development of the Fourier transform is the complex
form of the Fourier integral representation of a function f (x). To derive this
representation in which f (x) is defined over the interval (−∞, ∞), we substi-
tute into (8) of Section 10.1 the expressions for A(ω) and B(ω) given in (7) to
obtain

1
2

[ f (x + 0) + f (x − 0)] = 1
π

∫ ∞

0

[ ∫ ∞

−∞
f (u)[cos ωu cos ωx + sin ωu sin ωx]du

]
dω

= 1
π

∫ ∞

0

[ ∫ ∞

−∞
f (u) cos{ω(u − x)}du

]
dω

= 1
π

∫ ∞

0

[ ∫ ∞

−∞
f (u) cos{ω(x − u)}du

]
dω,

where we have used the result cos ω(u − x) = cos ω(x − u).
As the integrand in the last integral is an even function of ω, the interval of

integration with respect to ω can be doubled and the result compensated by the
introduction of a multiplicative factor 1/2 to give

1
2

[ f (x + 0) + f (x − 0)] = 1
2π

∫ ∞

−∞

[ ∫ ∞

−∞
f (u) cos ω(x − u)du

]
dω. (17)

The function sin ω(x − u) is an odd function of ω, so it follows directly that

0 = 1
2π

∫ ∞

−∞

[ ∫ ∞

−∞
f (u) sin{ω(x − u)}du

]
dω. (18)

Multiplying equation (18) by i , adding the result to equation (17), and using
the complex Fourier
integral
representation

the Euler formula eiθ = cos θ + i sin θ , we arrive at the complex Fourier integral
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representation

1
2

[ f (x + 0) + f (x − 0)] = 1
2π

∫ ∞

−∞

[ ∫ ∞

−∞
f (u) exp{iω(x − u)}du

]
dω.

(19)

The brackets in (17) to (19) were retained to clarify the order in which the
integrations are performed, but they are usually omitted in (19), which then becomes

1
2

[ f (x + 0) + f (x − 0)] = 1
2π

∫ ∞

−∞

∫ ∞

−∞
f (u) exp{iω(x − u)}dudω.

(20)

Clearly, the left-hand side of (20) reduces to f (x) wherever the function is
continuous.

To arrive at the definitions of a Fourier transform and its inverse we write
the factor exp{iω(x − u)} in (19) (equivalently (20)) as the product exp{iωx} ·
exp{−iωu}. Then, as the inner integral only involves integration with respect to
u, we rewrite (19) as

f (x) = 1√
2π

∫ ∞

−∞
exp{iωx}

[
1√
2π

∫ ∞

−∞
f (u) exp{−iωu}du

]
dω, (21)

where the left-hand side is to be replaced by (1/2)[ f (x + 0) + f (x − 0)] whenever
f (x) is discontinuous.

If we now define the function F(ω) as

F(ω) = 1√
2π

∫ ∞

−∞
f (u) exp{−iωu}du,

then because u is a dummy variable it can be replaced by x and the result rewritten
as

F(ω) = 1√
2π

∫ ∞

−∞
f (x) exp{−iωx}dx, (22)

so that (19) becomes

f (x) = 1√
2π

∫ ∞

−∞
F(ω) exp{iωx}dω. (23)

The function F(ω) in (22) is called the Fourier transform of f (x), or sometimes
the exponential Fourier transform, and because integral (23) recovers f (x) from
F(ω) it is called the inversion integral for the Fourier transform. As with the Laplace

Fourier transforms
and transform pairs

transform, when working with the Fourier transform the function f (x) and the
associated Fourier transform F(ω) are called a Fourier transform pair. A short
table of Fourier transform pairs is to be found at the end of this section.

Various other notations are used to indicate the Fourier transform of f (x), the
most common of which involves representing it by

"

f (ω), so in terms of the notation
used here,

"

f (ω) = F(ω).
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Another notation that is often useful involves representing the Fourier trans-
form of f (x) byF{ f (x)}, so thatF{ f (x)} = F(ω), and when this notation is used the
inverse Fourier transform is written F−1{F(ω)} = f (x). In what follows a function
to be transformed is denoted by a lowercase letter, and the corresponding uppercase
letter is then used to denote its Fourier transform. So, for example, F{g(x)} = G(ω)
and F{h(x)} = H(ω).

The choice of the normalizing factors 1/
√

2π in integrals (22) and (23) is op-
tional, and it is chosen here to introduce as much symmetry as possible into the
definitions of a Fourier transform and its inverse. All that is required of the nor-
malizing factors is that their product be 1/(2π), so in many reference works the
factor 1/

√
2π in (22) is replaced by 1, while the factor 1/

√
2π in (23) is replaced by

1/(2π). It is impossible to achieve complete symmetry in the definitions of a Fourier
integral and its inverse because the exponential factor occurs with opposite signs
in (22) and (23).

When Fourier transforms listed in reference works are used, another source of
confusion can arise because sometimes the signs in the exponential factors occurring
in integrals (22) and (23) are interchanged. When this happens a Fourier transform
obtained using this sign convention can be converted to the one used here by
reversing the sign of ω. However, each definition of the Fourier transform and the
corresponding inversion integral conform to the general pattern

F{ f (x)} = k
2π

∫ ∞

−∞
f (x) exp{±iωx}dx and

F−1{F(ω)} = 1
k

∫ ∞

−∞
F(ω) exp{∓iωx}dω,

(24)

where k is an arbitrary scale factor.
In view of the different conventions that are in use, when working with Fourier

transforms and referring to reference works, it is essential that the normalizing
factor k and the sign convention employed in the exponential factors be established
before any use is made of the results.

When we considered the convergence of Fourier series, the Riemann–Lebesgue
lemma was established the results of which were that

lim
n→∞

∫ π

−π

f (x) cos nxdx = lim
n→∞

∫ π

−π

f (x) sin nxdx = 0. (25)

A limiting argument similar to the one used in Section 10.1 when deriving the
Fourier integral representation of f (x) shows that, provided f (x) has a Fourier
transform,

lim
|ω|→∞

∫∞
−∞ f (x) cos ωxdx = lim

|ω|→∞
∫∞
−∞ f (x) sin ωxdx = 0. (26)

As the Fourier transform F(ω) of f (x) can be written

F(ω) = 1√
2π

[ ∫∞
−∞ f (x) cos ωxdx − i

∫∞
−∞ f (x) sin ωxdx

]
, (27)
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an application of limits (26) in (27) establishes the important property of a Fourier
transform that

lim
|ω|→∞

F(ω) = 0. (28)

EXAMPLE 10.3 Find the Fourier transforms of

(a) f (x) =
{

1, |x| < a
0, |x| > a,

(b) g(x) =
{

1, 0 < x < a
0, otherwise,

(c) p(x) = 1
x2 + a2

by making use of the standard integral
∫∞
−∞

cos ωx
x2+a2 dx = π

a e−|ω|a (a > 0) and (d)
q(x) = { eiax, 0 < x < 1

0, otherwise . In each case confirm that the Fourier transform vanishes as
ω → ±∞.

Solution

(a) F(ω) = 1√
2π

∫ a

−a
e−iωxdx = 1

ω
√

2π

[
eiωa − e−iωa

i

]

= 1
ω

√
2
π

[
eiωa − e−iωa

2i

]
=
√

2
π

sin ωa
ω

.

As sin ωa is bounded, it follows directly that lim|ω|→∞ F(ω) = 0.

(b) G(ω) = 1√
2π

∫ a

0
e−iωxdx = 1√

2π

(
1 − e−iωa

iω

)
.

As the numerator of G(ω) is bounded, it follows that lim|ω|→∞ G(ω) = 0. This
example shows that although f (x) may be real, its Fourier transform can be
complex.

(c) P(ω) = 1√
2π

∫ ∞

−∞

e−iωx

x2 + a2
dx = 1√

2π

∫ ∞

−∞

cos ωx
x2 + a2

dx − i√
2π

∫ ∞

−∞

sin ωx
x2 + a2

dx.

The integrand of the second integral is odd, so the value of the integral is zero.
Using the standard result ∫ ∞

−∞

cos ωx
x2 + a2

dx = π

a
e−|ω|a

in the remaining integral on the right, we find that

P(ω) =
√

π

2
e−|ω|a

a
(a > 0).

In this case the factor e−|ω|a ensures that lim|ω|→∞ P(ω) = 0.

(d) Q(ω) = 1√
2π

∫ ∞

−∞
q(x)e−iωxdx = 1√

2π

∫ 1

0
e−i(ω−a)xdx

= i√
2π

(
1 − e−i(ω−a)

a − ω

)
.

As the numerator of the Fourier transform is bounded, the denominator causes
the transform to vanish as |ω| → ∞. This example shows that a complex function
can also have a Fourier transform and, in general, that the transform will be complex.
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The fundamental properties contained in Theorems 10.2 to 10.8 that follow are
called operational properties of the Fourier transform. Familiarity with these prop-
erties is essential, because they simplify calculations involving Fourier transforms
and can lead to results that are difficult to obtain without their use.

THEOREM 10.2 Linearity of the Fourier transform Let the functions f (x) and g(x) have the re-
spective Fourier transforms F(ω) and G(ω), and let a and b be arbitrary constants.

the main operational
properties of Fourier
transforms

Then

F{a f (x) + bg(x)} = aF{ f (x)} + bF{g(x)}.

Proof As the Fourier integral involves the operation of integration, the linearity
property of the transform follows directly from the linearity property of the definite
integral.

Theorem 10.2 is important when the Fourier transform of a sum of functions
is required, because it is this result that allows each term involved in the sum to be
transformed separately before the results are added.

EXAMPLE 10.4 Find the Fourier transform of 3 f (x) − 2g(x), where f (x) and g(x) are the functions
in (a) and (b) of Example 10.3.

Solution Using the results of Example 10.3 and applying Theorem 10.2, we have

F{3 f (x) − 2g(x)} = 3F{ f (x)} − 2F{g(x)}

=
√

2
π

{
3 sin ωa

ω
−
(

1 − e−iωa

iω

)}
.

THEOREM 10.3 Fourier transform of a derivative of f (x) Let f (x) be a continuous function
of x with the property that lim|x|→∞ f (x) = 0, and such that f ′(x) is absolutely
integrable over (−∞, ∞). Then:

(a) F{ f ′(x)} = iωF(ω).

(b) For all n such that the derivatives f (r)(x) with r = 1, 2, . . . , n satisfy Dirichlet
conditions, are absolutely integrable over (−∞, ∞), and lim|x|→∞ f (n−1)(x) = 0,

F{ f (n)(x)} = (iω)n F(ω),

where f (n)(x) = dn f/dxn.

Proof

(a) Integration by parts coupled with the condition that lim|x|→∞ f (x) = 0 gives

F{ f ′(x)} = 1√
2π

∫ ∞

−∞
f ′(x)e−iωxdx

= 1√
2π

[
f (x)e−iωx

∣∣∣∣∞
−∞

− (−iω)
∫ ∞

−∞
f (x)e−iωxdx

]
= iω F{ f (x)} = iωF(ω),

where the term f (x)e−iωx|∞−∞ vanishes because of the condition lim|x|→∞ f (x) = 0.
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(b) The second part of the theorem follows by repeated application of result (a),
and the conditions imposed on f (n)(x) are necessary to ensure that its Fourier
transform exists.

EXAMPLE 10.5 Find the Fourier transform of p′(x) from the Fourier transform of p(x), where p(x)
is the function in Example 10.3(c).

Solution It was shown in Example 10.3(c) that P(ω) = √
π
2

e−|ω|a
a , so it follows from

Theorem 10.3 (a) that F{p′(x)} = iωP(ω) = iω
√

π
2

e−|ω|a
a .

THEOREM 10.4 Fourier transform of xn f (x) Let f (x) be a continuous and differentiable function
with an n times differentiable Fourier transform F(ω). Then

(a) F{x f (x)} = i
d

dω
[F(ω)]

and

(b) F{xn f (x)} = in dn

dωn
[F(ω)],

for all n such that lim|ω|→∞ F (n)(ω) = 0.

Proof The proof of the theorem follows directly by the application of Leibniz’s
rule that governs differentiation under the integral sign. The rule may be stated as
follows:

Leibniz’ rule: Let f (x, ω) and ∂ f/∂ω be continuous functions of their variables
with −∞ < x < ∞ and −∞ < ω < ∞. Furthermore, let

∫∞
−∞ | f (x, ω)|dx be finite

and |∂ f/∂ω| ≤ h(x) where h(x) is piecewise continuous and such that
∫∞
−∞ h(x)dx

is finite. Then

d
dω

∫ ∞

−∞
f (x, ω)dx =

∫ ∞

−∞

∂

∂ω
[ f (x, ω)]dx.

(a) Using Leibniz’ rule to differentiate the Fourier transform of f (x), we obtain

d
dω

[F(ω)] = 1√
2π

d
dω

∫ ∞

−∞
f (x)e−iωxdx = −i√

2π

∫ ∞

−∞
x f (x)e−iωxdx.

The required result follows from this after multiplication by i , because the expres-
sion on the right is then F{x f (x)}.

(b) The proof for the case when n > 1 follows by repeated application of result (a).
The conditions imposed on xn f (x) and F(ω) are necessary to ensure the existence
of the Fourier transform.

THEOREM 10.5 Fourier transform of xm f (n)(x) Let f (x) be a continuous n times differentiable
function. Furthermore, let xm f (r)(x) for r = 1, 2, . . . , n satisfy Dirichlet conditions
and be absolutely integrable over (−∞, ∞), and let ωn F(ω) possess an m times
differentiable inverse Fourier transform. Then, provided lim|x|→∞ f (n−1)(x) = 0,

F{xm f (n)(x)
} = (i)m+n dm

dωm
[ωn F(ω)].
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Proof The result follows directly by combining Theorems 10.3 and 10.4, because

F{xm f (n)(x)
} = (i)m dm

dωm
F{ f (n)(x)

} = (i)m+n dm

dωm
[ωn F(ω)].

The conditions imposed on xm f (n)(x) and ωn F(ω) are necessary to ensure the ex-
istence of the Fourier transform.

The examples that follow illustrate how Theorems 10.3 to 10.5 may be used to
find the Fourier transforms of more complicated functions.

EXAMPLE 10.6 Find the Fourier transform of f (x) = exp(−a2x2)(a > 0).

Solution The function f (x) is continuous and differentiable for all x and∫ ∞

−∞
|exp(−a2x2)|dx =

∫ ∞

−∞
exp(−a2x2)dx = 1

a

∫ ∞

−∞
exp(−u2)du =

√
π

a
,

where we have made use of the standard integral
∫∞
−∞ exp(−u2)du = √

π . This
shows that f (x) is absolutely integrable over the interval (−∞, ∞), and so f (x)
has a Fourier transform. A straightforward calculation establishes that f (x) satisfies
the differential equation

f ′ + 2a2x f = 0.

Taking the Fourier transform of this equation using Theorem 10.2 gives

F{ f ′(x)} + 2a2F{x f (x)} = 0.

Applying Theorem 10.3 to the first term and Theorem 10.4 to the second term and
cancelling a factor i reduces this to the variables separable equation for F(ω),

2a2 F ′ + ωF = 0, where F(ω) = 1√
2π

∫ ∞

−∞
exp(−a2x2)e−iωxdx.

When variables are separated, the equation becomes∫
F ′

F
dω = − 1

2a2

∫
ωdω,

so

ln F(ω) = − ω2

4a2
+ ln A, or F(ω) = A exp

[
− ω2

4a2

]
,

where, for convenience, the arbitrary integration constant has been written in the
form ln A. To determine Awe use the fact that A= F(0), but

F(0) = 1√
2π

∫ ∞

−∞
exp(−a2x2)dx = 1√

2π

√
π

a
= 1

a
√

2
,

and so

F{exp(−a2x2)} = F(ω) = 1

a
√

2
exp

{
− ω2

4a2

}
(a > 0).
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EXAMPLE 10.7 Find the Fourier transform of the Bessel function J0(x).

finding the Fourier
transform of a
function defined by a
differential equation

Solution The Bessel function J0(x) does not satisfy the absolute integrability con-
dition found in Theorem 10.1. However, this is merely a sufficient condition that
ensures the existence of the Fourier transform of a function f (x), though not a
necessary one. Functions exist that possess a Fourier transform even though this
condition is violated, and J0(x) is such a function. The function f (x) = J0(x) is an
even function that is defined for all x and satisfies Bessel’s differential equation of
order zero

x f ′′ + f ′ + x f = 0.

Taking the Fourier transform of the differential equation by using Theorem
10.2 and then applying Theorem 10.5 to the first term, Theorem 10.3 to the second
term, and Theorem 10.4 to the last term, we find, after the cancellation of a factor
i and the combination of terms, that

(1 − ω2)F ′ − ωF = 0, where F(ω) = 1√
2π

∫ ∞

−∞
J0(x)e−iωxdx.

This is a linear first order variables separable differential equation that can be
written ∫

F ′

F
dω =

∫
ω

1 − ω2
dω,

so integration gives

ln F(ω) = −1
2

ln(1 − ω2) + ln A, or F(ω) = A
(1 − ω2)1/2

, with 0 < ω2 < 1.

In this equation, the arbitrary integration constant has again been written in the form
ln A, and the restriction on ω2 is necessary because the real logarithmic function is
not defined for negative arguments.

To determine A we use the fact that A= F(0), together with the standard result∫∞
0 J0(x)dx = 1 and the fact that J0(x) is an even function, to obtain

A= F(0) = 1√
2π

∫ ∞

−∞
J0(x)dx = 2√

2π

∫ ∞

0
J0(x)dx =

√
2
π

.

Substituting A into F(ω) gives

F{J0(x)} = F(ω) =
√

2
π

1
(1 − ω2)1/2

H(1 − |ω|),

where the Heaviside unit step function H(1 − |ω|) is necessary because of the re-
striction imposed by the real logarithmic function that requires ω to be such that
0 < ω2 < 1.

When working with Fourier integrals, as with the Laplace transform, it is useful
to introduce the convolution operation to establish the relationship between the
functions f (x) and g(x) and their respective Fourier transforms F(ω) and G(ω).

The convolution of functions f (x) and g(x) denoted by f ∗ g is a function
of x, and if the dependence on a variable x in the convolution is to be emphasized,
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it is then denoted by ( f ∗ g)(x). The convolution of f (x) and g(x) is defined as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x − t)dt =

∫ ∞

−∞
f (x − t)g(t)dt. (29)

A slightly different definition of the convolution operation for the Fourier transform
is also to be found in the literature, where it is defined as

( f ∗ g)(x) = 1√
2π

∫ ∞

−∞
f (t)g(x − t)dt.

When this definition is employed, the form taken by the next theorem (the convo-
lution theorem for Fourier transforms) will require modification. This is because its
form will depend on the factor 1/

√
2π and the way the constant 2π enters in the

definition of the Fourier transform that is used.

THEOREM 10.6 The convolution theorem for Fourier transforms Let the functions f (x) and g(x)

relating the
convolution of f(x)
and g(x) and the
product of their
transforms

be piecewise continuous, bounded, and absolutely integrable over (−∞, ∞) with
the respective Fourier transforms F(ω) and G(ω). Then

(a) F{( f ∗ g)(x)} = 2π F{ f (x)}F{g(x)}, or F{ f ∗ g} = 2π F(ω)G(ω)

and, conversely,

(b) ( f ∗ g)(x) =
√

2π

∫ ∞

−∞
F(ω)G(ω)eiωxdω.

Proof (a) By definition,

F{( f ∗ g)(x)} = 1
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f (t)g(x − t)e−iωxdt

]
dx

=
[

1
2π

∫ ∞

−∞

[ ∫ ∞

−∞
f (t)g(x − t)e−iωxdx

]
dt,

where the second result follows from the first by a change in the order of integration.
If we set v = x − t, this becomes

F{( f ∗ g)(x)} = 1
2π

∫ ∞

−∞

[
f (t)g(v)e−iω(t+v)dt

]
dv

= 1
2π

∫ ∞

−∞
f (t)e−iωt dt

∫ ∞

−∞
g(v)e−iωvdv.

However, t and v are dummy variables and so may be replaced by x, causing the
preceding result to become

F{( f ∗ g)(x)} = F{ f (x)}2πF{g(x)},
showing that

F{( f ∗ g)(x)} = 2π F{ f (x)}F{g(x)}, or F{( f ∗ g)(x)} = 2π F(ω)G(ω).

Result (b) follows directly from the last result by taking the inverse Fourier trans-
form that causes a factor

√
2π to cancel.
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EXAMPLE 10.8 It was shown in Example 10.3(a) that the function f (x)={1, |x|<a
0, |x|>a has the Fourier

transform F(ω) =
√

2
π

( sin ωa
ω

)
, so by the convolution theorem it follows that

F{( f ∗ f )(x)} =
√

2π

[√
2
π

(
sin ωa

ω

)]2

= 2

√
2
π

(
sin2 ωa

ω2

)
.

Confirm this result by calculating ( f ∗ f )(x) and finding its Fourier transform.

Solution In terms of the Heaviside unit step function we can write f (t) =
H(a − |t |) and f (x − t) = H(a − |x − t |), after which consideration of the product
f (t) f (x − t) shows that

f (t) f (x − t) =
{

1, −a < t < x + a, (−2a < x < 0)
0, otherwise

and

f (t) f (x − t) =
{

1, x − a < t < a, (0 < x < 2a)
0, otherwise.

The required convolution is then given by

( f ∗ f )(x) =
{∫ x+a

−a dt = 2a + x, (−2a < x < 0)∫ a
x−a dt = 2a − x, (0 < x < 2a)

and ( f ∗ f )(x) = 0 otherwise.

Taking the Fourier transform of ( f ∗ f )(x), we have

F{( f ∗ f )(x)} = 1√
2π

{∫ 0

−2a
(2a + x)e−iωxdx +

∫ 2a

0
(2a − x)e−iωxdx

}

=
√

2
π

(
1 − cos 2ωa

ω2

)
,

but 1 − cos 2ωa = 2 sin2 ωa, so

F{( f ∗ f )(x)} = 2

√
2
π

(
sin2 ωa

ω2

)
,

as required.

THEOREM 10.7 The Parseval relation for the Fourier transform If f (x) has the Fourier transform
F(ω), then

the Parseval relation
extended to Fourier
transforms

∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
|F(ω)|2dω.

Proof Setting x = 0 in result (b) of the convolution theorem gives∫ ∞

−∞
f (t)g(−t)dt =

∫ ∞

−∞
F(ω)G(ω)dω.

As the Fourier transform is defined for both real and complex functions, it follows
from the definition of the transform that F{ f̄ (−x)} = F(ω), where the bar indicates
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complex conjugation. If we set g(t) = f̄ (−t), the preceding result becomes∫ ∞

−∞
f (t) f̄ (t)dt =

∫ ∞

−∞
F(ω)F(ω)d(ω),

or ∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
|F(ω)|2dω,

and the result is proved.

EXAMPLE 10.9 Using the result of Example 10.3(a) and the Parseval relation, show that∫ ∞

−∞

sin2 ωa
ω2

dω = πa.

Solution Substituting f (x) = { 1, |x| < a
0, |x| > a and the corresponding Fourier transform

F(ω) =
√

2
π

( sin ωa
ω

)
found in Example 10.3(a) into the Parseval relation gives∫ a

−a
12dx = 2

π

∫ ∞

−∞

(
sin2 ωa

ω2

)
dω, and so 2a = 2

π

∫ ∞

−∞

(
sin2 ωa

ω2

)
dω (a > 0),

from which the required result follows.

The final theorem describes the effect on the Fourier transform of f (x) caused
by scaling x by a factor a, shifting x by a and shifting ω by λ.

THEOREM 10.8 Fourier transforms involving scaling x by a, shifting x by a, and shifting ω by λ If
f (x) has a Fourier transform F(ω), then

some useful
properties of Fourier
transforms (i) F{ f (ax)} = 1

a
F(ω/a) (a > 0)

(ii) F{ f (x − a)} = e−iωa F(ω)

(iii) F{eiλx f (x)} = F(ω − λ)

Proof As the results of the theorem follow immediately from the definition of the
Fourier transform, only result (i) will be proved, and the derivation of results (ii)
and (iii) left as exercises. Starting from the definition of F{ f (ax)} and making the
variable change u = ax we have

F{ f (ax)} = 1√
2π

∫ ∞

−∞
f (ax)e−iωxdx = 1

a
√

2π

∫ ∞

−∞
f (u)e−iωu/adu

= 1
a

F(ω/a)(a > 0).

EXAMPLE 10.10 Using the function f (x) and its Fourier transform F(ω) from Example 10.9, find
(a) F{ f (2x)}, (b) F{ f (x − π)}, and (c) F{eix f (x)}.
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Solution Using the results of Theorem 10.8 we have:

(a) F{ f (2x)} = 1
2

√
2
π

(
sin(ωa/2)

(ω/2)

)
=
√

2
π

(
sin(ωa/2)

ω

)
(b) F{ f (x − π)} = e−iπω

√
2
π

(
sin ωa

w

)
(c) F{eix f (x)} =

√
2
π

(
sin(ω − 1)a

ω − 1

)
The Dirac delta function δ(x) was introduced in connection with the Laplace trans-the Dirac delta

function and the
Fourier transform

form, where it was recognized that it is not a function in the usual sense, but an
operation that only has meaning when it appears in the integrand of a definite inte-
gral. Because of its many uses in connection with physical problems described by
differential equations, we now extend its definition in a way that is suitable for use
with Fourier transforms. This is accomplished by defining δ(x − a) in a symmetrical
manner about x = a in terms of the integrals

∫ ∞

−∞
δ(x − a) f (x)dx =

∫ ∞

−∞
δ(a − x) f (x)dx = f (a), (30)

where a is any real number.
This definition allows the Fourier transform of δ(x − a) to be represented as

F{δ(x − a)} = 1√
2π

∫ ∞

−∞
δ(x − a)e−iωxdx = 1√

2π
e−iωa . (31)

EXAMPLE 10.11 Find the Fourier transform of f (x) = δ(x − a) exp[−b2x2] (b > 0).

Solution By definition

F{δ(x − a) exp[−b2x2]} = 1√
2π

∫ ∞

−∞
δ(x − a) exp[−b2x2]e−iωxdx

= 1√
2π

exp[−(a2b2 + iωa)].

Fourier Transforms of Partial Derivatives
with Respect to x of a Function f(x, t)
of Two Independent Variables
The Fourier transform with respect to x of a function f (x, t) of two independenttransforming partial

derivatives variables x and t , denoted by F(ω, t), is defined as

xF{ f (x, t)} = F(ω, t) = 1√
2π

∫ ∞

−∞
f (x, t)e−iωxdx, (32)

where the prefix suffix x shows the variable that is being transformed.
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In (32) the variable t is not involved in the integration with respect to x, so it
follows that the integral by which f (x, t) is recovered from F(ω, t) and the transform
of partial derivatives of f (x, t) with respect to x obey the same rules as those for
the function of a single variable f (x). Thus, the inversion integral is given by

f (x, t) = xF−1{F(ω, t)} = 1√
2π

∫ ∞

−∞
F(ω, t)eiωxdω, (33)

and the Fourier transforms of the partial derivatives of f (x, t) with respect to x are
given by

xF
{

∂n

∂xn
[ f (x, t)]

}
= (iω)n F(ω, t)

xF{xn f (x, t)} = in ∂n

∂ωn
[F(ω, t)]

xF
{

xm ∂n

∂xn
[ f (x, t)]

}
= im+n ∂m

∂ωm
[ωn F(ω, t)].

(34)

(35)

(36)

These results are necessary when using the Fourier transform to solve partial differ-
ential equations involving a function f (x, t) of two independent variables x and t
where −∞ < x < ∞. Once the partial differential equation has been transformed,
it becomes an ordinary differential equation for F(ω, t), with t as the independent
variable and ω as a parameter. When F(ω, t) has been found by solving the differ-
ential equation, the solution f (x, t) of the partial differential equation is recovered
from F(ω, t) by means of the inversion integral (33).

To illustrate the application of the Fourier transform to a partial differential
equation we take as an example the one-dimensional heat equation, the derivationan application to the

heat equation of which can be found in Section 18.5. This same partial differential equation was
used when developing applications of the Laplace transform in Chapter 7. The heat
equation that determines the one-dimensional temperature distribution T(x, t) on
a plane x = constant at time t in an infinite block of metal with heat conduction
properties characterized by the constant κ is given by

∂2T
∂x2

= 1
κ

∂T
∂t

.

The problem we now consider is finding the temperature distribution through-
out the metal at a time t when at t = 0 the one-dimensional temperature distribution
throughout the block is given by

T(x, 0) = f (x),

where f (x) is a prescribed function. Our objective will be to find the temperature
T(x, t) on a plane x = constant at a time t > 0 caused by the redistribution of heat
as time increases.

The Laplace transform cannot be used because when applied to the spatial vari-
able x it is only valid for x ≥ 0, so instead we must make use of the Fourier transform
with respect to x because this applies for −∞ ≤ x ≤ ∞. Taking the Fourier trans-
form of the heat equation with respect to x gives

xF
{

∂2T
∂x2

}
= xF 1

κ

{
∂T
∂t

}
,
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so if we apply (34) with n = 2, while regarding ω as a parameter, this becomes

−ω2κ F(ω, t) = d
dt

[F(ω, t)], where F(ω, t) = 1√
2π

∫ ∞

−∞
T(x, t)e−iωxdx.

The transform F(ω, t) satisfies the ordinary differential equation

F ′ + ω2κ F = 0,

with the solution

F(ω, t) = A(ω) exp{−ω2κt},
where A(ω) is to be determined (remember that ω is a constant with respect to t).

As

F(ω, t) = 1√
2π

∫ ∞

−∞
T(x, t)e−iωxdx,

it follows from the initial condition that

F(ω, 0) = 1√
2π

∫ ∞

−∞
f (x)e−iωxdx,

but F(ω, 0) = A(ω), so

F(ω, t) = 1√
2π

∫ ∞

−∞
f (x′) exp{−iωx′ − ω2κt}dx′,

where to avoid confusion in the next step of the calculation the dummy variable x
has been replaced by x′.

Applying the inversion integral to this result gives

T(x, t) = 1√
2π

∫ ∞

−∞
exp{iωx}

[
1√
2π

∫ ∞

−∞
f (x′) exp{−iωx′ − ω2κt}dx′

]
dω

= 1
2π

∫ ∞

−∞
f (x′)

[ ∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω

]
dx′.

We show separately that

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω =

√
1

4πκt
exp

{
− (x − x′)2

4κt

}
,

so the required solution is seen to be given by

T(x, t) =
√

1
4πκt

∫ ∞

−∞
f (x′) exp

{
− (x − x′)2

4κt

}
dx′.

OPTIONAL To show that

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω =

√
1

4πκt
exp

{
− (x − x′)2

4κt

}
we need to use a complex analysis method from Chapter 15. However, before we
can use this technique, the integrand of the integral on the left must be rewritten.
We multiply the exponential function by ePe−P (that is, by 1), where P is to be
determined later, and as a result obtain

exp{iω(x − x′) − ω2κt} = eP exp{−P + iω(x − x′) − ω2κt}.
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We now choose P so that the exponent in the exponential can be expressed in the
form −(α − iβω)2. When this is done it turns out that

α = − i(x − x′)
2
√

κt
, β = i

√
κt, and P = − (x − x′)2

4κt
,

so

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω

= 1
2π

exp
{
− (x − x′)2

4κt

}∫ ∞

−∞
exp

{
−
(
− i(x − x′)

2
√

κt
+ ω

√
κt
)2}

dω

Making the change of variable

u = − i(x − x′)
2
√

κt
+ ω

√
κt,

we find that

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω

= 1
2π

exp
{

− (x − x′)2

4κt

}
1√
κt

∫ ic+∞

ic−∞
exp{−u2}du,

where c = (x − x′)2/
√

(4κt). If we integrate exp{−u2} around the rectangle with
corners located at −R, R, R+ ic, and −R+ ic in the complex plane, and proceed
to the limit as R −→ ∞, it follows that the integrals from −R to −R + ic and from
R to R + ic vanish, so as exp{−u2} has no poles inside the rectangle, we have∫ ic+∞

ic−∞
exp{−u2}du =

∫ ∞

−∞
exp{−u2}du.

The integral on the right is related to the error function erf(v) because∫ v

0
exp{−u2}du =

√
π

2
erf(v),

where erf(−v) = −erf(v) and erf (∞) = 1.
Thus,

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω

= 1
2π

exp
{
− (x − x′)2

4κt

}
1√
κt

√
π

2
[erf(∞) − erf(−∞)]

= 1
2π

exp
{
− (x − x′)2

4κt

}
1√
κt

√
π

2
2

=
√

1
4πκt

exp
{
− (x − x′)2

4κt

}
,

so we have shown that

1
2π

∫ ∞

−∞
exp{iω(x − x′) − ω2κt}dω =

√
1

4πκt
exp

{
− (x − x′)2

4κt

}
. (37)



610 Chapter 10 Fourier Integrals and the Fourier Transform

Fourier integrals are discussed in references [4.3] and [4.4]. Tables of Fourier
transform pairs are given in references [4.2] and [3.11].

Summary The Fourier transform was introduced and its most important operational properties were
established. The transforms of derivatives and partial derivatives were considered, and
applications were made to functions defined by an ordinary differential equation and also
to the unsteady one-dimensional heat equation. Partial differential equations such as the
heat equation, and the use of integral transforms in their solution, will be considered in
more detail in Chapter 18.

TABLE 10.1 Fourier Transform Pairs

f (x) F(x) = 1√
2π

∫ ∞

−∞
f (x)e−iωxdx

1. a f (x) + bg(x) aF(ω) + bG(ω)

2. f (n)(x) (iω)n F(ω)

3. xn f (x) (i)n dn

dωn [F(ω)]

4. xm f (n)(x) (i)m+n dm

dωm [ωn F(ω)]

5. f (ax)(a > 0)
1
a

F(ω/a)

6. f (x − a) e−iωa F(ω)

7. eiλx f (x) F(ω − λ)

8. ( f ∗ g)(x)
√

2π F(ω)G(ω)

(convolution theorem)

9.

∫ ∞

−∞
| f (x)|2dx

∫ ∞

−∞
|F(ω)|2dω

(Parseval relation)

10.

{
1, |x| < a
0, |x| > a

(a > 0)

√
2
π

(
sin aω

ω

)

11.
sin ax

x
(a > 0)

⎧⎨⎩
√

π

2
0, |ω| > a

, |ω| < a

12.

{
1, a < x < b
0, otherwise

(0 < a < b)
1√
2π

(
e−iaω − e−ibω

iω

)

13.

{
a − |x|, |x| < a
0, |x| > a

√
2
π

(
1 − cos ωa

ω2

)

14.
1

a2 + x2 (a > 0)
√

π

2
e−a|ω|

a

15.

{
e−ax, x > 0
0, x < 0

(a > 0)
1√
2π

(
1

a + iω

)

16.

{
eax, b < x < c
0, otherwise

(a > 0)
1√
2π

[
e(a−iω)c − e(a−iω)b

a − iω

]

(continued)
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TABLE 10.1 (continued )

f (x) F(x) = 1√
2π

∫ ∞

−∞
f (x)e−iωxdx

17. e−a|x| (a > 0)

√
2
π

(
a

a2 + ω2

)

18. xe−a|x| (a > 0) −
√

2
π

2iaω

(a2 + ω2)2

19.

{
eiax, |x| < b
0, |x| > b

√
2
π

(
sin b(ω − a)

ω − a

)

20. exp(−a2x2) (a > 0)
1

a
√

2
exp

{
− ω2

4a2

}

21.

{
e−x xa, x > 0
0, x ≤ 0

�(a)√
2π(1 + iω)a

22. J0(ax) (a > 0)

√
2
π

H(a − |ω|)
(a2 − ω2)1/2

23. δ(x − a) (a real)
1√
2π

e−iaω

EXERCISES 10.2

In Exercises 1 through 10 establish the Fourier transform of
the stated entry in Table 10.1.

1. Entry 11.
2. Entry 12.
3. Entry 13.
4. Entry 15.
5. Entry 16.

6. Entry 17.
7. Entry 18.
8. Entry 19.
9. Entry 21.

10. Entry 22, by using the fact that f (x) = J0(ax) satisfies
the Bessel’s differential equation of order zero

x f ′′ + f ′ + a2x f = 0 (a > 0),

together with the standard result
∫∞

0 J0(ax)dx = 1/a.

11. Use integration by parts to show that if f (x) has a finite
jump discontinuity at x = a, thenF{ f ′(x)} = iωF(ω) −

1√
2π

[ f (a+) − f (a−)]e−iwa .

12. (a) Use the result of Exercise 11 to find the Fourier
transform of f ′(x) given that

f (x) =
{

x, 0 ≤ x < 1
0, otherwise.

(b) Calculate f ′(x) and use entry 12 of Table 10.1 to
find F{ f ′(x)} directly. Hence, show that the result ob-
tained by this direct method is in agreement with the
Fourier transform found in (a). So f ′(x) = −δ(x − 1) +{

1, 0 < x < 1
0, otherwise

.

10.3 Fourier Cosine and Sine Transforms

The Fourier cosine and sine transforms arise as special cases of the Fourier trans-
form, according to whether f (x) is even or odd. Let us start by considering the
Fourier cosine transform of f (x) that can be defined when f (x) is an even function
that is absolutely integrable over (−∞, ∞), and so possesses a Fourier transform.
Result (22) of Section 10.2 can be written

F(ω) = 1√
2π

∫ ∞

−∞
f (x){cos ωx − i sin ωx}dx, (38)
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but if f (x) is an even function, the product f (x) cos ωx is also even, so its integral
over (−∞, ∞) does not vanish, though the product f (x) sin ωx is an odd function,
so its integral over (−∞, ∞) vanishes, causing (38) to simplify to

FC(ω) = 1√
2π

∫ ∞

−∞
f (x) cos ωxdx.

If we use the result f (−x) = f (x) to change the interval of integration to [0, ∞)
this last result becomes

FC(ω) =
√

2
π

∫ ∞

0
f (x) cos ωxdx, (39)

where the integral on the right is called the Fourier cosine transform of f (x), andFourier sine and
cosine transforms to distinguish it from the ordinary Fourier transform we write FC{ f (x)} = FC(ω).

The Fourier cosine inversion integral corresponding to equation (23) of Section
10.2 becomes f (x) = F−1

C {FC(ω)}, where

f (x) =
√

2
π

∫ ∞

0
FC(ω) cos ωxdω. (40)

A similar argument applied to (16) of Section 10.2 when f (x) is an odd function
leads to the resultinversion integrals

FS(ω) =
√

2
π

∫ ∞

0
f (x) sin ωxdx, (41)

where the integral on the right is called the Fourier sine transform of f (x) and
we write FS{ f (x)} = FS(ω). The corresponding Fourier cosine inversion integral
becomes f (x) = F−1

S {FS(ω)}, where

f (x) =
√

2
π

∫ ∞

0
FS(ω) sin ωxdω. (42)

The Fourier cosine transform of f (x) in (39) only involves f (x) for x ≥ 0,
though it was derived from the Fourier transform on the assumption that f (x) was
an even function defined for all x. Consequently, taking the Fourier cosine transform
of an arbitrary function f (x) defined for x ≥ 0 is equivalent to transforming an even
function fe(x) obtained from f (x) by setting fe(x) = f (x) for x ≥ 0 and defining
fe(x) for x < 0 by fe(−x) = f (x). Similarly, the Fourier sine transform of f (x) in
(41) only involves f (x) for x ≥ 0, though it was derived on the assumption that
f (x) was an odd function. So, taking the Fourier sine transform of an arbitrary
function f (x) defined for x ≥ 0 is equivalent to transforming odd function fo(x)
obtained from f (x) by setting fo(x) = f (x) for x ≥ 0 and defining fe(x)for x < 0
by fe(−x) = − f (x).

Because (40) and (41) have been derived from (22) of Section 10.2, it follows
that whenever f (x) is discontinuous, the expression on the left must be replaced by
(1/2)[ f (x + 0) + f (x − 0)], because the Fourier cosine and sine transforms have
the same convergence properties as the Fourier transform.
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EXAMPLE 10.12 Find FC{e−ax} and FS{e−ax} when a > 0, and use the results with the Fourier cosine
and sine inversion integrals and an interchange of variables to show that

FC

{
1

x2 + a2

}
=
√

π

2
e−aω

a
and FS

{
x

x2 + a2

}
=
√

π

2
e−aω.

Solution By definition

FC{e−ax} =
√

2
π

∫ ∞

0
e−ax cos ωxdx

= Re

√
2
π

{∫ ∞

0
e−axeiωxdx

}
=
√

2
π

Re
{

1
a − iω

}
=
√

2
π

(
a

ω2 + a2

)
.

Similarly,

FS{e−ax} =
√

2
π

∫ ∞

0
e−ax sin ωxdx

= Im

√
2
π

{∫ ∞

0
e−axeiωxdx

}
=
√

2
π

(
ω

ω2 + a2

)
.

Using these results in the Fourier cosine and sine inversion integrals gives

e−ax = 2a
π

∫ ∞

0

cos ωx
ω2 + a2

dω = 2
π

∫ ∞

0

ω sin ωx
ω2 + a2

dω, for a > 0,

so after x and ω are interchanged, these results become

e−aω = 2a
π

∫ ∞

0

cos ωx
x2 + a2

dx = 2
π

∫ ∞

0

x cos ωx
x2 + a2

dx.

However,

FC

{
1

x2 + a2

}
=
√

2
π

∫ ∞

0

cos ωx
x2 + a2

dx and FS

{
x

x2 + a2

}
=
√

2
π

∫ ∞

0

x sin ωx
x2 + a2

dx,

so combining results gives

FC

{
1

x2 + a2

}
=
√

π

2
e−aω

a
and FS

{
x

x2 + a2

}
=
√

π

2
e−aω.

THEOREM 10.9 Linearity of the Fourier cosine and sine transforms Let the functions f (x) and
g(x) have Fourier cosine and sine transforms, and let a and b be arbitrary constants.
Then

FC{a f (x) + bg(x)} = a FC{ f (x)} + bFC{g(x)} = aFC(ω) + bGC(ω)

and

FS{a f (x) + bg(x)} = a FS{ f (x)} + bFS{g(x)} = aFS(ω) + bGS(ω).

Proof The linearity properties of the Fourier cosine and sine transforms follow
directly from the linearity property of the Fourier transform from which they are
derived.
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The expressions for the Fourier cosine and sine transforms of derivatives of a func-
tion f (x) are slightly more complicated than those for the Fourier transform because
they involve the initial values of the function and its derivatives.

THEOREM 10.10 Fourier cosine and sine transforms of derivatives Let f (x) be continuous and
absolutely integrable over [0, ∞) and such that limx→∞ f (x) = 0. Then if f ′(x) and

linearity of sine and
cosine transforms and
the transformation of
derivatives

f ′′(x) are piecewise continuous on each finite subinterval of [0, ∞),

(i) FC{ f ′(x)} = ωFS{ f (x)} −
√

2
π

f (0)

(ii) FS{ f ′(x)} = −ωFC{ f (x)}

(iii) FC{ f ′′(x)} = −ω2FC{ f (x)} −
√

2
π

f ′(0)

(iv) FS{ f ′′(x)} = −ω2FS{ f (x)} +
√

2
π

ω f (0).

Proof The proof of each result is similar, so only result (i) will be derived in detail
and outlines given for the proofs of the remaining results. To obtain (i) we integrate
by parts and make use of the definition of FC{ f (x)} as follows:

FC{ f ′(x)} =
√

2
π

∫ ∞

0
f ′(x) cos ωxdx

=
√

2
π

[
f (x) cos ωx

∣∣∣∣∞
0

+ ω

∫ ∞

0
f (x) sin ωxdx

]

= −
√

2
π

f (0) + ωFS{ f (x)}.

Result (iii) follows from (i) by replacing f by f ′. Result (ii) follows in similar
fashion, and (iv) follows from (ii) by replacing f by f ′.

When Theorem 10.10 is used in the solution of second order differential equa-
tions, the initial conditions involved will help decide whether to use the cosine or
sine transform. Thus, for example, if f (0) is given but f ′(0) is unknown, the Fourier
sine transform should be used to transform f ′′(x) because result (iv) does not in-
volve f ′(0). Conversely, if f (0) is unknown but f ′(0) is given, then the Fourier
cosine transform should be used to transform f ′′(x), because result (iii) does not
involve f (0).

The Fourier cosine and sine transforms have Parseval relations that are analo-
gous to the Parseval relation for the Fourier transform given in Theorem 10.7. To
arrive at the first of these results we consider two functions f (x) and g(x) with the
respective Fourier cosine transforms FC(ω) and GC(ω) and, using the definition of
GC(ω), write∫ ∞

0
FC(ω)GC(ω) cos ωxdω =

√
2
π

∫ ∞

0
FC(ω) cos ωxdω

∫ ∞

0
g(x) cos ωxdx.
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Changing the order of integration in the expression on the right gives√
2
π

∫ ∞

0
FC(ω) cos ωxdω

∫ ∞

0
g(v) cos ωvdv

=
√

2
π

∫ ∞

0
g(x)dx

∫ ∞

0
FC(ω) cos ωx cos ωvdω

=
√

2
π

∫ ∞

0

1
2

[cos ω(x + v) + cos ω|x − v|]FC(ω)dω

= 1
2

∫ ∞

0
g(v)[ f (x + v) + f (|x − v|)]dv,

where use has first been made of the identity cos u cos v = 1
2 [cos(u + v) + cos(u − v)]

and then of the Fourier cosine inversion integral.
We have established the result∫ ∞

0
FC(ω)GC(ω) cos ωxdω = 1

2

∫ ∞

0
g(v)[ f (x + v) + f (|x − v|)]dv.

Setting x = 0 in this last result shows that∫ ∞

0
FC(ω)GC(ω)dω =

∫ ∞

0
f (v)g(v)dv. (43)

The Parseval relation for the Fourier cosine transform follows from this result by
identifying g(v) with f̄ (v), for then (43) becomes

∫ ∞

0
|FC(ω)|2dω =

∫ ∞

0
| f (x)|2dx, (44)

where in the last integral the dummy variable v has been replaced by x.
A similar argument involving the Fourier sine transform establishes the corre-

sponding results

∫ ∞

0
FS(ω)GS(ω)dω =

∫ ∞

0
f (v)g(v)dv (45)

and the Parseval relation for the Fourier sine transform∫ ∞

0
|FS(ω)|2dω =

∫ ∞

0
| f (x)|2dx. (46)

We have arrived at the following theorem.

THEOREM 10.11 The Parseval relation for the Fourier cosine and sine transforms Let f (x) have the
respective Fourier cosine and sine transforms FC(ω) and FS(ω). Then the Parseval
relation for the Fourier cosine transform isthe Parseval relation

extended to Fourier
sine and cosine
transforms

∫ ∞

0
|FC(ω)|2dω =

∫ ∞

0
| f (x)|2dx,
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and the Parseval relation for the Fourier sine transform is∫ ∞

0
|FS(ω)|2dω =

∫ ∞

0
| f (x)|2dx.

Results (44) and (46) often provide a simple way of evaluating improper
integrals, as shown by the following example.

EXAMPLE 10.13 Apply result (43) to f (x) = xe−ax and g(x) = xe−bx, where a > 0, b > 0, given that

FC{ f (x)} =
√

2
π

(a2 − ω2)
(a2 + ω2)2

and FC{g(x)} =
√

2
π

(b2 − ω2)
(b2 + ω2)2

.

Solution Substituting into (43) gives

2
π

∫ ∞

0

(a2 − ω2)(b2 − ω2)
(a2 + ω2)2(b2 + ω2)2

dω =
∫ ∞

0
x2e−(a+b)xdx,

and after integrating the expression on the right and multiplying by π/2 we find
that ∫ ∞

0

(a2 − ω2)(b2 − ω2)
(a2 + ω2)2(b2 + ω2)2

dω = π

(a + b)3
.

This integral can be evaluated by other techniques, but the preceding method is
one of the simplest.

The final theorem in this section is the analogue of Theorem 10.8, and it is useful
when transforming known Fourier cosine and sine transforms.

THEOREM 10.12 Shifting ω and scaling x in Fourier cosine and sine transforms Let f (x) have the
respective Fourier cosine and sine transforms FC(ω) and FS(ω). Then

shifting and scaling
Fourier sine and
cosine transforms (i) FC{cos(ax) f (x)} = 1

2 {FC(ω + a) + FC(ω − a)}

(ii) FC{sin(ax) f (x)} = 1
2 {FS(a + ω) + FS(a − ω)}

(iii) FS{cos(ax) f (x)} = 1
2 {FS(ω + a) + FS(ω − a)}

(iv) FS{sin(ax) f (x)} = 1
2 {FC(ω − a) − FC(ω + a)}

(v) FC{ f (ax)} = 1
a

FC(ω/a) (a > 0)

(vi) FS{ f (ax)} = 1
a

FS(ω/a) (a > 0).

Proof (i) FC{cos(ax) f (x)} =
√

2
π

∫∞
0 cos(ωx) cos(ax) f (x)dx, but

cos(ax) cos(ωx) = 1
2

[cos{(a + ω)x} + cos{(a − ω)x}],



Section 10.3 Fourier Cosine and Sine Transforms 617

so

FC{cos(ax) f (x)} = 1
2

√
2
π

∫ ∞

0
cos{(a + ω)x} f (x)dx

+ 1
2

√
2
π

∫ ∞

0
cos{(a − ω)x} f (x)dx

= 1
2
{FC(ω + a) + FC(ω − a)}.

Results (ii) to (iv) follow in similar fashion, whereas results (v) and (vi) follow from
the definitions of the Fourier cosine and sine transforms after making the change
of variable u = ax.

EXAMPLE 10.14 Given f (x) = e−ax with a > 0, use the results of Theorem 10.12 to find (a)
FC{cos bx f (x)} and (b) FS{ f (bx)}, when b > 0.

Solution

(a) Using Theorem 10.12 (i) with

FC{e−ax} =
√

2
π

(
a

ω2 + a2

)
,

gives

FC{cos bxe−ax} = 1
2

√
2
π

(
a

(ω + b)2 + a2

)
+ 1

2

√
2
π

(
a

(ω − b)2 + a2

)
=
√

2
π

a(ω2 + a2 + b2)
[(ω + b)2 + a2][(ω − b)2 + a2]

.

(b) Using Theorem 10.12 (vi) with

FS{e−ax} =
√

2
π

(
ω

ω2 + a2

)
gives

FS{ f (bx)} = FS{e−abx} = 1
b

√
2
π

(
ω/b

(ω/b)2 + a2

)
=
√

2
π

(
ω

ω2 + a2b2

)
.

This result is to be expected, as it follows directly from the original result when a is
replaced by ab.

When Fourier cosine and sine transforms are used in the solution of partial
differential equations, the function to be transformed is a function of more than
one variable. So, for example, the operation of taking the Fourier cosine transform
of f (x, y) with respect to x, denoted by FC(ω, y), is given by

xFC{ f (x, y)} = FC(ω, y) =
√

2
π

∫ ∞

0
f (x, y) cos ωxdx. (47)
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Similarly, the operation of taking the Fourier sine transform of f (x, y) with
respect to y, denoted by FS(x, ω), is given by

yFS{ f (x, y)} = FS(x, ω) =
√

2
π

∫ ∞

0
f (x, y) sin ωydy. (48)

As a variable that has not been transformed only appears as a parameter in the
transform, it follows immediately that the rules for transforming partial derivatives
follow directly from the rules for transforming derivatives of functions of a single
independent variable. As a result, when interpreted in terms of a function f (x, y),
the entries in Theorem 10.10 take the following form.

Fourier cosine and sine transforms of partial derivatives of a function f(x, y)transform of partial
derivatives by
Fourier sine and
cosine transforms

xFC{ f ′(x, t)} = ωFS(ω, t) −
√

2
π

f (0, t)

xFS{ f ′(x, t)} = −ωFC(ω, t)

xFC{ f ′′(x, t)} = −ω2 FS(ω, t) −
√

2
π

f ′(0, t)

xFS{ f ′′(x, t)} = −ω2 FS(ω, t) +
√

2
π

ω f (0, t)

(49)

(50)

(51)

(52)

It also follows that when transforming with respect to x partial derivatives of
f (x, y) with respect to y, the function f is transformed and the partial derivative
of f (x, y) with respect to y becomes an ordinary derivative with respect to y of the
transformed function. So, for example,

xFC

{
∂n f (x, y)

∂yn

}
= dn FC(ω, y)

dyn
,

with corresponding results for mixed derivatives.
To provide a motivation for these results we again anticipate the discussion

of partial differential equations that is to follow in Chapter 18. Our objective now
will be to solve the same initial boundary value problem for the one-dimensionalanother application

to the heat equation heat equation that was solved previously by means of the Laplace transform. The
one-dimensional heat equation governing the temperature T(x, t) in a semi-infinite
slab of metal at a distance x from its plane face at time t is

∂2T
∂x2

= 1
κ

∂T
∂t

, (53)

and as before we will seek a solution subject to the initial condition

T(x, 0) = 0 (54)

and the boundary condition

T(0, t) = T0, t ≥ 0. (55)

The initial condition (54) says that at time t = 0 all the metal in the slab is at
temperature T = 0, whereas the boundary condition (55) says that for t > 0 the
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plane face of the slab of metal is suddenly maintained at the constant temperature
T = T0.

As an initial temperature is known, but ∂T/∂x is unknown, consideration of
results (49) to (52) suggests that we use the Fourier sine transform because it is
valid for x ≥ 0 and it only requires knowledge of T(0, t) = T0. Accordingly, taking
the Fourier sine transform of (53) with FS{T(x, t)} = TS(ω, t), we have

FS

{
∂2T
∂x2

}
= 1

κ
FS

{
∂T
∂t

}
,

so using (52) and regarding ω as a parameter (it is independent of t), we obtain

κ

(
−ω2TS(ω, t) + ωT0

√
2
π

)
= d

dt
[TS(ω, t)].

Thus, TS(ω, t) satisfies the linear differential equation

T′
S + ω2κTS = ωκT0

√
2
π

with the solution

TS(ω, t) = T0

ω

√
2
π

+ A(ω) exp{−ω2κt},

where the arbitrary function A(ω) enters as the integration “constant” when
TS(ω, t) is integrated with respect to t , during which ω behaves as a constant.

Applying the inverse Fourier sine transform to this last result gives

T(x, t) =
√

2
π

∫ ∞

0

{
T0

ω

√
2
π

+ A(ω) exp{−ω2κt}
}

sin ωxdω.

To determine A(ω) we now apply the initial condition T(x, 0) = 0 to the preceding
result, which then becomes

0 =
√

2
π

∫ ∞

0

{
T0

ω

√
2
π

+ A(ω)

}
sin ωxdω.

This must be true for all ω, but this is only possible if A(ω) = − T0
ω

√
2
π

, and so

T(x, t) = T0

√
2
π

{√
2
π

∫ ∞

0

(
1 − exp(−κtω2)

ω

)
sin ωxdω

}
.

The bracketed term is the inverse Fourier sine transform of {[1 − exp(−κω2)]/ω},
so if we use entry 17 in Table 10.3, the solution becomes

T(x, t) = T0 erfc
{

x

2
√

κt

}
.

This is the result that was obtained in Section 7.3 (e) (ii) by means of the Laplace
transform. The result agrees with physical intuition because for any fixed x we
have limt→∞ erfc { x

2
√

κt
} = 1, showing that as t → ∞, so T(x, t) → T0 the constant

temperature of the plane face of the metal.
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Summary The Fourier sine and cosine transforms were introduced, their inversion integrals were
stated, and the main operational properties of the transforms were established. The sine
and cosine transforms of ordinary and partial derivatives were derived and applications
were made to the unsteady one-dimensional heat equation.

TABLE 10.2 Fourier Cosine Transform Pairs

f (x) FC(ω) =
√

2
π

∫ ∞

0
f (x) cos ωxdx

1. a f (x) + bg(x) aF(ω) + bG(ω)

2. cos(ax) f (x) 1
2 {FC(ω + a) + FC(ω − a)}

3. sin(ax) f (x) 1
2 {FS(a + ω) + FS(a − ω)}

4. f (ax)
1
a

FC

(
ω

a

)
(a > 0)

5. f ′(x) ωFS(ω) −
√

2
π

f (0)

6. f ′′(x) −ω2 FC(ω) −
√

2
π

f ′(0)

7.

∫ ∞

0
| f (x)|2dx

∫ ∞

0
|F(ω)|2dω

(Parseval relation)

8.

∫ ∞

0
f (x)g(x)dx

∫ ∞

0
FC(ω)GC(ω)dω

9.

{
1, 0 < x < a
0, otherwise

√
2
π

(
sin aω

ω

)

10.

{
1, a < x < b
0, otherwise

√
2
π

(
sin bω − sin aω

ω

)

11. xα−1(0 < α < 1)

√
2
π

�(α)
ωα

cos
απ

2

12.

{
x, a < x < b
0, otherwise

√
2
π

(
cos bω + bω sin bω − cos aω − aω sin aω

ω2

)

13. e−ax(a > 0)

√
2
π

(
a

ω2 + a2

)

14. xe−ax(a > 0)

√
2
π

(a2 − ω2)
(a2 + ω2)2

15. exp{−ax2} (a > 0)
1√
2a

exp
{
−ω2

4a

}

16.
1

x2 + a2 (a > 0)
√

π

2
e−aω

a

17. J0(ax)(a > 0)

√
2
π

H(a − ω)
(a2 − ω2)1/2

18.
sin ax

x
(a > 0)

√
2
π

H(a − ω)
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TABLE 10.3 Fourier Sine Transform Pairs

f (x) FS(ω) =
√

2
π

∫ ∞

0
f (x) sin ωxdx

1. a f (x) + bg(x) aF(ω) + bG(ω)

2. cos(ax) f (x) 1
2 {FS(ω + a) + FS(ω − a)}

3. sin(ax) f (x) 1
2 {FC(ω − a) − FC(ω + a)}

4. f (ax)
1
a

FS

(
ω

a

)
(a > 0)

5. f ′(x) −ωFC(ω)

6. f ′′(x) −ω2 FS(ω) +
√

2
π

ω f ′(0)

7.

∫ ∞

0
| f (x)|2dx

∫ ∞

0
|F(ω)|2dω

(Parseval relation)

8.

∫ ∞

0
f (x)g(x)dx

∫ ∞

0
FS(ω)GS(ω)dω

9.

{
1, 0 < x < a
0, otherwise

√
2
π

(
1 − cos aω

ω

)

10.

{
1, a < x < b
0, otherwise

√
2
π

(
cos aω − cos bω

ω

)

11. xα−1 (0 < α < 1)

√
2
π

�(α)
ωα

sin
απ

2

12. e−ax (a > 0)

√
2
π

ω

(ω2 + a2)

13. xe−ax (a > 0)

√
2
π

2aω

(ω2 + a2)2

14. x exp{−ax2} (a > 0)
ω

(2a)3/2 exp
{
−ω2

4a

}

15.
x

x2 + a2 (a > 0)
√

π

2
e−aω

16.
cos ax

x
(a > 0)

√
π

2
H(ω − a)

17. erfc
{

x
2a

}
(a > 0)

√
2
π

{
1 − exp(−a2ω2)

ω

}

EXERCISES 10.3

In Exercises 1 through 10 establish the Fourier cosine trans-
form of the stated entry in Table 10.2.

1. Entry 9.
2. Entry 10.

3. Entry 11.
4. Entry 12.

5. Entry 13.
6. Entry 14.
7. Entry 15.

8. Entry 16.
9. Entry 17.

10. Entry 18.
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In Exercises 11 through 15 find the Fourier cosine transform
of the stated function.

11. f (x) =
{

sin x, 0 ≤ x ≤ π

0, otherwise.

12. f (x) =
{

cos x, 0 ≤ x ≤ π

0, otherwise.

13. f (x) =
⎧⎨⎩

x, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2
0, otherwise.

14. f (x) =
⎧⎨⎩

1, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2
0, otherwise.

15. f (x) =
{

1 − x2, 0 ≤ x < 1
0, otherwise.

In Exercises 16 through 23 establish the Fourier sine trans-
form of the stated entry in Table 10.3.

16. Entry 9. 17. Entry 10.

18. Entry 11.
19. Entry 12.
20. Entry 13.

21. Entry 14.
22. Entry 15.
23. Entry 16.

In Exercises 24 through 28 find the Fourier sine transform
of the stated function.

24. f (x) =
{

sin x, 0 ≤ x ≤ π

0, otherwise.

25. f (x) =
{

cos x, 0 ≤ x ≤ π

0, otherwise.

26. f (x) =
⎧⎨⎩

x, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2
0, otherwise.

27. f (x) =
⎧⎨⎩

1, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2
0, otherwise.

28. f (x) =
{

1 − x2, 0 ≤ x < 1
0, otherwise.
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11C H A P T E R

Vector Differential Calculus

Many physical quantities that occur in engineering and science require more than a
single number to characterize them. When describing quantities such as force and

velocity it is necessary to specify both a magnitude and a direction, and these are examples
of vector quantities, whereas the air temperature, which can be specified by giving a single
number, is an example of a scalar quantity. Physical problems are often best described in
terms of vectors, so the objective of this chapter is to develop the most important aspects
of vector differential calculus.

Scalar and vector fields are defined in Section 11.1, and these concepts are then related
to the limit, continuity, and differentiability of a vector function of a single real variable.
The rules for the differentiation of vector functions of a single real variable are established
and used to develop the basic geometry of space curves. The definition of the derivative at
a point on a space curve is used when defining the unit tangent vector T to such a curve,
its curvature κ, its principal normal N, and its binormal B.

The integration of scalar and vector functions of a single real variable is developed
in Section 11.2, after which the line integral of a vector function of position F(x, y, z) is
defined, and by way of example it is then used to define the circulation in a fluid flow and
the flux of a vector function of position.

A directional derivative of a scalar function w = f (x, y, z) is defined in Section 11.3
where its most important properties are established. The directional derivative is used when
developing the concept of the gradient of f , written either grad f or ∇ f , after which rules
for its use are developed.

The important property of path invariance of integrals in conservative fields is proved
in Section 11.4. The potential function is introduced, a test for a conservative field is given,
and the determination of the related potential function is discussed, all of which concepts
have important applications throughout engineering and science.

The two other vector operators divergence and curl, written div F and curl F, respec-
tively, are defined and their physical meaning is explained in Section 11.5. The properties
of the divergence operator are established, and then used to prove the properties of the
most important combinations of the gradient, divergence, and curl operators.

Applications involving vector operators are often simplified if an appropriate system
of coordinates is adopted. The purpose of Section 11.6 is to establish the forms taken by
the gradient, divergence, and curl operators in a general system of orthogonal curvilinear
coordinates, with special emphasis on cylindrical and spherical polar coordinates.

625
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11.1 Scalar and Vector Fields, Limits,
Continuity, and Differentiability

Ascalar function F(x, y, z) defined over some region of space D is a function
that assigns to each point P0 in D with coordinates (x0, y0, z0) the number

F(P0) = F(x0, y0, z0). The set of all numbers F(P) for all points P in D are said
to form a scalar field over D. If P has position vector r, we can write the scalar
field F(x, y, z) in the form F(P) = F(r) to emphasize the fact that a scalar value
F(r) is associated with the position vector r in D. In physical problems P is usually
a point in space, and in addition to depending on P, the function F often also
depends on the time t , so then F(P, t) = F(x, y, z, t) and in this case we can write
F(P, t) = F(r, t). A typical example of a time dependent scalar field is provided by
the temperature distribution throughout a block of metal heated in such a way that
the temperatures on its sides vary with time.

More general than a scalar field F(x, y, z) is a vector field defined by a vectorscalar and vector
fields function F(x, y, z) over some region of space D that assigns to each point P0 in

D with coordinates (x0, y0, z0) the vector F(P0) = F(x0, y0, z0) with its tail at P0.
Functions of this type are called either vector functions or vector-valued functions,
and if P has position vector r we can write F(P) = F(r) to emphasize the fact that
in this case a vector F(P) is associated with each position vector r in D. Like scalar
fields, vector fields over D often depend on both position and the time t , so then
F = F(x, y, z, t), and in this case we can write F(P, t) = F(r, t). An example of a
time dependent vector field is provided by the fluid velocity vector in the unsteady
flow of water around a bridge support column, because there the velocity depends
on both the position vector r in the water and the time t at which the velocity
is observed. In general, in terms of the unit vectors i, j, and k, a time-dependent
vector-valued function can be defined by setting

F(r, t) = f1(r, t)i + f2(r, t)j + f3(r, t)k, (1)

where the scalars f1(r, t), f2(r, t), and f3(r, t) are the components of F(r, t) that
depend on both position and time and, at a point r0, translating the vector F(r0, t)
until its tail is located at r0.

EXAMPLE 11.1 (a) The scalar function of position F(x, y, z) = xyz2 for (x, y, z) inside the unit
sphere x2 + y2 + z2 = 1 defines a scalar field throughout the unit sphere.

(b) The vector-valued function F(x, y, z) = (x − y)i + (y − z)j + (xyz − 2)k, for
(x, y, z) inside the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1, defines a vector field
throughout the ellipsoid.

In order to perform calculus on vectors it is necessary to introduce the idea of
a vector as a function. The simplest example of this kind is a vector F(t) of a single
real variable t , which in terms of cartesian coordinates can be written

F(t) = f1(t)i + f2(t)j + f3(t)k, (2)

where the components f1(t), f2(t), and f3(t) of F(t) are functions of t defined over
some interval a ≤ t ≤ b. Vectors of this type are called vector functions of a single
real variable.
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(a)
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(b)

FIGURE 11.1 (a) A single turn of a helix. (b) A single turn of a
broken helix.

If F(t) is regarded as a position vector r(t) in space, (2) can be interpreted as
a curve in space traced out by the tip of the vector r(t) as t increases from a to b.
Notice that a sense (of direction) along the curve is determined by the direction
in which r(t) moves along the curve as t increases. When the components of r(t)
are all continuous functions the curve, or path, traced out by the tip of r(t) will be
an unbroken curve in space and r′(t) �= 0, though the curve will only be smooth if
in addition to the components of r(t) being continuous they are also continuously
differentiable for a ≤ t ≤ b, but more will be said about this later. If t is allowed to
decrease from b to a, then the sense along the curve is reversed, and this fact will be
important later when line integrals are considered.

EXAMPLE 11.2 (a) When interpreted as a position vector, the vector function of a single real
variable r(t) = cos t i + sin tj + tk for 0 ≤ t ≤ 2π describes a single turn of the space
curve called a helix that is shown in Fig. 11.1(a). The fact that each component of
r(t) is both continuous and continuously differentiable and |dr/dt | �= 0 ensures that
the helix is a smooth curve. The form of the helix can be visualized by recognizing
that, as t increases, so the projection of r(t) onto the (x, y)-plane given by the vector
r(x,y)(t) = cos t i + sin tj moves once in a counterclockwise direction around a unit
circle centered on the origin, while the k component increases linearly with t .

(b) The vector function of a single real variable r(t) = cos t i + sin tj + θ(t +
H(t − π))k for 0 ≤ t ≤ 2π , where H(t) is the Heaviside unit step function, has a
discontinuous k component, and so describes the broken helix shown in Fig. 11.1(b),
where the jump in the k component of r(t) occurs at t = π .

It is important to recognize that because vector quantities are independent
of a coordinate system, vector-valued functions and vector fields do not depend
for their existence on any particular coordinate system. The choice of coordinate
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system used to describe vector functions is usually taken to be the one that is most
appropriate for the geometry of the situation involved. So, for example, when a
vector of interest depends only on distance along a straight axis and on the position
on a circle centered on the axis and lying in a plane normal to the axis, it is natural
to describe it in terms of the cylindrical polar coordinates (r, θ, z).

To make further progress it is necessary to generalize the related concepts of
the limit and continuity of a real function of a single real variable to vector functions
of a single real variable.

Limits and continuity of vector functions of a single real variable

A vector function of a single real variable F(t) = f1(t)i + f2(t)j + f3(t)k islimits and continuity
of vector functions said to have L as its limit at t0, written limt→t0 F(t) = L, where L = L1i +

L2 j + L3k, if

lim
t→t0

f1(t) = L1, lim
t→t0

f2(t) = L2, and lim
t→t0

f3(t) = L3.

If, in addition, the vector function is defined at t0 and limt→t0 F(t) = F(t0), then
F(t) is said to be continuous at t0. A vector function F(t) that is continuous
for each t in the interval a ≤ t ≤ b is said to be continuous over the interval.
A vector function of a single real variable that is not continuous at a point t0
is said to be discontinuous at t0.

It can be seen from the preceding definitions that the limit and continuity
properties of a parametrically defined vector function can be determined by ex-
amination of the behavior of its components. So, for example, the parametrically
defined vector function describing the helix in Example 11.1(a) is seen to be con-
tinuous, whereas the broken helix in Example 11.1(b) is seen to be discontinuous
at one point because of the behavior of its k component when t = π .

The notion of a limit of a vector function of a single real variable leads naturally
to the definition of the differentiability of such a function. Returning to (2) we see
that if t is increased to t + �t , the change �F produced in F is

�F = F(t + �t) − F(t)

= { f1(t + �t)i + f2(t + �t)j + f3(t + �t)k} − { f1(t)i + f2(t)j + f3(t)k},
so

�F
�t

=
(

f1(t + �t) − f1(t)
�t

)
i +

(
f2(t + �t) − f2(t)

�t

)
j +

(
f3(t + �t) − f3(t)

�t

)
k.

If the functions f1(t), f2(t), and f3(t) are differentiable, by letting �t → 0 it follows
at once that the derivative of F(t), denoted by dF/dt , can be expressed in terms of
the derivatives of the components of F(t) as

dF
dt

= df1

dt
i + df2

dt
j + df3

dt
k. (3)

We have arrived at the following definitions of the differentiability of F(t) and the
derivative dF/dt .



Section 11.1 Scalar and Vector Fields, Limits, Continuity, and Differentiability 629

Differentiability and the derivative of a vector function of a single
real variable

The vector function of a single real variable F(t) = f1(t)i + f2(t)j + f3(t)k
defined over the interval a ≤ t ≤ b is said to be differentiable at a point t0 in the
interval if its components are differentiable at t0. It is said to be differentiable
over the interval if it is differentiable at each point of the interval, and when
F(t) is differentiable its derivative with respect to t is

dF
dt

= df1

dt
i + df2

dt
j + df3

dt
k.

If F(t) is continuous over a ≤ t ≤ b, but dF/dt is discontinuous at a point t0 in
the interval, the derivative dF/dt will only be defined in the one-sided sense
to the left and right of t0 at the points t = t0 − 0 and t = t0 + 0.

When dF/dt is differentiable, the second order derivative d2F/dt2 is
defined as

d2F
dt2

= d
dt

(
dF
dt

)

and, in general, provided the derivatives exist,

dnF
dtn

= d
dt

(
dn−1F
dtn−1

)
, for n ≥ 2.

If F(t) is taken to be a differentiable position vector r(t), it follows from the
definition of a derivative that dr/dt is a vector that is tangent to the point r(t) on
the curve � traced out by the tip of the vector as t increases from t = a to t = b.
This situation, illustrated in Fig. 11.2, shows the relationship between r(t +�t), r(t),
and �r before proceeding to the limit as �t → 0. It can be seen from this that as
�t → 0, so �r tends to coincidence with the tangent line T to the curve � at the
point r(t). Furthermore, if r(t) is a position vector in space and t is the time, dr/dt
is the velocity of the point with position vector r(t) and d2r/dt2 is its acceleration.

T

Δr

Γ

r(t + Δt )

r(t )

0

FIGURE 11.2 As �t → 0, so the vector
�r tends to coincidence with the tangent
line T to the space curve � at r(t).
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The differentiability properties of vector functions of a single real variable have
been seen to be determined by the differentiability properties of the components.
Consequently, as F(t) is a linear combination of its components in the i, j, and k
directions, it follows that the rules for the differentiation of vector functions of a
single real variable follow directly by applying the rules for the differentiation of
a real function of a single real variable to each component in turn. The theorem
that follows summarizes the basic rules for differentiation, and because vectors are
independent of a coordinate system the results can be formulated without reference
to a coordinate system.

THEOREM 11.1 Differentiation of vector functions of a single real variable Let u(t) and v(t) be
differentiable functions of t over some interval a ≤ t ≤ b, with C an arbitrary con-

differentiation of
vector functions

stant vector and c an arbitrary constant scalar. Then rules for differentiation of
vector functions of a single real variable over the interval a ≤ t ≤ b are:

(i)
dC
dt

= 0 (differentiation of a constant vector)

(ii)
d
dt

(cu) = c
du
dt

(differentiation of a vector scaled by c)

(iii)
d
dt

(u ± v) = du
dt

± dv
dt

(differentiation of a sum or difference)

(iv)
d
dt

(u · v) = du
dt

· v + u · dv
dt

(differentiation of a dot product)

(v)
d
dt

(u × v) = du
dt

× v + u × dv
dt

(differentiation of a cross product)

(vi) If u(t) is a differentiable function of t and t = t(s) is a differentiable function
of s, then

du
ds

= du
dt

dt
ds

or, explicitly, if u(t) = u1(t)i + u2(t)j + u3(t)k, then

du
ds

= du1

dt
dt
ds

i + du2

dt
dt
ds

j + du3

dt
dt
ds

k

(the chain rule for differentiation of u(t)).

Proof The proof of each result is straightforward and similar, so only the proof of
result (iv) will be given, and for convenience the vectors u and v will be expressed
in terms of the unit vectors i, j, and k. The proofs of the remaining results will be
left as exercises.

Letting u = u1i + u2j + u3k and v = v1i + v2j + v3k, we have

u · v = u1v1 + u2v2 + u3v3.

We now differentiate the scalar function u · v with respect to t , using the result

d(ui vi )
dt

= dui

dt
vi + ui

dvi

dt
, for i = 1, 2, 3,
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which when i = 1 can be written

d(u1v1i)
dt

=
(

du1

dt
i
)

· (v1i) + (u1i) ·
(

dvi

dt
i
)

,

with corresponding results for d(u2v2)/dt and d(u3v3)/dt . Summing the results for
d(ui vi )dt corresponding to i = 1, 2, 3, we arrive at result (iv), and the proof is
complete.

EXAMPLE 11.3 Given that r(t) = cos t i + sin tj + tk, find the first three derivatives of r with respect
to t .

Solution
dr
dt

= −sint i +costj + k,
d2r
dt2

= −cost i −sintj, and
d3r
dt3

= sint i − cos tj.

EXAMPLE 11.4 Given that u = t i − 2tj + t2k, v = tj + 3tk and w = t i − t2k, find

d
dt

[(u · v)w].

Solution The scalar u · v = −2t2 + 3t3, so (u · v)w = (3t4 − 2t3)i − (3t5 − 2t4)k,
and so

d
dt

[(u · v)w] = (12t3 − 6t2)i − (15t4 − 8t3)k.

The concept of a vector differential is often useful, and by analogy with thevector differential
real variable calculus, if F(t) = f1(t)i + f2(t)j + f3(t)k, the vector differential dF is
defined as

dF =
(

df1

dt
i + df2

dt
j + df3

dt
k
)

dt. (4)

A simple and useful application of the vector differential is to the element of arc
length along a space curve � defined by the position vector r(t) = x1(t)i + x2(t)j +
x3(t)k for t ≥ t0. If s is the arc length measured along � from some fixed point, then
by applying Pythagoras’ theorem to the differential elements

dx1 = dx1

dt
dt, dx2 = dx2

dt
dt, and dx3 = dx3

dt
dt,

it is seen from Fig. 11.3 that the differential element of arc length ds along � is given
by

ds =
[(

dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2
]1/2

dt, (5)

and so

ds
dt

=
∣∣∣∣dr
dt

∣∣∣∣ =
[(

dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2
]1/2

. (6)
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ds

B

A

Γ

Γ

dx1

dx2

dx3

0 x1

x3

x2

FIGURE 11.3 The geometrical relationship between the
differentials ds, dx1, dx2, and dx3.

This result shows that when t is the time and r(t) is a position vector in space,
ds
dt = | dr

dt | is the speed with which the tip of position vector r(t) traces out a space
curve �.

Examination of Fig. 11.2 and consideration of the definition of dr/dt showstangent vector
that the unit tangent vector T along � as a function of t is given by

T = dr
dt

/∣∣∣∣dr
dt

∣∣∣∣, (7)

and as ds/dt = |dr/dt |, this can be rewritten in the form

dr
dt

= ds
dt

T. (8)

EXAMPLE 11.5 If r(t) is a position vector and t is the time, find the velocity, speed, and acceleration
of a particle with position vector r(t) = a cos ωt i + a sin ωtj, where a and ω are
constants, and interpret the results.

Solution We have |r(t)| = (a2 cos2 ωt + a2 sin2 ωt)1/2 = a, so as the motion is two-
dimensional in the plane containing i and j, it takes place in a circle of radius a with
its center at the origin of the coordinate system. Differentiation of r(t) gives

dr
dt

= −ωa sin ωt i + ωa cos ωtj and
d2r
dt2

= −ω2a cos ωt i − ω2a sin ωtj.

The speed ds/dt = |dr/dt | = ωa is constant, and the velocity dr/dt is seen to be
tangential to the circular path, because r · (dr/dt) = 0. The acceleration d2r/dt2 is
proportional to r, but oppositely directed, so it is always directed toward the origin.
Figure 11.4 illustrates the relationship between the velocity and acceleration as the
particle moves around the circle at a constant speed ωa.
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FIGURE 11.4 Uniform motion around
the circle r = a cos ωt i + a sin ωtj.

In dealing with the geometry of a space curve �, it is often convenient to specify
the position vector r of a point on the curve in terms of the arc length s measured
along the curve from some fixed point, so that then r = r(s). When r is expressed in
this manner the equation r = r(s) is called the intrinsic equation of �. In additionintrinsic vector

equation to the unit tangent T at any point r = r(s) of �, two other important unit vectors N
and B can also be defined at that point.

To arrive at definitions of vectors N and B, we start from the fact that as T is a
unit vector T · T = 1, so differentiating with respect to t and using Theorem 11.1(iv)
we have

dT
ds

· T + T · dT
ds

= 0.

However, as the scalar product is commutative, this last result is seen to be
equivalent to

T · dT
ds

= 0,

showing that T and dT/ds are orthogonal. The unit vector N in the direction of
dT/ds at a point r = r(s) on � is called the principal normal to � at r(s), and so

N = dT
ds �

��
∣∣∣∣dT

ds

∣∣∣∣ for
∣∣∣∣dT

ds

∣∣∣∣ �= 0. (9)

When the connection between dT/ds and N at a point r = r(s) on � is written
in the form

dT
ds

= κ(s)N, (10)

the nonnegative number κ(s) is called the curvature of the curve � at r = r(s), andcurvature, normal
and binormal ρ(s) = 1/κ(s) is called the radius of curvature of the curve � at r = r(s). As N is a
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unit vector, taking the modulus of (10) gives

κ(s) =
∣∣∣∣dT

ds

∣∣∣∣. (11)

In the case of a smooth plane curve �, the circle of curvature at a point P on �

is tangent to � at P with radius ρ = 1/κ , and such that its center lies on the concave
side of �.

If the curvature is required in terms of the parameter t , the relationship between
κ(s) and κ(t) follows from the chain rule

dT
dt

= dT
ds

ds
dt

,

showing that ∣∣∣∣dT
dt

∣∣∣∣ = κ(t)
∣∣∣∣ds
dt

∣∣∣∣. (12)

As dt/ds = 1/(ds/dt) = 1/|dr/dt |, this last result can be written in the convenient
form

κ(t) =
∣∣∣∣dT

dt

∣∣∣∣/∣∣∣∣dr
dt

∣∣∣∣. (13)

Finally, the vector B, defined as

B = T × N, (14)

is called the unit binormal to the curve � at r = r(s). The three unit vectors T, N,
and B at a point r = r(s) on the space curve � form a triad of mutually orthogonal
unit vectors whose orientation depends on the location of the point on �. When
studying the geometry of space curves it proves to be more convenient to use the
unit vectors T, N, and B, whose orientation depends on the point on the curve under
consideration, than a fixed reference system of unit vectors such as i, j, and k.

EXAMPLE 11.6 Show that the straight line r(t) = at i + btj + ctk + C, with a, b, and c scalar con-
stants and C a constant vector, has an infinite radius of curvature at every point.

Solution Differentiation shows that |dr/dt | = (a2 + b2 + c2)1/2 �= 0, and the tan-
gent vector T = dr/dt/|dr/dt | = (ai + bj + ck)/(a2 + b2 + c2)1/2, so dT/dt ≡ 0,
and N has to be chosen arbitrarily except for T · N = 0. Consequently, from (13)
κ(t) ≡ 0, and so the radius of curvature ρ(t) = 1/κ(t) = ∞ for all t .

EXAMPLE 11.7 Find T, N, B, and κ(t) for the helix r(t) = a cos t i + a sin tj + btk.

Solution From ds/dt = |dr/dt | we have

ds/dt = [(−a sin t)2 + (a cos t)2 + b2]1/2 = (a2 + b2)1/2,
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and so

T = dr
dt

/
ds
dt

= 1
(a2 + b2)1/2

(−a sin t i + a cos tj + bk).

By definition,

N = dT
ds

/∣∣∣∣dT
ds

∣∣∣∣ = dT
dt

dt
ds

/∣∣∣∣dT
dt

dt
ds

∣∣∣∣ = dT
dt

/∣∣∣∣dT
dt

∣∣∣∣ = −cost i − sin tj

and

B = T × N = 1
(a2 + b2)1/2

(b sin t i − b cos tj + ak).

A simple calculation shows that |dT/dt | = a/(a2 + b2)1/2, |dr/dt | = (a2 + b2)1/2, so
it follows from (13) that the curvature κ(t) = a/(a2 + b2) for all t . This is to be
expected, because the uniform shape of the helix implies that the curvature, and
hence the radius of curvature, are constant along the helix.

Summary Scalar and vector fields have been introduced, vector functions of a single real variable
have been defined, and their differentiability properties have been derived. Applications
to dynamics and the geometry of space curves have been made.

EXERCISES 11.1

In Exercises 1 through 6 find the first and second derivatives
of the function and their values at the given value of t .

1. r = t sin t i + t cos tj + t2k, t = π/2.
2. r = (1 + t2)i + e−2t j + √

tk, t = 1.
3. r = (2 − cos2 t)i + sin2 tj + (π − t)k, t = π/4.
4. r = ln(1 + t)i + ln(1 + r 2)j + e3t k, t = 0.
5. r = (t − sin t)i + (1 − cos t)j, t = π/2 (a cycloid).

Notice that r is arbitrarily many times differentiable, yet
the cycloid has cusps for t = nπ .

6. r = 4 cos t i + 3 sin tj + 2tk, t = π/4 (an elliptical
“helix”).

7. Prove result (iii) in Theorem 11.1 by expressing the
vectors in terms of their cartesian components.

8. Prove result (v) in Theorem 11.1 by expressing the
vectors in terms of their cartesian components.

9. Given that r = t i + 3t2j − (t − 1)k and t = ln(1 + s2),
use result (vi) in Theorem 11.1 to find dr/ds.

10. Given that r = sin t i + cos tj + tan tk and t = 2 + s2,
use result (vi) in Theorem 11.1 to find dr/ds.

11. A particle has a position vector at time t given
by

r = t2i + 4 cos 2tj + 3 sin 2tk.

Find the component of its velocity in the direction 2i +
j + 2k at time t .

12. A particle has a position vector at time t given by

r = 3 cos t i + 3 sin tj + (t2 − 2)k.

Find the component of its velocity in the direction
i + 2j − k at time t .

13. If φ(t) is a differentiable function of t and u(t) is a dif-
ferentiable parametrically defined function of t , prove
that

d
dt

(φu) = φ
du
dt

+ dφ

dt
u.

14. If u, v, and w are differentiable parametrically defined
functions of t , prove that

d
dt

(u · (v × w)) = u ·
(

v × dw
dt

)
+ u ·

(
dv
dt

× w
)

+ du
dt

· (v × w),

where the order in the products must be preserved.
15. If u, v, and w are differentiable parametrically defined

functions of t , prove that

d
dt

(u × (v × w)) = u ×
(

v × dw
dt

)
+ u ×

(
dv
dt

× w
)

+ du
dt

× (v × w),

where the order in the products must be preserved.
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16. If u is a differentiable parametrically defined function
of t , prove that

du
dt

× d
dt

(
du
dt

×d2u
dt2

)
= du

dt

(
du
dt

· d3u
dt3

)
− d3u

dt3

(
du
dt

)2

.

17. If u is a differentiable parametrically defined function
of t , prove that

du
dt

× d
dt

(
u × du

dt

)
= u

(
du
dt

· d2u
dt2

)
− d2u

dt2

(
u · du

dt

)
.

18. Given that φ(t) = t2 cos t and u = sin t i + 2 cos tj +
(1 + t2)1/2k, use the result of Exercise 13 to find d

dt (φu),
and confirm the result by direct differentiation of φu
with respect to t .

19. Given that u = 2t i − t2j + k, v = 2i + 3tj + tk, and
w = t i + 2tj − tk, use the result of Exercise 14 to find
d
dt (u · (v × w)). Confirm the result by finding u · (v × w)
and differentiating the result with respect to t .

20. Given that u = t i − tj + t2k, v = −t i + 2tj − t2k, and
w = 2t i − 2tj + tk, use the result of Exercise 15 to
find d

dt (u × (v × w)). Confirm the result by finding u ×
(v × w) and differentiating the result with respect to t .

21. Find T, N, B, and κ as functions of t for the helix
r(t) = a cos ωt i + a sin ωtj + btk.

22. By differentiating B = T × N with respect to s, show

that

dB
ds

= T × dN
ds

,

and then by forming the product N × dB/ds, show that

N × dB
ds

= 0.

Introduce a constant of proportionality called the tor-
sion of the curve � at P, which by convention is denoted
by −τ , and deduce from this last result that

dB
ds

= −τN.

Finally, by differentiating N = B × T with respect to s
show that

dN
ds

= τB − κT.

The three equations relating the derivatives of T, N, and
B with respect to s to T, N, B, κ , and τ found earlier,
namely,

dT
ds

= κN,
dN
ds

= τB − κT, and
dB
ds

= −τN,

are called the Frenet–Serret equations, and they are
fundamental to the study of the differential geometry
of space curves.

11.2 Integration of Scalar and Vector Functions
of a Single Real Variable

As with real functions of a single real variable, a differentiable vector function of
a single real variable F(t) will be called an antiderivative of the vector function f(t)
on some interval a < t < b if at each point of the interval dF(t)/dt = f(t). Because
differentiation of a vector constant yields the null vector 0, an antiderivative of f is
only determined up to an arbitrary additive vector constant C. An indefinite integral
of f is any antiderivative of f to which has been added an arbitrary vector constant.

Indefinite and definite integrals of a vector function of a single real variable

If F(t) is any antiderivative of f(t), then an indefinite integral of the functionindefinite and definite
integrals of vector
functions of a single
real variable

f with respect to t , written
∫

f(t)dt , is

∫
f(t)dt = F(t) + C,

where C is an arbitrary vector constant.
If f(t) = f1(t)i + f2(t)j + f3(t)k, the indefinite integral of f(t) is deter-

mined by integrating each component of f(t) with respect to t and combining
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the results to give

∫
f1(t)dt i +

∫
f2(t)dtj +

∫
f3(t)dtk = F(t) + C.

The definite integral of f(t) over the interval a ≤ t ≤ b is defined as

∫ b

a
f(t)dt =

∫ b

a
f1(t)dt i +

∫ b

a
f2(t)dtj +

∫ b

a
f3(t)dtk.

EXAMPLE 11.8 Given that f(t) = sin t i + (1 − t2)j + e−t k, find

(a)
∫

f(t)dt and (b)
∫ 2

0
f(t)dt.

Solution

(a)
∫

f(t)dt =
∫

sin t dt i +
∫

(1 − t2)dtj +
∫

e−t dtk

= −cost i +
(

t − 1
3

t3
)

j − e−t k + c1i + c2j + c3k,

where c1, c2, and c3 are arbitrary real constants, so∫
f(t)dt = − cos t i +

(
t − 1

3
t3
)

j − e−t k + C,

where C is an arbitrary vector constant.
(b) ∫ 2

0
f(t)dt =

∫ 2

0
sin tdt i +

∫ 2

0
(1 − t2)dtj +

∫ 2

0
e−t dtk

= (1 − cos 2)i − 2
3

j + (1 − e−2)k.

It is sometimes necessary to find the length of arc between two points on a curve
defined by a vector function of a single real variable. This can be accomplished by
making use of result (6), which showed that the rate of change of distance s with
respect to t along the curve � defined by

r(t) = x1(t)i + x2(t)j + x3(t)k

is given by

ds
dt

=
[(

dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2
]1/2

.

Consequently, if the length of arc s = s(t2) − s(t1) between the points correspondingarc length along
a space curve to t = t1 and t = t2 is required, where t2 > t1, integration of this result gives∫ t2

t1

ds
dt

dt =
∫ t2

t1

[(
dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2
]1/2

dt,
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so the required arc length is given by the definite integral

s = s(t2) − s(t1) =
∫ t2

t1

[(
dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2
]1/2

dt. (15)

EXAMPLE 11.9 Find the length of arc along the helix r(t) = cos t i + sin tj + αtk between the points
corresponding to t = 0 and t = 2π , where α is a scalar constant.

Solution Making the identifications x1(t) = cos t , x2(t) = sin t , x3(t) = αt , t1 = 0,
and t2 = 2π , and substituting into (15) gives

s =
∫ 2π

0
[(− sin t)2 + (cos t)2 + α2]1/2 dt

=
√

1 + α2

∫ 2π

0
dt = 2π

√
1 + α2.

When α = 0 the helix reduces to a circle of unit radius, and as expected s then
becomes the circumference 2π of a unit circle.

Let the vector F(x, y, z) be defined along a piecewise smooth space curve �

along which the arc length is s, and let � extend from the point r1 at which s = s1

to the point r2 at which s = s2. Then, if T(s) is the unit tangent vector to � at arc
length s, an expression of the form

I =
∫ s2

s1

F · T ds

is called a line integral of F, or more precisely, the scalar line integral of F along thescalar line integrals
space curve �. It follows from (8) that Tds = dr, so the line integral of F along �

can be written in the simpler form

I =
∫ s2

s1

F · dr. (16)

Integrals of this type have many applications, two of the most important of
which are described in what follows. The first application is to mechanics, where
when a constant force F moves its point of application a distance d along a straight
line L, the work that is done by the force is W = fLd, where fL is the component
of F along the line L. To find the work done by a variable force F(t) as it moves
its point of application along a parametrically defined curve �, it is necessary to
generalize this simple result by appealing to the notion of a line integral along the
space curve �.

If the vector differential along � is denoted by dr, its length |dr| = dr , so the
unit vector T in the direction dr will be T = dr/dr . Consequently, the component
of force F in the direction of dr is given by F · T = (F · dr)/dr , so the element of
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work dW performed by the force in moving its point of application along dr will be

dW = F ·
(

dr
dr

)
dr = F · dr.

Integration of this result shows the work performed by the force in moving its point
of application along � from r = r1 to r = r2, corresponding to s = s1 and s = s2,
respectively, is given by the line integral

W =
∫ s2

s1

F · dr. (17)

When r = r(t) is known as a function of t , but t is not the arc length s along �, and
integration is between r = r(t1) and r = r(t2), dr = (dr/dt)dt and (17) becomes

W =
∫ t(s2)

t(s1)
F(r(t)) · (dr/dt)dt. (18)

Integrals of this type arise when particles move in a gravitational field or a charged
particle moves in an electric field. The sign of W depends on the direction of inte-
gration, so reversing its direction changes the sign of W. Work is done by the vector
field F when W is positive, and work is recovered from the field when W is negative.

For the second example we consider the case of fluid mechanics and identify F
with the fluid velocity vector q. In this case a line integral of the form (16) is called
the flow of the fluid along �, because dr = (dr/ds)ds = Tds, where T is the unit
tangent along �, so that q · T is the component of the flow along �. The circulationcirculation and

irrotational flow k of fluid is defined as the flow around a closed curve �, so it is given by

k =
∮

�

q · dr =
∮

�

q · T ds, (19)

where the symbol
∮

�
is used to indicate that the line integral of q · dr is taken once

around the closed curve �.
In fluid mechanics the circulation k describes an important characteristic of the

fluid motion, and it can be seen from (19) that reversing the direction of integration
around � reverses the sign of T, and so leads to a reversal of the sign of the circula-
tion. The fundamental class of fluid flow in which there is zero circulation around
every simple closed curve �, so that k ≡ 0, is called irrotational flow.

In general, the line integral (16) depends not only on F and the end points
of integration, but also on the path � along which the integral is evaluated. The
method of evaluating line integrals, and the fact that they usually depend on the
path, is illustrated in the next example.

EXAMPLE 11.10 Find the line integral of F = −yz2i + xz2j + yzk (a) along the helix � given by
r(t) = cos t i + sin tj + tk from t = 0 to t = 2π , and (b) along the straight line path
γ joining the points r(0) to r(2π).
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FIGURE 11.5 (a) The helix �. (b) The straight line path γ .

Solution

(a) The helix � is shown in Fig. 11.5(a).
Differentiation of r(t) gives

dr
dt

= −sin t i + cos tj + k,

but on the helix x = cos t , y = sin t , and z = t , so in the line integral along � the
general vector-valued function F becomes the vector function of the single real
variable t given by F(t) = −t2 sin t i + t2 cos tj + t sin tk. As a result,

F · dr = (−t2 sin t i + t2 cos tj + t sin tk) · (−sin t i + cos tj + k)dt

= (t2 + t sin t)dt,

and so the required line integral is∫
�

F · dr =
∫ 2π

0
F · dr =

∫ 2π

0
(t2 + t sin t)dt = 8

3
π3 − 2π.

(b) The straight line path γ shown in Fig. 11.5(b) joins the points r(0) = i and
r(2π) = i + 2πk, so in terms of the parameter t its vector equation can be written
r(t) = i + tk with 0 ≤ t ≤ 2π . This shows that on the path γ we have x = 1, y = 0,
and z = t , and dr = dtk.

Consequently, on γ the vector-valued function F becomes F = t2j, and so

F · dr = t2j · (dtk) = 0,

showing that ∫
γ

F · dr = 0.

In the next section, after the introduction of the gradient of a function, we
will find a condition to be satisfied by F in order that the line integral in (16) is
independent of the path �, and so depends only on F and the end points of the
integration.
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FIGURE 11.6 �� = ∮
�

F · n ds is the
flux of F across �.

As a final example of an application of line integrals we determine the flux of a
vector F(x, y) across a closed two-dimensional smooth curve � in the (x, y)-plane.
If n is a unit vector normal to � that is directed outward from �, as shown in Fig. 11.6,
the flux �� across the curve � is defined as the line integral

�� =
∫

�

F · n ds,

where s is the arc length around � and integration is in the counterclockwise sensethe flux of a vector
across a plane curve around �. As F · n is the component of F in the direction of the outward drawn nor-

mal to �, the flux �� is seen to measure the total amount of the normal component
of F that crosses the curve �.

For a physical illustration of the meaning of flux, let us consider a long block
of metal with its axis in the z-direction in which there is a steady-state temperature
distribution that is only a function of x and y. This means that the temperature
distribution is the same in every plane z= constant. Let us now consider a cylindrical
region in the block of unit height and cross-section � with its axis in the z-direction.
Then if F is identified with a heat flow vector h(x, y), the flux �� is the amount of
the heat that crosses the curved walls of this cylinder in Fig. 11.7 in a unit time. If
�� > 0 there is a net outflow of heat from the region bounded by �, and if �� < 0
there is a net inflow of heat into the region. When �� = 0 the amount of heat in
the region remains constant.

In two space dimensions it is important to recognize the difference between
the circulation and flux of F in relation to the curve �. Whereas the determination
of the circulation of F involves the line integral of the component of F along the
tangent to curve � with respect to the arc length s, the flux of F involves the line
integral of the component of F normal to (across) the curve � with respect to the
arc length.

To determine the flux we proceed as follows. Let F(x, y) = f1(x, y)i + f2(x, y)j
and � have the equation r(t) = x(t)i + y(t)j. Then, as integration around � is in the
counterclockwise sense, we see from Fig. 11.6 that if T is the unit tangent to �, then
n = T × k. As T = (dx/ds)i + (dy/ds)j, it follows that

n = T × k = [(dx/ds)i + (dy/ds)j] × k

= (dy/ds)i − (dx/ds)j,
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FIGURE 11.7 A cylinder of unit
height and cross-section � with its
axis in the z-direction.

and so

�� =
∫

�

F · n ds =
∫

�

( f1(x, y)i + f2(x, y)j) · ((dy/ds)i − (dx/ds)j)ds

=
∫

�

f1(x, y)dy − f2(x, y)dx.

EXAMPLE 11.11 Find the flux of F = (2x + y)i + (y − x)j across the ellipse with the equation
x2/a2 + y2/b2 = 1.

Solution By setting x = a cos t and y = b sin t and restricting t to the interval
0 ≤ t ≤ 2π , the ellipse is traversed once in the counterclockwise sense as required.
As dx = −a sin t dt and dy = b cos t dt , substitution into the expression for �� gives

�� =
∫ 2π

0
[(2a cos t + b sin t)b cos t − (b sin t − a cos t)(−a sin t)] dt = 3abπ.

Finally we define a different integral called a vector line integral of F. To do this
we let a curve � have the vector equation

r(t) = x(t)i + y(t)j + z(t)k for a ≤ t ≤ b

and introduce a general vector function F = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k
defined along the curve �. Then the vector line integral of F along � from t = a to
t = b is defined as∫ b

a
F dt = i

∫ b

a
F1(t)dt + j

∫ b

a
F2(t)dt + k

∫ b

a
F3(t)dt, (20)

where Fi (t) = Fi (x(t), y(t), z(t)), for i = 1, 2, 3.
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EXAMPLE 11.12 Find the vector line integral of the vector function F = xzi + yzj + zk along the
curve r(t) = a cos t i + a sin tj + tk over the interval 0 ≤ t ≤ π .

Solution∫ π

0
F dt = i

∫ π

0
at cos t dt + j

∫ π

0
at sin t dt + k

∫ π

0
t dt = −2ai + πaj + 1

2
π2k.

Summary Indefinite and definite integrals of vector functions of a single real variable have been
defined and illustrated by example. The scalar line integral of a vector F(x, y, z) has been
defined and its application illustrated by considering the work done by a force as it moves
along a space curve between two fixed points. The line integral has also been applied
to fluid flow and used to define the circulation of the fluid, and the related concept of
an irrotational flow for which the circulation around any closed curve in the fluid is zero.
Finally, the flux of a vector across a plane curve has been defined.

EXERCISES 11.2

In Exercises 1 through 4 find the required indefinite and
definite integrals.

1. (a)
∫

(t sin t i + 3t2j − 3tk)dt .

(b)
∫ 2

0
(ln(1 + 3t)i + (t3 − 2t)j + tet k)dt .

2. (a)
∫

(cosh2 t i + 2 sin2 2tj + k)dt .

(b)
∫ 2

0
((1 + t2)−1i − t sin tj − (1 − 3t2)k)dt .

3. (a)
∫

(cos2 3t i + sin2 tj + tk)dt .

(b)
∫ π

0
((1 + 3t2)i + cos 4tj + sin 3tk)dt .

4. (a)
∫

(t(1 + t)−1i + sec2 3tj + (t2 − 4)k)dt .

(b)
∫ 4

0
(t(1 + 3t2)−1i + (1 + t2)1/2j + t2e−t k)dt .

5. Find the arc length along the circular helix r(t) =
a cos t i + a sin tj + αtk between the points correspond-
ing to t = π and t = 3π/2.

6. Find the arc length along the curve r(t) = cos t i +
sin tj + 1

2 t2k between the points corresponding to t = 0
and t = 2π .

7. Given the vector valued function F = −zi + xj − yk,
find the scalar line integral of F along the space curve
r(t) = sin t i − cos tj + et k between the points on the
curve corresponding to t = 0 and t = π/2.

8. Given the vector valued function F = 2yi + x2j − 3zk,
find the line integral of F along the space curve r(t) =

t i + (1 + 2t3)j + t2k between the points on the curve
corresponding to t = 1 and t = 3.

9. Let F be the vector-valued function F = −xi + yj +
zk. Show that the line integrals of F along the helix
r(t) = sin t i + cos tj + tk between the points on the he-
lix corresponding to t = 0 and t = 2π and along the
straight line path joining the points r(0) to r(2π) are the
same.

10. Let F be the vector-valued function F = 2xy2zi +
2x2 yzj + x2 y2k. Find the line integral of F along the
straight line � with the equation r(t) = t i + 2tj + tk be-
tween the points corresponding to t = 0 and t = 1. Let
γ be the path formed by the straight line segments join-
ing the points PQRS, in this order, where P is the point
r = 0, Q is the point r = i, R is the point r = i + 2j, and
S is the point r = i + 2j + k. Find the line integral of F
along γ from P to S, and hence show that it has the
same value as the integral along �.

11. The velocity vector in a two-dimensional fluid flow is
v = yi + x2 yj. Find the circulation (a) around the ellipse
x2 + 1

4 y2 = 1 and (b) around the unit circle x2 + y2 = 1,
and hence show the flow is not irrotational.

12. The velocity vector in a two-dimensional fluid flow is
v = (2x + 3y2)i + 6xj. Show that there is zero circu-
lation around all the circles (x − a)2 + (y − b)2 = c2,
where a, b, and c > 0 are arbitrary real numbers. Is it
correct to say this proves that the flow is irrotational?
Give reasons justifying your answer.

13. Find the flux of F = (3x + 2y)i + (2x − y)j across the
circle x2 + y2 = 4.
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11.3 Directional Derivatives and
the Gradient Operator

Consider a scalar function w = f (x, y, z) with continuous first order partial deriva-
tives with respect to x, y, and z that is defined in some region D of space, and let a
space curve � in D have the parametric equations x = x(t), y = y(t), and z = z(t).
Then from the chain rule

dw
dt

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

, (21)

and it is seen from this that dw/dt can be interpreted as the scalar product of the
two vectors

∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k and
dx
dt

i + dy
dt

j + dz
dt

k.

The first vector, denoted by

grad f = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k, (22)

is called the gradient of the scalar function f expressed in terms of cartesian co-the gradient of a
scalar function
of position

ordinates, whereas from Section 11.1 the second vector

dr
dt

= dx
dt

i + dy
dt

j + dz
dt

k (23)

is seen to be a vector that is tangent to the space curve �. Consequently, dw/dt is
the scalar product of grad f and dr/dt at the point x = x(t), y = y(t), and z = z(t)
for any given value of t .

Another notation for grad f that is also used is

∇ f = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k, (24)

where the symbol ∇ f is either read “del f ” or “grad f .” In this notation, the vector
operator

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(25)

is the gradient operator expressed in terms of cartesian coordinates, and if φ is a
suitably differentiable scalar function of x, y, and z, it is to be understood that

∇φ = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k. (26)

Let us now introduce the unit vector v defined as

v = li + mj + nk, (27)
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where l, m, and n are the direction cosines of the tangent to the space curve �

in (23), so that

l = dx
dt

/∣∣∣∣dr
dt

∣∣∣∣, m = dy
dt

/∣∣∣∣dr
dt

∣∣∣∣, n = dz
dt

/∣∣∣∣dr
dt

∣∣∣∣, (28)

with

∣∣∣∣dr
dt

∣∣∣∣ =
[(

dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2
]1/2

. (29)

Then as the scalar product of a vector F and the unit vector v is the projection
of F in the direction v, it follows at once that

Dν f = v · grad f = l
∂ f
∂x

+ m
∂ f
∂y

+ n
∂ f
∂z

(30)

is the directional derivative of f in the direction v. This last result has meaningthe directional
derivative and
its properties

irrespective of whether v is tangent to a space curve, so from now on v can be taken
to be an arbitrary unit vector in space.

The directional derivative Dν f can be interpreted in terms of the ordinary
operation of differentiation by considering Fig. 11.8. In the diagram, a straight line
T in space in the direction of a given vector v passes through a fixed point P, and Q
is a general point on line T at a distance s from P. The directional derivative Dν f
is then given by

Dν f = df
dν

= lim
s→0

f (Q) − f (P)
s

. (31)

In the two-dimensional case in the (x, y)-plane, the directional derivative de-
fined in (30) simplifies to

Dν f = v · grad f = l
∂ f
∂x

+ m
∂ f
∂y

, (32)

Scalar field
f(x, y, z)

D

P

Q
T

s

v

FIGURE 11.8 The directional
derivative Dν f .
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where now the unit vector v = li + mj, with l2 + m2 = 1, and the grad f in (22)
simplifies to

grad f = ∂ f
∂x

i + ∂ f
∂y

j, (33)

where again the unit vector v = li + mj, with l2 + m2 = 1.

EXAMPLE 11.13 Find the directional derivative of f = x2 + 3y2 + 2z2 in the direction of the vector
2i − j − 2k, and determine its value at the point (1, −3, 2).

Solution grad f = 2xi + 6yj + 4zk and the unit vector in the required direction is
ν = 2

3 i − 1
3 j − 2

3 k, and so the required directional derivative is

Dν f =
(

2
3

i − 1
3

j − 2
3

k
)

· (2xi + 6yj + 4zk),

and so

Dν f = 4
3

x − 2y − 8
3

z.

This shows that the directional derivative Dν f at the point (1, −3, 2) is

Dν f (1, −3, 2) = 4
3

+ 6 − 16
3

= 2.

Inspection of definition (30) shows immediately that Dν f , which is the rate
of change of f in the direction v, must take its greatest value when v is in the
direction of grad f , its smallest value when v and grad f are oppositely directed,
and the value zero when v and grad f are orthogonal. These simple properties of a
directional derivative are sufficiently important for them to be recorded separately
in the following form.

Properties of directional derivatives

1. The most rapid increase of a differentiable function f (x, y, z) at a point
P in space occurs in the direction of the vector vP = grad f (P). The
directional derivative at P is then given by

Dν f (P) = |grad f (P)| = (
(∂ f/∂x)2

P + (∂ f/∂y)2
P + (∂ f/∂z)2

P

)1/2
.

2. The most rapid decrease of a differentiable function f (x, y, z) at a
point P in space occurs when the vector vP just defined in 1 and grad
f are oppositely directed, so that vP = −grad f (P). The directional
derivative at P is then the negative of the result in 1 and so is given by

Dν f (P) = −|grad f (P)|
= −((∂ f/∂x)2

P + (∂ f/∂y)2
P + (∂ f/∂z)2

P

)1/2
.

3. There is a zero local rate of change of a differentiable function f (x, y, z)
at a point P in space in the direction of any vector vP that is orthogonal
to grad f at P, so that vP · grad f (P) = 0.
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When a scalar function f defined over a region D of space is suitably differen-
tiable, the vector-valued function grad f defines a vector field over D in terms of
the scalar field defined by f . The next theorem establishes the result of performing
the gradient operation on combinations of scalar functions.

THEOREM 11.2 Rules for the gradient operator Let the gradients of f and g be defined over a

properties of the
gradient operator

region D. Then the gradient operator has the following properties.

(i) Gradient of a constant multiple of f :

grad (c f ) = c grad f ; (c a scalar constant)
(ii) Gradient of a sum or difference of functions:

grad ( f ± g) = grad f ± grad g;
(iii) Gradient of a product of functions:

grad ( fg) = f grad g + g grad f ;
(iv) Gradient of a quotient of functions:

grad
(

f
g

)
= (g grad f − f grad g)/g2 (g �= 0).

Proof These results all follow by applying the usual rules for partial differentiation
to each component of the gradient function on the left, and then recombining the
results to obtain the expression on the right. To illustrate the form of argument
involved, we prove result (iii) concerning the gradient of a product of functions. By
definition,

grad( fg) = ∂( fg)
∂x

i + ∂( fg)
∂y

j + ∂( fg)
∂z

k

=
(

f
∂g
∂x

+ g
∂ f
∂x

)
i +

(
f
∂g
∂y

+ g
∂ f
∂y

)
j +

(
f
∂g
∂z

+ g
∂ f
∂z

)
k

= f grad g + g grad f.

A simple application of the gradient of a function involves the determination
of the tangent plane to the surface S defined by the function f (x, y, z) = constant
at a point P0(x0, y0, z0) on the surface S.

Define the function w = f (x, y, z) − c, where c = constant, so that the surface
S then has the equation w = 0. Let any space curve � in the surface S have the
parametric equations

x = x(t), y = y(t), and z = z(t).

Then differentiation of w = f (x, y, z) − c with respect to t gives

dw
dt

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

,

but on S the function w ≡ 0, so this reduces to

∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

= 0.
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This result shows that any curve � in S must be orthogonal to grad f , and so at
every point P of the surface S the vector grad f is normal to the surface. The vector
equation of a plane with normal n containing the point P0 with position vector r0 is

(r − r0) · n = 0,

where r is the position vector of an arbitrary point on the plane. If we set r =
xi + yj + zk and r0 = x0i + y0j + z0k, and identify n with grad f at P0, where

grad f (P0) =
(

∂ f
∂x

)
P0

i +
(

∂ f
∂y

)
P0

j +
(

∂ f
∂z

)
P0

k,

the required tangent plane to the surface at P0(x0, y0, z0) is seen to be given by

(x − x0)
(

∂ f
∂x

)
P0

+ (y − y0)
(

∂ f
∂y

)
P0

+ (z − z0)
(

∂ f
∂z

)
P0

= 0 (34)

EXAMPLE 11.14 Find the tangent plane at the point (2, −1, 3) on the sphere

(x − 1)2 + (y + 2)2 + (z − 4)2 = 3.

Solution It is first necessary to check that the point (2, −1, 3) does actually lie
on the sphere, and this is confirmed by showing that x = 2, y = −1, and z = 3
satisfies the equation of the sphere. Writing f = (x − 1)2 + (y + 2)2 + (z − 4)2,
we find that ∂ f/∂x = 2x, ∂ f/∂y = 2y, and ∂ f/∂z = 2z, so that (∂ f/∂x)(2,−1,3) = 4,
(∂ f/∂y)(2,−1,3) = −2, and (∂ f/∂z)(2,−1,3) = 6. Substitution into (34) shows that the
equation of the tangent plane to the sphere at the point (2, −1, 3) is

4(x − 2) − 2(y + 1) + 6(z − 3) = 0,

and after simplification this reduces to

4x − 2y + 6z = 28.

In applications, the geometry of a problem often makes it necessary to express
the gradient operator in terms of different coordinate systems. The coordinate
systems that occur most frequently as a result of formulating problems involving
either a cylindrical or a spherical geometry are the cylindrical polar coordinate
system (r, θ, z) illustrated in Fig. 11.9a and the spherical polar coordinate system
(r, θ, φ) illustrated in Fig. 11.9b, and shown in a different form in Fig. 1.15.

Consideration of the geometry of Figs. 11.9a,b establishes that the connection
between these coordinate systems and the cartesian coordinates (x, y, z) is given
by:

Cylindrical polar coordinates (r, θ, z)

x = r cos θ, y = r sin θ, z = z (35)

Spherical polar coordinates (r, θ, φ)

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (36)
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FIGURE 11.9 (a) Cylindrical polar coordinates. (b) Spherical polar
coordinates.

The forms taken by grad f in cylindrical and spherical polar coordinates are
given next for reference, though the derivation of these results together with related
results in terms of general orthogonal curvilinear coordinates will be postponed
until Section 11.6.gradient operator in

cylindrical polar
coordinates grad f in cylindrical polar coordinates (r, θ , z)

grad f = ∇ f = ∂ f
∂r

er + 1
r

∂ f
∂θ

eθ + ∂ f
∂z

ez, (37)

where er is a unit vector parellel to the (x, y)-plane along the radial line r, eθ is a
unit vector in the (x, y)-plane normal to er in the direction of increasing θ , and ez is
a unit vector in the positive z-direction as shown in Fig. 11.9a, so that er × eθ = ez.

grad f in spherical polar coordinates (r, θ, φ)

grad f = ∇ f = ∂ f
∂r

er + 1
r

∂ f
∂θ

eθ + 1
r sin θ

∂ f
∂φ

eφ, (38)

where er is a unit vector along the radial line r, eθ is a unit vector in the direction of
increasing θ , and eφ is a unit vector in the direction of increasing φ that is normal
to the plane containing er and eθ , as shown in Fig. 11.9b, so that er × eθ = eφ .

Notations for cylindrical and spherical polar coordinates are not uniform, so
when consulting other works it is advisable to check the notation and conventions
that are in use. This is particularly important in the case of spherical polar coor-
dinates, where the r used here is sometimes replaced by ρ, with r then used to
denote the distance OA in Fig. 11.9b; in addition, the symbols θ and φ are often
interchanged.
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Summary The gradient of a scalar function of position is a vector, and it has been defined and used
to define the concept of a directional derivative. The properties of directional derivatives
have been established and the gradient operator has been used to determine the tangent
plane to a sphere at a given point on its surface. For future use, the gradient operator has
been expressed in terms of both cylindrical and spherical polar coordinates.

EXERCISES 11.3

In Exercises 1 through 8 find the derivative of the scalar
function f in the direction of the vector ν and find its value
at the point P.

1. f = x sin y + y cos x, with ν = i + 2j and P the point
(π/4, 0).

2. f = x sinh(x + 2y), with ν = 3i − j and P the point
(1, −2).

3. f = xexy + 2x − y, with ν = i + 4j and P the point
(−2, 1).

4. f = ln(x + 2y2), withν = −i + 2j and P the point (1, 3).
5. f = sin(xy) + e3xz, with ν = i − 2j + 2k and P the point

(1, π/4, 1).
6. f = (x2 y + z)1/2, with ν = i + 3j − 3k and P the point

(2, −3, 1).
7. f = sinh(xy2z + 3y), with ν = 2i + k and P the point

(1, −2, 2).
8. f = (xz2 + 3y)−1, with ν = −3i + 2j − 2k and P the

point (1, −1, 1).
9. Prove result (iv) in Theorem 11.2.

10. Use result (iv) in Theorem 11.2 to find grad ( f/g) given
that f = yexy + z and g = xyz2 + 1, and confirm the
result by direct calculation.

In Exercises 11 through 14 find grad f and evaluate it at the
point P.

11. f = x2 + 3xyz − yz2, with P the point (1, 3, −1).
12. f = (x2 + 2y2 + 4z2)−1, with P the point (1, 2, 1).
13. f = exp(xy + 2yz − 3xz), with P the point (1, 0, 2).
14. f = (x2 + yz + 3z2)1/2, with P the point (1, −1, 2).

15. Derive the cartesian form of the equation of the straight
line that is normal to the curve f (x, y) = constant at a
point (x0, y0) on the curve.

16. Derive the cartesian form of the equation of the tangent
line to the curve f (x, y) = constant at a point (x0, y0) on
the curve.

17. Find the equation of the tangent plane to the surface
x3 + 3xy + z2 = 11 at the point on the surface (1, 2, 2).

18. Find the equation of the tangent plane to the surface
sin(xy) + 2 cos(yz) + 3x = 4 at the point on the surface
(1, π/2, 1).

19. Derive the vector equation of the straight line that is
normal to the surface f (x, y, z) = constant at a point
with position vector r0 on the surface.

20. If two surfaces f (x, y, z) = constant and g(x, y, z) =
Constant intersect at a point with position vector r0, find
a vector that is tangent to their curve of intersection of
the two surfaces at r0.

21. Find grad f , given that f (r, θ, z) = r 2 sin θ + rz2 + 1.
22. Find grad f , given that f (r, φ, θ) = r sin θ cos φ +

sin2
φ.

23. If F = grad f , prove that

grad( f n) = nf n−1F.

Use the result to show that when f = r is the distance
of a point r = xi + yj + zk from the origin, then

grad r = r̂ and grad
(

1
r

)
= − r

r 3
,

where r̂ is the unit vector in the direction of r, so r̂ = r/r .

11.4 Conservative Fields and Potential Functions

Let us reconsider the line integral
∫ r2

r1
F · dr along a path � joining the two points

r1 and r2 in a region D of space. If the value of this line integral is independent of
the choice of path � in D, the vector field F is called a conservative field. The nameconservative fields

and path invariance conservative comes from mechanics, where it refers to the study of dynamics in which
dissipative effects such as friction can be ignored, so that the sum of the kinetic and
potential energy in a system remains constant (is conserved), though conservative
fields of different types play key roles throughout physics and engineering.
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FIGURE 11.10 (a) The two paths �1 and �2. (b) The loop
containing P and Q.

The next theorem shows that the definition of a conservative field in terms of
the independence of the line integral of the path from r1 to r2 is equivalent to the
vanishing of the line integral of a conservative field around any closed loop in D.

THEOREM 11.3 Path invariance and integrals around loops If F is a conservative field in a region D,
then

∮
�

F · dr = 0 around every closed loop � in D and, conversely, if
∮

�
F · dr = 0

around every closed loop � in region D, then F is a conservative field in D.

Proof The proof of this result is straightforward, and it involves two steps. One
is to show that if

∮
�

F · dr = 0 around every closed loop � in D, then the field is
conservative, and the other involves showing that the converse result is true.

STEP 1 Let the points P and Q shown in Fig. 11.10(a) be any two points in a
region D throughout which F is a conservative field, and let �1 and �2 be any two
paths in D connecting P to Q.

As F is a conservative field, by definition∫
�1

F · dr =
∫

�2

F · dr and so
∫

�1

F · dr −
∫

�2

F · dr = 0.

If we reverse the direction of integration in the second integral, thereby changing
its sign, and indicate the path from Q to P by �2− , this last result becomes∫

�1

F · dr +
∫

�2−
F · dr = 0.

However, the reversal of direction of integration on path �2 makes the successive
paths �1 and �2− into the loop in D shown in Fig. 11.10(b). So as P and Q were
any two points in D, and �1 and �2 were any two paths in D joining P and Q; this
proves the first part of the theorem.
STEP 2 We must now prove the converse result, that if

∮
�

F · dr = 0 around
every closed loop � in region D, then the field F is conservative in D. The proof
involves reversing the argument used in Step 1. Let the arbitrary paths �1 and �2−

in Fig. 11.10(b) form any loop in D, and let P and Q be any two points on the loop.
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Then ∫
�1

F · dr +
∫

�2−
F · dr = 0,

but if we reverse the direction of integration along �2− , and compensate by reversing
the sign of the integral, this becomes∫

�1

F · dr =
∫

�2

F · dr.

As P and Q were arbitrary points, and �1 and �2 are any two paths joining these
points, we have succeeded in showing that the integral is path independent, so the
theorem is proved.

Let f be a differentiable scalar function defined over a region D and let F =
grad f be a vector field defined in terms of f . Then f is called the potential function
for the vector field F. The connection between potential functions and conservative
fields will become clear later.

Let us now show that if a vector field F has a potential function f , then the
function f is unique to within an arbitrary additive constant. The proof is simple.
Suppose the scalar fields f and g have the same gradient in some region D, so we
can write

grad( f − g) ≡ 0.

Then if v �= 0 is an arbitrary vector in D, it follows from the preceding result that
v · grad ( f − g) = 0. This shows that the directional derivative of f − g is equal to
zero in every direction at each point of D, and this in turn implies that f − g =
constant, so the result is proved.

We now establish the fundamental connection between F = grad f and the line
integral of F along any path � joining two points in a region D of space. In order to
achieve this it is necessary to place some restrictions on the scalar potential function
f (x, y, z), the path �, and the region D. The function f will be assumed to have
continuous first order partial derivatives in D, the path � in D must be continuous
and piecewise smooth and comprise finitely many segments, and the region D must
be open and simply connected.

The terms open and simply connected need explanation. In straightforward
terms, a simply connected region in space can be regarded as any region that can be
continuously deformed into a sphere inside of which no voids, curves, or points are
missing, so it has the property that every loop in the region can be shrunk to a point
that belongs to the region, without any part of the loop ever leaving the region.
To understand this, consider the case of a region in space from which the points
on a line are missing, and let the the loop encircle the line. Then there is no way
the loop can be shrunk to a point without leaving the region, so the region is not
simply connected (it is multiply connected). A region in space will be open if onlysimply and multiply

connected regions the points on the surface of the region (its boundary points) are missing. A region
in space is connected if every point in the region can be joined to every other point
in the region by a piecewise continuous line that lies entirely within the region.

For example, the points between two concentric spheres, the points on the
surface of each of which are missing, form an open region that is connected. The
region is open because its boundary points are not included in the region, and it
is connected because any two points in the region can always be joined by a space
curve that lies inside the region.
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As another example, consider the points inside two adjacent nonintersecting
spheres, each of which is connected within itself. Then the region formed by the
points inside the two spheres is not connected, because every path joining a point
in one sphere to a point in the other sphere contains points that belong to neither
sphere.

THEOREM 11.4 Condition for the path independence of a line integral Let F be a vector field de-
fined in an open connected region Dof space, and let � be any path in Dconnecting
two arbitrary points P at r1 and Q at r2 in D. Then:

(i) If the line integral
∮

�
F · dr is independent of the path � joining r1 to r2, a

scalar field f exists such that F = grad f .
(ii) If F = grad f with F = F1i + F2 j + F3k and r(t) = x(t)i + y(t)j + z(t)k, then

∮
�

F · dr =
∫ Q

P
(F1 dx + F2 dy + F3 dz) = f (Q) − f (P).

Proof Although not difficult, the proof of result (i) is a little harder than that ofa condition that
ensures path
invariance

result (ii). To prove (i) it is necessary to show that if P and Q are any two points in
an open connected region D, and the integral f = ∫ Q

P F · dr is independent of the
path � joining P to Q, then F = grad f .

Let P be an arbitrary point in D with coordinates (x0, y0, z0), and Q be a point
with coordinates (x, y0, z0), so that P and Q only differ in their x coordinates.
By hypothesis f is independent of the path � from P to Q, so we can take it to
be a straight line on which the general point can be written r = t i + y0j + z0k for
x0 ≤ t ≤ x1. Let P(x) be any point on � corresponding to r = xi + y0j + z0k, so
dr/dt = i, and denote by f (x) the integral

f (x) =
∫ x

x0

F · dr.

Then, setting F = F1i + F2 j + F3k, on path � we can write

f (x) =
∫ x

x0

F ·
(

dr
dt

)
dt =

∫ x

x0

F1(t, y0, z0)dt,

and so

f (x + h) − f (x) =
∫ x+h

x0

F1(t, y0, z0)dt −
∫ x

x0

F1(t, y0, z0)dt

=
∫ x+h

x
F1(t, y0, z0)dt.

Applying the mean value theorem for integrals (see Theorem 1.4) to the integral
on the right shows that

f (x + h) − f (x) = hF1(ξ, y0, z0),

where the unknown number ξ is such that x < ξ < x + h. The preceding expression
can be rewritten in the form

f (x + h) − f (x)
h

= F1(ξ, y0, z0),



654 Chapter 11 Vector Differential Calculus

and by proceeding to the limit as h → 0, when ξ → x, the expression on the left
reduces to ∂ f/∂x, because f is a function of x, y, and z, but y = y0 and z = z0 remain
constant during the limiting process. As P was an arbitrary point in D, it follows
that y0 and z0 are arbitrary, so we have shown that ∂ f/∂x = F1. Similar arguments in
which first Q is taken to be the point (x0, y, z0), and then to be the point (x0, y0, z),
show that ∂ f/∂y = F2 and ∂ f/∂z = F3. Combining these results gives F = grad f ,
and the proof of (i) is complete.

To prove (ii), let the smooth path � joining any two points P and Q in D have
the equation r = x(t)i + y(t)j + z(t)k for a ≤ t ≤ b. Then along �

df
dt

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

= grad f ·
(

dr
dt

)
= F ·

(
dr
dt

)
,

and so ∫
�

F · dr =
∫ b

a
F ·
(

dr
dt

)
dt =

∫ b

a

(
df
dt

)
dt = f (Q) − f (P),

and the result is proved.

To make effective use of Theorem 11.4 (ii) it is necessary to know when F is the
gradient of a scalar function f . Theorem 11.5, which follows, provides both a test
for a conservative field and a way of finding its associated potential function f .

THEOREM 11.5 Testing for a conservative field and finding the potential function The vector field

a test for a
conservative
field

F = F1i + F2 j + F3k with components that are continuous and differentiable is a
conservative field, and so is derivable from a scalar potential f , if

(i)
∂ F1

∂y
= ∂ F2

∂x
,

∂ F2

∂z
= ∂ F3

∂y
,

∂ F3

∂x
= ∂ F1

∂z
.

When F is a conservative field the scalar potential function f is found by inte-
grating the equations

(ii)
∂ f
∂x

= F1,
∂ f
∂y

= F2,
∂ f
∂z

= F3.

Proof If F is a conservative field, then a scalar potential f exists such that F =
grad f , and so

F1i + F2 j + F3k = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k.

Equating corresponding components gives

∂ f
∂x

= F1,
∂ f
∂y

= F2,
∂ f
∂z

= F3.

As, by hypothesis, the components of F are differentiable, the equality of mixed
derivatives requires that

∂

∂y

(
∂ f
∂x

)
= ∂ F1

∂y
= ∂

∂x

(
∂ f
∂y

)
= ∂ F2

∂x
,
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so we have established the first result in (i). The other two results are obtained in
similar fashion by equating the other two mixed derivatives, so the first part of the
theorem is proved. When F is a conservative field the scalar potential f follows by
integrating the equations in (ii), and the proof of the theorem is complete.

EXAMPLE 11.15 Show that F = y2zi + 2xyzj + (2z + xy2)k is a conservative field in any open con-
nected region of space, and find the associated scalar potential f . Use the result to
evaluate the line integral I = ∫ Q

P F · dr, where P is the point (2, 1, 1) and Q is the
point (3, 2, 2).

Solution In the notation of Theorem 11.5 the components of F are F1 = y2z,
F2 = 2xyz, and F3 = 2z + xy2, and a routine calculation confirms that

∂ F1

∂y
= ∂ F2

∂x
,

∂ F2

∂z
= ∂ F3

∂y
,

∂ F3

∂x
= ∂ F1

∂z
,

in any region of space, so the F is a conservative field.
To find the scalar potential f we must integrate

∂ f
∂x

= y2z,
∂ f
∂y

= 2xyz,
∂ f
∂z

= 2z + xy2.

Integrating the first equation with respect to x, while regarding y and z as constants,
gives

f = xy2z + r(y, z),

where r(y, z) is an arbitrary function of y and z. Combining this result with the
expression for ∂ f/∂y given earlier, we find that

∂ f
∂y

= 2xyz + ∂r
∂y

= 2xyz and so
∂r
∂y

= 0,

from which it follows that r = s(z), with s(z) an arbitrary function of z. Finally, using
this result with the expression for ∂ f/∂z given earlier we find that

∂ f
∂z

= xy2 + ds
dz

= 2z + xy2 and so
ds
dz

= 2z,

from which it follows that s(z) = z2 + c, where c is an arbitrary constant.
Combining results shows that the most general scalar potential function f

associated with F is

f = xy2z + z2 + c.

As F is a conservative field, the line integral between any two points in an open
connected region D can be evaluated using result (ii) of Theorem 11.4. However,
the arbitrary constant c in f can be omitted when evaluating a line integral using
the result ∫ Q

P
F · dr =

∫ Q

P
df = f (Q) − f (P),

because c occurs in both f (Q) and f (P), and so cancels. As a result, setting f =
xy2z + z2 and using the notation (xy2z + z2)(p,q,r) to denote xy2z + z2 evaluated
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with x = p, y = q, and z = r , we find that

I =
∫ Q

P
F · dr = (xy2z + z2)(3,2,2) − (xy2z + z2)(2,1,1)

= 28 − 3 = 25.

The example that follows shows the necessity of the condition in Theorem 11.4
that the region D is simply connected, because if this is not the case, a line integral
between two arbitrary points P and Q in D will not be independent of the path
joining them.

EXAMPLE 11.16 Show that the two-dimensional vector field F = ( −y
x2+y2 )i + ( x

x2+y2 )j satisfies the con-
ditions of Theorem 11.5 (i) in any region of space that does not contain the origin.
Evaluate the integral I = ∫

�
F · dr when (a) � is the circle x2 + y2 = 2 and and (b) �

is the square with corners P at (1, −1), Q at (3, −1), R at (3, 1), and S at (1, 1), and
comment on the results.

Solution The vector F is indeterminate at the origin, but is defined elsewhere in
the plane, where it satisfies the condition

∂

∂y

( −y
x2 + y2

)
= ∂

∂x

(
x

x2 + y2

)
.

This shows that F satisfies the two-dimensional form of Theorem 11.5 (i) in any
region of the plane that does not include the origin. When the origin is excluded
from the plane, vector F is seen to be defined in a nonsimply connected region.

The circle x2 + y2 = 2 and the square with its corners at PQRS are shown in
Fig. 11.11, from which it can be seen that the points P and S are common, so both the
circle and the square represent loops in the plane containing the points P and S. The
circle encloses the origin, so the points in its interior are not simply connected, while
the square excludes the origin, so the points in its interior are simply connected.

√2

P(1, −1) Q(3, −1)

R(3, 1)S(1, 1)

x0

y

FIGURE 11.11 Two loops, each containing points P and S, in a
nonsimply connected region.
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Setting x = √
2 cos t , y = √

2 sin t for 0 ≤ t ≤ 2π and evaluating the line integral
I in case (a) gives

I =
∫

�

( −y
x2 + y2

dx + x
x2 + y2

dy
)

= 2π.

In case (b) we have∫ Q

P
F · dr =

∫ 3

1

dx
x2 + 1

,

∫ R

Q
F · dr = 3

∫ 1

−1

dy
y2 + 9

,

∫ S

R
F · dr = −

∫ 1

3

dx
x2 + 1

and ∫ P

S
F · dr =

∫ −1

1

dy
y2 + 1

.

Evaluating these integrals and adding the results shows, as expected, that in case (b)
the integral I = 0.

These results could be used to illustrate that when a region is not simply con-
nected, the line integral between two points (in this case P and S) of a vector F
that satisfies the conditions of Theorem 11.5 (i) will, in general, depend on the path
joining the points.

FURTHER RESULTS
For the sake of completeness the definitions of the terms open, connected, and
simply connected are given below in rather more detail, and they are then illustrated
diagramatically by considering regions in the plane.

Definitions of open, connected, and simply connected regions

(i) A region D in space is said to be an open region if every point P in D can
be enclosed in a sphere centered on P whose radius can always be chosen small
enough that all points inside the sphere belong to D.

(ii) A region D in space is said to be connected if every pair of points in D can
be joined by a piecewise smooth path with finitely many segments that lies entirely
inside D.
(iii) A region D in space is said to be simply connected if every closed non-self-

intersecting loop in D can be shrunk to a point in D in such a way that during the
process every point on the loop remains in D.

Figure 11.12 illustrates these definitions in the case of two-dimensional regions,
where a dashed boundary is used to indicate that the points on the boundary are
omitted from the region. In (a), the region D is open, because however close P
is taken to the dashed line, a circle (the two-dimensional equivalent of the sphere
referred to in (i)) can always be drawn around P in such a way that all points in the
circle lie in D. In (b) the region D represented by the interior of the two circles is
not connected, because any line joining a point in one circle to a point in the other
contains points that do not belong to either circle. In (c) the region D is connected,
because any two points can always be joined by a line that lies entirely inside D.
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P

D

(a) (b) (c)

V

Γ2

Γ1

D

D
D

FIGURE 11.12 Regions in the plane illustrating connectivity.

However, in this case the region D is not simply connected, because although loop
�1 can be contracted to a point in such a way that every point on �1 remains in D,
this is not possible in the case of loop �2, which encloses a void V. This last example
can be visualized by considering the boundary of the void as a barrier and the loop
as an elastic band. In the case of �1 the elastic band can shrink to a point without
hindrance, but in the case of �2 this is prevented by the barrier surrounding the void.

Summary A conservative field is one in which zero work is done when moving around a closed loop
in the field and returning to the starting point. Expressed differently, a conservative field is
one in which the work done when moving between two separate points is independent
of the path followed between the two points. This property of conservative fields has led
to this independence of a line integral on the path between two points being called the
property of path invariance. The consequences of this definition have been explored and
a condition has been found that ensures path invariance. A test for a conservative field has
also been given.

EXERCISES 11.4

In Exercises 1 through 6 determine whether F is a conser-
vative field, and if so, where.

1. F = (3x2 y2 + yz2)i + (2x3 y + xz2)j + 2xyzk.
2. F = y cos(xy + z2)i + x cos(xy + z2)j + 2zcos(xy +

z2)k.
3. F = ex y2i + yexj + 3xzk.

4. F = x
(x2 + y2 + z2)1/2

i − y
(x2 + y2 + z2)1/2

j

+ 2z
(x2 + y2 + z2)1/2

k.

5. F = −2xz
(x2 + y2 + 2z2)2

i + −2yz
(x2 + y2 + 2z2)2

j

+ x2 + y2 − z2

(x2 + y2 + 2z2)2
k.

6. F = z
x2 + y2 + z2

i − y
x2 + y2 + z2

j + x
x2 + y2 + z2

k.

In Exercises 7 to 12 show F is a conservative field, and
by finding the scalar potential f evaluate the integral I =∫ Q

P F · dr between the given points P and Q.

7. F = (z3 + 6xy2)i + 6x2 yj + 3xz2k with P at (1, 0, 1) and
Q at (2, 1, 0).

8. F = 2xz2 cosh(x2 + 2y2)i + 4yz2 cosh(x2 + 2y2)j +
2zsinh(x2 + 2y2)k, with P at (1, 1, 1) and Q at
(0, 2, 1).

9. F = exyz(1 + xyz)i + x2zexyzj + x2 yexyzk, with P at
(0, 0, 0) and Q at (1, 1, 2).

10. F = yz(1 − x2)
(1 + x2)2

i + xz
1 + x2

j + xy
1 + x2

k, with P at

(1, 1, 1) and Q at (2, 2, 0).
11. F = 2x(1 + yz2)i + x2z2j + 2x2 yzk, with P at (3, 1, −1)

and Q at (1, 0, 2).
12. F = 2x(y2 + z2)i + 2y(1 + x2)j + 2z(1 + x2)k, with P at

(0, 1, 2) and Q at (2, 0, 1).
13. Verify the results of Example 11.15 by performing

the indicated integrations along a straight line from P
to Q.
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11.5 Divergence and Curl of a Vector

It is necessary to introduce two new operations involving vectors. The first oper-
ation is called the divergence of a vector, and it associates a scalar function with
a differentiable vector field F. The second operation is called the curl of a vector,
and it associates a vector function with the vector F. If F = F1i + F2 j + F3k is a
differentiable vector field, the divergence of F, written div F, is the scalar functiondivergence of a vector
defined in terms of cartesian coordinates as

div F = ∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z
. (39)

The divergence of the vector F can also be expressed in terms of the operator “del”
defined in (25) as

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

by writing

div F = ∇ · F =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (F1i + F2j + F3k), (40)

where the mutual orthogonality of i, j, and k coupled with the fact that they are
constant vectors causes the expression on the right of (40) to be reduced to the
expression on the right of (39), with the operation ∇ · F being read “del dot F.” The
form taken by div F in more general coordinate systems is derived in Section 11.6.

At this stage, for simplicity, the definition of div F is expressed in terms of
cartesian coordinates, though it will be shown later that div F is, in fact, independent
of any coordinate system. In the next chapter it will be shown that div F can be
interpreted as the flux of the normal component of the vector F that crosses the
surface of a unit volume in a unit time. This means that when div F is positive, there
is a net flow of F out of the volume, and when div F is negative, there is a net flow
of F into the volume.

In anticipation of the next chapter, we give a heuristic derivation of div F in
terms of cartesian coordinates that shows how div F can be defined differently,
and at the same time illustrates its physical significance. Consider the small cube of
side a shown in Fig. 11.13 with faces normal to the coordinate axes, and take the
positive direction of the normal to each face of the cube to be the one directed out of
the cube. The normal component of F entering face Ais F2(x, y0, z), and the normal
component of F leaving face B is F2(x, y0 + a, z), where from Taylor’s theorem
for functions of several variables, to first order in a we have F2(x, y0 + a, z) =
F2(x, y0, z) + a∂ F2(x, y0, z)/∂y.

Consequently, if we average F2(x, y0, z) over face A and denote the result by
F̃2, the integral of F2(x, y0, z) over face A is approximately equal to a2 F̃2, while the
integral over face B is approximately equal to a2[F̃2 + a∂ F̃2/∂y], so the change of
the flux of F from face A to face B is approximately a3∂ F̃2/∂y. Similar results apply
to the other pairs of faces, so denoting the surface of the cube by S, and letting Fn
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F2(x, y0 + a, z)
F2(x, y0, z)

a

a

a

A

B

V

y

y0

x0

z0

z

x

0

FIGURE 11.13 A representative cubic element.

denote the component of F normal to S, positive when outward, with dS a surface
element of area of a face, we have

lim
a→0

1
a3

∫∫
S

Fn dS = lim
a→0

1
a3

(
a3 ∂ F̃1

∂x
+ a3 ∂ F̃2

∂y
+ a3 ∂ F̃3

∂z

)
= ∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z
.

The expression on the right is div F, so this result shows that the divergence
of a vector field F in cartesian coordinates is the limit of the flux of the normal
component of F through the surface S bounding a volume as the volume tends to
zero. A different form of argument used in the next chapter will show that for any
volume V with surface S and element of surface area dS, independently of any
coordinate systema different

interpretation
of div F

div F = lim
V→0

1
V

∫∫
S

Fn dS.

It is helpful to interpret this result in terms of the flow of a liquid. If we identify q
with the liquid velocity vector, V with the volume occupied by the liquid, and S with
the surface enclosing V, the product qn dS, with qn the component of q normal to
dS, is seen to be the volume of liquid crossing the surface element dS in a unit time.
Consequently,

∫∫
S Fn dS is the total volume of liquid leaving through the surface

S in a unit time. As a liquid can be considered to be incompressible, provided the
volume contains neither a source of liquid (a point in V through which liquid enters)
nor a sink (a point in V through which liquid is extracted), it follows that

∫∫
S Fn dS

will be zero for an incompressible fluid.



Section 11.5 Divergence and Curl of a Vector 661

Thus, in an incompressible liquid free from sources and sinks, div q = 0. If
sources and sinks occur in the liquid, their strengths can be found by enclosing
each in a small volume and then letting it become arbitrarily small, in which case a
positive value of div q will correspond to a source and a negative value to a sink.

If, instead of a liquid, the flow of a gas is involved, the compressibility of a gas
causes its density to vary from point to point, so then, in general, the value of div q
will depend on position and, if the flow is unsteady, also on the time.

EXAMPLE 11.17 Find div F when F = xy2i + 3yzj − 4xzk.

Solution From (39) div F = ∂
∂x (xy2) + ∂

∂y (3yz) + ∂
∂z(−4xz) = y2 + 3z − 4x.

We have seen that provided f is suitably differentiable, grad f is a vector,
so when f is twice differentiable it is appropriate to examine the operation div
(grad f ). This is usually written div grad f , because no ambiguity arises when the
brackets are omitted. By definition

div grad f =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(

i
∂ f
∂x

+ j
∂ f
∂y

+ k
∂ f
∂z

)

= ∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z2

= � f, (41)

and so div grad f = � f is simply the Laplacian of f .

THEOREM 11.6 Properties of the divergence operator Let the vector fields F and G and the scalar

fundamental properties
of the divergence
operator

fields φ and ψ be a suitably differentiable, and let a and b be constants. Then the
divergence operator has the following properties:

(i) div(aF) = a div F

(ii) div(aF + bG) = a div F + b div G

(iii) div(φF) = φ div F + F · ∇φ

(iv) div(grad φ) = �φ

(v) div(φ∇ψ) = φ�ψ + grad φ · grad ψ = φ�ψ + ∇φ · ∇ψ

(vi) div(φ∇ψ) − div(ψ∇φ) = φ�ψ − ψ�φ

Proof The derivation of these results follows directly from the definition of the
divergence of a vector in (39). So, as (iv) has already been established, we will only
prove (iii) and leave the other results as exercises.

If F = F1i + F2 j + F3k, it follows that φF = φF1i + φF2 j + φF3k, and so

div(φF) = ∂

∂x
(φF1) + ∂

∂y
(φF2) + ∂

∂z
(φF3)

= φ

(
∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z

)
+ F1

∂φ

∂x
+ F2

∂φ

∂y
+ F3

∂φ

∂z

= φ div F + F · ∇φ.
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When expressed in terms of cartesian coordinates, the curl of the vector F =the definition of curl F
F1i + F2 j + F3k is defined as

curl F =
(

∂ F3

∂y
− ∂ F2

∂z

)
i +

(
∂ F1

∂z
− ∂ F3

∂x

)
j +

(
∂ F2

∂x
− ∂ F1

∂y

)
k. (42)

This form of the definition of curl F is more easily remembered when expressed
symbolically as the determinant

curl F =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣∣ , (43)

or in terms of the operator “del” as

curl F = ∇ × F =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× (F1i + F2 j + F3k), (44)

where it is to be understood that the differentiations are to be performed before
finding the cross products, and the operation ∇ × F is read as “del cross F.”

EXAMPLE 11.18 Find curl F given that F = xyi + zj + yzk.

Solution Using (43) we have

curl F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
xy z yz

∣∣∣∣∣∣∣∣
=
(

∂

∂y
(yz) − ∂

∂z
(z)
)

i −
(

∂

∂x
(yz) − ∂

∂z
(xy)

)
j +

(
∂

∂x
(z) − ∂

∂y
(xy)

)
k

= (z − 1)i − xk.

EXAMPLE 11.19 Show that if φ is any scalar function with continuous first and second order deriva-
tives, then curl(grad φ) ≡ 0.

Solution By definition grad φ = φxi + φyj + φzk, so from (44)

curl(grad φ) =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× (φxi + φyj + φzk).

After we use the properties of the vector product with the mutually orthogonal unit
vectors i, j, and k, this reduces to

curl(grad φ) = ∂

∂x
(φy)k − ∂

∂x
(φz)j − ∂

∂y
(φx)k + ∂

∂y
(φz)i + ∂

∂z
(φx)j − ∂

∂z
(φy)i.

By hypothesis φ has continuous partial derivatives up to and including order 2, so
there is equality of mixed derivatives. As a result φxy = φyx, showing that the k
component of curl(grad φ) vanishes. The j and i components of curl(grad φ) vanish
for the same reason so that curl(grad φ) ≡ 0.



Section 11.5 Divergence and Curl of a Vector 663

The operators grad, div, and curl can be combined in various ways that lead to
identities, the results of which are listed in the next theorem. These identities are
useful when manipulating vector operations. In some of the entries the notation
(F · ∇)G is used, and if F = F1i + F2 j + F3k and G = G1i + G2 j + G3k this is to be
interpreted as the vector

(F · ∇)G =
[

(F1i + F2 j + F3k) ·
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)]
(G1i + G2 j + G3k)

=
(

F1
∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z

)
(G1i + G2 j + G3k).

THEOREM 11.7 Properties of combinations of grad, div, and curl Let F and G be vector functions

combining grad,
div, and curl

and let φ be a scalar function, all of which are suitably differentiable. Then the
following identities hold.

(i) curl(grad φ) = 0

(ii) div(curl F) = 0

(iii) curl(φF) = φ curl F − F × grad φ

(iv) grad(F · G) = F × curl G + G × curl F + (F · ∇)G + (G · ∇)F

(v) div(F × G) = G · curl F − F · curl G

(vi) curl (F × G) = F div G − G div F + (G · ∇)F − (F · ∇)G

(vii) curl(curl F) = grad(div F) − �F

Proof Result (i) has already been established. As the other results follow in similar
fashion from the definitions of the gradient, divergence, and curl operators, the
remaining proofs are left as exercises.

The expression for curl F in more general coordinate systems is derived in Sec-
tion 11.6, but a different definition of curl F together with a physical interpretation
will be postponed until after the discusion of Stokes’ theorem in the next chapter.

Theorem 11.7 provides a test for conservative vector fields F. Although the test
is equivalent to the test in Theorem 11.5 (i), it is in a more easily remembered form.
By definition, a vector field F is a conservative field if F = grad f , but from (i) of
Theorem 11.7, if F = grad f then curl F = 0, and it is this last result that provides
the test. However, if after establishing that F is a conservative field its associated
potential function f is required, it must be found by integrating the equations in
Theorem 11.5 (ii), as illustrated in Example 11.14.

Curl test for a conservative vector field

A vector field F is conservative, that is, it is F = grad f where f is the associatedusing curl F to test
for a conservative
field

scalar potential, if curl F = 0.

EXAMPLE 11.20 For what values of a and b is the vector field F = (x + z)i + a(y + z)j + b(x + y)k
a conservative field?
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Solution

curl F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
x + z a(y + z) b(x + y)

∣∣∣∣∣∣∣∣ = (b − a)i + (1 − b)j,

so curl F = 0 if b − a = 0 and 1 − b = 0. Consequently, F will be a conservative field
if a = b = 1.

EXAMPLE 11.21 Find curl(curl F) given that F = x2 y2i + y2z2j + x2z2k.

Solution To calculate curl(curl F), we will use result (vii) of Theorem 11.7. We
have

div F = 2xy2 + 2yz2 + 2zx2,

so

grad(div F) = (2y2 + 4xz)i + (2z2 + 4xy)j + (2x2 + 4yz)k.

Next,

�F =
(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
(x2 y2i + y2z2j + x2z2k)

= 2(x2 + y2)i + 2(y2 + z2)j + 2(x2 + z2)k,

so combining results gives

curl(curl F) = (4xz − 2x2)i + (4xy − 2y2)j + (4yz − 2z2)k.

Vector fields, line integrals, the theory, application, and evaluation of multiple inte-
grals, and the vector operators grad, div, and curl are all defined and their properties
developed in standard calculus and analytic geometry texts such as those in refer-
ences [1.1], [1.2], [1.5], [1.6], and [1.7]. Reference [5.6] gives a concise summary
of these results together with numerous examples. More advanced and detailed
accounts, where the emphasis is placed on a vector treatment, are to be found in
references [5.1], [5.2], and [1.4].

Summary The previous section introduced the gradient operator, where it was shown that it acts
on a scalar function of position to produce a vector. The present section introduced two
more vector operators called the divergence and curl operators. The divergence operator
was seen to act on a vector to produce a scalar, while the curl operator acted on a vector
to produce another vector. The general operational properties of the divergence and curl
operators were developed together with the results of combining all three vector operators.

EXERCISES 11.5

In Exercises 1 through 4, find div F for the given vector
function F.

1. F = x2 yi + y2z2j + xz3k.
2. F = (1 − x2)i + sin yzj + exyzk.
3. F = 3x2i + 2x2 y2j + xk.

4. F = cos xi + sin yj + z2k.
5. Prove that div(φF) = φ div F + F · ∇φ

(Theorem 11.6 (iii)).
6. Prove that div(φ∇ψ) = φ�ψ + ∇φ · ∇ψ

(Theorem 11.6 (v)).
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In Exercises 7 through 10 find curl F for the given vector
function F.

7. F = xyz2i + x2 yzj + xy2k.
8. F = sinh xyi + cosh yzj + xyzk.
9. F = arctan x

y i + ln(x2 + 2y2)1/2j + yk.

10. F = (x2 + y2 + z2)1/2i + (x2 + y2 + z2)1/2j + xk.
11. Prove that div(curl F) ≡ 0 (Theorem 11.7 (ii)).
12. Prove that curl(φF) ≡ φ curl F − F × grad φ

(Theorem 11.7 (iii)).
13. Prove that grad(F · G) ≡ F × curl G + G × curl F +

(F · ∇)G + (G · ∇)F (Theorem 11.7 (iv)).
14. Prove that div(F × G) ≡ G · curl F − F · curl G

(Theorem 11.7 (v)).
15. Prove that curl(F × G) ≡ F div G − G div F +

(G · ∇)F − (F · ∇)G (Theorem 11.7 (vi)).

16. Prove that curl(curl F) = grad(div F) −�F
(Theorem 11.7 (vii)).

17. Find curl(curl F) given that F = 3xyzi + 2yj − 4zk.

In Exercises 17 and 20 use the curl test to see if or where
the vector field F is conservative.

18. F = yzcosh(xyz + y2)i + (xz + 2y) cosh(xyz + y2)j +
2xy cosh(xyz + y2)k.

19. F = 2xy2i + (2x2 y + 6yz3)j + 9y2z2k.

20. F = 1
(x2 + y2 + z2)1/2

(xi + yj + zk).

21. F = 1
(1 + x2 + 2y2z)

(2xi + 4yzj + 2y2k).

11.6 Orthogonal Curvilinear Coordinates

The geometrical configuration of a physical problem often suggests the most ap-
propriate coordinate system that should be used when seeking its solution. For
example, heat conduction in a cylindrical rod suggests the use of cylindrical polar
coordinates with the z-axis aligned with the axis of the rod, whereas the distribu-
tion of an electric field inside a spherical cavity suggests the use of spherical polar
coordinates. When problems of this nature are expressed in terms of vectors, and
the operators grad, div, and curl are involved, it becomes necessary to find the form
taken by these operators in different systems of curvilinear coordinates. The reader
who wishes to omit the derivation of the main results of this section should proceed
directly to Theorem 11.8 after studying the definition of an orthogonal system of
curvilinear coordinates and the meaning of the scale factors h1, h2, and h3.

In what follows, in order to unify notation, it is convenient to denote the usual
cartesian coordinates x, y, and zby x1, x2, and x3 and a general system of curvilinear
coordinates by q1, q2, and q3, where the two systems are related by the equations

x1 = x1(q1, q2, q3), x2 = x2(q1, q2, q3), x3 = x3(q1, q2, q3). (45)

For the curvilinear coordinates q1, q2, and q3 to be equivalent to the cartesian
coordinate system x1, x2, and x3 it is necessary that equations (45) can be solved
uniquely in the form

q1 = q1(x1, x2, x3), q2 = q2(x1, x2, x3), q3 = q3(x1, x2, x3), (46)

so that one point in cartesian coordinates corresponds to only one point in curvilin-
ear coordinates, and conversely. As derivatives of functions occur in grad, div, and
curl, it is necessary that the coordinate functions x1, x2, and x3, as functions of q1,
q2, and q3 in (45), are all suitably differentiable with respect to their arguments.

Taking the total differentials of the coordinate transformations in (45), we have

dx1 = ∂x1

∂q1
dq1 + ∂x1

∂q2
dq2 + ∂x1

∂q3
dq3, dx2 = ∂x2

∂q1
dq1 + ∂x2

∂q2
dq2 + ∂x2

∂q3
dq3

dx3 = ∂x3

∂q1
dq1 + ∂x3

∂q2
dq2 + ∂x3

∂q3
dq3. (47)
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These results can be written in the matrix form

dx = J dq, (48)

where

dx =
⎡⎣dx1

dx2

dx3

⎤⎦ , dq =
⎡⎣dq1

dq2

dq3

⎤⎦ , and J =

⎡⎢⎢⎢⎢⎢⎢⎣

∂x1

∂q1

∂x1

∂q2

∂x1

∂q3
∂x2

∂q1

∂x2

∂q2

∂x2

∂q3
∂x3

∂q1

∂x3

∂q2

∂x3

∂q3

⎤⎥⎥⎥⎥⎥⎥⎦ . (49)

The matrix vector linear differential elements dx and dq will be uniquely related
by (48) provided matrix J is nonsingular, so the coordinate transformations (45)
must be such that J = det J �= 0, where

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x2

∂q1

∂x3

∂q1
∂x1

∂q2

∂x2

∂q2

∂x3

∂q2
∂x1

∂q3

∂x2

∂q3

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣
. (50)

The determinant J is called the Jacobian of the transformation, and it will bethe Jacobian of a
transformation shown later that the absolute value of the Jacobian occurs as a scale factor in the vol-

ume element in orthogonal curvilinear coordinates. Thus, the vanishing of the Jaco-
bian signifying nonuniqueness in the transformations (45) and (46) also corresponds
to the failure of the curvilinear coordinate system to define a volume element.

CARL GUSTAV JACOBI (1804–1851)
A German mathematician who studied at the University of Berlin and obtained his doctorate in
1825. In 1827 he was appointed Extraordinary Professor of Mathematics at Königsberg and,
after two years, he was promoted to Ordinary Professor of Mathematics. In 1842 he moved to
Berlin where he remained until his death. His most important work was in connection with
elliptic functions, but he also made important contributions to number theory, ordinary and
partial differential equations, and the calculus of variations. He was an outstanding teacher of
mathematics.

Keeping q1 and q1 + dq1 constant defines two curvilinear surfaces in space,
and four further curvilinear surfaces are defined by keeping q2 and q2 + dq2 con-
stant, and q3 and q3 + dq3 constant. Taken together, the region between these six
curvilinear surfaces defines the volume element dV in space shown in Fig. 11.14.general and

orthogonal
curvilinear
coordinates

Allowing q1 to vary while holding q2 and q3 constant in (45) will generate a
curvilinear coordinate line in space along which only q1 changes. Similarly, allowing
q2 to vary while holding q1 and q3 constant, and then q3 to vary while holding q1 and
q2 constant, will generate curvilinear coordinate lines in space along which, respec-
tively, only q2 and q3 vary. If a general point A in space shown in Fig. 11.14 is con-
sidered, there will be three curvilinear coordinate lines passing through the point.
A curvilinear coordinate system will be said to be an orthogonal system if at every
point in space the three tangents to the coordinate lines at their point of intersection



Section 11.6 Orthogonal Curvilinear Coordinates 667

dl3 dl2

dl1

A

A1

A2

A3

q1

q2

q3

dV

FIGURE 11.14 The curvilinear volume element dV.

are mutually orthogonal (perpendicular). Such coordinate systems are also consid-
ered to be orthogonal if the orthogonality condition fails at a single point or along
a line. In what follows, only orthogonal coordinate systems will be considered.

With the linear differential length elements AA1 = dl1, AA2 = dl2, and AA3 =
dl3, the orthogonality of the curvilinear coordinate system implies that in terms of
curvilinear coordinates the linear volume element dV in Fig. 11.14 is given bythe volume element

dV = dl1 dl2 dl3. (51)

Now, in Fig. 11.14, let A be the point (x1, x2, x3) and A1 be the point (x1 +
dx1, x2 + dx2, x3 + dx3), where dx1, dx2, and dx3 are the linear differential elements
in cartesian coordinates. To find the linear differential length element dl1 from A to
A1, we apply the Pythagoras theorem to the mutually orthogonal linear differential
length elements dx1, dx2, and dx3, when we obtain

dl2
1 = dx2

1 + dx2
2 + dx2

3 , (52)

However along AA1 only q1 varies, so as

dx1 = ∂x1

∂q1
dq1, dx2 = ∂x2

∂q1
dq1, dx3 = ∂x3

∂q1
dq1, (53)

the square of the linear differential length element in (52) becomes

dl2
1 =

[(
∂x1

∂q1

)2

+
(

∂x2

∂q1

)2

+
(

∂x3

∂q1

)2
]

dq2
1 . (54)

Similar arguments show that if dl2 and dl3 are the linear differential length
elements along AA2 and AA3, then

dl2
2 =

[(
∂x1

∂q2

)2

+
(

∂x2

∂q2

)2

+
(

∂x3

∂q2

)2
]

dq2
2 , (55)
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and

dl2
3 =

[(
∂x1

∂q3

)2

+
(

∂x2

∂q3

)2

+
(

∂x3

∂q3

)2
]

dq2
3 . (56)

We now adopt the standard notation and define the scale factors h1, h2, and h3,the scale factors
h1, h2, h3 with respect to the coordinates q1, q2, and q3 in transformations (45), by

h1 =
[(

∂x1

∂q1

)2

+
(

∂x2

∂q1

)2

+
(

∂x3

∂q1

)2
]1/2

(57)

h2 =
[(

∂x1

∂q2

)2

+
(

∂x2

∂q2

)2

+
(

∂x3

∂q2

)2
]1/2

(58)

h3 =
[(

∂x1

∂q3

)2

+
(

∂x2

∂q3

)2

+
(

∂x3

∂q3

)2
]1/2

. (59)

In terms of h1, h2, and h3 the linear differential line elements dl1, dl2, and dl3

in rectangular curvilinear coordinates defined in (54) to (56) become

dl1 = h1dq1, dl2 = h2dq2, dl3 = h3dl3. (60)

If the general linear differential length element from Ato B in Fig. 11.14 is denoted
by ds, then as the coordinate system is orthogonal,

ds2 = dl2
1 + dl2

2 + dl2
3 , (61)

so it follows from (60) that

ds2 = h2
1dq2

1 + h2
2 dq2

2 + h2
3 dq2

3 . (62)

In terms of the scale factors the linear differential volume element dV in (51)
becomes

dV = h1h2h3 dq1 dq2 dq3. (63)

It can be seen from this last result that the coordinate transformations (45) will
fail to define a volume element in curvilinear coordinates if a scale factor vanishes.
From the definitions of the scale factors, this can only happen if all of the partial
derivatives in a scale factor vanish, but when this occurs the Jacobian determinant
J will have a zero row, and so will also vanish. This is to be expected, because it is
known from calculus that when the Jacobian vanishes, the transformation between
the coordinate systems ceases to be one to one.

To understand the geometrical interpretation of the Jacobian, we make use of
the elementary result from vector analysis that the scalar triple product a · (b × c)
can be interpreted as the volume of the parallelepiped with sides given by vectors
a, b, and c that meet at a point. The value of this scalar triple product is equal to
the determinant with the elements of a, b, and c as its first, second, and third rows,
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respectively. Considering dx1, dx2, and dx3 in (47) as vectors in the curvilinear coor-
dinate system, we see that the linear differential volume element dV = dx1dx2dx3

can be written

±dV =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1
dq1

∂x2

∂q1
dq1

∂x3

∂q1
dq1

∂x1

∂q2
dq2

∂x2

∂q2
dq2

∂x3

∂q2
dq2

∂x1

∂q3
dq3

∂x2

∂q3
dq3

∂x3

∂q3
dq3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x2

∂q1

∂x3

∂q1
∂x1

∂q2

∂x2

∂q2

∂x3

∂q2
∂x1

∂q3

∂x2

∂q3

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣
dq1 dq2 dq3. (64)

As a volume element is essentially nonnegative, this can be expressed in termsthe Jacobian and
the volume element of the Jacobian J of the transformation as

dV = ±Jdq1 dq2 dq3, (65)

where the sign in (65) is chosen to make the expression on the right positive. A
comparison of (63) and (65) then shows that the absolute value of the Jacobian J
is equal to the product of the scale factors forming the scale factor for the linear
volume element dV, and so

h1h2h3 = ±J, (66)

where the sign is chosen to make the expression on the right positive.

EXAMPLE 11.22 Find the scale factors, the linear differential length elements along the curvilinear
coordinate lines, the square of the general linear differential length element ds, the
linear differential volume element dV, and the Jacobian for (a) cylindrical polar
coordinates and (b) spherical polar coordinates.

Solution

(a) In cylindrical polar coordinates x = r cos θ , y = r sin θ , z = z, so to relate this
system to the general one just considered, we must make the identifications x1 = x,

x2 = y, x3 = z, q1 = r, q2 = θ , and q3 = z. When this is done, substitution into (57)
to (59) shows that

h1 = 1, h2 = r, h3 = 1,

so from (60) the linear differential length elements along the curvilinear coordinate
lines are

dl1 = dr, dl2 = r dθ, dl3 = dz.

It then follows from (62) that the square of the general linear differential length
element ds is

ds2 = dr2 + r2 dθ2 + dz2,

and from (63) that the linear differential volume element in terms of cylindrical
polar coordinates is

dV = r dr dθ dz.
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The Jacobian of the transformation

J =
∣∣∣∣∣∣

cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r,

in agreement with (66).
The transformation ceases to be one to one when r = 0, because then h2 = 0,

though this is to be expected because r = 0 is the z-axis along which θ is indetermi-
nate.

(b) In spherical polar coordinates x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ ,
so to relate this system to the general one just considered we must make the identi-
fications x1 = x, x2 = y, x3 = z, q1 = r, q2 = φ, and q3 = θ . When this is done, sub-
stitution into (57) to (59) shows that

h1 = 1, h2 = r, h3 = r sin θ,

so from (60) the linear differential length elements along the curvilinear coordinate
lines are

dl1 = dr, dl2 = rdφ, dl3 = r sin θ dθ

As in (a), it follows from (62) that the square of the general linear differential length
element ds is

ds2 = dr2 + r2 sin2 θ dθ2 + r2 dφ2

and from (63) that the linear differential volume element in terms of spherical polar
coordinates is

dV = r2 sin θ dr dθ dφ.

The Jacobian of the transformation

J =
∣∣∣∣∣∣

sin θ cos φ sin θ sin φ cos θ

−r sin θ sin φ r sin θ cos φ 0
r cos θ cos φ r cos θ sin φ −r sin θ

∣∣∣∣∣∣ = −r2 sin θ,

and in agreement with (66) we see that h1h2h3 = |J | = r2 sin φ.
The Jacobian vanishes when r = 0, causing h2 and h3 to vanish, but this corre-

sponds to the origin where θ and φ are indeterminate. The Jacobian also vanishes
when φ = 0 and φ = π , corresponding to points on the z-axis where θ is indeter-
minate.

To derive the form of the gradient, divergence, curl, and Laplacian operators
in rectangular curvilinear coordinates, it is necessary to introduce the triad of unit
vectors e1, e2, and e3 at a general point (q(0)

1 , q(0)
2 , q(0)

3 ). Here, e1 is tangent to the q1

coordinate line, e2 is tangent to the q2 coordinate line, and e3 is tangent to the q3 co-
ordinate line at the point (q(0)

1 , q(0)
2 , q(0)

3 ). If we denote a general vector in curvilinear
coordinates by q(q1, q2, q3), the vector forms of the three coordinate lines become

q = q
(
q1, q(0)

2 , q(0)
3

)
, q = q

(
q(0)

1 , q2, q(0)
3

)
, and q = q

(
q(0)

1 , q(0)
2 , q3

)
.

(67)
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As a result, the vectors e1, e2, and e3 are, respectively, parallel to the derivatives
∂q/∂q1, ∂q/∂q2, and ∂q/∂q3 at the point (q(0)

1 , q(0)
2 , q(0)

3 ). The scale factors along these

coordinate lines are h1, h2, and h3, it follows that the unit vectors at (q(0)
1 , q(0)

2 , q(0)
3 )

are

e1 = ∂q
∂q1

/∣∣∣∣ ∂q
∂q1

∣∣∣∣, e2 = ∂q
∂q2

/∣∣∣∣ ∂q
∂q2

∣∣∣∣, and e3 = ∂q
∂q3

/∣∣∣∣ ∂q
∂q3

∣∣∣∣,
where, of course, the scale factors h1, h2, and h3 are given by

h1 =
∣∣∣∣ ∂q
∂q1

∣∣∣∣, h2 =
∣∣∣∣ ∂q
∂q2

∣∣∣∣, and h3 =
∣∣∣∣ ∂q
∂q3

∣∣∣∣,
so that

e1 = 1
h1

∂q
∂q1

, e2 = 1
h2

∂q
∂q2

, e3 = 1
h3

∂q
∂q3

. (68)

It is important to recognize that unlike the unit vectors i, j, and k, which are
parallel to the fixed x-, y-, and z-axes so their derivatives are zero, the unit vectors
e1, e2, and e3 in curvilinear coordinates are functions of position, so when finding the
form of vector operators, we must take into account the derivatives of e1, e2, and e3.

THEOREM 11.8 Gradient, divergence, curl, and Laplacian in general rectangular curvilinear coor-
dinates Let the scalar function f (q1, q2, q3), and the vector function

grad, div, and curl in
general rectangular
curvilinear
coordinates

F = F1(q1, q2, q3)e1 + F2(q1, q2, q3)e2 + F3(q1, q2, q3)e3

be suitably differentiable functions of the rectangular curvilinear coordinates q1, q2,
and q3, where e1 is the unit vector in the direction of increasing q1, e2 is the unit
vector in the direction of increasing q2, and e3 is the unit vector in the direction of
increasing q3 at the point (q1, q2, q3). Then:

(i) grad f = e1
1
h1

∂ f
∂q1

+ e2
1
h2

∂ f
∂q2

+ e3
1
h3

∂ f
∂q3

(ii) div F = 1
h1h2h3

[
∂

∂q1
(h2h3 F1) + ∂

∂q2
(h1h3 F2) + ∂

∂q3
(h1h2 F3)

]

(iii) curl F = 1
h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂

∂q1

∂

∂q2

∂

∂q3

h1 F1 h2 F2 h3 F3

∣∣∣∣∣∣∣∣∣∣
(iv)

� ≡ 1
h1h2h3

[
∂

∂q1

(
h2h3

h1

∂

∂q1

)
+ ∂

∂q2

(
h1h3

h2

∂

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂

∂q3

)]
(the Laplacian operator)
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Proof

(i) To find grad f = ∂ f
∂x1

i + ∂ f
∂x2

j + ∂ f
∂x3

k in terms of curvilinear coordinates it is
necessary to find the components of this vector in the e1, e2, and e3 directions, and
then to use them as the components of a vector expressed in terms of curvilinear
coordinates. As only q1 varies in the direction of e1, it follows from the first equations
in (46) and (68) that

e1 = 1
h1

(
∂x1

∂q1
i + ∂x2

∂q1
j + ∂x3

∂q1
k
)

.

Thus, the component of grad f in the direction of the unit vector e1 is

e1 · grad f = 1
h1

(
∂ f
∂x1

∂x1

∂q1
+ ∂ f

∂x2

∂x2

∂q1
+ ∂ f

∂x3

∂x3

∂q1

)
= 1

h1

∂ f
∂q1

,

where the last result follows directly from the chain rule.
Corresponding results apply for the components of grad f in the directions of

the unit vectors e2 and e3, so if we use these results as the components of grad f in
curvilinear coordinates, it follows that

grad f = e1
1
h1

∂ f
∂q1

+ e2
1
h2

∂ f
∂q2

+ e3
1
h3

∂ f
∂q3

,

and result (i) is established.
In what follows, for conciseness when establishing results (ii) to (iv), the op-

erator notations ∇ · (·) and ∇ × (·) will be used to signify the divergence and curl
operators.

(ii) As e1, e2, and e3 are orthogonal unit vectors e1 = e2 × e3. By identifying f in
(i) with q1 we see that e1 = h1∇q1 and, similarly, by identifying f with q2 and q3 it
follows that e2 = h2∇q2 and e3 = h3∇q3, and so e1 = h2h3∇q2 × ∇q3.

To find div F it is necessary to compute ∇ · (F1e1 + F2e2 + F3e3) taking into
account the dependence of e1, e2, and e3 on position. Because of the linearity of
the divergence operator, this can be accomplished by taking the divergence of each
term in F = F1e1 + F2e2 + F3e3 and then summing the results. The divergence of
the first term is given by ∇ · (F1e1) = ∇ · (F1h2h3∇q2 × ∇q3), so using result (iii) of
Theorem 11.6, this becomes

∇ · (F1e1) = F1h1h2∇ · (∇q2 × ∇q3) + (∇q2 × ∇q3) · ∇(F1h1h2).

However, applying result (v) of Theorem 11.7 to the term ∇ · (∇q2 × ∇q3) and
using the fact that curl(grad q2) = curl(grad q3) = 0 simplifies this result to

∇ · (F1e1) = (∇q2 × ∇q3) · ∇(F1h1h2),

but e1 = h2h3∇q2 × ∇q3, and so

∇ · (F1e1) = 1
h2h3

e1 · ∇(F1h2h3).

In the proof of (i) we saw that

e1 · grad f = 1
h1

∂ f
∂q1

,

so identifying f with F1h2h3 we find that

∇ · (F1e1) = 1
h1h2h3

∂(F1h2h3)
∂q1

.
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Corresponding results apply to ∇ · (F2e2) and ∇ · (F3e3), so summing the results
we arrive at result (iii).
(iii) To find curl F it is necessary to compute ∇ × (F1e1 + F2e2 + F3e3), so as curl is

a linear operator, we may compute the curl of each term in F = F1e1 + F2e2 + F3e3

and then sum the results. Considering the term ∇ × (F1e1) and writing e1 = h1∇q1,
we find that ∇ × (F1e1) = ∇ × (F1h1∇q1). Applying result (iii) of Theorem 11.7 to
this last result, we find that

∇ × (F1e1) = F1h1∇ × (∇q1) − (∇q1) × (∇F1h1),

but ∇ × (∇q1) = 0, and so

∇ × (F1e1) = −(∇q1) × (∇F1h1).

Now ∇q1 = e1/h1, so if we reverse the sign in the preceding result and com-
pensate by interchanging the order of the factors, the result becomes

∇ × (F1e1) =
[

e1
1
h1

∂(F1h1)
∂q1

+ e2
1
h2

∂(F1h1)
∂q2

+ e3
1
h3

∂(F1h1)
∂q3

]
× e1

h1
,

and so using the orthogonality of the unit vectors e1, e2, and e3, which implies
e1 × e1 = 0, e2 × e1 = −e3, and e3 × e1 = e2, this becomes

∇ × (F1e1) = e2
1

h1h3

∂

∂q3
(h1 F1) − e3

1
h1h2

∂

∂q2
(h1 F1).

Corresponding results exist for ∇ × (F2e2) and ∇ × (F3e3), so combining them we
find that

∇ × F = e2
1

h1h3

∂

∂q3
(h1 F1) − e3

1
h1h2

∂

∂q2
(h1 F1) + e3

1
h1h2

∂

∂q1
(h2 F2)

− e1
1

h2h3

∂

∂q3
(h2 F2) + e1

1
h2h3

∂

∂q1
(h3 F3) − e2

1
h1h3

∂

∂q2
(h3 F3).

This last result is seen to be the expansion of the determinant in (iii), so the proof
is complete.
(iv) The Laplacian operator

� = ∇ ·
[

e1
1
h1

∂

∂q1
+ e2

1
h2

∂

∂q2
+ e3

1
h3

∂

∂q3

]
= div

[
e1

1
h1

∂

∂q1
+ e2

1
h2

∂

∂q2
+ e3

1
h3

∂

∂q3

]
.

Using result (ii) of the theorem with the operator 1
h1

∂
∂q1

in place of F1, the operator
1
h2

∂
∂q2

in place of F2 and the operator 1
h3

∂
∂q3

in place of F3, we arrive at result (iv).

EXAMPLE 11.23 Find the forms taken by grad, div, curl, the Laplacian, and the Laplacian operator

grad, div, curl, and the
Laplacian in cylindrical
and spherical polar
coordinates

in (a) cylindrical polar coordinates and (b) spherical polar coordinates.

Solution (a) Using the notation of Example 11.22 and the scale factors h1 = 1,
h2 = r , and h3 = 1 found in that example, routine calculations show that in
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cylindrical polar coordinates, when F = Fr er + Fθeθ + Fzez,

grad f = ∂ f
∂r

er + 1
r

∂ f
∂θ

eθ + ∂ f
∂z

ez

div F = 1
r

∂(r Fr )
∂r

+ 1
r

∂ Fθ

∂θ
+ ∂ Fz

∂z

curl F = 1
r

∣∣∣∣∣∣∣∣∣
er reθ ez

∂

∂r
∂

∂θ

∂

∂z
Fr r Fθ Fz

∣∣∣∣∣∣∣∣∣
� f = 1

r
∂

∂r

(
r
∂ f
∂r

)
+ 1

r2

∂2 f
∂θ2

+ ∂2 f
∂z2

� = 1
r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
(Laplacian operator).

(b) Again using the notation of Example 11.21 and the scale factors h1 = 1, h2 =
r sin φ, h3 = r found in that example, routine calculations show that in spherical
polar coordinates, when F = Fr er + Fθeθ + Fφeφ ,

grad f = ∂ f
∂r

er + 1
r

∂ f
∂θ

eθ + 1
r sin θ

∂ f
∂φ

eφ

div F = 1
r2

∂(r2 Fr )
∂r

+ 1
r sin θ

∂

∂θ
(Fθ sin θ) + 1

r sin θ

∂ Fφ

∂φ

curl F = 1
r2 sin θ

∣∣∣∣∣∣∣∣∣
er reθ r sin θeφ

∂

∂r
∂

∂θ

∂

∂φ

Fr r Fθ r sin θ Fφ

∣∣∣∣∣∣∣∣∣ ;

� f = 1
r2

∂

∂r

(
r2 ∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+ 1

r2 sin2 θ

∂2 f
∂φ2

� = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2

(Laplacian operator).

Descriptions of general orthogonal curvilinear coordinates and the form taken by
vector operators in different coordinate systems are to be found in references [1.3]
and [5.2], whereas applications to continuum mechanics are to be found in reference
[5.4] and to hydrodynamics in reference [6.5]. Further information can also be found
in Chapters 23 and 24 of reference [G.3].

Summary After introducing the concept of general orthogonal curvilinear coordinates, this section
then derived expressions for grad, div, curl, and the Laplacian operators in terms of these
coordinates. Because of the importance of cylindrical and spherical polar coordinates in
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applications, these operators were then expressed in terms of cylindrical and spherical
polar coordinates.

EXERCISES 11.6

1. Write out the results of Theorem 11.6 using the opera-
tor notation ∇(.), ∇ · (.), ∇ × (.) in place of grad, div, and
curl.

2. Write out the results of Theorem 11.7 using the opera-
tor notation ∇(.), ∇ · (.), ∇ × (.) in place of grad, div, and
curl.

3. Complete the calculations leading to the results of
Example 11.22(a) for cylindrical polar coordinates.

4. Complete the calculations leading to the results of
Example 11.22(b) for spherical polar coordinates.

5. Show the curvilinear coordinate system defined in the re-
gion q3 ≥ 0 by the equations x1 = q1 − q2, x2 = q1 + q2,

and x3 = sinh q3 is orthogonal. Find the scale factors
h1, h2, h3, grad f , and div F.

6. Show that the parabolic cylindrical coordinates (u, v, z)
defined by the equations x = 1

2 (u2 − v2), y = uv, z = z
are orthogonal. Find the scale factors h1, h2, h3, and
∇2 f .

7. Show that the elliptic cylindrical coordinates (ξ, η, z) de-
fined by the equations x = cosh ξ cos η, y = sinh ξ sin η,
z = z for 0 ≤ ξ < ∞, −π < η ≤ π , −∞ < z < ∞ are or-
thogonal. Find the scale factors h1, h2, h3 and state the
shapes of the surfaces ξ = constant and η = constant and
find grad f .
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12C H A P T E R

Vector Integral Calculus

When working with the fundamental conservation laws governing engineering and
physics, problems often arise that lead to the integral of the divergence of a vector

function F over a volume V . The Gauss divergence theorem enables the integral of div F
over volume V to be replaced by the integral of the normal component of F over the
surface S enclosing V . This result simplifies calculations, because F is usually only known
in general terms, whereas in physical problems the value of the normal component of F
on S is known from the conditions of the problem.

Another vector quantity that arises naturally in engineering and physics is the vector
function curl F, and when this occurs it is often necessary to integrate the normal com-
ponent of curl F over an open surface S. This happens, for example, in fluid mechanics
when working with the vorticity and circulation of a fluid. Stokes’ theorem replaces the
evaluation of the integral of the normal component of curl F over the open surface S by
a directed line integral of F around the curve � forming the boundary of S. Here also a
simplification results, because once again the vector function F on surface S is usually only
known in general terms, whereas in physical problems its value on � is specified. Green’s
theorem in the plane is a two-dimensional form of Stokes’ theorem, and it has many uses
throughout engineering, physics, and mathematics.

The three most important vector integral theorems due to Gauss, Green, and Stokes
are derived, followed by the derivation of two important integral transport theorems that
play an essential role in mechanics, fluid mechanics, chemical engineering, electromag-
netism, and elsewhere. After a review of the background of the vector integral calculus,
and an introduction to the concept of an orientable surface, the Gauss divergence theorem
and the theorems due to Green and Stokes are proved and applied.

The two fundamental integral transport theorems that are derived and applied are the
flux transport theorem, which determines the rate of change of flux passing through an
open surface bounded by a moving space curve, and Reynold’s transport theorem, which
concerns the rate of change of a volume integral when the volume is contained within a
moving surface.

677
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12.1 Background to Vector Integral Theorems
Information Provided by Vector
Integral Theorems

Physical problems in two and three space dimensions often give rise to integrals
with integrands that are determined by a vector field F defined over the region

of integration. The most important of these integrals involves either the integration
of div F over a finite volume V, or the integral over a finite open surface S in space of
the component of curl F normal to S. The objective of this chapter will be to prove
some fundamental integral theorems of this type due to Gauss, Stokes, and Green
called, respectively, the Gauss divergence theorem, Stokes’ theorem, and Green’s
theorems. In addition, as optional material, what is called the flux transport theorem
and the volume transport theorem will be proved and, as applications, used to derive
some fundamental properties of fluid mechanics.

three important
theorems

It will be shown that the Gauss divergence theorem, often abbreviated to the
divergence theorem or Gauss’ theorem, relates the integral of div F over a volume V
to the integral over the closed surface S enclosing V of the component of F normal
to S. Thus, Gauss’ theorem allows a volume integral of this type to be replaced by a
simpler surface integral. Stokes’ theorem, which will also be proved in Section 12.2,
is of a different nature, in that it relates the integral of the normal component of
curl F over an open surface S in space bounded by a closed space curve � to the
line integral of the tangential component of F around �. So, in the case of Stokes’
theorem, a surface integral of a special type over S is related to a simpler line integral
around the closed space curve � that forms the boundary of S. Green’s theorem in
the plane is the two-dimensional form of Stokes’ theorem, and a typical application
is to be found in Chapter 14, where it is used in the proof of the Cauchy integral
theorem for the integration of complex analytic functions.

Also proved will be two other theorems known as Green’s theorems, though
these results are also known as Green’s identities or Green’s formulas. They relate
integrals of Laplacians of scalar functions � and � over a volume V to the integral
over the surface S enclosing V of the derivatives of these functions normal to
S. Green’s theorems are used extensively when working with partial differential
equations involving the Laplacian operator, because they can be used to replace
the integral over a volume V of a solution of Laplace’s equation that is to be
determined by the integral of the normal derivatives of the solution over S that
occur as a prescribed boundary condition that must be satisfied by the solution.

A common feature of these theorems is that each frequently replaces an integral
of a special type over a region (a volume or an open surface) by a simpler integral
over the boundary of the region (a closed surface or a closed space curve), thereby
reducing by one the number of dimensions involved in the integration. The integral
can then be evaluated by using whichever of the two equivalent expressions is easier.
When used with partial differential equations involving the Laplacian operator,
Green’s theorems typically allow integrals of unknown functions over a region to
be replaced by simpler integrals of known functions over the boundary of the region.

The two transport theorems proved in Section 12.3 relate to the determination
of the derivative with respect to time of surface and volume integrals of time-
dependent integrands when the surface or volume involved moves with time. The
flux of a vector F across a surface S is the integral over S of the component of
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FIGURE 12.1 A Möbius strip.

F normal to S. The flux transport theorem describes the rate of change of the flux
of F across S, taking into account the time dependence of F and the motion of S.
A typical example of this type occurs when current is induced in a coil of wire
moving in a magnetic field, because the current depends on the rate of change of
magnetic flux through the moving coil.

The volume transport theorem describes the time rate of change of a volume
integral due to the time dependence of the integrand and the motion of the volume
over which integration takes place. A typical application of this theorem arises in
fluid mechanics where the boundary of a volume of interest relating to a certain
feature of the fluid flow does not move in the same way as the fluid, so that a flow
takes place through the surface that encloses the volume.

Surfaces and Orientation
Section 12.2 is concerned with surfaces that have two sides and makes use of the
normal at each point on such surfaces. It might seem unnecessary to define two-
sided surfaces, but it is necessary because pathological surfaces exist that only have
one side, and these must be excluded from the theorems of Section 12.2.

An example of a one-sided surface is provided by the Möbius strip shown in
Fig. 12.1. This strip can be considered to be formed from a long strip of paper, the
ends of which are joined after making a 180◦ twist in the paper about its longitudinal
center line. Its one-sided nature can easily be verified by drawing a pencil line around
the center line of the strip, because eventually the line will connect with the starting
point, and if the strip is cut and opened out, examination will show a pencil line on
both sides of the paper.

When deriving the Gauss divergence theorem, it will be necessary to work with
a closed two-sided surface S, the interior of which contains the volume V of space
that will concern us. A vector element of area of such a surface will have magnitude
dS and an associated unit vector n normal to dS. As the normal n at a point on
a two-sided surface S enclosing a volume V may be directed away from either
side of S, it is necessary to adopt a standard convention for the direction of n and
the vector element of area dS = ndS on S. The normal n at a point on such a surface
will always be chosen to be directed out of V. So if, for example, V is a sphere, the
normal n at any point of its surface will be along a radial line drawn outward from
the center of the sphere.

A two-sided open surface S bounded by a non-self-intersecting space curve � isopen surfaces and
orientable surfaces a surface that does not have an interior, and so does not enclose a volume V. When
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FIGURE 12.2 (a) A plane oriented surface. (b) A general oriented surface in space.

deriving Stokes’ theorem it will be necessary to work with a two-sided open surface
S bounded by a closed non-self-intersecting space curve � around which there is
a given sense of direction. The normal at each point of S will be always be chosen
in such a way that it points in the direction in which a right-handed screw would
advance were it to be rotated in the sense of direction that is specified around the
boundary curve �. Surfaces S of this type are called oriented surfaces. Pathological
one-sided surfaces such as Möbius strips are said to be nonorientable, and they will
not be considered here.

A simple but typical example of an open orientable surface S is an area in the
(x, y)-plane contained within a closed curve �. If the sense of direction around � is
chosen to be counterclockwise, the normal n to S will point in the direction of the
unit vector k. A reversal of the sense of direction around � will reverse the sense
of n, which will then point in the direction of −k. Examples of oriented surfaces
are illustrated in Fig. 12.2, where Fig. 12.2(a) shows an open oriented surface S in
the (x, y)-plane and Fig. 12.2(b) shows a general open oriented surface in space.

Let S be a two-sided surface with a boundary curve � around which a sense of
direction is prescribed, and at each point of S let n be the unit normal to S pointing
in the direction determined by the sense of direction around �, as described above.
Then if dS is an element of area of S, the vector element of area on the oriented
surface S is dS = ndS.

Summary This brief section introduced the important concept of an open surface that is orientable,
and established the right-handed screw convention by which the direction of the normal
to an orientable surface is determined.

12.2 Integral Theorems

The first integral theorem to be established is the Gauss divergence theorem, which
relates volume integrals and surface integrals. It is possible to formulate a more
general statement of the theorem than the one given here, but to do so involves a
lengthy argument, and Theorem 12.1 is sufficient for all practical purposes.
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FIGURE 12.3 The volume V.

THEOREM 12.1 The Gauss divergence theorem Let F be a vector field defined throughout a vol-
ume V enclosed within a piecewise smooth surface S on which the outward drawn
unit normal is n. Then, if the components of F and its first order partial derivatives
are continuous throughout V and on S, dV is an element of volume of V, and dS is
an element of area of S, ∫∫∫

V
div F dV =

∫∫
S

F · dS,

a theorem relating
the integral of div F
over a volume to the
integral of the
normal component
of F over the surface
bounding the volume

where dS = ndS is a vector surface element of area on S.

Proof Consider a volume V in the form of a cylinder with its sides parallel to the
z-axis, a lower surface z = z1(x, y), and an upper surface z = z2(x, y), and let A be
the projection of the cross-section of the cylinder onto the (x, y)-plane, as shown
in Fig. 12.3.

The lower surface in Fig. 12.3 will be denoted by S1, the upper surface by S2, and
the cylindrical side surface by S3, so the surface S enclosing volume V is piecewise
smooth and comprises these three surfaces.

Let F = F1i + F2 j + F3k, where the components of F and its first order partial
derivatives are continuous in V and on S. The integral of ∂F3/∂z with respect to z
along a line in V drawn parallel to the z-axis is∫ z2(x,y)

z1(x,y)

∂F3

∂z
dz = F3(x, y, z2(x, y)) − F3(x, y, z1(x, y)).

The integral of this result over the area A that is the projection of V onto the (x, y)-
plane is given by∫∫∫

V

∂F3

∂z
dV =

∫∫
A

F3(x, y, z2(x, y))dxdy −
∫∫

A
F3(x, y, z1(x, y))dxdy.

The first term on the right is the integral of F3 over the top of the upper two-
sided surface S2, while the second term is the integral F3 over the top of the lower
two-sided surface S1. As the normals to surfaces bounding the volume V are chosen
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to point outward from V, and the normal in the last term is directed into volume V,
the sign of the last term can be reversed and the resulting equation written as∫∫∫

V

∂F3

∂z
dV =

∫∫
S2

F3dxdy +
∫∫

S1

F3dxdy.

To express the integrals on the right as a single integral over the complete
surface S, it is necessary to take into account the integral of F3 over the cylindrical
surface S3. The unit normal to the element of area dxdy of A is perpendicular to
the (x, y)-plane in the direction k, but k is orthogonal to all outward drawn normals
to the cylindrical surface, so the integral of F3 over the cylindrical surface S3 must
vanish, giving

∫∫
S3

F3dxdy = 0. Adding this integral to the preceding equation, and
recognizing that the piecewise smooth surface S comprises the sum of the three
surfaces S1, S2, and S3, we arrive at the result∫∫∫

V

∂F3

∂z
dV =

∫∫
S

F3dxdy.

Corresponding results involving F1 and F2 that can be derived in similar fashion
are ∫∫∫

V

∂F1

∂x
dV =

∫∫
S

F1dydz

and ∫∫∫
V

∂F2

∂y
dV =

∫∫
S

F2dxdz.

Addition of these three integrals gives∫∫∫
V

(
∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)
dV =

∫∫
S

F1dydz + F2dxdz + F3dxdy,

or equivalently,∫∫∫
V

div F dV =
∫∫

S
F1dydz + F2dxdz + F3dxdy.

Let dS with the outward drawn unit normal n be an element of area of the
bounding surface S, and let its projection onto the (y, z)-plane be the element of
area dydz. Then if the angle between n and the normal to the (y, z)-plane is γ , it
follows that dydz = dS cos γ . However, the unit normal to the (y, z)-plane is the
vector i, so cos γ = i · n, and consequently dydz = i · ndS = i · dS. Similar arguments
lead to the corresponding results dxdz = j · dS and dxdy = k · dS.

Using these expressions in the preceding integral allows it to be written as∫∫∫
V

div F dV =
∫∫

S
(F1i + F2 j + F3k) · ndS

or as ∫∫∫
V

div F dV =
∫∫

S
F · dS,

and the theorem is proved for a volume V with sides parallel to the z-axis.

Modifications to the preceding form of argument that we will not detail show
the theorem to be true for volumes V with boundaries formed by finitely many
piecewise smooth parts, and also for boundaries on which the partial derivatives of
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Fi are not differentiable at every point. The theorem remains true for domains such
as a torus that have a more complicated shape. This follows because such domains
can be subdivided into domains of the type covered by Theorem 12.1, and as the
outward-drawn normals to each side of a dividing surface are oppositely directed,
the integrals over the two sides of each such surface cancel, leaving only the integral
over S of the component of F normal to S.

CARL FRIEDRICH GAUSS (1777–1855)
A German mathematician of truly outstanding ability who is universally regarded as the greatest
mathematician of the nineteenth century. He ranks with Isaac Newton as one of the greatest
mathematicians of all time. He was appointed to the directorship of the observatory in Göttingen
and spent the remainder of his life there. His contributions spanned all aspects of mathematics
and science, in addition to his interest in astronomy. He also made important contributions to
number theory, algebra, and geometry.

The divergence theorem provides an alternative definition of div F, because if
the result of the theorem is divided by the volume V with bounding surface S over
which integration is performed, and the limit is taken as V → 0 about a fixed point
P in space, we obtain

(div F)P = lim
V→0

1
V

∫∫
S

F · dS. (1)

However, F · dS = F · ndS and F · n = Fn is the component of F normal to dS, so∫∫
S F · dS is the flux of F across S at the point P. Consequently, (div F)P is seen to

be the flux of F per unit volume at P.
A physical interpretation of this last result is provided by the flow of a fluid

with velocity q, because

(div q)P = lim
V→0

1
V

∫∫
S

q · dS (2)

an application to
incompressible
flow with sources
and sinks

is seen to be the amount of fluid leaving an infinitesimal surface surrounding P in
a unit time. If the fluid is incompressible, there can be no net flow either into or
out of any volume, so in an incompressible fluid div q = 0 throughout the fluid. If,
however, there is a source of fluid at P causing fluid to flow into volume V and
onward out of S, then (div q)P will be positive, whereas if there is removal of fluid
from volume V at P due to the presence of a sink at P, then (div q)P will be negative.
In a fluid that is compressible, div q may be either positive or negative at a point in
the fluid without any source or sink being present.

Any vector F such that

div F ≡ 0 (3)

is said to be a solenoidal vector. So as div(curl F) ≡ 0, it follows that provided F has
continuous second order partial derivatives, the vector curl F is a solenoidal vector.

a solenoidal vector

The following examples illustrate how the divergence theorem can be used to
simplify the evaluation of integrals, though more important applications arise in
the formulation and solution of partial differential equations.
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EXAMPLE 12.1 Evaluate ∫∫
S

3xdydz + 2ydxdz − 5zdxdy

where S is a smooth surface bounding an arbitrary volume V.

Solution The integral can be written∫∫
S

3xdydz + 2ydxdz − 5zdxdy =
∫∫

S
F · dS,

where F = 3xi + 2yj − 5zk. So as the conditions of Theorem 12.1 are satisfied and
div F = 0, it follows from the divergence theorem that∫∫

S
3xdydz + 2ydxdz − 5zdxdy =

∫∫∫
V

div F dV = 0.

EXAMPLE 12.2 Evaluate ∫∫
S

x3dydz + y3dxdz + z3dxdy,

where the surface S is the boundary of the volume V occupying the region between
the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4 and above the plane z = 0.

Solution The volume V is a hemispherical shell between spheres of radii 1 and 2
centered on the origin and above the plane z = 0, so its surface S is formed by the
surfaces of two hemispheres above the z = 0 plane and the annulus 1 ≤ r ≤ 2 in the
plane z = 0. The required integral can be written

I =
∫∫

S
x3dydz + y3dxdz + z3dxdy =

∫∫
S

F · dS,

where F = x3i + y3j + z3k. As F is differentiable and the surface S is piecewise
smooth, the divergence theorem can be used to replace the surface integral by the
triple volume integral of div F over V, showing that

I = 3
∫∫∫

V
(x2 + y2 + z2)dxdydz.

The spherical symmetry of volume V suggests that integral I will be simplified
if spherical polar coordinates are used. In terms of these coordinates, the volume
V becomes 1 ≤ r ≤ 2, 0 ≤ φ < 2π , and 0 ≤ θ ≤ π/2, and the integrand becomes
x2 + y2 + z2 = r2, so as the volume element of the transformation is given by dV =
r2 sin φdrdθdφ, the integral for I becomes

I = 3
∫ 2π

0
dφ

∫ π/2

0
dθ

∫ 2

1
r4 sin θdr

= 3
∫ 2π

0
dφ

∫ π/2

0

31
5

sin θdθ

= 93
5

∫ 2π

0
dφ = 186

5
π.
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FIGURE 12.4 Cylinder with parallel oblique ends. (a) Side view; (b) front
view.

EXAMPLE 12.3 Let the vector function F = (x2 + 3y)i − (3y2 + sin z)j + 2z2k be defined through-
out the volume V interior to the cylindrical volume with parallel oblique ends
bounded by the surface S that is shown in Fig. 12.4, where the cylinder cross-section
has the equation x2 + y2 = 1 and the cylinder ends are formed by the intersection
of the cylinder with the planes z = 2x + 1 and 2x + 2. Find the integral over S of
Fn, the component of F normal to the surface S.

Solution The function F and the surface S satisfy the conditions of the diver-
gence theorem, so as div F = 2x − 6y + 4z, the result of applying the theorem to
volume V is ∫∫

S
F · dS =

∫∫∫
V

(2x − 6y + 4z)dV

=
∫∫

x2+y2≤1

(∫ 2+2x

1+2x
(2x − 6y + 4z)dz

)
dxdy

=
∫∫

x2+y2≤1
(10x − 6y + 6)dxdy.

To proceed further, we change to plane polar coordinates x = r cos θ, y = r sin θ for
which the Jacobian J (r, θ) = r , and the area x2 + y2 ≤ 1 becomes 0 ≤ r ≤ 1 with
0 ≤ θ ≤ 2π . As a result,∫∫

S
F · dS =

∫ 2π

0
dθ

∫ 1

0
(10r cos θ − 6r sin θ + 6)rdr

=
∫ 2π

0

(
10
3

cos θ − 2 sin θ + 3
)

dθ = 6π,

so the required integral over S of the component Fn of F normal to S is∫∫
S

FndS = 6π.
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FIGURE 12.5 (a) The convex area S with lower and upper boundaries y = y1(x) and
y = y2(x). (b) The convex area S with left and and right boundaries x = x1(y) and x = x2(y).

Preparatory to proving Stokes’ theorem, we must prove Green’s theorem in
the plane that can be stated as follows.

THEOREM 12.2 Green’s theorem in the plane Let a finite area S in (x, y)-plane be bounded by
a piecewise smooth closed non-self-intersecting plane curve � around which a

a theorem relating an
integral over a plane
surface to an integral
around its perimeter

counterclockwise sense of direction is imposed. Then if P(x, y) and Q(x, y) and
their first order partial derivatives are continuous over S and on �,

∫∫
S

(
∂Q
∂x

− ∂P
∂y

)
dxdy =

∫
�

Pdx + Qdy.

Proof We first prove the theorem for a plane area S that is convex, which is an
area S with the property that any straight line that crosses it intersects the boundary
at most twice. We then show how the theorem can be applied to more complicated
areas, including those with internal boundaries. A typical area S of this type is shown
in Fig. 12.5.

Let us consider the integral of ∂P/∂y over the convex area S with the lower
boundary y = y1(x) and upper boundary y = y2(x), as shown in Fig. 12.5(a). The
integral over S can be written as the iterated integral∫∫

S

∂P
∂y

dxdy =
∫ b

a
dx
∫ y2(x)

y1(x)

∂P
∂y

dy

=
∫ b

a
P(x, y2(x))dx −

∫ b

a
P(x, y1(x))dx

or as ∫∫
S

∂P
∂y

dxdy = −
∫

ABC
P(x, y)dx −

∫
CDA

P(x, y)dx,

where the sign of the first integral on the right has been reversed because integration
from x = a to x = b is in the opposite sense to the counterclockwise direction of
integration required along ABC. The two arcs ABC and CDA form the closed
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FIGURE 12.6 (a) S with an internal boundary. (b) The partitioning of S.

contour �, so the preceding result simplifies to∫∫
S

∂P
∂y

dxdy = −
∫

�

P(x, y)dx.

When the foregoing argument is repeated, but this time using the left and right
boundaries in Fig. 12.5(b), and the integral of ∂Q/∂x over S is calculated we obtain∫∫

S

∂Q
∂x

dxdy =
∫

�

Q(x, y)dx.

However, as S is convex, each of these results is true, so subtracting them we arrive
at the statement of Green’s theorem∫∫

S

(
∂Q
∂x

− ∂P
∂y

)
dxdy =

∫
�

Pdx + Qdy.

We need to show this result remains true for areas S that are not convex, and
also for areas with internal boundaries. It will be sufficient to consider the area
S shown in Fig. 12.6(a), in which there is a single internal boundary γ , because
the argument extends immediately to arbitrary areas with finitely many internal
boundaries, and to areas that are not convex.

Let S be partitioned into the four areas shown in Fig. 12.6(b), to each of which
Green’s theorem applies. Applying the theorem to each area and adding the in-
tegrals, we see that integrals along the adjacent straight line segments will cancel,
because of the continuity of P, Q, and their first order partial derivatives in S, and
the fact that the integrations take place in opposite directions. As a result only the
integrals around the boundaries � and γ remain, so the theorem holds, provided
the sense of integration around all boundaries (both external and internal) is such
that the area S always lies to the left as each boundary is traversed. This argument
also applies to finitely many internal boundaries, so Green’s theorem in the plane
is proved for this more general case.

The sense in which integration must be performed when applying Green’s
theorem to an area S with internal boundaries is illustrated in Fig. 12.7.
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FIGURE 12.8 The curve � formed from two
circular arcs �1 and �.

GEORGE GREEN (1793–1841)
A self-taught English mathematical physicist who was born in Nottingham where he first worked
as a baker. His contributions to electricity and magnetism, where he introduced the theorems
now named after him, were first published privately in 1828, and so attracted little attention. It
was not until William Thompson (Lord Kelvin) discovered his results and caused them to be
republished in 1846 that their significance was recognized. Due to the limited circulation of
the first published version of his work his main results were rediscovered, independently, by
Lord Kelvin, Gauss, and others. He made significant contributions to the theory of optics and
sound waves, and just prior to his death he was elected to a fellowship of Caius College,
Cambridge.

SIR GEORGE GABRIEL STOKES (1819–1903)
A major applied mathematician and physicist who was born in County Sligo, Ireland, but spent
his entire working life in Cambridge, where he was made professor of mathematics in 1849. He
made fundamental contributions to the study of the flow of viscous fluids, leading to what are
now called the Navier–Stokes equations, to elasticity, the propagation of sound, optics, and
asymptotic series.

EXAMPLE 12.4 Evaluate

∫
�

xy2dx − 2x2 ydy

where � is the curve shown in Fig. 12.8, in which �1 is an arc of a unit circle centered
on the point (0, 1), and �2 is an arc of a unit circle centered on the point (1, 0), and
integration is in the counterclockwise sense around �.

Solution The equation of a unit circle with its center at (1, 0) is x2 + (y − 1)2 = 1,
so the equation of the arc �1 is y = 1 − 1

√
1 − x2 for 0 ≤ x ≤ 1. The equation of a
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unit circle with its center at (1, 0) is (x − 1)2 + y2 = 1, so the equation of arc �2 is
y = √

2x − x2 for 0 ≤ x ≤ 1.
Making the identifications P = xy2 and Q = −2x2 y we have ∂P/∂y = 2xy and

∂Q/∂x = −4xy, so substituting into Green’s theorem shows that∫
�

xy2dx − 2x2 ydy =
∫ 1

0
dx
∫ √

2x−x2

1−√
1−x2

(−6xy)dy

=
∫ 1

0
[−6x2 + 6x − 6x

√
1 − x2]dx = −1.

THEOREM 12.3 Stokes’ theorem Let S be an open piecewise smooth orientable surface bounded

a theorem relating an
integral of the normal
component of curl F
over an orientable
surface to the line
integral of F around
its perimeter

by a closed space curve � around which a sense of direction is specified. At every
point of the surface, let the unit normal n to S point in the direction specified for
orientable surfaces relative to the sense around �. Then, if F is a differentiable
vector function over the surface S,∫

�

F · dr =
∫∫

S
curl F · dS,

where r is the position vector of a general point on �.

Proof Consider Fig. 12.9, in which S is an open orientable surface z = z(x, y), �
is its bounding space curve, A is the projection of S onto the (x, y)-plane, and C is
the boundary curve of A.

The proof will involve the following three steps:

(I) The line integral around � will be transformed into the line integral around C
(II) The line integral around C will be transformed into a double integral over A

(III) The double integral over A will be transformed into an integral over S

STEP I Let F = F1 i + F2 j + F3k. Then the line integral of F1 around � is∫
�

F1(x, y, z)dx =
∫

C
F1(x, y, z(x, y))dx,

because z = z(x, y) on C.

dS

A

0
y

x

z

Γ

S

C

FIGURE 12.9 An orientable surface S
bounded by the space curve �.
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STEP II In the line integral on the right z = z(x, y), so

∂G1

∂y
= ∂F1

∂y
+ ∂F1

∂z
∂z
∂y

, where G1(x, y) ≡ F1(x, y, z(x, y)).

Applying Green’s theorem in the plane to the integral in Step I and using this last
result gives ∫

C
F1(x, y, z(x, y))dx = −

∫∫
A

(
∂F1

∂y
+ ∂F1

∂z
∂z
∂y

)
dA,

where dA is the area element in the (x, y)-plane.
Setting φ = z − z(x, y), the surface S has the equation φ = 0, so as a normal N

to S is given by N = grad φ

N = ±
(

− ∂z
∂x

i − ∂z
∂y

j + k
)

.

For N to have the correct upward direction relative to S, as required by the sense
of direction of integration around the oriented surface S, it is necessary that the
z-component of N be positive. Consequently, if we take the positive sign, the unit
vector n normal to S is

n = n1 i + n2 j + n3k,

where the direction cosines n1, n2, and n3 are given by

n1 = − ∂z
∂x

/
|N|, n2 = − ∂z

∂y

/
|N|, n3 = 1/|N| with

|N| =
((

∂z
∂x

)2

+
(

∂z
∂y

)2

+ 1

)1/2

.

It now follows from these results that
∂z
∂y

= −n2

n3
.

If we substitute this expression for ∂z/∂y in the double integral over A, it becomes∫
C

F1dx = −
∫∫

A

(
∂F1

∂y
− ∂F1

∂z
n2

n3

)
dA.

STEP III If dAis the projection of dS onto the (x, y)-plane, we have dA= n3 dS,
so the last result in Step II can be written as the double integral over S∫

C
F1dx = −

∫∫
S

(
∂F1

∂y
− ∂F1

∂z
n2

n3

)
n3dS

=
∫∫

S

(
∂F1

∂z
n2 − ∂F1

∂y
n3

)
dS.

Similar arguments show that∫
C

F2dy =
∫∫

S

(
∂F2

∂x
n3 − ∂F2

∂z
n1

)
dS

and ∫
C

F3dz =
∫∫

S

(
∂F3

∂y
n1 − ∂F3

∂x
n2

)
dS.
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Finally, the addition of these three integrals gives∫
C

F1dx + F2dy + F3dz =
∫∫

S

(
∂F3

∂y
− ∂F2

∂z

)
n1dS +

(
∂F1

∂z
− ∂F3

∂x

)
n2dS

+
(

∂F2

∂x
− ∂F1

∂y

)
n3dS,

or equivalently,∫
�

F1dx + F2dy + F3dz =
∫∫

S

(
∂F3

∂y
− ∂F2

∂z

)
dydz +

(
∂F1

∂z
− ∂F3

∂x

)
dxdz

+
(

∂F2

∂x
− ∂F1

∂y

)
dxdy,

which is one form of Stokes’ theorem. To arrive at the form given in the statement
of the theorem it is only necessary to write dS = ndS, and then to recognize that

curl F =
(

∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k,

for the integral to become ∫
�

F · dr =
∫∫

S
curl F · dS.

Stokes’ theorem is a generalization of Green’s theorem in the plane that was
used in its proof, so it is to be expected that Stokes’ theorem must reduce to Green’s
theorem in the plane when the surface S is an area in the (x, y)-plane. That this
is the case can be seen by taking F to be only a function of x and y, so that F =
F1(x, y)i + F2(x, y)j, because then the first form of Stokes’ theorem that was proved
reduces to ∫

�

F1dx + F2dy =
∫∫

S

(
∂F2

∂x
− ∂F1

∂y

)
dxdy,

and apart from a change of notation, this is the result of Theorem 12.2.
Stokes’ theorem provides a physical interpretation of curl F that is most easily

understood in the context of a fluid flow with F representing the fluid velocity vector.
Consider a small disc of fluid of radius ρ centered at r = r0, as shown in Fig. 12.10,

T

ρ

r0

0

FIGURE 12.10 A disc of fluid of radius ρ with
fluid velocity F.
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where S is the area of the disc and T is the unit tangent vector to the perimeter of
the disc. Then F · T is the tangential component of the fluid velocity at the perimeter
� of the disc around which the arc length is s, so the integral

κ(r0) =
∫

�

F · Tds

is a measure of the tendency of the fluid to rotate around the point r0. This will
be recognized as the circulation of F around a curve � introduced previously in
connection with line integrals.

If the disc is small and taken on an open surface S in the fluid, and N is a unit
normal to an element dS of the surface at r = r0, the scalar product (curl F) · N can
be regarded as a constant over the disc, so from Stokes’ theorem∫

�

F · Tds =
∫∫

S
(curl F) · NdS ≈ [(curl F) · N]r0 (πρ2),

and so

[(curl F) · N]r0 = lim
ρ→0

1
πρ2

∫
�

F · Tds.

Clearly, (curl F) · N attains its greatest value when curl F is parallel to N, and
it is because curl F is a measure of rotation that some books use the notation rot F
in place of curl F. Although the circulation around � has been illustrated by means
of a fluid flow, the general concept of the circulation of a vector F around a curve
� has useful physical interpretations in other situations. Another example occurs
in connection with the generation of current when a wire in the form of a closed
curve � moves in a magnetic field. Inspection of the definition of (curl F) · N at a
point r0 as a limit shows it is the quotient of the circulation of F around � and the
area of the disc, and so again measures the rate of circulation at r0.

EXAMPLE 12.5 Let F = x2i + z2 yj + y2zk. Show that the line integral of F around any space curve
� bounding an oriented open surface S is zero.

Solution The conditions of Stokes’ theorem apply and

curl F =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z

x2 yz2 y2z

∣∣∣∣∣∣∣∣∣ = 0,

so ∫
�

F · dr =
∫∫

S
curl F · dS = 0.

EXAMPLE 12.6 Let S be the surface of the paraboloid of revolution z = 1 − x2 − y2 with the domain
of definition x2 + y2 ≤ 1, and let � be the boundary of the paraboloid. Given F =
x3i + (x + y − z)j + yzk, find

∫∫
S curl F · dS.
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Solution By Stokes’ theorem∫∫
S

curl F · dS =
∫

�

F · dr,

so the required integral can be found by evaluating the line integral on the right. As
the domain of definition of the paraboloid of revolution is x2 + y2 ≤ 1, it follows that
the curve � bounding the surface of the paraboloid is the circle x2 + y2 = 1 in the
plane z = 0. To evaluate the line integral, we parametrize � as r(t) = cos t i + sin tj,
with 0 ≤ t ≤ 2π . Then dr = (− sin t i + cos tj)dt and on � the vector function

F(t) = cos3 t i + (cos t + sin t)j,

so substituting into the line integral gives∫∫
S

curl F · dS =
∫ 2π

0
[cos3 t i + (cos t + sin t)j] · [−sin t i + cos tj]dt∫ 2π

0
(−sin t cos3 t + cos2 t + sin t cos t)dt = π.

EXAMPLE 12.7 Given F = yi − z3j + x2k, use Stokes’ theorem to evaluate
∫
�

F · dr, where � is the
boundary of the area S formed by the part of the plane 2x + 4y + z= 4 that lies in
the first octant, and integration around the boundary � is in the clockwise direction.

Solution The required integral will be determined by evaluating the integral on
the right of ∫

�

F · dr =
∫∫

S
curl F · dS.

The surface S over which integration is to be performed is the plane triangular area
shown in Fig. 12.11, where the boundary of S in the plane z = 0 is the line x + 2y = 2

2x + 4y + z = 4

x + 2y = 2

10

2

4

z

y

x

S

FIGURE 12.11 Plane triangular area S
with clockwise direction around
boundary �.



694 Chapter 12 Vector Integral Calculus

for 0 ≤ x ≤ 2.

curl F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
y −z3 x2

∣∣∣∣∣∣∣∣ = 3z2i − 2xj − k.

If we set φ = 4 − 2x − 4y − z, the equation of the plane is φ = 0, so two possible
normals N to the surface S of the plane are

N = ±grad φ = ±(−2i − 4j − k).

As the direction of integration around the boundary � is taken to be clockwise, when
viewed as in Fig 12.11, the normal to S must be directed away from S toward the
origin, showing that the k component of N must be negative. Thus, the foregoing ex-
pression for N must be chosen with the positive sign leading to the result N = −2i −
4j − k, so the unit vector n = N/|N| with the required sense normal to the plane is

n = 1√
21

(−2i − 4j − k).

The line of intersection of the plane 2x + 4y + z = 4 and the plane z = 0 is
x + 2y = 2, so the base of the triangular plane surface S has the equation
x + 2y = 2 for 0 ≤ x ≤ 2.

We now have sufficient information to compute
∫∫

S curl F · dS:∫
�

F · dr =
∫∫

S
curl F · dS =

∫∫
S
(3z2i − 2xj − k) · dS,

but dS = ndS, so if A is the projection of S onto the plane z = 0, the integral over
S can be replaced by the integral over A, giving∫

�

F · dr =
∫∫

S
(3z2i − 2xj − k) · dS = 1√

21

∫∫
S
(−6z2 + 8x + 1)dS.

However, if n3 is the k component of n, dA/dS = |n3| = 1
√

21 and so dS = √
21dA.

Using this result in the integral on the right with z = 4 − 2x − 4y shows that∫
�

F · dr =
∫∫

A
[−6(4 − 2x − 4y)2 + 8x + 1]dA.

Writing the double integral over A as a repeated integral gives∫
�

F · dr =
∫ 1

0
dy
∫ −2−2y

0
[−6(4 − 2x − 4y)2 + 8x + 1]dx = −29

3
.

The results of the next theorem, called Green’s formulas or sometimes Green’s
identities, are used extensively in the study of partial differential equations.

THEOREM 12.4 Green’s formulas Let � and � be scalar fields such that the Laplacians �� and
�� are defined inside a volume V enclosed in a closed piecewise smooth surface S,
and if the second order partial derivatives of � and � have any discontinuities, let
them be bounded and occur only along lines on S or across finitely many surfaces
in V. Then:
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(I) Green’s first formula is∫∫
S
�

∂�

∂n
dS =

∫∫∫
V
{��� + (grad �) · (grad �)}dV,

two useful formulas
due to Green

where dV is a volume element of V.
(II) Green’s second formula is∫∫

S

(
�

∂�

∂n
− �

∂�

∂n

)
dS =

∫∫∫
V

(��� − ���)dV.

Proof The proof is straightforward, but for simplicity it will only be offered for
functions � and � that have continuous second order partial derivatives inside a
finite volume V and on its bounding surface S.

Setting G = �(grad �), it follows that

div G = � div(grad �) + (grad �) · (grad �),

so applying the divergence theorem we have∫∫
S
�(grad �) · dS =

∫∫∫
V
{��� + (grad �) · (grad �)}dV.

However, �(grad �) · dS = �n · (grad �)dS, but n · (grad �) is simply the direc-
tional derivative of � in the direction of the unit outward normal n that will be
denoted by ∂�/∂n, so

�(grad�) · dS = � ∂�/∂ndS.

Using this in the last result gives Green’s first formula,∫∫
S
�

∂�

∂n
dS =

∫∫∫
V
{��� + (grad �) · (grad �)}dV.

Green’s second formula follows directly from this by interchanging � and �

and subtracting the new result from the Green’s first formula.

showing the
uniqueness of the
solution of Δφ = 0
in a volume, on
the surface of
which φ is
specified

In anticipation of Chapter 18, and as an illustration of the use of Green’s first
formula in the study of partial differential equations, we will prove the uniqueness
of the solution φ of Laplace’s equation

�φ = 0

in a volume V enclosed within a surface S on which the value of φ is specified at
every point. Here, the Laplacian � can be considered to be expressed in terms of
any system of orthogonal curvilinear coordinates, the simplest of which is, of course,
the cartesian coordinate system where

� ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

By the uniqueness of the solution of Laplace’s equation, we mean that when
φ is specified over the surface S enclosing a volume V, there is only one function
φ that satisfies both Laplace’s equation throughout V and the specified conditions
for φ on the surface S. A typical physical example illustrating the interpretation of
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this situation is provided by considering the steady state temperature distribution
T(x, y, z) throughout a cube of metal where the temperature is governed by the
Laplace equation

∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

= 0.

It is to be expected from a physical understanding of steady state heat conduc-
tion that the specification of a time-independent temperature distribution T over
each face of the cube of metal will determine the temperature at each internal point
of the metal, and that every time the surfaces of the same metal block are heated in
the same way, the same internal temperature distribution will result. This is simply
another way of saying that the solution of Laplace’s equation subject to specified
boundary conditions on S is expected to be unique.

The proof of this result is simple. Suppose, if possible, that two different so-
lutions φ1 and φ2 exist that satisfy the same prescribed temperature conditions on
S. Then, because Laplace’s equation is linear, the function � = φ1 − φ2 must also
be a solution and, furthermore, � ≡ 0 on S. Using this function � in Green’s first
formula and setting � = � reduces it to∫∫∫

D
(grad �) · (grad �)dV = 0.

The integrand is nonnegative, so this result can only be possible if grad � ≡ 0,
and this in turn implies that ∂�/∂x = ∂�/∂y = ∂�/∂z = 0, and so � = constant.
However, as � = 0 on the bounding surface S, this shows that � = 0 throughout
D, and so φ1 ≡ φ2 and the result is proved.

The theory and application of the vector integral calculus are developed in
standard calculus and analytic geometry texts like those in references [1.1], [1.2],
[1.5], [1.6], and [1.7]. More advanced and detailed accounts, with emphasis placed
on a vector treatment, are to be found in references [5.1] to [5.3]. Extensive use of
vector integral theorems in the study of hydrodynamics is made in reference [6.5].

Summary The three fundamental integral theorems of Gauss, Green, and Stokes were proved, and
in anticipation of the results of Chapter 18, a Green formula was used to establish the
uniqueness of the solution of the Laplace equation �φ = 0 in a volume on the surface of
which φ is specified. It will be seen later in Chapter 18 that this is called a Dirichlet problem
for the Laplace equation, and it arises in many physical situations, such as the steady state
temperature distribution in a solid, the electrostatic potential in a vacuum enclosed in a
cavity, in problems of groundwater flow, and elsewhere.

EXERCISES 12.2

1. By setting F = a × G in the divergence theorem, where
a is an arbitrary constant vector and G is a differentiable
vector function defined in a volume V in a closed sur-
face S, prove by using the properties of the scalar triple
product that∫∫

S
G × dS = −

∫∫∫
V

curl GdV.

2. Given a differentiable scalar function φ defined in a
volume V contained in a closed surface S, prove that∫∫∫

V
(grad φ) × dS ≡ 0.

3. Given the differentiable scalar and vector functions φ

and G, respectively, defined in a volume V in a closed
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surface S, prove that∫∫
S
φG · dS =

∫∫∫
V

(grad φ) · GdV +
∫∫∫

V
φ div GdV.

4. Given the differentiable vector functions P and Q de-
fined in a volume V bounded by a closed surface S,
prove that∫∫

S
P × Q · dS =

∫∫∫
V

Q · curl PdV

−
∫∫∫

V
P · curl QdV.

5. The time-dependent heat equation can be written

μρ
∂T
∂t

= div(κ grad T),

where μ, ρ, and κ are material constants that may vary
with position, t is the time, and T the temperature at a
position r in a material occupying a volume V enclosed
in a surface S. Prove that∫∫

S
κT(grad T) · dS =

∫∫∫
V

κ(grad T) · (grad T) dV

+
∫∫∫

V
μρT

∂T
∂t

dV.

6. Given that R = curl Q and Q = curl P are defined in a
volume V enclosed in a surface S, prove that∫∫∫

V
Q · QdV =

∫∫
S

P × Q · dS +
∫∫∫

V
P·RdV.

7. By using Stokes’ theorem and considering curl (φF),
where φ and F are differentiable scalar and vector func-
tions, respectively, both of which are defined over an
open surface S with closed boundary curve �, prove
that∫

�

φF · dR =
∫∫

S
(grad φ) × F · dS +

∫∫
S
φ curl F · dS.

8. Given that φ and ψ are differentiable scalar functions
defined over an open surface S with the closed bound-
ary curve �, prove that

∫
�

φ(grad �) · dr =
∫∫

S
(grad φ) × (grad ψ) · dS.

9. Let F = −y2i + xzj + z2k and S be the surface of
the plane x + y + 2z = 2 lying in the first octant
(x ≥ 0, y ≥ 0, z ≥ 0) with a clockwise sense of direc-
tion around its triangular boundary �. Verify Stokes’
theorem by computing

∫
�

F · dr and
∫∫

S curl F · dS and
showing they are equal.

10. Given that F = yzi + xyj + x2k and S is the surface
of the plane x + 3y + z = 3 lying in the first octant
(x ≥ 0, y ≥ 0, z ≥ 0) with a clockwise sense of direc-
tion around its triangular boundary �when seen from
0, verify Stokes’ theorem by computing

∫
�

F · dr and∫∫
S curl F · dS and showing they are equal.

12.3 Transport Theorems

In many applications the derivative with respect to time of surface and volume
integrals is required where the integrand is a time-dependent field quantity and the
surface or volume over which integration is to be performed moves with time. This
situation arises, for example, when the rate of change of flux of a vector quantity
F(r, t) is required through an open surface S(t) bounded by a moving closed space
curve �(t), or when the rate of change of a scalar quantity f (r, t) is required in
a volume V(t) that is enclosed in a moving surface S(t). When computing the
time derivative in the first case, it is necessary to take into account not only the
time variation of the integrand, but also the effect of the moving boundary �(t)
of the surface S(t) over which the time derivative of the flux is to be determined,
whereas in the second case, in addition to the time dependence of f (r, t), the effect
of the change in volume V(t) must be considered.

Situations of this type occur when determining the generation of an electric
current in a moving coil of wire in a magnetic field, in fluid mechanics when the
energy content of a moving volume of fluid is considered and also in the study of
shock waves, and in chemically reacting fluids where the chemical composition of
a moving volume of fluid changes with time.

In this section two results called transport theorems will be derived. The first
involves the rate of change of flux of a vector field across an open moving surface,
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whereas the second concerns the rate of change of a volume integral of a scalar
quantity when the volume involved is swept out by a moving open surface.

The first result involves computing the time derivative of the flux �(t) of a
vector function F(r, t) through an open surface S(t) bounded by a closed time-
dependent space curve �(t). When deriving this result it will be assumed that
the points on S(t) and �(t) move with a specified velocity v = v(r, t) that is de-
fined throughout the region of space involved. The flux �(t) at time t is defined
as the integral of the component of F(r, t) normal to the surface S(t), and so is
given by

�(t) =
∫∫

S(t)
F(r, t) · dS, (4)

where dS is an element of area of S(t).

THEOREM 12.5 The flux transport theorem Let a vector field F(r, t) be defined and differentiable

a transport theorem
for the rate of change
of flux

in some region of space in which the points on an open surface S(t) with a closed
boundary curve �(t) move with a prescribed velocity q(r, t). Then the rate of change
of the flux �(t) of the vector field F(r, t) through S(t) is given by

d�

dt
=
∫∫

S(t)

[
∂F
∂t

+ (div F)q
]

· dS +
∫

�(t)
F × q · dr.

Proof Consider the surface S(t) at time t and the surface S(t + h) at a subsequent
time t + h shown in Fig. 12.12, where the points of S(t) move with the given veloc-
ity v(r, t). Then S(t) sweeps out the cylindrical volume V(t) shown in the diagram,
where the line AB on the side surface of the cylinder shows the path followed by
point A on �(t) as it moves to the corresponding point B on �(t + h). Correspond-
ingly, a typical point P on S(t) will move to the point Q on S(t + h) along the line
PQ, where for a small time increment h the vector AB ≈ v(rA, t)h, and the vector
PQ ≈ v(rP, t)h, where rA and rP are the position vectors of Aand P.

QB

A P

Γ(t + h)

S(t )

S(t + h)

0

dr dS = dr × qh

q(rA, t)h

rA

rP

qh

Γ(t )

FIGURE 12.12 The surfaces S at times t and t + h and the bounding curves
�(t) and �(t + h).
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It follows from the definition of a derivative that the time derivative of the flux
�(t) is given by the limit

d�

dt
= lim

h→0

{
1
h

[∫∫
S(t+h)

F(r, t + h) · dS −
∫∫

S(t)
F(r, t) · dS

]}
. (5)

In order to compute this limit, we first consider the difference∫∫
S(t+h)

F(r, t + h) · dS −
∫∫

S(t)
F(r, t) · dS,

and for small h use the Taylor approximation

F(r, t + h) ≈ F(r, t) + h
∂F
∂t

to rewrite it as∫∫
S(t+h)

F(r, t + h) · dS −
∫∫

S(t)
F(r, t) · dS

≈
∫∫

S(t+h)
F(r, t) · dS + h

∫∫
S(t)

∂F
∂t

· dS −
∫∫

S(t)
F(r, t) · dS. (6)

To proceed further, if V is the volume swept out by S(t) in time increment h,
then the outward-drawn normal to V at S(t + h) is dS, while the outward-drawn
normal to V at S(t) is −dS. Denoting the side of the cylindrical volume by ! and
applying the divergence theorem to F(r, t) in V gives∫∫∫

V
div F(r, t)dV =

∫∫
S(t+h)

F(r, t) · dS −
∫∫

S(t)
F(r, t) · dS +

∫∫
!

F(r, t) · dS.

(7)

Using (7) to eliminate
∫∫

S(t) F(r, t) · dS from (6) leads to the result∫∫
S(t+h)

F(r, t + h) · dS −
∫∫

S(t)
F(r, t) · dS

≈ h
∫∫

S(t)

∂F
∂t

· dS +
∫∫∫

V
div F(r, t)dV −

∫∫
!

F(r, t) · dS. (8)

Now on the side ! of the cylindrical surface the outward-drawn surface element
dS = dr × qh, where dr is a vector element along �(t) directed in the counterclock-
wise direction. The volume element dV swept out by dS in time increment h is the
product of the area |dS| of dS and the perpendicular distance l between S(t + h)
and S(t) given by l = |qh · n|, where n is the unit normal to dS, so that dV = dS · qh.
When these results are used to simplify (8) and h is small, it becomes∫∫

S(t+h)
F(r, t + h) · dS −

∫∫
S(t)

F(r, t) · dS

≈ h
∫∫

S(t)

∂F
∂t

· dS + h
∫∫

S(t)
div F(r, t)q · dS + h

∫
�(t)

F(r, t) × q · dr, (9)

where the sign of the last term has been changed by using the result F · dr × q =
−F × q · dr.
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Using (9) in the difference quotient (5) and proceeding to the limit as h → 0
brings us to the statement of the theorem:

d�

dt
=
∫∫

S(t)

[
∂F
∂t

+ (div F)q
]

· dS +
∫

�(t)
F × q · dr.

EXAMPLE 12.8 Let S(t) be a plane rectangular area with its corners at the points (0, 0, z),
(x, 0, z), (x, 1, z), and (0, 1, z), where x = vt, z = ut, t is the time, and u and v are
constant speeds. Verify the flux transport theorem in the case that F = xzk, where
k is the unit vector in the z-direction.

Solution To verify Theorem 12.5 it will first be necessary to compute �(t) in order
to find d�/dt directly. The theorem will be verified in this case if this expression for
d�/dt can be shown to equal the sum of the surface and line integrals on the right
of the statement of the theorem when each has been computed separately.

The geometry of the problem is shown in Fig. 12.13(a), and the projection of
S(t) onto the (x, y)-plane is shown in Fig. 12.13(b). It can be seen from the statement
of the problem that the rectangular area remains parallel to the (x, y)-plane while
moving along the z-axis with the constant speed u, and that its length increases with
constant speed v in the positive x-direction.

We have F = xzk, z = ut, x = vt, so as the motion is uniform in the x- and
z-directions, each point of S(t) must move with the velocity q = vi + uk. The flux
�(t) is given by

�(t) =
∫∫

S(t)
F(r, t) · dS =

∫ 1

0

∫ vt

0
xzk · kdxdy =

∫ 1

0

∫ vt

0
xzdxdy.

S(t )

z

y

x

x

0
0

A

BC

x x

y

1

(a) (b)

1

FIGURE 12.13 (a) The moving planar rectangle S(t). (b) The projection of S(t)
onto the (x, y)-plane.
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So as z = ut is not involved in the integration, it can be removed as a factor to give

�(t) = ut
∫ 1

0

∫ vt

0
xdxdy = 1

2
uv2t3,

so the rate of change of flux when computed directly is given by

d�

dt
= 3

2
uv2t2.

Now ∂F/∂t = 0, div F = x, and dS = dxdyk, so as[
∂F
∂t

+ (div F)
]

q = xvi + xuk,

∫∫
S(t)

[
∂F
∂t

+ div F
]

q · dS =
∫ 1

0

∫ vt

0
(xvi + xuk) · kdxdy

= u
∫ 1

0

∫ vt

0
xdxdy = 1

2
uv2t2.

A simple calculation shows that F × q = xvzj, and so∫
�

F × q · dr =
∫

�(t)
xvzj · dr = uvt

∫
�(t)

xj · dr.

Inspection of Fig. 12.13(b) shows that on OA, dr = dxi, on AB, dr = dyj, on BC,
dr = −dxi, and on CO, dr = −dyj. The orthogonality of i and j means there are no
contributions from the line integrals along OA and BC, and as x = 0 on OC there
no contribution from the line integral along CO, so that∫

�(t)
F × q · dr = uvtx

∫ 1

0
dy = uv2t2.

We see from this that∫∫
S(t)

[
∂F
∂t

+ (div F)q
]

· dS +
∫

�(t)
F × q · dr = 1

2
uv2t2 + uv2t2 = 3

2
uv2t2.

This result equals the expression for d�/dt found previously by direct computation,
so the theorem has been verified in this case.

The second transport theorem concerns the rate of change of a volume integral
a theorem
determining the rate
of change of an
integral over a
volume V(t) of a
function of position
and time when the
surface bounding
V(t) is moving

of a differentiable scalar function f (r, t) when the volume V(t) over which integra-
tion is performed is bounded by a closed moving surface S(t), so for this reason it
is called the volume transport theorem. Because of the importance of this theorem
in fluid mechanics, where it was first derived by Reynolds, it is also known as the
Reynolds transport theorem.

THEOREM 12.6 The Reynolds transport theorem Let the scalar function f (r, t) be defined and
differentiable in a region of space V(t) through which the points inside and on a
closed surface S(t) move with a prescribed velocity q(r, t). Then

d
dt

∫∫∫
V(t)

f (r, t)dV =
∫∫∫

V(t)

∂ f
∂t

dV +
∫∫

S(t)
f (r, t)q · dS.
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OSBORNE REYNOLDS (1842–1912)
An Irish scientist and engineer, born in Belfast into a clerical family and educated in his early years
by his father. After a year spent in the workshop of the inventor and mechanical engineer Edward
Hayes he studied mathematics at Cambridge University and graduated in 1867. Shortly
afterwards he was appointed to the newly established Chair of Engineering in Manchester
University where he remained until his death. He made many important contributions to
mechanical engineering and to fluid mechanics, where he introduced the nondimensional
quantity (number) now called the Reynolds’ number that determines when a fluid flow is smooth
or turbulent. During his lifetime he received many awards.

Proof For simplicity we only offer an intuitive derivation of the theorem. Let
a scalar function f (r, t) be defined and differentiable throughout some region in
which a volume V(t) enclosed in a closed surface S(t) moves, and let the points of
V(t) and S(t) move with a prescribed velocity q(r, t). Then our objective will be to
compute

d
dt

∫∫∫
V(t)

f (r, t)dV,

where dV is the volume element in V(t). To accomplish this we start from the
definition of a derivative in terms of a limit

d
dt

∫∫∫
V(t)

f (r, t)dV = lim
h→0

1
h

[∫∫∫
V(t+h)

f (r, t + h)dV −
∫∫∫

V(t)
f (r, t)dV

]
,

(10)

and write V(t + h) = V(t) + �(t, h), where �(t, h) represents the change in volume
V(t) in the time increment h. As a result of this (10) becomes

d
dt

∫∫∫
V(t)

f (r, t)dV

= lim
h→0

1
h

[∫∫∫
V(t)

f (r, t + h)dV −
∫∫∫

V(t)
f (r, t)dV +

∫∫∫
�(t,h)

f (r, t)dV
]

= lim
h→0

∫∫∫
V(t)

1
h

[ f (r, t + h) − f (r, t)]dV + lim
h→0

1
h

[∫∫∫
�(t,h)

f (r, t + h)dV
]

=
∫∫∫

V(t)

∂ f (r, t)
∂t

+ lim
h→0

1
h

[∫∫∫
�(t,h)

f (r, t + h)dV
]

. (11)

The volume �(t, h) is the change in volume of V(t) in the time increment h, but
in this time a surface element dS of S(t) is displaced by the vector qh, so the
corresponding volume element swept out by dS in �(t, h) in this time interval is
dV ≈ hq · dS. Consequently, (11) becomes

d
dt

∫∫∫
V(t)

f (r, t)dV =
∫∫∫

V(t)

∂ f (r, t)
∂t

dV + lim
h→0

1
h

[∫∫
S(t)

hf (r, t + h)q · dS
]

.

If we take the limit as h → 0, when f (r, t + h) → f (r, t), this reduces to the
statement of the theorem

d
dt

∫∫∫
V(t)

f (r, t)dV =
∫∫∫

V(t)

∂ f
∂t

dV +
∫∫

S(t)
f (r, t)q · dS.
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2

V(t )

z

y

x

1

0
1

FIGURE 12.14 The rectangular
parallelepiped with its top surface
moving vertically with the constant
speed u.

EXAMPLE 12.9 Verify the Reynolds transport theorem when f = x2 yzt and the volume V(t)
is the rectangular parallelepiped with the corners of its base at the points
(0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, 0), its sides normal to the (x, y)-plane, and the
corners of its upper surface at the points (0, 0, z), (1, 0, z), (1, 1, z), and (0, 1, z)
when z = ut , with t the time and u a constant speed.

Solution The geometry of the problem is shown in Fig. 12.14. To verify the
Reynolds transport theorem, it is necessary first to compute the integral∫∫∫

V(t) f (r, t)dV, and then to find its derivative with respect to time t . The theorem
will be verified if this result can be shown to equal the sum of the two integrals on
the right of the theorem when they are evaluated separately:∫∫∫

V(t)
f (r, t)dV =

∫ 1

0

∫ 1

0

∫ ut

0
x2 yztdzdydx = 1

3
1
2

1
2

u2t2t = 1
12

u2t3,

so

d
dt

∫∫∫
V(t)

f (r, t)dV = 1
4

u2t2.

We have∫∫∫
V(t)

∂ f
∂t

dV =
∫ 1

0

∫ 1

0

∫ ut

0
x2 yzdzdydx = 1

3
1
2

1
2

u2t2 = 1
12

u2t2,

and as q = uk and dS = dxdyk,∫∫
S(t)

f (r, t)q · dS = z
∫ 1

0

∫ 1

0
x2 ytudydx = 1

3
1
2

u2t2 = 1
6

u2t2.

The theorem is verified, because 1
12 u2t2 + 1

6 u2t2 = 1
4 u2t2.
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Summary The flux transport theorem and the Reynolds’ transport theorem, also known as the vol-
ume transport theorem, were proved and applied. Typical examples of the application of
these theorems is the use of the first theorem to determine the rate of change of electric
flux through a moving coil of wire in a generator, and the use of the second theorem when
considering the continuity equation in fluid mechanics.

EXERCISES 12.3

1. Verify the rate of change of flux theorem given that
F = xzk and S(t) is the plane rectangular surface with
its corners at the points (0, 0, z), (x, 0, z), (x, y, z), and
(0, y, z), where x = ut, y = vt , and z = wt , with t the
time and u > 0, v > 0, w > 0 a constant speed.

2. Verify the rate of change of flux theorem given that
F = xzk and S(t) is the plane rectangular surface with
its corners at the points (0, 0, z), (1, 0, z), (1, y, z), and
(0, y, z), where y = vt and z = αt2, with t the time and
v > 0 a constant speed.

3.* A volume V(t) in the form of a rectangular paral-
lelepiped has the corners of its base at the points
(0, 0, z1), (1, 0, z1), (1, 1, z1), and (0, 1, z1) with its sides
perpendicular to the (x, y)-plane and the corners of its
top surface at the points (0, 0, z2), (1, 0, z2), (1, 1, z2),
and (0, 1, z2), where z1 = ut and z2 = vt , with t the time
and u, v constant speeds such that u > 0, v > 0. Verify
the Reynolds transport theorem for the case in which
f (r, t) = xyt .

4.* A volume V(t) in the form of a rectangular paral-
lelepiped has the corners of its base at the points
(0, −π/2, 0), (π, −π/2, 0), (π, π/2, 0), and (0, π/2, 0)
with its sides perpendicular to the (x, y)-plane
and the corners of its top surface at the points
(0, −π/2, z), (π, −π/2, z), (π, π/2, z), and (0, π/2, z),
where z = ut , with t the time and u > 0 a constant speed.
Verify the Reynolds transport theorem for the case in
which f (r, t) = sin x cos yezt2.

5.* A cylindrical volume V(t) of height h has the center of
its circular base located at the origin on the plane z = 0
and a radius r = ut , where t is the time and u > 0 is a
constant speed. Verify the Reynolds transport theorem
given that f = r 2t .

6.* A hemispherical volume V(t) lies in the region z > 0
with its center located at the origin in the plane z = 0
and a radius r = ut , where t is the time and u > 0 is a
constant speed. Verify the Reynolds transport theorem
given that f = r 3t .

12.4 Fluid Mechanics Applications
of Transport Theorems

When using the transport theorems, in fluid mechanics and elsewhere, two different
types of time derivative occur, and for what is to follow it is important to distinguish
between them. Consider a moving continuous medium, like a fluid, that has a prop-
erty f associated with it, say its density, that depends on position r and the time t so
that f = f (r, t). One way of finding the time derivative of f is to regard r as a fixed
point, and then to find the time rate of change of f as seen by an observer fixed at
point r. This time derivative is denoted by ∂ f/∂t , and it is evaluated by differenti-
ating f with respect to t while keeping r fixed. The other physically important time
derivative of f involves letting the position vector r be a point that moves with the
medium, so that r = r(t), and then finding the time derivative of f at the moving
point r. This time derivative of f is denoted by df/dt , and in continuum mechanics
it is called the material derivative of f , or sometimes the convected derivative of
f , in which case it is often represented by Df/Dt .

To find the connection between the derivatives ∂/∂t and d/dt , when finding
df/dt it is necessary to allow for the fact that the position vector r(t) = x(t)i +
y(t)j + z(t)k, so that f = f (r(t), t). Thus, allowing for the time variation in r(t), we
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have

df
dt

= ∂ f
∂t

+ ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

or
df
dt

= ∂ f
∂t

+ (q · ∇) f,

where q = (dx/dt)i + (dy/dt)j + (dz/dt)k is the velocity of the moving point r(t).
This shows that the material derivative operation can be written

d
dt

= ∂

∂t
+ (q · ∇). (12)

Before proceeding further, notice that an application of the divergence theorem
to the last term in Reynolds’ transport theorem (Theorem 12.6) allows it to be
written in the equivalent form

d
dt

∫∫∫
V(t)

f dV =
∫∫∫

V(t)

{
∂ f
∂t

+ ∇ · ( f q)
}

dV, (13)

but from Theorem 11.6 (iii) div ( f q) = f (∇ · q) + (q · ∇) f , so

d
dt

∫∫∫
V(t)

f dV =
∫∫∫

V(t)

{
∂ f
∂t

+ (q · ∇) f + f (∇ · q)
}

dV.

Finally, if we use (12) this becomes

d
dt

∫∫∫
V(t)

f dV =
∫∫∫

V(t)

{
df
dt

+ f (∇ · q)
}

dV. (14)

Let us now use this result to derive the equation of continuity of fluid mechanics
that describes the conservation of mass in any volume containing fluid in which fluid
is not added (by a source) or removed (by a sink). To do this we assume that V(t)
is an arbitrary material volume in a fluid, so that V(t) always contains the same
fluid particles and the points on the surface S(t) enclosing V(t) move with the fluid.
If we set f = ρ, where ρ(r, t) is the density of the fluid, the mass m of fluid in
V(t) is

m =
∫∫∫

V(t)
ρ(r, t)dV.

As V(t) is a material volume, provided it contains neither sources, nor sinks, the
mass m must remain constant, from which it follows that dm/dt = 0.

Setting f = ρ in (14), we find that

dm
dt

=
∫∫∫

V(t)

{
dρ

dt
+ ρ(∇ · q)

}
dV = 0.

As V(t) is arbitrary, this is only possible if the integrand is identically zero, so that

dρ

dt
+ ρ(∇ · q) = 0, or

∂ρ

∂t
+ ∇ · (ρq) = 0. (15)
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These are two equivalent forms of the equation of continuity of a fluid, which is of
fundamental importance in the study of fluid dynamics.

If the fluid velocity is such that ∇ · q = 0 (div q = 0), setting f = 1 in (14) re-
duces it to

d
dt

∫∫∫
V(t)

dV =
∫∫∫

V(t)
∇ · qdV.

If div q = 0, then ρt + ρ∇ · q = 0 simplifies to dρ/dt = 0. So, if initially ρ0 = ρ|t=0

is constant, ρ must remain constant throughout the flow even when the fluid is
compressible. As

∫∫∫
V(t) dV = V, where V is the volume of the fluid, it follows from

d/dt
∫∫∫

V(t) dV = ∫∫∫
V(t) ∇ · qdV that dV/dt = 0 when ∇ · q = 0. Consequently, in

this case, the fluid motion will evolve without change of volume, even though the
fluid may be compressible. In fluid mechanics, a flow of a compressible fluid that
takes place without a change of volume is called isochoric flow. Naturally this last
result is true when the fluid is incompressible, because then the density ρ is an
absolute constant.

Next we derive a generalization of Theorem 12.6 that allows the function f (r, t)
to be discontinuous across some surface ! in V(t) that moves with an arbitrary
velocity u, with f = f1(r, t) on one side of ! and f = f2(r, t) on the other side.
Particular cases of this result are needed when a physical quantity of interest ex-
periences a discontinuous change across a surface, as can happen, for example, in
chemical engineering and fluid mechanics.

The situation is illustrated in Fig. 12.15, where a material volume V(t) with
bounding surface S(t) is shown divided into two parts V1(t) and V2(t) by a surface
! that moves with an arbitrary velocity u. The volume V1(t) is bounded by the
surface S1(t) that is part of S(t) and !, where the unit normal n1 to ! directed out
of V1(t) is n1 = ν. Similarly, volume V2(t) is bounded by the surface S2(t) that is
part of S(t) and !, where the unit normal n2 to ! directed out of V2(t) is in the
opposite sense to that of n1 so that n2 = −ν.

Applying Theorem 12.6 to volume V1(t) gives

d
dt

∫∫∫
V1(t)

f1dV =
∫∫∫

V1(t)

∂ f1

∂t
dV +

∫∫
S1(t)

f1q · dS +
∫∫

!(t)
f1u · n1dS,

and an application of Theorem 12.6 to the volume V2(t) gives

d
dt

∫∫∫
V2(t)

f2dV =
∫∫∫

V2(t)

∂ f2

∂t
dV +

∫∫
S2(t)

f2q · dS +
∫∫

!(t)
f2u · n2dS.

Σ
u

n1

n2

V2(t )

S2(t )

S1(t )

V1(t )
S(t) = S1(t) + S2(t)
V(t) = V1(t) + V2(t)

FIGURE 12.15 The material volume V(t) and
the surface ! across which f is discontinuous.
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Adding these two results and using the fact that n1 = ν and n2 = −ν, we obtain

d
dt

∫∫∫
V(t)

f dV =
∫∫∫

V(t)

∂ f
∂t

dV +
∫∫

S(t)
f q · dS +

∫∫
!(t)

( f1 − f2)u · dS, (16)

which is the required generalization.
Examination of the last term in (16) shows, as would be expected, that the

contribution made by the jump discontinuity f1 − f2 across the surface ! that
moves with velocity u depends only on the component of u normal to !, so if u is
tangential to !, this term will vanish.

An extension of these ideas to allow for discontinuous solutions f in a volume
V(t) when f satisfies an equation of the form

∂ f
∂t

+ div h( f ) = 0,

called a conservation equation, is to be found in Chapter 18, Section 18.4, where
conservation equations and shock solutions are considered. It should be noticed
that an equation of this type has already been encountered in (15) when deriving
the continuity equation for a fluid (the conservation of mass equation) in the form

∂ρ

∂t
+ div (ρq) = 0.

This is a partial differential equation, because it is an equation relating partial deriva-
tives of the dependent variables ρ and q.

Let � be a closed curve in a fluid flow with velocity vector q for which div q = 0
(an isochoric flow), and let S be any smooth surface with boundary �. Then the
streamlines passing through � define a stream tube in the fluid flow. The integral

� =
∫∫

S
q · dS (17)

is called the strength of the stream tube, and it measures the flow rate through the
tube. As a final application of an integral theorem, we will prove that the strength of
the flow in a tube bounded by streamlines (a stream tube) remains constant along
its length.

First we rewrite Theorem 12.5, which was proved in the form

d
dt

∫∫
S(t)

F(r, t) · dS =
∫∫

S(t)

[
∂F
∂t

+ (∇ · F)q
]

· dS +
∫

�(t)
F × q · dr.

If we apply Stokes’ theorem to the last integral, this becomes

d
dt

∫∫
S(t)

F(r, t) · dS =
∫∫

S(t)

[
∂F
∂t

+ (∇ · F)q + ∇ × (F × q)
]

· dS. (18)

Replacing F by q, we have

d
dt

∫∫
S(t)

q · dS =
∫∫

S(t)

[
∂q
∂t

+ (∇ · q)q + ∇ × (q × q)
]

· dS,

but q × q = 0, and as the flow is isochoric, (∇ · q) = 0, this result reduces to

d
dt

∫∫
S(t)

q · dS =
∫∫

S(t)

∂q
∂t

· dS.
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An application of the divergence theorem to the integral on the right, where the
closed surface V(t) is formed by S(t), S(t + dt) and streamlines through �, gives

d
dt

∫∫
S(t)

q · dS =
∫∫∫

V(t)
∇ · (∂q/∂t)dV =

∫∫∫
V(t)

∂/∂t(∇ · q)dV = 0,

showing that the strength � = ∫∫
S q · dS remains constant along a stream tube.

Summary The applications considered in this section were to fluid mechanics, and they made use
of the so-called material, or convected, derivative of a function f of both position and
time. The determination of this derivative was seen to involve letting a position vector
move with the fluid and then finding the time derivative of f at the moving point. One
result obtained by means of the transport theorems was the equation of continuity of
fluid mechanics. Another result used the notion of a conservation equation to establish the
invariance of the flow rate (strength) in a stream tube, the walls of which are bounded by
streamlines.

EXERCISES 12.4
1. Prove the Euler expansion formula

d
dt

∫∫∫
V(t)

dV =
∫∫

S(t)
q · dS.

2. Show that the flux transport theorem given in (18) can
also be written as

d
dt

∫∫
S(t)

F(r, t) · dS

=
∫∫

S(t)

[
dF
dt

+ (∇ · q)F − (F · ∇)q
]

· dS.

3.* Show that if

∂F
∂t

+ (∇ · F)q + ∇ × (F × q) = 0,

the strength of flow through any stream tube remains
constant along its length.
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13C H A P T E R

Analytic Functions

Analytic functions involve an extension of the calculus to complex functions, and they
find applications throughout all of engineering and science. Examples of direct appli-

cations are to be found in two-dimensional problems in elasticity, fluid mechanics, and
electrostatics, and such functions also contribute indirectly to many other applications
through their use with the Laplace and Fourier transforms. The fundamental idea under-
lying the systematic development of analytic functions is the extension of the concept of
a derivative to a function of a complex variable. The requirement that the derivative of
a complex function be independent of the way the defining complex limit is evaluated
is more restrictive than the definition of partial derivatives of functions of two real vari-
ables, and it leads directly to the Cauchy–Riemann equations, which are central to the
development of the subject.

After a brief review of the notion of a mapping, the fundamental concepts of the limit,
continuity and differentiability of a complex function are introduced, and the essential
difference between derivatives of real and complex functions is explained. An analytic
function is defined, and the requirement that the limiting operation in the definition of
a derivative of a complex function should be independent of the direction in which it is
evaluated is shown to lead to the important Cauchy–Riemann equations. These equations
provide a condition that ensures that a function of a complex variable is analytic, and both
the real and imaginary parts of an analytic function are shown to be harmonic functions.
Some important elementary analytic functions are defined and the problem of finding
their inverse is examined.

13.1 Complex Functions and Mappings

A typical example of a complex function is the nth degree polynomial

P(z) = a0zn + a1zn−1 + a2zn−2 + · · · + an−1z + an, (1)

where the coefficients a0, a1, . . . , an are complex numbers and z = x + iy is an ar-
bitrary complex variable. Assigning to z the specific value z1 determines a complex

711
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y

0 0

vz-plane w-plane

w0

w0 = f(z0)

z0
D

Ω

FIGURE 13.1 The function w = f (z) and the w- and z-planes.

number P(z1), so to each z in the complex plane, there corresponds another com-
plex number P(z). Complex polynomials are defined for all z in the complex plane,
and P(z) ranges over all of the complex numbers defined by (1).

The general concept of an arbitrary complex function w = f (z) can be intro-
duced by considering two complex planes, one the z-plane containing the points
z = x + iy and the other the w-plane containing the points w = u + iv, as shown in
Fig. 13.1. To develop this idea further, let a set of points D in the z-plane be such
that to each point z in D there corresponds a unique complex number w belonging
to another set of points � in the w-plane. Then the set D is said to be mapped ontomappings and images
the set � by a single-valued function of the complex variable z. A point w0 in the
w-plane corresponding to a point z0 in the z-plane is called the image of z0. The term
single-valued is used because, by hypothesis, each point of D corresponds to one
and only one point of �, and the name mapping is used because an arbitrary curve
in D will correspond (be mapped) to a corresponding curve in �, with each point
of the curve in � the image of a point in D. The notion of a mapping is important,
and it will be used later in Chapter 17 when the concept of conformal mapping is
introduced. The relationship between the points in D and the corresponding points
in � is shown by the usual functional notation

w = f (z). (2)

Set D is called the domain of definition of the complex function f (z), and set � is
called its range.

This definition of a function of a complex variable is more general than we
require, because it places no restriction on the nature of the sets D and �. In
complex analysis we will only be concerned with sets of points that possess the
property of being connected. A set G will be said to be connected if every pair of
points in G can be joined by an unbroken path with the property that every point of
the path also belongs to G. Here, the path may be either a curve or a set of straight
line segments joined end to end.

A neighborhood of a point z0 in G is defined as all the points of a set containedneighborhoods and
boundaries strictly inside a circle of arbitrarily small radius with its center at z0. A point z0 is

called an interior point of G if a neighborhood of z0 only contains points of G. If a
neighborhood of z0 contains no points of G, the point z0 is called an exterior point of
G. When any neighborhood of z0 contains both interior and exterior points of G, the
point z0 is called a boundary point of G. Collectively, the set of all boundary points
is called the boundary of the set. In the sets to be considered later, the boundary
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G
z0

z2

z2 is a boundary
point of G

z1

z0 is an interior
point of G

z1 is an exterior
point of G

FIGURE 13.2 Interior, exterior, and boundary points of G and their associated
neighborhoods.

points usually comprise a combination of straight line segments and curved arcs
joined end to end to form a continuous boundary.

A set G that contains no boundary points is called an open set. If every boundaryopen and closed sets,
and connectivity point of set G belongs to G, then G said to be closed. The name domain is given

to an open connected set, while the more general term region is used to describe a
connected set of points that may contain none, some, or all of its boundary points.
A typical open connected set G is the disc |z| < 1 in the z-plane. The set is connected
because every point in G can be joined to every other point in G by a curve lying
entirely inside G, and the set is open because however close a point in G is to the
circle |z| = 1, a neighborhood of z0 can always be found that only contains points
of G. This becomes a closed set if the relation |z| < 1 is replaced by |z| ≤ 1, because
then the boundary of G formed by the circle |z| = 1 belongs to the set. These ideas
are illustrated in Fig. 13.2.

In what follows we will be concerned with functions with the property that
to a single element in their domain there corresponds a single element in their
range and, conversely, to a single element in their range there corresponds a single
element in their domain. Functions of this type are said to be one-one, so a function
like w = √

z is to be regarded as two separate functions, each with the same domain
in the z-plane, but with different ranges in the w-plane.

The complex function (2) can be written in its cartesian form asrepresenting complex
functions in cartesian
and polar forms

f (z) = u(x, y) + iv(x, y) for z = x + iy ∈ D, (3)

where u(x, y) and v(x, y) are real functions of the real variables x and y denoted
by

u(x, y) = Re{ f (z)} and v(x, y) = Im{ f (z)}. (4)

Similarly, when z is expressed in modulus argument form by setting z = reiθ , with
r = |z|, θ = Arg z and −π < θ ≤ π , the complex function f (z) takes the polar form

f (z) = u(r, θ) + iv(r, θ), (5)
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where u(r, θ) and v(r, θ) are real functions of the real variables r and θ given by

u(r, θ) = Re{ f (z)} and v(r, θ) = Im{ f (z)}. (6)

EXAMPLE 13.1 Write the function f (z) = z2 − z + 2 in both its cartesian and polar form, and in
each case identify the functions u and v.

Solution To arrive at the cartesian form we set z = x + iy in f (z) to obtain

f (z) = u + iv = (x + iy)2 − (x + iy) + 2

= x2 + 2i xy − y2 − x − iy + 2

= x2 − y2 − x + 2 + i(2xy − y).

Equating the real and imaginary parts gives

u(x, y) = Re{ f (z)} = x2 − y2 − x + 2 and v(x, y) = Im{ f (z)} = 2xy − y.

The polar form is obtained by setting z = reiθ in f (z) to obtain

f (z) = u + iv = r2e2iθ − reiθ + 2

= r2(cos 2θ + i sin 2θ) − r(cos θ + i sin θ) + 2

= r2 cos 2θ − r cos θ + 2 + i(r2 sin 2θ − r sin θ).

In this case, equating real and imaginary parts gives

u(r, θ) = r2 cos 2θ − r cos θ + 2 and v(r, θ) = r2 sin 2θ − r sin θ.

EXAMPLE 13.2 Draw the straight line segment in the z-plane joining the points z = 2 + 3i and
z = 4 + 5i , and find its image in the w-plane under the mapping w = 1

2 z + i .

Solution The straight line segment starts at the point A with coordinates (2, 3)
and ends at the point B with coordinates (4, 5), so if it has the equation y = mx + c,
its gradient m = (5 − 3)/(4 − 2) = 1. As the line must pass through the point (2, 3),
substitution into the equation y = mx + c gives 3 = 2 + c, so c = 1. This has es-
tablished that the equation of the line to which the line segment AB belongs is
y = x + 1.

The mapping is w = 1
2 z + i , so setting w = u + iv and z = x + iy, we find that

u + iv = 1
2 x + i( 1

2 y + 1). Equating the real and imaginary parts of this equation
gives u = 1

2 x, v = 1
2 y + 1. As the straight line segment AB in the z-plane is part of

the line y = x + 1, substituting for x and y in terms of u and v shows that the mapping
onto the w-plane of the line to which AB belongs has the equation v = u + 3/2. This
is also the equation of a straight line, so we have established that w = 1

2 z + i maps
the straight line y = x + 1 in the z-plane onto the straight line v = u + 3/2 in the
w-plane.

To draw the required image in the w-plane we must now determine the images
A′ and B′ in the w-plane of Aand B in the z-plane, and then join them by a straight
line. As A is the point z = 2 + 3i and B is the point z = 4 + 5i, substitution into
w = 1

2 z + i shows that A′ is the point w = 1 + 5
2 i and B′ is the point w = 2 + 7

2 i .
The line segments in the z- and w-planes are shown in Fig. 13.3.
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FIGURE 13.3 The image of line AB under the mapping w = 1
2 z + i .

EXAMPLE 13.3 (a) Draw and shade the area in the z-plane containing the points satisfying the
conditions |z − 1 + 2i | ≤ 1 and Im{z} > −2, marking a boundary that belongs to
the set by a solid line and one that does not belong to it by a dashed line. (b) Draw
and shade the area in the z-plane to which belong the points satisfying the conditions
r = |z − 1| ≥ 2 and π/6 ≤ Arg(z − 1) ≤ π/3.

Solution

(a) We must use the fact that the modulus of a complex number is a nonnegative
real number, and |z1 − z2| is the distance between z1 and z2. It follows from this
that the inequality |z − 1 + 2i | ≤ 1 is satisfied by all points z distant from the point
1 − 2i by an amount less than or equal to 1. So the inequality |z − 1 + 2i | ≤ 1 is
satisfied by all points inside and on a circle of radius 1 centered on the point 1 − 2i .
As Im{z} = y, the inequality Im{z} > −2 is simply y > −2. So the required points
lie inside and on a circle of radius 1 centered on the point 1 − 2i , and strictly above
the line y = −2. The required area is shown in Fig. 13.4a, where the boundary of
the circle has been drawn using a solid line because these boundary points belong

0

y

−1

−2

1 2 3 x

z-plane
y

z-plane

y = −2

⎢z − 1 + 2i⎥ = 1

⎢z − 1⎥ = 2

4

3

2

1

1 2 3 4 5 6 x
π/6

π/3

(a) (b)

0

FIGURE 13.4 (a) Points satisfying |z − 1 + 2i | ≤ 1, Im{z} > −2. (b) Points satisfying
r = |z − 1| ≥ 2 and π/6 ≤ Arg(z − 1) ≤ π/3.
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to the set, while the bounding line y = −3 is drawn as a dashed line because points
on this boundary do not belong to the set.

(b) The condition r = |z − 1| ≥ 2 is satisfied by all points outside and on a circle
of radius 2 with its center at z = 1, and a condition of the form Arg(z − 1) = ω is a
radial line drawn from the point z = 1 as origin making an angle ω measured coun-
terclockwise from the positive real axis. Thus the condition π/6 ≤ Arg(z− 1) ≤ π/3
gives a wedge shaped area in the upper half of the z-plane centered on the point
z = 1 with its bounding lines making angles π/6 and π/3 with the positive real axis.
The required area is shown in Fig. 13.4b.

EXAMPLE 13.4 Find the image of the set of points |Re{z}| < 1, |Im{z}| < 2 in the z-plane under the
mapping w = 2z + 1.

Solution When mapping areas, the approach to be used is first to determine how
the boundary transforms, and then to determine if the points in the given area in
the z-plane map to points inside or outside the image of this boundary in the w-
plane. As Re{z} = x and Im{z} = y, the area in the z-plane lies inside the rectangle
−1 < x < 1, −2 < y < 2 shown in the left of Fig. 13.5.

Setting z = x + iy in w = 2z + 1 gives w = u + iv = 2x + 1 + 2iy, so u = 2x + 1
and v = 2y. The top boundary of the area in the z-plane in Fig. 13.5 is −1 < x < 1,

y = 2, so using these results in the mapping shows the image of this boundary in
the w-plane to be given by u = 2x + 1, with −1 < x < 1, and v = 4. A repetition of
this form of argument applied to the other three sides of the rectangle establishes
that the image in the w-plane of the rectangle in the z-plane is the one illustrated
on the right of Fig. 13.5. A general point (x, y) inside the rectangle in the z- plane
maps to the point (2x + 1, 2y) in the w-plane with −1 < x < 1, −2 < y < 2, and this
point is seen to lie inside the rectangular boundary in the w-plane. Consequently, all
points inside the rectangle in the z-plane map to points inside the image rectangle
in the w-plane. Inspection of Fig. 13.5 shows that the geometrical effect of this
mapping is first to scale the rectangle in the z-plane uniformly by a factor 2 in
both the x and y directions, and then to shift the origin parallel to the real axis.
Mappings are examined in greater detail in Chapter 17 in connection with conformal
mappings.
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FIGURE 13.5 The effect of the mapping w = 2z + 1 on a rectangle.
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Summary A mapping by a single-valued complex function and the image of a point were defined,
the notion of a connected set was introduced, and the definition of a neighborhood was
used to define the boundary of a set in the complex plane and to identify open and closed
regions in the complex plane.

EXERCISES 13.1

In Exercises 1 and 2 sketch and shade the areas in the
z-plane occupied by points satisfying the given conditions.
Represent a boundary that belongs to a set by a solid line
and one that does not by a dashed line. Determine if the
areas represent open sets, closed sets, or regions.

1. (a) |z| ≥ 1 and |z| ≤ 2. (b) |z − i | ≤ 1 and |z| < 1.
(c) 0 < x < 1, 0 < y < 1.

2. (a) 1 < |z| ≤ 2. (b) 1 < |z − 1| ≤ 2, x > 1, y > 0.

(c) Re{z} > 0, Im{z} < 0, |z| ≤ 2.
3. Determine the image of the straight line segment join-

ing the origin to the point z = 2 + 2i under the mapping
w = −iz.

4. Set w = u + iv and use the fact that zz̄ = 1 on the cir-
cle |z| = 1 to determine the image under the mapping
w = 2z − 1 of the part of the circular arc |z| = 1 that lies
in the first quadrant of the z-plane.

5. Determine the image of the points satisfying |Re{z}| >

2, |Im{z}| < 1 in the z-plane under the mapping w =
iz + 2.

6. Determine the image of the points satisfying |Re{z}| >

4, |Im{z}| > 2 in the z-plane under the mapping w =
i − 3z.

7. By considering the lines joining the origin and the point
(2, 0) to a point z in the upper half of the z-plane,

show that the conditions Arg(z − 2) − Arg z = π/2
and 0 ≤ Arg z ≤ π/2 define a semicircular arc of ra-
dius 1 in the upper half of the z-plane with its center at
z = 1.

8. By considering the lines joining the points (1, 0) and
(3, 0) to a point z in the upper half of the z-plane, deter-
mine the area in the z-plane defined by the conditions
Arg(z − 3) − Arg(z − 1) = π/2, 0 ≤ |z − 2| ≤ 1, and
π/4 ≤ Arg(z − 2) ≤ 3π/4.

9. Use a geometrical argument to find the locus of points
z such that

|z − 1| + |z + 1| = 4.

10. Use a geometrical argument to find the locus of points
z such that

|z − 3i | = |z − i |.
Express the functions in Exercises 11 through 14 in both
cartesian and polar form, and determine the forms taken
by u and v in each case.

11. f (z) = (2z + i)/(z + i).
12. f (z) = 3z2 − 2z + 1/z.

13. f (z) = zeiz.
14. f (z) = z + 1/z.

13.2 Limits, Derivatives, and Analytic Functions

When working with functions of a complex variable it is necessary to generalize the
related concepts of a limit and continuity by extending the corresponding definitions
from real analysis. These generalizations use the fact that in the complex plane the
modulus |z| measures the magnitude of z, so |z1 − z2| can be considered to measure
the distance between points z1 and z2 in the z-plane. The function

f (z) = u(x, y) + iv(x, y) (7)

will have the complex limit L, writtencomplex limit

lim
z→z0

f (z) = L = L1 + i L2, (8)
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where L1 and L2 are real numbers, if

lim
|z−z0|→0

| f (z) − L| = 0. (9)

If z = x + iy and z0 = x0 + iy0, then z will tend to z0, written z → z0, when
(x, y) → (x0, y0), so (9) is equivalent to

lim
(x,y)→(x0,y0)

| f (z) − L| = 0. (10)

However, by the triangle inequality,

| f (z) − L| = |u(x, y) + iv(x, y) − L1 − i L2| = |u(x, y) − L1 + i(v(x, y) − L2)|
≤ |u(x, y) − L1| + |v(x, y) − L2|,

so in terms of real functions, f (z) will have the limit L as z → z0 if

lim
(x,y)→(x0,y0)

u(x, y) = L1 and lim
(x,y)→(x0,y0)

v(x, y) = L2. (11)

This shows the connection between the limit of a function f (z) of a complex
variable and the limits of the real functions u(x, y) and v(x, y). Because of this
relationship, the fundamental properties of limits of functions of a real variable are
transferred to functions of a complex variable, with the result that if f (z) and g(z)
have limits as z → z0, then

lim
z→z0

[ f (z) ± g(z)] = lim
z→z0

f (z) ± lim
z→z0

g(z) (12)

lim
z→z0

[ f (z)g(z)] = lim
z→z0

f (z) lim
z→z0

g(z) (13)

lim
z→z0

[ f (z)/g(z)] = lim
z→z0

f (z)/ lim
z→z0

g(z), when lim
z→z0

g(z) �= 0. (14)

As with real functions of a real variable, the complex function f (z) will be said
to be continuous at z0 if it is defined in a neighborhood of z0 and f (z0) exists andcontinuous and

discontinuous
complex functions

is equal to limz→z0 f (z). When expressed in terms of real functions, it can be seen
that f (z) = u + iv will be continuous at z0 = x0 + iy0 if

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0) and lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0). (15)

A function f (z) that does not satisfy condition (15) at (x0, y0), that is, at z = z0, will
be said to be discontinuous at z0.

It is a direct consequence of the definitions of a limit and of continuity that
the sum and difference of continuous complex functions of a complex variable are
themselves continuous, and the quotient of continuous functions is continuous at
z0 provided the divisor does not vanish at z0.
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EXAMPLE 13.5 Examine the continuity of the functions (a) f (z) = z2 + 3z − 1 and (b) f (z) =
z/(z − 1).

Solution

(a) Setting z = x + iy in f (z) and identifying the real and imaginary parts gives

f (z) = (x + iy)2 + 3(x + iy) − 1

= x2 − y2 + 3x − 1 + i(2xy + 3y),

so if f (z) = u + iv, then

u(x, y) = x2 − y2 + 3x − 1 and v(x, y) = 2xy + 3y.

As u and v are continuous for all (x, y), that is, for all z, it follows from (15) that
f (z) is continuous for all z.
(b) The function f (z) can be considered as the product of the functions g(z) = z

and h(z) = 1/(z − 1), and clearly g(z) is continuous for all z. To examine the be-
havior of h(z) we set z = x + iy, and after separating the real and imaginary parts
we have

h(z) = 1
x + iy − 1

= x − 1
(x − 1)2 + y2

− i
y

(x − 1)2 + y2
.

So, if h(z) = u2 + v2, then

u2(x, y) = x − 1
(x − 1)2 + y2

and v2(x, y) = − y
(x − 1)2 + y2

.

The functions u2 and v2 are continuous for all (x, y) except at the point (1, 0)
corresponding to z = 1 where their divisors vanish. Thus, h(z) is continuous for
all z except at z = 1, so it follows from (13) that the product f (z) = g(z)h(z) is
continuous everywhere except at the point z = 1, where it has a discontinuity.

This same conclusion can be reached if f (z) is regarded as a quotient of the
functions g(z) = z and h(z) = (z − 1). Setting z = x + iy in f (z) and identifying the
real and imaginary parts gives

f (z) = x + iy
x + iy − 1

= x2 + y2 − x
(x − 1)2 + y2

− i
y

(x − 1)2 + y2
,

so if f (z) = u + iv, then

u(x, y) = x2 + y2 − x
(x − 1)2 + y2

and v(x, y) = − y
(x − 1)2 + y2

.

Both u and v have limits as (x, y) → (x0, y0) for all points (x0, y0) with the exception
of the point (1, 0), corresponding to z = 1, where their divisors vanish. So again we
conclude that f (z) is continuous for all z with the exception of the point z = 1,
where it is discontinuous.

A major difference between a real-valued function of two real variables and a
single-valued function of a complex variable w = f (z) = u(x, y) + iv(x, y) arises
when the derivative of f (z) is introduced. If a single-valued complex function f (z)derivative of a

complex function
is defined in some domain D of the complex plane then, when it exists, its derivative
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f ′(z) is defined as

f ′(z) = dw
dz

= lim
h→0

f (z + h) − f (z)
h

, (16)

where in the limit on the right the complex variable h is allowed to tend to zero
along any path in the z-plane. It is this last condition that distinguishes the derivative
of a complex function from that of a real function of two real variables because,
as will be seen later, the existence of a unique derivative f ′(z) requires a special
relationship to exist between the real and imaginary parts u(x, y) and v(x, y) of
f (z).

A function that has a continuous derivative throughout some domain D of the
complex plane is said to be analytic in D. A function is analytic at a point P ifanalytic and

entire functions there is a region containing P in which it is analytic, and a function that is analytic
everywhere in the z-plane is called an entire function.

On account of the definition of a derivative in (16), and results (12) to (14)
involving limits, it follows that the rules for the differentiation of real functions of
a real variable carry over to complex functions, so for functions f (z) and g(z) that
are analytic in D,fundamental rules

for differentiating
combinations of
complex functions d

dz
[ f (z) ± g(z)] = f ′(z) ± g′(z) is analytic in D (17)

d
dz

[ f (z)g(z)] = f ′(z)g(z) + f (z)g′(z) is analytic in D (18)

d
dz

(
f (z)
g(z)

)
= f ′(z)g(z) − f (z)g′(z)

[g(z)]2
is analytic in D

wherever g(z) �= 0, (19)

and differentiation of a composite function (function of a function) is given by the
familiar result

d[ f (g(z))]
dz

= g′(z) f ′(g(z)), (20)

where the expression on the right is analytic whenever the range of g(z) lies within
the domain of definition of f (z), and f ′(g(z)) exists.

Higher derivatives are defined in the usual manner, so that, for example,

d2[ f (z)]
dz2

= d
dz

[
d[ f (z)]

dz

]
= f ′′(z) and

d3[ f (z)]
dz3

= d
dz

[
d2[ f (z)]

dz2

]
= d[ f ′′(z)]

dz
= f ′′′(z).

(21)
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It follows directly that if f (z) and g(z) are analytic in a common domain D of
the complex plane, then f (z) ± g(z) and f (z)g(z) are analytic in D, and f (z)/g(z)
is analytic in D except for points where g(z) = 0 but f (z) �= 0.

The formal definition of a derivative in (16) does not usually provide a conve-
nient way of calculating f ′(z), though it can be used as shown by the next example

EXAMPLE 13.6 Use the definition of a derivative in (16) to show that

finding an important
derivative from first
principles

d[zn]
dz

= nzn−1 for n = 0, ±1, ±2, . . . ,

and that zn is analytic for all z when n = 0, 1, 2, . . . , and when n = −1, −2, . . . , it
is analytic everywhere except at z = 0.

Solution We consider the cases n = 0, 1, 2, . . . , and n = −1, −2, . . . , separately.

Case: n = 0. From (16) we have

d[1]
dz

= lim
h→0

(
1 − 1

h

)
= 0,

and this is true irrespective of how h → 0, so the statement is true for n = 0.
Case: n a positive integer. From (16), after expanding (z + h)n by the binomial
theorem, we have

d[zn]
dz

= lim
h→0

(
(z + h)n − zn

h

)

= lim
h→0

(
zn + nhzn−1 + n(n−1)

2! h2zn−2 + · · · + hn − zn

h

)

= nzn−1 + lim
h→0

h
(

n(n − 1)
2!

zn−2 + n(n − 1)(n − 2)
3!

hzn−3 + · · · + hn−2
)

= nzn−1.

This result is also true for all z, irrespective of the path in the z-plane by which
h → 0, so the statement is true for all positive integers n.
Case: n a negative integer. In this case, using (19) with f (z) = 1 and g(z) = zn

gives

d[z−n]
dz

= −d[zn]/dz
z2n

= −nz−(n+1), for z �= 0,

so the statement in the problem is seen to be true when n is a negative integer
and z �= 0. We have shown that when n = 0, 1, 2, . . . the function f (z) = zn is
analytic for all z, and when n is a negative integer it is analytic everywhere
except at the origin.

The definition of a derivative in (16) is too cumbersome to use for general
purposes. A more convenient way of determining derivatives will be found as a
result of arriving at conditions to be satisfied by u(x, y) and v(x, y) that will ensure
that the function f (z) = u(x, y) + iv(x, y) is analytic.
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THEOREM 13.1 Cauchy–Riemann equations The single-valued complex function

a fundamental
condition to be
satisfied if a complex
function is to have a
derivative

f (z) = u(x, y) + iv(x, y)

defined for all z in some domain D of the complex plane will have a deriva-
tive f ′(z) at every point of D, and so be analytic in D, if the partial deriva-
tives ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y are continuous throughout D and satisfy the
Cauchy–Riemann equations at every point of D:

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x

.

Proof To arrive at conditions to be satisfied by f (z) = u + iv that will ensure that
f ′(z) exists and is unique in D, independently of the way in which h → 0 in (16), we
will compute f ′(z) in two different ways. First we will find f ′(z) by letting h → 0
parallel to the real axis, and then by letting h → 0 parallel to the imaginary axis, as
a result of which two different expressions will be obtained for f ′(z). If these are
to be identical, their respective real and imaginary parts must be equal, and it will
be this requirement that will lead to the Cauchy–Riemann equations.

First we set h = h1 + i0 and let h1 → 0, so that h → 0 parallel to the real axis,
and as a result (16) becomes

f ′(z) = lim
h1→0

[
u(x + h1, y) + iv(x + h1, y) − u(x, y) − iv(x, y)

h1

]
= lim

h1→0

[
u(x + h1, y) − u(x, y)

h1

]
+ i lim

h1→0

[
v(x + h1, y) − v(x, y)

h1

]
= ∂u

∂x
+ i

∂v
∂x

.

Next we set h = 0 + ih2 and let h2 → 0, so that h → 0 is parallel to the imaginary
axis. In this case (16) becomes

f ′(z) = lim
h2→0

[
u(x, y + h2) + iv(x, y + h2) − u(x, y) − iv(x, y)

ih2

]
= lim

h2→0

[
u(x, y + h2) − u(x, y)

ih2

]
+ i lim

h2→0

[
v(x, y + h2) − v(x, y)

ih2

]
= ∂v

∂y
− i

∂u
∂y

.

Equating these two different expressions for f ′(z), whose respective real and
imaginary parts must be equal, gives the Cauchy–Riemann equations

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x

,

that must hold throughout D if f (z) is to be analytic in D.
It is somewhat harder to prove that when u(x, y) and v(x, y) have continuous

partial derivatives ux, uy, vx, and vy in D, the function f (z) = u(x, y) + iv(x, y) is
analytic in D, so the details of the proof will be omitted.
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AUGUSTIN-LOUIS CAUCHY (1789–1857)
A French mathematician who was born in Paris and studied and held a professorship at the Ecole
Polytechnique. He was subsequently appointed to the chair of mathematical physics at the
University of Turin. Cauchy published many mathematical papers, and he was responsible for
introducing a rigorous definition of a limit. One of his most important contributions was to the
development of complex analysis. Among his other works of a fundamental nature were
contributions to number theory, differential equations, and various aspects of mathematical
physics.

GEORGE FRIEDRICH BERNHARD RIEMANN (1826–1866)
A German mathematician of outstanding ability who was born in Hanover, but whose delicate
health due to tuberculosis resulted in his untimely death while visiting Italy. He studied under
Gauss, and after a period of time in Berlin he returned to Göttingen to study physics under
Weber. He was made Professor of Mathematics in Göttingen in 1859, and he made contributions
of fundamental importance to many branches of mathematics, some of which were influenced
by his earlier studies in physics. Among his remarkable contributions, it was his work that led to a
proper understanding of definite integrals and to the development of complex analysis and its
geometrical interpretation.

The implications of the Cauchy–Riemann equations are far-reaching, because
it will be shown later that if a function is analytic in D, then it possesses derivatives
of all orders.

When f (z) = u(x, y) + iv(x, y) is an analytic function in D, a convenient
method for the computation of f ′(z) follows from the first expression found in
Theorem 13.1, because then

f ′(z) = ∂u
∂x

+ i
∂v
∂x

= ∂v
∂y

− i
∂u
∂y

. (22)

This result expresses the derivative f ′(z) in its cartesian form involving func-
tions of x and y, but it is often necessary to represent f ′(z) as a function of z.
In general, to convert the cartesian form of an analytic function g(z) = u(x, y) +
iv(x, y) into an expression in terms of z, it is only necessary to recognize that when
z is purely real the functional forms of g(x) and g(z) are identical. This leads to the
following general rule.

Rule for converting an analytic function w = u+ iv to the form w = f (z)

Let g(z) = u(x, y) + iv(x, y) be an analytic function in some domain D of thehow to convert an
analytic function in
(x,y) form to a
function of z

complex plane. Then the cartesian represention of the function involving x
and y on the right of g(z) can be converted to a function of z by setting y = 0
and replacing x by z in u(x, y) and v(x, y).

EXAMPLE 13.7 Show that f (z) = z2 satisfies the Cauchy–Riemann equations and is an entire func-
tion. Use result (22) and the foregoing rule to show that

d
dz

[z2] = 2z.

Solution If we set f (z) = z2 = u + iv, it follows that u(x, y) = x2 − y2 and
v(x, y) = 2xy. Then ∂u/∂x = 2x, ∂u/∂y = −2y, ∂v/∂x = 2y, and ∂v/∂y = 2x, so

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x

,
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showing that the Cauchy–Riemann equations are satisfied for all (x, y), so z2 is an
entire function. From (22) the cartesian form of f ′(z) is

d
dz

[z2] = 2x + i2y,

so setting y = 0 and replacing x by z the above rule shows that

d
dz

[z2] = 2z,

in agreement with the result of Example 13.6 with n = 2.

Not every function of a complex variable is an analytic function, as can be seen
from the next example.

EXAMPLE 13.8 Show that neither f (z) = z̄ nor f (z) = |z| is an analytic function.

Solution Setting f (z) = z̄ = x − iy, we have u(x, y) = x and v(x, y) = −y, so
∂u/∂x = 1 and ∂v/∂y = −1. As the first Cauchy–Riemann equation is not satis-
fied at any point in the z-plane, the function f (z) = z̄ is not an analytic function.

Setting f (z) = |z| = (x2 + y2)1/2, we find that u(x, y) = (x2 + y2)1/2 and
v(x, y) ≡ 0. As ∂v/∂x = ∂v/∂y ≡ 0, the Cauchy–Riemann equations cannot be sat-
isfied in the z-plane, so f (z) = |z| is not an analytic function. This is not surprising,
because |z| is a real function.

It should be recognized that because polynomials are sums of analytic func-
tions, they are themselves analytic functions. As a result, derivatives of sums and
products of polynomials are analytic functions, and derivatives of quotients of poly-
nomials are analytic functions except at the zeros of their divisors. Derivatives of
polynomials are obtained by repeated use of the result of Example 13.6 using the
appropriate values of n.

EXAMPLE 13.9 Find F ′(z) given that F(z) = z/(z2 − 1).

Solution Applying (19) with f (z) = z and g(z) = z2 − 1 gives

d
dz

[
z

z2 − 1

]
= − (z2 + 1)

(z2 − 1)2
, for z �= ±1.

It is natural to define the complex exponential function ez asthe complex
exponential

f (z) = ez = e(x+iy) = ex(cos y + i sin y), (23)

because when z = x + i0 this reduces to the definition of ex, and when z = 0 + iy
it becomes the Euler formula

eiy = cos y + i sin y.

Expression (23) is compatible with the series representation

ez = 1 + z + z2

2!
+ z3

3!
+ · · · =

∞∑
n=0

zn

n!
, (24)
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because when z = x this becomes the ordinary exponential series for ex with an
infinite radius of convergence, and when z = iy it becomes the Euler formula.

The form of argument used in elementary calculus to establish the ratio test for
the convergence of a series in the real variable x remains true when x is replaced
by the complex variable z and the absolute value of x is replaced by the modulus
of z (see Section 15.1). As a result, because ex has an infinite radius of convergence
and so can be differentiated term by term, so can ez, because it converges in a
disc of arbitrarily large radius centered on the origin in the z-plane. Term-by-term
differentiation of series (24) is permissible and shows that

d[ez]
dz

= ez.

Replacing z in the series by az, with a an arbitrary complex constant, and again
differentiating term by term gives the more general result

d[eaz]
dz

= aeaz, (25)

and so eaz is an entire function.
As with the real variable case, the complex hyperbolic functions sinh z and

cosh z are defined by the formulascomplex hyperbolic
functions

sinh z = ez − e−z

2
and cosh z = ez + e−z

2
, (26)

and after squaring and differencing these definitions we obtain the fundamental
identity

cosh2 z − sinh2 z = 1. (27)

Differentiation of definitions (26) with z replaced by az shows that

d[sinh az]
dz

= a cosh z and
d[cosh az]

dz
= sinh az, (28)

but as eaz is an entire function, so also are sinh az and cosh az.
By definition,

tanh z = sinh z
cosh z

, (29)

so after z is replaced by az, an application of (19) together with results (27) and
(28) shows that

d[tanh az]
dz

= a cosh2 az − a sinh2 az

cosh2 az
= a

cosh2 az
= a sech2az, (30)
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provided cosh az �= 0. This last condition is necessary because although the real-
variable hyperbolic cosine function never vanishes, the complex hyperbolic cosine
function has an infinity of zeros. The complex function tanh az is seen to be analytic
in any domain D that does not contain a zero of cosh az, so it is not an entire
function.

The functions sech az, csch az, and coth az are defined in the usual manner as

sech az = 1
cosh az

, csch az = 1
sinh az

, and coth az = 1
tanh az

, (31)

with the derivatives

d
dz

[sech az] = −a sech az tanh az for az �=
(

n + 1
2

)
π i,

d
dz

[csch az] = −a csch azcoth az for az �= nπ i,

d
dz

[coth az] = −a csch2az for az �= nπ i.

(32)

EXAMPLE 13.10 Find the zeros of (a) cosh z and (b) cos z − 3.

Solution

(a) By definition

cosh z = 1
2

[ex+iy + e−x−iy] = 1
2

exxiy + 1
2

e−xe−iy

= 1
2

ex(cos y + i sin y) + 1
2

e−x(cos y − i sin y)

=
(

ex + e−x

2

)
cos y + i

(
ex − e−x

2

)
sin y

= cosh x cos y + i sinh x sin y.

The function cosh z will vanish when

u(x, y) = Re{cosh z} = cosh x cos y = 0 and

v(x, y) = Im{cosh z} = sinh x sin y = 0,

and this is only possible if cos y = 0 and sinh x = 0. The function cos y = 0 when
y = (2n + 1)π/2 for n = 0, ±1, ±2, . . . , and sinh x = 0 only when x = 0, so the zeros
of cosh z, that is, the roots of cosh z = 0, are z = i(2n + 1)π/2 for n = 0, ±1, ±2, . . . .

(b) A similar argument shows that cos z = cos x cosh y − i sin x sinh y, so cos z = 3
if cos x cosh y = 3 and sin x sinh y = 0. The first condition is true if cos x = 1 and
cosh y = 3, from which it follows that y = ±arccosh 3 (remember that the inverse
hyperbolic cosine function is double valued) and x = 2nπ , for n = 0, ±1, ±2, . . . .

This choice of x also causes the second condition to be satisfied for all y, so the
zeros of cos z − 3, that is, the roots of cos z = 3, are z = 2nπ ± i arccosh 3, for n =
0,±1, ±2, . . . .
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EXAMPLE 13.11 Use the Cauchy–Riemann equations to show that cosh z is an entire function, and
to find d[cosh z]/dz.

Solution It was shown in Example 13.10 that if cosh z = u(x, y) + iv(x, y), then

u(x, y) = cosh x cos y and v(x, y) = sinh x sin y.

Routine differentiation shows u and v satisfy the Cauchy–Riemann equations for
all z, so cosh z is an entire function. Substituting in (22) gives

d
dz

[cosh z] = ∂u
∂x

+ i
∂v
∂x

= sinh x cos y + i cosh x sin y,

so as cosh z is an analytic function, setting y = 0 and replacing x by z to express the
result in terms of z, we obtain the expected result

d[cosh z]
dz

= sinh z.

To make the complex trigonometric sine and cosine functions compatible with
the definitions of the corresponding real variable trigonometric functions, we use
the definitionscomplex

trigonometric
functions sin z = eiz − e−iz

2i
and cos z = eiz + e−iz

2
(33)

so that, in particular, when z = x is real,

sin i x = i sinh x, cos i x = cosh x, sinh i x = i sin x, and cosh i x = cos x.

(34)

By squaring and adding the expressions in (33), we obtain the fundamental
identity

sin2z + cos2z = 1. (35)

Replacing z by az and differentiating the definitions of sin az and cos az shows that

d[sin az]
dz

= a cos z and
d[cos az]

dz
= −a sin az (36)

for all z, so sin az and cos az are entire functions.
By definition

tan z = sin z
cos z

, (37)

so replacing z by az followed by an application of (19) together with results (35)
and (36) gives

d[tan az]
dz

= a
cos2 az

= a sec2 az, (38)

provided cos az �= 0, so tan z is not an entire function.
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The functions sec az, csc az, and cot az are defined in the usual manner as

sec az = 1
cos az

, csc az = 1
sin az

, and cot az = 1
tan az

, (39)

with the derivatives

d
dz

[sec az] = a sec az tan az,
d
dz

[csc az] = −a csc azcot az, and

d
dz

[cot az] = −a csc2 az. (40)

Summary of derivatives of elementary complex functions

1.
d
dz

[zn] = nzn−1, for n = 0, ±1, ±2, . . . , and z �= 0 when n < 0.

2.
d
dz

[eaz] = aeaz, for all a and z.

3.
d
dz

[sinh az] = a cosh az, for all a and z.

4.
d
dz

[cosh az] = a sinh az, for all a and z.

5.
d
dz

[tanh az] = a sech2az, for cosh az �= 0.

6.
d
dz

[sech az] = −a sech az tanh az, for cosh az �= 0.

7.
d
dz

[csch az] = −a csch azcoth az, for sinh az �= 0.

8.
d
dz

[coth az] = −a csch2 az, for sinh az �= 0.

9.
d
dz

[sin az] = a cos az, for all a and z.

10.
d
dz

[cos az] = a sin az, for all a and z.

11.
d
dz

[tan az] = a sec2 az, for cos az �= 0.

12.
d
dz

[sec az] = a sec az tan az, for cos az �= 0.

13.
d
dz

[csc az] = −a csc azcot az, for sin az �= 0.

14.
d
dz

[cot az] = −a csc2 az, for sin az �= 0.

Summary After the definitions of a limit and the continuity of a complex function f (z), its derivative
f ′(z) was defined. The Cauchy–Riemann conditions were shown to ensure the differen-
tiability of a complex function, and a function that has a continuous derivative through-
out some part of the complex plane was called an analytic function. Derivatives of the
complex exponential, complex hyperbolic, and complex trigonometric functions were
derived.
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EXERCISES 13.2

In Exercises 1 through 4 find the real and imaginary parts
of the functions and locate any points where they are dis-
continuous.

1. f (z) = z3 + 4z2 − 3z+ 1.
2. f (z) = 1 + z2 + zz̄.

3. f (z) = z/(1 + z2).
4. f (z) = (z − 1)/(z + 1).

In Exercises 5 through 8, use the definition of a derivative
given in (16) to determine if the given function f (z) is dif-
ferentiable and, when it is, to find f ′(z). Locate any points
where the derivative is not defined.

5. f (z) = z3 + z + 1.
6. f (z) = 3 + z̄.
7. f (z) = 1/(1 + z).

8. f (z) = 1/(a + z)2, with
a a complex constant.

In Exercises 9 through 12 use the Cauchy–Riemann equa-
tions to show that the given function f (z) is differentiable.
Use the result to find f ′(z) both in its cartesian form and as
a function of z, and locate any points where the derivative
is not defined.

9. f (z) = z3.
10. f (z) = 1/(4 + z).

11. f (z) = z + 1/z.
12. f (z) = 1/(z2 + 1).

In Exercises 13 through 16 use the definitions of complex
hyperbolic functions to establish the stated identities.

13. sinh(z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2, and de-
duce that sinh(x ± iy) = sinh x cos y ± i cosh x sin y.

14. cosh(z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2, and de-
duce that cosh(x ± iy) = cosh x cos y ± i sinh x sin y.

15. cosh2z − sinh2z = 1 and tanh2z = 1 − sech2z.

16. tanh(z1 ± z2) = tanh z1 ± tanh z2

1 ± tanh z1 tanh z2
.

In Exercises 17 through 20 use the definitions of the complex
trigonometric functions to establish the stated identities.

17. sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2, and deduce
that sin(x ± iy) = sin x cosh y ± i cos x sinh y.

18. cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2, and deduce
that cos(x ± iy) = cos x cosh y ∓ i sin x sinh y.

19. sin2z + cos2z = 1 and tan2z = sec2z − 1.

20. tan(z1 ± z2) = tan z1 ± tan z2

1 ∓ tan z1 tan z2
.

In Exercises 21 through 29 use the method of Example 13.10
to find the roots of the given equations.

21. sin z = 0.
22. cos z = 0.
23. sinh z = 0.
24. sin z = cosh 2.
25. cos z = −cosh 3.

26. sin z = 7.
27. sinh z = i cosh 2.
28. cos z = −i sinh 5.
29. tanh z = 0.

In Exercises 30 and 31, locate the points where the given
functions are not analytic in the specified domains.

30. (a) sec z for |z| < 3. (b) sin z/(1 + z2) for |z| < 2.
(c) cos z/(1 + z)2 for |z| < π .

31. (a) csc z/(z2 − 3i) for |z| < 4. (b) 1/(z4 + 16) for |z| < 3.
(c) |z| tan z for |z| < 2.

32. Show that f (z) = cosh 2z satisfies the Cauchy–Riemann
equations for all z. Hence, find f ′(z) both in its cartesian
form and as a function of z.

33. Show that f (z) = sin 3z satisfies the Cauchy–Riemann
equations for all z. Hence, find f ′(z) both in its cartesian
form and as a function of z.

34. Show that f (z)=1/sinhz satisfies the Cauchy–Riemann
equations for all z other than at the zeros of sinh z.
Hence, find f ′(z) both in its cartesian form and as a
function of z.

35. Use the change of variable from the cartesian coor-
dinates (x, y) to the polar coordinates (r, θ) given by
x = r cos θ and y = r sin θ to show that the polar form
of the Cauchy–Riemann equations for a single-valued
analytic function f (z) = u(r, θ) + iv(r, θ) is

∂u
∂r

= 1
r

∂v
∂θ

and
1
r

∂u
∂θ

= −∂v
∂r

.

36. Use the change of variable from the cartesian coordi-
nates (x, y) to the polar coordinates (r, θ) given by x =
r cos θ and y = r sin θ to show that the derivative of a
single-valued analytic function f (z) = u(r, θ) + iv(r, θ)
is given by

f ′(z) =
(

cos θ
∂u
∂r

− sin θ
1
r

∂u
∂θ

)
+ i
(

cos θ
∂v
∂r

− sin θ
1
r

∂v
∂θ

)
.

Explain why, when f (z) is a single valued analytic func-
tion, this last result can be expressed as a function of z
by setting θ = 0 and replacing r by z.

37. Set z = reiθ in f (z) = z + 1/z and use the polar form of
the Cauchy–Riemann equations given in Exercise 35 to
show that f (z) is differentiable for z �= 0. Use the result
of Exercise 36 to find f ′(z) as a function of z.

38. Set z = reiθ in f (z) = z2 − 1/z2 and use the polar form
of the Cauchy–Riemann equations given in Exercise 35
to show f (z) is differentiable for z �= 0. Use the result
of Exercise 36 to find f ′(z) as a function of z.
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39. Use the polar form of the Cauchy–Riemann equations
given in Exercise 35 to verify that

f (z) = (3r 3 cos 3θ + r cos θ + 1) + i(3r 3 sin 3θ + r sin θ)

is an entire function, and then use the result of Exer-
cise 36 to express f ′(z) as a function of z. Confirm that
f (z) is an entire function by first expressing f (z) as a
function of z and then differentiating the result.

40. Repeat Exercise 39 using

f (z) =
(

r 2 cos 2θ − 2
r 2

cos 2θ + r cos θ

)
+ i

(
r 2 sin 2θ + 2

r 2
sin 2θ + r sin θ

)
.

13.3 Harmonic Functions and Laplace’s Equation

Let f (z) = u(x, y) + iv(x, y) be analytic in some domain D, and let functions
u(x, y) and v(x, y) have continuous second order partial derivatives with respect
to x and y. Then it is known from elementary calculus (see Theorem 1.3) that
the mixed partial derivatives of u(x, y) and v(x, y) must be equal, so ∂2u/∂x∂y =
∂2u/∂y∂x and ∂2v/∂x∂y = ∂2v/∂y∂x.

Differentiating the first Cauchy–Riemann equation in Theorem 13.1 partially
with respect to x gives

∂

∂x

[
∂u
∂x

]
= ∂

∂x

[
∂v
∂y

]
or

∂2u
∂x2

= ∂2v
∂y∂x

,

and differentiating the second Cauchy–Riemann equation in Theorem 13.1 partially
with respect to y gives

∂

∂y

[
∂u
∂y

]
= − ∂

∂y

[
∂v
∂x

]
or

∂2u
∂y2

= − ∂2v
∂x∂y

.

Adding these two results and using the equality of mixed derivatives show that

∂2u
∂x2

+ ∂2u
∂y2

= 0. (41)

Had the first equation been differentiated partially with respect to y and the
second partially with respect to x, addition of the results would have given

∂2v
∂x2

+ ∂2v
∂y2

= 0. (42)

Results (41) and (42) show that both the real and imaginary twice differentiable
parts of an analytic function satisfy the same second order partial differential equa-
tion. The partial differential equation

∂2�

∂x2
+ ∂2�

∂y2
= 0 (43)

is called the Laplace equation, and any function � that satisfies Laplace’s equation isthe Laplace equation,
harmonic functions,
and the Laplacian

called a harmonic function. Thus, both u = Re{ f (z)} and v = Im{ f (z)} are harmonic
functions, and they are defined throughout the domain D. We now define the symbol
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�, pronounced “Laplacian,” as

� ≡ ∂2

∂x2
+ ∂2

∂y2
. (44)

Then � is a differential operator, and as it stands (44) is not a function because it
only describes a differentiation operation. However, when the operator � acts on a
suitably differentiable function �(x, y), indicated by placing the function �(x, y)
immediately after the symbol �, the result �� becomes a function. As the Laplace
equation in (43) can be written as �� = 0, the symbol � defined in (44) is called
the Laplacian operator in two dimensions, and �� is called the Laplacian of �.
Consequently, a function � will be harmonic if its Laplacian is zero.

When f (z) is an analytic function with u(x, y) = Re{ f (z)} and v(x, y) =
Im{ f (z)}, the function v(x, y) is called the harmonic conjugate of u(x, y) and,
conversely, u(x, y) is called the harmonic conjugate of v(x, y). It is important toharmonic conjugates
recognize that two functions U(x, y) and V(x, y) that are harmonic can only be
harmonic conjugates if U and V satisfy the Cauchy–Riemann equations.

EXAMPLE 13.12 Given f (z) = sin z and g(z) = cos z, find the harmonic conjugate functions
u1(x, y) = Re{ f (z)} and v1(x, y) = Im{ f (z)} associated with f (z), and the har-
monic conjugate functions u2(x, y) = Re{g(z)} and v2(x, y) = Im{g(z)} associated
with g(z). Verify that u1, v1, u2, and v2 are harmonic functions and show that the
complex function F(z) = u1(x, y) + iv2(x, y) is not analytic, and so u1(x, y) is not
the harmonic conjugate of v2(x, y).

Solution As f (z) = sin(x + iy) = sin x cosh y + i cos x sinh y, writing f (z) =
u1 + iv1 we see that u1 = sin x cosh y and v1 = cos x sinh y. The functions u1 and v1

are harmonic conjugate functions because straightforward differentiation confirms
that u1 and v1 satisfy the Cauchy–Riemann equations. To verify that u1 and v1 are
harmonic functions, it is necessary to show that each satisfies Laplace’s equation.
Differentiation gives

∂2u1

∂x2
= −sinx cosh y and

∂2u1

∂y2
= sin x cosh y,

so

∂2u1

∂x2
+ ∂2u1

∂y2
= 0, or �u1 = 0,

confirming that u1 is a harmonic function. The fact that v1 is harmonic follows in
similar fashion.

As g(z) = cos z = cos(x + iy) = cos x cosh y − i sin x sinh y, setting g(z) =
u2 + iv2 shows that u2 = cos x cosh y and v2 = −sin x sinh y. These are harmonic
conjugate functions because they also satisfy the Cauchy–Riemann equations.

Although the functions u1(x, y) = sin x cosh y and v2(x, y) = −sin x sinh y
forming the real and imaginary parts of F(z) = u1(x, y) + iv2(x, y) are both har-
monic, ∂u1/∂x �= ∂v2/∂y, and ∂u1/∂y �= −∂v2/∂x, showing that F(z) does not satisfy
the Cauchy–Riemann equations, and so F(z) is not analytic and u1(x, y) and v2(x, y)
are not harmonic conjugates.
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In (44) the Laplacian operator is expressed in its cartesian form, but if the
cartesian coordinates (x, y) are changed to the polar coordinates (r, θ) by means
of the transformation x = r cos θ and y = r sin θ , the change of variable formulas
from elementary calculus (see Theorem 1.11) shows that the Laplacian operator
takes on the form

� ≡ ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2
. (45)

This means that when polar coordinates are used to express z in the form z =
reiθ , and a single-valued analytic function f (z) = u(r, θ) + iv(r, θ) is considered,

Laplacian in polar
coordinates

the functions u(r, θ) and v(r, θ) will each be harmonic, so

�u(r, θ) ≡ ∂2u
∂r2

+ 1
r

∂u
∂r

+ 1
r2

∂2u
∂θ2

= 0 and

�v(r, θ) ≡ ∂2v
∂r2

+ 1
r

∂v
∂r

+ 1
r2

∂2v
∂θ2

= 0.

(46)

It follows that u(r, θ) will be the harmonic conjugate of v(r, θ) and, conversely,
v(r, θ) will be the harmonic conjugate of u(r, θ).

EXAMPLE 13.13 Set z = reiθ in f (z) = z + 1/z, and by showing that when z �= 0 the function f (z)
satisfies the polar form of the Cauchy–Riemann equations given in Exercise 37 of
Exercise set 13.2, confirm that f (z) is analytic when z �= 0. Verify that the functions
u(r, θ) = Re{ f (z)} and v(r, θ) = Im{ f (z)} are harmonic functions.

Solution f (z) = z + 1/z = reiθ + 1
r e−iθ = (r + 1

r ) cos θ + i(r − 1
r ) sin θ ,

and so

u(r, θ) =
(

r + 1
r

)
cos θ and v(r, θ) =

(
r − 1

r

)
sin θ.

Routine differentiation confirms that u and v satisfy the polar form of the
Cauchy–Riemann equations

∂u
∂r

= 1
r

∂v
∂θ

and
1
r

∂u
∂θ

= −∂v
∂r

for r �= 0,

so f (z) is analytic for z �= 0.
Straightforward differentiation shows that u and v satisfy the polar form of

Laplace’s equation and so are harmonic when z �= 0.

In applications of complex analysis, as in Section 17.2 when solving a boundary
value problem for the two-dimensional steady state temperature distribution in a
solid, it can happen that a harmonic function �(x, y) is known, but it is required
to find its harmonic conjugate �(x, y) so an analytic function F(z) = �(x, y) +
i�(x, y) can be constructed. The function �(x, y) can be found by making use
of the Cauchy–Riemann equations that must be satisfied simultaneously by both
�(x, y) and �(x, y).

We now show how an analytic function f (z) = u(x, y) + iv(x, y) can be con-
structed when either one of the harmonic conjugate functions u(x, y) or v(x, y) is
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known. Let us suppose that a harmonic function u(x, y) is known. Then from the
first of the Cauchy–Riemann equations,

∂v
∂y

= ∂u
∂x

, (47)

where the expression on the right can be found by differentiation of the known
function u(x, y).

how to find an
analytic function
from one of its
harmonic conjugate
functions

If we reverse the process by which ∂u/∂x was found, by integrating (47) with
respect to y while keeping x constant, we obtain

v(x, y) =
∫

∂u
∂x

dy + g(x) + a, (48)

where g(x) is an arbitrary function of x and a is an arbitrary real integration constant.
The inclusion of the arbitrary function g(x) in (48) in addition to the usual

arbitrary integration constant a is necessary to make the expression on the right
the most general antiderivative that can be obtained when (47) is integrated with
respect to y while holding x constant. The result can be checked by differentiating
(48) partially with respect to y to return to (47), because after differentiation the first
term on the right reduces to ∂u/∂x and the remaining terms vanish because ∂{g(x) +
a}/∂y ≡ 0. It is obvious that (48) can be simplified by including the arbitrary constant
a in the arbitrary function g(x), but in applications it is usually better to retain it
explicitly as in (48).

If we rewrite the second Cauchy–Riemann equation as

∂v
∂x

= −∂u
∂y

,

the term on the right is again known by differentiation of u(x, y). Integration of
this equation with respect to x while keeping y constant gives

v(x, y) = −
∫

∂u
∂y

dx + h(y) + b, (49)

where now h(y) is an arbitrary function of y and b is an arbitrary real integration
constant.

Expressions (48) and (49) must be identical, so g(x) in (48) must be identified
with any functions on the right of (49) that only involve x, and h(y) in (49) must be
identified with any functions on the right of (48) that only involve y, whereas the
arbitrary constants must be equal, so b = a. The required analytic function is then
seen to be

f (z) = u(x, y) + iv(x, y) + ia. (50)

An analogous argument shows how if v(x, y) is known instead of u(x, y), then

u(x, y) =
∫

∂v
∂y

dx + H(y) + C, (51)

and

u(x, y) = −
∫

∂v
∂x

dy + G(x) + D, (52)

with H(y) an arbitrary function of y, G(x) an arbitrary function of x, and C and
D arbitrary real integration constants. The form of argument used to arrive at (50)
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then shows that the required analytic function is

f (z) = u(x, y) + iv(x, y) + D. (53)

It is to be expected that the analytic function f (z) can only be determined
up to an arbitrary additive constant, because a constant is always a solution of
Laplace’s equation. In applications, either the constant occurring in (50) or (53) is
unimportant, and so can be set equal to zero, or, if needed, it must be determined
by some additional condition satisfied by the analytic function f (z).

To understand why the introduction of an arbitrary additive constant to a solu-
tion of Laplace’s equation causes no difficulties in applications, it is only necessary
to consider problems like the determination of a steady state temperature distri-
bution or an electrostatic potential distribution. In these cases, and in others of a
similar type, what matters is the temperature or potential difference, rather than
their absolute values, so the arbitrary additive constant simply represents a conve-
nient reference level from which all other temperatures or potentials are measured.

EXAMPLE 13.14 Given u(x, y) = x2 − y2 + x − y, find its harmonic conjugate v(x, y) and construct
the most general analytic function f (z) such that u(x, y) = Re{ f (z)}.

Solution First it is necessary to check that u(x, y) is a harmonic function, and this
can be seen from the fact that

∂2u
∂x2

= 2,
∂2u
∂y2

= −2, and so �u = 0.

As ∂u/∂x = 2x + 1, result (48) becomes

v(x, y) =
∫

(2x + 1)dy + g(x) + a,

so

v(x, y) = 2xy + y + g(x) + a.

Using the fact that ∂u/∂y = −2y − 1, result (49) becomes

v(x, y) = −
∫

(−2y − 1)dx + h(y) + b,

so

v(x, y) = 2xy + x + h(y) + b.

These two expressions for v(x, y) will be identical if g(x) = x, h(y) = y, and a = b,
so

v(x, y) = 2xy + x + y + a,

with a an arbitrary real constant. The cartesian form of the required analytic function
is

f (z) = x2 − y2 + x − y + i(2xy + x + y) + ia.

Setting y = 0 and replacing x by z to convert this to an analytic function in
terms of z shows that

f (z) = z2 + (1 + i)z + ia.
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For more information and examples involving limits, continuity, differentiability,
and elementary functions of a complex variable, see any one of references [6.1] to
[6.4] and [6.6] to [6.9].

Summary Harmonic functions were introduced as solutions of Laplace’s equation, and in an analytic
function f (z) = u + i v the functions u and v were shown to be harmonic. The functions u
and v in an analytic function were called harmonic conjugates, and it was shown how to
reconstruct f (z) when either of its harmonic conjugates u or v is known.

EXERCISES 13.3

In Exercises 1 through 10, verify that the given function is
harmonic, and find its harmonic conjugate. Use the result
to construct the most general analytic function f (z) as a
function of z.

1. u(x, y) = x3 − 3xy2 + 2x + y.
2. u(x, y) = e2x(x cos 2y − y sin 2y).
3. v(x, y) = e−y(y cos x + x sin x) + 2x.
4. v(x, y) = x3 − 3xy2 + x + y.
5. v(x, y) = y sinh 2x cos 2y + x cosh 2x sin 2y.
6. u(x, y) = sin 3x cosh 3y − 2x2 + 2y2.
7. u(x, y) = x cos 3x cosh 3y + y sin 3x sinh 3y.
8. v(x, y) = e−y(3 cos x + 2 sin x) − 5y.
9. u(r, θ) = r cos θ + 2r 2 cos 2θ + r 2 sin 2θ .

10. v(r, θ) = r sin θ + 1
r 2

sin 2θ .

11. Show that u(x, y) = xy and v(x, y) = x3 − 3xy2 are
both harmonic functions, but they are not harmonic
conjugates.

12. Show that u(x, y) = −x2 + y2 + 2xy and v(x, y) = x3 −
3xy2 + 3x2 y − y3 are both harmonic functions, but they
are not harmonic conjugates.

13. Prove that if f (z) = u(x, y) + iv(x, y) is analytic in a
domain D, and either u(x, y) = constant or v(x, y) =
constant, then f (z) = constant in D. Does this result
remain true if f (z) is not analytic? If not, explain why
and give an example.

14. Given that �(x, y) = a(1 − 2x2 + 2y2) sin 2x cosh 2y +
4xy cos 2x sinh by, find ��, and hence determine the
values of the constants a and b that make � a harmonic
function.

15. Given that �(x, y) = (2 + ax2 − y2) sinh x cos y +
bxy cosh x sin y, find ��, and hence determine the val-
ues of the constants a and b that make � a harmonic
function.

13.4 Elementary Functions, Inverse Functions,
and Branches

The elementary analytic functions considered so far have been polynomials, rational
functions (quotients of polynomials), the exponential function, and the trigonomet-
ric and hyperbolic functions. All of these have involved the fundamental idea that
for f to be a function, one point in the domain of definition of f must correspond
to one point in the range of f . If the domain of definition of f is Dand its range is �

and we set w = f (z), then z is any point of D and w is the corresponding point in �.
In addition to the connection between the domain D of f and its range �,

expressed by the functional relationship w = f (z), it is also necessary to be able
to proceed in the reverse direction, by starting with a point w in � and finding
the point or points z in D to which it corresponds. This is the inverse relationship
involving f , and it is convenient to represent it by writing z = f −1(w). For this
inverse relationship to be a function it is necessary that f −1 has the property that
to every w in � there corresponds only one z in D.
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D Ω

z w

w = f(z)

z = f −1(w)

FIGURE 13.6 If f is a one-one analytic function, then f ( f −1(w)) = w and
f −1( f (z)) = z.

In general, if the analytic function

w = f (z) (54)

maps its domain of definition D onto a domain � and, in addition, if to each w in �

there corresponds only one z in D given by z = f −1(w), the function f is one-one,
and the function f −1 is called the inverse of the function f . This means that if aninverse function
analytic function f is one-one, then

f ( f −1(w)) = w and f −1( f (z)) = z. (55)

The relationship between a one-one analytic function f and its inverse f −1 is
shown diagramatically in Fig. 13.6.

Let us now show that if f is a one-one analytic function defined for z in D, and

f ′(z) �= 0,

then the inverse function z = f −1(w) is analytic in �. This result is easily proved
by using the definition of differentiability and setting z + h = f −1(w + k), so that
w + k = f (z + h). Differentiation f −1(w) gives

d
dw

[ f −1(w)] = lim
k→0

[
f −1(w + k) − f −1(w)

k

]
= lim

h→0

[
h

f (z + h) − f (z)

]
× lim

h→0

{
1
/[

f (z + h) − f (z)
h

]}
= 1/ f ′(z).

Then, as by hypothesis f ′(z) �= 0, it follows that d[ f −1(w)]/dw exists and is unique
in �, so f −1(w) is analytic in �, and the result is proved.

One of the simplest examples of a one-one analytic function is provided by
the linear function w = az + b with a �= 0, because this is analytic throughout the
z-plane and maps every point of it one-one onto the w-plane, and the inverse
function z = (w − b)/a is also analytic throughout the w-plane.

A slightly more complicated example of a one-one analytic function is the linear
fractional functionlinear fractional

function

w = az + b
cz + d

(56)

that is analytic in any domain D in the z-plane in which z �= −d/c, because then
dw/dz is defined throughout D. Solving the linear fractional function in (56) for z
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shows the inverse function to be given by

z = b − wd
wc − a

.

This inverse function is also analytic, and it maps any domain � in the w-plane where
w �= a/c onto a corresponding domain D in the z-plane. The condition w �= a/c
ensures the analyticity of the inverse function because then dz/dw is defined and
unique throughout �.

Inverse functions associated with functions as simple as w = z2, w = exp z, and
the hyperbolic and trigonometric functions require special attention because these
functions exhibit periodicity in the complex plane. This periodicity has the effect
that although one z corresponds to one w, the converse is not true because one
w corresponds to more than one z, and often to infinitely many values of z. To
overcome this difficulty it is necessary to confine z to a restricted domain in the
z-plane to make the relationship between the restricted domain in the z-plane
and the w-plane one-one. To illustrate this approach we will consider the function
w = zn, and its inverse the nth root function z = w1/n, where n is a positive integer.nth root function

When expressed in polar form by writing w = ρeiφ and z = reiθ , with θ = Arg z,
the function w = zn becomes w = rneinθ . So, as the argument of z is multiplied by
n, any domain in the z-plane in the form of a sector with angle 2π/n centered on
the origin will be mapped onto the entire w-plane, with the result that the function
w = zn will map the entire z-plane onto the w-plane n times. Consequently, although
one z corresponds to one w, the inverse operation z = w1/n will map n different
values of w onto one point in the z-plane.

As it stands, the inverse formula z = w1/n represents many functions and so
does not define a single function. To overcome this problem we divide the z-plane
into n equal sectors D0, D1, . . . , Dn−1, each centered on the origin, with Dk defined
as the sector given by

(2k − 1)
π

n
< θ < (2k + 1)

π

n
, r > 0, for k = 0, 1, 2, . . . , n − 1. (57)

If we restrict z = reiθ to any one of the sectors Dk, the function w = zn will
map the sector Dk once onto the entire w-plane with the exception of points on
the negative real axis up to and including the point at the origin. Conversely, when
z is restricted to Dk, any point in the w-plane not on the negative real axis or at
the origin will be mapped once by the function z = w1/n onto the sector Dk. The
deletion of the points on the negative real axis up to and including the origin is
called a cut in the w-plane.

Let ψ be such that −π/n < ψ < π/n, then in the kth sector Dk, θ = 2kπ/n + ψ

for k = 0, 1, . . . , n − 1. Using the polar representations for w and z by setting z =
reiψ and w = ρeiφ allows w = zn to be written

ρeiφ = rnexp
[

in
(

2kπ

n
+ ψ

)]
,

so equating moduli and arguments we have

ρ = rn and φ = 2kπ + nψ,
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showing that

r = ρ1/n and φ/n = 2kπ/n + ψ,

where ρ1/n is the numerical value of the nth root of the positive real number ρ.
Solving for z in terms of w shows that the cut w-plane is mapped one-one onto

the sector Dk by

z = ρ1/n
{

cos
[

2kπ

n
+ ψ

]
+ i sin

[
2kπ

n
+ ψ

]}
, k = 0, 1, . . . , n − 1. (58)

Each of the n different solutions in (58) is called a branch of the nth root function,
and the branch corresponding to n = 0 is called the principal branch. The cut in thebranch, principal

branch, and
branch cut

w-plane separating one branch from another is called a branch cut. So the principal
branch of the nth root function z = w1/n is

z = ρ1/n[cos ψ + i sin ψ], with −π/n < ψ ≤ π/n. (59)

The mapping of the sector D0 onto the cut w-plane by w = z3 and of the cut
w-plane onto the z-plane by the principal branch of the cube root function z = w1/3

is shown in Fig. 13.7, where shading has been used to show how different areas
correspond. The mapping of D1 onto the cut w-plane by w = z3 and of the cut w-
plane onto the z-plane by the second branch (k = 1) of the cube root function is
shown in Fig. 13.8, where shading has again been used to show how different areas
correspond.

When it is necessary to consider the nth root function as a function of z, and
not merely as the inverse of the power function w = zn, all that is necessary in (59)
is to interchange z and w and their associated moduli and arguments, leading to the
corresponding result for the function w = z1/n.

The complex exponential function w = ez has been defined as

ez = ex(cos y + i sin y),

so as sin y and cos y are periodic with period 2π , it can be seen that ez is periodic
with period 2π i . This means that any strip of width 2π in the z-plane that is parallel
to the real axis will be mapped onto the entire w-plane, with the exception of the

v

u

w-plane
z-plane

cut

0

y

0

D1

D0

D0

D0D2D2

x

θ = π/6

θ = −π/6

θ = −π/3

w = z3

z = w1/3

θ = π/3

FIGURE 13.7 Mapping of sector D0 in the z-plane onto the cut w-plane by w = z3, and
of the cut w-plane onto D0 by the principal branch of z = w1/3.
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v

u

w-planez-plane

cut

0

w = z3

z = w1/3

D2 D2

D1

D1

D1

D0

0

y

x

θ = π/3

θ = 5π/6

θ = 2π/3

θ = −π/3

FIGURE 13.8 Mapping of sector D1 in the z-plane onto the cut w-plane by w = z3, and
of the cut w-plane onto D1 by the second branch of z = w1/3.

origin. The origin must be excluded because ez �= 0 for any finite z, as may be seen
from the fact that |ez| = ex, and ex is never zero. The strip −π < y ≤ π is called
the fundamental strip for the complex exponential function, and it is usual to refer
to the complex plane from which the point at the origin has been removed as the
deleted complex plane.

Important properties of the complex exponential function are as follows:

fundamental strip

(i) e2πni = 1 for n an integer, so ez+2πni = ez when n is an integer
(ii) If w = ez = ρeiφ , then ρ = ex and φ = arg ez = y ± 2nπ for all integers n

(iii) As x = ln ρ, it follows that

z = x + iy = ln ρ + i(φ + 2nπ)

and so

w = exp[ln |w| + i(Arg w + 2nπ)].

The inverse of the complex exponential function is the logarithmic function
log z, but the fact that any strip of width 2π parallel to the real axis in the z-plane
will be mapped by w = ez onto the deleted w-plane means that the logarithmic
function is infinitely many valued or, more simply, a multivalued function.

To make the multivalued complex logarithmic function into a one-one function,
it is necessary to replace log z by a function with infinitely many branches, each
corresponding to a strip of width 2π in the z-plane parallel to the real axis. The
relationship between the planes then becomes one-one, because the exponential
function will map a particular strip once onto the deleted w-plane and, conversely,
a branch of the logarithmic function will map the deleted w-plane once onto the
strip.

Using the symbol log z to denote the multifunction complex logarithmic func-
tion, and ln |z| to denote the natural logarithm of the real number |z|, we define the
complex logarithm of the complex number z in the obvious manner as

log z = ln |z| + i arg z, for z �= 0,

but arg z = Arg z ± 2nπ , with n an integer, so

log z = ln |z| + i(Arg z ± 2nπ). (60)
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Each of the expressions in (60) is to be regarded as a branch of the complex
logarithmic function, and the branch for which n = 0 is taken to be the principal
branch of the function. To avoid confusion, the principal branch is denoted by Log z,principal branch of

the logarithmic
function and
principal value

where

Log z = ln |z| + i(Arg z), with z �= 0 and −π < Arg z ≤ π. (61)

For any given complex number z, the corresponding complex number defined
by (61) is called the principal value of the logarithm of z.

EXAMPLE 13.15 Find log(1 + i
√

3) and Log(1 + i
√

3).

Solution Setting z = 1 + i
√

3 we find that that |z| = 2 and Arg z = π/3, and so
log(1 + i

√
3) = ln 2 + i(π

3 + 2nπ), and Log(1 + i
√

3) = ln 2 + iπ/3.

Applying the polar form of the Cauchy–Riemann equations to Log z shows
that it is an analytic function for z �= 0, and the multivalued form of the complex
logarithmic function possesses all the properties of the natural logarithmic function
so, for example,

log(z1z2) = log z1 + log z2 and log(z1/z2) = log z1 − log z2. (62)

However, the restriction placed on the arguments of principal values means
that these results do not always remain true when the multivalued logarithm log z
is replaced by Log z.

We are now in a position to generalize the power function w = za , where a is
an arbitrary real number. To do this we write w = za in the form

w = za = ea Log z = ea[ln |z|+i(Arg z+2nπ)] for n = 0, ±1, ±2, . . . ,

and setting z = reiθ this becomes

w = ra{cos[a(θ + 2nπ)] + i sin[a(θ + 2nπ)]}. (63)

We must now consider the behavior of the complex hyperbolic and trigono-
metric functions that map the complex z-plane more than once onto the w-plane,
causing their inverses to be multivalued. To see how suitable branches can be in-
troduced, we consider the typical example w = arcsin z, which is the inverse of the
function z = sin w, so sin(arcsin z) = z. From the definition of the sine function,

z = sin w = eiw − e−iw

2i
= e2iw − 1

2ieiw
,

so

e2iw − 2izeiw − 1 = 0.

Solving this quadratic equation for eiw we find

eiw = iz + (1 − z2)1/2,

where the ± sign usually inserted in front of the square root has been omitted
because the function w = z1/2 implies that the square root function is two-valued.inverse trigonometric

and hyperbolic
functions

Taking the complex logarithm of this result, we have

iw = log[iz + (1 − z2)1/2],
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and so

w = arcsin z = −i log[iz + (1 − z2)1/2]. (64)

Because of its branches the log function must be interpreted as many one-one
functions, all with the same domain, but each branch having a different range.

Similar arguments applied to the other complex, trigonometric functions and
to the complex hyperbolic functions show that

arccos z = −i log[z + i(1 − z2)1/2] (65)

arctan z = i
2

log
(

i + z
i − z

)
(66)

arcsinh z = log[z + (1 + z2)1/2] (67)

arccosh z = log[z + (z2 − 1)1/2] (68)

arctanh z = 1
2

log
(

1 + z
1 − z

)
. (69)

In each of the preceding cases, the branch of the inverse function involved is
determined by the choice of branch in the square root and complex logarithmic
function that appears on the right.

Differentiation shows that:derivatives of inverse
trigonometric and
hyperbolic functions

d
dz

[arcsin z] = 1
(1 − z2)1/2

(70)

d
dz

[arccos z] = −1
(1 − z2)1/2

(71)

d
dz

[arctan z] = 1
1 + z2

(72)

d
dz

[arcsinh z] = 1
(z2 + 1)1/2

(73)

d
dz

[arccosh z] = 1
(z2 − 1)1/2

(74)

d
dz

[arctanh z] = 1
1 − z2

. (75)

EXAMPLE 13.16 Show that the result obtained from (64) with z = 1 is consistent with the real variable
trigonometric result arcsin 1 = (4n + 1)π/2, for n = 0, ±1, ±2, . . . .

Solution From (64), arcsin 1 = −i log i , but i = exp[i(π
2 + 2nπ)] = exp

[i(4n + 1)π
2 ], for n = 0, ±1, ±2, . . . , and so

arcsin 1 = −i log i = −i
[

i(4n + 1)
π

2

]
= (4n + 1)

π

2
, for n = 0, ±1, ±2, . . . .

The principal value of this result, obtained by using the principal value Log z of
log z corresponding to n = 0, is arcsin 1 = π/2.
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EXAMPLE 13.17 Find all the values of arcsin i and identify the one corresponding to the principal
values of the square root and logarithmic functions.

Solution From (64), arcsin i = −i log[−1 + √
2], but 2 = 2e2mπ i , for m = 0,

±1, ±2, . . . , so
√

2 = 21/2emπ i , for m = 0, ±1, ±2, . . . .

As emπ i is either 1 or −1, according as m is even or odd, the value corresponding
to the principal branch (m = 0) is

√
2 = 21/2, while the one corresponding to the

second branch (m = 1) is
√

2 = −21/2, where 21/2 denotes the positive square root
of 2.

Case m = 0 (The principal branch): If the principal value of
√

2 is used,
−1 + √

2 = 21/2 − 1 is positive and arcsin i = −i log(21/2 − 1), so writing
21/2 − 1 = (21/2 − 1)e2nπ i , for n = 0, ±1, ±2, . . . , shows that in this case

arcsin i = −i log(21/2 − 1) = 2nπ − i ln(21/2 − 1), for n = 0, ±1, ±2, . . . .

The value obtained for arcsin i depends on the choice of n, which in turn
identifies the branch of the logarithmic function that is used to determine the
value of log(21/2 − 1).
Case m = 1 (The second branch): If the second value of

√
2 is used,

−1 − √
2 = −(21/2 + 1) is negative, so now we have arcsin i = −i log[−(21/2 +

1)], but −(21/2 + 1) = (21/2 + 1)eπ i = (21/2 + 1)eπ i e2nπ i = (21/2 + 1)e(2n+1)π i ,
for n = 0, ±1, ±2, . . . . So log[−(21/2 + 1)] = ln(21/2 + 1) + (2n + 1)π i , lead-
ing to the result

arcsin i = (2n + 1)π − i ln(21/2 + 1).

The value of arcsin i obtained by using the principal values of the square
root function (m = 0) and the logarithmic function (n = 0) is

arcsin i = −i ln(21/2 − 1).

More information about inverse functions and branches can be found in refer-
ences [6.1] to [6.4] and [6.6] to [6.9]. In particular, reference [6.4] provides valuable
insight into the nature of the inverse of elementary functions of a complex variable.

EXERCISES 13.4

In Exercises 1 through 6 find all of the values of the given
inverse functions and state the value obtained by using the
principal value of the function or functions involved.

1. arccos 2i.

2. arccosh 4i.

3. arctanh i.

4. arctan 3i

5. arctan
(

−2
5

+ 1
5

i
)

.

6. arctanh

(
3
7

+ i
2
√

3
7

)
.

7. Show that arcsin z + arccos z = π/2 + 2nπ .
8. Show that u(x, y) = ln(x2 + y2) and v(x, y) =

arctan(y/x) are analytic throughout the (x, y)-plane
with the exception of the points on the imaginary axis.

9. Use the definition of Log z to show that it is discontin-
uous at z = 0, and also that it experiences a jump of π i
across the negative real axis.

10. Use implicit differentiation on the function z = exp w
to show that its inverse w = log z has the derivative

d
dz

[log z] = 1
z
, for z �= 0.
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CHAPTER 13

TECHNOLOGY PROJECTS

Project 1

Finding how w = az+ b Maps a Given Curve
in the z-Plane onto the w-Plane

This project explores how the two complex constants a and
b in w = az + b influence the way in which a curve in the
z-plane is mapped by this function onto an image curve in
the w-plane. This project anticipates some of the ideas that
will be examined later in more detail in the chapter on con-
formal mapping.

Let z(t) � x(t) � iy(t), with x(t) � t(π � t), y(t) �
sin(2t); and 0 ≤ t ≤ π . Then as t increases from 0 to
π , so the point (x(t), y(t)) in the z-plane with t as
a parameter will describe a curve Cz in the z-plane.
If w(t) � az(t) � b, with a and b complex numbers,
each point of the curve Cz will be mapped by this
function onto an image curve Cw in the w-plane. If we
set w(t) � u(t) � iv(t) � a(x(t) � iy(t)) � b, the im-
age Cw in the w-plane of the curve Cz in the z-plane is
obtained by plotting the parametrically defined curve
(u(t), v(t)).

Using the same length scales on the x- and y-axes,
and also on the u- and v-axes, make computer plots of
Cz and the corresponding image curves Cw given that:
(i) a � 2, b � 0, (ii) a � 1

2 , b � 1 � i , (iii) a � 2eiπ/4,
b � 0, (iv) a � 1

3 e3π i/4, b � �1 � i .

Repeat the preceding numerical experiments us-
ing several values of a and b of your own choosing.
Comment on the effect of a , Arg a, and b on the way
the curve Cz is mapped onto the curve Cw .

Project 2

Another Example of Mapping by w = az+ b

Repeat Project 1, but this time using x(t) � t3 � 2t ,
y(t) � 4 � t2, and �2 ≤ t ≤ 2.

Project 3

Finding an Analytic Function from One of Its
Harmonic Conjugates

This project uses computer algebra to find an analytic func-
tion f (z) when only its imaginary part is known in cartesian
form.

Show that the function

v(x, y) � 3e2x(x sin 2y � y cos 2y) � 2 sin x cosh y

� 6x2 y � 2y3 � 4x � 3

is harmonic. Find its harmonic conjugate u(x, y) and
hence find the corresponding analytic function f (z) �
u � iv as a function of z, given that f (0) � 3i .

743
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14C H A P T E R

Complex Integration

Both derivatives and integrals of analytic functions occur extensively in applications, so
this chapter extends the results of Chapter 13 to include integration. As the integral

of a complex function is evaluated either along or around a curve, the chapter starts by
developing the concept of integration along a parametrically defined path or curve. It is
then shown why, for the result to be independent of the path, the complex function must
be an analytic function, that is, it must satisfy the Cauchy–Riemann equations.

Integrals of this type are called line integrals of complex functions, and when the path
of integration is a closed curve in the form of a single loop, called either a simple curve or
a Jordan curve, the integral is called a contour integral. The properties of line integrals are
used to define indefinite integrals of complex functions, and fundamental results concern-
ing contour integrals are proved and illustrated by example. Various properties of analytic
functions are proved in the last section, including the important fundamental theorem of
algebra that asserts that every polynomial of degree n has precisely n zeros, though some
may be repeated.

14.1 Complex Integrals

Complex integration involves integrating a single valued analytic function f (z) in
a given direction along a curve� in the complex z-plane. A non-self-intersecting

curve � whose end points are not coincident is called a path, and paths are usuallypath or contour
formed by joining straight line segments and arcs end to end. A closed path � in the
form of a simple non-self-intersecting loop is called a contour. Paths and contours
are usually specified parametrically by defining a general point z on � in the form

z = z(t) = x(t) + iy(t) for t0 ≤ t ≤ t1, (1)

where x(t) and y(t) are prescribed functions of the parameter t . Parametric repre-
sentations are not unique, and in applications the simplest one is always used.

As t increases, so (1) determines the direction in which point z moves along �,
and this direction is called the sense along the path or around the contour described

745
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θ

Γ

R
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y0
z0

x0 x0

FIGURE 14.1 The semicircle �.

by the parametrization. In integration around a contour, the standard convention is
that integration in the positive sense is taken to be in the counterclockwise direction.integration in

positive sense An essential feature of the parametric description of a path or contour is that, in
addition to its convenience when used in complex integration, it allows the descrip-
tion of curves that in a cartesian representation are many-valued. This is illustrated
in the following example.

EXAMPLE 14.1 Parametrize the semicircle � of radius R shown in Fig. 14.1 with its center at the

parametrizing a
circular arc

point z0 = x0 + iy0 in the z-plane.

Solution The cartesian representation of the semicircle� is (x − x0)2 + (y − y0)2 =
R2, with x0 ≤ x ≤ x0 + R, but this is ambiguous because when it is solved for y to
give y = y0 + [R2 − (x − x0)2]1/2, the square root operation makes y double valued.
One way to overcome this difficulty is to use polar coordinates to describe a point
(x, y) on a semicircle of radius R located at the origin by writing

x = Rcos θ and y = Rsin θ for −π/2 ≤ θ ≤ π/2.

Each point on � is now described unambiguously in terms of the parameter θ . A
shift of origin to the point (x0, y0) shows that the required parametric representation
of � is

x = x0 + Rcos θ and y = y0 + Rsin θ, −π/2 ≤ θ ≤ π/2,

so

z(θ) = x0 + Rcos θ + i(y0 + Rsin θ), −π/2 ≤ θ ≤ π/2.

In this representation, as θ increases, so z moves counterclockwise (positively)
around the semicircle �. The choice of symbol for the parameter is immaterial, so
the result could equally well be written

z(t) = x0 + Rcos t + i(y0 + Rsin t), −π/2 ≤ t ≤ π/2.

Clearly this is not the only possible parametric description of � in terms of
sines and cosines, because the change of variable t = 1 + s gives the equivalent
parametric description in terms of s

z(s) = x0 + Rcos(1 + s) + i[y0 + Rsin(1 + s)], −
(

1
2
π + 1

)
≤ s ≤

(
1
2
π − 1

)
.
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Other parametric representations of this type can be found by making different
changes of variable, provided only that the new argument of the sine and cosine
functions increases monotonically from −π/2 to π/2.

Differentiation of z(t) shows that the differential dz along � as t increases is

dz = (−Rsin t + i Rcos t)dt,

so if dz = dx + idy, then

dx = −Rsin tdt and dy = Rcos tdt.

EXAMPLE 14.2 Let A and B be the points (3, 1) and (5, 7) in the z-plane. Parametrize the straight
line segment AB in terms of parameter t so that (a) the sense is from A to B as t
increases, and (b) the sense is from B to A as t increases.

Solution

(a) The cartesian equation of a straight line with gradient m passing through the
point (x1, y1) is

y − y1

x − x1
= m.

The gradient of the line segment AB is m = (yB − yA)/(xB − xA) = (7 − 1)/
(5 − 3) = 3, so taking (3, 1) for the point (x1, y1) and substituting into the fore-
going result shows that the straight line through AB in Fig. 14.2 has the equation

y = 3x − 8.

The line segment AB is obtained from the equation y = 3x − 8 by restricting x
to 3 ≤ x ≤ 5. To parametrize the line segment AB in terms of t , we set

x = t and y = 3t − 8, with 3 ≤ t ≤ 5,

so that

z(t) = t + i(3t − 8), 3 ≤ t ≤ 5.

It is easily seen from this parametrization that an increase in t induces a sense
along the line segment from A to B. Differentiation shows that the differential along

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

A(3, 1)

B(5, 7)

z = t + i(3t − 8)
3 ≤ t ≤ 5

z-plane

x

y

FIGURE 14.2 The line segment AB.
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z-plane

R xε

π/4

FIGURE 14.3 Some typical contours that arise in complex integration.

the line segment as t increases is

dz = dt + 3idt so that dx = dt and dy = 3dt.

(b) To reverse the sense along the line segment as t increases necessitates using
a parameter that decreases as t increases. As the limits on t are 3 ≤ t ≤ 5, this is
most easily accomplished by setting t = 5 − T, because then T = 0 corresponds to
t = 5 and T = 2 corresponds to t = 3. Substituting for t in the previous expression
for z(t) gives

z(T) = 5 − T + i(7 − 3T) for 0 ≤ T ≤ 2.

The differential dz along the line segment as T increases is now

dz = −dT − 3idt, and so dx = −dT and dy = −3dT.

Typical examples of contours that arise in complex integration are shown in
Fig. 14.3, in each of which the positive (counterclockwise) sense around the contour
is shown by arrows.

line integral
The complex integral of an analytic function f (z) = u(x, y) + iv(x, y) along

the path � from A to B shown in Fig. 14.4, called a line integral, is denoted by∫
�AB

f (z)dz, where dz = dx + idy. This integral is defined as

∫
�AB

f (z)dz =
∫

�AB

(u + iv)(dx + idy)

=
∫

�AB

(udx − vdy) + i
∫

�AB

(vdx + udy).
(2)

When � is a contour, and so is a simple non-self-intersecting loop, the integral
contour integral

∫
�

f (z)dz is called a contour integral, and this is sometimes indicated by writing∮
�

f (z)dz, though this notation will not be used here.

D

Γ B

A

FIGURE 14.4 The path � for the line
integral

∫
�

f (z)dz.



Section 14.1 Complex Integrals 749

If the path � is parametrized as in (1), with A the point z(t0) and B the point
z(t1), result (2) becomes∫

�AB

f (z)dz =
∫ t1

t0
[u(x(t), y(t))x′(t) − v(x(t), y(t))y′(t)]dt

+ i
∫ t1

t0
[v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)]dt, (3)

where x′(t) = dx/dt and y′(t) = dy/dt , showing that the evaluation of
∫
�AB

f (z)dz
reduces to the calculation of two real integrals. It is usual to write (3) in the more
concise form ∫

�AB

f (z)dz =
∫ t1

t0
f [z(t)]z′(t)dt. (4)

If in (4) the path � is constructed by joining end to end the successive paths
�1, �2, . . . , �n, the linearity of the ordinary definite integral allows

∫
�AB

f (z)dz to
be written ∫

�AB

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz + · · · +
∫

�n

f (z)dz. (5)

The significance of the sense along a path is apparent from (4), because reversing
the sense along � interchanges the limits on the integral and so changes the sign of
the integral. Consequently, if �−denotes the path � with its sense reversed, then

∫
�−

f (z)dz = −
∫

�

f (z)dz. (6)

As a complex integral involves the sum of two real integrals, the complex inte-
gral of a linear combination Af (z) + Bg(z) of two analytic functions f (z) and g(z)
shares the same linearity property as real integrals, and so

∫
�

{Af (z) + Bg(z)}dz = A
∫

�

f (z)dz + B
∫

�

g(z)dz, (7)

where A and B are arbitrary complex constants.
The following Theorems contain important results that are used when working

with complex integrals.

THEOREM 14.1 A fundamental inequality for complex integrals Let � be any path of finite length
L, and let f (z) be a complex function. Then the following inequality holds

(i)
∣∣∣∣∫

�

f (z)dz

∣∣∣∣ ≤
∫

�

| f (z)||dz|

and

(ii)
∫

�

|dz| = L.
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Proof

(i) It was shown in (3) that the real and imaginary parts of a complex line integral
are both real integrals, so the complex line integral

∫
�

f (z)dzcan be defined in essen-
tially the same way as a real definite integral. Let a sequence of points z0, z1, . . . , zn

lie along �, with z0 at one end and zn at the other. Then if �k = zk − zk−1, and ζk is
any point on the straight line segment joining zk−1 and zk, generalizing the definition
of a real definite integral we have∫

�

f (z)dz = lim
n→∞

n∑
k=1

f (ζk)�zk,

when |�zk| = |zk − zk−1| → 0 for all k as n → ∞.
Taking the modulus of

∑n
k=1 f (ζk)�zk and making repeated use of the triangle

inequality gives ∣∣∣∣∣ n∑
k=1

f (ζk)�k

∣∣∣∣∣ ≤
n∑

k=1

| f (ζk)||�k|,

so proceeding to the limit as n → ∞ this becomes∣∣∣∣∫
�

f (z)dz

∣∣∣∣ ≤
∫

�

| f (z)||dz|.

(ii) Setting f (z) = 1 in the result (i), and using the fact that |dz| = [(dx)2 +
(dy)2]1/2 = ds, where ds is the element of arc length along �, we see that∫

�

|dz| =
∫

�

ds = L,

and the theorem is proved.

THEOREM 14.2 Estimating the modulus of an integral On a path � of finite length L, let | f (z)| be

a useful estimate for
the modulus of an
integral

bounded above by the positive real constant M, so that | f (z)| ≤ M when z lies on
�. Then ∣∣∣∣ ∫

�

f (z)dz

∣∣∣∣ ≤ ML.

Proof The result follows directly from Theorem 14.1. Using the bound | f (z)| ≤ M
reduces (i) to ∣∣∣∣ ∫

�

f (z)dz

∣∣∣∣ ≤
∫

�

| f (z)||dz| ≤ M
∫

�

|dz|,

and using (ii) this becomes ∣∣∣∣ ∫
�

f (z)dz

∣∣∣∣ ≤ ML,

so the theorem is proved.

Because an upper bound of | f (z)| is denoted by M, and the length of path � is
denoted by L, this theorem is sometimes called the ML theorem.

EXAMPLE 14.3 Let the points A, B, and C at (2, 2), (6, 2), and (6, 3), respectively, form a triangle as
shown in Fig. 14.5. Take �1 to be the path AB + BC, �2 to be the path AC, and �3 to
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0

1

2

3

y

1 2 3 4 5 6 7 8 x

A(2, 2) B(6, 2)

C(6, 3)z-plane

FIGURE 14.5 The points A, B, and C.

be the path AB + BC + C A, with the senses along the line segments indicated by
the order of the letters. Set f (z) = z and find the integrals

∫
�i

f (z)dz, for i = 1, 2, 3.
Verify Theorem 14.2 when � = �1.

Solution

Case Γ1: It is necessary to parametrize the paths AB and BC before the
integral can be evaluated. On AB z = t + 2i for 2 ≤ t ≤ 6, so an increase in
t induces a sense on AB from A to B. Differentiation shows that dz = dt on
AB. Similarly, on BC z = 6 + i t for 2 ≤ t ≤ 3, so an increase in t induces a
sense on BC from B to C. Differentiation shows that dz = idt on BC. We
have ∫

�1

f (z)dz =
∫

AB
f (z)dz +

∫
BC

f (z)dz

=
∫ 6

2
(t + 2i)dt +

∫ 3

2
(6 + i t)idt

=
(

1
2

t2 + 2i t
)t=6

t=2
+
(

−1
2

t2 + 6i t
)t=3

t=2
= 27

2
+ 14i.

Case Γ2: Elementary coordinate geometry shows that the straight line
through AC has the equation

y = 3
2

+ x
4
,

so the line segment AC on this line is described by the condition 2 ≤ x ≤ 6. This
shows that a general point z on AC has the parametrization x = t, y = 3

2 + t
4

with 2 ≤ t ≤ 6, and so

z(t) = t + i
(

3
2

+ t
4

)
, for 2 ≤ t ≤ 6.

Using this parametrization, an increase in t induces a sense from A to C on
AC. Differentiation shows that dz = (1 + i

4 )dt , and so∫
�2

f (z)dz =
∫

AC
f (z)dz =

∫ 6

2

(
t + i

(
3
2

+ t
4

))(
1 + i

4

)
dt

=
∫ 6

2

(
15
16

t − 3
8

)
dt + i

∫ 6

2

(
3
2

+ t
2

)
dt = 27

2
+ 14i.
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Case Γ3: As �3 = AB+ BC + C A,
∫
�3

zdz= ∫
�1

zdz+ ∫
C A zdz, but

∫
�1

zdz =
27
2 + 14i , and from (6),

∫
C A zdz = − ∫AC zdz = − 27

2 − 14i , so∫
�3

zdz = 27
2

+ 14i −
(

27
2

+ 14i
)

= 0.

To verify Theorem 14.2 for the path �1 we proceed as follows. As
∫
�1

zdz =
27
2 + 14i , ∣∣∣∣ ∫

�1

zdz

∣∣∣∣ =
∣∣∣∣27

2
+ 14i

∣∣∣∣ = 1
2

√
1513 = 19.45.

On AB z = t + 2i , so |z| = (t2 + 4)1/2, and this assumes its largest value on
AB at B when t = 6, so maxAB |z| = 401/2 = 6.32. On BC z = 6 + i t , so |z| =
(t2 + 36)1/2, and this assumes its largest value on BC at C when t = 3, so
maxBC |z| = 451/2 = 6.71. These results show that M, the greatest value of |z|
on �1, is M = 6.71. The length L of path �1 = 4 + 1 = 5, so ML = 6.71 × 5 =
33.55, which is greater than | ∫

�1
zdz| = 19.45, so the result of Theorem 14.2 is

confirmed.

EXAMPLE 14.4 Show that∫
�

(z − z0)ndz = 0, for n �= −1 a positive or negative integer;

where � is a circle of radius R centered on the point z = z0, and integration is
performed around � in the counterclockwise sense.

Solution It can be seen from Example 14.1 that the contour � in Fig. 14.6 can be
parametrized by setting z(t) = z0 + Reit , with 0 ≤ t ≤ 2π .

Using this parametrization, an increase in t , induces a sense of direction around
contour � in the counterclockwise (positive) direction, and differentiation of z(t)
with respect to t shows that on � we have dz = i Reit dt . Substituting for z − z0 and
dz, we obtain∫

�

(z − z0)ndz =
∫ 2π

0
Rneint i Reit dt = i Rn+1

∫ 2π

0
ei(n+1)t dt

= i Rn+1
(

exp[i(n + 1)t]
i(n + 1)

)t=2π

t=0
= 0, provided n �= −1.

y

x

z
z-plane

0

R
t

z0

Γ

FIGURE 14.6 The circle �.



Section 14.1 Complex Integrals 753

EXAMPLE 14.5 Show that ∫
�

dz
z − z0

= 2π i,

where � is the circular contour used in Example 14.4.

Solution Using the parameterization of Example 14.4 we find that the integrand
becomes dz/(z − z0) = Rieit dt/Reit = idt , so∫

�

dz
z − z0

= i
∫ 2π

0
dt = 2π i.

The integrands in Examples 14.4 and 14.5 are special cases of functions which
possess what are called zeros and poles. To make matters precise, a function f (z)
is said to have a zero of order n at z = z0 if n ≥ 1 is an integer and

f (z) = (z − z0)ng(z), with g(z0) �= 0. (8)

zeros and poles

Expressed differently, f (z) will have a zero of order n at z = z0 if

lim
z→z0

f (z)
(z − z0)n

= g(z0), with g(z0) �= 0.

A function f (z) will have a pole of order n at z = z0 if n ≥ 1 is an integer and

f (z) = g(z)
(z − z0)n

, with g(z0) �= 0. (9)

Expressed differently, f (z) will have a pole of order n at z = z0 if

lim
z→z0

(z − z0)n f (z) = g(z0), with g(z0) �= 0.

This shows that when n ≥ 1 the integrand in Example 14.4 has a zero of order n at
z = z0 with g(z) = 1, and when n ≤ −1 a pole of order |n| at z = z0 with g(z) = 1.

The integrand in Example 14.5 has a pole of order 1, called a simple pole, at z = z0

with g(z) = 1.

Similarly, the function

f (z) = (z − 2)3

(z − 1)(z + 5)2

has zero of order 3 at z = 2, a simple pole at z = 1 and pole of order 2 at z = −5.
This definition of a pole will be used first in Theorem 14.14, though later the

simple poles of functions will be seen to play an essential role in complex integration.

Summary The positive (counterclockwise) sense of direction around contours was defined and the
line integral of a complex function was introduced. The useful ML theorem that estimates
the magnitude of a complex line integral was derived and two elementary integrals around
simple closed loops (contour integrals) were found.
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EXERCISES 14.1

1. Given that A, B, and C are the respective points (2, 1),
(4, 2), and (5, 4) in the z-plane, find parametric repre-
sentations of the straight line segments ABand BC with
their respective senses from A to B and from B to C.

2. Find parametric representations for the straight line
segments AB and BC illustrated in Fig. 14.7, with the
senses shown by the arrows.

0

2

4

6

y

2 4 6 8 10 x

A(2, 5)

B(4, 3)

C(8, 7)
z-plane

FIGURE 14.7 The straight line segments AB and
BC.

3. Find parametric representations for the straight line
segments AB and BC illustrated in Fig. 14.8, with the
senses shown by the arrows.

0

2

4

6

y

1 2 3 4 5 6 x

z-planeC(1, 6)

B(4, 3)

A(3, 1)

FIGURE 14.8 The line segments AB and BC.

4. Find parametric representations for the straight line
segment AB, the circular arc BC, and the straight line
segment CD illustrated in Fig. 14.9, with the senses
shown by the arrows.

5. Integrate f (z) = z in the positive sense around the
square with corners at (1, 1), (2, 1), (2, 2), and (1, 2).

6. Integrate f (z) = z along the consecutive straight line
paths from A to B and from B to C, where A, B, and C
are the respective points (1, 1), (3, 2), and (5, 4).

0

1

2

3

4

y

1 2 3 4 5 6 x

z-plane

C(1, 0) D(3, 0)

A(4, 4)

B(1/  √   √2, 1/ 2)

FIGURE 14.9 The straight line segments AB
and CD, and the circular arc BC.

7. Integrate f (z) = z2 + i along the straight line path from
point (1, 1) to (1, 4).

8. Integrate f (z) = iz2 + 1 along the straight line path
from point (3, 1) to (6, 1).

9. Integrate f (z) = 2z2 − 3i along the straight line path
from point (1, 1) to (4, 1).

10. Integrate f (z) = z2 + z along the straight line path
from point (2, 3) to (5, 6).

11. Represent sinh z in terms of its real and imaginary parts
and integrate it along the straight line path from point
(3, π) to (6, π).

12. Represent cosh z in terms of its real and imaginary parts
and integrate it along the straight line path from point
(1, 2) to (1, 4).

13. Represent sin z in terms of its real and imaginary parts
and integrate it along the straight line path from point
(2, π) to (3, π).

14. Represent cos z in terms of its real and imaginary parts
and integrate it along the straight line path from point
(1, 4π) to (1, 6π).

15. Represent cosh 2z in terms of its real and imaginary
parts and integrate it along the straight line path from
point (0, 0) to (4, 2).

16. Represent sin z in terms of its real and imaginary parts
and integrate it along the straight line path from point
(0, 0) to (2, 4).

17. Integrate ez along the straight line path from the point
(0, 0) to (4, π/4).

18. Set f (z) = z̄, and let the corners A, B, C, and D of a
square be located at the respective points (−1, −1),
(1, −1), (1, 1), and (−1, 1). Integrate f (z) first along
the consecutive paths from A to B and from B to C,
and then along the consecutive paths from A to D and
from D to C, and hence show that the value of the
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integral of the nonanalytic function z̄ from A to C de-
pends on the choice of path joining A to C.

19. Integrate f (z) = 1/(z − 1) in the negative sense around
the semicircle with the equation |z − 1| = 1.

20. Integrate the function f (z) = zz̄around the circular arc
|z− 2| = 3 in the positive sense between the points (2, 3)
and (5, 0).

21. Show that
∫

�
1

z+ i dz = 0, when integration is performed
in the either the positive or the negative sense around
the circle � given by |z − 2| = 2.

22. Let A, B, and C be the respective points (0, 0), (1, 0), and
(1, 1), and let f (z) = zz̄. Integrate f (z) along the con-
secutive straight line segments AB and BC, and then
along the straight line segment AC, and hence show
that the value of the integral of this nonanalytic func-
tion from A to C depends on the path joining the two
points.

14.2 Contours, the Cauchy–Goursat Theorem,
and Contour Integrals

The definition of a complex integral of a single-valued analytic function f (z) along

contours and simple
closed curves

a path introduced in Section 14.1 was for paths that were finite in length, did not
intersect themselves, and had end points that were distinct. To make further progress
with complex integrals it is necessary to consider integrating along general paths
in the form of closed loops that are continuous, piecewise smooth, and do not
intersect themselves. In Section 14.1, closed paths of this type were called contours,
though they are also often called simple closed curves or Jordan curves. A typical
example of a simple closed curve is shown in Fig. 14.10a, and the self-intersecting
figure-eight-shaped curve in Fig. 14.10b is a nonsimple closed curve.

Before examining contour integrals in more detail, it is necessary to introduce
the notion of a simply connected domain in which all contour integrals are to be

simply and multiply
connected domains

evaluated. A domain Dis called simply connected if the interior points of all possible
simple closed curves in D belong to D. This means that a simply connected domain
is one from which no points, curves, or areas are missing. A domain D that does not
satisfy this condition is said to be multiply connected.

An example of a simply connected domain is shown in Fig. 14.11a, and typical
multiply connected domains are shown in Figs. 14.11b and c. The annular domain
in Fig. 14.11b is a simple example of a multiply connected domain, and it is made
multiply connected by the removal from D of the points in the disc in the center
that leaves a “hole” in D. Domains containing only one “hole” are said to be doubly

(a) (b)

FIGURE 14.10 (a) A simple closed curve. (b) A nonsimple closed
curve.
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(a) (b) (c)

D
Q

R

S
PD

FIGURE 14.11 (a) Simply, (b) doubly, and (c) multiply connected domains.

connected. The domain in Fig. 14.11c is multiply connected because the point at P
is missing, as are the points along the cut QR and the points in the area (hole) S.

Another way of defining a simply connected domain D is by saying it is one
with the property that every simple closed curve connecting any two points of D
can always be collapsed onto an arc in D that joins the two points. This definition is
illustrated in Fig. 14.12a, from which it can be seen that for any two points A and B
in D, all simple closed curves � connecting A and B can always be collapsed onto
a dashed arc like the one shown joining the two points. Domain D in Fig. 14.12b
is multiply connected. The reason for this can be seen by examining the curves �1

and �2. The simple closed curve �1 joining two points A and B in D lies entirely
to the side of all holes in D, and so can be collapsed onto an arc in D joining the
points A and B, but this is not possible for a simple closed curve such as �2 that
encloses one or more of the holes in D, because the boundaries of the holes act as
barriers that stop its collapse onto an arc.

In future the notation
∫

�
f (z)dz, already used to denote the line integral of a

single-valued analytic function f (z) along a path �, will be taken to include contour
integrals around a simple closed curve �.

The fundamental theorem governing contour integrals is the Cauchy–Goursat
theorem, which can be stated as follows.

THEOREM 14.3 Cauchy–Goursat Theorem Let f be a single-valued analytic function in a simply

a fundamental
theorem

connected domain D. Then if � is any simple closed curve of finite length lying

D

A Γ1

Γ2

Γ2
B

(b)(a)

D A

B

FIGURE 14.12 Illustration of the alternative definition of simply and multiply connected
domains.



Section 14.2 Contours, the Cauchy–Goursat Theorem, and Contour Integrals 757

D D

y

0 0

y

A

B

(a) (b)

FIGURE 14.13 Standard and nonstandard domain.

entirely within D,

∫
�

f (z)dz = 0.

Proof This is the most general statement of the Cauchy–Goursat theorem that is
necessary for practical purposes. We now prove it in a weaker form by requiring
that in addition to f being single-valued and analytic, its derivative f ′(z) must be
continuous in D and the contour � must be one for which lines passing through
the interior of � drawn parallel to the real and imaginary axes only intersect �

twice. Areas bounded by such closed curves � are called standard domains. A
typical standard domain is shown in Fig. 14.13a, and a nonstandard one is shown in
Fig. 14.13b, where lines such as AB are seen to intersect D four times.

standard and
nonstandard
domains

Under the stated conditions, the proof can be based on Green’s theorem in the
plane, which takes the form∫

�

Pdx + Qdy =
∫

D

(
∂ Q
∂x

− ∂ P
∂y

)
dxdy,

where the domain D inside � is a simple domain and P, Q, ∂ Q/∂x, and ∂ P/∂y
are continuous in D and on �. If f (z) = u + iv, then f ′(z) = ∂u/∂x + i∂v/∂x =
∂v/∂y − i∂u/∂y, so the assumption that f ′(z) is continuous implies the continuity
of ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y, and through them the continuity of u and v.

Applying Green’s theorem to
∫

�
f (z)dz, we have∫

�

f (z)dz =
∫

�

(udx − vdy) + i
∫

�

(vdx + udy)

=
∫

D

(
−∂v

∂x
− ∂u

∂y

)
dxdy + i

∫
D

(
∂u
∂x

− ∂v
∂y

)
dxdy.

However, from the Cauchy–Riemann equations ∂u/∂x = ∂v/∂y and ∂u/∂y =
−∂v/∂x, so each integrand vanishes and we obtain the statement of the theorem∫

�

f (z)dz = 0.

The form of proof given here is the one due to Cauchy. The removal of the
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requirements that f ′(z) be continuous and D be a standard domain that were
necessary in the above proof allows the theorem to be used under very general
circumstances. It means, for example, that the theorem remains true when domains
such as the one in Fig. 14.13b arise, and also that instead of the contour � being
smooth, it can be formed from piecewise smooth arcs joined end to end to make
a simple closed curve such as a semicircle or a rectangle. The generalization of the
theorem is due to Goursat, though the details of its proof will not be given here.

EXAMPLE 14.6 The functions zn with n a positive integer, sin z, cos z, ez, sinh z, and cosh z are an-
alytic and single valued throughout the complex plane (they are entire functions),
so for any simple contour �,∫

�

zndz = 0,

∫
�

sin zdz = 0,

∫
�

cos zdz = 0,

∫
�

ezdz = 0,

∫
�

sinh zdz = 0,

∫
�

cosh zdz = 0.

EXAMPLE 14.7 The function sec z = 1/cosz is analytic and single valued throughout the z-plane ex-
cept at the zeros of cos z that are located at z = (2n + 1)π/2, for n = 0, ±1, ±2, . . . .

Thus,
∫

�
sec zdz = 0 for every contour � that neither contains zeros of cos z nor

passes through any of its zeros.

An immediate consequence of the Cauchy–Goursat theorem is that if the con-
tour � in D is deformed into some other contour �1 that is also in D, the statement
in the theorem remains unchanged. When this happens the contours � and �1 are
said to be equivalent contours.

Examples of two equivalent contours are shown in Fig. 14.14a, and the useful-
ness of this result is such that we record it in the form of a theorem.

THEOREM 14.4 Deformation of contours Let f be a single-valued analytic function in a simply

a suitable
deformation of a
contour does not
change the value
of a contour
integral

connected domain D, and let �1 and �2 be any two simple closed contours in D.

y

x0 0

Γ1

Γ
D

z-plane

(a)

y

x

(b)

z0z0

B

γ1 C

D
A

Γ1

FIGURE 14.14 (a) Equivalent contours. (b) A contour that excludes a simple pole at z0.
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Then �1 and �2 are equivalent in the sense that∫
�1

f (z)dz =
∫

�2

f (z)dz.

If, however f has a simple pole at a point z = z0 inside both �1 and �2, then∫
�1

f (z)dz =
∫

�2

f (z)dz = 2π i lim
z→z0

[(z − z0) f (z)].

Proof The first result has already been established, so it only remains to prove the
second one. Consider Fig. 14.14b, and let there be a simple pole at z = z0. Enclose
the pole in a small circle γ1 of radius r , and join the circle to the contour �1 by two
parallel straight lines AB and CD that are arbitrarily close together. Then, in the
domain bounded by �1, AB, γ1, and CD as indicated by the arrows in Fig. 14.14b,
the function f is analytic because the pole has been excluded.

Applying the Cauchy–Goursat theorem and integrating around this contour
gives ∫

�DA

f (z)dz +
∫

AB
f (z)dz +

∫
−γ1

f (z)dz +
∫

CD
f (z)dz = 0,

where −γ1 indicates that integration around the circle γ1 is in the clockwise sense.
If the radius r of circle γ1 is now allowed to tend to zero, the second and fourth

integrals vanish, because f is continuous across the lines AB and CD and f is
integrated in opposite directions along each of these lines. Reversing the sense of
integration around γ1 and compensating by changing the sign of the integral, we
arrive for r → 0 at the result∫

�1

f (z)dz = lim
r→0

∫
γ1

f (z)dz.

By definition, if f has a simple pole at z = z0, then f (z) = g(z)/(z − z0) with
g(z0) �= 0. So, integrating around γ1 on which z = z0 + reiθ with 0 ≤ θ ≤ 2π , and
using the fact that dz = ireiθdθ , gives∫

�1

f (z)dz = lim
r→0

∫ 2π

0

g(z0 + reiθ )
reiθ

ireiθdθ = 2π ig(z0).

The same result would be obtained using any other contour in D that contains z0,
so the second result is proved.

EXAMPLE 14.8 Find
∫

�
3

z+ i dz, with � any square of side 4 with its center at the origin.

Solution The square � contains z = −i , which is a simple pole of the integrand,
so deforming � into any circle centered on z = −i and integrating around � in the
positive sense using the result of Example 14.5 gives∫

�

3
z + i

dz = 6π i.
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EXAMPLE 14.9 Find
∫

�
( 4

z− 1 − 5
z+ 4 )dz, where � is the circle |z| = 2.

Solution The point z = −4 lies outside |z| = 2, so the Cauchy–Goursat theorem
shows that the second term in the integrand contributes nothing to the integral. De-
forming � into any circle centered on z = 1 that does not contain the point z = −4,
and integrating around it in the positive sense using the result of Example 14.5, gives∫

�

(
4

z − 1
− 5

z + 4

)
dz = 8π i − 0 = 8π i.

EXAMPLE 14.10 Find ∫
�

2z − 3
z3 − 3z2 + 4

dz

by integrating in the positive sense around � when (a) � is the circle |z| = 3/2 andsimplifying
integration by using
partial fractions

(b) � is the circle |z − 3| = 2.

Solution A partial fraction decomposition of the integrand gives

2z − 3
z3 − 3z2 + 4

= 5
9

1
z − 2

− 5
9

1
z + 1

+ 1
3

1
(z − 2)2

,

so ∫
�

2z − 3
z3 − 3z2 + 4

dz = 5
9

∫
�

dz
z − 2

− 5
9

∫
�

dz
z + 1

+ 1
3

∫
�

dz
(z − 2)2

.

(a) The functions 1/(z − 2) and 1/(z − 2)2 are analytic in and on the circle |z| =
3/2, so by the Cauchy–Goursat theorem the first and last integrals on the right
vanish. The contour � is not convenient for the evaluation of the second integral
on the right, so we deform the circle |z| = 3/2 into the circle |z + 1| = 1 centered
on z = −1 and use the result of Example 14.5 to obtain∫

�

dz
z + 1

= 2π i.

Combining these results gives∫
�

2z − 3
z3 − 3z2 + 4

dz = −5
9

∫
�

dz
z + 1

= −10π i
9

.

(b) The function 1/(z + 1) is analytic in and on the circle |z − 3| = 2, so by the
Cauchy–Goursat theorem the second integral on the right vanishes. Again the con-
tour � is not convenient when determining the other two contour integrals, so
deforming the circle |z − 3| = 2 into the circle |z − 2| = 1 and using the results of
Examples 14.4 and 14.5 gives∫

�

dz
z − 2

= 2π i, and
∫

�

dz
(z − 2)2

= 0.

Combining these results we find that∫
�

2z − 3
z3 − 3z2 + 4

dz = 5
9

∫
�

dz
z − 2

= 10π i
9

.

Let f be a single-valued analytic function in some domain D in which two
distinct points z1 and z2 are connected by two paths in D that form the simple
contour � shown as APBQA in Fig. 14.15a.
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D

B

A

D

A

B

Q P

Γ

(a) (b)

FIGURE 14.15 (a) Two paths forming a simple contour �.
(b) Two paths forming loops.

Using the Cauchy–Goursat theorem and dividing � into the two parts APB
and BQA allow us to write∫

�

f (z)dz =
∫

APB
f (z)dz +

∫
BQA

f (z)dz = 0.

Reversing the direction of integration along BQA, and compensating by changing
the sign of the integral, shows the preceding result to be equivalent to∫

APB
f (z)dz =

∫
AQB

f (z)dz. (10)

By Theorem 14.4 the contour � in D through z1 and z2 can be deformed into any
other equivalent contour in D through the two points, showing that the integral of
f (z) from z1 to z2 is independent of the path joining z1 to z2. The result remains true
if the paths intersect finitely many times forming n loops, as shown in Fig. 14.15b.
In this case the result is established by applying the preceding result to each loop
in succession.

As in the real variable calculus, a differentiable function F(z) such that F ′(z) =antiderivative, or
indefinite integral f (z) is called an antiderivative of f (z), or an indefinite integral, and written∫

f (z)dz. (11)

To simplify the calculation of line integrals of analytic functions, we now con-
sider the integral of a single-valued analytic (and so continuous) function f (z) from
a fixed point z0 in D to some other point z in D along any path in D. The result can
be written

F(z) =
∫ z

z0

f (ζ )dζ, (12)

where F(z) is a function of the upper limit of integration z, and no path need be
specified because the integral is independent of the path joining z0 to z1 in D.
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We wish to show that F ′(z) = f (z), so let us consider the difference quotient

F(z + �z) − F(z)
�z

= 1
�z

[ ∫ z+�z

z0

f (ζ )dζ −
∫ z

z0

f (ζ )dζ

]
= 1

�z

∫ z+�z

z
f (ζ )dζ,

where �z is a small increment in z.
As any path in Dbetween zand z + �zcan be used, we take it to be the straight

line segment joining these two points. Then, as
∫ z+�z

z dζ = �z, we can multiply this
result by f (z)/�z and use the fact that f (z) is not involved in the integration to
write f (z) as

f (z) = 1
�z

∫ z+�z

z
f (z)dζ.

This result allows the difference quotient to be written

F(z + �z) − F(z)
�z

− f (z) = 1
�z

∫ z+�z

z
[ f (ζ ) − f (z)]dζ.

Taking the modulus of this expression and using the fundamental integral inequality
in Theorem 14.1, we obtain∣∣∣∣ F(z + �z) − F(z)

�z
− f (z)

∣∣∣∣ ≤ 1
|�z|

∫ z+�z

z
| f (ζ ) − f (z)||dζ |,

but f (z) is a continuous function of z, so for any arbitrary small number ε > 0 we
can always find a number δ > 0 such that

| f (ζ ) − f (z)| < ε, when |z − ζ | < δ.

Then, as ζ lies on the straight line segment joining z and z + �z, we have |z − ζ | ≤
|�z|, showing that the preceding result is true if δ < |�z|.

It now follows that∣∣∣∣ F(z + �z) − F(z)
�z

− f (z)
∣∣∣∣ ≤ 1

|�z|ε|�z| = ε,

so in the limit as �z → 0 this shows that

lim
�z→0

(
F(z + �z) − F(z)

�z

)
= F ′(z) = f (z). (13)

As F(z) has been shown to be differentiable, we have also proved the very
important result that the derivative of an analytic function is itself an analytic
function.

We now show how definite integrals can be evaluated. Let F(z) and G(z) be any
two different antiderivatives of f (z). Then setting �(z) = F(z) − G(z) = u + iv, we
have

�′(z) = F ′(z) − G′(z) = 0, for all z in D.

When this result is used with the Cauchy–Riemann equations, it shows that �(z) =
constant, so all antiderivatives of f (z) can only differ one from the other by a
complex constant C, allowing us to write

F(z) = G(z) + C.
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If z and z∗ are any two points in D where f is defined, the antiderivative G(z)
of f (z) can be written

G(z) =
∫ z

z∗
f (ζ )dζ, (14)

so the most general antiderivative of f (z) becomes

F(z) =
∫ z

z∗
f (ζ )dζ + C. (15)

The definite integral
∫ z1

z0
f (ζ )dζ can be written∫ z1

z∗
f (ζ )dζ =

∫ z1

z∗
f (ζ )dζ −

∫ z0

z∗
f (ζ )dζ,

and after elimination of the arbitrary constant C we find that∫ z1

z0

f (ζ )dζ = F(z1) − F(z0). (16)

In complex analysis, this last result is the analogue of the fundamental theorem of
integral calculus for real functions. We have proved the following important and
useful theorem.

THEOREM 14.5 Independence of path—definite integrals Let f (z) be a single-valued analytic
function in some domain D to which belong the two distinct points z1 and z2. Then
if F(z) = ∫

f (z)dz is an antiderivative of f , the line integral of f along any path in
D joining z1 to z2 is independent of the path, and∫ z2

z1

f (z)dz = F(z2) − F(z1).

EXAMPLE 14.11 Find the integral of z2 from z1 = 1 + i to z2 = 3 + 4i .

Solution The function f (z) = z2 is single valued and analytic in the finite z-plane,
and an antiderivative of f (z) is z3/3, so Theorem 14.5 can be applied and gives∫ 3+4i

1+i
z2dz =

(
z3

3

)3+4i

1+i
= 1

3
[(3 + 4i)3 − (1 + i)3] = −115

3
+ 14i.

Consider a function f (z) that is analytic and single valued inside the multiply
connected domain D with outer boundary � shown in Fig. 14.16a. The domain
D can be made simply connected by inserting the n cuts C1, C2, . . . , Cn shown in
Fig. 14.16b, and taking as the new boundary the one formed by �, the internal
boundaries �1, �2, . . . , �n, and the cuts C1, C2, . . . , Cn. In this way, as the contour is
traversed in the positive sense indicated by the arrows in Fig. 14.16b, the modified
domain always lies to the left and is simply connected.

The next theorem makes use of cuts to extend the Cauchy–Goursat theorem
for analytic functions to multiply connected domains.
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FIGURE 14.16 Cuts used to make a multiply connected domain simply connected.

THEOREM 14.6 Extended Cauchy–Goursat theorem Let f (z) be a single-valued analytic function

integration in
multiply connected
domains

in a possibly multiply connected domain D bounded externally by a simple contour
�, and internally by the simple contours �1, �2, . . . , �n, as shown in Fig. 14.17, and
let each of the n + 1 contours be traversed in the positive sense. Then

∫
�

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz + · · · +
∫

�n

f (z)dz.

Proof Make the cuts indicated in Fig. 14.18, and integrate around the resulting
composite contour using the Cauchy–Goursat theorem to obtain∫

c+
1

f (z)dz +
∫

�1

f (z)dz +
∫

c−
1

f (z)dz +
∫

�(P−
1 P+

2 )
f (z)dz +

∫
c+

2

f (z)dz

+
∫

�2

f (z)dz +
∫

c−
2

f (z)dz + · · · +
∫

c+
n

f (z)dz +
∫

�n

f (z)dz +
∫

c−
n

f (z)dz

+
∫

�(P−
n P+

1 )
f (z)dz = 0.

y

x0

z-plane

D

Γ

Γ2

Γ1

Γn

Γk

FIGURE 14.17 The multiply connected
domain D.
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−
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FIGURE 14.18 Composite contour for integration.

As f is analytic in D, and C+
i and C−

i are opposite sides of the cut Ci , the function
f is continuous across the cut. The paths C+

i and C−
i are traversed in opposite

directions, so the integrals along opposite sides of the cut cancel, leading to the
result ∫

c+
i

f (z)dz +
∫

c−
i

f (z)dz = 0, for i = 1, 2, . . . , n.

Adding the integrals around the successive segments of �, using the fact that f (z)
is continuous on �, cancelling the integrals along opposite sides of each cut, and
denoting integration around �i in the clockwise (negative) sense by �i− reduces
the preceding result to∫

�

f (z)dz +
∫

�1−
f (z)dz +

∫
�2−

f (z)dz + · · · +
∫

�n−
f (z)dz = 0.

The direction of integration around the internal contours �1, �2, . . . , �n is neg-
ative (clockwise), so reversing their directions to give them a positive orientation,
introducing corresponding changes of sign in the integrals, and rearranging terms,
we arrive at the result∫

�

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz + · · · +
∫

�n

f (z)dz,

and the theorem is proved.

EXAMPLE 14.12 Find the integral of f (z) = (4z2 + 11z − 3)/(z3 + 2z2 − z − 2) around the contour �

shown in Fig. 14.19 with the direction of integration around the connected contours
A, B, and C shown by the arrows.
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−2 −1 10

FIGURE 14.19 Connected contours A, B, and
C forming �.

Solution Integrating around � we have∫
�

f (z)dz =
∫

A
f (z)dz +

∫
B

f (z)dz +
∫

C
f (z)dz,

and a partial fraction expansion of f (z) gives the representation

f (z) = 2
z − 1

+ 5
z + 1

− 3
z + 2

.

Inside and on contour A the functions 1/(z + 1) and 1/(z + 2) are analytic; in-
side and on contour B the functions 1/(z − 1) and 1/(z + 2) are analytic; and inside
and on contour C the functions 1/(z − 1) and 1/(z + 1) are analytic. In addition,
we must take account of the fact that integration around A is in the positive sense,
integration around B is in the negative sense, and integration around C is in the pos-
itive sense. Deforming contours A, B, and C into the respective circles |z − 1| = 1,
|z + 1| = 1/2, and |z + 2| = 1/2 and using the Cauchy–Goursat theorem with the
result of Example 14.5, we find that integration around contour A in the positive
sense gives ∫

A
f (z)dz = 2

∫
|z−1|=1

1
z − 1

dz = 2 · 2π i = 4π i,

integration around contour B in the negative sense gives∫
B

f (z)dz = −5
∫

|z+1|=1/2

1
z + 1

dz = −5 · 2π i = −10π i,

and integration around contour C in the positive sense gives∫
C

f (z)dz = −3
∫

|z+2|=1/2

1
z + 2

dz = −3 · 2π i = −6π i.

Adding these results to find the integral around � we obtain∫
�

f (z)dz = 4π i − 10π i − 6π i = −12π i.

By setting z = eiθ , expressing sin θ and cos θ in terms of z, and integrating
integrands involving
quotients of
trigonometric
functions

around the unit circle � given by |z| = 1, the Cauchy–Goursat theorem can be used
to evaluate trigonometric integrals of the form

∫ 2π

0

a cos θ + b sin θ

c + d cos θ + e sin θ
dθ, (17)

where a, b, c, d, and e are real numbers.
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The expressions for sin θ and cos θ in terms of zfollow by adding and subtracting

z = cos θ + i sin θ and 1/z = cos θ − i sin θ

to obtain

sin θ = 1
2i

(
z2 − 1

z

)
, cos θ = 1

2

(
z2 + 1

z

)
, (18)

and differentiating the result z = eiθ to obtain dz = ieiθdθ , from which it follows
that

dθ = 1
iz

dz. (19)

EXAMPLE 14.13 Find ∫ 2π

0

dθ

a + b sin θ
, where a and b are real numbers such that |a/b| > 1.

Solution The condition |a/b| > 1 is necessary to prevent the integrand becoming
unbounded in the interval of integration.

Substituting for dθ and sin θ in the integral, we find that∫ 2π

0

dθ

a + b sin θ
= 2

b

∫
�

dz
z2 + 2i(a/b)z − 1

,

where � is the unit circle, and integration around � is in the positive sense.
As |a/b| > 1, the roots of the denominator z2 + 2i(a/b)z − 1 = 0 can be written

α = i
b

(−a +
√

a2 − b2) and β = i
b

(−a −
√

a2 − b2),

where the positive square root is taken. Then, as |α| < 1, the point z = α lies inside
�, and as |β| > 1, the point z = β lies outside �. In terms of α and β the denominator
can be written

z2 + 2i(a/b)z − 1 = (z − α)(z − β),

so when expressed in terms of z and the contour �, the integral becomes∫ 2π

0

dθ

a + b sin θ
= 2

b

∫
�

dz
(z − α)(z − β)

.

A partial fraction expansion of the integrand on the right gives

1
(z − α)(z − β)

= 1
(α − β)

[
1

z − α
− 1

z − β

]
,

showing that∫ 2π

0

dθ

a + b sin θ
= 2

b(α − β)

∫
�

dz
z − α

− 2
b(α − β)

∫
�

dz
z − β

.

As only z = α lies inside �, it follows from the Cauchy–Goursat theorem and
Example 14.5 that∫ 2π

0

dθ

a + b sin θ
= 2

b(α − β)
· 2π i − 0 = 4π i

b(α − β)
,
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so as b(α − β) = 2i
√

a2 − b2 this simplifies to∫ 2π

0

dθ

a + b sin θ
= 2π√

a2 − b2
, for |a/b| > 1.

Summary Simply and multiply connected domains were introduced, and the fundamental Cauchy–
Goursat theorem of complex analysis for a function in a simply connected domain was
proved using Green’s theorem. Conditions under which contours can be deformed into
more convenient shapes were given, and then used to evaluate some simple contour
integrals in terms of two elementary results obtained earlier using circular contours.
The Cauchy–Goursat theorem was extended to include multiply connected domains,
and some simple definite integrals involving quotients of trigonometric functions were
obtained.

EXERCISES 14.2

In Exercises 1 through 4 find
∫ z2

z1
f (z)dz by parametrizing

the given path and using the result to integrate f (z) along
� from z1 to z2. State when Theorem 14.5 can be used to
evaluate the integral and, when appropriate, use it to check
the result.

1. f (z) = sinh z, and the path � is the straight line segment
joining the points z1 = 1 and z2 = i .

2. f (z) = e3z, and the path � is the circular arc |z − 1| = 1
joining the points z1 = 0 and z2 = 1 + i .

3. f (z) = z + Im{z}, and the path � is formed by the
straight line segment from z1 = 1 + i to the point z∗ =
2 + i and the straight line segment from the point
z∗ = 2 + i to z2 = 2 + 2i .

4. f (z) = 2 + z̄, and the path � is the straight line segment
from the point z1 = 3i to the point z2 = 3 + 6i .

In Exercises 5 through 8 find the integral
∫

�
f (z)dz, where

� is the unit circle |z| = 1 and integration around � is taken
in the positive sense, using the Cauchy–Goursat theorem
whenever it is appropriate.

5. f (z) = tanh z.
6. f (z) = (z − 3)2 + Im {z}.
7. f (z) = z + z̄2.
8. f (z) = ez/(z2 − 2).
9. What conditions must be satisfied by a contour � in

order that
∫

�
f (z)dz = 0, given that (a) f (z) = sin z/

(z2 + 1), (b) f (z) = csc z, (c) f (z) = sech z, and
(d) f (z) = coth z?

10. Find ∫
�

z + 1
z2 − 3z + 2

dz

where � is the contour ABCADEA shown in Fig. 14.20,
with integration in the direction indicated by the arrows.

z-plane

y

x−2 −1 10A

D

E

C

B

FIGURE 14.20

In Exercises 11 through 17 use analysis to find the integral
of f (z) when it is integrated around the given contour � in
the positive sense. Verify the result by using computer alge-
bra and the substitution z = z0 + Reiθ , dz = i Reiθ dθ , with
0 ≤ θ ≤ 2π , when � is the circle |z − z0| = R.

11. f (z) = z + 5
z2 + 3z − 4

with � (a) the circle |z − i | = 2, and

(b) the circle |z + 3| = 2.

12. f (z) = 3 − 4z
z2 + 5z + 6

with � (a) the circle |z| = 5/2, and

(b) the rectangle with its corners at the points
(−7/2, −1), (−5/2, −1), (−5/2, 1), and (−7/2, 1).

13. f (z) = 2 − 7z
z2 + 3z

with � (a) the circle |z + i | = 2, and

(b) the circle |z − 2| = 4.

14. f (z) = 3z − 2
(z + 2)2

with � the circle |z − 3| = 2.

15. f (z) = z2 + 2z
z2 − 2z + 1

with � the circle |z − 2| = 3.

16. f (z) = z + 4
z3 + 6z2 + 9z

with � (a) the circle |z + 4| = 2,

and (b) the square with its corners at the points
(−1, −1), (1, −1), (1, 1), and (−1, 1).
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17. f (z) = 2z − 1
(z + 1)3

with � the triangle with its vertices at

the points (−2, −1), (0, −1) and (1, 1).

Establish the results of Exercises 18 through 20 by using the
method of Example 14.13.

18. Show that∫ 2π

0

dθ

a + b cos θ
= 2π√

a2 − b2

for a and b real numbers such that |a/b| > 1.

19. Show that ∫ 2π

0

cos θ

2 + cos θ
dθ = 2π − 4π√

3
.

20. Show that ∫ 2π

0

sin θ

3 + sin θ
dθ = 2π − 3π√

2
.

14.3 The Cauchy Integral Formulas

Two consequences of the Cauchy–Goursat theorem are the Cauchy integral formula
and the Cauchy integral formula for derivatives for a function f (z) that is analytic
and single valued in some domain D. These results are of fundamental importance
in complex analysis and the first of these formulas can be stated as follows.

THEOREM 14.7 The Cauchy integral formula Let f (z) be a single-valued analytic function in a
simply connected domain D containing a contour � in the form of a simple closed
curve. Then for every point z0 inside �,

f (z0) = 1
2π i

∫
�

f (z)
z − z0

dz,
expressing f (z0)
as an integral

where integration around � is in the positive sense.

Proof Let z0 be any point inside the domain D shown in Fig. 14.21, and let the
contour � containing z0 lie inside D. Enclose z0 by an equivalent circular contour
C of arbitrarily small radius ρ.

Let us consider the function ϕ(z) defined as

ϕ(z) = f (z) − f (z0)
z − z0

for z �= z0,

D

C

z0

ρ

Γ

FIGURE 14.21 The equivalent contours �

and C.
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and for later use notice that

lim
z→z0

ϕ(z) = f ′(z0).

After deforming the contour � into an equivalent circular contour C of radius ρ

with its center at z0, we can write∫
�

ϕ(z)dz =
∫

C
ϕ(z)dz,

where from Example 14.5 it can be seen that the integral around C is independent
of the radius ρ. The function ϕ(z) is undefined at z = z0, so if we define it to be f ′(z0)
the function ϕ(z) will be continuous throughout D. This result, in turn, implies that
the modulus of ϕ(z) must be bounded in D, so we have |ϕ(z)| ≤ M for some fixed
M and all z in D.

It then follows from Theorem 14.2 that as the circumference of C is 2πρ,∣∣∣∣ ∫
C

ϕ(z)dz

∣∣∣∣ ≤ M · 2πρ,

so taking the limit as ρ → 0 shows that∫
C

ϕ(z)dz = 0.

Consequently, as ∫
�

ϕ(z)dz =
∫

C
ϕ(z)dz,

we have proved that ∫
�

ϕ(z)dz =
∫

�

f (z) − f (z0)
z − z0

dz = 0,

but this result is equivalent to∫
�

f (z)
z − z0

dz = f (z0)
∫

�

dz
z − z0

= 2π i f (z0),

and the theorem is proved.

Remark The Cauchy integral formula shows how a function f (z) that is defined
and analytic on a contour � defines f (z) at every point inside �.

EXAMPLE 14.14 Find ∫
�

sinh z
z2 + (π/2)2

dz,

where the contour � contains the point z = iπ/2 but excludes the point z = −iπ/

2, and integration around � is in the positive sense.

Solution The integrand can be written

sinh z
z2 + (π/2)2

= sinh z
(z + iπ/2)

· 1
(z − iπ/2)

,
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and because of the exclusion of the point z = −iπ/2 from inside �, the function
sinh z/(z + iπ/2) is analytic inside �. Setting f (z) = sinh z/(z + iπ/2) in the Cauchy
integral formula with z0 = iπ/2, and integrating around � in the positive sense, gives∫

�

sinh z
z2 + (π/2)2

dz =
∫

�

f (z)
z − iπ/2

dz = 2π i f (iπ/2)

= 2π i · sinh(iπ/2)
iπ

= 2i sin(π/2) = 2i.

The second Cauchy integral formula determines the derivatives of an analytic
function in terms of a contour integral around a domain in which the function is
analytic. The theorem can be stated as follows.

THEOREM 14.8 The Cauchy integral formula for derivatives Let f (z) be a single-valued analytic

expressing f (n)(z)
as an integral

function in a simply connected domain D containing a contour � in the form of a
simple closed curve. Then, for any point z0 inside �,

f (n)(z) = n!
2π i

∫
�

f (ζ )
(ζ − z)n+1

dζ, for n = 1, 2, . . . .

Proof The result follows by differentiating the statement of Theorem 14.7 with
respect to z0, and this in turn involves justifying differentiating under a contour
integral sign. To simplify the proof of the Cauchy integral theorem for derivatives,
this operation will be assumed to be justified, and an outline proof of its legitimacy
will be postponed until the end of this section.

Let us consider the function ϕ(ζ, z) = f (ζ )/(ζ − z) to be a function of the
two complex variables z and z0. Differentiation of the result of Theorem 14.7 with
respect to z0 gives

f ′(z) = 1
2π i

∂

∂z

∫
�

f (ζ )
ζ − z

dζ,

so, if we assume differentiation under the integral sign is permissible, this becomes

f ′(z) = 1
2π i

∫
�

∂

∂z

(
f (ζ )
ζ − z

)
dζ = 1

2π i

∫
�

f (ζ )
(ζ − z)2

dζ,

and the result has been established for n = 1. The result for n > 1 follows by using
mathematical induction, so the theorem is proved.

EXAMPLE 14.15 Find the value of the integral ∫
�

cos z
(z − π/4)3

dz,

where integration is in the positive sense around the circle � given by |z − π/2|
= 1.

Solution Matching the integrand to the one in Theorem 14.8 shows that f (z) =
cos z, n = 2, and z0 = π/4, so z0 lies inside �. As f (2)(z) = −cos z, substitution into
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the Cauchy integral formula for derivatives gives

2!
2π i

∫
�

cos z
(z − π/4)3

dz = f (2)(π/4) = − 1√
2
,

showing that ∫
�

cos z
(z − π/4)3

dz = − iπ√
2
.

The next result has far-reaching consequences, because it says that an analytic
function can be differentiated arbitrarily many times and the result will still be an
analytic function.

THEOREM 14.9 An analytic function has derivatives of all orders A function f (z) that is analytic

an analytic function
can be differentiated
arbitrarily many
times

in a simply connected domain D has derivatives of all orders.

Proof The result follows directly from Theorem 14.8.

A useful property of harmonic functions is stated in the next theorem, the proof
of which makes use of the Cauchy–Riemann equations.

THEOREM 14.10 Harmonic functions have partial derivatives that are harmonic A function u(x, y)

derivatives of
harmonic functions
are harmonic

that is harmonic throughout a domain D has partial derivatives ux, uy, uxx, uxy, and
uyy that exist and are themselves harmonic functions.

Proof Around each point z0 = x0 + iy0 inside D, construct a disc |z − z0| ≤ ρ, all
points of which lie in D. The Cauchy–Riemann equations can be used to construct
a conjugate harmonic function v in the disc such that f (z) = u + iv is analytic
throughout the disc. From the Cauchy–Riemann equations we have f ′(z) = ux +
ivx = vy − iuy, but Theorem 14.8 asserts that f ′(z) is analytic in the disc, so the
functions ux and uy must themselves be harmonic in the disc.

A repetition of this argument, coupled with the fact that f ′′(z) is also analytic
in the disc, establishes that uxx, uxy, and uyy must be harmonic functions in the
disc. By selecting a suitable choice of points z0, each as the center of a disc with an
appropriate radius ρ, it is possible to include all points of D in a set of overlapping
discs. The result is true in each disc, so the theorem is proved.

We remark that the method used in Theorem 14.10 to extend the analytic
function f ′′(z) from the interior of disc C to the domain D, throughout which f (z)
is analytic, is called analytic continuation.

Further Results
The following is an outline proof of the legitimacy of the operation of differentiation
under the integral sign with respect to a parameter. The result we obtain, known
as Leibniz’ rule for analytic functions, is a little more general than is necessary for
the proof of Theorem 14.8.

THEOREM 14.11 Leibniz’ rule—Differentiation under a contour integral Let z = x + iy be a point
on a simple closed curve � in a domain D, and let z0 = x0 + iy0 be a point inside
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� in which a function g(z, z0) is analytic with a continuous derivative ∂g(z, z0)/∂z0

for all z and z0. Then the function

G(z0) =
∫

�

g(z, z0)dz

is analytic in D and

G′(z0) =
∫

�

∂g(z, z0)
∂z0

dz.

Proof Write the functions g(z, z0) and G(z0) in the cartesian form

g(z, z0) = u(x, y, x0, y0) + iv(x, y, x0, y0) and G(z0) = U(x0, y0) + iV(x0, y0).

Then, as G(z0) = ∫
�

g(z, z0)dz, substituting for g(z, z0) in the integral we obtain

U(x0, y0) =
∫

�

udx − vdy and V(x0, y0) =
∫

�

vdx + udy.

As the partial derivatives of u and v are continuous with respect to all their depen-
dent variables, it follows from real analysis that these last two real integrals can be
differentiated under their integral signs with respect to x and y. Consequently,

∂U
∂x0

=
∫

�

∂u
∂x0

dx − ∂v
∂x0

dy,
∂V
∂x0

=
∫

�

∂v
∂x0

dx + ∂u
∂x0

dy,

with similar results for ∂U/∂y0 and ∂V/∂y0.
Using the Cauchy–Riemann equations, we can rewrite these results as

∂U
∂y0

=
∫

�

∂u
∂y0

dx − ∂v
∂y0

dy = − ∂V
∂x0

and, similarly,
∂U
∂x0

= ∂V
∂y0

,

showing that U and V satisfy the Cauchy–Riemann equations in D. As the partial
derivatives of U and V are continuous, it follows that G(z0) must be analytic in D.
This proves the first part of the theorem. To prove the second part we use the fact
that

G′(z0) = ∂U
∂x0

+ i
∂V
∂x0

=
∫

�

(
∂u
∂x0

+ i
∂v
∂x0

)
dx +

(
− ∂v

∂x0
+ i

∂u
∂x0

)
dy

=
∫

�

(
∂u
∂x0

+ i
∂v
∂x0

)
(dx + idy) =

∫
�

∂g(z, z0)
∂z0

dz,

and the proof is complete.

GOTTFRIED WILHELM LEIBNIZ (1646–1716)
A German mathematician who studied moral philosophy and law, first at the University of
Leipzig and then at the University of Altdorf, from where he obtained his degree. Declining an
offer of a professorship at Altdorf, he embarked on a legal career and chose to develop his
mathematical work as a personal interest. He traveled extensively, meeting distinguished people
in many countries, including Isaac Newton, whom he met during a visit to the Royal Society of
London. He published his work on the calculus about a decade after Newton had completed his
own fundamental work on the calculus, but before its publication. It was due to Newton’s
cautious and suspicious nature that the publication of his work was delayed, leading to the
long-standing international dispute over who should be considered to be the founder of the
calculus. Shortly before his death Leibniz founded the Berlin Academy of Sciences.
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Summary The Cauchy integral formulas were derived that express f (z0) and f (n)(z0) in terms of inte-
grals involving f (z)/(z − z0)n+1 around a contour containing z0. Some important properties
of analytic functions were obtained, and Leibniz’ rule for differentiation under a contour
integral was proved.

EXERCISES 14.3

In Exercises 1 through 8 use Theorem 14.7 to evaluate the
given integral when integration is around � in the positive
sense.

1.
∫

�

sin 2z
z2 − (π/2)2

dz, with � the circle |z − 1| = 1.

2.
∫

�

(1 + z)ez

z2 − 3z
dz, with � the circle |z| = 1.

3.
∫

�

sin(πz/4)
z2 − 1

dz, with � the circle |z − 1| = 1.

4.
∫

�

cosh z
z2 + 1

dz, with � the circle |z − i | = 1.

5.
∫

�

ez

z − 4
dz, with � the circle |z − 6| = 3.

6.
∫

�

(3 + z2)
zcosh z

dz, with � the circle |z| = 1.

7.
∫

�

zsinh z
z2 + 1

dz, with � the circle |z + i/2| = 1.

8.
∫

�

sin z
z2 + 1

dz, with � the circle |z − 2i | = 2.

In Exercises 9 through 15 use Theorem 14.8 to evaluate the
given integral analytically when integration is around � in
the positive sense, and verify the result by using computer
algebra.

9.
∫

�

zsin z
(z − π/4)5

dz, with � the circle |z − π/4| = π .

10.
∫

�

zcosh z
(z − i)4

dz, with � the circle |z − i | = 1.

11.
∫

�

sin2 z
(z − π/2)3

dz, with � the circle |z| = π .

12.
∫

�

exp z2

(z + i)4
dz, with � the circle |z + i | = 2.

13.
∫

�

z2 sinh z
(z − i)4

dz, with � the circle |z| = 3.

14.
∫

�

(1 − z) cos z
(z + i)5

dz, with � the circle |z| = 2.

15.
∫

�

zez

(z2 + 1)2
dz, with � the circle |z + 2i | = 2.

16. The Legendre polynomial Pn(z) can be defined by the
Rodrigues formula (Exercise 16, Section 8.2):

Pn(z) = 1
2nn!

dn

dzn
(z2 − 1)n, n = 0, 1, 2, . . . .

Use the Cauchy integral formula for derivatives to
show that

Pn(z) = 1
2π i

∫
�

(t2 − 1)n

2n(t − z)n+1
dt,

where � is any simple closed curve containing the point
t = z in its interior, and integration is around � in the
positive sense. This result is called the Schläfli contour
integral representation of Pn(z).

Further Results

The first exercise provides an upper bound for the modulus
of the nth derivative of a function that is analytic in a disc,
while the remaining exercises offer an introduction to the
study of special functions and linear differential equations
by means of contour integrals.

17.* Use the Cauchy integral formula for derivatives to
prove that if f (z) is an analytic function in a domain D
containing a disc � of radius R with its center at z = z0,
and | f (z)| ≤ M for all z on �, then∣∣∣ f (n)(z0)

∣∣∣ ≤ Mn!
Rn

, for n = 1, 2, . . . .

These results are called the Cauchy inequalities for
derivatives.

18.* Show, by considering the change in the argument of
(t2 − 1)n+1/(t − z)n+1 around a simple closed curve �

with positive orientation that contains the point t = z,
that ∫

�

d
dt

[
(t2 − 1)n+1

(t − z)n+1

]
dt = 0.

19.* Find the form taken by the result of Exercise 18 when
the differentiation under the integral sign has been
performed. Use the definition of Pn(z) given in Ex-
ercise 16 to find Pn+1(z), and by differentiation with
respect to z find P′

n(z) and P′
n+1(z). Use these results in

the first part of this exercise to derive the recurrence
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relation

P′
n+1(z) = zP′

n(z) + (n + 1)Pn(z).

20.* Show, by considering the change in the argument of
t(t2 − 1)n/(t − z)n around a simple closed curve �

with positive orientation that contains the point t = z,
that ∫

�

d
dt

[
t(t2 − 1)n

(t − z)n

]
dt = 0.

21.* Find the form taken by the result of Exercise 20 when
the differentiation under the integral sign has been
performed. Use the definition of Pn(z) in Exercise 16
to find Pn−1(z) and Pn+1(z), and use them in the result
of the first part of the exercise to derive the recurrence
relation

(n + 1)Pn+1(z) − (2n + 1)zPn(z) + nPn−1(z) = 0.

22.* Show, by considering the change in the argument of
(t2 − 1)n+1/(t − z)n+2 around a simple closed curve �

with positive orientation that contains the point t = z,
that ∫

�

d
dt

[
(t2 − 1)n+1

(t − z)n+2

]
dt = 0.

23.* Differentiate the integral representation for Pn(z)
given in Exercise 16 with respect to z to find P′

n(z)

and P′′
n (z) and form the expression

G(z) = (1 − z2)P′′
n (z) − 2zP′

n(z) + n(n + 1)Pn(z).

Show that

G(z) = (n + 1)
2n+1π i

∫
�

(t2 − 1)n

(t − z)n+3
[2(n + 1)t(t − z)

− (n + 2)(t2 − 1)]dt.

By comparing the integrand of G(z) with the differ-
entiated form of the integrand in Exercise 22, deduce
that G(z) = 0, and hence show that Pn(z) is a solution
of the Legendre differential equation

(1 − z2)P′′
n (z) − 2zP′

n(z) + n(n + 1)Pn(z) = 0.

24.* By integrating exp(−z2) around the rectangle with its
corners at the points (0, 0), (R, 0), (R, b) and (0, b) in
the complex plane, proceeding to the limit as R → ∞,
and using the standard result

∫∞
0 exp(−x)2dx = 1

2

√
π ,

show that∫ ∞

0
exp(−x)2 cos(2ax)dx = 1

2

√
π exp(−a2).

Find the value of
∫∞

0 exp(−x)2 sin(2ax)dx in terms
of a.

14.4 Some Properties of Analytic Functions

The next group of theorems describe some of the most important properties of
analytic functions that can be deduced either directly or indirectly from the Cauchy
integral theorem.

The first result, known as Morera’s theorem, is the converse of the Cauchy–
Goursat theorem and it is largely of theoretical importance.

THEOREM 14.12 Morera’s theorem If a function f (z) is continuous in a domain D and such that

∫
�

f (z)dz = 0

for every simple closed contour � in D, then f (z) is analytic in D.

Proof The condition

∫
�

f (z)dz = 0
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implies that the function

F(z) =
∫ z

z0

f (ζ )dζ,

with z, z0 and � in D, is independent of the path from z0 to z. The continuity of
f (z) implies that F(z) is differentiable, and from the argument preceding Theorem
14.5 it follows that F(z) is analytic, with F ′(z) = f (z). Consequently, as f (z) is the
derivative of an analytic function, f (z) must be analytic in D, so the theorem is
proved.

The next result to be established is Liouville’s theorem and it has numerous
applications, one of which will occur later in the proof of the fundamental theorem
of algebra.

THEOREM 14.13 Liouville’s theorem If f (z) is analytic in the entire z-plane, and such that | f (z)| ≤
M for all z, then f (z) = constant.

Proof Setting n = 1, z − z0 = Reiθ , and dz = i Reiθdθ in the Cauchy integral for-
mula for derivatives and taking the modulus gives

| f ′(z0)| ≤ 1
2π

∫ 2π

0

| f (z)|
|z − z0|2 |i Reiθ |dθ ≤ 1

2π

∫ 2π

0

M
R2

Rdθ,

and so

| f ′(z0)| ≤ M
R

,

which is true for all z0 independently of R. Taking the limit as R → ∞ and dropping
the suffix zero show that | f ′(z)| = 0 for all z, but this is only possible if f ′(z) ≡ 0,
so f (z) = constant and the result is proved.

Liouville’s theorem illustrates one of the major differences between analytic
functions in compex analysis and and differentiable functions in real analysis, be-
cause the theorem has no analogue in real analysis. This is easily seen by considering
the function sin x, which, although differentiable, bounded, and defined for all x, is
not a constant. Another important difference between analytic functions and real
functions is that a real function may only be differentiable a finite number of times,
whereas analytic function has derivatives of all orders.

The next theorem is used repeatedly when seeking the zeros of polynomials,
and it is proved here for a general complex polynomial of degree n.

THEOREM 14.14 Fundamental theorem of algebra Every complex polynomial Pn(z) = a0 + a1z +
every polynomial
of degree n has n
zeros

a2z2 + · · · + anzn, with complex coefficients a0, a1, . . . , an with an �= 0 and n ≥ 1 has
precisely n zeros, some of which may be repeated.

Proof The proof will be by contradiction. Suppose, if possible, that Pn(z) has no
zeros. Then the function Qn(z) = 1/Pn(z) is analytic for all z(it is an entire function).
Then, when |z| is large, |Pn(z)| can be approximated by |Pn(z)| ≈ |anzn|, so it follows
that lim|z|→∞ |Qn(z)| = lim|z|→∞ 1/|Pn(z)| = 0. Consequently, |Qn(z)| is bounded in
the entire complex plane, so by Liouville’s theorem Qn(z) must be a constant. This
contradicts the definition of Qn(z), showing that Pn(z) must have at least one zero.
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Denoting this zero by z1, we can remove a factor (z − z1) from Pn(z) and write
it as Pn(z) = (z − z1)Pn−1(z), where Pn−1(z) is a polynomial of degree n − 1. This
process of factoring out (z − z0) from Pn(z) to arrive at the polynomial Pn−1(z) of
lower degree is called deflation. Applying the same form of argument to Pn−1(z)
proves the existence of another zero z2, and repetition of the argument establishes
the existence of precisely n zeros, not all of which need be different.

THEOREM 14.15 Gauss’s mean value theorem Let f (z) be analytic in a simply connected domain

an averaging
property for
analytic functions

D containing the circle � of radius ρ with its center at z0. Then,

f (z0) = 1
2π

∫ 2π

0
f (z0 + ρeiθ )dθ.

Proof From the Cauchy integral formula

f (z0) = 1
2π i

∫
�

f (z)
z − z0

dz,

but on the circle z − z0 = ρeiθ and dz = iρeiθdθ , so

f (z0) = 1
2π i

∫ 2π

0

f (z0 + ρeiθ )
ρeiθ

iρeiθdθ

= 1
2π

∫ 2π

0
f (z0 + ρeiθ )dθ.

When expressed in words, the Gauss mean value theorem says that the value
of an analytic function f (z) at a point z0 in D is the average of the values of f (z)
around the perimeter of any circle � in D with its center at the point z0. A useful
consequence of this theorem is the following result for harmonic functions that we
state in the form of a corollary.

COROLLARY TO
THEOREM 14.15

Mean value theorem for harmonic functions Let u(x, y) be harmonic in a domain

an averaging
property for
harmonic functions

D containing the point z0 = x0 + iy0, and let � be any circle of radius ρ in D with
its center at (x0, y0). Then u(x0, y0) is the average of the values of u(x, y) around
the perimeter of �.

Proof The corollary follows immediately from Theorem 14.15 by setting f (z) =
u + iv and equating the real parts of the statement of the theorem.

THEOREM 14.16 A function with its maximum modulus at the center of a disc Let a function f (z)
be analytic in a disc with its center at the point z0, and continuous on its circular
boundary �. Then if the modulus | f (z)| attains its maximum value M at z0, the
function f (z) = constant throughout the disc and on its boundary �.

Proof The proof of the theorem contains two steps. The first involves showing
that the conditions of the theorem lead to the result that | f (z)| = M inside the disc
and on its boundary �. The second step that completes the proof involves showing
that a function with constant modulus that is analytic in a disc must, of necessity,
be constant.
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STEP 1 Let the function f (z) be analytic inside the circle z = z0 + ρeiθ and con-
tinuous on its boundary �, and let its modulus | f (z)| attain its maximum value
M > 0 at z0. Suppose, if possible, that | f (z)| < M at some point on �. Then because
the function is continuous on �, it must follow that | f (z)| < M over some finite part
of �.

From the Gauss mean value theorem,

f (z0) = 1
2π

∫ 2π

0
f
(
z0 + ρeiθ)dθ,

so if we take the modulus, this becomes

| f (z0)| ≤ 1
2π

∫ 2π

0

∣∣ f
(
z0 + ρeiθ)∣∣dθ.

As | f (z0)| = M, this becomes

M ≤ 1
2π

∫ 2π

0

∣∣ f
(
z0 + ρeiθ)∣∣dθ.

However, the integrand is less than M over some part of �, so for some k such
that 0 < k < 1, ∫ 2π

0

∣∣ f
(
z0 + ρeiθ)∣∣dθ = kM.

Using this result with the previous one leads to the equation

M ≤ kM (0 < k < 1),

but this result is impossible, so k = 1 and | f (z)| = M on �. As the disc is of radius
ρ the result will be true for any radius r such that 0 ≤ r ≤ ρ, and we have proved
that | f (z)| = M inside and on the boundary of the disc.
STEP 2 Setting f (z) = u + iv we can write | f (z)|2 = u2 + v2, so from the result
of Step 1 we see that u2 + v2 = M2 throughout the disk. Differentiating this result
partially with respect to x and y gives

2u
∂u
∂x

+ 2v
∂v
∂x

= 0 and 2u
∂u
∂y

+ 2v
∂v
∂y

= 0.

The Cauchy–Riemann equations then allow these equations to be rewritten as

u
∂u
∂x

− v
∂u
∂y

= 0 and v
∂u
∂x

+ u
∂u
∂y

= 0.

Solving these equations for ux and uy gives (u2 + v2)ux = 0 and (u2 + v2)vy = 0,
but u2 + v2 = M2 > 0, so the only solution of this system of equations is ∂u/∂x =
∂u/∂y = 0, showing that u = constant. Using u = constant in the Cauchy–Riemann
equations implies that ∂v/∂x = ∂v/∂y = 0, so v = constant, and we have shown
that f (z) = constant throughout the disc. The proof is complete.

THEOREM 14.17 The maximum/minimum modulus principle If a nonconstant function f (z) is ana-
lytic in a bounded domain D and continuous on its boundary �, then the maximum
of | f (z)| must occur on �. If f (z) �= 0 anywhere in D, then the minimum value of
| f (z)| also must occur on �.

an extremum principle
for | f (z)| when f (z) is
analytic
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Proof The conditions that f (z) is analytic in D and continuous on � imply that
f (z) is continuous throughout D and on its boundary �. Consequently, the real
function | f (z)| must have both a maximum and a minimum in the closed region
formed by D and its boundary �.

As f (z) is analytic in D, so also is [ f (z)]n for n = 2, 3, . . . , so taking a point z0

inside D and applying the Cauchy integral theorem to [ f (z)]n gives

[ f (z0)]n = 1
2π i

∫
�

[ f (z)]n

z − z0
dz.

If | f (z)| ≤ M on the boundary � of finite length L, and if d is the minimum distance
from z0 to �, taking the modulus of this result we obtain

| f (z0)|n ≤ 1
2π

∫
�

| f (z)|n
|z − z0| |dz|

≤ 1
2π

MnL
d

,

showing that

| f (z0)| ≤ M
(

L
2πd

)1/n

.

Proceeding to the limit as n → ∞ leads to the result | f (z0)| ≤ M, so the value of
| f (z)| throughout the domain cannot exceed its maximum value on the boundary
�.

To complete the proof suppose, if possible, that in addition to the maximum
value of the modulus occurring on the boundary, it also occurs at a point z∗ inside
D. Construct a circle inside D with z∗ as its center. Then from Theorem 14.16 the
function f (z) must be constant inside this circle. As the f (z) is analytic in D, it is also
continuous in D together with all its derivatives, and, in particular, it is continuous
across the boundary of the circle. The derivatives of f (z) are zero inside and on the
boundary of the circle, so by continuity they must also be zero throughout the rest of
D, from which it follows that f (z) = constant in D. This contradicts the assumption
that f (z) is nonconstant, so the maximum value of | f (z)| can only occur on the
boundary �.

The minimum value of | f (z)| must also occur on the boundary � if f (z) �= 0
in D, because if the foregoing result is applied to the function ϕ(z) = 1/ f (z), the
maximum value of |ϕ(z)| must occur on the boundary of �, but this corresponds to
the minimum value of | f (z)|, so the theorem is proved, because if f (z) = 0 in D
then 1/ f (z) is not analytic in D.

EXAMPLE 14.16 Confirm by direct calculation the maximum/minimum principle for the function
f (z) = sin z in the domain Ddefined by 0 ≤ x ≤ π and 0 ≤ y ≤ 1, and place bounds
on |sin z| inside D.

Solution We notice first that the function f (z) is analytic for all z and the domain
D is bounded. Setting z = x + iy in f (z) and expanding the result gives sin z =
sin x cosh y + i cos x sinh y, from which it follows that

|sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y.
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Differentiating this result with respect to x and y, we obtain

∂

∂x
|sin z|2 = 2 sin x cos x cosh2 y − 2 sin x cos x sinh2 y = 2 sin x cos x = sin 2x

and

∂

∂y
|sin z|2 = 2 sin2 x sinh y cosh y + 2 cos2 x sinh y cosh y = 2 sinh y cosh y = sinh 2y.

The maxima and minima of |sin z|2, and hence of |sin z|, will occur in D if
each of these derivatives vanishes simultaneously at a point or points inside D. The
function sin 2x only vanishes in Don the line x = π/2, but sinh 2y �= 0 for 0 < y < 1,
so |sin z|2, and hence |sin z|, has neither maxima nor minima in D. Thus, the extrema
of |sin z| must occur on the straight line boundaries of D. On the boundary x = 0
of D, |sin z| has a minimum of 0 at (0, 0) and a maximum of sinh 1 at (0, 1). On the
boundary x = π of D, |sin z| has a minimum of 0 at (π, 0) and a maximum of sinh 1
at (π, 1). On the boundary y = 0 of D, |sin z| has two minima of 0 at (0, 0) and
(0, π) and a maximum of 1 at (π/2, 0), while on the boundary y = 1 of D, |sin z| has
two minima equal to sinh 1 at (0, 1) and (π, 1), and a maximum of (1 + sinh2 1)1/2

at (π/2, 1). This shows that the smallest value of |sin z| on the boundary of D is 0,
and the largest value is (1 + sinh2 1)1/2.

The results of Theorem 14.17 are confirmed, so inside the rectangle D it follows
that

0 < |sin z| < (1 + sinh2 1)1/2, for all z inside D.

We now use Theorem 14.17 to prove a corresponding result for harmonic func-
tions that has important consequences in the study of boundary value problems for
Laplace’s equation.

THEOREM 14.18 The maximum/minimum principle for harmonic functions The maximum and
minimum values of a nonconstant function u that is harmonic in a bounded simply
connected domain and continuous on its boundary must occur on the boundary.an extremum

principle for
a harmonic
function u Proof Let u be a harmonic function satisfying the conditions of the theorem, and

form the analytic function f (z) = u + iv, where v is the harmonic conjugate of u.
Then,

|exp { f (z)}| = |eu+iv| = |eu||eiv| = eu.

As eu is a monotonic increasing function of u, this result shows that the max-
ima of eu, and hence of u and those of |exp f (z)|, coincide. Using this result in
Theorem 14.16 shows that the maxima of u must occur on the boundary. The fact
that the minima of u also occur on the boundary follows if we notice that the min-
ima of u correspond to the maxima of the harmonic function −u, so the proof is
complete.

Theorem 14.18 also applies to nonsimply connected bounded domains. In such
a domain D, the maximum value of u is taken to be the largest of the maxima on all
the internal boundaries and the external boundary of D, and the minimum value
is taken to be the smallest of the minima on all the internal boundaries and the
external boundary of D.
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∂2u
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= 0+

FIGURE 14.22 A two-dimensional boundary
value problem for Laplace’s equation.

To see how the theorem provides qualitative information about solutions of
Laplace’s equation uxx + uyy = 0, consider the bounded two-dimensional domain
D with boundary � shown in Fig. 14.22 on which u assumes prescribed continuous
values, and let the smallest of the values of u on � be u0 and the largest be u1. Then,
for all points (x, y) in D we have

u0 < u(x, y) < u1.

Problems of this type are called two-dimensional boundary value problems for
Laplace’s equation. They occur, for example, when a two-dimensional steady-state
temperature distribution is to be determined within a uniform heat-conducting
medium on the boundary of which the temperature takes prescribed values, because
the steady state temperature as a function of position in the medium is a solution
of Laplace’s equation.

EXAMPLE 14.17 Use Theorem 14.18 to place bounds on the function u(x, y) = (1 + 2 sinh2 x) sin 2y
in the domain D determined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ π .

Solution Routine differentiation establishes that uxx + uyy = 0, so u(x, y) is har-
monic. As the domain D is bounded and u(x, y) is harmonic, Theorem 14.18 applies
and asserts that the smallest and largest values of u(x, y) must occur on the bound-
ary of D. Examination of the behavior of u(x, y) on the straight line boundaries
of D shows that the smallest value of u(x, y) is −1 − 2 sinh2 1 at (1, 3π/4), and the
largest value is 1 + 2 sinh2 1 at (1, π/4), so

−1 − 2 sinh2 1 < u(x, y) < 1 + 2 sinh2 1 at all points inside D.

The next example illustrates how the maximum/minimum principle may be
used to place bounds on the two-dimensional temperature distribution inside a
long uniform hexagonal rod of metal when an arbitrary temperature distribution is
prescribed around its hexagonal faces. The bounds on the temperature distribution
inside the metal can, for example, be used to estimate the thermal stress produced
in the rod due to the uneven heating of its faces.

EXAMPLE 14.18 Consider the cross-section of a long hexagonal rod of metal, shown in Fig. 14.23a,
where the inscribed circle that is tangent to the faces has radius a

√
3/2, and the

circumscribed circle that passes through the vertices has radius a. Draw a ray from
the origin to a point on the circumscribed circle, and let T = f (θ) be the temperature
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ΔT = 0

θ θ θ
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T = f(θ)
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T
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aa√3/2 a√3/2

FIGURE 14.23 The hexagonal cross-section and two related cross-sections with radii a
√

3/2
and a.

that is imposed on the hexagonal face where the ray intersects the face. Then the
function f (θ) is periodic with period 2π .

We now anticipate the result of Chapter 17 (proved in Chapter 18) that the
steady state temperature distribution in a uniform heat conducting medium satis-
fies the Laplace equation. As the problem is two-dimensional, it follows that the
temperature distribution inside the hexagonal cross-section must satisfy the two-
dimensional Laplace equation �T = 0.

Our approach will be to consider two related but far simpler problems than the
problem in the hexagonal cross-section. One will be for the Laplace equation for
a temperature T̃(r, θ) inside the inscribed circle, and the other for a temperature
T̄(r, θ) inside the circumscribed circle, when both problems satisfy the same tem-
perature distribution at an angle θ on the perimeter of their respective circles as the
temperature on the plane face at the same angle. We start by considering the prob-
lem in cylindrical polar coordinates �T̃(r, θ) = 0 in the disc of radius a

√
3/2 shown

in Fig. 14.23b that is required to satisfy the temperature T̃(a
√

3/2, θ) = f (θ) on
the perimeter of the circle. Then, as the temperatures on the hexagonal faces have
been transferred inward to corresponding points on the inscribed circle, it follows
directly from the maximum/minimum principle that inside and on the inscribed
circle we must have T(r, θ) ≤ T̃(r, θ). Thus, T̃(r, θ) provides an upper bound for
the temperature in any cross-section of the hexagonal rod at points that lie inside
the circle of radius a

√
3/2.

Next, we consider the corresponding problem shown in Fig. 14.23c, where
this time the solution T̄(a, θ) of the Laplace equation inside the circumscribed
circle is required to satisfy the temperature T̄(a, θ) = f (θ) on the perimeter of
the circle. Here the temperatures on the hexagonal faces have been transferred
outward to corresponding points on the circumscribed circle, so this time by the
maximum/minimum principle it follows that T̄(r, θ) ≤ T(r, θ). Thus, T̄(r, θ) pro-
vides a lower bound for the temperature T̄(r, θ) at all points inside the hexagonal
cross-section.

Consequently, we have established the following results:

(i) T̄(r, θ) ≤ T(r, θ) at all points inside the hexagonal cross-section
(ii) T(r, θ) ≤ T̃(r, θ) at all points inside the hexagonal cross-section that belong

to the inscribed circle

To make further progress we appeal to the Poisson integral formula for a circle
that forms the result of Exercise 3 in Exercise Section 14.4. This asserts that if u(r, θ)
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is harmonic in a circle of radius R centered on the origin, and on the perimeter of
the circle u(R, θ) = f (θ), then

u(r, θ) = 1
2π

∫ 2π

0

(R2 − r2) f (ψ)
R2 − 2rRcos(θ − ψ) + r2

dψ.

The bound T̃(r, θ) follows directly from this result by setting R = a
√

3/2 and
u(r, θ) = T̃(r, θ), while the bound for T̄(r, θ) follows by setting R = a and u(r, θ) =
T̄(r, θ). Clearly, this approach works for any cross-section shape, though the bounds
will be sharper when the radii of the inscribed and circumscribed circles are close
together.

The performance of an engineering system often depends on the location of
the zeros of a function that may not necessarily be a polynomial. To obtain a system
with satisfactory properties, the zeros are often required to lie in a particular part of
the z-plane. This occurs, for example, when working with control systems governed
by a system of differential equations, because the system will only be stable if the
zeros of a characteristic equation all lie to the left of the imaginary axis, and so have
negative real parts. However, to avoid an undesirably slow decay of any disturbances
to such a system, it is usually also necessary to require that each zero have a real
part that is less than some prescribed negative number, so in such cases all zeros
must lie to the left of a line z = −c with c > 0. Consequently, when such a system
has parameters that can be adjusted to optimize performance, unless the zeros can
be found explicitly, it is necessary to devise a practical test that determines how
many zeros lie inside a given region contained within a closed curve �.

A powerful test of this type can be derived from the following result we will call
the restricted argument principle, as it is a special case of what in complex analysis
is known as the argument principle. Although this more general theorem is not
difficult to establish, its proof would be out of place here and will be omitted, as it
can be found in any of the references quoted at the end of this chapter.

THEOREM 14.19 The restricted argument principle Let f (z) be analytic and have a finite number
of zeros and no poles in a bounded simply connected domain D with boundary �.

Then, provided f (z) �= 0 on �,

1
2π

�� arg f (z) = N,

where �� arg f (z) denotes the change in the argument of f (z) when the contour �

is traversed once in the positive (counterclockwise) sense, and N is the number of
zeros in D with their multiplicity counted.

The geometrical implication of this theorem is as follows. Let �′ be the image
of � under the mapping w = f (z). Then, when a point z makes one traverse of
the contour � in the z-plane, the number of times its image �′ encircles the origin
in the w-plane is equal to the number of zeros of f (z) inside �. To apply this
geometrical interpretation of the theorem, the contour � in the z-plane must first
be parametrized, after which this parametrization must be used in w = f (z) to
construct the image �′ in the w-plane. The number of times �′ encircles the origin
w = 0 can then be counted to determine the number of zeros of f (z) inside �.
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A result that can be derived from the restricted argument principle, which
although weaker is both useful and simple to use, is Rouché’s theorem.

THEOREM 14.20 Rouché’s theorem Let D be a simply connected domain bounded by a contour �

in which the functions f (z) and g(z) are analytic and such that | f (z)| > |g(z)| for
all z on �. Then f (z) and f (z) + g(z) each have the same number of zeros in D.

In effect, the conditions of Rouché’s theorem are such that it enables the num-
ber of zeros of a simple function f (z) inside � to be equated to the number of zeros
possessed by the more complicated function f (z) + g(z) that also lie inside �.

EXAMPLE 14.19 Use Rouché’s theorem to find the number of zeros of the polynomial P(z) = z4 −
8z + 10 that lie (a) in |z| ≤ 1 and (b) in |z| ≤ 3. (c) Confirm results (a) and (b) by
using the graphical implication of the restricted argument principle.

Solution

(a) Make the identifications f (z) = 10 and g(z) = z4 − 8z. On |z| = 1 we have
| f (z)| = 10 and |g(z)| = |z4 − 8z| ≤ |z| + 8|z| = 9, so | f (z)| > |g(z)| on |z| = 1.

Then by Rouché’s theorem, as f (z) has no zeros inside |z| = 1, it follows that
f (z) + g(z) = P(z) has no zeros inside |z| ≤ 1.

(b) Make the identification f (z) = z4 and g(z) = −8z + 10. On |z| = 3, | f (z)| =
81 and |g(z)| = |−8z + 10| ≤ 8|z| + 10 = 34, so | f (z)| > |g(z)| on |z| = 3. Then by
Rouché’s theorem, as f (z) has four zeros inside |z| = 3 when their multiplicity is
counted, it follows that f (z) + g(z) = P(z) also has four zeros inside |z| ≤ 3.

(c) Parametrize the circle |z| = 1 by setting x = cos t, y = sin t with 0 ≤ t ≤ 2π so
the unit circle is traversed once. Then setting z = cos t + i sin t in w = u + iv = P(z)
and separating out the real and imaginary parts gives

u = cos4 t − 6 cos2 t sin2 t + sin4 t − 8 cos t + 10

v = 4 cos3 t sin t − 4 cos t sin3 t − 8 sin t.

The image �′ of � under the mapping w = f (z) is obtained by plotting this para-
metric representation of �′ with 0 ≤ t ≤ 2π. This plot is shown in Fig. 14.24a, from
which it can be seen that the image �′ does not encircle the origin in the w-plane,
so no zeros of P(z) lie in |z| = 1.

Repeating this argument, but this time parametrizing the circle |z| = 3 by setting
z = 3(cos t + i sin t), leads to the results

u = 81 cos4 t − 486 cos2 t sin2 t + 81 sin4 t − 24 cos t + 10

v = 324 cos3 t sin t − 324 cos t sin3 t − 24 sin t.

The plot of this image of �′ is shown in Fig. 14.24b, from which it can be seen that
�′ encircles the origin in the w-plane four times, so P(z) has four zeros inside the
circle |z| = 3.

Alternative accounts and extra information concerning the material in
Sections 14.1 to 14.4 can be found in any one of references [6.1] to [6.4] and [6.6]
to [6.9].
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FIGURE 14.24 (a) �′ does not encircle w = 0. (b) �′ encircles w = 0 four times.

Summary Some general properties of analytic functions were derived, one of which was the fun-
damental theorem of algebra that asserts every polynomial of degree n has precisely n
zeros, though these need not all be distinct. The maximum/minimum modulus theorem
for analytic functions was also proved, showing that the maximum and minimum values
of the modulus of a nonconstant analytic function defined in a domain D must occur on
the boundary of D. A corresponding theorem for harmonic functions was also proved.

EXERCISES 14.4

1.* Let Pn(z) = a0 + a1z + a2z2 + · · · + anzn be a complex
polynomial, and � be a positively oriented circle with
its center at the origin. Show that

1
2π i

n∑
k=0

∫
�

Pn(z)
zk+1

dz =
n∑

k=0

ak.

2.* Let f (z) be analytic inside and on the circle � defined
by |z| = R, and let z0 = reiθ , with 0 < r < R, be a point
inside the circle. Show that the point Z = zz̄/z̄0 lies out-
side the circle �, so that

1
2π i

∫
�

f (z)
z − Z

dz = 0.

By differencing this expression and the expression for
f (z0) determined by the Cauchy integral formula, show
that

f (reiθ ) = 1
2π i

∫
�

1
z

(zz̄ − z0z̄0)
(z − z0)(z̄ − z̄0)

f (z)dz.

3.* By setting z0 = reiθ and z = Reiψ in the result of
Exercise 2, show that

f (reiθ ) = 1
2π

∫ 2π

0

(R2 − r 2)
R2 − 2rRcos(ψ − θ) + r 2

f (Reiψ)dψ.

Write f (reiθ ) = u(r, θ) + iv(r, θ) in the preceding re-
sult and derive the Poisson integral formula for a
disc,

u(r, θ) = 1
2π

∫ 2π

0

(R2 − r 2)u(R, ψ)
R2 − 2rRcos(ψ − θ) + r 2

dψ.

This formula determines the value of the harmonic
function u = Re{ f (z)} at any point (r, θ) inside the
disc in terms of the prescribed values of u on the
boundary � of the disc. The specification of u on the
boundary of a domain in which u is harmonic consti-
tutes what is called a Dirichlet problem for Laplace’s
equation. This formula determines, for example, the
steady state electrostatic potential in a long cavity with
a circular cross-section of radius R, on the walls of
which the potential u(R, ψ) = f (R, ψ). As the steady
state two-dimensional temperature distribution in a
long metal rod of circular cross-section of radius R is
also a solution of Laplace’s equation, this same for-
mula determines the temperature distribution in the
rod when its surface is at a temperature u(R, ψ) =
f (R, ψ).
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4.* By setting u(R, ψ) = M in the Poisson integral formula
for a disc given in Exercise 3, and using the result∫ 2π

0

dt
1 + a cos t

= 2π√
1 − a2

for a2 < 1

that can be established by the method of Example 14.13,
show that when u(R, ψ) = M (constant) on the bound-
ary of the disc, it must follow that u(r, θ) ≡ M through-
out the disc.

5.* Let domain D be the interior of the positively oriented
contour � comprising the semicircle CR of radius R in
the upper half plane with its center at the origin, and
the segment of the real axis from −R to R. If z0 is an
interior point of D, explain why

f (z0) = 1
2π i

∫
�

f (z)
z − z0

dz and 0 = 1
2π i

∫
�

f (z)
z − z̄0

dz.

Set z0 = x0 + iy0 and difference these results to show
that

f (z0) = y0

π

∫ R

−R

f (x)
|x − z0|2 dx + y0

π

∫
CR

f (z)
(z− z0)(z− z̄0)

dz.

6.* Using the notation of Exercise 5, and writing z = z0 +
(z − z0) and z = z̄0 + (z − z̄0), show that

(R − |z0|)2 ≤ |z − z0| · |z − z̄0|.
Deduce from this that if | f (z)| ≤ K in the upper half
plane, then∣∣∣∣∣ y0

π

∫
CR

f (z)
(z − z0)(z − z̄0)

dz

∣∣∣∣∣ ≤ Ky0 R
(R − |z0|)2

.

By taking the limit of the result of Exercise 5 as R → ∞
and using the result from this exercise, deduce that

f (z0) = y0

π

∫ ∞

−∞

f (x)
(x − x0)2 + y2

0

dx.

Then, by setting f (z) = u(x, y) + iv(x, y) and equating
the real parts of the equation, show that

u(x0, y0) = y0

π

∫ ∞

−∞

u(x, 0)
(x − x0)2 + y2

0

dx, for y0 > 0.

This result is the Poisson integral formula for a half-
plane, and it determines the harmonic function u(x0, y0)
at points (x0, y0) in the upper half-plane in terms of a
prescribed function u(x, 0) on the real axis. The function
u(x, 0) is called a Dirichlet boundary condition for the
two-dimensional boundary value problem for Laplace’s
equation. This formula can be used to determine the

steady state temperature distribution u(x, y) in a ther-
mally conducting half-plane when the temperature on
the plane bounding surface is u(x, 0) = T(x), with T(x)
a given function. A similar interpretation applies when
the formula is used to determine the steady state elec-
trostatic potential u(x, y) in a half-space when the po-
tential on the plane bounding surface is u(x, 0) = T(x).

7. Let Pn(z) be the complex polynomial Pn(z) = a0 +
a1z + a2z2 + · · · + anzn with an �= 0, and n ≥ 1. Justify
the assertion in the proof of the fundamental theorem of
algebra that if Qn(z) = 1/Pn(z), then lim|z|→∞ |Qn(z)| =
lim|z|→∞ 1/|Pn(z)| = 0.

8. Given that z = 1 + 2i is a root of the polynomial z4 +
2z3 + 10z2 − 6z + 65 = 0 with real coefficients, use the
deflation method described in the proof of the funda-
mental theorem of algebra to find the remaining roots.

9. Verify the maximum/minimum principle for the func-
tion f (z) = ez in the domain −1 ≤ x ≤ 1, −2 ≤ y ≤ 2,
and place bounds on |ez| inside the given domain.

10. Verify the maximum/minimum principle for the func-
tion f (z) = cosh z in the domain −1 ≤ x ≤ 1, −1 ≤ y ≤
1, and place bounds on | cosh z| inside the given domain.

In Exercises 11 through 14 place bounds on the function
u(x, y) inside the given domain.

11. u(x, y) = x + 2x2 − 2y2 in the domain −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1.

12. u(x, y) = ex(y cos y + x sin y) in the domain 0 ≤ x ≤ 1,
−π/2 ≤ y ≤ π/2.

13. u(x, y) = ex(x cos y − y sin y) in the domain 0 ≤ x ≤ 1,
−π/2 ≤ y ≤ π/2.

14. u(x, y) = ex(cos2 y cosh x − sin2 y sinh x) in the domain
0 ≤ x ≤ 1, 0 ≤ y ≤ π/2.

15. Show by Rouché’s theorem that P(z) = z4 − 5z + 1 has
one zero in the disc |z| ≤ 1 and three zeros in the annu-
lus 1 ≤ |z| ≤ 2.

16. Use Rouché’s theorem to find the number of zeros
of P(z) = 2z3 − 4z + 1 contained in (a) |z| ≤ 1

4 ,

(b) |z| ≤ 1, and (c) |z| ≤ 3.

17. Use the geometrical interpretation of the restricted ar-
gument principle to show that f (z) = z − 2i + exp(−z)
has no zeros in |z − i | ≤ 1, one zero in |z − i | ≤ 2, and
two zeros in |z − i | ≤ 3.

18. Given that f (z) = zexp(z) − 2z5 + iz + 3i, use the geo-
metrical interpretation of the restricted argument prin-
ciple to determine the number of zeros of f (z) in
(a) |z| ≤ 1

4 , (b) |z| ≤ 1
2 , (c) |z| ≤ 1, and (d) |z| = 3

2 .
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CHAPTER 14

TECHNOLOGY PROJECTS

The integral of a complex function f (z) along a path �AB from point A to point B , on which f
has no singularities, is simply a line integral of f (z) along � from A to B with respect to arc length.
The complex integral can be evaluated numerically as follows. First, a general point z on the arc
�AB with its initial point A at z � z0 and its final point B at z � z1 is expressed parametrically as
z (t) � x(t) � i y(t) for the parameter t in the interval t0 ≤ ≤t t1, with z0 � z (t0) and z1 � z(t1).
Then, on �, dz � (dx/dt + i dy/dt)dt, so the required integral along �AB is given by∫

�AB

f (z)dz �

∫ t1

t0
f (z (t))(dx/dt � i dy/dt)dt.

If the path � is continuous, but defined in a piecewise manner along successive segments, each seg-
ment must be parametrized separately. The integral along � then follows by adding the integrals along
each of the segments. A contour integral around a simple closed curve is obtained by parametrizing
the curve (in segments if necessary) and integrating once around the curve in the counterclockwise
direction. If f is not analytic, the integral of f from A to B will, in general, depend on the choice of
path from A to B .

Project 1

The Numerical Evaluation of Integrals
along Arcs

This project uses computer algebra to calculate the integrals
of complex functions f along different arcs � from A to B to
verify, in particular cases, that when f is analytic the result
is independent of the path, though when f is not analytic
the integral depends on the choice of path.

1. Let A be the point z = 1 − 2i and B the point
z = 1 + 2i . Parametrize the semicircular path �1

from A to B that lies to the right of the line AB
and has A and B as points on opposite ends of
a diameter, and find dz on �1. Parametrize the
piecewise continuous straight line path �2 join-
ing A to C and C to B, where C is the point
z = 2 − 2i , and find dz on the straight line seg-
ments AC and CB.

2. Given that f1(z) = zsinh(2z), use computer al-
gebra to show that f1(z) satisfies the Cauchy--
Riemann equations for all z, and so is an entire
function.

3. Evaluate
∫
�1

f1(z)dz and
∫
�2

f1(z)dz and hence
show, as would be expected because f is an en-
tire function, that the integrals are equal.

4. Given that f2(z) = zz- sin z, show by using com-
puter algebra that f2 is not analytic. By
finding

∫
�1

f2(z)dz and
∫
�2

f2(z)dz, show that∫
�1

f2(z)dz �= ∫
�2

f2(z)dz.

Project 2

Integrating around a Circular Arc Centered
on a Simple Pole

This project uses computer algebra to examine the effect
of integrating around a circular arc of arbitrarily small
radius when its center is located at a simple pole of a
complex function f (z). This process is examined analyti-
cally in Chapter 15, where it is used in the determination
of definite integrals of real functions f (x) over the semi-
infinite interval 0 ≤ f < ∞ and the infinite interval −∞ <
x < ∞.

1. Let �α be a circular arc of radius r with its cen-
ter at the point z = 1 that subtends an angle α

at z = 1. Denote by θ the angle from z = 1 to
a point on the arc, with θ measured counter-
clockwise from the positive real axis such that
0 ≤ θ ≤ α. Parametrize the arc �α , and find dz
on this arc.
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2. Given that f (z) � cos z/(z � 1), use computer
algebra to display the integral∫

�α

f (z)dz

in terms of r and the parametrization of the arc
�α .

3. Given that α � π/3, compute the integral for
r � 0.01, 0.001, and 0.0001, and hence estimate
its limiting value as r 0.

4. Repeat Step 3, using α � 2π/3.
5. Repeat Step 3, using α � π .
6. Repeat Step 3, using α � 5π/3.
7. Compare the results of Steps 3 through 6 with

the theoretical result
∫
�2π

f (z)dz � 2π i cos(1),
and deduce the relationship between

∫
�α

f (z)dz
and

∫
�2π

f (z)dz as a function of α.

Project 3

Complex Integrals around Deformed
Contours

Let a function f be analytic in a region D except at a fi-
nite number of points where it has simple poles, and let �1
and �2 be any two contours in D both of which contain the
same poles. Then contour �2 can be considered to be a de-
formation of contour �1. The purpose of the project is to
use computer algebra to verify, in particular cases, that the
integral around each of these contours is the same.

1. Let contour �1 be the circle z � 1 � 4 and con-
tour �2 be the circle z � 2 � i � 3. Parametrize
the contours, and in each case find dz on the
contour.

2. Given that f (z) � (3z � 2)/(z2 � 5z � 6), verify
that the poles of f (z) lie inside both �1 and �2.
Use the results of 1 with computer algebra to
find

∫
�1

f (z)dz and
∫
�2

f (z)dz, and hence show
that they are equal.

3. Use analysis to find
∫
�1

f (z)dz, and so confirm
the results obtained in 2.

4. Parametrize the contour �3 given by z � i �
5, and by using computer algebra to integrate
around it in the clockwise sense, show that∫

�1

f (z)dz � �

∫
�3

f (z)dz.

Project 4

The Cauchy Integral Formula for Derivatives

The purpose of this project is to use computer algebra
to verify the Cauchy integral formula for derivatives.

1. Parametrize the contour � formed by the circle
z � 2 and find dz on �.

2. Given that f (z) z2 3z 7, use computer
algebra with the Cauchy integral formula to find
f (1).

3. Given that f (z) � ez(z3 � 2z �

� � �

1), use com-
puter algebra with the Cauchy integral formula
for derivatives to find f (2)(1), and check the
result by differentiation.

Projects 5--7

The Number of Zeros of a Polynomial in
Each Quadrant of the z-Plane

Let a polynomial P(z) be nonvanishing on a simple closed
contour �, and let the total number of zeros of P(z) inside
� be N when multiplicity is counted, so that if a zero z � a
is repeated m times it has multiplicity m. Then

1
2π i

∫
�

P (z)
P(z)

dz � N.

The proof is simple, because if P(z) has a zero of multiplic-
ity m at z � a inside �, it follows that P(z) can be written
P(z) � (z � a)mh(z), where h(a) 0. Thus,

P (z)
P(z)

�

�

�

m
(z � a)

�
h (z)
h(z)

,

and as P(z) 0 on � the expression on the right remains
finite on �, so integrating around � gives∫

�

P (z)
P(z)

dz � 2π im.

The result now follows by applying the preceding argument
to each zero inside � and summing the multiplicities of the
zeros to obtain N.

The purpose of Projects 5 through 7 is to use the fore-
going result to find the number of zeros of the given polyno-
mial that lies in each quadrant. To accomplish this, suitable
finite size contours should be chosen and, where appropri-
ate, use should be made of the properties of the zeros of
polynomials contained in Theorem 1.2.
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Project 5

P(z) � z5 � 3z � 18.

Project 6

P(z) � z4 � 2z �

� � �

6.

Project 7

P(z) z5 4iz 3i .

Project 8

Identifying Regions Where a Polynomial Has
No Zeros

The location of the zeros of polynomials is important in
many problems: for example, in linear differential equa-
tions, where the solution will only be stable if no zeros lie to
the right of the imaginary axis. The purpose of this project
is to apply a theorem (see reference [6.2], Theorem 6.4b)
that identifies a disc about a point z0, which is not a zero
of a given polynomial, inside and on which the polynomial
has no zeros. This means that the reciprocal of the poly-
nomial is an analytic function inside and on the boundary
of the disc. The result is then to be verified numerically by

integrating the reciprocal of the polynomial around the
boundary of the disc and appealing to the Cauchy±Goursat
theorem that asserts the result must be zero.

Let the polynomial

P(z) � zn � an�1zn�1 � · · · � a1z � a0

have real or complex coefficients, and let z0 be any
complex number that is not a zero of P(z). Define the
numbers b0, b1, . . . , bn by

bm �
1

m!
P(m)(z0), b0 � �P(z0) 0,

where P(m)(z) � dmP(z)/dzm and P(0)(z0) � P(z0).
Then if

ρ(z0) �
1
2

min
1≤m≤n

b0

bm

1/m

,

the polynomial P(z) has no zeros inside or on the disc
z � z0 ≤ ρ(z0).

Given P(z) � z4 � (1 � i)z3 � 2iz2 � z � 2, using
a suitable value of z0 apply the theorem to find a
disc with boundary � inside and on which P(z) has
no zeros. Confirm this by using computer algebra to
show numerically that, as expected from the Cauchy--
Goursat theorem,

∫
�

(1/P(z))dz � 0.
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15C H A P T E R

Laurent Series, Residues,
and Contour Integration

The analytical evaluation of a general contour integral with integrand f (z) depends for
its success on what are called the residues at the poles of f (z). The residue of a function

f (z) at a pole is defined in terms of a special series expansion of f (z) about the pole called a
Laurent series. The Laurent series represents an extension of the conventional Taylor series
that is no longer applicable when an expansion of f (z) is required about a singular point.
Various ways of obtaining Laurent series are described, and it is shown how a contour
integral is related to the residues of the integrand f (z) that lie either inside or on the
contour of integration. Different types of contour integral are evaluated and integration
around a branch point of f (z) is considered.

15.1 Complex Power Series and Taylor Series

Before introducing complex power series and discussing their convergence, it is
necessary to recall the definition of a sequence. A sequence of real or complex

numbers, or of functions, is a set of such objects arranged in a specific order, so that
changing the order changes the sequence. It is conventional to enclose the terms of
a sequence in brackets by writing {. . .}. Typical examples of sequences are{

1,
1
2!

,
1
3!

,
1
4!

,
1
5!

,
1
6!

}
, a finite sequence of real numbers{

1
(1 + i)

,
1

(1 + i)2
,

1
(1 + i)3

, . . . ,
1

(1 + i)n
, . . .

}
, an infinite sequence of complex

numbers{
z, −z3

3!
,

z5

5!
, −z7

7!
,

z9

9!
, . . . , (−1)n+1 z2n−1

(2n − 1)!
, . . .

}
, an infinite sequence of

powers of z.

When working with sequences the expressions finite and infinite are used to
describe to the number of terms in a sequence, and not the magnitude of any of its
terms. In what follows our main concern will be with infinite sequences.

791



792 Chapter 15 Laurent Series, Residues, and Contour Integration

As the terms of a sequence occur in a specific order, they can be numbered
sequentially like u1, u2, u3, . . . , with the suffix indicating the position of a term in
the sequence. Because of this a sequence can be considered to be a function f
that assigns to each positive integer n the term un = f (n), where un is called the
general term of the sequence. A convenient abbreviated notation for a sequence
{u1, u2, u3, . . .} is {un}∞n=1 or, equivalently, { f (n)}∞n=1. In an infinite sequence the
behavior of the general term un as n → ∞ is its most important property, so when
numbering the terms it is usually immaterial whether the suffix of the first term is
0 or 1, so the notation for an infinite sequence is often simplified to {un}.

To illustrate how the general term of a sequence can be defined in terms of a
function with a positive integer argument, we consider the function

f (z) = 1
3z

sin
{

(2z − 1)
π

2

}
.

Setting z = n and un = f (n), with n = 1, 2, . . . , we obtain

un = (−1)n−1 1
3n

,

so the infinite sequence with un as its general term becomes

{un}∞n=1 =
{

1
3
, − 1

32
,

1
33

, . . .

}
or, more simply,

{
(−1)n−1 1

3n

}
.

To understand the connection between infinite sequences and infinite series, letsequences, series,
and nth partial sum sn = u1 + u2 + · · · + un be the sum of the first n terms of the infinite series

∑∞
n=1 un =

u1 + u2 + u3 + · · ·. Then the sum of the series will be determined by the behavior
of sn as n → ∞. The sum sn is called the nth partial sum of the series, and when the
terms of the series involve powers of the complex number z the nth partial sum will
become a function of z, written sn(z). For any fixed z and n the function sn(z) will
have a finite value. An infinite series S(z) with the nth partial sum sn(z) will be said
to converge to the value L when z = z0 if, as n → ∞, limn→∞ sn(z) = L. If for some
z0 this limit is not defined, or if it is infinite, the series will be said to be divergent,
or to diverge when z = z0. Determining the convergence of an infinite power series
involves finding the region in the z-plane where limn→∞ sn(z) is finite.

The tests for convergence that will be introduced later are applicable to the
most commonly occurring types of series involving powers of z, and although they
determine the region in the z-plane where the series converges, they do not deter-
mine the sum of the series.

A complex sequence {un} is said to be bounded if some positive constant M
exists such that |un| < M for all positive integers n, and if this condition is not
satisfied the sequence is said to be unbounded.

These ideas can be illustrated by considering the complex sequence { 1
6 +

(−1)n( n
n2+1 )i} that is seen to be bounded by 1 (not the sharpest bound), because the

modulus of every term is less than 1. A simple example of an unbounded complex
sequence is {nin}.

A point α is called a cluster point, or a point of accumulation, of a sequence {un}convergence,
divergence, cluster
points, and
neighborhoods

if every circle with its center at α, from which the point α itself has been deleted,
contains infinitely many points of the sequence. The interior of a circle with its
center at α is called a neighborhood of α, and a circle from which the single point α

at its center has been removed is called a deleted neighborhood of α. A sequence
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{un} may have one or more cluster points, or possibly none, but when a cluster point
α exists it is not necessarily a member of the sequence.

It is not difficult to see that the sequence { 1
6 + (−1)n( n

n2+1 )i} only has a single
cluster point at 1

6 , and that in this case no member of the sequence is equal to 1
6 .

This means that however small a circle is drawn around the point 1
6 , infinitely many

terms of the sequence will lie inside it and only a finite number will lie outside it,
and no member of the sequence will lie at the center of the circle. Consequently,
all but a finite number of terms of the sequence will be contained in any deleted
neighborhood of the point 1

6 .
The most important type of sequence {un} is one with only a single cluster point

L, called the limit of the sequence and written

lim
n→∞ zn = L.

A sequence with this property is said to converge to the limit L, and a sequence
that does not converge is said to be divergent.

An example of a convergent infinite sequence is { 1
6 + (−1)n( n

n2+1 )i}, because
this has a single cluster point at 1

6 , and so

lim
n→∞

{
1
6

+ (−1)n
(

n
n2 + 1

)
i
}

= 1
6
.

When expressed in words, the definition of the limit of a sequence says that alimits and
convergence of
complex series

sequence {un} will have a limit L if, and only if, however small we take the radius of a
circle with its center at L, there are infinitely many terms of the sequence inside the
circle and only finitely many outside it. The limit L of a convergent sequence {un}
is illustrated in Fig. 15.1 where the deleted neighborhood of L is indicated by the
interior of the circle centered on L with an arbitrarily small radius ε. Finitely many
points of {un} lie outside this circle and infinitely many lie inside it, and although
in the limit as n → ∞, un → L, it is not necessary that L be a member of the
sequence.

A more precise definition of the limit of a convergent complex sequence can
be formulated as follows.

Real axis

Imaginary axis

z-plane

0

ε

L
zn

FIGURE 15.1 A convergent complex sequence
{zn} with limit L.
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A Convergent Sequence
A complex sequence {zn} will be said to converge to the limit Lif for every arbitrarily
small number ε > 0 a positive integer N can be found such that

|zn − L| < ε for all n > N.

As this definition of the limit of a convergent sequence applies to real and
complex sequences, when L = L1 + i L2 is complex the definition implies that if
zn = un + ivn, then

lim
n→∞ zn = lim

n→∞(un + ivn) = lim
n→∞ un + i lim

n→∞ vn = L1 + i L2,

and so

lim
n→∞ un = L1 and lim

n→∞ vn = L2.

A formal proof of this result involves using the more precise definition of the
limit of a convergent sequence given earlier, but as the proof is straightforward the
details are left as an exercise.

EXAMPLE 15.1 Find any cluster points that belong to the following sequences and, where appro-
priate, find the limit of the sequence.

(a)
{

1 + (−1)n + 1
n!

}
, (b) {n}, (c)

{(
2n + 1

n

)
+ i

(
3n2 − 1

n2

)}
.

Solution

(a) As n increases, the first two terms combine to give either 0 or 2, according as
n is odd or even, and the third term tends to zero as n → ∞. Thus, as n increases,
so terms of the sequence cluster ever closer around the numbers 0 and 2, showing
that this sequence has two cluster points. Any small circle drawn around one of
the cluster points that excludes the other will contain infinitely many points of the
sequence, though infinitely many will remain outside it. This sequence is bounded
but has no limit because it has more than one cluster point, and so it is divergent.

(b) It is clear by inspection that this sequence is unbounded and has no cluster
points, so it is divergent.

(c) Setting

zn =
(

2n + 1
n

)
+ i

(
3n2 − 1

n2

)
,

we see that

lim
n→∞

(
2n + 1

n

)
= 2 and lim

n→∞

(
3n2 − 1

n2

)
= 3,

so this sequence is bounded and only has the single cluster point 2 + 3i . Thus, the
sequence converges to the limit 2 + 3i . This limit is not a member of the sequence,
because for no finite n is it true that zn = 2 + 3i .

The foregoing definition of convergence makes use of the limit of the sequence,
but this is not always easy to find, so it is desirable to have a test for convergence that
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does not involve the limit itself. This is made possible by introducing the concept of a
Cauchy sequence. A sequence {zn} is called a Cauchy sequence if for any arbitrarily
small number ε > 0 it is always possible to find an integer N, usually depending on
ε, such that |zm − zn| < ε for all m > n > N.

In effect, a Cauchy sequence is one with the property that, however small the
number ε is chosen, it is always possible to find a large positive integer N such that
the modulus of the difference between any two terms of the sequence with index
greater than N will always be less than ε.

Although we omit the proof, it can be shown that a Cauchy sequence {zn} must
converge to a limit. This result forms our next theorem.

THEOREM 15.1 Cauchy convergence principle for sequences A sequence {zn} converges if, and
only if, for any arbitrary small number ε > 0 it is possible to find an integer N
depending on ε such that |zm − zn| < ε for all m > n > N.

EXAMPLE 15.2 Use Theorem 15.1 to prove the convergence of the sequence {(cos nπ)/n}.

Solution Setting zn = (cos nπ)/n we have

|zm − zn| =
∣∣∣cos mπ

m
− cos nπ

n

∣∣∣ ≤ n|cos mπ | + m|cos nπ |
mn

= m + n
mn

.

Now, if m > n > N, then

m + n
mn

<
2m
mn

= 2
n

<
2
N

,

so

|zm − zn| <
2
N

.

Consequently, for any arbitrary ε > 0, provided N is chosen such that 2/N < ε, the
conditions of Theorem 15.1 are satisfied and the sequence converges. In this case
the convergence of the sequence to the limit 0 is obvious, because cos nπ = (−1)n,
so the general term of the sequence is simply (−1)n/n.

It has already been shown that the sum of an infinite series can be regarded as
the limit of the operation of sequentially adding the terms of an infinite sequence.
Consequently, if the sequence of partial sums has a limit L, this must be the limit
of the infinite series formed in this manner. If the infinite series involves powers of
z, and so is a power series, its convergence or divergence will depend on z. For a
power series to be useful it will be necessary to determine the region in the z-plane
where it converges.

The proofs of the following results for complex series closely parallel the cor-
responding results for real series, so the results will merely be stated.

THEOREM 15.2 Limit of complex series Let zn = un + ivn, and denote the nth partial sum of the
series

∑∞
n=1 zn by

sn =
n∑

m=1

um + i
n∑

m=1

vm.
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Then a necessary and sufficient condition for the series to converge is that the
sequences {∑n

m=1 um} and {∑n
m=1 vm} converge as n → ∞. When this is true,

if limn→∞
∑n

m=1 um = L1 and limn→∞
∑n

m=1 vm = L2, then limn→∞ sn = L1 + i L2.

THEOREM 15.3 A necessary condition satisfied by convergent series If the series
∑∞

n=1 zn con-
verges, then limn→∞ zn = 0.

The main use of this theorem is to establish the divergence of a series, because
if limn→∞ zn �= 0 the series cannot converge. The theorem provides no information
about convergence, because the condition limn→∞ zn = 0 is not sufficient to ensure
the convergence of a series. This is easily seen by considering the harmonic se-
ries

∑∞
n=1

1
n , because setting zn = 1

n we see that limn→∞ zn = limn→∞ 1
n = 0, but the

series is known to diverge.

EXAMPLE 15.3 Show the series
∑∞

n=1
(n2−2ni)

3n+4 is divergent.

Solution The general term is zn = n2−2ni
3n+4 . However, limn→∞ zn = n

3 − 2i
3 �= 0, so it

follows from Theorem 15.3 that the series is divergent.

Convergence Tests for Complex Series
The relationship that exists between sequences and series allows the Cauchy con-
vergence principle for sequences to be reinterpreted for series in the following
form.

THEOREM 15.4 Cauchy convergence principle for series The infinite series
∑∞

n=1 zn is convergent
if, and only if, for every arbitrarily small number ε > 0 a positive integer N can be
found depending on ε such that

|zn+1 + zn+2 + · · · + zn+r | < ε for every n > N and r = 1, 2, . . . .

Expressed in words, this theorem says that if an infinite series is convergent,
then, however small ε, it is always possible to find a positive integer N such that
the modulus of the sum of any number of consecutive terms starting with index
greater than N will be less than ε. If the series is written z1 + z2 + · · · + zn + Rn,
where Rn = zn+1 + zn+2 + zn+3 + · · · = ∑∞

m=n+1 zm is called the remainder after n
terms, the theorem asserts that |RN| < ε. In practical terms this means that if the
infinite series is approximated by the sum of the first N terms, the error involved
cannot exceed ε.

A series
∑∞

n=1 zn with the property that the sum of the moduli of zn is also
convergent is said to be absolutely convergent. Thus, the series

∑∞
n=1 zn is absolutely

convergent if the series

∞∑
n=1

|zn| = |z1| + |z2| + · · ·

is convergent.
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If, however, the series
∑∞

n=1 zn is convergent but the series
∑∞

n=1 |zn| = |z1| +
|z2| + · · · is divergent, the series

∑∞
n=1 zn is said to be conditionally convergent.

Absolute and conditional convergence are most easily illustrated by considering
the real series 1 − 1

2 + 1
3 − 1

4 + · · · + (−1)n+1 1
n + · · ·. It is known from elementary

calculus that the sum of this series is ln 2, and so it is convergent. However, the
sum of the absolute values is the harmonic series 1 + 1

2 + 1
3 + 1

4 + · · · + 1
n + · · ·,

which is known to be divergent, so the series 1 − 1
2 + 1

3 − 1
4 + · · · + (−1)n+1 1

n + · · ·
is conditionally convergent.

One direct consequence of Theorem 15.4 is that absolute convergence implies
convergence. Another consequence of the theorem is the following result, which
we state in the form of a theorem.

THEOREM 15.5 Comparison test for convergence Let a series
∑∞

n=1 zn = z1 + z2 + · · · be given,
and let the series

∑∞
n=1 bn with nonnegative terms bn be convergent and such that

a simple comparison
test for convergence |zn| ≤ bn for n = 1, 2, . . . . Then the series

∑∞
n=1 zn is absolutely convergent.

Proof As the series
∑∞

n=1 bn is convergent by hypothesis, for any ε > 0 there exists
an integer N such that bn+1 + bn+2 + · · · + bn+r < ε for all n > N and r = 1, 2, . . . .

As |zn| < bn for every n, it follows that

|zn+1| + |zn+2| + · · · + |zn+r | ≤ bn+1 + bn+2 + · · · + bn+r < ε,

so by Theorem 15.4 the series
∑∞

n=1 |zn| = |z1| + |z2| + · · · converges, showing the
series

∑∞
n=1 zn to be absolutely convergent.

Several tests for convergence use, for purposes of comparison, the infinite
geometric series

∞∑
n=0

rn = 1 + r + r2 + · · · ,

which an elementary argument shows converges to the sum 1/(1 − r) if |r | < 1, and
diverges if |r | ≥ 1.

Because the convergence of an infinite geometric series depends on the magni-
tude of |r |, convergence tests based on a comparison with the geometric series lead
to tests for absolute convergence. When these tests are applied to real series with
positive terms they become tests for convergence. The most important and useful
of these tests are the ratio and nth root tests.

THEOREM 15.6 The ratio test Let a series
∑∞

n=1 zn = z1 + z2 + · · ·, in which no term is zero, be

the ratio test
for convergence

such that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = L.

Then the absolute convergence or divergence of the series is determined by the
following conditions:

(i) If L < 1, the series converges absolutely
(ii) If L > 1, the series diverges

(iii) If L = 1, the test fails and no conclusion can be drawn about the convergence
of the series.
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Proof Suppose that |zn+1/zn| ≤ α < 1 for n greater than some positive integer N.
Then |zn+1| ≤ |zn| and we have

|zN+2| ≤ α|zN+1|, |zN+3| ≤ α|zN+2| ≤ α2|zN+1|, . . . ,
leading to the general result |zN+r | ≤ αr−1|zN+1|.

If RN is the remainder of the series after N terms, this last result allows its
modulus to be estimated by

|RN| ≤ |zN+1| + |zN+2| + |zn+3| + · · · ≤ |zN+1|(1 + α + α2 + α3 + · · ·).

The bracketed geometric series converges when α < 1, so as |RN| is bounded the
series

∑∞
n=1 zn is absolutely convergent. Conversely, the bracketed geometric series

is divergent if |α| > 1, showing that then the series
∑∞

n=1 zn must be divergent. If
α = 1 the test fails in the sense that it provides no information about the convergence
of the series. The statement of the theorem follows directly from these conclusions.

It is important to recognize that the real constant α in the ratio test must be
strictly less than 1. This is essential in order to exclude series such as the harmonic
series that, although divergent, have a limiting ratio |zn+1/zn| that approaches arbi-
trarily close to 1 as n → ∞.

EXAMPLE 15.4 Apply the ratio test to the series

(a)
∞∑

n=1

(−1)n+1 n!
nn

, (b)
∞∑

n=1

in

(3n + 2)2
, and (c)

∞∑
n=1

(−1)n+1 2n+1

n + 2
.

Solution

(a) Setting zn = (−1)n+1n!/nn we find that∣∣∣∣zn+1

zn

∣∣∣∣ = (n + 1)!nn

(n + 1)nn!
=
(

1 + 1
n

)−n

,

but from from Table 15.1 it is seen that limn→∞(1 + 1
n )−n = 1/e, so

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = 1
e

< 1.

Thus, as L = 1/e < 1, it follows from the ratio test that the series is absolutely
convergent.

(b) Setting zn = in/(3n + 2)2 we find that∣∣∣∣zn+1

zn

∣∣∣∣ =
(

3n + 2
3n + 5

)2

,

so

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = lim
n→∞

(
3n + 2
3n + 5

)2

= 1.

In this case the limit L = 1, so the ratio test fails. In fact, the series is absolutely
convergent, as may be seen by comparison with the convergent series

∑∞
n=1 1/n2

given in Table 15.1.



Section 15.1 Complex Power Series and Taylor Series 799

TABLE 15.1 Some Useful Comparison Series and Limits

1.
∞∑

n=0

1
n!

= 1 + 1
1!

+ 1
2!

+ 1
3!

· · · + 1
n!

+ · · · = e (convergent)

2.
∞∑

n=0

(−1)n 1
n!

= 1 − 1
1!

+ 1
2!

− 1
3!

+ · · · + (−1)n 1
n!

+ · · · = 1/e (absolutely convergent)

3.
∞∑

n=1

(−1)n+1 1
n

= 1 − 1
2

+ 1
3

− · · · + (−1)n+1 1
n

+ · · · = ln 2 (conditionally convergent)

4.
∞∑

n=1

1
n

= 1 + 1
2

+ 1
3

+ · · · + 1
n

+ · · · (divergent; this is the harmonic series)

5.
∞∑

n=0

αn = 1 + α + α2 + α3 + · · · + αn + · · · = 1
1 − α

(convergent for |α| < 1 and divergent for
|α| ≥ 1; this is the geometric series)

6.
∞∑

n=1

1
n2 = 1 + 1

22 + 1
32 + · · · + 1

n2 + · · · = π2

6
(convergent)

7.
∞∑

n=1

(−1)n+1 1
n2 = 1 − 1

22 + 1
32 − · · · + (−1)n+1 1

n2 + · · · = π2

12
(absolutely convergent)

8.
∞∑

n=1

1
nα

= 1 + 1
2α

+ 1
3α

+ · · · + 1
nα

+ · · · (convergent if α > 1 and divergent if 0 < α ≤ 1;
this is the harmonic series of order α)

9. lim
n→∞

(
1 + α

n

)n = e α

10. lim
n→∞

n√n = 1

11. lim
n→∞

n!
nn = 0

12. lim
n→∞

nn

n!
= ∞

(c) Setting zn = (−1)n+1 2n+1

n+2 , we have∣∣∣∣zn+1

zn

∣∣∣∣ = 2
(

n + 2
n + 3

)
,

so

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = 2 lim
n→∞

(
n + 2
n + 3

)
= 2,

showing that L = 2, but as L > 1 the ratio test shows this series to be divergent.

The nth root test can be established in a manner similar to that of the ratio test,
so the details of its proof will be omitted.

THEOREM 15.7 The nth root test for convergence Let a series
∑∞

n=1 zn = z1 + z2 + · · ·, in which
no term is zero, be such that

the nth root test
for convergence

lim
n→∞

n
√

zn = L.
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Then the absolute convergence and divergence of the series is determined by the
following conditions:

(i) If L < 1, the series converges absolutely
(ii) If L > 1, the series diverges

(iii) If L = 1 the test fails, and no conclusion can be drawn about the convergence
of the series.

EXAMPLE 15.5 Find conditions on the real constant α in order that the series

∞∑
n=1

(
αn

αn + 1

)n2

in

is absolutely convergent.

Solution Setting zn = ( αn
αn+1 )n2

in we have

n

√√√√∣∣∣∣∣
(

αn
αn + 1

)n2

in

∣∣∣∣∣ =
∣∣∣∣ αn
αn + 1

∣∣∣∣n = 1
/(

1 +
(

1
α

)(
1
n

))n

,

and making use of a limit in Table 15.1 we see that

L = lim
n→∞

n
√

|zn| = 1/e1/α = e−1/α.

As L < 1 if α > 0 and L > 1 if α < 0, the nth root test shows that the series is
absolutely convergent if α > 0 and divergent if α < 0.

Complex Power Series and Circles
of Convergence
A series of the form

∞∑
n=0

an(z − z0)n = a0 + a1(z − z0) + a2(z − z0)2 + · · · + an(z − z0)n + · · · ,

(1)

in which the an, z, and z0 are complex, is called a complex series in powers ofcomplex power series
z − z0, or simply a complex power series, expanded about the point z0. In complex
power series the complex number z0 is often called the center of the series. The
convergence of such series depends on the coefficients of the series, that is, the
numbers an, on the complex variable z, and on the point z0 about which the series
is expanded. To determine the conditions to be imposed on an, z, and z0 in order
to ensure convergence, we apply either the ratio test or the nth root test to the nth
term an(z − z0)n of the complex power series in (1).

An application of the ratio test shows that the series will be convergent if

L = lim
n→∞

∣∣∣∣an+1(z − z0)n+1

an(z − z0)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |z − z0| < 1,
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and this is equivalent to the condition

|z − z0| < lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = R, (2)

where the number

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ (3)

is called the radius of convergence of the complex power series in (1). In terms of
R the condition for absolute convergence in (2) becomes

|z − z0| < R, (4)

showing that the series is absolutely convergent for all z inside a circle of radius R
with its center at the point z0.

A similar argument applied to the complex power series in (1), but this time
using the nth root test, gives

L = lim
n→∞

n

√
|an(z − z0)n| = lim

n→∞
n
√

|an||z − z0| < 1,

showing that the series will be absolutely convergent if

|z − z0| < R, where R = 1/ lim
n→∞

n
√

|an|. (5)

Summarizing these results, we see that the radius of convergence Rof the powerradius and circle
of convergence series in (1) and its associated circle of convergence, that is, the circle |z − z0| < R,

can be found either from

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ , with |z − z0| < R, (6)

or from

R = 1/ lim
n→∞

n
√

|an|, with |z − z0| < R. (7)

The choice of which one of these results to use in practice is determined by whichever
limit is the simpler to evaluate.

EXAMPLE 15.6 Find the radius and circle of convergence of the power series

(a)
∞∑

n=1

(z − i)n

n
and (b)

∞∑
n=1

n(5 + 2i)n

3n
(z − 1)n.

Solution

(a) In this case result (6) is simpler to use, so setting an = 1/n and z0 = i gives

R = lim
n→∞

∣∣∣∣n + 1
n

∣∣∣∣ = 1.
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1

FIGURE 15.2 Circles of convergence.

So the radius of convergence is R = 1 and the circle of convergence is |z − i | < 1.
This is illustrated in Fig. 15.2a.

(b) Here result (7) is simpler to use, so setting an = n(5+2i)n

3n and z0 = 1 gives

R = 1/ lim
n→∞

n

√∣∣∣∣n(5 + 2i)n

3n

∣∣∣∣ = 3
|5 + 2i | lim

n→∞(1/ n
√

n) = 3√
29

,

where when determining the limit use has been made of entry 10 in Table 15.1. This
series converges in a circle of radius R = 3/

√
29 with its center at the point z0 = 1,

as shown in Fig. 15.2b.

Power series define functions, so it is necessary to know if they possess the prop-
erty of continuity, and whether they can be added, multiplied, differentiated, and
integrated. Furthermore, as each partial sum sn(z) of a power series is a polynomial
in z, and so is an analytic function, it is necessary to know if the power series itself is
also an analytic function. The answer to each of these questions is in the affirmative,
and they form the substance of the next theorem.

THEOREM 15.8 Properties of power series Power series with finite circles of convergence possesses
the following properties:

important properties
of complex power
series

(i) A power series represents a continuous function at each point inside its circle
of convergence.

(ii) If two power series expanded about the same point have the same circle of
convergence D and the same sum at each point of D, then they are identical.
(iii) If two power series with sums f (z) and g(z) and circles of convergence D1

and D2 are added or subtracted term by term, the result is a power series that
converges to the sum f (z) ± g(z) with a circle of convergence that is at least equal
to the largest circle that can be drawn in the region common to D1 and D2.
(iv) If two power series with sums f (z) and g(z) and circles of convergence D1

and D2 are multiplied, the result is a power series that converges to the product
f (z)g(z) with a circle of convergence that is at least equal to the largest circle that
can be drawn in the region common to D1 and D2.

(v) If a power series with the sum f (z) and a circle of convergence D are differ-
entiated term by term, the result is a power series that converges to f ′(z) at each
point in D.
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(vi) If a power series with the sum f (z) and a circle of convergence D is integrated
term by term, the result is a sum that converges to

∫
f (z)dz at each point in D.

(vii) A power series with a circle of convergence D is an analytic function in D.

Proof Only results with proofs that are straightforward will be outlined in order
to avoid introducing unnecessary complication.

(i) It will be sufficient to prove that a power series f (z) = ∑∞
n=0 anzn with a

nonzero radius of convergence R and circle of convergence � represents a contin-
uous function of z at every point inside �. This is because if the power series is
expanded about a point z0 instead of the origin, the change of variable w = z − z0

will reduce it to this case. Continuity will be proved if we can show that for any
point ζ inside � and for any given ε > 0, it follows that | f (z) − f (ζ )| < ε for all z
inside � such that |z − ζ | < δ.

Set f (z) = SN(z) + RN(z), where SN(z) = ∑N
n=0 anzn and the remainder

RN(z) = ∑∞
n=N anzn. Let D be the interior and boundary of any circle C with its

center at the origin and its radius r < R. Then to proceed further it is necessary
to anticipate the result of Theorem 15.11 by using the uniform convergence of the
power series in C to guarantee the existence of a positive integer N = N(ε) such
that | f (z) − SN(z)| < 1

3ε for all z in D. The series SN(z) is simply a polynomial in
z, so it follows that it must be a continuous function of z. Consequently, with this
value of N, there must be a δ > 0 such that |SN(z) − SN(ζ )| < 1

3ε when |z − ζ | < δ.
Then, for all z in D such that |z − ζ | < δ, we can write

| f (z) − f (ζ )| = | f (z) − SN(z) + SN(z) − SN(ζ ) + SN(ζ ) − f (ζ )|
≤ | f (z) − SN(z)| + |SN(z) − SN(ζ )| + |SN(ζ ) − f (ζ )|
< 1

3ε + 1
3ε + 1

3ε = ε,

so the continuity of the power series at all points of D has been established. The
statement of the theorem now follows because C is any circle with its center at the
origin with r < R.

(ii) As with (i), it will be sufficient to consider the two power series expanded
about the origin

∑∞
n=0 anzn and

∑∞
n=0 bnzn, each with the same circle of convergence

D throughout which each converges to the same sum. Then for all z in D we have,
by hypothesis,

a0 + a1z + a2z2 + a3z3 + · · · = b0 + b1z + b2z2 + b3z3 + · · · .
By (i) the sums are continuous at z = 0, so a0 = b0. Cancelling these terms and
removing a factor z, we arrive at the result

a1 + a2z + a3z2 + · · · = b1 + b2z + b3z2 + · · · ,
and a repetition of the argument shows that a1 = b1. Continuing this process by
induction, we conclude that an = bn for n = 0, 1, 2, . . ., so the uniqueness of the
power series has been proved.
(iii) The result follows by adding or subtracting the two nth partial sums and

proceeding to the limit as n → ∞.
(iv) Though not difficult, the proof of this result is lengthy and so will be omitted.
(v) Let the circle of convergence of f (z) be D. The convergence of the differen-

tiated series to f ′(z), and the demonstration that the differentiated series has the
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same circle of convergence D, follows by using term-by-term differentiation and
applying the ratio test to the result.
(vi) Let the circle of convergence of f (z) be D. Then the convergence of the

integrated series to
∫

f (z)dz, and the demonstration that the integrated series has
the same circle of convergence D, follows by using term-by-term integration and
applying the ratio test to the result.
(vii) The details of the proof of this result are complicated and so will be omitted.

Complex power series arise in many different ways, the most frequent of which
is in the form of Taylor series expansions of functions. The Taylor series expansion
of an analytic function f about the point z0 takes the same form as the Taylor series
for a function of a real variable, though the derivation of the result is different.

THEOREM 15.9 Taylor’s theorem Let f (z) be an analytic function of z at the point z0, and let it
also be analytic inside a circle C given by |z − z0| = r that forms a neighborhood of

the complex form
of Taylor’s series z0. Then there exists a power series

∞∑
n=0

an(z − z0)n

with coefficients an determined by the formula

an = f (n)(z0)
n!

for n = 0, 1, 2, . . . ,

which converges to f (ζ ) for every ζ inside the circle C and is such that

f (ζ ) =
∞∑

n=0

f (n)(z0)
n!

(ζ − z0)n.

Proof Without loss of generality the result will be proved for z0 = 0, because a
change of origin extends the result to the case z0 �= 0. The proof is based on the
Cauchy integral formula for derivatives and makes use of the identity

f (z)
z − ζ

= f (z)
z

+ ζ
f (z)
z2

+ · · · + ζ n−1 f (z)
zn

+ ζ n f (z)
(z − ζ )zn

,

which is easily verified for z �= 0 and z �= ζ.

As z0 = 0, the circle C in the theorem becomes the circle |z| = r . If we multiply
the preceding identity by 1/(2π i) and integrate around any positively oriented circle
� inside C with its center at the origin and radius ρ(0 < ρ < r), it follows from the
analytic nature of f (ζ ) and the Cauchy integral formula for derivatives that

f (ζ ) = f (0) + ζ f ′(0) + ζ 2 f ′′(0)
2!

+ · · · + ζ n−1 f (n−1)(0)
(n − 1)!

+ ζ n

2π i

∫
�

f (z)
(z − ζ )zn

dz.
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This is Taylor’s theorem with a remainder, where the last term is the remainder
Rn after n terms. The proof will be complete once we have shown that Rn → 0 as
n → ∞. From the maximum modulus theorem we know that a number M > 0 can
be found such that | f (z)| < M for all z inside the circle �, so on �∣∣∣∣ ζ n f (z)

(z − ζ )zn

∣∣∣∣ ≤ M
|z − ζ |

∣∣∣∣ζz
∣∣∣∣n .

Using this result in Rn leads to the estimate

|Rn| =
∣∣∣∣ 1
2π i

∫
�

ζ n f (z)
(z − ζ )zn

dx

∣∣∣∣ ≤ 1
2π

M
|z − ζ |

∣∣∣∣ζz
∣∣∣∣n 2πρ = Mρ

|z − ζ |
∣∣∣∣ζz
∣∣∣∣n.

Now as z lies on � and ζ is inside �, it follows that |ζ/z| < 1, and so |ζ/z|n → 0 as
n → ∞. The result |z| = ρ allows the elementary inequality |z − ζ | ≥ ||z| − |ζ || to
be written as |z − ζ | ≥ |ρ − |ζ ||, so that the expression for |Rn| becomes

|Rn| ≤ Mρ

|ρ − |ζ ||
∣∣∣∣ζz
∣∣∣∣n.

Finally, as |ζ | is a constant and |ζ/z|n → 0 as n → ∞, proceeding to the limit as
n → ∞ shows that limn→∞ |Rn| = 0, and hence that limn→∞ Rn = 0. Thus, we have
proved that

f (ζ ) =
∞∑

n=0

f (n)(0)
n!

ζ n

at all points inside �. As 0 < ρ < r , this result is also true for all points inside C.
The proof is complete.

BROOKE TAYLOR (1685–1731)
An English mathematician educated at Cambridge and whose interests extended beyond
mathematics to religion and philosophy. He was responsible for the introduction into mathe-
matics of the method of finite differences in a work published between 1715 and 1717,
that also contained what is now known as “Taylor’s Theorem.” Taylor did not consider the
convergence of his series and it was not until a century later that Cauchy provided a satisfactory
convergence proof. Taylor obtained a series solution for an initial value problem for a differential
equation by repeatedly differentiating the equation to find the coefficients to substitute into his
series solution.

The complex power series

f (ζ ) =
∞∑

n=0

f (n)(z0)
n!

(ζ − z0)n (8)

is called the Taylor series of the analytic function f (ζ ) expanded about the point (or
center) z0, and when z0 = 0 this becomes the Maclaurin series expansion of f (ζ ).

The derivation of Taylor’s theorem shows that the radius of convergence of the
Taylor series of a function with its center at z0 will be the radius of the largest circle
centered on z0 inside which the function is analytic.
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EXAMPLE 15.7 Find the Taylor series expansion of f (z) = cos z with its center at z0 = c, and hence
deduce its Maclaurin series expansion.

Solution The cosine function is an entire function and so can be expanded as a
power series about any center, so the resulting series will have an arbitrarily large
radius of convergence.

Routine differentiation gives

d[cos z]
dz

= −sin z,
d2[cos z]

dz2
= −cos z,

d3[cos z]
dz3

= sin z,
d4[cos z]

dz4
= cos z, . . . ,

so substituting these results in the Taylor series (8), setting z0 = c, and replacing ζ

by z shows the required Taylor series to be

cos z = cos c − sin c
1!

(z − c) − cos c
2!

(z − c)2 + sin c
3!

(z − c)3 + cos c
4!

(z − c)4 − · · · .
The cosine function is an entire function, so this series converges for all z.

The Maclaurin series for cos z is obtained from this by setting c = 0, when we
find that

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
= 1 − z2

2!
+ z4

4!
− · · · .

It is seen from this example that the complex Maclaurin series for cos z can
be obtained from the corresponding series involving the real variable x by simply
replacing x by z. This result remains true in general for Taylor series of elementary
functions of a real variable. Some useful results that can be obtained in this manner
are listed next. Here, for completeness, the expansion of cos z has been included:

ez =
∞∑

n=0

zn

n!
= 1 + z + z2

2!
+ · · · , |z| < ∞

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
= z − z3

3!
+ z5

5!
− · · · , |z| < ∞

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
= 1 − z2

2!
+ z4

4!
− · · · , |z| < ∞

Log(1 + z) =
∞∑

n=1

(−1)n+1 zn

n
= z − z2

2
+ z3

3
− · · · , |z| < 1

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
= z + z3

3!
+ z5

5!
+ · · · , |z| < ∞

cosh z =
∞∑

n=0

z2n

(2n)!
= 1 + z2

2!
+ z4

4!
+ · · · , |z| < ∞.

(9)

(10)

(11)

(12)

(13)

(14)

Alternative Ways of Obtaining Power
Series Expansions
A Taylor series is a power series, so it follows from the uniqueness of power series inother ways of

finding Taylor
series expansions

Theorem 15.8 (ii) that however a power series expansion of a function f (z) about a
point z0 is obtained, it must be the Taylor series expansion of the function about the
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same point. This property of power series is of considerable practical importance,
because it is often easier to obtain a power series expansion of a function by methods
that do not require the repeated differentiations needed to find the coefficients of
a Taylor series. Typical ways in which power series expansions of functions can be
obtained are by substitution into known simpler series, by multiplication of series, by
use of the binomial theorem, or by differentiation or integration of known simpler
series. Some representative examples of these ways are given below.

Expansion by the binomial theorem
and a substitution

EXAMPLE 15.8 Find the Taylor series expansion of f (z) = (8 + z)−1/2 about the point z0 = 1.

Solution To introduce powers of (z − 1) into the expansion we write f (z) =
(8 + z)−1/2 as

f (z) = 1
3

1[
1 + 1

9 (z − 1)
]1/2

,

and after setting u = z − 1 we expand 1
3 (1 + 1

9 u)−1/2 by the binomial theorem to
obtain

1

3
(
1 + 1

9 u
)1/2

= 1
3

− 1
54

u + 1
648

u2 − 5
34992

u3 + · · · .

Replacing u by z − 1 we arrive at the required Taylor series expansion about the
point z0 = 1:

1
(8 + z)1/2

= 1
3

− 1
54

(z − 1) + 1
648

(z − 1)2 − 5
34992

(z − 1)3 + · · · .

The binomial expansion of (1 + 1
9 u)−1/2 converges for |u/9| < 1, so the required

Taylor series converges for |z − 1| < 9.

Series obtained by integration

EXAMPLE 15.9 Find the Maclaurin series expansion of Arcsin z.

Solution We start from the result

arcsin z =
∫

dz
(1 − z2)1/2

.

Expanding the integrand by the binomial theorem and integrating term by term
gives the power series expansion for the general function arcsin z. Confining atten-
tion to the principal branch Arcsin z for which Arcsin 0 = 0 shows that the arbitrary
integration constant is zero, so

Arcsin z = z + 1
6

z3 + 3
40

z5 + 5
112

z7 + · · · .

As the principal branch is required, we must restrict z so that Re{Arcsin z} < |π/2|.
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Series obtained by using a partial
fraction representation

EXAMPLE 15.10 Find the Taylor series expansion of f (z) = 1/[(z − 2)(z − 3)] about the point z0 = 1.

Solution To introduce powers of (z − 1) we write f (z) as

f (z) = 1
[(z − 1) − 1][(z − 1) − 2]

and set u = z − 1. A partial fraction expansion of the resulting expression in u gives

1
(u − 1)(u − 2)

= 1
(1 − u)

− 1
2

1(
1 − 1

2 u
) .

Expanding each of these terms by the binomial theorem and combining the results
gives

1
(u − 1)(u − 2)

= 1
2

+ 3
4

u + 7
8

u2 + 15
16

u3 + · · · .

Replacing u by z − 1 shows that the required Taylor series expansion is

1
(z − 2)(z − 3)

= 1
2

+ 3
4

(z − 1) + 7
8

(z − 1)2 + 15
16

(z − 1)3 + · · · .

The binomial series for (z − 2)−1 converges for |z| < 2 and the series for
(z− 3)−1 converges for |z| < 3, so as both will converge for |z| < 2, this must be
the circle of convergence for the required Taylor series.

Series obtained by multiplication of series

EXAMPLE 15.11 Find up to the term in z5 the Maclaurin series expansion of

f (z) = sin z
(1 + 3z2)

.

Solution We will obtain the result by multiplying together an appropriate number
of terms of the Maclaurin series expansion of sin zand the binomial series expansion
of (1 + 3z2)−1. To obtain a result accurate to the term in z5 we will need to multiply
the truncated series

sin z = z − z3

6
+ z5

120
+ · · ·

and the truncated binomial expansion

1
(1 + 3z2)

= 1 − 3z2 + 9z4 − · · · .

This gives

sin z
(1 + 3z2)

=
(

z − 1
6

z3 + 1
120

z5 − · · ·
)

(1 − 3z2 + 9z4 − · · ·)

= z − 19
6

z3 + 1141
120

z5 − · · · .
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The series for sin z converges for all z, but the binomial expansion of (1 + 3z2)−1

only converges for |z| < 1/
√

3, so the required Maclaurin series converges for |z| <

1/
√

3.

EXAMPLE 15.12 Find up to the term in z5 the Maclaurin series expansion of f (z) = [log(1 − z)]2,
using the branch of the logarithmic function for which log 1 = 2π i .

Solution The principal branch is the function Log(1 − z) for which Log 1 = 0, and
routine differentiation shows the Maclaurin series expansion of Log(1 − z) to be

Log(1 − z) = −z − z2

2
− z3

3
− · · · − zn

n
− · · · .

Using the result e2π i = 1, we can write

log(1 − z) = Log[e2π i (1 − z)]

= Log e2π i + Log(1 − z) = 2π i + Log(1 − z),

showing that the appropriate branch of the logarithmic function has the Maclaurin
series expansion

log(1 − z) = 2π i − z − z2

2
− z3

3
− · · · − zn

n
− · · · .

Multiplying the series [log(1 − z)]2 term by term and collecting all terms up to and
including terms in z5, we obtain

[log(1 − z)]2 = −4π2 − 4π iz + (1 − 2π i)z2 +
(

1 − 4π i
3

)
z3

+
(

11
12

− π i
)

z4 +
(

5
6

− 4
5
π i
)

z5 + · · · .

A careful examination of the coefficients in the series shows that it can be
written more systematically as

[log(1 − z)]2 = −4π2 + 2
[

− 2π i + (1 − 2π i)
z2

2
+
(

1 + 1
2

− 2π i
)

z3

3

+ · · ·
(

1 + 1
2

+ 1
3

+ · · · + 1
n − 1

− 2π i
)

zn

n
+ · · ·

]
.

The series for Log(1 − z) converges for |z| < 1, so the series for [log(1 − z)]2 also
converges for |z| < 1.

Summary Complex sequences and series have been defined. Tests for the convergence of complex
power series were derived that gave rise to the notions of the radius and circle of conver-
gence of the series. These tests are immediate extensions of the corresponding tests for
real power series. The complex form of Taylor’s theorem was derived, and alternative and
often simpler methods for deriving Taylor series were illustrated by example.
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EXERCISES 15.1

In Exercises 1 through 4 identify any cluster points that exist,
determine whether they belong to the sequence and, where
appropriate, find the limit of the sequence. State when a
sequence is divergent.

1. (a)
{

1 + (−1)n

n

}
. (b)

{
[1 + (−1)n]

(
2n + 1

n

)}
.

(c)
{

5n − 1
2n + 6

}
.

2. (a) {n2}. (b)
{

n + 1
n

+ (−1)n

n2

}
.

(c)
{

n sin
π

n

}
.

3. (a)
{(

1 + 1
n

)n}
. (b)

{(
2n2 + 1

n

)
tan

π

4n

}
.

(c) {1 + sin nπ}.
4. (a)

{
1 + cos nπ + 1

n!

}
. (b)

{(
n − 1
n + 1

)n}
.

(c)
{

tan
(

π

2
− 1

n

)}
.

In Exercises 5 through 22 use an appropriate test to deter-
mine the nature of the convergence of the series, stating
when a series is divergent.

5.
∞∑

n=1

cos n
n2

.

6.
∞∑

n=1

2 + (−1)n

2n
.

7.
∞∑

n=1

1
3 + n

.

8.
∞∑

n=1

(−1)n+1 n3

5n
.

9.
∞∑

n=1

(3 n
√

n − 1)n.

10.
∞∑

n=1

(n!)2

(2n)!
.

11.
∞∑

n=1

(−1)n+1 sin
1
n2

.

12.
∞∑

n=1

tan2 1
n

.

13.
∞∑

n=1

1
n(n + 1)

.

14.
∞∑

n=1

n(2 + i)n

2n
.

15.
∞∑

n=1

(−1)n+1 n(2i − 1)n

3n
.

16.
∞∑

n=1

1
n(3 + i)n

.

17.
∞∑

n=1

1
n(n − 1)

.

18.
∞∑

n=1

n − (−1)n

3n
.

19.
∞∑

n=1

(−1)n+1

[
n(2 − i) + 1

n(3 − 2i) − 3i

]n

.

20.
∞∑

n=1

[
2n(4 + 2i) − 1

n(2 + i) + 3

]n

.

In Exercises 21 through 34 find the radius of convergence
and circle of convergence of the complex power series.

21.
∞∑

n=1

zn

n · 2n
.

22.
∞∑

n=1

z2n−1

2n − 1
.

23.
∞∑

n=1

2n−1z2n−1

(4n − 3)2
.

24.
∞∑

n=1

(−1)n−1 zn

n
.

25.
∞∑

n=1

n!zn.

26.
∞∑

n=1

(−1)n+1 zn

n!
.

27.
∞∑

n=1

(
n

n + 1

)( z
2

)n
.

28.
∞∑

n=1

(−1)n−1 (z − 5)n

n · 3n
.

29.
∞∑

n=1

(z + 3)n

n2
.

30.
∞∑

n=1

(z − 2)n

2n(2n − 1)
.

31.
∞∑

n=1

inzn.

32.
∞∑

n=1

(1 + ni)zn.

33.
∞∑

n=1

(
1 + 2ni
n + 2i

)n

zn.

34.
∞∑

n=1

(z − 2i)n

n · 3n
.

In Exercises 35 through 44 use Taylor’s theorem to find the
first four terms of the expansion of f (z) about the given
center.

35. f (z) = sin z
1 + sin z

with the center π/4.

36. f (z) = cosh(1 + 3z2) with the center 1.
37. f (z) = sinh(2 − 3z) with the center 1.

38. f (z) = Log
(

4 + z
4 − z

)
with the center −1 (Log 1 = 0).

39. f (z) = z
(z + 3i)(z − 2i)

with center i .

40. f (z) = cos(2z − i) with center i .
41. f (z) = [cos z]2 with center 0 and f (0) = 1.
42. f (z) = exp{zsin z} with center 0.
43. f (z) = (z + 1)1/2 with center 0 and f (0) = (1 + i)/

√
2.

44. f (z) = cos2(z − i) with center −i .

In Exercises 45 through 56 use the most appropriate alter-
native method to find the first four nonvanishing terms in
the expansion of f (z) about the given center.

45. f (z) = log(z + 1)
(1 + z2)1/2

with the center 0 and
√

1 = 1,

log 1 = 4π i .

46. f (z) = z
(z − 3)(z + 2)

with center −1.

47. f (z) = 1 − cos z
(1 − z)2

with center 0.

48. f (z) = 2z + 5
z2 + z − 2

with center 2.
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49. f (z) = 1 + z
1 + 2z2

with center 0.

50. f (z) = log
(

1 + z
1 − z

)
with center 0 and log 1 = 2π i .

51. f (z) = Arctan z with center 0 (Arctan 0 = 0).
52. f (z) = [Arctan z]2 with center 0 (Arctan 0 = 0).

53. f (z) =
∫ z

0

sin u
u

du.

54. f (z) = (1 − z)−3 with center −1.

55. f (z) = sin z
1 − z

with center 0.

56. f (z) = [cos 2z]2 with center π/4.

15.2 Uniform Convergence

The detailed arguments in this section may be omitted at a first reading, but before
doing so, the reader should review the important properties of power series listed
in Theorem 15.8.

A power series possesses a special property called uniform convergence in any
region D of the complex plane where it is convergent. This enables power series
to be manipulated as though they were ordinary functions while still retaining the
property of uniform convergence.

If {u0(z), u1(z), u2(z), . . .} is an infinite sequence of functions, a series of the
form

∞∑
n=0

un(z) = u0(z) + u1(z) + u2(z) + · · · (15)

is called a functional series, and this becomes the power series

∞∑
n=0

an(z − z0)n = a0 + a1(z − z0) + a2(z − z0)2 + · · · , (16)

with its center at z0 when un(z) = an(z − z0)n. As with power series, the nth partial
sum of the functional series (15) is denoted by sn(z), where

sn(z) = u0(z) + u1(z) + u2(z) + · · · + un−1(z). (17)

Uniform Convergence
The functional series (15) is said to converge uniformly to the sum U(z) in a regionuniform convergence
D of the complex plane if for every arbitrary number ε > 0 it is possible to find a
number N = N(ε) that depends on ε, but not on z, such that

|U(z) − sn(z)| < ε for all n > N and all z in D. (18)

It follows from this definition that the power series (16) will be uniformly
convergent in D if it can be shown that

∣∣∣∣∣ ∞∑
k=n

ak(z − z0)k

∣∣∣∣∣ < ε for all n > N and all z in D. (19)
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A comparison of the definitions of uniform convergence and convergence
shows that whereas for convergence the number N depends on ε and the value
of z, in the case of uniform convergence the number N depends only on ε, and not
on z. It is because of the independence of the convergence on the value of z in D
that the term uniform is used to describe this powerful form of convergence.

In practical terms, if a power series converges uniformly to f (z) in a circle of
convergence D, and it is known that when n = N the Nth partial sum sN(z) at a
point z0 in D approximates f (z0) in such a way that

| f (z0) − sN(z0)| < ε

for some known small number ε > 0, then sN(z) will approximate f (z) with the
same accuracy for all points z in D. This is not the case for series that are not
uniformly convergent, because in that case the number of terms needed in the
partial sum to maintain the accuracy will depend on the value of z.

The following theorem, called the Weierstrass M-test, provides the simplest
test for uniform convergence.

THEOREM 15.10 Weierstrass M-test Let the functional series
∑∞

n=0 un(z) be such that for each n,
|un(z)| < Mn for all z in a domain D. Then if the series of positive constants

∑∞
n=0 Mn

the simplest test for
uniform convergence converges, the series

∑∞
n=0 un(z) is uniformly convergent in D.

Proof Let sn(z) and sn+p(z) be the nth and (n + p)th partial sums of the series,
with p > 0 any positive integer. Then

|sn+p(z) − sn(z)| = |un(z) + un+1(z) + · · · + un+p(z)|

≤ |un(z)| + |un+1(z)| + · · · + |un+p(z)| =
n+p∑
k=n

Mk,

where repeated use has been made of the triangle inequality.
By hypothesis the series

∑∞
n=0 Mn is convergent, so it follows from the Cauchy

convergence principle that the sum
∑n+p

k=n Mk can be made arbitrarily small by
making n sufficiently large, so a function U(z) exists such that U(z) = limn→∞ sn(z).
This has established that the conditions of the theorem ensure that the functional
series is convergent.

To show that the convergence is uniform it is only necessary to notice that for
any ε > 0, the convergence of

∑∞
n=0 Mn means that a positive integer N(ε) can be

found such that if n ≥ N(ε), then
∑∞

k=n Mk < ε. So, for n ≥ N(ε) and all z in D,

|U(z) − sn(z)| =
∣∣∣∣∣ ∞∑

k=n

uk(z)

∣∣∣∣∣ ≤
∞∑

k=n

Mk < ε,

and the theorem is proved.

EXAMPLE 15.13 Prove that the power series
∑∞

n=0 zn = 1 + z + z2 + · · · + zn + · · · is uniformly con-
vergent inside the unit circle |z| = 1.
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Solution Let z∗ be a point inside the unit circle |z| = 1 and write |z∗| = r , so r < 1
and |(z∗)n| = rn < 1. Setting Mn = rn in the Weierstrass M-test, we obtain

∞∑
n=0

Mn <

∞∑
n=0

rn = 1
1 − r

, with r < 1.

As the conditions of the theorem are satisfied, the series is uniformly convergent
everywhere inside the unit circle |z| = 1.

This result is not unexpected, because
∑∞

n=0 zn is the Maclaurin series expansion
of 1/(1 − z), and this is an analytic function inside the unit circle.

From now on attention will be confined to power series, and the next theo-
rem generalizes the result of the last example by proving that every power series
converges uniformly inside its circle of convergence.

THEOREM 15.11 Uniform convergence of power series A power series
∑∞

n=0 an(z − z0)n with a
radius of convergence R > 0 converges uniformly inside and on every circle

a power series
converges uniformly
inside its circle of
convergence

|z − z0| = r , where r < R.

Proof The proof of the theorem makes use of the Weierstrass M-test. From
the definition of the radius of convergence of a series it follows that the series∑∞

n=1 an(z − z0)n is absolutely convergent for |z − z0| < r , so for any z = ζ on the
circle |z − z0| = r the series

∞∑
n=0

|an(ζ − z0)n| =
∞∑

n=0

|an|rn

must also be convergent. Hence, for all z inside and on the circle |z − z0| = r , the
following inequality must hold:

|an(z − z0)n| ≤ |an|rn.

The statement of the theorem now follows from this result and the convergence of
the series

∑∞
n=0 |an|rn if we apply the Weierstrass M-test to the power series with

Mn = |an|rn.

The result of Example 15.13 is a special case of this theorem. An examination
of the series

∑∞
n=0 zn shows that its radius of convergence is R = 1, so as the series is

a power series expansion with the origin as center it is uniformly convergent inside
the circle |z| = 1, as was shown directly in the example.

It is useful to use Theorem 15.11 to reformulate the results of Theorem 15.8
concerning the differentiation and integration of power series.

THEOREM 15.12 Differentiation and integration of power series Let a power series with the sum
f (z) have a circle of convergence |z − z0| = R, where R > 0. Then the series pos-

a power series can
be differentiated
and integrated
inside its circle of
convergence

sesses the following properties:

(i) The power series converges uniformly to f (z) inside the circle of convergence.
(ii) The power series obtained by term-by-term differentiation of the power series

for f (z) converges uniformly to f ′(z) and has the same circle of convergence as
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f (z), so if

f (z) =
∞∑

n=0

an(z − z0)n, then f ′(z) =
∞∑

n=1

nan(z − z0)n−1.

(iii) The power series obtained by term-by-term integration of the power series
for f (z) along any path � inside the circle of convergence converges uniformly to
the integral of f (z) along �, so if

f (z) =
∞∑

n=0

an(z − z0)n, then
∫

�

f (z)dz =
∞∑

n=0

an

∫
�

(z − z0)ndz.

EXAMPLE 15.14 Use the Maclaurin series for 1/(1 − 2z) to find the Maclaurin series for 1/(1 − 2z)2,
and confirm that both series have the same circle of convergence.

Solution The Maclaurin series expansion is obtained most easily by writing the
function in the form (1 − 2z)−1 and expanding it by the binomial theorem, when
we obtain

1
1 − 2z

= (1 − 2z)−1 = 1 + 2z + 22z2 + · · · =
∞∑

n=0

2nzn.

This binomial series is convergent for |z| < 1/2, so this is the circle of convergence
for the function. By Theorem 15.12 (ii) this series can be differentiated term by
term inside its circle of convergence, so as

d
dz

(
1

1 − 2z

)
= 2

(1 − 2z)2
and

d
dz

∞∑
n=0

[2nzn] = 2 + 2 · 22z + 3 · 23z2 + · · ·

=
∞∑

n=0

(n + 1)2n+1zn,

equating these results and cancelling a factor 2 gives the desired expansion,

1
(1 − 2z)2

=
∞∑

n=0

(n + 1)2nzn = 1 + 4z + 12z2 + · · · .

It is easily verified that this power series has a radius of convergence R = 1
2 , so the

differentiated series is also uniformly convergent for |z| < 1
2 .

EXAMPLE 15.15 By integrating the Maclaurin series for sin ζ along a suitable path, find the Maclaurin
series for cos z.

Solution The Maclaurin series for sin ζ is

sin ζ =
∞∑

n=0

(−1)n ζ 2n+1

(2n + 1)!
= ζ − ζ 3

3!
+ ζ 5

5!
− · · · .

As this power series converges for all finite ζ , it follows from Theorem 15.12
(iii) that term-by-term integration is permitted along any path in the complex plane,
so integrating from the origin to an arbitrary point z gives∫ z

0
sin ζdζ =

∞∑
n=0

(−1)n 1
(2n + 1)!

∫ z

0
ζ 2n+1dζ.
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After the integrations are performed this becomes

1 − cos z =
∞∑

n=0

(−1)n z2n+2

(2n + 2)!
,

and a rearrangement of terms leads to the expected result

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
,

where the series on the right also converges for all finite z.

EXAMPLE 15.16 By integrating the Maclaurin series for 1/(1 + ζ ) along a suitable path in its circle
of convergence, show that

Log(1 + z) =
∞∑

n=1

(−1)n+1 zn

n
for |z| < 1.

Solution The Maclaurin series expansion of 1/(1 + ζ ) is most easily found by
means of the binomial theorem, so we can write

1
1 + ζ

= 1 − ζ + ζ 2 − ζ 3 + · · · =
∞∑

n=0

(−1)nζ n.

This power series has a radius of convergence R = 1 and so is uniformly convergent
inside the circle of convergence |ζ | = 1. By Theorem 15.12 (iii), this series can be
integrated term by term along any path � inside this circle, so∫

�

1
1 + ζ

dζ =
∞∑

n=0

(−1)n
∫

�

ζ ndζ.

To obtain Log(1 + z) we choose � to be the straight line path joining the origin
to a point ζ = z inside the circle of convergence, and take the principal branch of
the logarithmic function as an antiderivative of the integral on the left. As a result,
on the left we obtain∫ z

0

1
1 + ζ

dζ = Log(1 + z), where Log(1 + ζ ) = ln |1 + ζ | + iθ,

where θ is the argument of Log(1 + ζ ), with −π < θ ≤ π . Integration of the ex-
pression on the right leads to the result

∞∑
n=0

(−1)n
∫ z

0
ζ ndζ =

∞∑
n=1

(−1)n+1 zn

n
,

so equating these expresions gives

Log(1 + z) =
∞∑

n=1

(−1)n+1 zn

n
.

Care must always be exercised when working with logarithmic functions be-
cause they are multivalued. The principal branch of Log(1 + z) used here is analytic
throughout the complex plane, with the exception of the branch cut made along
the negative real axis from −∞ to the point z = −1. However, the series represen-
tation of Log(1 + z) is only valid inside the circle |z| = 1 where, like the function
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0

y

⏐z⏐= 1

x

z-plane

Branch cut

FIGURE 15.3 The circle of convergence for the
series representation of Log(1 + z) and the
branch cut for the function Log(1 + z).

f (z) = 1/(1 + z), it is analytic. Figure 15.3 shows the circle of convergence for the
series expansion of Log(1 + z), and the branch cut used in the definition of the
function Log(1 + z).

Summary The concept of uniform convergence was defined and related to power series, and the sim-
ple Weierstrass M-test for uniform convergence was given. The importance of the uniform
convergence of a power series was shown to be that it retains its uniform convergence
property when it is either differentiated or integrated inside its circle of convergence,
thereby allowing it to be manipulated like an ordinary function.

15.3 Laurent Series and the Classification
of Singularities

We have seen how a function f (z) that is analytic at a point z0 can be expanded in
a neighborhood of z0 as a Taylor series with z0 as its center. Although Taylor series
expansions are sufficient for many purposes, the requirement that f (z) must be
analytic at z0 means some other form of expansion must be used when an expansion
is required about a point where f (z) is not analytic. The development of a more
general form of expansion that overcomes this difficulty leads to what is called a
Laurent series expansion of a function. Arising from the study of Laurent series
comes the need to classify the nature of points where a function is not analytic.

Points where a function f (z) is analytic are called regular points of the function,
and a point z0 where f (z) is analytic in every neighborhood of z0, but not at z0 itself,
is called a singular point of the function. For example, the function f (z) = 1/z is
analytic for all finite z apart from the point z = 0 where its derivative is not defined,
so the origin is a singular point of f (z) = 1/z.

A Laurent series L(z) is a series of the formregular and singular
points and Laurent
series

L(z) =
∞∑

n=−∞
an(z − z0)n (20)

that contains both positive and negative powers of (z − z0). It is customary to
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represent a Laurent series L(z) as the sum of two series by setting L(z) = L1(z) +
L2(z) where

L1(z) =
−1∑

n=−∞
an(z − z0)n and L2(z) =

∞∑
n=0

an(z − z0)n. (21)

The series L1(z) containing only negative powers of (z − z0) is called the prin-
cipal part of the Laurent series, and the series L2(z) containing only positive powers
of (z − z0) is called its regular part. A Laurent series is said to converge in a do-
main D when both of the series L1(z) and L2(z) are convergent in D. In general, a
Laurent series converges in an annulus

r < |z − z0| < R, where 0 < r < R.

A simple example of a Laurent series is obtained by considering the function
(cos z)/z and expanding cos z as a Maclaurin series to arrive at the representation

cos z
z

= 1
z

∞∑
n=0

(−1)n z2n

(2n)!
=

∞∑
n=0

(−1)n z2n−1

(2n)!
= 1

z
− z

2!
+ z3

4!
− · · · .

The principal part of this Laurent series is the single term L1(z) = 1/z, and its
regular part is the power series

L2(z) =
∞∑

n=1

(−1)n z2n−1

(2n)!
= − z

2!
+ z3

4!
− z5

6!
+ · · · .

In this case the principal part of the expansion is finite (converges) for all z �= 0,
and the regular part converges for all z, so the annulus in which this Laurent series
converges becomes the complex plane from which has been deleted the single point
at the origin.

The next theorem shows how a function that is analytic in an annulus with its
center at the point z0 can be expanded inside the annulus as a unique Laurent series.
This theorem also provides an explicit general formula for the Laurent coefficients.
The examples that follow the theorem show how simple algebraic arguments of-
ten provide easier ways of finding the Laurent coefficients than using the general
formula.

THEOREM 15.13 Laurent’s theorem A function f (z) that is analytic in the annulus D given by
R1 < |z − z0| < R2 can be expanded in D as a unique Laurent series

the Laurent
expansion theorem

f (z) =
∞∑

n=−∞
an(z − z0)n,

where

an = 1
2π i

∫
�

f (ζ )
(ζ − z0)n+1

dζ with n = 0, ±1, ±2, . . . ,

and � is any positively oriented circle in D given by |ζ − z0| = ρ, with R1 < ρ < R2.
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D

Γ1

Γ

Γ2ρ1

ρ

ρ2

R1

z0

R2

D1

FIGURE 15.4 The annulus D determined by
R1 < |z − z0| < R2.

Proof Let the annulus D be the one shown in Fig. 15.4 with its center at z0, its
inner boundary a circle of radius R1, and its outer boundary a circle of radius R2.
The positively oriented circles �1 and �2 with the respective radii ρ1 and ρ2 bound
the annulus D1 contained in D, where the positively oriented circle � inside D1 has
radius ρ.

If z is a fixed point inside D1, then by the extended Cauchy–Goursat theorem
we can write

f (z) = 1
2π i

∫
�2

f (ζ )
ζ − z

dζ + 1
2π i

∫
�̃1

f (ζ )
ζ − z

dζ,

where �̃1 denotes integration around �1 in the negative (clockwise) sense.
In the integrand of the first term ζ lies on �2, so we expand 1/(ζ − z) as the

power series in z − ζ :

1
ζ − z

= 1

(ζ − z0)
(

1 − z−z0
ζ−z0

) =
∞∑

n=0

(z − z0)n(
ζ − z0

)n+1
.

This is a geometric series, and because ζ lies on �2 we have |ζ − z0| = ρ2, showing
that ∣∣∣∣ z − z0

ζ − z0

∣∣∣∣ = |z − z0|
ρ2

< 1.

Applying the Weierstrass M-test shows that the series expansion of 1/(ζ − z)
is uniformly convergent. As uniform convergence allows term-by-term integration
of the series, substituting the series expansion in the integral gives

1
2π i

∫
�2

f (ζ )
ζ − z

dζ =
∞∑

n=0

an(z − z0)n,
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where

an = 1
2π i

∫
�2

f (ζ )
(ζ − z0)n+1

dζ.

A similar argument can be used to express the integrand in the second integral
as

1
ζ − z

= 1
z − z0 − (ζ − z0)

= −1

(z − z0)
(
1 − ζ−z0

z−z0

) = −
∞∑

k=0

(ζ − z0)k

(z − z0)k+1
,

where, as ζ now lies on �1, ∣∣∣∣ζ − z0

z − z0

∣∣∣∣ = ρ1

|z − z0| < 1.

The Weierstrass M-test shows this series is also uniformly convergent. Substituting
the series in the second integral and integrating term by term gives

1
2π i

∫
�̃1

f (ζ )
ζ − z

dζ = − 1
2π i

∫
�1

f (ζ )
ζ − z

dζ = 1
2π i

∞∑
k=0

∫
�1

f (ζ )(ζ − z0)k

(z − z0)k+1
dζ,

where a negative sign has been introduced to compensate for the change from
contour �̃1 where integration is in the clockwise sense, to contour �1 where the
integration is counterclockwise.

When k + 1 is replaced by −n the summation becomes

1
2π i

∫
�1

f (ζ )
ζ − z

dζ =
−∞∑

n=−1

an(z − z0)n,

with

an = 1
2π i

∫
�1

f (ζ )
(ζ − z0)n+1

dζ.

Combining the two integrals, and recognizing that the positively oriented circles
�1 and �2 bounding D1 may both be deformed into any positively oriented contour
� that lies in D1 with z0 in its interior, shows that the Laurent series coefficients an

are all given by the single formula

an = 1
2π i

∫
�

f (ζ )
(ζ − z0)n+1

dζ with n = 0, ±1, ±2, . . . .

Finally, as the fixed point zwas any point inside the annulus D1 that is itself contained
in the annulus D, the first part of the theorem has been proved.

The uniqueness of a Laurent series expansion in a given annulus can be es-
tablished as follows. Suppose, if possible, that f (z) can be represented in the same
annulus by the two different Laurent series

f (z) =
∞∑

n=−∞
an(z − z0)n =

∞∑
n=−∞

bn(z − z0)n.

Forming the product of these series with (z − z0)−m−1, where m is a fixed integer,
leads to the result

∞∑
n=−∞

an(z − z0)n−m−1 =
∞∑

n=−∞
bn(z − z0)n−m−1.
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Each of these series converges on the contour � inside D1, so using the results∫
�

(z − z0)kdz =
{

0, k �= −1
2π i, k = −1

(k a positive or negative integer)

shows that ak = bk for each k, so the uniqueness of the Laurent series is proved.

PIERRE-ALPHONSE LAURENT (1813–1854)
A French mathematician whose major contribution to complex analysis, published in 1843, was
the fact that when a function is discontinuous at a single point, the Taylor series expansion of the
function must be replaced by an expansion involving both increasing and decreasing powers of
the variable involved. This result is the one now known as Laurent’s theorem.

The uniqueness of a Laurent series expansion of an analytic function f (z) in a
given annulus means that any method used to generate the expansion in the annulus
will produce the same series. This result can be used to considerable advantage,
because instead of using the general formula given in Theorem 15.13, it frequently
proves to be easier to find the coefficients of the series by using a simple algebraic
approach.

If an analytic function f (z) that is expanded about the point z0 has singular
points at a1, a2, . . . , an, then the loss of differentiability at these points means that
the radius R2 of the outer circle of the annulus in which the expansion is valid cannot
exceed the distance from z0 to the nearest singular point, so that

R2 = min{|z0 − a1|, |z0 − a2|, . . . , |z0 − an|}.

The expansion will, of course, be analytic everywhere on the outer boundary of thehow algebraic
arguments can
often simplify the
task of finding a
Laurent series

annulus of convergence except for any point where there is a singularity.
The next example illustrates the use of algebraic arguments to develop Laurent

series, and also how the location of singularities relative to the point about which the
expansion is carried out determines the outer radius of the annulus of convergence.

EXAMPLE 15.17 Find the Laurent series expansion of

f (z) = 1
6 − z − z2

in (a) the domain D1 determined by |z| < 2, (b) the domain D2 determined by
2 < |z| < 3, and (c) the domain D3 determined by |z| > 3.

Solution Factoring the denominator gives

f (z) = 1
(2 − z)(z + 3)

,

so the function has singular points at z = 2 and z = −3, but is analytic elsewhere.
As these points occur on the boundaries of the domains D1, D2, and D3, the func-
tion will be analytic inside each of these domains. Consequently, f (z) will have a
unique though different Laurent series expansion in each of the three domains. The
required expansions will now be obtained by using simple algebraic arguments that
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start from the partial fraction decomposition

f (z) = 1
5

(
1

2 − z
+ 1

z + 3

)
.

If |z| < 2, by using the binomial theorem we can write

1
2 − z

= 1
2
(
1 − z

2

) = 1
2

(
1 − z

2

)−1
=

∞∑
n=0

zn

2n+1
.

If |z| > 2, it follows in similar fashion that we can write

1
2 − z

= 1

z
( 2

z − 1
) = −1

z

(
1 − 2

z

)−1

= −
∞∑

n=1

2n−1

zn
.

If |z| < 3, we can write

1
z + 3

= 1
3
(
1 + z

3

) = 1
3

(
1 + z

3

)−1
=

∞∑
n=0

(−1)n zn

3n+1
.

Finally, if |z| > 3, we have

1
z + 3

= 1

z
(
1 + 3

z

) = 1
z

(
1 + 3

z

)−1

=
∞∑

n=1

(−1)n−1 3n−1

zn
.

These results can now be combined with the partial fraction decomposition to
obtain the Laurent series expansions in each of the three domains.

(a) In D1 where |z| < 2 we have from the first and third of the preceding expan-
sions that

f (z) =
∞∑

n=0

1
5

[
1

2n+1
+ (−1)n

3n+1

]
zn.

This expansion contains no principal part, and because f (z) is analytic in D1 we
see that in this domain the Laurent series has degenerated into a Taylor series
expansion about the origin that is, of course, just the Maclaurin series expansion of
f (z) in D1.
(b) In D2 where 2 < |z| < 3, we have from the second and third of the preceding

expansions that

f (z) =
∞∑

n=1

(
−2n−1

5

)
1
zn

+
∞∑

n=0

(
(−1)n

5 · 3n+1

)
zn.

Here the first summation represents the principal part and the second summation
the regular part of the Laurent series expansion in the domain.

(c) In D3 where |z| > 3, we have from the second and fourth of the preceding
expansions that

f (z) =
∞∑

n=1

1
5

[−2n−1 + (−1)n−13n−1]
1
zn

.

This shows that in D3 the Laurent series expansion has only a principal part.

Although expansions (a) and (b) are different in form, each is analytic on the
circle |z| = 2, with the exception of the point z = 2 where a singularity occurs. Thus,
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representations (a) and (b) give different, but equivalent, representations of f (z)
on the circle |z| = 2 away from the single point z = 2. A similar situation occurs
with representations (b) and (c) on the circle |z| = 3 away from the single point
z = −3 where the other singularity is located.

EXAMPLE 15.18 Expand f (z) = exp
(
z + 1

z

)
as a Laurent series about the origin.

Solution The function f (z) is analytic everywhere except at the origin, which is a
singular point. Consequently, when f (z) is expanded about the origin its Laurent
series will converge throughout the complex plane with the exception of the single
point z = 0, and the series will be of the form

exp
(

z + 1
z

)
=

∞∑
n=1

a−n
1
zn

+
∞∑

n=0

anzn, for |z| > 0.

To determine the coefficients a±n, we write the function as f (z) = (exp z)(exp 1
z)

and then express this as the product of the two series

(exp z)
(

exp
1
z

)
=
(

1 + z + z2

2!
+ z3

3!
+ z4

4!
+ z5

5!
+ · · ·

)
×
(

1 + 1
z

+ 1
2!z2

+ 1
3!z3

+ 1
4!z4

+ 1
5!z5

+ · · ·
)

.

The coefficient a0 is simply the constant term in this product, so identifying this as
the sum of products of the form zk

k! · 1
zkk! , we find that

a0 = 1 + 1 + 1
(2!)2

+ 1
(3!)2

+ 1
(4!)2

+ · · · =
∞∑

k=0

1
(k!)2

.

Further examination of the product of the two series shows that the coefficients
an and a−n are equal, so we need only determine an. The coefficient a1 in the Laurent
series expansion about the origin is the coefficient of z in the preceding product, so
identifying this as the sum of the products zk+1

(k+1)!
1

zkk! gives

a1 = a−1 = 1 + 1
2!

+ 1
2! · 3!

+ 1
3! · 4!

+ · · · =
∞∑

k=0

1
k!(k + 1)!

.

If we proceed in this manner, it is not difficult to see that

an = a−n =
∞∑

k=0

1
k!(n + k)!

.

Substituting these values for a0 and a±n into

exp
(

z + 1
z

)
=

∞∑
n=1

a−n
1
zn

+
∞∑

n=0

anzn

gives the required Laurent series expansion that is convergent for |z| > 0.

EXAMPLE 15.19 Find (a) the Laurent series expansion of f (z) = 1/(z2 + 1)2 in the largest possible
circle about the point z = i , and (b) the expansion about the origin for |z| > 1.
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Solution

(a) Writing f (z) as

f (z) = 1
(z − i)2(z + i)2

shows that the function has singularities only at z = i and z = −i . When the function
is expanded in a Laurent series about z = i , the radius R of the outer boundary of
the largest annulus of convergence must equal the distance between z = i and the
singularity at z = −i closest to z = i . As |i − (−i)| = 2 we see that R = 2, so as the
point z = i must be excluded from the annulus of convergence centered on z = i ,
the function f (z) will be analytic in the punctured disc 0 < |z − i | < 2, where the
expansion will be in terms of powers of z − i .

Simplifying f (z) by using partial fractions gives

f (z) = 1
(z2 + 1)2

= − i
4

1
z − i

− 1
4

1
(z − i)2

+ i
4

1
z + i

− 1
4

1
(z + i)2

.

The first two terms are already expressed in terms of powers of z − i , so it remains
to express the last two terms in this form.

The third term on the right can be written as

i
4

1
z + i

= i
4

1
(z − i) + 2i

,

so as |z − i | < |2i | the binomial theorem can be used to expand this expression as

i
4

1
z + i

= i
4

1
2i

1[
1 + z−i

2i

] = 1
8

[
1 − i

(
z − i

2

)]−1

= 1
8

∞∑
n=0

in(z − i)n

2n
=

∞∑
n=0

in(z − i)n

2n+3
.

The fourth term can be written in a similar form by writing

−1
4

1
(z + i)2

= −1
4

1
[(z − i) + 2i]2

= −1
4

1
(2i)2

1[
1 + z−i

2i

]2 = 1
16

[
1 − i

(
z − i

2

)]−2

= 1
16

∞∑
n=1

nin−1(z − i)n−1

2n−1
.

The coefficients of the Laurent series expansion will be simplified if the last two
results are combined. To accomplish this, we change the summation index in the
last expansion to make it start from zero. This is accomplished by setting n − 1 = m
when we can write

1
16

∞∑
n=1

nin−1(z − i)n−1

2n−1
=

∞∑
m=0

(1 + m)im(z − i)m

2m+4
.

As the choice of symbol for a summation index does not affect the summation, we
now replace m by n to obtain the equivalent result

−1
4

1
(z + i)2

=
∞∑

n=0

(1 + n)in(z − i)n

2n+4
.
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As a result, the last two terms of the partial fraction decomposition become

i
4

1
z + i

− 1
4

1
(z + i)2

=
∞∑

n=0

in(z − i)n

2n+3
+

∞∑
n=0

(1 + n)in(z − i)n

2n+4

=
∞∑

n=0

(n + 3)in(z − i)n

2n+4
,

from which the complete Laurent series expansion for 0 < |z − i | < 2 is seen to be

1
(z2 + 1)2

= − i
4

1
z − i

− 1
4

1
(z − i)2

+
∞∑

n=0

(n + 3)in(z − i)n

2n+4
.

(b) The singularities of f (z) occur on the unit circle |z| = 1, so outside this circle
the function will be analytic. As |1/z| < 1 in the required domain, the binomial
theorem can be used to expand the function when written in the form

1
(z2 + 1)2

= 1
z4

1(
1 + 1

z2

)2 = 1
z4

(
1 + 1

z2

)−2

,

from which it follows that

1
(z2 + 1)2

=
∞∑

n=1

(−1)n+1 n
z2n+2

for |z| > 1.

When |z| is large the operations leading to a Laurent series are sometimes
difficult to perform directly. In such circumstances the substitution z = 1/u is made
where |u| is small, corresponding to |z| large, and after the expansion has been
developed in terms of u, the result is then transformed back to the original variable
z. This approach is illustrated in the next example.

EXAMPLE 15.20 Find the Laurent series expansion of f (z) = Log( z−1
z−2 ) for large |z|.

Solution Substituting z = 1/u in f (z) gives

f (z) = Log
(

z − 1
z − 2

)
= Log

((
1 − 1

z

)/(
1 − 2

z

))
= Log

(
1 − u

1 − 2u

)
= Log(1 − u) − Log(1 − 2u).

Replacing the logarithms in this last expression by their Maclaurin series expansions
that will both be valid provided |u| < 1

2 gives

f (u) = −
(

u + 1
2

u2 + 1
3

u3 + · · · 1
n

un + · · ·
)

+
(

2u + 2u2 + 8
3

u3 + · · · + 2n

n
un + · · ·

)

= u + 3
2

u2 + 7
3

u3 + · · · +
(

2n − 1
n

)
un + · · · , for |u| <

1
2
.

Finally, transforming back to the variable z, and noticing that |u| < 2 corresponds
to |z| > 2, we arrive at the required Laurent series expansion for large |z|:

Log
(

z − 1
z − 2

)
=

∞∑
n=1

2n − 1
nzn

, for |z| > 2.
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The expansion of functions as Laurent series makes it necessary to classify the
different types of singularity that arise. The relevance of this classification, and the
importance of the coefficients of a Laurent series, will become clear later once the
evaluation of integrals by means of contour integration has been developed.

A point z0 is called an isolated singularity of a function f (z) if f (z) has aisolated singularities,
removable
singularities, poles,
and essential
singularities

singularity at z0, but is single valued and analytic in the annulus (punctured disc)
0 < |z − z0| < R.

Singularities are easily identified when a function is a quotient of analytic func-
tions f (z) = g(z)/h(z), because they occur at any zero z∗ of h(z) where the numer-
ator g(z∗) �= 0, and also at any infinity of g(z) where h(z) remains finite.

For example, the function f (z) = (z + 3)/(z2 + 4) has singularities at the zeros
z = ±2i of the denominator z2 + 4, because the numerator z + 3 does not vanish
at either of these points. However, the function f (z) = (tan z)/z2 has a singularity
at z = 0 due to a zero of the denominator, because although tan z = z + z3/3 + . . . ,

the function f (z) = (tan z)/z2 = (1/z) + z/3 + . . . . So f (z) has a singularity at the
origin also and also at z = (2n + 1)π/2 for n = 0, ±1, ±2, . . . , because of infinities
of the numerator.

Consideration of the general form of the Laurent series expansion given in (15)
allows three distinct cases to be identified, namely:

1. The Laurent series for f (z) contains no negative powers of (z − z0).
2. The Laurent series for f (z) only contains a finite number of terms involving

negative powers of (z − z0), up to and including the term in (z − z0)−r .
3. The Laurent series for f (z) contains infinitely many terms involving negative

powers of (z − z0).

Case 1. Functions f (z) with this property are said to have a removable sin-
gularity at z0 because, irrespective of how f (z) is defined at z0 (and even if
it is not defined), the Laurent series converges to the value a0 when z = z0.
Consequently, by defining f (z0) = a0 the singularity (discontinuity) at z0 is
removed. In working with functions with removable singularities, it is always
assumed that they have been removed.
Case 2. Functions f (z) with this property have a principal part of the Laurent
series of the form

a−1

(z − z0)
+ a−2

(z − z0)2
+ · · · + a−r+1

(z − z0)r−1
+ a−r

(z − z0)r
,

where some or all of the coefficients a−1, a−2, . . . , a−r+1 may be zero, but
a−r �= 0. This type of singularity is called a pole of order r of the function
f (z) located at z0, or sometimes a pole of multiplicity r located at z0. A pole
of order 1 is called a simple pole.

Although no further use will be made of the term, for the sake of com-
pleteness we mention that the quotient of two analytic functions is called a
meromorphic function. Thus, a meromorphic function is analytic throughout
a domain apart from points where poles arise due to a zero of the denominator
where the numerator is nonvanishing.
Case 3. Functions f (z) with this property are said to have an essential singu-
larity located at the point z0.
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In what follows our concern will only be with Cases 1 and 2, because of the
extremely erratic behavior of functions in a neighborhood of an essential singularity.

EXAMPLE 15.21 Identify the singularities of the functions

(a) f (z) = cosh z − 1
z2

, (b) f (z) = 2z2 + 13z + 3
z3 + 3z2 − 4

, (c) f (z) = sinhz
z5

,

(d) f (z) = zexp(1/z).

Solution

(a) f (z) is analytic everywhere apart from z = 0 where it is indeterminate. To
examine the behavior of f (z) at the origin we replace cosh z by its Maclaurin series,
leading to the result

cosh z − 1
z2

=
(

1 + z2

2! + z4

4! + · · ·
)

− 1

z2
.

Cancelling the 1 and dividing by z2 gives

cosh z − 1
z2

= 1
2

+ z2

4!
+ · · · ,

so taking the limit as z → 0, we find that

lim
z→0

cosh z − 1
z2

= 1
2
.

If we define

f (z) =

⎧⎪⎪⎨⎪⎪⎩
cosh z − 1

z2
, z �= 0

1
2
, z = 0,

the singularity at z = 0 has been removed, and the resulting function is analytic for
all z, so this function has a removable singularity at z = 0.

(b) A partial fraction decomposition of f (z) gives

f (z) = 2
z − 1

+ 5
(z + 2)2

,

from which it can be seen that f (z) has a simple pole at z = 1 and a pole of order 2
at z = −2.

(c) As

f (z) = sinh z
z5

= z + z3

3! + z5

5! + z7

7! + · · ·
z5

= 1
z4

+ 1
3!

1
z2

+ 1
5!

+ 1
7!

z2 + · · · ,
the function is seen to have a pole of order 4 at the origin and to be analytic for all
z �= 0.

(d) Expanding the function gives

f (z) = zexp(1/z) = z
(

1 + 1
z

+ 1
2!z2

+ 1
3!z3

+ · · ·
)

= z + 1 + 1
2!z

+ 1
3!z2

+ · · · ,

showing that this function has an isolated essential singularity at the origin.
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The Extended Complex Plane:
The Point at Infinity
Unlike real numbers, complex numbers have no natural order property, so the
inequality symbols < and > have no meaning when applied to complex numbers z1

and z2. However, |z1| and |z2| are real numbers that can be ordered, so this property
can be used to give meaning to the “number” z = ∞. This is accomplished by saying
that the complex sequence {zn} tends to infinity, written

lim
n→∞ zn = ∞,

ifthe meaning of the
point at infinity in
the complex plane,
and the Riemann
sphere

lim
n→∞ |zn| = ∞.

This definition coincides with the corresponding one for real numbers, because
the last result means that for any positive number L there is a positive integer N
such that |zn| > L for all n > N. Thus, the point at infinity in the complex plane
is taken to be the set of all points z such that |z| lies outside the circle |z| = L for
any positive L. Accordingly, the set of all points outside a circle of arbitrarily large
radius Lcentered on the origin is said to be a neighborhood of infinity. The complex
plane, to which has been added the point at infinity is called the extended complex
plane, and it is useful when performing various limiting operations.

A geometrical interpretation of z = ∞ that provides a justification for using the
expression “point” at infinity can be obtained by making a stereographic projection
of the extended complex plane onto a sphere. The concept, called the Riemann
sphere, is illustrated in Fig. 15.5, which represents a sphere resting on the extended
complex plane with its center above the origin. The point S of the sphere at the
origin is called its south pole and the point N on its surface vertically above the
origin is called its north pole.

S

Origin

Real axis

zExtended complex plane

z*

N

Imaginary axis

FIGURE 15.5 The Riemann sphere.
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A point z on the extended complex plane is brought into correspondence with
a point z∗ on the sphere by taking z∗ to be the point of intersection with the sphere
of a straight line drawn from N to the point z. Each finite z corresponds to a unique
point on the sphere, while all points in a neighborhood of z = ∞, which is outside a
circle of arbitrarily large radius drawn in the extended complex plane with the origin
as its center, correspond to an arbitrarily small neighborhood of N. Thus, the point
N corresponds to the point at infinity in the extended complex plane. It is easy to
see that circles in the extended complex plane with their center at the origin map to
circles on the sphere (lines of latitude) while radial lines through S in the extended
complex plane map to great circles (meridians) on the sphere (lines of longitude).

As already remarked, to study the behavior of a function f (z) in a neighborhood
of z = ∞, the substitution z = 1/u is made, leading to an expression F(u) = f (1/u).
The behavior of f (z) in a neighborhood of z = ∞ is then determined by the behavior
of F(u) in a neighborhood of u = 0.

Thus, if we consider the extended complex plane, the Laurent series for f (z) =
1

z(1−z) in a neighborhood of z = ∞ is obtained by setting z = 1/u, taking u to be
arbitrarily small, and then, after expanding the result, writing u = 1/z. This leads
to the result

F(u) = f (1/u) = 1
1
u

(
1 − 1

u

) = u2

u − 1

= −u2(1 − u)−1 = −u2(1 + u + u2 + · · ·) = −
∞∑

n=2

un,

and after substituting u = 1/z this becomes the required Laurent series expansion
in a neighborhood of z = ∞,

f (z) = −
∞∑

n=2

1
zn

for |z| > 1.

The same form of argument makes it possible to determine if a function f (z)
has a singularity at infinity and to classify such singularities. If we set z = 1/u as
before to obtain F(u) = f (1/u), the singularity of f (z) at z = ∞ is defined to be
the same as that of F(u) at u = 0.

For example, the function

f (z) = z5 − 1
z3

.

has a pole of order 3 at the origin in the ordinary complex plane, so to study its
behavior at z = ∞ in the extended complex plane we set z = 1/u when

F(u) = 1
u5

− u3,

showing that F(u) has a pole of order 5 at z = ∞. Similarly, the function f (z) = ez

is regular at the origin, that is, it has no singularity at the origin, but as F(u) =
f (1/u) = e1/u we see that f (z) = ez has an essential singularity at z = ∞.

Summary The Laurent series expansion of a function f (z) about a singularity was defined, and it
was shown that instead of using the formal definition to arrive at the expansion, it is
often simpler to use a simple algebraic argument. Poles and singularities of functions were
defined, and the meaning of the point at infinity in the complex plane was explained.
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EXERCISES 15.3

In Exercises 1 through 12 find the Laurent series of f (z)
expanded about the given point and determine its annulus
of convergence.

1. f (z) = 1
z − 2

expanded about z = 0.

2. f (z) = 1
(z − a)2

(a �= 0) expanded about z = 0.

3. f (z) = 1
(z − a)(z − b)

(0 < |a| < |b|), with |z| < |a|
expanded about z = 0.

4. f (z) = 1
(z − a)(z − b)

(0 < |a| < |b|), with 0 < |z− a| <
|b − a| expanded about z = a.

5. f (z) = 1
(z − a)(z − b)

(0 < |a| < |b|), in the annulus

|a| < |z| < |b| when expanded about z = 0.

6. f (z) = z2 − 2z + 5
(z − 2)(z2 + 1)

expanded about z = 2.

7. f (z) = exp
(

1
1 − z

)
expanded (a) about z = 1, and

(b) about z = 0 for |z| > 1.

8. f (z) = 1
z(1 − z)

expanded (a) about z = 0 and

(b) about z = 1.

9. f (z) = sin
(

z
1 − z

)
expanded about z = 1.

10. f (z) = 1
(z − 2)(z − 3)

expanded about z = 0 for |z| < 2

and for 2 < |z| < 3.

11. f (z) = 1
(1 − z)(z + 2)

expanded about z = 0.

12. f (z) = 1
z2 + a2

expanded about (a) z = ia and (b) z = 0

for |z| > |a|.

In Exercises 13 through 16 find the first four terms of the
Laurent series expansion of f (z) about the given point.

13. f (z) = sinh
(

1 + 1
z

)
expanded about z = 0.

14. f (z) = cosh
(

2 + 1
z

)
expanded about z = 0.

15. f (z) = sin zsin(z/3)
z3

expanded about z = 0.

16. f (z) = sin zsinh(z/4)
z4

expanded about z = 0.

In Exercises 17 through 28 classify the nature of any singu-
larities that occur in the finite complex plane.

17. f (z) = 1
4z − z3

.

18. f (z) = z
1 + z4

.

19. f (z) = exp(−1/z2).

20. f (z) = 1 + z
z(z2 + 4)2

.

21. f (z) = sin z
sinh z

.

22. f (z) = 1 + z2

cosh z
.

23. f (z) = exp
(

z
1 − z

)
.

24. f (z) = cot(1/z).
25. f (z) = tan2 z.

26. f (z) = cos z
z2

.

27. f (z) = cos 2z − 1

sin2 z
.

28. f (z) = z3 − 8z − 3
z − 3

.

Further Results

29. The integral for an in Theorem 15.13 defines the
coefficients of the Laurent series for a function f (z)
expanded about the point z0 that is convergent in the
annulus R1 < |z − z0| < R2. Use this integral to derive
the Cauchy inequalities for the coefficients of a Laurent
series

|an| ≤ M
Rn

, for n = 0, ±1, ±2, . . . ,

where M is the greatest value of | f (z)| on a circle
|z − z0| = R, with R1 < R < R2.

30. Use the result of Exercise 29 to show that if a function
f (z) = ∑∞

n=0 anzn is an entire function such that when
|z| > R1 (the inner radius of the annulus of convergence
in Theorem 15.13), and for a given nonnegative inte-
ger N,

| f (z)| < M|z|N,

then f (z) must be a polynomial of degree no greater
than N.

In Exercises 31 through 34 find the Laurent series expan-
sion of f (z) in a neighborhood of z = ∞.

31. f (z) = 1
z + 3

.

32. f (z) = 1
(z2 + 1)2

.

33. f (z) = Log
(

z2

1 + z2

)
.

34. f (z) = 1
(z − a)(z − b)

× (0 < |a| < |b|).

In Exercises 35 through 40 determine the nature of the
singularity of f (z) at z = ∞.

35. f (z) = 1
z − z3

.

36. f (z) = z5

(1 + z)2
.

37. f (z) = 1
sin z

.

38. f (z) = cos 3z
z2

.

39. f (z) = e2iz.
40. f (z) = tan z.
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15.4 Residues and the Residue Theorem

Let an analytic function f (z) have an isolated singularity at z0. Then its Laurent
series expansion about the point z0,

f (z) =
∞∑

n=−∞
an(z − z0)n = · · · + a−3

(z − z0)3
+ a−2

(z − z0)−2
+ a−1

(z − z0)

+ a0 + a1(z − z0) + a2(z − z0)2 + · · · , (22)

will converge in some punctured disc 0 < |z − z0| < R. The residue of f (z) at z =the residue and its
connection with the
Laurent expansion

z0, written Res[ f (z), z0], or simply Res[z0] when there is no ambiguity about the
function involved, is defined as the number a−1, so that

Res[ f (z), z0] = a−1. (23)

Thus, the residue of f (z) at z0 is the coefficient of the term 1/(z − z0) in the principal
part of its Laurent series expansion about z0.

EXAMPLE 15.22 Find the residue of f (z) = 1/(z2 + 1)2 at the point z = i .

Solution It was shown in Example 15.19 that the Laurent series of f (z) = 1/

(z2 + 1)2 expanded about the point z = i is

f (z) = − 1
4(z − i)2

− i
4(z − i)

+
∞∑

n=0

(n + 3)in(z − i)n

2n+4
for 0 < |z − i | < 2,

so the residue at z = i is seen to be

Res[i] = − i
4
.

From now on our concern will be with residues of analytic functions f (z) whose
only isolated singularities are poles. Then, if z0 is a pole of f (z) of order N, its
Laurent series expansion about the pole will be of the form

f (z) = a−1

z − z0
+ a−2

(z − z0)2
+ · · · + a−N

(z − z0)N
+

∞∑
n=0

an(z − z0)n, (24)

where a−N �= 0, though some or all of the remaining coefficients a−1, a−2, . . . , a1−N

may vanish.
Let f (z) be analytic at z0. Then z0 is a zero of the function f (z) if f (z0) = 0.

In some neighborhood of z0 the function will have a Taylor series expansion of the
form

f (z) =
∞∑

n=1

an(z − z0)n, (25)

where to satisfy the condition f (z0) = 0 we have set the coefficient a0 = 0. The
zero z0 is called a simple zero of f (z) if a1 �= 0, and a zero of order N if the first
nonvanishing coefficient in (25) is aN. If the zero is of order N we can write

f (z) = (z − z0)Ng(z), (26)

where g(z0) �= 0 and g(z) is analytic in a neighborhood of z0, from which it follows
a zero of order n and
testing for a pole of
order n

that if f (z) has a zero of order N at z0, then 1/ f (z) will have a pole of order N at z0.
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Inspection of (24) provides the following simple test for a pole of order N.

Test for a pole of order N

If f (z) is analytic in the punctured disc 0 < |z − z0| < R, then a necessary and
sufficient condition for it to have a pole of order N at z0 is that

lim
z→z0

(z − z0)N f (z) = C, where C �= 0.

In most cases, when z0 is a pole of f (z), it is simpler to determine the residue
at z0 by one of the formulas we will now derive than to develop the Laurent series
expansion of f (z) about z0 and then to identify the residue with the coefficient a−1.

The simplest case occurs when a function f (z) of the form

f (z) = g(z)
h(z)

has a simple pole at z0, and g(z) and h(z) are analytic functions in a neighborhood
of z0. Suppose first that h(z) contains a factor (z − z0), and so can be written h(z) =
(z − z0)F(z), where F(z0) �= 0. Then

f (z) = 1
(z − z0)

g(z)
F(z)

,

but H(z) = g(z)/F(z) is analytic at z0 and so can be expanded in a Taylor series
about z0 of the form

H(z) = H(z0) + (z − z0)H′(z0) + 1
2!

(z − z0)2 H′′(z0) + · · · .

Using this result in the expression for f (z) and writing H(z0) = g(z0)/F(z0)
gives

f (z) = 1
z − z0

g(z0)
F(z0)

+ H′(z0) + 1
2!

(z − z0)H′′(z0) + · · · .

This shows that Res[ f (z), z0], the coefficient of 1/(z − z0) in the Laurent series
expansion of f (z) about z0, is given by

Res[ f (z), z0] = g(z0)
F(z0)

. (27)

Now suppose that f (z) is of the form

f (z) = g(z)
h(z)

and has a simple pole at z0, but that h(z) does not contain a factor (z − z0). Then,
as f (z) will have a Laurent series expansion about z0 of the form

f (z) = g(z)
h(z)

= Res[ f (z), z0]
z − z0

+
∞∑

n=0

an(z − z0)n,

we see that

Res[ f (z), z0] = lim
z→z0

{
(z − z0)g(z)

h(z)

}
.
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Using the fact that h(z0) = 0 allows this to be written

Res[ f (z), z0] = lim
z→z0

{
g(z)

/(
h(z) − h(z0)

z − z0

)}
,

but h(z) is analytic and

h′(z0) = lim
z→z0

(
h(z) − h(z0)

z − z0

)
,

so

Res[ f (z), z0] = g(z0)
h′(z0)

. (28)

Finally we consider the case where f (z) has a pole of order N at z0, and so has
the Laurent series expansion about z0 given by (24). Multiplying (24) by (z − z0)N

gives

(z − z0)N f (z) = a−1(z − z0)N−1 + a−2(z − z0)N−2 + · · · + a−N +
∞∑

n=0

an(z − z0)N+n,

and after differentiating this with respect to z we find that

d
dz

[
(z − z0)Nf (z)

] = (N − 1)a−1(z − z0)N−2 + (N − 2)a−2(z − z0)N−3

+ · · · + a1−N +
∞∑

n=0

(N + n)an(z − z0)N+n−1.

Taking the limit of this result as z → z0 reduces it to

lim
z→z0

{
d
dz

[
(z − z0)N f (z)

]} = a1−N.

A repetition of this process yields the formula

lim
z→z0

{
d2

dz2

[
(z − z0)N f (z)

]} = a2−N,

so as Res[ f (z), z0] = a−1, after N − 1 differentiations this same form of argument
brings us to the final result

Res[ f (z), z0] = 1
(N − 1)!

lim
z→z0

{
dN−1

dzN−1
[(z − z0)N f (z)]

}
. (29)

Taken together, results (27) to (29) have established the following formulas forformulas for finding
the residue at a
simple pole and at a
pole of order n

the calculation of residues.

Formulas for the residue at a pole of a function of the form f (z) = g(z)/h(z)

1. (i) Let a function f (z) that is analytic in a punctured disc 0 <

|z− z0| < R have a simple pole at z0. Then if f (z) = g(z)/h(z), and
h(z) contains a factor (z − z0) and so can be written h(z) = (z − z0)F(z)
where F(z0) �= 0, the residue of f (z) at z0 is given by the formula

Res[ f (z), z0] = g(z0)
F(z0)

, (30)
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(ii) and if h(z0) = 0, but h(z) does not necessarily contain a factor
(z − z0), the residue of f (z) at z0 is given by the formula

Res[ f (z), z0] = g(z0)
h′(z0)

. (31)

2. Finally, if f (z) has a pole of order N at z0, the residue of f (z) at z0 is
given by the formula

Res[ f (z), z0] = 1
(N − 1)!

lim
z→z0

{
dN−1

dzN−1
[(z − z0)N f (z)]

}
. (32)

EXAMPLE 15.23 Find the residues at the poles of the functions

(a) f (z) = z2 + 2z + 3
z − i

, (b) f (z) = 1
(z2 + 1)2

, (c) f (z) = 1
zsin z

,

(d) f (z) = sech z.

Solution

(a) f (z) has a simple pole at z = i , with g(z) = z2 + 2z + 3 and h(z) = z − i , so
as the denominator contains the factor (z − i), making use of (30) gives

Res[i] =
[

(z − i)
(z2 + 2z + 3)

(z − i)

]
z=i

= [z2 + 2z + 3]z=i = 2(1 + i).

(b) The function has poles of order 2 at z = ±i , so from (32) with N = 2 we see
that

Res[i] = 1
1!

lim
z→i

{
d
dz

[
(z − i)2 1

(z2 + 1)2

]}
= − i

4
,

and similarly

Res[−i] = 1
1!

lim
z→−i

{
d
dz

[
(z + i)2 1

(z2 + 1)2

]}
= i

4
.

This simple calculation for the determination of Res[i] should be compared
with the extensive calculations needed to arrive at the full Laurent series for f (z)
expanded about the point z = i in Example 15.22, where the coefficient of the term
1/(z − i) was, of course, equal to −i/4.

(c) The function has poles at the zeros of the denominator zsin z. For small z

sin z = z − z3

3!
+ z5

5!
− · · · = z

(
1 − z2

3!
+ z4

5!
− · · ·

)
,

so near the origin

f (z) = 1
z2

· 1(
1 − z2

3! + z4

5! − · · ·
) ,

showing that f (z) has a pole of order 2 at the origin. Elsewhere, z �= 0 and the factor
sin z has zeros at ± nπ for n = 0, 1, 2, . . . , corresponding to simple poles of f (z).
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The residue at the origin, obtained from (32) with N = 2 and z0 = 0, is

Res[0] = 1
1!

lim
z→0

{
d
dz

[
z2 1

zsin z

]}
= lim

z→0

{
sin z − zcos z

sin2 z

}
.

This is an indeterminate form, so applying l’Hôpital’s rule we find that

Res[0] = lim
z→0

{
zsin z

2 sin zcos z

}
= 0.

The residues at the simple zeros± nπ , for n = 1, 2, . . . , follow by setting g(z) = 1
and h(z) = zsin z in (31) to obtain

Res[ ± nπ ] = [1/(sin z + zcos z)]z=±nπ = ±(−1)n

nπ
, for n = 1, 2, . . . .

(d) Writing f (z) = 1/ cosh z shows that poles of f (z) are located at the zeros
(2n + 1)π i/2 of cosh z for n = 0, ±1, ±2, . . . . So f (z) has simple poles at z =
(2n + 1)π i/2 for n = 0, ±1, ±2, . . . . From (31) using g(z) = 1 and h(z) = cosh z
we have

Res[(2n + 1)π i] = 1
sinh{(2n + 1)π i/2} = 1

i sin{(2n + 1)π/2} = (−1)n+1i,

for n = 0, ±1, ±2, . . . .

When the limit in (32) is difficult to evaluate, it is necessary to determine the
residue by developing the Laurent series expansion to the point where the coeffi-
cient of the term 1/(z − z0) can be identified. This situation is illustrated in the next
example.

EXAMPLE 15.24 Find the residue of

f (z) = sin
(

z
z + 1

)
.

Solution Inspection of the argument of the sine function shows that its only sin-
gularity occurs at z = −1, but the function is sufficiently complicated that result
(32) is not useful. Accordingly, to find the coefficient of the term 1/(z + 1) in the
Laurent series expansion about z = −1, we rewrite f (z) as

f (z) = sin
(

1 − 1
z + 1

)
,

and then use the familiar trigonometric identity sin(A− B) = sin A cos B −
cos A sin B to expand this as

f (z) = sin(1) cos
(

1
z + 1

)
− cos(1)sin

(
1

z + 1

)
.

Replacing the cosine and sine function involving z with the first few terms of their
Maclaurin series gives

f (z) = sin(1)
(

1 − 1
2!(z + 1)2

+ 1
4!(z + 1)4

− · · ·
)

−cos(1)
(

1
z + 1

− 1
3!(z + 1)3

+ 1
5!(z + 1)5

− · · ·
)

.



Section 15.4 Residues and the Residue Theorem 835

Γ
R

z0

D

FIGURE 15.6 A contour � containing a point
z0 at which f (z) has a pole.

Inspection then shows that the coefficient of the term 1/(z + 1) is −cos (1), so

Res[ f (z), −1] = − cos(1).

The crucial importance of residues in the theory of complex integration followswhy residues
are important from the fact that when a function f (z) has a pole of any order at a point z0 in a

domain D, but is analytic elsewhere D, then the integral around any contour in D
that contains the pole at z0 depends only on the value of the residue at z0. To prove
this assertion, and to find the value of the integral, we consider the case in which
f (z) has a pole of order N at a point z0 in a domain D but is analytic elsewhere
in D.

We take a positively oriented contour � in D as shown in Fig. 15.6, represent
f (z) by its Laurent series (24) expanded about z0, and integrate the result around �.

As a result we have∫
�

f (z)dz =
∫

�

(
a−1

z − z0
+ a−2

(z − z0)2
+ · · · + a−N

(z − z0)N

)
dz +

∞∑
n=0

an

∫
�

(z − z0)ndz,

(33)

where term-by-term integration of the infinite series at the right is allowed by virtue
of Theorem 15.12.

It was shown in Example 14.4 that∫
|z−z0|=R

(z − z0)ndz = 0 for n = −2, −3, . . . , and n = 0, 1, 2, . . . ,

where the circle |z − z0| = R lies within D. The deformation of contour theorem
asserts that these results are true for any contour � in D that contains z0, as a result
of which (33) reduces to ∫

�

f (z)dz =
∫

�

a−1

z − z0
dz,

and so to the equivalent result∫
�

f (z)dz = Res[z0]
∫

�

dz
z − z0

.



836 Chapter 15 Laurent Series, Residues, and Contour Integration

In Example 14.5 it was shown that∫
|z−z0|=R

dz
z − z0

= 2π i,

when the circle |z − z0| = R lies within D. The deformation of contour theorem
allows this result to remain true when the circle |z − z0| = R is replaced by the
contour � containing z0, so we have proved the extremely important result that∫

�

f (z)dz = 2π i Res[ f (z), z0]. (34)

This result is easily extended to the case of a function f (z) with m poles in D
located at the points z1, z2, . . . , zm. To see this, let the poles in D lie inside a simple
positively oriented closed contour � contained in D, and enclose the pole at zr in a
small positively oriented circle �r lying inside D, with r = 1, 2, . . . , m. Integrating
around � and using the extended Cauchy–Goursat theorem, we obtain∫

�

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz + · · · +
∫

�m

f (z)dz,

but from (34),∫
�r

f (z)dz = 2π i Res[ f (z), zr ], for r = 1, 2, . . . , m,

so ∫
�

f (z)dz = 2π i[Res[ f (z), z1] + Res[ f (z), z2] + · · · + Res[ f (z), zm]]. (35)

This result contains the Cauchy–Goursat theorem as a special case, because if
the contour � in D contains no poles of f (z), the function has no residues inside �

and so ∫
�

f (z)dz = 0.

The fundamental result contained in (35) forms our next theorem.

THEOREM 15.14 The residue theorem Let f (z) have poles at z1, z2, . . . , zm in a domain D and be
analytic elsewhere in D. Then if � is any simple positively oriented contour in D

contour integrals
and the residue
theorem

containing the points z1, z2, . . . , zm,

∫
�

f (z)dz = 2π i
m∑

r=1

Res[ f (z), zr ].

Expressed in words, this theorem says that the integral of f (z) around � isevaluating a contour
integral using residues 2π i times the sum of the residues enclosed in �. The next example illustrates the

application of Theorem 15.14 to a function with three poles.

EXAMPLE 15.25 Find all the residues of the function f (z) = ez

(z+2i)3(z2−4) , and use them to determine∫
�

f (z)dz around the following positively oriented contours in which � is (a) the
circle �1 given by |z + 3i | = 2, (b) the circle �2 given by |z − 2| = 1, and (c) the
circle �3 given by |z| = 4.
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Solution Inspection of f (z) shows it has a pole of order 3 at z = −2i , and simple
poles at z = ±2. Applying (32) to find the residue at z = −2i gives

Res[ f (z), −2i] = 1
2!

{
d2

dz2

[
(z + 2i)3 ez

(z + 2i)3(z2 − 4)

]}
z=−2i

= 1
2

{
d2

dz2

[
ez

z2 − 4

]}
z=−2i

= e−2i

16

(
i − 3

4

)
,

and as the poles at z = ±2 are only simple poles, it follows from (30) that

Res[ f (z), −2] =
[

ez

(z + 2i)3(z − 2)

]
z=−2

= e−2

128
(i − 1),

and

Res[ f (z), 2] =
[

ez

(z + 2i)3(z + 2)

]
z=2

= − e2

128
(1 + i).

The three contours �1, �2, and �3 and the location of the poles of f (z) are
shown in Fig. 15.7. Only the pole of order 3 at z = −2i lies inside contour �1, and
only the simple pole at z = 2 lies inside contour �2, though all three poles lie inside
contour �3.

2−2

pole pole

Γ2

Γ3

0

−2i

−3i

pole Γ1

x

y

z-plane

FIGURE 15.7 The contours �1, �2, and �3 and the location of the
poles of f (z).
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Applying Theorem 15.14 we have∫
�1

f (z)dz = 2π i
(

e−2i

16

(
i − 3

4

))
= −πe−2i

8

(
1 + 3i

4

)
∫

�2

f (z)dz = 2π i
(

−e2(1 + i)
128

)
= πe2(1 − i)

64

and ∫
�3

f (z)dz = 2π i
{
−e2(1 + i)

128
+ e−2(i − 1)

128
+ e−2i

16

(
i−3

4

)}

= π

64
(e2 − e−2) − πe−2i

8
− iπ

64
(6e−2i + e2 + e−2).

EXAMPLE 15.26 Find ∫
|z+1|=1

sin
(

z
z + 1

)
dz.

Solution We saw in Example 15.24 that the only singularity of the integrand is a
simple pole at z = −1 with residue −cos (1). So as the circle |z + 1| = 1 contains
the pole, it follows immediately from Theorem 15.14 that∫

|z+1|=1
sin
(

z
z + 1

)
dz = 2π i{−cos(1)} = −2π i cos(1).

Summary The Laurent series was used to introduce the idea of a residue, and formulas for finding the
residue at a simple pole and at a pole of order n were derived. The relationship of residues
to contour integrals was explained, and the fundamental residue theorem was proved.

EXERCISES 15.4

In Exercises 1 through 16 find the residues of the given
functions at their poles in the finite complex plane.

1. f (z) = z + 3
z2 − 4

.

2. f (z) = z2 + 1
z2(z + 2)

.

3. f (z) = z2 + z − 2
z2(z + 1)

.

4. f (z) = z2 + 1
z(z + 1)3

.

5. f (z) = sin z
z2(z − 1)

.

6. f (z) = cos z
z2 − 5z + 6

.

7. f (z) = z2 + 3
sin z

.

8. f (z) = sin 3z
(z − 1)4

.

9. f (z) = tan z.
10. f (z) = cot z.

11. f (z) = 1
ez + 1

.

12. f (z) = sinh z
sin z

.

13. f (z) = sin z
sinh z

.

14. f (z) = π

z2 tan πz
.

15. f (z) = cos
(

1
z − 2

)
.

16. f (z) = z3 cos
(

1
z − 2

)
.

Evaluate the contour integrals in Exercises 17 through 28.

17.
∫

|z|=1

sin z
z4

dz.

18.
∫

|z|=2

cos z
z2

dz.

19.
∫

|z|=1

z2 + 1
z(z − 6)

dz.

20.
∫

|z−2|=1/2

zdz
(z − 1)(z − 2)2

.

21.
∫

|z−1|=1

dz
z4 + 1

.

22.
∫

|z|=2

dz
(z − 3)(z5 − 1)

.

23.
∫

|z|=1

ez

z2(z2 − 9)
dz.

24.
∫

|z|=1/2
zne2/zdz(n = 0, ±1, ±2, . . .).
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25.
∫

|z−i |=1

1 − e2iz

z2 + 1
dz.

26.
∫

|z|=2

cos z
z3

dz.

27.
∫

|z|=2
(2z − 1) cos

(
z

z − 1

)
dz.

28.
∫

|z|=4

e1/(z−1)

z − 2
dz.

Integrals of the form∫ 2π

0
Rational[cos θ, sin θ ]dθ,

where Rational[cos θ, sin θ] is a rational function of cos θ

and sin θ (a quotient of polynomials in cos θ and sin θ), can
be evaluated by making the substitutions

cos θ = 1
2

(
z + 1

z

)
, sin θ = 1

2i

(
z − 1

z

)
, and dθ = dz

iz
,

which all follow from De Moivre’s theorem, and then in-
tegrating around the unit circle |z| = 1. Use this approach
to evaluate the trigonometric integrals in Exercises 29
through 33.

29.
∫ 2π

0

dθ

a + cos θ
(a > 1).

30.
∫ 2π

0

dθ

(a + cos θ)2
(a > 1).

31.
∫ 2π

0

dθ

3 + sin θ
.

32.
∫ 2π

0

dθ

3 − 2 sin θ
.

33.
∫ 2π

0

dθ

1 − 2a cos θ + a2

(0 < a < 1).

34. Prove that if f (z) = g(z)/h(z) is the quotient of two
functions where g(z) is analytic at z0 with g(z0) �= 0,
and h(z) has a zero of order 2 at z0, then

Res[ f (z), z0] = 6g′(z0)h′′(z0) − 2g(z0)h′′′(z0)
3[h′′(z0)]2

.

15.5 Evaluation of Real Integrals
by Means of Residues

The previous section showed how the residues at the poles of an analytic function
inside a simple closed contour determine the value of integral of the function around
the contour. In the present section we show how by taking some part of the contour
along the real axis it is possible to use the method of residues to evaluate improper
real integrals of the form∫ ∞

0
f (x)dx and

∫ ∞

−∞
f (x)dx,

where f (x) may become infinite at a finite number of points in the interval of
integration.

(a) Convergence, Divergence, and Cauchy
Principal Values of Integrals
The meaning of integration over a semi-infinite or an infinite interval obtained by
complex analysis needs to be explained. It will be recalled from elementary calculus
that when f (x) remains finite over the interval of integration, the values of these
improper integrals are defined as the limiting values∫ ∞

0
f (x)dx = lim

R→∞

∫ R

0
f (x)dx and∫ ∞

−∞
f (x)dx = lim

R1→∞,R2→∞

∫ R2

−R1

f (x)dx, (36)

where in the second integral R1 and R2 are allowed to tend to infinity independently
of each other. If these limiting values are finite, the improper integrals are said to
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converge to the values of their respective limits, and they are said to be divergent if
the limits are undefined or are infinite.

If, in addition, f (x) becomes infinite at a point x0 inside the interval of integra-
tion, say in the first of these integrals, the value of the integral is to be interpreted as

∫ ∞

0
f (x)dx = lim

α→0

∫ x0−α

0
f (x)dx + lim

β→0,R→∞

∫ R

x0+β

f (x)dx, (37)

where α > 0 and β > 0 are allowed to tend to zero independently of each other. If
this limit is finite, the integral is said to converge to the value of the limit, and it is said
to be divergent if the limit is undefined or infinite. A corresponding interpretation
applies to integrals over the interval (−∞, ∞) when f (x) is infinite at a point
x0 inside the interval of integration. If f (x) is infinite at several points inside the
interval of integration, the limiting operation shown in (37) is extended in an obvious
manner.

Improper integrals such as (37) can occur that are divergent if α and β are
allowed to tend to zero independently of each other, but are convergent if β = α as
α → 0. In convergent integrals of this type the upper limit of integration in the first
integral in (37) is x0 − α and the lower limit in the second integral is x0 + α. Similarly,
improper integrals over infinite intervals such as the second integral in (36) occur
that are divergent when R1 and R2 are allowed to tend to infinity independently of
each other, but are convergent if R1 = R2, as R1 → +∞.

The value of an improper integral when the limits of integration on either side
of an infinity of the integrand at x0 are of the form x0 − α and x0 + α as α → 0,
and when the integral is over the infinite interval (−∞, ∞) the upper and lower
limits of integration are of the form R1 = R2, as R1 → +∞, is called the CauchyCauchy principal value
principal value of the integral. The Cauchy principal value of an integral is indicated
by inserting the symbol P.V. in front of the integral sign. So, if in the integral of f (x)
over the interval [0, ∞), the function f (x) has an infinity at x0, its Cauchy principal
value is defined as

P.V.
∫ ∞

0
f (x)dx = lim

α→0

∫ x0−α

0
f (x)dx + lim

α→0,R→∞

∫ R

x0+α

f (x)dx (α > 0).

(38)

In some improper integrals of the type shown in the second expression in (36),
allowing R1 and R2 to approach infinity at different rates produces the same result
as the Cauchy principal value, and when this occurs the symbol P.V. can be dropped.
This happens, for example, with the integral∫ ∞

−∞

dx
1 + x2

= lim
R1→∞,R2→∞

∫ R2

−R1

dx
1 + x2

= lim
R1→∞,R2→∞

{Arctan R2 − Arctan(−R1)}

=
{π

2
−
(
−π

2

)}
= π,

because it is also true that∫ ∞

−∞

dx
1 + x2

= lim
R→∞

∫ R

−R

dx
1 + x2

= lim
R→∞

{Arctan R − Arctan(−R)} = π.
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This is an integral for which

P.V.
∫ ∞

−∞

dx
1 + x2

=
∫ ∞

−∞

dx
1 + x2

= π.

As the integrand is an even function of x, these results allow us to conclude
that ∫ ∞

0

dx
1 + x2

= 1
2

∫ ∞

−∞

dx
1 + x2

= π

2
.

The situation is quite different in the case of the integral∫ ∞

−∞
sin xdx,

because although sin x is continuous and bounded for all x the integral is divergent.
This result follows from the fact that

lim
R1→∞,R2→∞

∫ R2

−R1

sin xdx = lim
R1→∞,R2→∞

{cos R2 − cos R1},

so the limit is not defined, though the Cauchy principal value of the integral is finite
because

P.V.
∫ ∞

−∞
sin xdx = lim

R→∞

∫ R

−R
sin xdx = lim

R→∞
{cos R − cos(−R)} = 0.

Another example of a divergent integral for which the Cauchy principal value
is finite is ∫ ∞

−∞

x
1 + x2

dx.

The divergence of the integral follows from the fact that∫ ∞

−∞

x
1 + x2

dx = lim
R1→∞,R2→∞

∫ R2

−R1

x
1 + x2

dx

= lim
R1→∞,R2→∞

1
2

{
ln
(
1 + R2

2

)− ln
(
1 + R2

1

)}
,

because this limit is not defined if R1 �= R2. When R1 = R2 the Cauchy principal
value follows from the preceding result, from which it is seen to be zero, so we say

P.V.
∫ ∞

−∞

x
1 + x2

dx = 0.

Tests exist that enable the convergence or divergence of various types of im-
proper integral to be established without the need for direct integration, and these
are necessary because in most cases it is either difficult or impossible to evaluate the
integral analytically. The simplest of these tests, called a comparison test, establishesa comparison test for

improper integrals the convergence (or divergence) of an improper integral by comparing its integrand
with the integrand of an improper integral whose convergence or divergence prop-
erties are known. Thus, if, for example, the improper integral

∫∞
−∞ g(x)dx is known

to be convergent, and f (x) is such that 0 ≤ f (x) ≤ g(x), then the improper integral∫∞
−∞ f (x)dx is convergent. This follows because then the integral

∫∞
−∞ f (x)dx is
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bounded by

0 ≤
∫ ∞

−∞
f (x)dx ≤

∫ ∞

−∞
g(x)dx.

If, however, the improper integral
∫∞
−∞ g(x)dx is known to be divergent and

0 ≤ g(x) ≤ f (x), then

0 ≤
∫ ∞

−∞
g(x)dx ≤

∫ ∞

−∞
f (x)dx,

showing that the integral
∫∞
−∞ f (x)dx is divergent. Different forms of comparison

tests exist, and corresponding tests apply to improper integrals over the interval
[0, ∞).

The concept of the Cauchy principal value of an integral is important when eval-
uating real improper integrals by means of contour integration, and especially when
the integrand has an infinity at one or more points inside the interval of integration.
This is because the method of evaluating such integrals gives rise automatically to
the Cauchy principal value of the integral. Whether a real improper integral deter-
mined by contour integration also exists in the sense of (36) or (37), thereby allowing
the symbol P.V. to be dropped from in front of the integral, must be determined
separately.

(b) Improper Integrals of Rational Functions
without Poles on the Real Axis
As improper real integrals only involve integration along the real axis, in order tointegrals of rational

functions without
poles on the real axis

evaluate them by contour integration a suitable simple closed contour � must be
introduced that includes as part of the contour the piece of the real axis that is
involved. An essential feature of an analytic function f (z) that is to be integrated
must be that it, or its real or imaginary part, reduces to the required real improper
integral on the real axis. In addition to this, in general, on the segment of the
contour � that does not include the real axis, the modulus of f (z) must tend to zero
sufficiently rapidly as |z| → ∞ that the integral around that segment vanishes.

When the entire real axis is involved, the contour � is usually taken to be the
contour formed by the segment of the real axis from −R to R, and the semicircle
�R with the equation |z| = R in the upper half of the complex plane, with the sense
of integration taken in the counterclockwise sense around �, as shown in Fig. 15.8a.

If we consider functions f (z) that have no poles on the real axis, an improper
integral of f (z) over the interval (−∞, ∞) is evaluated by first taking R sufficiently
large that all the poles of f (z) in the upper-half of the complex plane lie inside
�, applying the residue theorem to

∫
�

f (z)dz, and then proceeding to the limit at
R → ∞. It is this choice of contour that introduces the Cauchy principal value of
improper integrals taken over an infinite interval.

Later we will consider the situation in which a simple pole of f (z) occurs on
the real axis at x0, when we will see it is necessary to exclude it from the contourindenting a contour
of � by indenting the contour at x0 by the addition of a small semicircle of radius
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y

z-plane

⏐z⏐= R
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y
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⏐z − x0⏐ = ρ

x

(a) (b)

Γρ

0

FIGURE 15.8 (a) The contour � in the upper half of the complex plane. (b) An indented
contour � in the upper half of the complex plane.

ρ extending into the upper half of the complex plane, as shown in Fig. 15.8b. Then,
after applying the residue theorem and giving due consideration to the effect of
integration around the indentation, R is allowed to tend to infinity and ρ to tend
to zero. In such a case the Cauchy principal value of the integral is due to reducing
the indentation at x0 to one of vanishingly small radius, and also to taking the limit
symmetrically with respect to the origin as R tends to infinity.

This general approach to the evaluation of real integrals will be seen to work
for functions f (z) with the property that the integral around the semicircular part
of the contour �R vanishes in the limit as the radius of the semicircle R → ∞. This
means that for the method to succeed we must impose the condition

lim
R→∞

∫
�R

f (z)dz = 0. (39)

Later we will find conditions to be satisfied by the most frequently occurring types
of integrand for which this result is always true. First, however, to illustrate the
general approach, we begin by assuming condition (39) and applying the method
to a typical example.

EXAMPLE 15.27 Evaluate the integral

P.V.
∫ ∞

−∞

dx
1 + x4

,

and show that the P.V. symbol can be omitted from the result.

Solution The function f (z) = 1/(1 + z4) reduces to f (x) = 1/(1 + x4) on the real
axis, and the integrand has simple poles at the four zeros of 1 + z4 given by zk =
eiπ(1+2k)/4 with k = 0, 1, 2, 3, but only the two zeros at

z0 = eπ i/4 and z1 = e3π i/4

lie in the upper half of the complex plane. So, as the interval of integration extends
over the entire real axis, we will consider the integral of f (z) around the contour
of Fig. 15.8a.
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A simple calculation shows that

Res[ f (z), z0] = −1
4

eiπ/4 and Res[ f (z), z1] = 1
4

e−iπ/4,

so when the radius R of the semicircle �R in Fig. 15.8a is large enough for the poles
at z0 and z1 to lie inside �, an application of the residue theorem gives∫

�

dz
1 + z4

=
∫ R

−R

dx
1 + x4

+
∫

�R

dz
1 + z4

= {Res[ f (z), z0] + Res[ f (z), z1]}.

Letting R → ∞, assuming that limR→∞
∫
�R

dz
1+z4 = 0, and substituting the values of

the residues reduce this to

P.V.
∫ ∞

−∞

dx
1 + x4

= π

(
eiπ/4 − e−iπ/4

2i

)
= π sin

π

4
= π√

2
.

The symbol P.V. can only be omitted if the Cauchy principal value and the value
of the improper integral are equal. This result will be true if we can show that the
improper integral converges, because the Cauchy principal value is obtained as one
of the possible ways in which the limits in (36) may be taken, so that then the two
integrals must be equal.

We use a comparison argument to justify the removal of the P.V. symbol. The in-
tegrand 1/(1 + x4) ≤ 1/(1 + x2) for all x, so the convergence of the integral

∫∞
−∞

dx
1+x2

that has been established proves the convergence of
∫∞
−∞

dx
1+x4 , and so justifies

writing ∫ ∞

−∞

dx
1 + x4

= π√
2
.

The integrand is finite, continuous, and symmetric about the origin, so we may
conclude that ∫ ∞

0

dx
1 + x4

= 1
2

∫ ∞

−∞

dx
1 + x4

= π

2
√

2
.

The theorem we now prove provides conditions that ensure the validity of the
limit in (39) when the modulus of the integrand f (z) decreases sufficiently rapidly
as |z| becomes large. The theorem is particularly useful when f (z) is a quotient
of two polynomials in z, that is to say when f (z) is a rational function, which we
choose to write as

f (z) = a0 + a1z + · · · + amzm

b0 + b1z + · · · + bnzn
. (40)

We have

| f (z)| = |zm||a0/zm + a1/zm−1 + · · · + am|
|zn||b0/zn + b1/zn−1 + · · · + bn| ,

but as |z| increases, terms such as |c|/|z|r , and hence ones such as c/zr , tend to zero,
showing that when |z| is large | f (z)| can be overestimated by

| f (z)| ≤ K
|z|n−m

, (41)

for some finite positive constant K, and n − m positive, zero or negative.
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THEOREM 15.15 Estimation of
∫
ΓR

f (z)dz when f (z) decays rapidly for large |z| Let f (z) be ana-
lytic in the upper half of the complex plane with the exception of a finite number

estimating the rate of
decay of an integral
on a circular arc as its
radius → ∞

of poles at the points z1, z2, . . . , zN. Then if for |z| > R the function f (z) is such that
| f (z)| < K/|z|1+δ , with K and δ positive constants,

lim
R→∞

∫
�R

f (z)dz = 0,

where �R is the part of the circle |z| = R that lies in the upper half of the complex
plane.

Proof On �R we have z = Reiθ , so from the usual integral inequality,∣∣∣∣ ∫
�R

f (z)dz

∣∣∣∣ =
∣∣∣∣ ∫ π

0
f (Reiθ )Rieiθdθ

∣∣∣∣ ≤
∫ π

0
| f (Reiθ )Rieiθ |dθ

<

∫ π

0

(
K

R1+δ

)
Rdθ = Kπ

Rδ
.

The result of the theorem now follows directly by taking the limit as R → ∞.

Theorem 15.15 provides the justification for the use of property (39) that was
assumed in Example 15.22, because for large |z| it follows from (41) that a constant
K can be found such that | f (z)| < K/|z|4, showing that in this case δ = 3.

EXAMPLE 15.28 Evaluate the integral∫ ∞

0

a + x2

1 + x4
dx where a is a real constant.

Solution The integrand is an even function of x, so∫ ∞

0

a + x2

1 + x4
dx = 1

2

∫ ∞

−∞

a + x2

1 + x4
dx.

The function f (z) = (a + z2)/(1 + z4) reduces to the required integrand on the
real axis, so integrating f (z) around the contour in Fig. 15.8a and using the residue
theorem leads to the result∫

�

a + z2

1 + z4
dz =

∫ R

−R

a + x2

1 + x4
dx +

∫
�R

a + z2

1 + z4
dz = 2π i{Res[ f (z), z0] + Res[ f (z), z1]},

when R is sufficiently large that � contains the two of the four simple poles of f (z)
that lie in the upper half of the complex plane at the points z0 = eπ i/4 and z1 = e3π i/4.
These poles occur at the same points as those of Example 15.27, though the residues
are different.

We find that

Res[ f (z), z0] = a + i

2
√

2(i − 1)
and Res[ f (z), z1] = a − i

2
√

2(1 + i)
,
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so substituting these values in the preceding result gives∫ R

−R

a + x2

1 + x4
dx +

∫
�R

a + z2

1 + z4
dz = 2π i

{
a + i

2
√

2(i − 1)
+ a − i

2
√

2(1 + i)

}
= π√

2
(a + 1).

Theorem 15.15 applies, because for large |z| a positive constant K can be found such
that | f (z)| < K/|z|2 corresponding to δ = 1, so proceeding to the limit as R → ∞
gives

P.V.
∫ ∞

−∞

a + x2

1 + x4
dx = π√

2
(a + 1).

To justify removing the P.V. symbol we need to show that the improper integral
is convergent. As the integrand (a + x2)/(1 + x4) is an even function of x and its
integral over any finite interval is finite, it will be sufficient to show that

∫∞
R

a+x2

1+x4 dx
is finite for any R> 0. This is indeed so, because for large R it is always possible
to find an M > 0 such that (a + x2)/(1 + x4) ≤ M/x2, and

∫∞
R M/x2dx = M/R is

finite, so we are justified in writing∫ ∞

0

a + x2

1 + x4
dx = 1

2

∫ ∞

−∞

a + x2

1 + x4
dx = π

2
√

2
(a + 1).

We now combine Theorem 15.5 and the residue theorem to arrive at the following
theorem that enables the rapid evaluation of a certain type of improper integral.

THEOREM 15.16 Integration of functions that decay rapidly as |z| becomes large Let f (z) be ana-
lytic in the upper half of the complex plane with the exception of a finite number of
poles at the points z1, z2, . . . , zN, and let no poles of f (z) lie on the real axis. Thena useful theorem

when |f (z)| decays
rapidly as |z| → ∞ if for |z| > R the function f (z) is such that | f (z)| < K/|z|1+δ , where K and δ are

positive constants,

P.V.
∫ ∞

−∞
f (x)dx = 2π i

N∑
k=1

Res[ f (z), zk].

Notice that when the function f (z) in Theorem 15.16 is a rational function of
the form (40), the condition | f (z)| < K/|z|1+δ when |z| > R becomes the condition
n − m ≥ 2.

EXAMPLE 15.29 Evaluate the integral ∫ ∞

−∞

x2

(1 + x2)4
dx.

Solution We set f (z) = z2/(1 + z2)4, because this reduces to the required inte-
grand on the real axis, and notice that the conditions of Theorem 15.16 are satisfied
by f (z), because for large |z| it behaves like K/|z|6. Writing

f (z) = z2

(z − i)4(z + i)4
,

shows that f (z) only has a single pole of order 4 at z = i in the upper half of the
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complex plane with

Res[ f (z), i] = − i
32

.

From Theorem 15.16 we have

P.V.
∫ ∞

−∞

x2dx
(1 + x2)4

= 2π i
(

− i
32

)
= π

16
.

The P.V. symbol can be omitted because the integrand is everywhere continuous
and finite, and for large x the integrand behaves like 1/x6 showing that the improper
integral is convergent, so we conclude that∫ ∞

−∞

x2dx
(1 + x2)4

= π

16
.

(c) Improper Integrals with Integrands
of the Form eimzQ(z)
Another important type of improper integral that occurs is one where the integrand
is of the form f (z) = eimzQ(z), involving the product of an exponential factor eimz

with m > 0 and a rational function Q(z). If the method of residues is to be used to
evaluate improper integrals of this type it is necessary to find conditions that will
ensure the validity of the limit in (39) when f (z) is of this form.

The first step when seeking to establish such a condition is to prove a result
known as the Jordan inequality, and an associated result that we will call the Jordan
integral inequality.

LEMMA 15.1 The Jordan inequality and integral inequality

the Jordan inequality
and integral
inequality

(a)
2θ

π
≤ sin θ ≤ θ, for 0 ≤ θ ≤ π/2 (Jordan inequality)

(b)
∫ π/2

0
e−ksin θdθ ≤ π

2k
(1 − e−k), for k > 0 (Jordan integral inequality).

Proof

(a) Assuming the inequality to be true, division by θ allows it to be written as

1 ≥ sin θ

θ
≥ 2

π
, for 0 ≤ θ ≤ π/2.

Setting S(θ) = sin θ/θ we have S(π/2) = 2/π , and from L’Hospital’s rule

S(0) = lim
θ→0

S(θ) = lim
θ→0

sin θ

θ
= 1,

so the upper and lower limits of the Jordan inequality have been established. The
inequality will be proved if we can show that S′(θ) < 0 for 0 ≤ θ ≤ π/2, because
then S(θ) will be a strictly decreasing function of θ in the interval.

Differentiation of S(θ) gives

S′(θ) = θ cos θ − sin θ

θ2
,
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so the sign of S′(θ) is determined by the sign of h(θ) = θ cos θ − sin θ . Using the
results h(0) = 0 and h′(θ) = −θ sin θ shows that h′(θ) ≤ 0 for 0 ≤ θ ≤ π/2, so h(θ)
and hence also S(θ) are strictly decreasing functions of θ in the given interval, and
the Jordan inequality is proved.

(b) The integral form of the inequality follows by replacing sin θ by 2θ/π in the
integrand e−ksin θ and then integrating to obtain the stated result.

We now use the Jordan integral inequality to prove the next result known as
Jordan’s lemma.

THEOREM 15.17 Jordan’s lemma Let m be a positive constant and Q(z) be a continuous function
in the upper half of the complex plane, such that for |z| ≥ R0

the useful Jordan’s
lemma

MR = max
z∈�R

|Q(z)| → 0 as R → ∞,

where �R is the semicircle |z| = R in the upper half of the complex plane. Then

lim
R→∞

∫
�R

eimzQ(z)dz = 0.

Proof Let z lie on the semicircle �R with R > R0, so z = Reiθ and dz = i Reiθdθ .
Then

|eimz| = |eimR(cos θ+i sin θ)| = e−mRsin θ ,

and on �R we have∣∣∣∣∫
�R

eimzQ(z)dz

∣∣∣∣ ≤ max
z∈�R

|Q(z)|
∫ π

0
e−mRsin θ Rdθ = RMR

∫ π

0
e−mRsin θdθ.

The last integral cannot be evaluated as it stands, but because of the symmetry
of sin θ about the value θ = π/2 the integral can be written as

RMR

∫ π

0
e−mRsin θdθ = 2RMR

∫ π/2

0
e−mRsin θdθ.

As the interval of integration is now 0 ≤ θ ≤ π/2, we can apply the Jordan integral
inequality to arrive at the estimate

2RMR

∫ π/2

0
e−mRsin θdθ ≤ π MR

m
(1 − e−mR).

Thus, ∣∣∣∣∫
�R

eimzQ(z)dz

∣∣∣∣ ≤ π MR

m
(1 − e−mR),

but by hypothesis MR → 0 as R → ∞, so the right-hand side of this inequality
vanishes and the result is proved.

Coupling Jordan’s lemma with the residue theorem, we arrive at the following
theorem, which enables the rapid evaluation of improper integrals with integrands
that involve a product of an exponential factor and a rational function.
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THEOREM 15.18 Integration of functions of the form eimzQ(z) Let m > 0 be a real constant, and

Integrals with
integrands of
the form
e imzQ(z)

f (z) = eimzQ(z) be analytic in the upper half of the complex plane with the excep-
tion of a finite number of poles at the points z1, z2, . . . , zN, and let no poles of f (z)
lie on the real axis. Then if for |z| > R the function Q(z) is such that for all z in the
upper half of the complex plane

lim
|z|→∞

|Q(z)| → 0,

it follows that

P.V.
∫ ∞

−∞
eimx Q(x)dx = 2π i

N∑
k=1

Res[eimzQ(z), zk].

The following theorem is often useful in establishing the convergence of inte-
grals obtained by using Theorem 15.19, and so justifying the omission of the P.V.
symbol.

THEOREM 15.19 Convergence of integrals with integrands of the form eimzQ(z) Let Q(x) > 0
be a strictly decreasing function of x for 0 ≤ x < ∞ such that limx→∞ Q(x) = 0.
Then, provided the integrands are finite at the origin, the improper integrals∫∞

0 Q(x) cos mxdx and
∫∞

0 Q(x) sin mxdx are convergent. Furthermore, if Q(x) is
an even function, the improper integral

∫∞
−∞ Q(x) cos mxdx is convergent, and if

Q(x) is an odd function the improper integral
∫∞
−∞ Q(x) sin mxdx is convergent.

Proof As Q(x) > 0, the sign of the integrand in
∫∞

0 Q(x) cos mxdx will be deter-
mined by the sign of cos mx. The function cos mx changes sign in adjacent intervals
of the form (2n − 1)π/2m < x < (2n + 1)π/2m, for n = 1, 2, . . . , so setting

In =
∫ (2n+1)π/2m

(2n−1)π/2m
Q(x)|cos mx|dx

allows us to write ∫ (2n+1)π/2m

(2n−1)π/2m
Q(x) cos mxdx = (−1)n In.

This result enables the original integral to be written as∫ ∞

0
Q(x) cos mxdx =

∫ π/2m

0
Q(x) cos mxdx +

∞∑
n=1

(−1)n In.

By hypothesis, Q(x) is a strictly decreasing function of x, so 0 < In+1 < In, but
limx→∞ Q(x) = 0, so we also have limx→∞ In = 0. The series

∑∞
n=1(−1)n In is seen

to be an alternating series satisfying the alternating series test for convergence, and
so has a finite sum. As the integrand is assumed to be finite at the origin, the term∫ π/2m

0 Q(x) cos mxdx is finite, showing that the integral
∫∞

0 Q(x) cos mxdx has a
finite sum. This has proved the integral to be convergent, thus allowing the P.V.
symbol to be omitted. The convergence of

∫∞
0 Q(x) sin mxdx can be established

in similar fashion. In the case of integrals over an infinite interval, the conditions
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imposed on Q(x) in the last part of the theorem allow the integrals to be reduced
to one of the cases just considered, so the proof is complete.

EXAMPLE 15.30 Evaluate the integral ∫ ∞

−∞

cos x
(1 + x2)4

dx.

Solution The real part of f (z) = exp(iz)/(1 + z2)4 reduces to the required inte-
grand on the real axis, so we take this for our integrand. An attempt to use the
more obvious choice of integrand cos z/(1 + z2)4 must be avoided because it would
introduce unnecessary complications due to the behavior of f (z) as |z| → ∞. As
in Example 15.27, the integrand only has a single pole of order 4 located at z = i in
the upper half of the complex plane. A routine calculation shows that the residue
at z = i is

Res[ f (z), i] = − 37i
96e

.

The conditions of Theorem 15.19 are seen to be satisfied, so it follows that

P.V.
∫ ∞

−∞

exp(iz)
(1 + x2)4

dx = 2π i
(

− 37i
96e

)
= 37π

48
.

Equating the real parts of the expressions on each side of the equation gives

P.V.
∫ ∞

−∞

cos x
(1 + x2)4

dx = 37π

48
.

The justification for the removal of the P.V. symbol follows from the form of
proof used in Theorem 15.19 by setting

In =
∫ (2n+3)π/2

(2n+1)π/2

|cos x|
(1 + x2)4

dx with n = 1, 2, . . . .

Consequently, we can write∫ ∞

0

cos x
(1 + x2)4

dx = 37π

96
or, equivalently,

∫ ∞

−∞

cos x
(1 + x2)4

dx = 37π

48
.

Had the imaginary parts been equated, we would have obtained the result∫ ∞

−∞

sin x
(1 + x2)4

dx = 0,

which is to be expected because the integral is convergent and the integrand is an
odd function.

EXAMPLE 15.31 Evaluate the integral ∫ ∞

0

x sin x
(x2 + 1)2

dx.

Solution The integrand is an even function of x, so we will consider the integral∫ ∞

−∞

x sin x
(x2 + 1)2

dx.
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We integrate the function f (z) = zexp(iz)/(z2 + 1)2 around the contour � in
Fig. 15.8a and notice that when |z| is sufficiently large, f (z) only has a single pole
of order 2 at the point z = i inside �. We find that

Res[ f (z), i] = 1
4e

,

so as f (z) satisfies the conditions of Theorem 15.18, after equating the imaginary
parts we have

P.V.
∫ ∞

−∞

x exp(i x)
(x2 + 1)2

dx = 2π i
(

1
4e

)
= π i

2e

and so

P.V.
∫ ∞

−∞

x sin x
(x2 + 1)2

dx = π

2e
.

The conditions of Theorem 15.19 are satisfied if in its proof we define

In =
∫ (n+1)π

nπ

x| sin x|
(1 + x2)2

dx for n = 1, 2, . . . ,

so the P.V. symbol can be omitted, leading to the result∫ ∞

0

x sin x
(x2 + 1)2

dx = π

4e
.

The last example is somewhat different, because it involves an integrand that
is an entire function, so by the Cauchy–Goursat theorem its integral around any
simple closed contour must be zero, though in this case the contour used is a sector
of a circle and not a semicircle.

EXAMPLE 15.32 By considering the integral ∫
�

exp(iz2)dz

around a suitable contour �, show that∫ ∞

0
cos x2dx =

∫ ∞

0
sin x2dx = 1

2

√
π

2
.

Solution These integrals, called the Fresnel integrals, are of importance in engi-
neering and physics in connection with the study of diffraction phenomena. For

Fresnel integrals

reasons that will appear later, we take for the positively oriented contour � the
boundary of the sector of a circle shown in Fig. 15.9 with the internal angle π/4,
and the positively directed circular arc AB of radius R denoted by �R.

The integrand exp(iz2) is an entire function, so from the Cauchy–Goursat
theorem ∫

�

exp(iz2)dz = 0.

To derive the required improper integrals, we represent the integral around � as
the sum of integrals along the real axis from O to A, along the arc �R from A to
B, and along the radial line from B to O (take note of the direction of integration
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FIGURE 15.9 The sector bounded by the
contour �.

along this line), as a result of which we find that∫
�

exp(iz2)dz =
∫

OA
exp(iz2)dz +

∫
�R

exp(iz2)dz +
∫

BO
exp(iz2)dz = 0.

Line segment AB lies on the real axis, so on AB we have z = x and hence
dz = dx, whereas on the radial line OB inclined at an angle π/4 to the real axis
z = reiπ/4, so here dz = eiπ/4dr and iz2 = −r2. Using these results in the preceding
equation reduces it to∫ R

0
exp(i x2)dx +

∫
�R

exp(iz2)dz + eiπ/4
∫ 0

R
exp(−r2)dr = 0.

Reversing the limits of integration in the last integral and rearranging terms gives∫ R

0
exp(i x2)dx +

∫
�R

exp(iz2)dz = eiπ/4
∫ R

0
exp(−r2)dr.

Taking the limit of this result as R → ∞ gives

P.V.
∫ ∞

0
exp(i x2)dx + lim

R→∞

∫
�R

exp(iz2)dz = eiπ/4
√

π

2
,

where we have used the standard result from calculus that∫ ∞

0
exp(−r2)dr = 1

2

√
π.

As neither Theorem 15.16 nor Theorem 15.18 apply to the integral around �R,
to make further progress we need to examine the limit

lim
R→∞

IR = lim
R→∞

∫
�R

exp(iz2)dz.

On �R we have z = Reiθ , with 0 ≤ θ ≤ π/4, so

exp(iz2) = exp(i R2 cos 2θ) · exp(−R2 sin 2θ) and dz = i Reiθdθ,

showing that

IR =
∫ π/4

0
exp(i R2 cos θ) · exp(−R2 sin 2θ)i Reiθdθ.
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To estimate this integral we take its modulus and use the standard integral inequality

|IR| ≤
∫ π/4

0
| exp(i R2 cos θ) exp(−R2 sin 2θ)i Reiθ |dθ,

together with the fact that |i Reiπ/4| = R and | exp(i R2 cos 2θ)| = 1, to arrive at the
inequality

|IR| ≤ R
∫ π/4

0
exp(−R2 sin 2θ)dθ.

The integral on the right cannot be evaluated in terms of simple functions, but it
can be estimated with the help of the Jordan inequality. The interval of integration
involved is 0 ≤ θ ≤ π/4, so on this interval 0 ≤ 2θ ≤ π/2. If we replace θ by 2θ in
the Jordan inequality, the result becomes

sin 2θ ≤ 4θ

π
,

from which we see that

exp(−R2 sin 2θ) ≤ exp
(

−4R2θ

π

)
,

leading to the inequality

|IR| ≤ R
∫ π/4

0
exp

(
−4R2θ

π

)
dθ = π

4R
[1 − exp(−R2)].

Taking the limit of this last result as R → ∞ gives limR→∞ |IR| = 0, showing
that the integral around the arc �R vanishes in the limit as R → ∞.

Using this result in the contour integral around �, we conclude that

P.V.
∫ ∞

0
exp(i x2)dx = eiπ/4

√
π

2
.

The Fresnel integrals follow by omitting the P.V. symbol and equating the respective
real and imaginary parts on each side of this equation to obtain∫ ∞

0
cos x2dx =

∫ ∞

0
sin x2dx = 1

2

√
π

2
.

The justification for the removal of the P.V. symbols follows by using an argu-
ment similar to the one employed in Theorem 15.19, because as x increases the
integrands oscillate more frequently, causing integrals over successive periods to
form convergent alternating series.

The reason for choosing the contour � to be the boundary of a sector with angle
π/4 is now apparent, because were the angle to exceed π/4, Jordan’s inequality
could not be used to estimate |IR|. If, on the other hand, the angle were to be less
than π/4 the form of the resulting integrals would be different, and to evaluate
them the values of the Fresnel integrals would need to be known.

(d) Improper Integrals with Poles
on the Real Axis
We now consider improper integrals where a simple pole of the integrand occurs
on the real axis. Let f (z) have a simple pole located at a point x0 on the real axis
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FIGURE 15.10 An indentation �r at x0 on the
real axis.
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FIGURE 15.11 A contour � indented at x0 on
the real axis.

that forms part of the integration path in a contour integral. To prevent the contour
passing through the pole, the contour is deformed in a neighborhood of x0 by a small
semicircle of radius r centered on x0 extending into the upper half of the complex
plane, as shown in Fig. 15.10, and we denote this indentation by �r .

The Laurent series representation of f (z) at x0 is

f (z) = a−1

z − x0
+

∞∑
n=0

an(z − x0)n,

where a−1 = Res[ f (z), x0]. On �r , z = x0 + reiθ and dz = ireiθdθ with 0 ≤ θ ≤ π ,

indentations

so integrating around �r in the positive sense gives

lim
r→0

∫
�r

f (z)dz = lim
r→0

∫ π

0

a−1

reiθ
ireiθdθ + lim

r→0

∞∑
n=0

an

∫ π

0
rneinθ ireiθdθ

= ia−1

∫ π

0
dθ = iπa−1

= iπ Res[ f (z), x0].

So, in the limit as r → 0, we have shown that integrating in the positive sense
around the semicircular indentation �r above the simple pole located at the point
x0 on the real axis yields π i Res[ f (z), x0]. This result is seen to be half the resultintegration around an

indented simple pole that would have been obtained had the integration been taken around a circle with
the pole at x0 at its center.

This same form of argument establishes the more general result that if a simple
pole is located at z0, then integration around the pole using a path in the form of a
sector of a circle �r , located at z0 with an arbitrarily small radius r and an internal
angle α yields the result ∫

�r

f (z)dz = iα Res[ f (z), z0]. (42)

Consider a function f (z) that has a finite number of poles located at z1,

z2, . . . , zn in the upper half of the complex plane and a simple pole on the real
axis at x0. Let the positively oriented contour � be the one shown in Fig. 15.11,
where the indentation above the pole at x0 is denoted by �r , and �R denoting the
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semicircle of radius R. Then, when R is sufficiently large that all of the poles above
the real axis lie inside �, integrating around � in the positive sense gives∫

�

f (z)dz =
∫ x0−r

−R
f (x)dx +

∫
�r

f (z)dz +
∫ R

x0+r
f (x)dx +

∫
�R

f (z)dz

= 2π i
n∑

k=1

Res[ f (z), zk] when lim
R→∞

∫
�R

f (z)dz = 0.

Before proceeding to the limit as R → ∞ and r → 0, we notice that the inte-
gration around �r , corresponding to α = π in (42), is in the negative sense, so after
the limits have been taken, the result becomes∫ x0−

−∞
f (x)dx − π iRes[ f (z), x0] +

∫ ∞

x0+
f (x)dx = 2π i

n∑
k=1

Res[ f (z), zk].

Combining the integrals and rearranging terms gives

P.V.
∫ ∞

−∞
f (x)dx = π iRes[ f (z), x0] + 2π i

n∑
k=1

Res[ f (z), zk]. (43)

This result extends immediately to a function with m simple poles located on
the real axis and so leads to the following theorem.

THEOREM 15.20 The residue theorem when poles are located on the real axis Let an analytic
function f (z) have n poles at the points z1, z2, . . . , zn in the upper half of the complex

integrals involving
functions with poles
on the real axis

plane and m simple poles at the points x1, x2, . . . , xm on the real axis. Then, provided
limR→∞

∫
�R

f (z)dz = 0 where �R is the semicircle |z| = R in the upper half of the
complex plane,

P.V.
∫ ∞

−∞
f (x)dx = π i

m∑
k=1

Res[ f (z), xk] + 2π i
n∑

k=1

Res[ f (z), zk].

EXAMPLE 15.33 Evaluate the integral ∫ ∞

0

sin x
x

dx.

Solution The integrand is an even function of x, and because limx→0(sin x/x) = 1
the singularity at the origin is removable, so we consider the integral∫ ∞

−∞

sin x
x

dx.

To evaluate this integral we integrate the function f (z) = exp(iz)/z around a con-
tour � indented at the origin, as shown in Fig. 15.12, because using the function
f (z) = sin z/z would introduce unnecessary complications when z is large.

The only pole of f (z) is a simple pole at the origin, where Res[ f (z), 0] = 1,
so as the conditions of Jordan’s lemma are satisfied, we can use Theorem 15.20 to
evaluate the integral. An application of the theorem gives

P.V.
∫ ∞

−∞

exp(i x)
x

dx = π i.
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z-plane

y

0

ΓR

Γr
r

x−R −r r R

FIGURE 15.12 The contour � indented at the
origin.

z-plane

y

0

ΓR

x−R R1 2

FIGURE 15.13 The contour � indented at
x = 1 and x = 2 on the real axis.

Equating the imaginary parts of the expressions on each side of the last equation
gives

P.V.
∫ ∞

−∞

sin x
x

dx = π.

As x = 0 is a removable singularity the integrand sin x/x is finite at the origin,
so this fact together with the form of argument used in Example 15.30 justifies the
removal of the P.V. symbol, and we have proved that

1
2

∫ ∞

−∞

sin x
x

dx =
∫ ∞

0

sin x
x

dx = π

2
.

EXAMPLE 15.34 Evaluate the integral ∫ ∞

−∞

cos x
(x2 + 1)(x2 − 3x + 2)

dx.

Solution We choose for the integrand the function f (z) = exp(iz)/[(z2 + 1)(z2 −
3z + 2)]. This has simple poles at z = ±i , z = 1, and z = 2. Modifying the contour
in Fig. 15.10 to allow for the two simple poles on the real axis leads to integration
around the indented contour shown in Fig. 15.13, which contains the simple pole at
z = i . The usual calculations show that

Res[ f (z), i] = (3 − i)
20e

, Res[ f (z), 1] = −1
2

(cos(1) + i sin(1)) and

Res[ f (z), 2] = 1
5

(cos(2) + i sin(2)).

The conditions of Theorem 15.20 are seen to be satisfied, so

P.V.
∫ ∞

−∞

exp(i x)
(x2 + 1)(x2 − 3x+2)

dx

= 2π iRes[ f (z), i] + π i{Res[ f (z), 1] + Res[ f (z), 2]}

= 2π i
(

3 − i
20e

)
+ π i

(
− [cos(1) + i sin(1)]

2

)
+ π i

(
cos(2) + i sin(2)

5

)
.

Equating the real parts on each side of this equation shows that

P.V.
∫ ∞

−∞

cos x
(x2 + 1)(x2 − 3x + 2)

dx = π

10

(
1
e

+ 5 sin(1) − 2 sin(2)
)

.
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In this case, because of the complexity of the integrand, no attempt will be made to
investigate whether the P.V. symbol can be omitted.

Although not required, equating imaginary parts on each side of the equation
shows that

P.V.
∫ ∞

−∞

sin x
(x2 + 1)(x2 − 3x + 2)

dx = π

10

(
3
e

+ 2 cos(2) − 5 cos(1)
)

.

This determination of two real improper integrals when only one was required is
typical of the evaluation of real integrals by contour integration.

(e) Improper Integrals with Branch Points
Finally, we consider improper integrals of functions with a branch point. To evaluate
these by means of contour integration it is necessary to cut the complex plane in an
appropriate manner to make the integrand single valued, and to specify the branch
of the integrand that is to be used. An important class of integrals of this type are
of the form ∫ ∞

0
x α−1 P(x)dx, (44)

where α is not an integer and P(x) is a rational function of x. This integral will have
a finite value if P(x) has no poles on the positive real axis and it is such that

lim
z→0

|z|α P(z) = 0 and lim
|z|→∞

|z|α P(z) = 0. (45)

Provided z = 0 is neither a pole nor a zero of P(z), the first of these conditions
implies that α > 0. Let the rational function P(z) with real coefficients a0, a1, . . . , am

and b0, b1, . . . , bn be written

P(z) = a0zm + a1zm−1 + · · · + am

b0zn + b1zn−1 + · · · + bn
,

so that for large |z| a constant K exists such that P(z) < K/|zn−m|. Then the second
condition in (45) will be satisfied when n − m − α > 0. Taken together, these con-
ditions show the integral will have a finite value when 0 < α < n − m, and they also
imply that

lim
|z|→∞

|P(z)| = 0.

To take account of the fact that zα−1 is many valued and has a branch point
at the origin, it is necessary to cut the complex plane to make zα−1 (and hence
the integrand) single valued, and then to choose a branch of zα−1. The cut we
will make is along the positive real axis up to and including the origin, so that arg
z = θ + 2kπ , with k = 0, ±1, ±2, . . . , and θ in the interval 0 ≤ θ ≤ 2π . The contour
� that will be used is shown in Fig. 15.14 and comprises the circular contour �R with
equation |z| = R, the cut with its sides immediately above and below the positive
real axis, and the circular contour �ρ with equation |z| = ρ around the branch point
at the origin. We will work with the branch corresponding to k = 0, so z = reiθ and
zα−1 = rα−1e(α−1)θ i . The principal branch is positive on the side of the cut that lies
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z-plane

y

0

ΓR

x

ρ

Γρ

FIGURE 15.14 The contour � used to evaluate∫∞
0 xα−1 P(x)dx.

above the positive real axis. This branch of the function zα−1 P(z) is now single
valued in the cut plane, so we can use the residue theorem to evaluate the integral.

When substituting for z in the various integrals that arise while integrating
around �, it is necessary to express z in its modulus–argument form to take account
of the different forms taken by the integrand zα−1 P(z) on either side of the cut.
Setting z = reiθ , with 0 ≤ θ ≤ 2π , it follows that on AB z = re0i = r and dz = dr ,
so that

zα−1 P(z) = rα−1 P(r),

while on CD z = re2π i and dz = e2π i dr , so then

zα−1 P(z) = rα−1e(α−1)2π i P(r).

We now set f (z) = zα−1 P(z), and consider the case where f (z) has poles at
z1, z2, . . . , zn, none of which lies on the positive real axis. Integrating around the
contour � in Fig. 15.14 gives∫ R

ρ

rα−1 P(r)dr +
∫

�R

zα−1 P(z)dz +
∫ ρ

R
r α−1 exp[(α − 1)2π i]P(r)e2π i dr

+
∫

�ρ

zα−1 P(z)dz = 2π i
n∑

k=1

Res[ f (z), zk].

The conditions (45) with 0 < α < n − m ensure the vanishing of both the in-
tegral around �R in the limit as R → ∞ and the integral around �ρ as ρ → 0, so
taking the limit as R → ∞ and ρ → 0 reduces the preceding result to∫ ∞

0
r α−1 P(r)dr + e2π iα

∫ 0

∞
r α−1 P(r)dr = 2π i

n∑
k=1

Res[ f (z), zk].
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Replacing the dummy variable r by x and rearranging terms, we arrive at theintegration around
a branch point general result

∫ ∞

0
x α−1 P(x)dx = 2π i

1 − e2π iα

n∑
k=1

Res[ f (z), zk]. (46)

This result forms our next theorem.

THEOREM 15.21 Evaluation of integrals of the form
∫∞

0 xα−1 P(x)dx Let f (z) = zα−1 P(z) with α

not an integer and

P(z) = a0zm + a1zm−1 + · · · + am

b0zn + b1zn−1 + · · · + bn
,

where the coefficients a0, a1, . . . , am and b0, b1, . . . , bn are all real, 0 < α < n − m,
and P(z) has neither a pole nor a zero at the origin. In addition, let the poles of
P(z) located at z1, z2, . . . , zn be such that none lies on the positive real axis. Then

∫ ∞

0
x α−1 P(x)dx = 2π i

1 − e2π iα

n∑
k=1

Res[ f (z), zk].

EXAMPLE 15.35 Find a condition on α that ensures that the integral∫ ∞

0

x α−1

x2 + 1
dx

exists, and evaluate the integral subject to this condition.

Solution In the notation of Theorem 15.21, the rational function P(z) = 1/

(1 + z2), so m = 0 and n = 2. The condition on α that ensures the existence of
the integral is 0 < α < n − m, so we must have 0 < α < 2. The function P(z) has
simple poles at z = ±i , neither of which lies on the positive real axis, and P(0) �= 0,
so all the conditions of Theorem 15.21 are satisfied.

Using the result of the theorem with f (z) = zα−1/(1 + z2) we find that

Res[ f (z), i] = lim
z→i

[
(z − i)

zα−1

(z − i)(z + i)

]
= lim

z→i

[
zα−1

z + i

]
= i α−1

2i
= i α−2

2
,

but i = eπ i/2, so

Res[ f (z), i] = 1
2

e(α−2)π i/2 = −1
2

e απ i/2.

Similarly,

Res[ f (z), −i] = lim
z→−i

[
(z + i)

zα−1

(z − i)(z + i)

]
= lim

z→−i

[
zα−1

z − i

]
= (−i)α−1

−2i
= (−i)α−2

2
,

but −i = e3π i/2, so

Res[ f (z), −i] = 1
2

e(α−2)3π i/2 = −1
2

e3απ i/2.
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Using these residues in Theorem 15.21 gives∫ ∞

0

x α−1

1 + x2
dx = 2π i

1 − e2απ i

[
−e απ i/2

2
− e3απ i/2

2

]
= π i

[
e απ i/2 + e−απ i/2

e απ i − e−απ i

]
= π cos(απ/2)

sin(απ)
,

and we have shown that∫ ∞

0

x α−1

x2 + 1
dx = π

cos(απ/2)
sin(απ)

, when α is not an integer and with 0 < α < 2.

Different types of function with branch points can be evaluated by means of
contour integration, provided the complex plane is cut in a suitable manner to make
the integrand single valued and a branch of the function is specified. The integrand
in the next example involves the logarithmic function that has a branch point at the
origin and infinitely many branches.

EXAMPLE 15.36 Show that ∫ ∞

0

log x
x2 + a2

dx = π

2a
ln a (a > 0).

Solution The function log z has infinitely many branches, so we will work with the
principal branch Log z. The contour � to be used is shown in Fig. 15.15, in which
the cut is made along the negative real axis, and an indentation is made around the
branch point of Log z located at the origin. The contour �R is the semicircle with
the equation |z| = R and Im z > 0, and the contour �ρ is the semicircle with the
equation |z| = ρ and Im z > 0.

With the cut as shown in Fig. 15.15, Arg z = θ is restricted to the interval
0 ≤ θ ≤ π , so z = reiθ and Log z = ln r + iθ . Setting f (z) = Log z/(z2 + a2), we
see that when R is large the only singularity of f (z) inside the contour � is a simple
pole at z = ia, where

Res[ f (z), ia] = lim
z→ia

[(z − ia) f (z)] = Log (ia)/(2ia),

z -plane

y

0

ΓR

x

ρ

ρ

Γρ

R−R

ia

FIGURE 15.15 The contour � used to evaluate∫∞
0

log x
x2+a2 dx.
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but i = eiπ/2 so

Res[ f (z), ia] = ln a + iπ/2
2ia

.

On the positive real axis z = rei0 = r and dz = dr , whereas on the negative real
axis z = reiπ and dz = eiπdr , so as the simple pole at z = ia lies inside �, integration
around � leads to the result∫ R

ρ

ln r
r2 + a2

dr +
∫

�R

f (z)dz +
∫ ρ

R

ln r + iπ
r2e2π i + a2

eiπdr +
∫

�ρ

f (z)dz = 2π i Res[ f (z), ia].

On �R z = Reiθ and dz = i Reiθdθ , so∣∣∣∣∫
�R

f (z)dz

∣∣∣∣ =
∣∣∣∣ ∫ π

0

ln R + iπ
(R2e2iθ + a2)

i R · eiθdθ

∣∣∣∣
≤
∫ π

0

R ln R
|R2e2iθ + a2|dθ ≤

∫ π

0
R

ln R
(R2 − a2)

dθ ≤ π

(
ln R

R

)
,

but as limR→∞(ln R/R) = 0 it follows from this that
∫
�R

f (z)dz → 0 as R → ∞.
A similar argument shows

∫
�ρ

f (z)dz → 0 as ρ → 0, because when ρ is small
the integrand is approximated by the function ρ ln ρ that vanishes in the limit as
ρ → 0. Taking the limit at R → ∞ and ρ → 0, and using the factor eiπ = −1 to
reverse the limits in the third integral on the left gives∫ ∞

0

ln r
r2 + a2

dr +
∫ ∞

0

ln r + iπ
r2 + a2

dr = 2π i
(

ln a + iπ/2
2ia

)
.

Equating the real parts on either side of the equation and replacing the dummy
variable r by x gives the required result,∫ ∞

0

log x
x2 + a2

dx = π ln a
2a

(a > 0).

Equating the imaginary parts and again replacing the dummy variable r by x gives
the elementary result, ∫ ∞

0

dx
x2 + a2

= π

2a
.

Alternative accounts and more information about Taylor and Laurent series,
residues, the evaluation of real integrals by means of contour integrals, and the
treatment of contour integrals involving branch points can be found in references
[6.1] to [6.4] and [6.6] to [6.9].

Summary After reviewing the concept of the Cauchy principal value of a definite integral, the residue
theorem was used to evaluate real integrals in terms of the limit of associated contour
integrals as the contour becomes arbitrarily large. The cases considered involved integrands
with poles strictly inside the contour of integration, part of which was along the real axis,
integrands with poles both inside and on an indented contour, and integration around an
integrand with a branch point.
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EXERCISES 15.5

Integrands without poles on the real axis

In Exercises 1 through 6 evaluate the integrals using the
contour in Fig. 15.8a.

1.
∫ ∞

0

x2

(x2 + a2)2
dx (a > 0).

2.
∫ ∞

−∞

x2

x4 + a4
dx (a > 0).

3.
∫ ∞

0

x2

x4 + 1
dx (a > 0).

4.
∫ ∞

−∞

x2

(x2 + a2)(x2 + b2)
dx

(a, b > 0).

5.
∫ ∞

−∞

x2

(x2 + 1)2(x2 + 4)
dx.

6.
∫ ∞

−∞

x2

(x2 + a2)(x2 + b2)2
dx

(a, b > 0, a �= b).

Integrands of the form eimzQ(z)

In Exercises 7 through 11 evaluate the integrals using the
contour in Fig. 15.8a.

7.
∫ ∞

0

cos x
(x2 + a2)2

dx (a > 0).

8.
∫ ∞

0

cos ax
(x2 + b2)2

dx (a, b > 0).

9.
∫ ∞

0

cos x
(x2 + a2)(x2 + b2)

dx (a, b > 0).

10.
∫ ∞

0

x sin x
x2 + 4

dx.

11.
∫ ∞

0

x3 sin mx
x4 + a4

dx (a > 0).

12. By integrating around the contour in Fig. 15.16, show
that ∫ ∞

−∞

dx
1 + x2n

= π

n sin(π/2n)
(n = 1, 2, . . .).

0 R
2π/n

FIGURE 15.16 The contour for Exercise 12.

Integrands with poles on the real axis

In Exercises 13 through 22 evaluate the integrals using a
contour comprising the semicircle |z| = R in the upper half
of the complex plane and a suitably indented real axis.

13. P.V.
∫ ∞

0

sin πx
x(1 − x2)

dx.

14. P.V.
∫ ∞

0

sin ax
x(x2 + b2)2

dx (b > 0).

15. P.V.
∫ ∞

0

cos ax − cos bx
x2

dx (a ≥ 0, b ≥ 0).

16. P.V.
∫ ∞

−∞

sin x
(x2 + 4)(x − 1)

dx.

17. P.V.
∫ ∞

0

sin ax
x(x2 + b2)

dx (a, b > 0).

18.
∫ ∞

0

sin2 x
x2

dx (Hint: Integrate the function f (z) =

[e2iz − 1]/z2).

19.
∫ ∞

0

sin3 x
x3

dx (Hint: Integrate the function f (z) =

[e3iz − 3eiz + 2]/z3).

20. P.V.
∫ ∞

0

x2

x4 − 1
dx.

21. P.V.
∫ ∞

0

cos ax
1 − x4

dx (a > 0).

22. P.V.
∫ ∞

0

x
x4 − 1

dx.

Integrands with branch points

In Exercises 23 through 28 evaluate the integrals by inte-
grating around the contour in Fig. 15.14.

23.
∫ ∞

0

xα

x2 + 1
dx (−1 < α < 1).

24.
∫ ∞

0

xα

(x2 + 1)2
dx (−1 < α < 3, α �= 1).

25.
∫ ∞

0

x α−1

1 + x + x2
dx (0 < α < 2).

26.
∫ ∞

0

dx
xα(x + 1)

(0 < α < 1).

27.
∫ ∞

0

x1/2

x3 + 1
dx.

28.
∫ ∞

0

x α

(x2 + 1)2
dx (−1 < α < 3).

In Exercises 29 and 30 evaluate the integrals by integrating
around the contour in Fig. 15.15.

29. Show that ∫ ∞

0

ln x
(1 + x2)2

dx = −π

4
.

30. Show that ∫ ∞

0

(ln x)2

1 + x2
dx = π3

8
.
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The Laplace Inversion Integral

When applying the Laplace transform to most practical problems, and obtaining the
transform F (s) of the required result, it is usually possible to find the required inverse

transform f (t) by using tables of Laplace transform pairs together with the operational
properties listed in Chapter 7. Sometimes, however, the appropriate transform pairs cannot
be found, so then some other way must be developed that enables the determination of
the inverse Laplace transform. This is the problem that is addressed in the present chapter,
where it is shown how the inversion of a Laplace transform can be performed by means
of a special contour integral called the Laplace inversion integral.

The Laplace transform F (s) of a function f (t) is defined as

F (s) =
∫ ∞

0
e−st f (t)dt,

provided f (t) is such that the integral exists. The inversion of the Laplace transform to
find the function f (t) from a given transform F (s) was performed in Chapter 7 by using a
table of transform pairs together with the operational properties of the Laplace transform.
In that approach the fact that in general the transform variable s is a complex variable was
not used. However, when more complicated transforms F (s) need to be inverted, and this
cannot be achieved by using a table of transform pairs, it becomes necessary to regard
F (s) as a function of a complex variable and to use complex analysis to find f (t).

This brief chapter uses complex analysis to derive an integral called the Laplace inver-
sion integral that expresses f (t) in terms of a contour integral involving F (s). The inversion
integral is then applied to some typical cases, where it is shown how the residues of the
transform F (s) can be used to recover the original function f (t).

16.1 The Inversion Integral for the
Laplace Transform

When the Laplace transform was introduced in Chapter 7, a table of Laplace
transform pairs was developed by considering the transform variable s to

be real, and these were then used with the operational properties of the Laplace
transform to recover a wide variety of functions f (t) from elementary Laplace

863



864 Chapter 16 The Laplace Inversion Integral

transforms F(s). As tables of transform pairs do not always contain the required
inverse Laplace transform and s must be allowed to be complex, some other method
must be found by which to determine f (t) = L−1{F(s)}.

The method we now derive shows that if f (t) possesses a Laplace transform
F(s), so that

F(s) =
∫ ∞

0
e−st f (t)dt, (1)

where s can be complex, f (t) can be recovered from its Laplace transform F(s) by
means of the complex line integral

f (t) = 1
2π i

∫ c+i∞

c−i∞
est F(s)ds, (2)

where c > 0 is a suitable real constant. The formula in (2) is called the inversionthe Laplace inversion
integral integral for the Laplace transform F(s), and it involves an integral in the complex

s-plane taken along the line Re{s} = c from minus infinity to infinity. We show later
how this inversion integral can be evaluated in terms of the residues of estF(s).

To establish result (2) we use the close relationship that exists between the
complex form of the Fourier integral and the Laplace transform. The nature of this
relationship can be seen from the fact that if

f (t) =
{

e−ct g(t), t > 0
0, t < 0,

(3)

where the real constant c > 0 is chosen to guarantee the existence of F{ f (t)}, then
from the definition of the complex form of the Fourier transform

F{ f (t)} = 1√
2π

∫ ∞

−∞
e−iωt f (t)dt = 1√

2π

∫ ∞

0
e−(c+iω)t g(t)dt

= 1√
2π

∫ ∞

0
e−st g(t)dt. (4)

The integral on the right of (4) is simply the Laplace transform of g(t), though
now the Laplace transform parameter s = c + iω is complex. If F is the Fourier
transform of f , the preceding result can be written

F(c + iω) = 1√
2π

L{g(t)}. (5)

To derive the inversion integral (2) we start from the complex form of the
Fourier integral representation for f (t), which for clarity in the argument thatderivation of the

inversion integral follows we write as

f (t) = 1
2π

∫ ∞

−∞

[ ∫ ∞

−∞
f (u)eiω(t−u)du

]
dω.

If we use the expression for f (t) in (3), this becomes

e−ct g(t) = 1
2π

∫ ∞

−∞

[ ∫ ∞

0
eiωt e−(c+iω)ug(u)du

]
dω.
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However, as eiωt is not involved in the integral with respect to u, this can be rewritten
as

e−ct g(t) = 1
2π

∫ ∞

−∞
eiωt

[ ∫ ∞

0
e−sug(u)du

]
dω,

where s = c + iω, showing that the integral in brackets is simply the Laplace trans-
form G(s) of g(t) that exists by hypothesis. As s = c + iω, ds = idω, so after the
change of variable from ω to s in the integral with respect to ω, the limit ω = −∞
becomes s = c − i∞, and the limit ω = ∞ becomes s = c + i∞, reducing the pre-
vious result to

e−ct g(t) = 1
2π i

∫ c+i∞

c−i∞
e(s−c)t G(s)ds.

Finally, cancelling the factor e−ct that is not involved in the integral with respect to
s, we arrive at the line integral

g(t) = 1
2π i

∫ c+i∞

c−i∞
est G(s)ds.

Apart from a change of notation, involving g and G in place of f and F , this is
the inversion formula (2), so the derivation is complete. The function g(t) will be
independent of the value of c provided Re{s} > c.

An important consequence of this derivation is that g(t) can be allowed to be
piecewise continuous with finite jump discontinuities. This follows because of the
ability of the Fourier integral representation of a function to take account of finite
jump discontinuities.

For the inversion integral to be useful, the line integral involved must be capa-
ble of evaluation in a straightforward manner, so let us now find how this can be
accomplished. Consider the contour CR in Fig. 16.1, where C1R is the line Re{s} = c,
−R ≤ Im{s} ≤ R, and C2R is the semicircle |s − c| = R. If the integrand est F(s) in
(2) has a finite number of poles, all located inside CR, then for sufficiently large R

1
2π i

∫
CR

est F(s)ds = ! {residues at each of the poles of est F(s)}.

c
θ

R

0

C1RC2R

Re{s}

Im{s}
s-plane

FIGURE 16.1 The contour CR

and a typical arrangement of
poles inside CR.
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When expressed in terms of the contours C1R and C2R this result becomes

1
2π i

∫ c+i R

c−i R
est F(s)ds + 1

2π i

∫
C2R

est F(s)ds

= ! {residues at each of the poles of est F(s)}.

Our objective will be to show that the integral around C2R vanishes as R → ∞.
On C2R we have s = c + Reiθ with π

2 ≤ θ ≤ 3π
2 , so after the change of variable

θ = π
2 + φ we can write s = c + i Reiφ , 0 ≤ φ ≤ π , from which it follows that

ds = −Reiφdφ = −|s − c|eiφdφ.

Setting

IR =
∣∣∣∣ 1
2π i

∫
C2R

est F(s)ds

∣∣∣∣,
and transferring the modulus from outside the integral to inside, we arrive at the
inequality

IR ≤ 1
2π

∫
C2R

|est ||F(s)||ds|

= 1
2π

∫ π

0
|F(s)|| exp{t[c + R(i cos φ − sin φ)]}||s − c|dφ.

Let us now suppose F(s) is such that |s F(s)| ≤ M on C2R as R → ∞. Then
if we use the fact that for R sufficiently large |s − c| ≤ |s| + |c| ≤ 2|s|, the integral
inequality becomes

IR ≤ 1
π

∫ π

0
|s F(s)|ect exp(−Rt sin φ)dφ = Mect

π

∫ π

0
exp(−Rt sin φ)dφ.

As sin φ is symmetrical about the value π
2 , this result can be rewritten as

IR ≤ 2Mect

π

∫ π/2

0
exp(−Rt sin φ)dφ.

Finally, applying the integral form of the Jordan inequality to this estimate, we find
that

IR ≤
(

2Mect

π

)(
π

2Rt

)
(1 − e−Rt )

so, provided t > 0, this shows that limR→∞ IR = 0. Consequently, in the limit as
R → ∞, we have shown that when t > 0,

1
2π i

∫ c+i R

c−i R
est F(s)ds = ! {residue at each of the poles of est F(s)}.

This important result, which forms the next theorem, enables the inversion integral
to be evaluated in terms of the residues of the function est F(s).

THEOREM 16.1 Inversion of a Laplace transform by means of residues Let F(s) = L{ f (t)}, the
Laplace transform of f (t), be such that it has a finite number of poles, and choose
c such that all the poles lie to the left of Re{s} = c. Then if a positive real number
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M exists such that |sF(s)| ≤ M for all s to the left of Re{s} = c, the inverse Laplace
transform f (t) = L−1{F(s)} is given by

f (t) = L−1{F(s)} = ! {residue at each of the poles of est F(s)}.

This theorem extends immediately to the case where F(s) has an infinite num-

the inversion integral
and residues

ber of poles all lying to the left of Re{s} = c provided, as R → ∞, the contour C2R is
allowed to expand in such a way that it never passes through a pole. The inversion
of transforms of this type leads to the determination of f (t) = L−1{F(s)} in the
form of an infinite series of functions of t (see Example 16.4).

EXAMPLE 16.1 Use Theorem 16.1 to find L−1{(s2 − a2)/(s2 + a2)2}, a > 0.

Solution Before applying Theorem 16.1 it is necessary to check that its conditions
are satisfied. Using the contour in Fig. 16.1 and setting F(s) = (s2 − a2)/(s2 + a2)2,
the poles (double) of F(s) are seen to be located at s = ±ia, so for suitably
large R they will lie inside the contour provided Re{s} < c, with c > 0. In addition,
lims→∞ |sF(s)| = 0 when s lies to the left of the imaginary axis, so the conditions of
Theorem 16.1 are satisfied.

Routine calculations show that the residues of est F(s) at its two double poles
are

Res
{

est (s2 − a2)
(s2 + a2)2

, s = ±ia
}

= t
2

exp(±iat),

so

f (t) = L−1
{

(s2 − a2)
(s2 + a2)2

}
= t

2
{exp(iat) + exp(−iat)} = t cos at,

confirming entry 12 in Table 7.1 of Laplace transform pairs.

If a Laplace transform involves a branch point, the contour in Fig. 16.1 must
be modified by inserting a branch cut to make the function single valued inside
the contour, and this often involves making a cut along the negative real axis. An
inversion integral requiring a branch cut of this type is given in the next example.

EXAMPLE 16.2 Find L−1{1/
√

s}.

Solution The function F(s) = 1/
√

s has a branch point at the origin of the
s-plane, so instead of the contour in Fig. 16.1 we will use the contour in Fig. 16.2,
where a branch cut has been made along the negative real axis with each side of
the cut being connected by a small circular arc surrounding the branch point at thesome typical examples
origin.

The semicircular contour C2R in Fig. 16.1 is now replaced by the two circular
arcs AB and EF of radius R together with the path BC along the top of the branch
cut, the small circular arc � of radius ε around the branch point, and the path DE
along the bottom of the branch cut. The function F(s) = 1/

√
s is analytic and single

valued inside this modified contour, which is bounded on the right by the vertical
line C1R. We will use the principal branch of the function for which the argument
lies in the interval −π < θ ≤ π . As the branch cut along the negative real axis
terminates at the origin, we must take c > 0.



868 Chapter 16 The Laplace Inversion Integral

R

C1R

Re{s}

Im{s}
s-plane

D

B
E

C εΓ

A

F

0

FIGURE 16.2 Modified contour with a
branch cut to make 1/

√
s single valued.

On C2R we have s = c + Reiθ for π
2 ≤ θ ≤ 3π

2 . For later use we now set
θ = π/2 + φ, so s becomes s = c + iReiφ , for 0 ≤ φ ≤ π . With this change of
variable ds = −Reiφdφ, so |ds| = Rdφ, and provided R is sufficiently large |s| =
|c + iReiφ| ≥ ||Reiφ| − |c|| = R − c. We will also need to use the result that |est | =
| exp{t[(c − Rsin φ) + i Rcos φ]}| = ect exp{−Rt sin φ}. The integral IR around C2R

can now be estimated as follows:

IR =
∣∣∣∣ ∫

ABEF

est

√
s

ds

∣∣∣∣ ≤
∫

ABEF

|est |
|s|1/2

|ds| ≤ ect R
(R − c)1/2

∫ π

0
exp[−Rt sin φ]dφ.

The symmetry of sin φ about φ = π/2 allows this to be rewritten as

IR ≤ 2ect R
(R − c)1/2

∫ π/2

0
exp[−Rt sin φ]dφ,

so applying the integral form of the Jordan inequality we find that

IR ≤ πect

(R − c)1/2t
(1 − e−Rt ).

Allowing R → ∞, with t > 0, in this last result shows that limR→∞ IR = 0.
The integral around the contour � of radius ε, on which s = εeiϕ , ds = iεeiϕdϕ,

and s1/2 = eiϕ/2√ε, is given by∫ π

−π

1
eiϕ/2

√
ε

exp[εt(cos ϕ + i sin ϕ)]iεeiϕdϕ,

but this also is seen to vanish as ε → 0.
Along the top BC of the branch cut s = reπ i = −r , so

√
s = eiπ/2√r = i

√
r ,

and ds = −dr , whereas along the bottom DE of the cut s = re−iπ = −r , so
√

s =
e−iπ/2√r = −i

√
r , and again ds = −dr . As no poles lie inside the contour, it follows
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from the Cauchy integral theorem that

1
2π i

lim
R→∞,ε→0

{∫
C1R

est

√
s

ds +
∫ ε

R

1
i
√

r
e−r t (−dr) +

∫
�

est

√
s

ds

+
∫ R

ε

1
(−i)

√
r

e−r t (−dr) +
∫

C2R

est

√
s

ds
}

= 0.

We have shown that when t > 0 the third and last terms vanish in the limit as
R → ∞ and ε → 0, so the equation reduces to

1
2π i

∫ c+i∞

c−i∞

est

√
s

ds = 1
2π i

{
−
∫ 0

∞

ie−r t

√
r

dr +
∫ ∞

0

ie−r t

√
r

dr
}

= 1
π

∫ ∞

0

e−r t

√
r

dr.

The changes of variable r = u2 followed by v = u
√

t simplify this result to

1
2π i

∫ c+i∞

c−i∞

est

√
s

ds = 2

π
√

t

∫ ∞

0
e−v2

dv,

so using the standard result
∫∞

0 e−v2
dv = √

π/2 we find that

L−1
{

1√
s

}
= 1√

π t
, for Re{s} > 0.

In the next example we consider a Laplace transform with an exponential factor
in the numerator, which is known from the operational properties of the Laplace
transform to arise from a shift in t .

EXAMPLE 16.3 Find L−1{e−s/(s2 + 1)}.

Solution It was shown in Chapter 7 that L−1{e−s/(s2 + 1)} = H(t − 1) sin(t − 1)
for t > 0, where H(t − 1) is the Heaviside unit step function defined as

H(t − a) =
{

0, t < a
1, t > a.

We now show how the result L−1{e−s/(s2 + 1)} can be recovered by means ofhow the inversion
integral generates
the Heaviside step
function

the inversion integral. It is a routine matter to establish that Theorem 16.1 applies
to the function F(s) = e−s/(s2 + 1), which only has simple poles at s = ±i , so we
proceed directly to the determination of the residues of est F(s). We have

Res

{
es(t−1)

s2 + 1
, s = i

}
= − i

2
exp[i(t − 1)]

and

Res

{
es(t−1)

s2 + 1
, s = −i

}
= i

2
exp[−i(t − 1)],

so from Theorem 16.1

f (t) = L−1
{

e−s

s2 + 1

}
=
{
− i

2
exp[−i(t − 1)] + i

2
exp[−i(t − 1)]

}
= sin(t − 1).

As the Laplace transform of a function f (t) is not defined for t < 0, we must
require L−1{e−s/(s2 + 1)} to be zero for t < 1, so if we make use of the Heaviside
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unit step function this becomes

f (t) = L−1{e−s/(s2 + 1)} = H(t − 1) sin(t − 1) for t > 0.

In this example a discontinuous function has been recovered from its Laplace trans-
form by means of the inversion integral in (2).

The extension of Theorem 16.1 to a Laplace transform F(s) with an infinite
number of poles is illustrated in the following example.

EXAMPLE 16.4 Find L−1
{ 1

s cosh s

}
.

Solution Setting F(s) = 1
s cosh s , we see that est F(s) has an infinite number of sim-

ple poles on the imaginary axis, with one at s = 0 due to the factor s in the denomi-
nator, and others at s = (2n + 1)π i/2 with n = 0, ±1, ±2, . . . , corresponding to the
zeros of cosh s. As all the poles lie on the imaginary axis, when applying the inver-
sion integral we will use the contour shown in Fig. 16.3 with c > 0 arbitrarily small,how the inversion

integral
generates a series

and to prevent the contour passing through a pole we set R = kπ with k = 1, 2, . . . .

R = kπ

A

B

C

c0 Re{s}

Im{s}

s-plane

FIGURE 16.3 Contour
containing poles on the
imaginary axis.

Routine calculations show that

Res{est F(s), s = 0} = 1

and

Res{est F(s), s = (2n + 1)π i/2} = (−1)n+1 2 exp[(2n + 1)πit/2]
(2n + 1)π

.

Extending Theorem 16.1 in an obvious manner we have

f (t) = 1
2π i

lim
R→∞

{∫ i R

−i R

est

s cosh s
ds +

∫
ABC

est

s cosh s
ds
}

= !{residues at poles of est F(s)}.
On the semicircle ABC of radius R, s = Reiθ with π

2 ≤ θ ≤ 3π
2 , so |s| = R and

|ds| = Rdθ . Substituting for s in est gives |est | = exp[Rt cos θ], and

|cosh s| = | cosh(Rcos θ) cos(Rsin θ) + i sinh(Rcos θ) sin(Rsin θ)|
= [cosh2(Rcos θ) − sin2(Rsin θ)]1/2

The graph of |cosh s| as a function of θ is symmetrical about θ = π for all R, and it
attains its least values at the ends of the interval π/2 ≤ θ ≤ 3π/2. However, R = kπ ,
so setting θ = π/2 we find that on the semi-circle ABC

|cosh s| ≥ [1 − sin2(kπ)]1/2 = 1.

Using these results to estimate the integral around ABC we find that

IR =
∣∣∣∣ ∫

ABC

est

s cosh s
ds

∣∣∣∣ ≤
∫

ABC

|est |
|s|| cosh s| |ds| ≤

∫ 3π/2

π/2

exp[kπt cos θ ]
kπ

kπdθ

=
∫ 3π/2

π/2
exp[kπt cos θ ]dθ.
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After the change of variable θ = π/2 − φ this becomes

IR ≤
∫ π

0
exp[−kπt sin φ]dφ,

but sin φ is symmetric about φ = π/2, so this is seen to be equivalent to

IR ≤ 2
∫ π/2

0
exp[−kπt sin φ]dφ.

Applying the integral form of the Jordan inequality reduces this to

IR ≤ 1
kt

(1 − e−kπ t ),

so that provided t > 0, lim
k→∞

IR = 0. Consequently we have shown that

f (t) = L−1
{

1
s cosh s

}
=
∑

{residues at the poles of est F(s)}.

Combining the residues of poles located at pairs of complex conjugate points
along the imaginary axis causes the complex parts of the residues to cancel, leaving
the real result

f (t) = L−1
{

1
s cosh s

}
= 1 + 4

π

∞∑
n=0

(−1)n+1 cos[(2n + 1)π t/2]
2n + 1

.

We see that in this case the inversion integral has given rise to a function f (t) in
the form of a sum of an infinite series of cosine functions.

To understand why this has occurred, we need only notice that F(s) is, in fact,
the Laplace transform of the rectangular pulse function

f (t) = 2
∞∑

n=0

(−1)n H[t − (2n + 1)]

with period 4 and amplitude 2. So what has been recovered by the inversion integral
is the Fourier series representation of the piecewise continuous function

f (t) =
⎧⎨⎩

0, 0 < t < 1
2, 1 < t < 3
0, 3 < t < 4,

where f (t) = 0 for t < 0 and f (t + 4) = f (t) for t > 0.

Although Theorem 16.1 provides a general formula for the inverse of a Laplace
transform, it is not always easy to use. In certain cases the inversion integral can be
avoided by employing a known transform together with one or more of the opera-
tional properties possessed by all Laplace transforms. This approach is illustrated
in the next example.

EXAMPLE 16.5 Find L−1
{ 1

s
√

s+1

}
.

Solution An attempt to find this inverse transform by means of Theorem 16.1
leads to difficulties in the determination of the residues, so we will employ a
different approach. The first shift theorem for Laplace transforms asserts that if
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L{ f (t)} = F(s), then L{eat f (t)} = F(s − a), so by replacing s by s + 1 in the result
of Example 16.2 we have

L−1
{

1√
s + 1

}
= e−t

√
π t

.

To complete the inversion process we now make use of the Laplace transform
of an integral that asserts that if L{ f (t)} = F(s), then

L
{

F(s)
s

}
=
∫ t

0
f (τ )dτ.

Using this result with L−1{1/
√

s + 1} gives

L−1
{

1

s
√

s + 1

}
= 1√

π

∫ t

0

e−u

√
u

du.

The change of variable u = v2 converts this to

L−1
{

1

s
√

s + 1

}
= 2√

π

∫ √
t

0
exp(−v2)dv,

but the error function erf (x) is given by

erf (x) = 2√
π

∫ x

0
exp(−v2)dv = 2√

π

∞∑
n=0

(−1)n x2n+1

n!(2n + 1)
,

so

L−1
{

1

s
√

s + 1

}
= erf (

√
t).

EXAMPLE 16.6 Find

L−1
{

exp(−a
√

s)
s

}
, with a > 0.

Solution The function has a branch point at the origin, so when evaluating the
Laplace inversion integral by means of a contour integral it is necessary to use a
contour with a cut along the negative real axis and to enclose the origin in a small
circle of radius ε > 0. The complete contour C is shown in Fig. 16.4, and it comprises
integrals along the path AB that in the limit will become the integral from c − i∞
to c + i∞, and the paths γ1, �1, C1, �2, and γ2.

Setting

f (t) = L−1
{

exp(−a
√

s)
s

}
and F(s) = exp(−a

√
s)

s
est ,

and noticing that F(s) has no poles inside C, we can write

0 =
∫

AB
F(s)ds +

∫
γ1

F(s)ds +
∫

�1

F(s)ds +
∫

C1

F(s)ds +
∫

�2

F(s)ds +
∫

γ2

F(s)ds,

and so
1

2π i

∫
AB

F(s)ds = 1
2π i

{∫
−γ1

F(s)ds +
∫

−�1

F(s)ds +
∫

−C1

F(s)ds

+
∫

−�2

F(s)ds +
∫

−γ2

F(s)ds
}
,
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Γ2

Γ1 C1

c

s = εeiθ

γ2

γ1

R

Re{s}

Im{s}
s-plane

B

A

0

FIGURE 16.4 The contour involving a
cut along the negative real axis.

where the symbols −γ1, −�, . . . , −γ2 indicate the reversal of the direction of inte-
gration along these paths. In the limit as A→ c − i∞ and B → c + i∞, the integral
on the left becomes f (t), and standard arguments show that as R → ∞ the integrals
along γ1 and γ2 that form part of the circle |s| = R in Fig. 16.4 vanish. So, letting
R → ∞, the preceding result is seen to reduce to

1
2π i

∫
AB

F(s)ds = 1
2π i

{∫
−�1

F(s)ds +
∫

−C1

F(s)ds +
∫

−�2

F(s)ds
}
.

The path �1 lies on the upper side of the negative real axis on which s = reπ i ,
so

√
s = √

reiπ/2 = i
√

r . The path �2 lies on the lower side of the negative real axis
on which s = re−π i , so

√
s = √

re−iπ/2 = −i
√

r . Using these results and allowing
for the reversal of the directions of integration, we have

f (t) = lim
ε→0

1
2π i

{∫ ∞

ε

exp(−ia
√

r)
(−r)

e−r t (−dr)

+
∫ π

−π

exp(−a
√

εeiθ/2)
εeiθ

exp(εteiθ )εieiθdθ

+
∫ ∞

ε

exp(ia
√

r)
(−r)

e−r t (−dr)
}

.

Letting ε → 0, the integral around the branch point becomes
∫ π

−π
idθ = 2π i ,

so after reversing the limits in the last integral the equation becomes

f (t) = 1
2π i

{∫ ∞

0

e−r t

r
(−2i) sin

(
a
√

r
)
dr + 2π i

}
,

or

f (t) = 1 − 1
π

∫ ∞

0

e−r t

r
sin(a

√
r)dr.
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This expression can be put in a more convenient form if the integral

I = 1
π

∫ ∞

0

e−r t

r
sin
(
a
√

r
)
dr

is transformed by setting r t = u2. After this change of variable the integral becomes

I = 2
π

∫ ∞

0

exp(−u2)
u

sin(βu)du, where β = a/
√

t .

Now
∂ I
∂β

= 2
π

∫ ∞

0
exp(−u2) cos(βu)du,

but from Exercise 24 in Exercise Section 14.3,∫ ∞

0
exp(−u2) cos(βu)du = 1

2

√
π exp(−β2/4),

so
∂ I
∂β

= 1√
π

exp(−β2/4).

Integration of this result from 0 to β, using the fact that I = 0 when β = 0, gives

I = 1√
π

∫ β

0
exp(−v2/4)dv,

or

I = 1√
π

∫ a/
√

t

0
exp(−v2/4)dv.

In terms of the error function

erf(x) = 2
π

∫ x

0
exp(−t2)dt,

integral I becomes

I = erf
(

a

2
√

t

)
,

and so

f (t) = 1− erf
(

a

2
√

t

)
= erfc

(
a

2
√

t

)
.

We have shown that

f (t) = L−1
{

exp(−a/
√

s)
s

}
= 1− erf

(
a

2
√

t

)
= erfc

(
a

2
√

t

)
.

The inversion integral for the Laplace transform is discussed in some detail in refer-
ence [3.8] together with various applications, and also in references [4.3] and [4.4].
A comprehensive account of different forms of the Laplace transform and their
associated inversion integrals is given in reference [3.18]; see also reference [6.10].

Summary A contour integral called the Laplace inversion integral was derived that allows the
function f (t) to be recovered from its Laplace transform F (s). This more advanced method
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is necessary when the transform F (s) is too complicated for f (t) to be found by means of
a table of transform pairs. The method was illustrated by being used to invert some more
complicated transforms.

EXERCISES 16.1

In Exercises 1 through 13 use the inversion integral to find
L−1{F(s)}.

1. F(s) = 1
s(s2 + a2)

(a > 0).

2. F(s) = 1
(s + 2)(s2 + 4)

.

3. F(s) = (s − 1)
(s + 1)2

.

4. F(s) = 4s + 1
s2(s2 + 1)

.

5. F(s) = 1
s3(s + 1)

.

6. F(s) = s
(s + 4)2(s − 1)

.

7. F(s) = 1
(s2 + a2)2

(a > 0).

8. F(s) = 1
s4 − a4

(a > 0).

9.* F(s) = 1
s1/3

(Hint: Use the gamma function in the

final result).

10.* F(s) = e−s

(s2 + 1)2
.

11.* F(s) = (s + 1)e−2s

s2 − 1
.

12.* F(s) = 1√
s(s − 1)

.

13.* F(s) = 1
s
√

s + a
(a > 0).

14.* Find L−1{ 1
s3/2 } without using the inversion integral by

using a property of the Laplace transform that deter-
minesL−1{s−3/2} from the resultL−1{s−1/2} = (π t)−1/2.

15.* Find L−1{ 1√
s+b

}, and use the result with the con-
volution theorem for the Laplace transform to find
L−1{ 1

(s+a)
√

s+b
} (b > a > 0).

16.* Show that

L−1

{
1

s3 sinh s

}
= t(t2 − 1)

6
− 2

π3

∞∑
n=1

(−1)n sin nπ t
n3

.

17.* Show that

L−1

{
1

(s2 + 1)(1 + e−2as)

}
= sin(t + a)

2

+ 1
a

∞∑
n=1

cos(2n − 1)π t/2a
1 − (2n − 1)2π 2/4a2

(a > 0).
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17C H A P T E R

Conformal Mapping
and Applications to
Boundary Value Problems

The way curves and regions in one plane are mapped by analytic functions onto another
plane constitutes the study of conformal mappings. Conformal mappings concern the

geometrical properties of analytic functions, and their study is closely related to the Laplace
equation. This chapter defines a conformal mapping as one that preserves both the angle
between intersecting curves and the sense of rotation from one curve to the other, and then
proceeds to examine some of the most important examples of these mappings produced
by elementary analytic functions.

Conformal mappings are shown to map a harmonic function in one plane into a
harmonic function in another plane, and it is this property that is used when boundary value
problems for the two-dimensional Laplace equation are solved. Applications of conformal
mappings are made to two-dimensional boundary value problems involving heat flow,
electrostatics, and ideal fluids.

Of particular interest is the ability of conformal mappings to map regions with a com-
plicated boundary shape onto regions with a simple boundary shape. This is because such
mappings can be used to solve two-dimensional boundary value problems for Laplace’s
equation in regions of complicated shape. The required solution follows directly from the
fact that conformal mappings map one analytic function into another one. Consequently,
if a conformal mapping can be found to map a complicated region onto one with a simple
shape, once the solution of the corresponding boundary value problem in the simply
shaped region has been found, it can be transformed back into the required solution in
the complicated region.

17.1 Conformal Mapping

Let �1 and �2 be any two curves in the z-plane that radiate out from a com-
mon point of intersection P at z0, as shown in Fig. 17.1a. Then if the curves

have the respective parametric representations z1(t) = x1(t) + iy1(t) and z2(t) =
x2(t) + iy2(t) for a ≤ t ≤ b, at their point of intersection P corresponding to t = a
we have z0 = z1(a) = z2(a). Now let the function f (z) be a single-valued analytic
function of z in some region D of the z-plane, and set w = f (z). Then, as f (z) is
continuous, each point of �1 will correspond to a unique point on some curve γ1 in

877
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FIGURE 17.1 Mapping of curves �1 and �2 to γ1 and γ2 by w = f (z).

the w-plane and, similarly, each point of �2 will correspond to a unique point on
some other curve γ2 in the w-plane. As the curves �1 and �2 intersect at P located at
z0, the curves γ1 and γ2 must intersect at the point P′, called the image of P, located
at the point w0 = f (z0) in the w-plane. In general, when points in the w-plane are
identified by letters, their images in the w-plane are identified by using the same
letters with the addition of a prime. So if A, B, C denote points in the z-plane, A′, B′,
and C′ will be used to denote the corresponding images in the w-plane.

As the parametrization in terms of t induces a sense (of direction) along the
curves �1 and �2 as t increases, this sense is transferred to the curves γ1 and γ2 in the
w-plane, as shown in Fig. 17.1b. Curves along which a sense of direction is defined
are called directed curves.image, directed curve,

and conformal
mapping

The curves �1 and �2 in the z-plane are said to be mapped onto the respective
curves γ1 and γ2 in the w-plane by the function w = f (z). It is usual to call γi

the image of �i under the mapping w = f (z) from the z-plane to the w-plane
and, conversely, as f (z) is single valued, �1 is called the image of γ1 under the
inverse mapping z = f −1(w) from the w-plane to the z-plane. In what follows we will
show that for any z0 such that f ′(z0) �= 0, the analytic nature of f (z) causes the
mapping to preserve the angle of intersection between the curves �1 and �2 at P
in the z-plane, so it equals the angle between their images γ1 and γ2 at P′ in the
w-plane. In addition, and equally important, we will show that the sense of rotation
is preserved, so if the tangent to �2 at P is obtained by rotating the tangent to �1

at P counterclockwise through an angle α, then the tangent to γ2 at P′ is obtained
by rotating the tangent to γ1 at P′ counterclockwise through the same angle α. A
mapping that possesses these two properties is called a conformal mapping, and
such mappings play a useful role in connection with the solution of boundary value
problems for the two-dimensional Laplace equation.

To establish the conformal nature of the mapping produced by a single valued
analytic function w = f (z), we now appeal to Fig. 17.2. Consider the secant PQ
on curve �1 in Fig. 17.2a, and the corresponding secant P′ Q′ in Fig. 17.2b, where
Q is located at z1 and Q′ at w1 = f (z1). In the limit as Q → P, the angle between
the secant PQ and the real axis in the z-plane becomes the angle α1 between the
tangent to �1 at P and the real axis and, correspondingly, point Q′ → P′, causing
the angle between the secant P′ Q′ and the real axis in the w-plane to become the
angle β1 between the tangent to γ1 at P′ and the real axis.

Consequently, as PQ = z1 − z0, we can write

α1 = lim
z1→z0

Arg(z1 − z0),
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FIGURE 17.2 Secants PQ and P′ Q′ in the z- and w-planes.

and correspondingly

β1 = lim
z1→z0

Arg(w1 − w0).

Forming the difference β1 − α1, we have

β1 − α1 = lim
z1→z0

Arg(w1 − w0) − lim
z1→z0

Arg(z1 − z0),

but Arg a − Arg b = Arg(a/b), so this last result can be written

β1 − α1 = lim
z1→z0

Arg
(

w1 − w0

z1 − z0

)
.

As f (z) is an analytic function, and so has a unique derivative f ′(z) irrespective
of the way in which z1 → z0, the preceding result shows that when f ′(z0) �= 0,

β1 − α1 = Arg f ′(z0).

The uniqueness of the derivative f ′(z0) means that the foregoing result is true
for any other curve passing through P and its image curve through P′, so, in partic-
ular, it is true for the curves �2 and γ2. We have shown

β1 − α1 = β2 − α2,

and this can be rewritten as

α2 − α1 = β2 − β1.

As the curves �1 and �2 were any two curves that intersect in the z-plane, this
result has established the preservation of both the angles and their senses under
the mapping w = f (z), and hence the conformal nature of mappings produced by
single-valued analytic functions at all points z where f ′(z) �= 0.

Although angles and senses of rotation are preserved by a conformal mapping,
in general the length scale involved in a mapping at a point z0 in the z-plane and at
its image point w0 = f (z0) in the w-plane is different. To find the linear scale factor
ρ(z0) that is involved at z = z0, we need to consider the limit of the quotient | f (z) −
f (z0)|/|z − z0| as z → z0, but this is simply | f ′(z0)|. So in a conformal mapping,
provided f ′(z) �= 0, the linear scale factor ρ(z) introduced at a point zwhen mappinglinear and area scale

factors and critical
points

infinitesimal line elements from the z-plane to the w-plane is ρ(z) = | f ′(z)| and,
correspondingly, the area scale factor is ρ2(z). Because the scale factor and the
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rotation produced by a conformal mapping usually change throughout the w-plane,
the image in the w-plane of boundaries of regions in the z-plane can look very
different.

Points z0 for which f ′(z0) = 0 are called critical points of the function f (z).
It can be seen from the above argument that the conformal nature of a mapping
w = f (z) breaks down at a critical point z0 of f (z), because at such a point the angle
between intersecting curves at z0, and between their image curves at w0 = f (z0)
are not preserved, and in addition the linear and area scale factors vanish at such
points. We have proved the following fundamental theorem.

THEOREM 17.1 Conformal mapping Let f (z) be analytic and single valued in a region of the
z-plane. Then, at every point z in the region such that f ′(z) �= 0, the conformal

the fundamental
mapping theorem mapping w = f (z) preserves angles between intersecting curves in the z-plane,

and it also preserves the sense of rotation between intersecting directed curves.
The linear scale factor involved in the mapping from the z-plane to the w-plane is
ρ(z) = | f ′(z)| and the area scale factor is ρ2(z) = | f ′(z)|2.

The fact that conformal mappings preserve angles between intersecting curves
and their sense of rotation leads to the following rule that determines how regions
in the z-plane map onto regions in the w-plane. The rule will be used in the examples
that follow.

Rule for determining how a region in the z-plane is mapped onto a
corresponding region in the w-plane by a conformal mapping w = f (z)

Let a region R in the z-plane be bounded by a continuous and piecewise
smooth contour �, and let the z-plane be mapped conformally onto the
w-plane by w = f (z). Furthermore, let A and B be any two distinct points
on � and suppose that the region R lies to the left (right) as the boundary � isdeciding how a region

in the z-plane maps
onto a region in the
w-plane

traversed in the direction from Ato B. Then if γ is the image of �, A′ and B′ are
the images of A and B, and R′ is the image of R, the region R′ in the w-plane
will lie to the left (right) as γ is traversed in the direction from A′ to B′.

The preceding rule implies the following simple test for the determination of
regions that correspond under a one-one conformal transformation w = f (z). If Z
is any test point in a region of interest in the z-plane, then the corresponding region
in the w-plane will be the one containing the point w = f (Z).

Before examining some typical examples of conformal transformations, we will
prove the important property that the curves u = constant and v = constant in the
w-plane are mutually orthogonal at all points other than at the images of the critical
points of w = f (z) in the z-plane.

Setting w = u + iv = f (z) and taking the total derivatives of u and v with
respect to x gives

du
dx

= ∂u
∂x

+ ∂u
∂y

dy
dx

and
dv
dx

= ∂v
∂x

+ ∂v
∂y

dy
dx

.

So, along the curves u = constant and v = constant,

0 = ∂u
∂x

+ ∂u
∂y

(
dy
dx

)
u=const

and 0 = ∂v
∂x

+ ∂v
∂y

(
dy
dx

)
v=const

,
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where (dy/dx)u=const and (dy/dx)v=const are, respectively, the gradients of
u = constant and v = constant in the w-plane. Combining these results at an arbi-
trary point P that is not the image of a critical point of w = f (z) in the z-plane,
and writing (dy/dx)u=const,P = (dy/dx)P(u), and (dy/dx)v=const,P = (dy/dx)P(v), we
have (

dy
dx

)
P(u)

(
dy
dx

)
P(v)

=
(

−∂u
∂x

/
∂u
∂y

)
P

(
−∂v

∂x

/
∂v
∂y

)
P

.

However, from the Cauchy–Riemann equations the product of these last factors is
seen to be −1, showing that

(
dy
dx

)
P(u)

(
dy
dx

)
P(v)

= −1.

Thus, as P is an arbitrary point in the w-plane at which the product of the gradients
of u = constant and v = constant equals −1, it follows directly that the curves
u = constant and v = constant are mutually orthogonal except at points that are
the images of critical points of w = f (z) in the z-plane. We have proved the next
theorem.

THEOREM 17.2 u = constant and v = constant are orthogonal trajectories If w = f (z) = u + iv
is a single-valued analytic function, the families of curves u = constant and v =

constant values of
the real and
imaginary parts
of f (z) map onto
orthogonal
trajectories

constant are mutually orthogonal in the w-plane except at the images of the critical
points of f (z).

(a) The Linear Transformation w = az+ b
The simplest nontrivial conformal transformation is the linear transformation

w = az + b with a �= 0. (1)

As a �= 0 the transformation between the z- and w-planes is one-one, because

z =
(

1
a

)
w − b

a
, (2)

and the transformation is conformal because f (z) = az + b is an analytic functionthe geometrical
properties of the
linear mapping

for all z. As w′ = d/dz[az + b] = a �= 0, the linear transformation has no critical
points. To understand the geometrical interpretation of the linear transformation,
notice first that we can write a = |a| exp[iArg a]. As a result w = az + b can be
regarded as the combination of the three simple transformations,

w1 = |a|z, w2 = exp[iArg a]w1, and w = w2 + b.

The transformation w1 = |a|zscales zby the real constant factor |a|, so although
the image in the w1-plane of the boundary of an arbitrary region in the z-plane
experiences neither a translation nor a rotation, it does experience a uniform
magnification if |a| > 1 and uniform contraction if |a| < 1.



882 Chapter 17 Conformal Mapping and Applications to Boundary Value Problems

Imaginary axis

Real axis

φ

Rotation through φ

w2 = eiφw1

0

Imaginary axis

Real axis

b
b

b

A′

C′

B′

0

Translation by b

Imaginary axis

Real axis

⎢a⎥y1

⎢a⎥y2
w1 = ⎢a⎥z

⎢a⎥x1 ⎢a⎥x2 ⎢a⎥x30

Magnification by ⎢a⎥

Imaginary axis

y2

y1

x1 x2 x30 Real axis

w-plane

w1-plane

w2-plane

z-plane

B

C

A

FIGURE 17.3 Successive transformations leading to w = az + b.

When complex numbers are multiplied their arguments are added, so setting
Arg a = φ shows the transformation w2 = eiφw1 produces a uniform rotation through
an angle φ about the origin in the w1-plane.

Finally, the transformation w = w2 + b is seen to involve a translation of every
point in the w2-plane by an amount b. So the combined effect of linear transforma-
tion (1) on the boundary of any region in the z-plane is to produce first a scaling by a
constant factor |a|, then a uniform rotation through an angle φ = Arg a, and finally
a uniform translation by an amount b. Thus, a linear transformation preserves the
shapes of boundaries of regions of interest. The sequence of diagrams in Fig. 17.3
illustrates the typical effect of these successive transformations on a triangular re-
gion in the z-plane with its vertices at A, B, and C and the image points A′, B′, and
C′ in the w-plane.

To apply the preceding rule to determine the region in the w-plane correspond-
ing to the triangle in the z-plane, we use the fact that the interior of the triangle
in the z-plane lies to the left as the boundary is traversed in the direction A, B,
and C. Consequently, the corresponding region in the w-plane is the interior of the
triangle A′, B′, and C′, because this also lies to the left as the transformed boundary
is traversed in the direction A′, B′, and C′.
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It is important always to use a test point with the rule developed earlier in order
to check how regions transform. This is because a conformal transformation may
map the interior of a closed contour � in the z-plane onto the exterior of its image γ

in the w-plane. An example of this type is provided by the inversion mapping that
is considered next.

(b) The Inversion Mapping w = 1/z
The mapping

w = 1/z (3)

is called the inversion mapping, or sometimes the reciprocal mapping. This provides
a conformal mapping of the z-plane onto the w-plane, because f (z) = 1/z is a
single-valued analytic function with only the simple pole at the origin z = 0 where
the derivative w′ = −1/z2 is not defined. If we set z = reiθ , the mapping becomes

w =
(

1
r

)
e−iθ . (4)

This result shows that points on the unit circle |z| = 1 map to points on the unit circle
|w| = 1. However, because of the reversal of the sign of θ , points on the upper half
of the circle |z| = 1 are reflected in the real axis and mapped to points on the lower
half of the circle |w| = 1, and conversely. Furthermore, because |w| = 1/r , it follows
that points inside |z| = 1 are mapped to points outside |w| = 1, and conversely, as
shown in Fig. 17.4. This can be confirmed by taking z = 1

2 as a test point inside the
unit circle |z| = 1, and noticing that it transforms to the point w = 2 outside the unit
circle |w| = 1. Notice that the circle in the z-plane and its image in the w-plane are
traversed in opposite directions.

The inversion mapping can be regarded as the composition (product) of the
two simple transformations

Z = 1
z

and w = Z. (5)

y
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z-plane
v

u0

w-plane

r
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w0 = 1/z0

w = 1/z

FIGURE 17.4 The inversion mapping w = 1/z.
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FIGURE 17.5 Inversion in a circle.

To interpret these transformations geometrically we will make use of the gen-
eral concept of inversion in a circle. Consider the circle of radius R in Fig. 17.5,
where the point P at z lies outside the circle with its center C at z = c, and Q at
z∗ lies inside it on the radial line CP at its point of intersection with the chord AB
drawn from the points Aand B where lines from P are tangent to the circle.

A simple argument using similar triangles shows thatthe geometrical
operation of
inversion in a
circle

|CP| × |CQ| = R2,

or

|z − c| |z∗ − c| = R2.

The points P and Q in Fig. 17.5 are said to be symmetric with respect to the circle
with its center at C. Point Q said to be inverse to point P and, similarly, point P
is inverse to Q. In particular, if c = 0 so the circle is centered on the origin, the
preceding result implies that points z and z∗ that are symmetric with respect to the
circle |z| = R are such that

z∗ = R2

z
. (6)

Examination of the first transformation in (5) shows that |Z||z| = 1, so this
transformation corresponds to an inversion in the unit circle |z| = 1 centered on
the origin. The second transformation w = Z simply involves the complex conju-
gate operation, and so can be interpreted as a reflection in the real axis. Thus, the
inversion mapping is seen to involve a reflection in the unit circle centered on the
origin followed by a reflection in the real axis.

A fixed point of a mapping f is a point z∗ that is left invariant as a result ofa fixed point of
a mapping the mapping, so that f (z∗) = z∗. It is easily seen that the inversion mapping has the

two fixed points z = ±1.
The main features of the inversion mapping will become clear if we consider

how it maps circles and straight lines. The equation

A(x2 + y2) + Bx + Cy + D = 0, (7)
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where the coefficients A, B, C, and Dare real, describes a circle of radius R = (B2 +
C2 − 4AD)1/2/2 |A| with its center at (−B/2A, −C/2A) provided B2 + C2 > 4AD
and A �= 0, and a straight line when A= 0. The distance of the center of the circle
from the origin is (B2 + C2)1/2/2 |A|, so the circle will not pass through the origin if
D �= 0, since then x = 0, y = 0 does not satisfy (7).

If we write w = u + iv, the inversion mapping w = 1/z becomes

u + iv = 1
x + iy

,

from which we find that

x = u
u2 + v2

, y = − v
u2 + v2

. (8)

Substituting (8) into (7) with A �= 0, D �= 0 gives the equation

D(u2 + v2) + Bu − Cv + A= 0, (9)

that describes a circle in the w-plane of radius ρ = (B2 + C2 − 4AD)1/2/2 |D|, with
its center at (−B/2D, C/2D). This circle will not pass through the origin in the
w-plane if A �= 0, since then u = v does not satisfy (9). Thus, the inversion mapping
transforms a circle in the z-plane that does not pass through the origin into a circle
in the w-plane that does not pass through the origin.

If, however, A= 0 and D �= 0, the straight line in the z-plane given by (7) maps
to the circle

D(u2 + v2) + Bu − Cv = 0 (10)

with radius ρ = (B2 + C2)1/2/2 |D| and its center at (−B/2D, C/2D). As the radius
of this circle and the distance of its center from the origin are equal, the circle passes
through the origin in the w-plane. Conversely, if D = 0 and A �= 0, a straight line in
the w-plane will map onto a circle that passes through the origin in the z-plane.

Finally, if A= D = 0, the straight line in the z-plane given by (7) will pass
through the origin and map onto a straight line in the w-plane that passes through
the origin.

In summary, the inversion mapping has the following properties:

summary of the
geometrical
properties of the
inversion mapping

(a) A circle in one plane that does not pass through the origin will map onto a
circle in the other plane that does not pass through the origin.

(b) A straight line in one plane that does not pass through the origin will map
onto a circle in the other plane that passes through the origin.

(c) A straight line through the origin in one plane will map onto a straight line
through the origin in the other plane.

(d) Points inside a unit circle centered on the origin in one plane will map to
points outside the unit circle centered on the origin in the other plane, and
conversely.

The line x = constant parallel to the imaginary axis is obtained from (7) by
setting A= C = 0, and examination of the results following (10) shows that this
maps onto a circle through the origin in the w-plane with its center on the real axis.
Similarly, the line y = constant, corresponding to A= B = 0 in (10), is seen to map
onto a circle through the origin in the w-plane with its center on the imaginary
axis. Thus, constant coordinate lines map to families of circles through the origin,
one with its centers on the real axis and the other with its centers on the imaginary
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FIGURE 17.6 Mapping of coordinate lines by w = 1/z.

axis. As the coordinate lines x = constant and y = constant are orthogonal, the
conformal nature of the transformation ensures that the two families of circles are
themselves mutually orthogonal, as shown in Fig. 17.6.

The inversion mapping relates directly to the extended complex plane intro-
duced at the end of Section 15.3. It will be recalled that the extended complex
plane is formed by including in the ordinary complex plane the so-called point at
infinity, defined as the limit as R→ ∞ of all points in the z-plane that lie outside
the circle |z| = R. As a result, the inversion mapping is seen to map the origin in
the z-plane to the point at infinity in the w-plane, and the point at infinity in the
z-plane to the origin in the w-plane. If we set T(z) = 1/z, the inversion mapping
becomes w = T(z), and we can then write T(0) = ∞ and T(∞) = 0.

The use of the extended complex plane unifies the treatment of the mapping
of straight lines and circles by w = 1/z by allowing straight lines to be regarded as
circles of infinite radius.

The effect of an inversion mapping on the square in the z-plane with its sides
parallel to the real and imaginary axes shown in diagram (a) on the left of Fig. 17.7
can be seen in the diagram (b) on the right. The sides of the square are seen to map
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FIGURE 17.7 Inversion mapping of a square.
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to four circular arcs, and the rule for determining how regions transform shows that
the interior of the square maps to the interior of the region bounded by the circular
arcs. For reference purposes the unit circles centered on the origin have been shown
in both planes to illustrate how points B, C, and D that lie outside the unit circle in
the z-plane map to points inside the unit circle in the w-plane, while point A that
lies inside the unit circle in the z-plane maps to a point outside the unit circle in the
w-plane. The effect of the reflection in the real axis that is involved in the inverse
mapping is also apparent, because a region in the first quadrant in the z-plane has
been mapped to a region in the fourth quadrant in the w-plane.

(c) The Linear Fractional Transformation
The transformation

w = az + b
cz + d

, (11)

is called either the linear fractional transformation or the bilinear transformation,the linear fractional
transformation, or
bilinear
transformation

and sometimes the Möbius transformation. It is always possible to assume that
c �= 0, because when c = 0 the transformation reduces to the linear transformation
already considered. Furthermore, we may always assume that ad − bc �= 0, because
if ad − bc = 0 transformation (11) reduces to a constant.

The inverse mapping

z = b − dw
cw − a

(12)

is also a linear fractional mapping, and as the derivative is

w′ = ad − bc
(cz + d)2

,

the mapping is seen to be one-to-one and conformal everywhere with the exception
of the point at z = −d/c.

Writing the linear fractional transformation in (11) in the form

w = az + b
cz + d

= a
c

+ bc − ad
c(cz + d)

(13)

allows it to be regarded as the sequence of transformations

w1 = cz + d, w2 = 1/w1, and w = (a/c) + (bc − ad)
c

w2. (14)

These equations show that a linear fractional transformation can be regarded as
the composition of a linear transformation, an inversion mapping, and then another
linear transformation.
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Having interpreted a general linear fractional transformation in this manner, we
can now make use of the general properties of linear transformations and inversion
mappings to deduce the general properties of a linear fractional transformation.
It is not difficult to see that the transformation (11) maps straight lines and circles
onto straight lines and circles, though not necessarily in this order.

Furthermore, the definition of symmetry of two points with respect to a circlesummary of
geometrical
properties of the
linear fractional
transformation

introduced in (b) earlier when discussing the inversion mapping enables another
useful result to be proved: namely, that a pair of points that are symmetric with
respect to a circle in the z-plane are mapped by a linear fractional transformation
into a pair of points that are symmetric with respect to the image of the circle in the
w-plane. The proof of this result is not difficult and so is left as an exercise, but the
general result is important because it describes the symmetry preserving property
of all linear fractional transformations.

When the linear fractional transformation is written in the form

w = (a/c)z + (b/c)
z + d/c

, (15)

it can be seen to be fully determined once the three numbers a/c, b/c, and d/c are
specified. We now show how the transformation can be found when three distinct
points z1, z2, and z3 that are specified in the z-plane are required to map to three
distinct points w1, w2, and w3 that are specified in the w-plane. As three noncollinear
points define a circle, it follows that three such points mapping to three other non-
collinear points will cause the transformation to map a specific circle in one plane
onto a specific circle in the other plane. Similarly, if the three points in one plane
are collinear and the three in the other plane are not collinear, the transformation
will map a specific straight line in one plane onto a specific circle in the other plane.

Using (11) we can write the difference w − wm as

w − wm = (ad − bc)
(cz + d)(czm + d)

(z − zm), for m = 1, 2, 3. (16)

Forming the differences w − w1, w − w2, w3 − w2, and w3 − w1 and combining the
resulting expressions leads to the resulta fundamental implicit

relationship between
w and z w − w1

w − w2
· w3 − w2

w3 − w1
= z − z1

z − z2
· z3 − z2

z3 − z1
. (17)

This is an implicit form of the relationship between w and z that determines the
mapping between the specified points in each plane. The explicit transformation that
produces the required mapping from the z-plane to the w-plane can be obtained
from (17) by substituting the numbers z1, z2, z3, w1, w2, and w3 and solving for w in
terms of z.

If one of the three points in either plane is the point at infinity, the factors in
(17) containing it must be set equal to 1. To understand the reason for this, let us
suppose for example that z3 = ∞. Then from (17),

lim
z3→∞

[
(z − z1)(z3 − z2)
(z − z2)(z3 − z1)

]
= (z − z1)

(z − z2)
lim

z3→∞

[
1 − z2/z3

1 − z1/z3

]
= z − z1

z − z2
,
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confirming that the factors containing z3 are no longer present and so can be con-
sidered to have been set equal to 1. A corresponding result applies if either z1 or z2

is the point at infinity, or if any one of w1, w2, or w3 is the point at infinity.

EXAMPLE 17.1 Find the linear fractional transformation that maps the points z1 = −1, z2 = 1, and

using the implicit
relationship to find
a mapping

z3 = i onto the respective points w1 = 0, w2 = 1, and w3 = −i , and determine how
the region R inside the circle through the three points in the z-plane maps onto a
region R′ in the w-plane.

Solution Substitution into (17) gives

w
w − 1

· −(1 + i)
−i

= z + 1
z − 1

· i − 1
i + 1

,

so solving for w shows the required linear fractional transformation to be

w = z + 1
(2 + i)z − i

.

The circles in the z- and w-planes through the stated points are shown in
Fig. 17.8. As the region R inside the circle in the z-plane lies to the left as the
circle is traversed in the direction z1, z2, and z3, traversing the image points in the
w-plane in the order w1, w2, and w3 shows that the image R′ of R must lie outside
the circle in the w-plane. This is easily confirmed by noticing that the point z = 0 in
R maps to the point w = i in R′.

EXAMPLE 17.2 Find the linear fractional transformation that maps the points z1 = −1, z2 = 0, and
z3 = i onto the three points w1 = 0, w2 = 1, and w3 = ∞, and determine how the
region R inside the circle through the three points in the z-plane maps onto a region
R′ in the w-plane.

Solution Substituting z1, z2, z3, w1, and w2 into (17), and using the fact that w3 = ∞
enables the factor containing w3 to be replaced by 1, we find that

w
w − 1

= z + 1
z

· i
i + 1

.

y

x0
BA

1−1

R

Ci

z-plane

R′

B′A′

C′
−i

0 1

v

u
w = z + 1

(2 + i)z − i

w-plane

FIGURE 17.8 The mapping z+1
(2+i)z−i .
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C i
w = z + 1

iz + 1

FIGURE 17.9 The mapping w = z+1
iz+1 .

When solved for w the required linear fractional transformation is found to be
given by

w = z + 1
iz + 1

.

The circle in the z-plane and the corresponding straight line image in the w-plane
are shown in Fig. 17.9. The ordering of the points in the two planes shows that as
the region R inside the circle in the z-plane lies to the left as the circle is traversed
in the direction z1, z2, and z3, the image region R′ in the w-plane must lie above (to
the left) as the straight line (real axis) is traversed in the direction w1, w2, and w3

in the w-plane.

(d) Mapping Eccentric Circles
onto Concentric Circles
A linear fractional transformation can map circles onto circles and, when doing so,how to map

eccentric circles
onto concentric
circles

preserves symmetry. Thus, it can be used to map the region between the eccentric
circles in Fig. 17.10a onto the annular region between the concentric circles in
Fig. 17.10b.

A

y z-plane

−1

B ρ

a

D

10 x

(a) (b)

C

⎢z⎥ = 1

w-plane

D′
−1

A′
10

C ′
−δ

B′
δ u

v

⎢w⎥  = 1
w = k( z − δ ), ⎢k⎥ = 1δz − 1

a − ρ a + ρ

FIGURE 17.10 Mapping eccentric circles onto concentric circles.
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To find the required transformation w = T(z), we start from the fact that a
linear fractional transformation T(z) can always be written in the form

w = T(z) = K
(

z − α

z − β

)
.

So if the center of the inner circle of radius ρ in Fig. 17.10(a) located at z = a is
to map to the origin in the w-plane in Fig. 17.10b, we must set α = a, so that T(z)
becomes

T(z) = K
(

z − a
z − β

)
.

The circles in Fig. 17.10(a) are symmetric about the real axis, so this symmetry will
be preserved by T(z). In addition, a point z∗ that is symmetric relative to z = a
with respect to the circle |z| = 1 will be mapped onto a point in the w-plane that is
symmetric relative to the origin w = 0 with respect to the circle |w| = 1, so z∗ will
be mapped to the point at infinity, showing that we must set β = z∗. The mapping
T(z) now takes the form

T(z) = K
(

z − a
z − z∗

)
.

As a and z∗ are symmetric with respect to the circle |z| = 1, it follows from (6)
that az∗ = 1, but a is real, so z∗ = 1/a must also be real. Using this result in T(z)
reduces it to

w = T(z) = aK
(

z − a
az − 1

)
.

The unit circle |z| = 1 maps to the unit circle |w| = 1, so recognizing that |w|2 =
ww = 1 and zz = 1, and using w = T(z) to form the product ww, we arrive at the
equation

1 = ww = a2 KK
(

z − a
az − 1

)(
z − a

az − 1

)
= a2 KK.

This result shows that the factor aK must be of unit modulus, so if k is an arbitrary
complex number with unit modulus, T(z) can be written

w = T(z) = k
(

z − a
az − 1

)
, with |k| = 1.

The transformation T(z) maps the circle |z| = 1 onto the circle |w| = 1, and it pre-
serves symmetry about the real axis in the w-plane. As a is arbitrary, although the
image of the inner circle must be symmetric about the real axis in the w-plane, the
location of its center will depend on a. The two circles in the w-plane are required
to be concentric, so the images of z1 = a + ρ and z2 = a − ρ must be symmetric
with respect to w = 0 at the points w = ±δ on the real axis in the w-plane. Thus,
T(z) must be such that T(z1) = −T(z2), and so

a − ρ − δ

δ(a − ρ) − 1
= −

(
a + ρ − δ

δ(a + ρ) − 1

)
.
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After simplification δ is found to be a solution of the quadratic equation

aδ2 − (1 + a2 − ρ2)δ + a = 0.

Examination of the way the boundaries transform confirms that the region between
the eccentric circles in the z-plane maps to the region between the concentric circles
in the w-plane.

We have shown that the transformation w = T(z) that maps the region between
the eccentric circles in Fig. 17.10a onto the annular region between the concentric
circles in Fig. 17.10b is given by

w = T(z) = k
(

z − δ

δz − 1

)
, |k| = 1, (18)

with δ a solution

aδ2 − (1 + a2 − ρ2)δ + a = 0.

(e) The Mapping w = z2

The function

w = z2 (19)

is analytic for all z, and so provides a conformal mapping of the z-plane onto thehow w = z2 maps
the z-plane onto
the w-plane

w-plane except at z = 0, which is a critical point. Setting z = reiθ and w = ρeiφ in
(19) gives w = r2e2iθ = ρeiφ , so

ρ = r2 and φ = 2θ. (20)

Consequently the concentric circles r = R (constant) in the z-plane map onto the
concentric circles

u2 + v2 = R2

in the w-plane, while the radial lines θ = α (constant) radiating out from the origin
in the z-plane map onto the radial lines φ = 2α in the w-plane.

To make the mapping from the z-plane to the w-plane single valued, it is nec-
essary to restrict θ to any interval of length π . It is usual to restrict z to the upper
half of the z-plane so 0 < θ ≤ π and r > 0, because then the upper half of the
z-plane maps to the entire w-plane with a cut along the positive real axis, as shown
in Fig. 17.11. The image of the region R shown in the z-plane is the region R′ in
the w-plane. The cut is essential to keep the mapping one-one, because the same
transformation also maps the lower half of the z-plane onto the same cut w-plane.
Without the cut the function w = z2 maps the entire z-plane twice onto the entire
w-plane.

Setting z = x + iy and w = u + iv in w = z2 and equating the real and imaginary
parts of the equation shows that

u = x2 − y2 and v = 2xy. (21)
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FIGURE 17.11 The mapping w = z2.

y

x0

z-plane

w-plane

w = z2
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FIGURE 17.12 Mapping of cartesian coordinate lines by w = z2.

So the lines x = p map to the parabolas

v2 = 4p2(p2 − u), (22)

and the lines y = q map to the parabolas

v2 = 4q2(u + q2). (23)

This mapping of cartesian coordinate lines in the z-plane onto parabolas in the
w-plane is shown in Fig. 17.12, where region R′ is the image of region R.

(f) The Function w = z1/2

The square root functionmapping by the
branches of the
square root function

w = z1/2 (24)



894 Chapter 17 Conformal Mapping and Applications to Boundary Value Problems

R

y

x0 0

z-plane v

u

w-plane

R′

w = z1/2

FIGURE 17.13 Mapping of a rectangle in the z-plane by the principal branch of
w = z1/2.

is the inverse of the mapping considered in (e) above. As the derivative of the
square root function is w′ = 1

2 z−1/2, the square root function is seen to be an analytic
function for all z �= 0, so the conformal nature of the mapping from the z-plane to
the w-plane will only fail at the origin. To make the function single valued, we will
work with the principal branch of the square root function by setting z = reiθ , and
then restricting θ to the interval −π < θ ≤ π , with r > 0. If we write w = u + iv,
the mapping in (24) becomes

w = u + iv = r1/2(cos θ/2 + i sin θ/2), (25)

showing that

u = r1/2 cos θ/2 and v = r1/2 sin θ/2. (26)

If the z-plane is cut along the negative real axis, results (26) show that the
principal branch of the square root function maps each point of the cut z-plane
once onto the right half of the w-plane, as illustrated in Fig. 17.13. Had the other
branch of the square root function been used, where w is determined by

w = z1/2 = r1/2
(

cos
(θ + 2π)

2
+ i sin

(θ + 2π)
2

)
, (27)

each point of the same cut z-plane would have been mapped once onto the left half
of the w-plane.

To see how the square root function maps the cartesian coordinate lines in the
z-plane onto the w-plane, we set z = x + iy and w = u + iv in (24) and square the
result. Equating the real and imaginary parts then shows that

x = u2 − v2 and y = 2uv. (28)

Thus, the cartesian coordinate lines x = constant and y = constant each map
to families of rectangular hyperbolas. The conformal nature of the transformation
ensures that the two families of hyperbolas are mutually orthogonal everywhere
except at the origin where the critical point of the mapping is located. Figure 17.13
illustrates how the principal branch of the square root function maps a rectangular
region in the z-plane onto a curvilinear region in the w-plane.
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FIGURE 17.14 Mapping of a rectangle in the z-plane by the second branch of
w = z1/2.

The mapping of the same rectangular region by the second branch of the square
root function given in (27) is shown in Fig. 17.14, obtained by rotating the first branch
by an angle π .

(g) The Joukowski Transformation w = z+ 1/z
The mappingthe Joukowski

transformation

w = z + 1
z

(29)

is called the Joukowski transformation, and as w′ = 1 − 1/z2 it is seen that w is
analytic everywhere except at z = 0, and conformal everywhere except at the critical
points located at z = ±1 that map to the points w = ±2. Setting z = reiθ in (29),
with −π < θ ≤ π and w = u + iv, gives

w = u + iv =
(

r + 1
r

)
cos θ + i

(
r − 1

r

)
sin θ,

so that

u =
(

r + 1
r

)
cos θ and v =

(
r − 1

r

)
sin θ. (30)

Examination of these results shows that the unit circle |z| = 1 maps onto the segment
−2 < u < 2, v = 0, of the real axis in the w-plane, and that its exterior maps to the
w-plane from which the cut represented by this segment has been removed. The
mapping of the z-plane onto the w-plane by the Joukowski transformation is double
valued, because the interior of the unit circle is also mapped onto this same cut
w-plane. The mapping (29) will be single valued if z is restricted to either the
interior or the exterior of the unit circle |z| = 1.

Setting z = x + iy and w = u + iv in (29) and equating the real and imaginary
parts of the equation give

u = x(x2 + y2 + 1)
x2 + y2

and v = y(x2 + y2 − 1)
x2 + y2

. (31)
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FIGURE 17.15 Mapping of cartesian coordinate lines by w = z + 1/z.

These equations determine the way the cartesian coordinate lines x = constant
and y = constant map onto the w-plane. Figure 17.15 shows a representative set
of mutually orthogonal curves in the w-plane corresponding to a set of cartesian
coordinate lines in the z-plane.

Interest in this transformation, which was introduced by the Russian aerody-
namicist N. J. Joukowski (1847–1921), first arose because of the way it maps a circle
of radius R passing through the point z = −1 with its center at a point in the first
quadrant of the z-plane onto the w-plane. A typical result of the mapping, called
a Joukowski airfoil profile, is illustrated in Fig. 17.16. The mapping was used by
Joukowski in early studies of the subsonic airflow when calculating the aerody-
namic lift of wings with a cross-section in the form of a Joukowski profile.

The inverse mapping from the w-plane to the z-plane is obtained by multiply-
ing the Joukowski transformation in (29) by z and solving the resulting quadratic
equation for z in terms of w to obtain

z = 1
2

(w +
√

w2 − 4). (32)

The square root function is double valued, so this inverse transformation maps
both the exterior and interior of |z| = 1 onto the w-plane, with a cut along the real
axis from w = −2 to w = 2. Because of this it is necessary to use the branch of

y

x0

ρ
z0

−1

z-plane

w-plane⎢z − z0⎥ = ρ

−2 0

v

w = z + 1/z

2

FIGURE 17.16 A typical Joukowski airfoil.
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the square root function that is appropriate for the region to be mapped. So, for
example, if the exterior of |z| = 1 is to be mapped onto the cut w-plane it is necessary
to use the branch of the square root function for which

|w +
√

w2 − 4| > 2.

This branch will give a one-one mapping of the upper half of the cut w-plane onto
the exterior of the circle |z| = 1 in the upper half of the z-plane, with a corresponding
mapping of the lower half of the cut w-plane onto the exterior of the circle |z| = 1
in the lower half of the z-plane.

(h) The Mappings w = sin z and Arcsin z
The next mapping to be considered ismapping by the

sine function and
its inverse w = sin z (33)

and its inverse Arcsin z.
The function f (z) = sin z is an entire function, and its critical points are

determined by the zeros of f ′(z) = cos z that occur when z = (k + 1
2 )π for

k= 0, ±1, ±2, . . . . This means that the mapping w = sin z will be conformal every-
where except at this infinite set of critical points along the real axis in the z-plane.

Setting z = x + iy and w = u + iv in (33), we have

w = sin z = u + iv = sin x cosh y + i cos x sinh y,

so

u = sin x cosh y and v = cos x sinh y. (34)

As sin x and cos x are periodic functions of x, equations (34) show that w = sin z
maps the z-plane infinitely many times onto the w-plane. To make the mapping
between the z- and w-planes conformal and one-one, it is necessary to restrict x to
lie between any two successive critical points. We choose to require x to lie in the
interval −π

2 ≤ x ≤ π
2 and y to be such that y ≥ 0, so z lies inside or on the boundary

of the semi-infinite strip shown in Fig. 17.17.
As on the side A∞ B of the semi-infinite strip x = −π

2 and y ≥ 0, it follows
from (34) that this side must map onto the semi-infinite line segment A′

∞ B′ in the
w-plane given by u = −cosh y, y > 0 and v = 0, which lies along the real axis in the
w-plane from −∞ to the point w = −1. On the line BC, y = 0 and −π

2 ≤ x ≤ π
2 ,

y

x u

A• D•

A′• B′ D′•C′B C

z-plane

−π /2 π /20 cut cut−1 10

v
w-plane

FIGURE 17.17 The mapping of a semi-infinite strip by w = sin z.
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so from (34) this line segment is seen to map onto the line segment B′C′ given
by −1 ≤ u ≤ 1, which is simply the line segment of the real axis in the w-plane
extending from w = −1 to w = 1. Similarly, the side CD∞ is seen to map to the
semi-infinite line segment C′ D′

∞ of the real axis in the w-plane extending from
w = 1 to ∞.

As the interior of the semi-infinite strip lies to the left as the region is traversed
in the direction A∞BCD∞, it follows that the interior of the strip must map to the
upper half of the w-plane. A similar argument shows that the semi-infinite strip
−π

2 ≤ x ≤ π
2 , y ≤ 0, is mapped by w = sin z onto the lower half of the w-plane, so

that w = sin zmaps the infinite strip −π
2 ≤ x ≤ π

2 one-one and conformally onto the
w-plane cut along the real axis from −1 to −∞ and from 1 to ∞, with the exception
of the points w = ±1 at B′ and C′ that are the images of the critical points of the
mapping located at B and C. These cuts are necessary, because the multivalued
nature of sin z causes the boundaries of each of the semi-infinite strips between
successive critical points to map onto the cuts.

The inverse mapping from w to z, denoted by z = arcsin w, is many valued. The
mapping can be made one-one by cutting the w-plane along the real axis from −π

2
to −∞ and from π

2 to ∞, and then restricting z to any strip of width π that is parallel
to the imaginary axis in the z-plane and lies between two adjacent critical points
of sin z. When the strip is taken to be −π

2 ≤ x ≤ π
2 , the inverse function is written

z = Arcsin w, and this is called the principal branch of the inverse sine function.principal branch of
the inverse sine
function

If the inverse sine function is considered as a function in its own right, it is usual
to interchange w and z and to consider the function w = Arcsin z. The principal
branch of the inverse sine function w = Arcsin z is defined in the z-plane where the
cuts along x < −π

2 , y = 0, and x > π
2 , y = 0, have been made, and w = Arcsin z is

restricted to the strip −π
2 ≤ Re w ≤ π

2 in the w-plane.
It follows from (34) that the cartesian coordinate lines x = a and y = b map,

respectively, to the mutually orthogonal families of hyperbolas and ellipses

u2

sin2 a
− v2

cos2 a
= 1 and

u2

cosh2 b
+ v2

sinh2 b
= 1.

−2

2w-plane

v

u−2 2

1

−1

−1 1

FIGURE 17.18 The mapping of cartesian
coordinate lines by w = sin z.
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Figure 17.18 illustrates the mapping of these coordinate lines in the z-plane onto
the hyperbolas and ellipses in the w-plane by the function w = sin z. The inverse
mapping from the w-plane to the z-plane is given by z = Arcsin w.

(i) The Mappings w = exp z and w = Log z
The function exp z is an entire function, so writing it in the form

w = exp(z) = ex(cos y + i sin y) (35)

shows that exp z is periodic in y with period 2π . Thus, w = exp zwill map any strip of
width 2π parallel to the imaginary axis one-one and conformally onto the w-plane
from which the point w = 0 has been deleted. The deletion of the point w = 0 is
necessary because for no finite z is it true that exp z = 0. The strip −π < y ≤ π is
called the fundamental strip of the exp z, and from now on y will be restricted tothe exponential

and logarithmic
mappings and
fundamental strips

this strip.
Setting w = u + iv in (35) and equating real and imaginary parts give

u = ex cos y and v = ex sin y. (36)

Eliminating y from (36) shows that the cartesian coordinate lines x = a map to the
concentric circles u2 + v2 = e2a . Setting y = b in (36) and eliminating x shows that
the cartesian coordinate lines y = b map to the to radial lines (rays) v = u tan b
emanating from the origin. Because of the restriction on y, the strip in the z-plane
maps to the w-plane with a cut along the real axis from the origin to −∞, as shown
in Fig. 17.19.

In working with the fundamental strip, the inverse function is the principal
branch of the logarithmic function Log w, and it will provide a one-one and con-
formal mapping of the w-plane onto the z-plane. If the logarithmic function is
considered as a function in its own right, w and z are interchanged and we obtain
the function

Log z = ln |z| + i Arg z, with |z| > 0 and −π < Arg z ≤ π. (37)

v

ucut

w-planey

x0

π

−π

z-plane

w = ez

z = Log w

0

FIGURE 17.19 The mappings w = exp z and z = Log w.
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FIGURE 17.20 Mapping an indented semi-infinite sector onto a semicircle.

(j) Composite Mappings
When considering fundamental mappings such as the inversion mapping and the
linear fractional transformation, we have seen how they can be interpreted as a
sequence of very simple mappings. The combination of mappings in this manner is
called the composition of mappings, by analogy with the real variable case where
if w = f (u) and u = g(x), the “function of a function” w = f (g(x)) is called the
composition of the functions g and f .

This approach is also used to build up more complicated mappings when it is

combining mappings
to form composite
mappings

required to map a given region onto a more conveniently shaped one. We illustrate
this by showing how the interior of the semi-infinite indented wedge-shaped region
shown in Fig. 17.20a can be mapped onto the interior of the semicircle |w| ≤ 1, Im
w ≥ 0, shown in Fig. 17.20e.

The linear mapping t1 = z − a shifts the vertex of the indented wedge to the
origin in Fig. 17.20b without change of scale or rotation. In Fig. 17.20c the mapping
t2 = t1/R scales the indented wedge so the radius of the circular boundary is 1, again
without rotation. In Fig. 17.20d the mapping t3 = t4

2 opens out the indented wedge
so the required region lies in the upper half of the t3-plane above the unit circle.
In Fig. 17.20e the final mapping w = −1/t3 is the inversion mapping, so it maps the
indented upper half of the t3-plane onto the interior of the unit semicircle in the
upper half of the w-plane. Eliminating t1, t2, and t3 from these mappings gives the
required composite mapping

w = −R4

(z − a)4
.

This mapping has a critical point at z = a, corresponding to the point w = ∞ in the
w-plane.

Summary Conformal mappings have been defined as transformations that preserve both the angle
between intersecting curves and the sense of rotation between the curves, when they
are mapped from one plane to another. The scale factors determining the stretching of
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curves and areas at any point have been derived, and a critical point has been defined as
one where the conformal nature of a mapping breaks down. The simple but important
linear mapping and its inverse were introduced and their properties combined to give the
linear fractional transformation that was then applied to various examples. The quadratic
mapping was introduced and shown to map the z-plane twice onto the w-plane and,
correspondingly, its inverse mapping by the square-root function was seen to be dou-
ble valued. The exponential and logarithmic mappings were introduced and composite
mappings were defined.

EXERCISES 17.1

1. Describe the effect of the linear transformation w = 2iz + 3 when mapping geometri-
cal shapes from the z-plane onto the w-plane. Sketch the image of the rectangle in the
z-plane with its corners at (1, 1), (3, 1), (3, 2), and (1, 2), and show the correspondence
between corners in the two planes.

2. Describe the effect of the linear transformation w = (1 + i)z − i when mapping geomet-
rical shapes from the z-plane to the w-plane. Sketch (a) the image of the unit circle |z| = 1
and (b) the image of the ellipse (x − 3)2/9 + y2/4 = 1. In each case show how four points
on the curve in the z-plane map to the w-plane.

3. Find a linear transformation that maps the triangle with its vertices A, B, and C at points
0, 1 + i , and 2 − i in the z-plane onto the similar triangle with vertices A′, B′, and C′ at
1 − i, 5 − i , and 3 − 7i in the w-plane.

4. Find the linear transformation with the fixed point 2 − i that maps z = −i to w = 2 − 3i .
5. Find the linear transformation with the fixed point 3 + 2i that maps z = 1 to w = −7.
6. In the following transformations find the fixed point z∗ when one exists, the angle of

rotation α about z∗ that is introduced, and the magnification factor ρ:

(a) w = 2z + 1 − 3i. (b) w = iz + 4. (c) w = z + 1 − 2i.

7. Find a linear transformation w = az + b that maps the infinite strip k < y < k + h in the
z-plane onto the strip 0 < u < 1 in the w-plane in such a way that w(ik) = 0.

8. Find a linear transformation w = az + b that maps the infinite strip k < x < k + h in the
z-plane onto the strip 0 < u < 1 in the w-plane in such a way that w(k) = 0.

9. Given that w = 1/z, find the image in the w-plane of the family of parallel straight lines
y = x + c in the z-plane.

10. By using the symmetry properties of linear fractional mappings, or otherwise, find how
w = z/(z − 1) maps the annulus 1 ≤ |z| ≤ 2 in the z-plane onto the w-plane.

In Exercises 11 through 14 find the linear fractional transformation that maps the three given
points in the z-plane onto the three given points in the w-plane. Determine the region in the
w-plane that corresponds to the region to the left of the given points in the z-plane when the
points are traversed in the order z1, z2, and z3.

11. Map points z1 = i, z2 = −i , and z3 = 1 onto the points w1 = −1, w2 = 1, and w3 = ∞.
12. Map the points z1 = −1, z2 = −i , and z3 = 1 onto the points w1 = −3 + i, w2 =

(2 − 4i)/5, and w3 = 1 + i/3.
13. Map the points z1 = 1, z2 = 2 + i , and z3 = i onto the points w1 = i, w2 = (−1 + 2i)/5,

and w3 = 1/3.
14. Map the points z1 = −1, z2 = 1, and z3 = ∞ onto the points w1 = i, w2 = −i , and w3 = 1.
15. Prove that the function w = exp(πz/a) maps the infinite strip of width a in the z-plane

shown in the diagram on the left of Fig. 17.21 onto the upper half of the w-plane in the
manner shown in the diagram on the right. Determine the images in the w-plane of the
lines x = c and y = k.
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v

u

w-plane

A′• F ′•B′
0

E′D′•C′•

−1 1

z-plane

D• F•

C• A•Ba

0 E

y

w = exp(πz/a)

x

FIGURE 17.21 Mapping by w = exp(πz/a).

16. Prove that the function w = sin(πz/a) maps the semi-infinite strip of width a in the
z-plane shown in the diagram on the left of Fig. 17.22 onto the upper half of the w-plane
in the manner shown in the diagram on the right. Determine the images in the w-plane
of the lines x = c and y = k.

y

x

E• A•

D BC

z-plane

−a/2 a/20

v

u

w-plane

E′• A′•D′
0

B′C′

−1 1

w = sin(πz/a)

FIGURE 17.22 Mapping by w = sin(πz/a).

17. Prove that the function w = cos(πz/a) maps the semi-infinite strip of width a in the
z-plane shown in the diagram on the left of Fig. 17.23 onto the upper-half of the w-plane
in the manner shown in the diagram on the right. Determine the images in the w-plane
of the lines x = c and y = k.

−a 0

C B

D• A• 

y

x

z-plane
v

u

w-plane

D′• A′•C ′
0

B′

−1 1

w = cos(πz/a)

FIGURE 17.23 Mapping by w = cos(πz/a).

18. Prove that the function w = cosh(πz/a) maps the semi-infinite strip of width a in the
z-plane shown in the diagram on the left of Fig. 17.24 onto the upper half of the w-plane
in the manner shown in the diagram on the right. Determine the images in the w-plane
of the lines x = c and y = k.

v

u

w-plane

A′• A′•B′
0

D′C ′

−1 1

w = cosh(πz/a)

z-plane
A•

D• x

y

a
B

0 C

FIGURE 17.24 Mapping by w = cosh(πz/a).
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19. Prove that the function w = ( 1+z
1−z)2 maps the interior of the unit semicircle in the z-plane

in the diagram on the left of Fig. 17.25 onto the upper half of the w-plane in the manner
shown in the diagram on the right.

v

u

w-plane
z-plane

A′• A′•B′

0

D′C ′

−1 1

0 1−1

C D A

i B

y

⎢z⎥ = 1

w = (1 + z)2

1 − z

FIGURE 17.25 Mapping by w = ( 1+z
1−z)2.

(Hint: First find the image of (1 + z)/(1 − z) in the unit circle |z| = 1.)
20. Given that w = z + k/z, with k real, find the image in the w-plane of the lines x = c and

y = d. Find the values of k and R such that for given real a and b the transformation will
map the circle |z| = R onto the ellipse

u2

a2
+ v2

b2
= 1

in the w-plane.
21. Verify that w = k( z−z0

z−z0
), with |k| = 1 and z0 an arbitrary point in the upper half of the

z-plane, maps the upper half of the z-plane onto |w| < 1 and z0 to the point w = 0.
22. Verify that w = k( z−z0

z0z−1 ), with |k| = 1 and z0 an arbitrary point such that |z0| < 1, maps
|z| < 1 onto |w| < 1 and z0 to the point w = 0.

23. Show that w = tanh z maps the semi-infinite strip 0 < y < π/2a in the diagram on the
left of Fig. 17.26 onto the upper half of the w-plane in the manner shown in the diagram
on the right.

v

u

w-planez-plane

C ′• D′• E′• B′•H ′•E• H• A′•

D• A•

F ′
0

G′

−1 1

C

F G

0

π/2a

y

w = tanh z

x

FIGURE 17.26 The mapping w = tanh z.

24. Show that w = [(1 + zn)/(1 − zn)]2 maps the sector in the diagram on the left of Fig. 17.27
onto the upper half of the w-plane in the manner shown in the diagram on the right in
the w-plane.

v

u

w-planey

x

z-plane

A′• E′•B′
0

D′C ′

−1 1

0 1

w = (1 + zn)
2

1 − zn

π/n

π/2n

C

A

B

D

FIGURE 17.27 The mapping w = [(1 + zn)/(1 − zn)]2.
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25. Show that w = (1 − cos z)/(1 + cos z) maps the semi-infinite strip 0 < x < π/2, y > 0 in
the diagram on the left of Fig. 17.28 onto the interior of the unit semicircle |w| = 1 in the
upper half of the w-plane in the manner shown in the diagram on the right.

B′
C′

A′

E′

D′

0 1

w = (1 − cos z)1 + cos z

v

u

w-plane

0 π /2

D

B C

Arc sinh 1

A• E•

z -planey

x

FIGURE 17.28 The mapping w = (1 − cos z)/(1 + cos z).

26. Show that w = Log( z−1
z+1 ) maps the upper half of the z-plane in the diagram on the left

of Fig. 17.29 onto the infinite strip 0 < v < π in the w-plane in the manner shown in the
diagram on the right.

y

x

z-plane

A• E•B

0

DC

−1 1

w = Log(z − 1)z + 1

v

u

w-plane
D′• B′•

D′• B′•

C ′

E′ A′
0

π

FIGURE 17.29 w = Log( z−1
z+1 ).

17.2 Conformal Mapping and Boundary
Value Problems

The concept of a boundary value problem was introduced in connection with theboundary value
problem for
the Laplace
equation

maximum/minimum property of harmonic functions φ(x, y) (see Theorem 14.17), in
which the two independent variables x and y are solutions of the Laplace equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0. (38)

Solutions of Laplace’s equation are also called potential functions because of
the role played by the gravitational potential that determines the gravitational force
acting on a body and the electric potential in space caused by a potential distribution
on electrically conducting walls present in, and possibly bounding, the space. In
future the Laplace equation will be written �φ = 0 where, as in Chapter 13, the
differential operator � called the Laplacian operator in two space dimensions is
defined as

� ≡ ∂2

∂x2
+ ∂2

∂y2
,

and �φ is read “Laplacian φ.”
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In complex analysis only the two-dimensional Laplacian is involved, but in
other branches of mathematics both two- and three-dimensional Laplacians occur.
To avoid confusion, the two-dimensional Laplacian of φ is often denoted by �2φ

and the three-dimensional Laplacian by �3φ.
The simplest boundary value problems for the Laplace equation involve spec-

ifying either φ on the boundary � of a region R in which φ is harmonic, or the
derivative of φ normal to the boundary �, usually denoted by ∂φ/∂n. The speci-
fication of φ on the boundary � is called a Dirichlet boundary condition, and the
requirement that φ satisfy both (38) and a Dirichlet boundary condition is called a
Dirichlet boundary value problem for the harmonic function φ. The specificationDirichlet and

Neumann boundary
conditions

of ∂φ/∂n on the boundary � of R is called a Neumann boundary condition, and the
requirement that φ satisfy both (38) and a Neumann boundary condition is called
a Neumann boundary value problem for the harmonic function φ. Dirichlet and
Neumann boundary value problems are also known as boundary value problems
of the first and second kind, respectively.

CARL NEUMANN (1832–1925)
A German mathematician and physicist who in 1868 was appointed Professor of Mathematics at
the University of Leipzig. His main contributions were to the study of potential theory and to
integral equations.

It is not difficult to show that a Dirichlet boundary value problem for a harmonic
function φ determines φ uniquely at every point of R, and that a Neumann bound-
ary value problem for φ determines it uniquely apart from an arbitrary additive
constant.

A useful application of conformal mapping is to the solution of two-dimensional
boundary value problems for harmonic functions. Various quite different methods
of solution exist for such problems, but conformal mapping provides a method that
offers valuable geometrical insight into the nature of the solution. The approach
comes from the fact that if w = f (z) = u + iv is a single-valued analytic function
that maps a region R in the z-plane onto a region R′ in the w-plane and φ(x, y)
is harmonic in R, the change of variable from (x, y) to (u, v) transforms φ(x, y)
to a function �(u, v) that is harmonic in R′. Furthermore, either a Dirichlet or a
Neumann boundary condition at a point P on the boundary � of region R is mapped
without change to a point P′ on the boundary γ of R′, where γ is the image of � and
P′ is the image of P under the mapping w = f (z). In some problems Dirichlet and
Neumann boundary conditions apply on different parts of a continuous piecewise
smooth boundary �, and when this occurs these boundary conditions are transferred
to the appropriate parts of the transformed boundary γ . Problems of this type are
called mixed boundary value problems. In applications to steady state temperaturemixed boundary

value problems distributions, the temperature satisfies Laplace’s equation and a Dirichlet condition
on a boundary corresponds to the specification of the temperature on the boundary,
whereas the specification of a Neumann condition corresponds to the specification
of the temperature gradient across a boundary, and hence the heat flow across the
boundary because the heat flow is proportional to the temperature gradient.

The idea behind a conformal mapping approach to the solution of a bound-
ary value problem for the two-dimensional Laplace equation is to use a conformal
transformation w = f (z) to transform a region R in the z-plane with a complicated
boundary shape, into a region R′ in the w-plane with a more simply shaped bound-
ary. Then, if the solution of the simpler boundary value problem can be found,
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the conformal mapping can be used in reverse to transform this simpler solution
back into the solution for the more complicated region. As the choice of mapping
w = f (z) determines the way in which the boundary of a region R with a simple
shape is mapped to a region R′ with a more complicated boundary shape, a knowl-
edge of the fundamental mapping properties of elementary functions is necessary
when using conformal mapping to solve boundary value problems.

We now give a direct proof that a function φ(x, y) remains harmonic under the
change of variable from (x, y) to (u, v) that transforms φ(x, y) to �(u, v), where
w = f (z) = u + iv, and f (z) is a single-valued analytic function. From the chain
rule, if u = u(x, y), v = v(x, y) and all functions involved are suitably differentiable,

showing that a
harmonic function
remains harmonic
under a conformal
mapping

∂φ

∂x
= ∂�

∂u
∂u
∂x

+ ∂�

∂v
∂v
∂x

, (39)

and

∂2φ

∂x2
=
[

∂

∂x

(
∂�

∂u

)](
∂u
∂x

)
+
(

∂�

∂u

)(
∂2u
∂x2

)
+
[

∂

∂x

(
∂�

∂v

)](
∂v
∂x

)
+
(

∂�

∂v

)(
∂2v
∂x2

)
. (40)

Examination of (39) shows that the differentiation operation ∂/∂x is related to the
differentiation operations ∂/∂u and ∂/∂v by

∂

∂x
≡ ∂u

∂x
∂

∂u
+ ∂v

∂x
∂

∂v
.

Using this result in the terms involving ∂
∂x ( ∂�

∂u ) and ∂
∂x ( ∂�

∂v ) in (40) changes it to

∂2φ

∂x2
= ∂2�

∂u2

(
∂u
∂x

)2

+ ∂2�

∂v2

(
∂v
∂x

)2

+
(

∂2�

∂u∂v
+ ∂2�

∂v∂u

)(
∂u
∂x

)(
∂v
∂x

)
+ ∂�

∂u

(
∂2u
∂x2

)
+ ∂�

∂v

(
∂2v
∂x2

)
.

A corresponding expression exists for ∂2φ

∂y2 , so combining the two results
and using the equality of the mixed derivatives ∂2�

∂u∂v = ∂2�
∂v∂u , which is justified when

� is continuous and twice differentiable, leads to the result

∂2φ

∂x2
+ ∂2φ

∂y2
= ∂2�

∂u2

[(
∂u
∂x

)2

+
(

∂u
∂y

)2
]

+ ∂2�

∂v2

[(
∂v
∂x

)2

+
(

∂v
∂y

)2
]

+ 2
∂2�

∂u∂v

(
∂u
∂x

∂v
∂x

+ ∂u
∂y

∂v
∂y

)
+ ∂�

∂u

(
∂2u
∂x2

+ ∂2u
∂y2

)
+ ∂�

∂v

(
∂2v
∂x2

+ ∂2v
∂y2

)
.

(41)

Examination of (41) shows that the last two terms vanish because u and v
are harmonic, while the Cauchy–Riemann equations cause the factor multiplying
∂2�/∂u∂v to vanish. To simplify the equation further, we now make use of result
(21) in Section 13.1 where it was shown that

f ′(z) = ∂u
∂x

+ i
∂v
∂x

,
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and notice that the Cauchy–Riemann equations allow it to be written in either of
the following ways:

f ′(z) = ∂u
∂x

− i
∂u
∂y

or f ′(z) = ∂v
∂y

+ i
∂v
∂x

. (42)

When the results of (42) are used in the two nonvanishing terms that remain in (41),
the equation is seen to reduce to

∂2φ

∂x2
+ ∂2φ

∂y2
= | f ′(z)|2

(
∂2�

∂u2
+ ∂2�

∂v2

)
(43)

or, equivalently, to �φ = | f ′(z)|2��.
This last result shows that if φ(x, y) is harmonic in the z-plane, then �(u, v) is

harmonic in the w-plane, with the exception of points in the w-plane that are images
of the critical points of the mapping w = f (z) in the z-plane. We have proved the
following important result.

THEOREM 17.3 Harmonic functions remain harmonic under a conformal transformation Let w =
u + iv = f (z) be a single-valued analytic function and φ(x, y) be harmonic in a
region R. Then if φ(x, y) becomes the function �(u, v) under the change of variables
u = u(x, y) and v = v(x, y), and R′ is the image of R under the transformation, the
function �(u, v) is harmonic in R′.

To see how the boundary conditions transform, notice first that if P′ is the
image in the w-plane of a point P on the boundary in the z-plane, then as �(u, v) is
simply the function φ(x, y) expressed in terms of the variables u and v, it follows that
�(P′) = φ(P). Also, if (∂φ/∂n)P = k(P) at a point P on the boundary in the z-plane,
then because the mapping is conformal it follows that (∂�/∂n)P′ will still be normal
to the transformed boundary curve in the w-plane at P′, so that (∂�/∂n)P′ = k(P′).
Thus, Dirichlet and Neumann conditions at P on the boundary in the z-plane are
transferred directly to the image of P at P′ on the boundary in the w-plane.

A fundamental Dirichlet boundary value problem that has many applications
involves finding the harmonic function φ at an arbitrary point P in the upper half of
the (x, y)-plane that satisfies piecewise constant Dirichlet conditions on the x-axis.
As the result generalizes in an obvious manner, we will only consider the Dirichletsolving a fundamental

boundary value
problem

boundary value problem for the Laplace equation when the solution φ is required
to assume the three piecewise constant values φ1, φ2, and φ3 on the x-axis. That is,
we will solve the Laplace equation

�φ = 0, −∞ < x < ∞, y > 0

subject to the boundary conditions

φ(x, 0) = φ1 for x < x1, y = 0

φ(x, 0) = φ2 for x < x1 < x2, y = 0 (44)

φ(x, 0) = φ3 for x > x2, y = 0.

This boundary value problem is illustrated in Fig. 17.30.



908 Chapter 17 Conformal Mapping and Applications to Boundary Value Problems

x1 x2

y

P

z-plane

Δφ = 0

θ2

φ = φ1 φ = φ2 φ = φ3

0A• D•B C
θ1

FIGURE 17.30 A piecewise constant Dirichlet boundary value problem.

Inspection shows that the following function φ satisfies these boundary condi-
tions:

φ(P) = φ3 + 1
π

[(φ1 − φ2)θ1 + (φ2 − φ3)θ2]. (45)

To check this it is only necessary to notice that when P in Fig. 17.30 is on the line
segment CD∞ the angles θ1 = θ2 = 0, so φ(P) = φ3. Similarly, when P is on the
line segment BC, θ1 = 0 and θ2 = π , so φ(P) = φ2, whereas when P is on the line
segment A∞ B, θ1 = θ2 = π , so φ(P) = φ1. The uniqueness of a Dirichlet problem
for Laplace’s equation then guarantees that (45) is the only solution for this simple
boundary value problem, once it has been verified that it is a solution of the Laplace
equation.

If Fig. 17.30 is regarded as the complex z-plane, we can write θ1 = Arg(z − x1)
and θ2 = Arg(z − x2), allowing φ to be written

φ(x, y) = φ3 + 1
π

(φ1 − φ2)Arg(z − x1) + 1
π

(φ2 − φ3) Arg(z − x2).

This expression for φ(x, y) is simply the imaginary part of the complex function

w = iφ3 + 1
π

(φ1 − φ2) Log(z − x1) + 1
π

(φ2 − φ3) Log(z − x2).

As the function w is analytic for z �= x1, x2, its real and imaginary parts are
harmonic for z �= x1, x2 so, in particular, φ must be harmonic for z �= x1, x2. The
uniqueness of solutions of Dirichlet boundary value problems for harmonic func-
tions then implies that the solution of the boundary value problem in (44) is given by

φ(x, y) = φ3 + 1
π

(φ1 − φ2)Arg(z − x1) + 1
π

(φ2 − φ3)Arg(z − x2). (46)

Care must be exercised when determining Arg z in terms of the inverse tangent
function arctan t . To understand why this is, let point P(x, y) be located at z =
x + iy in the upper half of the z-plane, and define θ to be the angle measured
counterclockwise from the positive real axis to the line OP drawn from the origin
to P, so that tan θ = y/x. Then, to use (46), an inverse tangent function must be
constructed that defines an angle θ that increases continuously from 0 to π as P
moves counterclockwise around an arc in the upper half of the z-plane, from a point
on the positive real axis to one on the negative real axis.

To accomplish this, notice first that the function tan t is defined over the interval
−π/2 < t < π/2, and by periodicity elsewhere, so the standard inverse tangent
function arctan t cannot be used in (46) when determining θ because it is defined
over the wrong interval. However, consideration of the behavior of the function
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arctan t over the interval 0 < t < π shows an Arctan function defined as follows
has the required properties:

Arctan t =
⎧⎨⎩

arctan t, t > 0
π/2, t = ±∞
π + arctan t, t < 0

. (47)

It is this function that must be used in conjunction with (46) when determining φ.
The solution of the simplest boundary value problem in which φ only assumes

two different constant values on the x-axis, with φ(x, 0) = φ1 for x < x1, y = 0 and
φ(x, 0) = φ2 for x > x1, y = 0, follows directly from the preceding result if we omit
the last term (i.e., set φ3 = φ2). If φ is required to assume more than three different
constant values on the x-axis, result (46) can be extended in an obvious manner.
So, for example, if the four constant values φ1, φ2, φ3, and φ4 are involved, and the
points separating them on the x-axis are x1, x2, and x3, then in place of (46) we
would use

φ(x, y) = φ4 + 1
π

(φ1 − φ2) Arg(z − x1) + 1
π

(φ2 − φ3)Arg(z − x2)

+ 1
π

(φ3 − φ4) Arg(z − x3).

EXAMPLE 17.3 Find the lines of constant electric potential, called either equipotential lines or
equipotentials, in the region between two perpendicular infinitely long electrically

equipotentials conducting walls, when parts of the surfaces are maintained at the constant poten-
tials φ1 = 60, φ2 = 0, and φ3 = 20, as shown in Fig. 17.31.

Solution In space an electric potential φ satisfies Laplace’s equation so as the
conducting walls in Fig. 17.31 are assumed to be infinitely long in the direction
perpendicular to the plane of the diagram, and the potentials on the sections of
the walls are constant, it follows that φ must satisfy the two-dimensional Laplace
equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0.

The mapping w = z2 will open up the right angle between the walls in Fig. 17.32a
to the half-plane shown in Fig. 17.32b.

0 3

2

z-plane

φ1 = 60

φ2 = 0

φ2 = 0 φ3 = 20

Δφ = 0

x

y

FIGURE 17.31 A Dirichlet problem for the
electric potential between two conducting walls.
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u

w-plane

φ = 60

φ = 0

φ = 0 φ = 20
~φ1 = 60

~φ2 = 0
~φ3 = 20

Δ~φ = 0

vy

w = z2

z-plane

Δφ = 0

3 0 9−4

FIGURE 17.32 The effect of the mapping w = z2 on the perpendicular conducting walls.

Setting w = u + iv and and changing from the variables x and y to u and v
will cause the potential function φ(x, y) to become the function φ̃(u, v), and the
boundary conditions transform as shown in Fig. 17.32b. The solution of the boundary
value problem for φ̃(u, v) follows directly from (46) by replacing z by w, and x1

and x2 by u1 = −4 and u2 = 9, respectively, and by setting φ̃1 = 60, φ̃2 = 0, and
φ̃3 = 20 to obtain

φ̃(u, v) = 60 + 20
π

Arg(w + 4) − 60
π

Arg(w − 9).

To return to the z-plane we now use the definition of Arctan t in (47), set
z = x + iy in w = z2, and write w = u + iv so that u = x2 − v2 and v = 2xy. Then,
as w + 4 = x2 − y2 + 4 + i2xy, we have

Arg(w + 4) = Arctan
(

2xy
x2 − y2 + 4

)
and, similarly,

Arg(w − 9) = Arctan
(

2xy
x2 − y2 − 9

)
.

So the electric potential at the point (x, y) is seen to be given by

φ(x, y) = 60 + 20
π

Arctan
(

2xy
x2 − y2 + 4

)
− 60

π
Arctan

(
2xy

x2 − y2 − 9

)
,

for (x, y) in the first quadrant.

The family of lines ψ(x, y) = constant that form orthogonal trajectories with
respect to the equipotentials are called flux lines. In electrostatics these are lines offlux lines
electrostatic force, and in a steady state temperature distribution they correspond to
lines of heat flow. If only φ(x, y) is known, the function ψ(x, y) can be obtained from
it by finding the harmonic conjugate function ψ(x, y) using the Cauchy–Riemann
equations

∂φ

∂x
= ∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
.

This method is precisely the one given in Section 13.3, by which ψ(x, y) can be
recovered from φ(x, y).
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~
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~
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FIGURE 17.33 Equivalent problems in the z-plane and the w-plane.

EXAMPLE 17.4 By mapping the region between the eccentric circles on the left of Fig. 17.33 onto the
annulus shown on the right, find the lines of constant temperature, called isothermal

isothermal lines
between eccentric
circles

lines or simply isothermals, in the region between the eccentric circles when the
constant temperature on the inner boundary is T1 and that on the outer boundary
is T2.

Solution It is shown in Section 18.5 that the two-dimensional steady-state tem-
perature distribution T in a uniform solid is determined by the solution of the two-
dimensional Laplace equation �T = 0, subject to suitable boundary conditions on
the surface of the solid. The two-dimensional formulation of a three-dimensional
problem is satisfactory if the solid is in the form of a long uniform bar of constant
cross-section and the boundary conditions are constant along the length of the
bar, because then the variation of temperature along the length of the bar close to
its end faces can be neglected. Under such circumstances the problem reduces to
finding the two-dimensional temperature distribution in a lamina in the form of a
cross-section of the bar.

When cartesian coordinates are used, the Laplace equation �T = 0 satisfied
by T is

∂2T
∂x2

+ ∂2T
∂y2

= 0.

As T is harmonic, and the problem involves Dirichlet boundary conditions, a
conformal transformation w = f (z) with w = u + iv that maps the eccentric circles
on the left of Fig. 17.33 onto the concentric circles on the right will lead to an equiv-
alent problem for the temperature T̃ in the annulus. In what follows the notation
T̃(u, v) is used to represent T(x, y) after the change of variables from (x, y) to
(u, v).

The transformation w = T(z) that maps the eccentric circles onto concentric
circles can be found from (18) in Section 17.1. Inspection of the diagram on the left
of Fig. 17.10 and a comparison with the geometry of Fig. 17.33 shows that a = 1

4
and ρ = 1

4 . A simple calculation gives δ = 2 − √
3, from which it follows that the

required transformation is

w = z − 2 + √
3

(2 − √
3)z − 1

.
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FIGURE 17.34 The mapping w = z−2+√
3

(2−√
3)z−1

.

The mapping by this function of the region between the eccentric circles onto
the annular region is illustrated in Fig. 17.34.

The concentric circular boundaries in the w-plane suggest that �T̃ = 0 should
be expressed in terms of cylindrical polar coordinates, leading to the equation

∂2T̃
∂r2

+ 1
r

∂ T̃
∂r

+ 1
r2

∂2T̃
∂θ2

= 0.

The radial symmetry of the problem in the w-plane shows that the solution must be
independent of θ , as a result of which all derivatives with respect to θ vanish, causing
Laplace’s equation to reduce to the ordinary second order differential equation

d2T̃
dr2

+ 1
r

dT̃
dr

= 0.

Setting dT̃/dr = u and integrating gives u = A/r , and a further integration then
shows the general solution to be

T̃(r) = A ln r + B.

Matching the integration constants Aand B to the boundary conditions T̃(δ) = T1

and T̃(1) = T2 gives the solutions in the annulus

T̃(r) = T2 −
(

T2 − T1

ln(2 − √
3)

)
ln r.

To return to the (x, y)-plane, it is necessary to express r in terms of x and y, but
r = |w|, so setting z = x + iy in the expression for w we arrive at the solution

T(x, y) = T2 −
(

T2 − T1

ln(2 − √
3)

)
ln

∣∣∣∣∣ x + iy − 2 + √
3

(2 − √
3)(x + iy) − 1

∣∣∣∣∣.
This solution is complicated, but its typical behavior can be seen by considering

the temperature variation along the x-axis, where it reduces to

T(x, 0) = T2 −
(

T2 − T1

ln(2 − √
3)

)
ln

∣∣∣∣∣ x − 2 + √
3

(2 − √
3)x − 1

∣∣∣∣∣,
for −1 ≤ x ≤ 0 and 1/2 ≤ x ≤ 1.



Section 17.2 Conformal Mapping and Boundary Value Problems 913

In Example 17.4 the family of lines ψ(x, y) = constant that form orthogonal
trajectories with respect to the isothermals are called heat flux lines, and these
are lines along which heat flows. When required, the function ψ(x, y) determining
the heat flux lines can be obtained from the temperature T(x, y) by finding the
harmonic conjugate function ψ(x, y) from the Cauchy–Riemann equations

∂T
∂x

= ∂ψ

∂y
and

∂T
∂y

= −∂ψ

∂x
,

using the method described in Section 13.3.
Before discussing the next examples it is necessary to preface them with an

heat flux lines

introduction to the two-dimensional steady flow of an ideal fluid, and its relation-
ship to conformal mapping. An ideal fluid is defined as one that is incompressible,ideal fluids
inviscid (free from viscosity), and irrotational (its velocity vector q is such that curl
q = 0). The flow of water at low speeds and even of air at subsonic speeds is well
approximated by the flow of an ideal fluid.

If in the steady (time-independent) two-dimensional flow of an ideal fluid the
velocity vector is q = q1i + q2 j, it is shown in introductory accounts of fluid mechan-
ics that the incompressibility condition follows from the equation of conservation
of mass in the form

∂q1

∂x
+ ∂q2

∂y
= 0 or, equivalently, as div q = 0. (48)

A simple calculation shows that the irrotational condition curl q = 0 leads to the
equation

∂q2

∂x
− ∂q1

∂y
= 0, (49)

so equations (48) and (49) are seen to take the form of the Cauchy–Riemann
equations for the analytic function

f (z) = q1 − iq2, (50)

where the harmonic functions q1 and q2 are the components of the fluid velocity
vector q = q1i + q2 j.

From vector analysis it is known that if curl q = 0, a scalar function φ can always
be found with the property that

q = grad φ, (51)

so

q1 = ∂φ

∂x
and q2 = ∂φ

∂y
. (52)
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Combining (48) and (52) shows that the real function φ satisfies the Laplace
equation

�φ = 0, (53)

and hence that φ is harmonic. Because of (52) the function φ is called the velocity
potential of the fluid flow. Associated with the velocity potential φ(x, y) is its har-
monic conjugate ψ(x, y), called the stream function of the flow, so an analytic
function

w(z) = φ(x, y) + iψ(x, y) (54)

can always be defined, called the complex potential of the flow, with the property
that the curves φ(x, y) = constant and ψ(x, y) = constant are mutually orthogonal
trajectories. The lines along which the stream function is constant are called the
streamlines of the flow, because the velocity vector is tangent to each point on
a streamline. Drawing streamlines enables a flow to be visualized, because any
particle of fluid that lies on a streamline will remain on it as it moves steadily across
the (x, y)-plane.

We mention here that in many applications the vector q is often defined in

velocity potential,
stream function,
streamlines, and
the complex
potential

terms of the scalar potential φ by writing q = −grad φ, because it still remains
true that curl q = 0. For example, when studying the flow of heat in a steady-state
temperature distribution, where φ is identified with the temperature T and q is
the heat flow vector, as would be expected the heat then flows in the direction of
decreasing temperature. A similar situation also applies in electrostatics.

When required, a stream function can always be found from a given velocity
potential φ(x, y) by the method described in Section 13.3. Result (54) shows that any
analytic function can be interpreted as a complex potential, and the streamlines of
the flow are then described by the lines along which the stream function is constant.
As already mentioned, the functions φ(x, y) and ψ(x, y) are harmonic conjugates,
so the streamlines and lines of constant velocity potential are mutually orthogonal.

Using (52) and (54) together with the fact that φ and ψ satisfy the Cauchy–
Riemann equations, we can easily show that

w′(z) = q1 − iq2 and the speed q = |q| =
[(

∂φ

∂x

)2

+
(

∂φ

∂y

)2
]1/2

. (55)

The connection between the two-dimensional steady flow of an ideal fluid and
conformal mapping arises because the complex potential representing the flow in a
given region can be mapped conformally onto a different region. This enables the
flow in a simple region to be used to determine the flow in a more complicated one.

EXAMPLE 17.5 Interpret the flow of an ideal fluid with the complex potential w = z2, when z is
restricted to the first quadrant.

Solution The transformation w = z2 maps the first quadrant in the z-plane onto
the upper half of the w-plane. Setting z = x + iy and w = φ + iψ and equating real
and imaginary parts shows the velocity potential in the w-plane to be φ = x2 − y2

and the stream function to be ψ = 2xy. The streamlines ψ = constant in the w-plane
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x0 φ0

z-plane

streamlines

ψ
w-plane

streamlines

(a) (b)

w = z2

FIGURE 17.35 Flow around two perpendicular walls.

are straight lines parallel to the real axis, so they represent a uniform flow parallel to
the real axis as shown in Fig. 17.35b. As no flow crosses the real axis in the w-plane,
the axis can be regarded as a rigid wall bounding the flow. The map of this uniform
parallel flow in the w-plane onto the z-plane is the family of streamlines xy =
constant that form the rectangular hyperbolas shown in Fig. 17.35a. So the complex
potential w = z2 describes the flow between two perpendicular walls where, far
from the corner, the flow is parallel to a wall.

The velocity components at any point (x, y) in the first quadrant found from
from (52) are q1 = ∂φ/∂x = 2x and q2 = ∂φ/∂y = −2y, so the flow in the z-plane is
in the direction indicated by the arrows in Fig. 17.35a. The speed q = 2(x2 + y2)1/2

at the point (x, y) follows from (55). It should be recognized that because fluid
cannot cross a streamline, in an ideal fluid it is always possible to replace a streamline
by a rigid boundary without disturbing the remainder of the flow.

EXAMPLE 17.6 Interpret the flow of an ideal fluid with the complex potential

w = U
(

z + 1
z

)
, where U is real.

Describe the flow that results when the additional transformation z = e−iαζ is made,
with α real.

Solution We have seen that the Joukowski transformation maps the exterior of
the unit circle |z| = 1 in the z-plane onto the w-plane cut along the real axis from
w = −2 to w = 2, as shown in Fig. 17.36.

z-plane w-plane

⎢z⎥ = 1

1

ψ

cut

−2 2

y

x φ

w = z + 1/z

FIGURE 17.36 The effect of the mapping w = z + 1/z on |z| = 1.
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If we set w = u + iv and z = x + iy, routine calculation shows that in cartesian
coordinates

u = Ux
(

1 + 1
x2 + y2

)
and v = Uy

(
1 − 1

x2 + y2

)
,

whereas if we set z = reiθ , it follows that in polar coordinates

u = (r + 1/r) cos θ and v = (r − 1/r) sin θ.

When |x| is large the velocity potential u ≈ Ux, so (52) shows that far from the
origin in the z-plane the fluid velocity tends to q = Ui, corresponding to a uniform
flow parallel to the x-axis with speed U at infinity. On the unit circle |z| = 1 the
stream function ψ = 0, so this is a streamline. Thus, fluid will flow around the unit
circle as though it is a solid cylinder of unit radius centered on the origin with its
axis perpendicular to the z-plane.

The streamlines around the unit circle are described by eitherexamples of
streamlines and
equipotentials Uy

(
1 − 1

x2 + y2

)
= constant or

(
r − 1

r

)
sin θ = constant,

whereas the equipotentials around the unit circle (lines of constant velocity
potential) are described by either

Ux
(

1 + 1
x2 + y2

)
= constant or

(
r + 1

r

)
cos θ = constant.

Figure 17.37 shows some representative streamlines in the z-plane and their images
in the w-plane. As no fluid crosses the streamline around the unit circle |z| = 1,
none will flow across the cut in the w-plane, so the cut can be taken to represent
the cross-section of flat plate normal to the z-plane that forms an impenetrable
barrier.

The inverse of this transformation can be used to determine the flow past a flat
plate when the flow at infinity is incident from the left at an angle α to the plate.
From (55) it follows that in the ζ -plane w1 = ζe−iα represents the complex potential
of a uniform parallel flow at infinity that is incident from the left at an angle α to
the real axis. Consequently, if we use the Joukowski transformation,

w =
(

w1 + 1
w1

)
=
(

ζe−iα + eiα

ζ

)

0 1

y

x

z-plane
w-planestreamlines

streamlines

w = z + 1/z

v

u−2 2

FIGURE 17.37 Flow past a cylinder mapping onto flow parallel to a flat plate.
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is the complex potential of a uniform parallel flow that at infinity is incident from
the left on the unit circle in the ζ -plane, with the flow at infinity making an angle α

with the real axis.
Solving the transformation ζ = z + 1/z for z, and then interchanging ζ and z,

we find that inverse mapping back from the unit circle in the ζ -plane to the z-plane
cut from z = −2 to z = 2 is given by ζ = 1

2 (z + √
z2 − 1). If we substitute for ζ in the

previous result, the required complex potential in the z-plane for flow with speed
U past a flat plate formed by the cut from z = −2 to z = 2, when the flow is incident
from the left of the plate and at an angle α, is seen to be given by

w = U
(

1
2
e−iα(z +

√
z2 − 4) + 2eiα

z + √
z2 − 4

)
.

When simplified using the result z + √
z2 − 4 = 1

4 (z − √
z2 − 4), this reduces to

w = U(zcos α − i
√

z2 − 4 sin α).

In this complex potential, as the square root function has a branch point,stagnation
point in a flow we must interpret the square root as

√
z2 − 4 = |z2 − 4|e(i/2)(θ1+θ2), where z − 2 =

|z − 2|eiθ1 and z + 2 = |z + 2|eiθ2 , with 0 ≤ θ1 ≤ 2π and 0 ≤ θ2 ≤ 2π measured as
shown in the cut plane in Fig. 17.38c.

y

x0

(a) (b)

(c)

α Q′

P ′
QP−2 2

z-plane

w-plane

streamlines

stre
amlines

0 u

v

w = U(z cosα − i÷z2 − 4 sinα)⎢z⎥ = 1

y

z

x20 cut

z-plane

−2

θ1θ2

FIGURE 17.38 Inclined flow past a flat plate.
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Representative streamlines around the unit circle in the z-plane with the flow
at infinity inclined to the x-axis at an angle α are shown in Fig. 17.38a, where the
points P′ and Q′ are streamlines that terminate on the unit circle. These points are
called stagnation points, because the fluid velocity is zero at such points. Fig. 17.38b
shows the inverse mapping of this flow, corresponding to inclined flow around a flat
plate in the w-plane, where the stagnation points at P and Q on the plate are the
images of the stagnation points P′ and Q′ in Fig. 17.38b.

The pressure p at any point on a streamline can be found from a result called
the Bernoulli equation, and for the steady two-dimensional flow of an ideal fluid
this takes the form

1
2
ρ
(
q2

1 + q2
2

)+ p = constant,

where ρ is the density of the fluid. This shows that the pressures in the vicinity of
the stagnation points on either side of the plate apply turning moments to the plate
that both act in the same sense. When the plate is broadside to the flow, points P
and Q are opposite one another at the center of the plate, about which the flow is
then symmetrical. Such a flow provides a good approximation to the actual flow of
fluid past a flat plate, and it only fails at the ends of the plate where in the real world
the speed of flow is finite, whereas in an ideal fluid it is infinite. The existence of a
turning moment about the center line of the plate, which vanishes when the plate
is perpendicular to the flow, explains why a boat allowed to drift from rest down a
stream will always turn broadside to the direction of flow.

The Laplace equation arises in many other steady-state physical situations, the
most important of which are in the description of gravitational fields, diffusion,
electric current flow, magnetism, and elasticity. When restricted to two space di-
mensions the real and imaginary parts of an analytic function w = φ + iψ can be
interpreted as follows:

Application of
Laplace’s Equation φ(x, y) = Constant ψ(x, y) = Constant

Gravitational fields Gravitational equipotentials Lines of force
Diffusion phenomena Concentration Lines of flow
Electric current flow Potential Lines of current flow
Magnetism Magnetic potential Lines of force
Elasticity Strain function Stress lines

The development of conformal transformations together with various applica-
tions is to be found in references [6.1], [6.2], [6.4], [6.6], [6.8], and [6.9]. A systematic
application of conformal transformations is made to hydrodynamics in reference
[6.5].

Summary The Laplace equation is fundamental to the study of heat flow, electricity and magnetism,
fluid mechanics, gravitational fields, and elsewhere. This section has shown how confor-
mal mappings can be used to solve certain types of boundary value problems for the
Laplace equation in complicated two-dimensional regions bounded by arcs and straight
lines. The technique involved first solving a boundary value problem in a simply shaped
region bounded by coordinate lines in one plane, and then mapping the region onto one
in another plane with a more complicated shape that is of interest. The approach was seen
to work because conformal mappings transform harmonic functions in one plane into
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harmonic functions in another plane, while the boundary conditions are mapped without
change onto the corresponding boundaries. Consequently, the solution of a simple bound-
ary value problem in one plane can be transformed into the solution of a corresponding
boundary value problem in a region of more complicated shape in another plane. Applica-
tions to various boundary value problems of physical interest were made, including ones
to the flow of ideal fluids.

EXERCISES 17.2

1. Let the function φ(x, y) be harmonic in some region of the (x, y)-plane. If φ(x, y) becomes
�(u, v) under the change of variable u = x2 − y2 and v = 2xy, confirm by direct calculation
that the transformation w = z2 leaves � harmonic.

2. Using the definition of Arctan t in (47) and setting t = y/x, confirm that if (a) P is the
point (

√
3, 1) then Arctan t = π

6 , (b) P is the point (−2, 2) then Arctan t = 3π

4 , and (c) if
P is the point (±ε, 2), then limε→0 Arctan t = π

2 . Find Arctan t when (d) P is the point (4,
1) and (e) when P is the point (−3, 2).

3. Derive the function φ(x, y) that is harmonic in the upper half of the (x, y)-plane and
satisfies the piecewise constant Dirichlet boundary value problem

φ = φ1 on x < x1, y = 0

φ = φ2 on x1 < x < x2, y = 0

φ = φ3 on x2 < x < x3, y = 0

φ = φ4 on x > x3, y = 0.

4. Derive the function φ(x, y) that is harmonic in the right half of the (x, y)-plane and satisfies
the piecewise constant Dirichlet boundary value problem

φ = φ1 on y > y1, x = 0

φ = φ2 on y2 < y < y1, x = 0

φ = φ3 on y < y2, x = 0.

Is there a simple way of finding φ(x, y) from (46)?
5. Prove that the transformation w = ( 1+z

1−z)2 maps the interior of the semicircle of radius
1 on the left of Fig. 17.39 onto a half-plane in the manner shown in the diagram on the
right. If the semicircle represents a cross-section of a long heat-conducting bar, find the
temperature distribution and the isothermals in a cross-section of the bar when the flat
boundary AB is maintained at the constant temperature T = 30 and the semicircular
boundary ACB is maintained at the constant temperature T = 150.

z-plane

w = (1 + z)
2

1 − z

y

xA D0 B

C

v

u

w-plane

B′• B′•C ′ D′
0

A′

−1 1

⎢z⎥ = 1

FIGURE 17.39 The mapping w = ( 1+z
1−z)2.

6. Repeat Exercise 5 assuming that the semicircle on the left represents a cross-section of an
electrically conducting wall of a cavity. Find the electric potential inside the cavity and the
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equipotentials when the flat section of the wall AO is maintained at the constant electric
potential φ = 20, the flat section of the wall OB at the constant electric potential φ = 100,
and the curved wall ACB at the constant electric potential φ = 50.

7. Prove that the transformation w = i( 1−z
1+z) maps the inside of the circle on the left in

Fig. 17.40 onto the upper half-plane in the manner shown in the diagram on the right.
If the circle is considered to be the electrically conducting wall of a cavity, find the
electric potential and electric force lines inside a cross-section of the cavity if the upper
semicircular boundary ABC is maintained at the constant electric potential φ = 320 and
the lower semicircular boundary CDA at the constant electric potential φ = 100.

z-plane

w = i(1 − z)1 + z

y

x

C E

0

A

B

D

v

u

w-plane

C ′• C ′•D′

E′i

0

B′A′

−1 1

⎢z⎥ = 1

1

FIGURE 17.40 The mapping w = i( 1−z
1+z).

8. Repeat Exercise 7 assuming the circle to be the cross-section of a long solid heat-
conducting cylinder. Find the temperature distribution and the isothermals in a cross-
section of the cylinder if the circular boundary CD is maintained at a temperature T = 50,
the circular boundary DAB is maintained at a constant temperature T = 200, and the
circular boundary BC is maintained at a constant temperature T = 0.

9. Explain why w = U(z3 + 1
z3 ) is the complex potential of the flow inside the indented

wedge shown in Fig. 17.41, in which the flow moves parallel to each wall at infinity with
speed U.

streamlines

π/3
0 1 x

y

FIGURE 17.41 Flow in an indented wedge.

10. Find the complex potential for the flow inside the indented wedge shown in Fig. 17.42
when the flow moves parallel to each wall at infinity with speed U.

11. The Joukowski transformation w = z + 1/z maps the upper half of the z-plane from which
has been deleted a unit semicircle centered on the origin onto the upper half of the w-plane
with a cut along the real axis from w = −2 to w = 2, as shown in Fig. 17.43. If w is the
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streamlines

x

y

FIGURE 17.42 Flow in an indented right-angled wedge.

complex potential of a fluid flow, by setting z = x + iy and w = u + iv, find the implicit
equation of the streamlines in the z-plane corresponding to the flow lines v = c(c ≥ 0)
in the w-plane. By examining the qualitative properties of the implicit equation of
the streamlines, confirm they have the properties shown in Fig. 17.43, which can be
interpreted as the flow of very deep water over a semicircular obstacle resting on the
bottom. State how the diagram on the left can be used to describe the flow of a stream of
water of finite depth over a submerged obstacle, when the surface of the stream is a free
surface (a fluid–air interface).

0 1

y

x

z-plane
w-planestreamlines

streamlines
w = z + 1/z

v

u−2 2−1

FIGURE 17.43 Flow over a semicircular obstacle.

12. The transformation w = z + exp z maps the strip −π ≤ y ≤ π in the z-plane onto the
w-plane with cuts along the lines u ≤ −1, v = ±π , as shown in Fig. 17.44. If w is the
complex potential of a fluid flow, by setting z = x + iy and w = u + iv find the equation
of the streamline y = c in parametric form. As the cuts are bounded by streamlines, and
fluid cannot cross a streamline, the cuts can be interpreted as parallel barriers, allowing
the diagram on the right to be interpreted as flow emerging from a parallel channel into
an unrestricted region. How can this problem be interpreted in terms of an electrostatic
potential?

π

−π

0

v

u

z-plane w-plane
y

x0

π

−π

w = z + ez

−1

FIGURE 17.44 Flow from a parallel channel into an unrestricted region.

13. The transformation w = Arcsin z maps the upper half of the z-plane with a cut along
the real axis from z = −1 to z = 1, onto the semi-infinite strip −π ≤ u ≤ π , v ≥ 0 in the
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w-plane, as shown in Fig. 17.45. Use this result to find the equipotentials and flux lines if
A∞ B is an electrically conducting plate at the constant electric potential φ = 200, CD∞ is
an electrically conducting plate at the constant potential φ = 100, and BC is an insulator
(no flux lines can cross it). How can this problem be interpreted in terms of steady state
heat conduction?

y

x

z-plane

v

u

w-plane

−π/2 π/20

w = Arc sin z

A′•

B′

D′•

C ′
A• B −1 D•C1

FIGURE 17.45 Electrically conducting plates separated by an insulator.

14. The diagram in Fig. 17.46 represents a metal lamina occupying the first quadrant of the
(x, y)-plane with the edge x = 0, y > 1 maintained at the constant temperature T = 200,
the edge x > 1, y = 0 maintained at the constant temperature T = 50, and the edges
x = 0, 0 < y < 1 and 0 < x < 1, y = 0, maintained at the constant temperature T = 0.
Find the temperature T(x, y) at any point (x, y) in the lamina.

1

1

T = 0

x

y

T = 0

0

T = 200

T = 50

ΔT = 0

FIGURE 17.46 Mapping the exterior of a hole onto a half-plane.

15. The diagram on the left of Fig. 17.47 shows a cross-section of an infinite metal block
pierced by a hole of unit diameter, the boundary DAB of which is maintained at the
constant temperature T = 450, while the boundary DCB is maintained at the constant
temperature T = 100. Use the fact that the transformation

w = i
(

z + 1
(1 − i)z − 1 − i

)
maps |z| ≥ 1 onto the upper half of the w-plane in the manner shown in Fig. 17.47 to find
the temperature and isothermals in the plate.

⎢z⎥ = 1

A

B

C

D

0−1 1

z-plane

x

y

w = i( )(1 − i)z − 1 − i
z + 1

v

u

w-plane

B′• C ′ D′
0

B′•A′

−1−1/2

FIGURE 17.47 A metal block pierced by a hole.
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CHAPTER 17

TECHNOLOGY PROJECTS

Project 1

Examining the Mapping of Lines and Circles
by the Linear Fractional Transformation

The purpose of this project is to apply computer algebra
and graphics to the linear fractional transformation

w = 2z − i
z + i

to explore how it maps various straight lines and circles in
the z-plane onto lines and circles in the w-plane, though not
necessarily in this order.

Find the maps of (a) y = 0, (b) y = 2, (c) y = x, (d) the
circle of radius 1

2 centered on the origin, (e) the unit
circle centered on the origin, and (f) the unit circle
centered on the point z = 1+ i .

Project 2

This project examines the way the Joukowski transforma-
tion

w = z + 1
z

maps a circle of radius R passing through the point z = −1
with its center in the first quadrant.

Experiment by choosing different positions for the
center of the circle and then mapping the boundary
of the circle onto the w-plane.

Project 3

Verify the results of Example 17.4 by using the
function

w = z − 2 + 3

(2 − 3)z − 1

to plot the map of the circles z − 1
4 = 1

4 and z = 1
in the z-plane onto the w-plane. Hence, show that

the circles map onto the concentric circles shown in
Fig. 17.34.

Project 4

By considering the way w = z + exp(z) maps the infi-
nite strip −π ≤ y ≤ π in the z-plane onto the w-plane,
show how this mapping can be interpreted as the two-
dimensional discharge of fluid from between parallel
semi-infinite planes into a surrounding infinite volume
of fluid. Find the slope of the fluid flow lines far from
the place of discharge, and plot some representative
flow lines.

Explain how this same mapping can describe
equipotentials inside and outside a parallel plate ca-
pacitor in a vacuum when the lower plate is at a
potential V1 and the upper plate is at a potential
V2, and determine the potential associated with each
equipotential.

Project 5

In two-dimensional fluid mechanics, a line source of
strength m is a line normal to the plane of the flow
from which fluid enters the surrounding medium sym-
metrically at a steady rate of m volume units per unit
line length per unit time. Similarly, when m is nega-
tive, this becomes a line sink that removes fluid from
the surrounding medium symmetrically at a steady
rate of m volume units per unit line length per unit
time.

By considering the fluid complex potential

w = φ � iψ = m Log(z � z0), (m > 0)

find the curves φ = constant and ψ = constant that
are, respectively, the equipotentials and streamlines
of the flow. Hence, explain why w is the fluid complex
potential of a line source located at a point z0, with
the line source perpendicular to the z-plane.

923
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If attention is confined to the upper half of the
z-plane, explain why the function

w = m Log
(

z − z0

z − z--0

)
is the complex potential for fluid flow in the upper

half of the z-plane due to a line source of strength
m located at z0 when the region is bounded be-
low by a fixed impenetrable barrier along the
x-axis.

Plot the equipotentials and streamlines for such
a flow for −3 ≤ x ≤ 3, 0 ≤ y ≤ 3 when m = 1, z0 = i .
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18C H A P T E R

Partial Differential
Equations

Partial differential equations (PDEs) are equations satisfied by partial derivatives of func-
tions of two or more independent variables. They describe all types of physical phenom-

ena in engineering and science, ranging from transient heat conduction through vibrations
of strings and plates to fluid flow and the behavior of electric and magnetic fields. The so-
lution of first order equations is developed using the method of characteristics, and the
three fundamentally different types of second order PDE are derived from first principles
using typical physical examples. After classifying second order equations and describing
suitable boundary and initial conditions, it is shown how the PDEs can be reduced to their
standard forms to simplify the task of finding a solution. The wave equation is interpreted
in terms of two disturbances propagating with equal speed, but in opposite directions,
and the D’Alembert solution is derived.

The separation of variables method of solution is developed and related to the Sturm–
Liouville systems, eigenvalues, and eigenfunctions already discussed in connection with
ordinary differential equations. The method is then applied to various physical problems
involving cartesian, cylindrical, and spherical polar coordinates. Some results of general
importance to the study of PDEs are derived, and the chapter ends with an introduction
to Laplace and Fourier transform methods of solution for PDEs.

18.1 What Is a Partial Differential Equation?

The simplest form of partial differential equation (PDE) involving a suitably
differentiable unknown function (dependent variable) u(x, y) of the two in-

dependent variables x and y is an equation that relates x, y, u, and some partial
derivatives of u with respect to x and y. The order of the PDE is the order of theorder of a PDE
highest partial derivative of u that occurs in the equation, so a general first order
PDE for the function u(x, y) is of the form

F(x, y, u, ux, uy) = 0, (1)

where F is an arbitrary function of its arguments.

927
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More generally, a first order PDE for a function u(x1, . . . , xn) of the n indepen-
dent variables x1, . . . , xn is an equation of the form

G(x1, . . . , xn, u, ux1 , . . . , uxn ) = 0, (2)

where G is an arbitrary function of its arguments and uxi = ∂u/∂xi , for i =
1, 2, . . . , n.

First order equations are of special interest because they occur frequently in
practical problems. Furthermore, from among all possible classes of PDE, they
are the ones that are simple enough to permit study in great detail, and for which
methods of solution exist that extend to certain types of second order equation.

A general second order PDE for a function u(x, y) of the two independent
variables x and y is of the form

H(x, y, u, ux, uy, uxx, uxy, uyy) = 0, (3)

where H is an arbitrary function of its arguments, and for conciseness the suffix no-
tation ux = ∂u/∂x, uy = ∂u/∂y, uxx = ∂2u/∂x2, uyx = ∂2u/∂x∂y, and uyy = ∂2u/∂y2

has been used.

classical and
generalized solutions

A classical solution of a PDE defined in some region D of the (x, y)-plane is a
real function u with the property that all of its partial derivatives that occur in the
PDE are defined and continuous throughout D, and when the function is substituted
into the PDE it satisfies the equation identically. We will see later that in certain
cases a slightly more general class of solution is also possible where a derivative
may be discontinuous. Solutions of this type are called generalized solutions, and
they are often used in connection with wave propagation problems.

The expressions in (1) and (2) are too general to be directly useful, so only some
important special cases will be examined. In the case of (1) the three special cases
to be considered are called, respectively, first order PDEs of linear, semilinear, and
quasilinear type.

The Linear First Order PDE for u(x, y)
A linear first order PDE for the unknown function u(x, y) can always be written as

p(x, y)ux + q(x, y)uy = r(x, y)u + s(x, y), (4)

where p(x, y), q(x, y), r(x, y), and s(x, y) are arbitrary functions of x and y, and
the term s(x, y) that does not multiply u, ux, or uy is called the nonhomogeneous
term. The PDE is called homogeneous when s(x, y) = 0. When, as often happens,
the functions p, q, and r are constants, the PDE becomes a constant coefficient
equation. The equation in (4) is called linear because u, ux, and uy all occur linearly
(with degree 1) in each term. The following is a typical linear first order PDE:

ux + xuy = u + 2.

The solution u = u(x, y) of (4) in a region D of the (x, y)-plane where the
PDE is defined can be represented in the form of a surface above D called an
integral surface. For most PDEs it is impossible to find a general solution so instead,
when solving a PDE, it is usual to consider a specific problem by requiring that as
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well as the solution satisfying the PDE, it also satisfies some auxiliary (additional)
conditions that identify the particular problem.

In the case of a linear first order PDE it will be seen later that in principle a
general solution can be found, though usually only the solution of a specific problem
is required. In order to specify such a problem for a first order PDE, the auxiliary
condition that identifies the problem uniquely involves prescribing the value the
solution u is required to attain along a line in D. An auxiliary condition of this
nature is called a Cauchy condition, and the problem of finding the solution of aCauchy conditions
PDE in D that satisfies a Cauchy condition is called a Cauchy problem for the PDE.
More will be said about the Cauchy problems in the next section.

The Semilinear First Order PDE for u(x, y)
A semilinear first order PDE is slightly more complicated than a linear first order
equation because it is of the form

p(x, y)ux + q(x, y)uy = f (x, y, u), (5)

where f is an arbitrary nonlinear function of u. The left sides of the PDEs in (4) and
(5) are identical, but the right side of the semilinear PDE in (5) depends nonlinearly
on u instead of linearly as in (4). A typical example of a semilinear first order PDE islinear,

semilinear, and
quasilinear first
order PDEs

ux + (1 + x)uy = (1 + x + y)u2,

where the term f (x, y, u) = (1 + x + y)u2 is nonlinear because of the term u2.

The Quasilinear First Order PDE
A quasilinear first order PDE is one that can be written in the form

p(x, y, u)ux + q(x, y, u)uy = f (x, y, u) (6)

where the functions p and q may or may not depend on x and y, but at least one of
them depends on the undifferentiated function u. When f is present in (6) it may
or may not depend on all of x, y, and u, though the presence or absence of f does
not alter the quasilinear nature of the equation. A typical quasilinear first order
PDE is

ux + uuy = u,

where in this case the quasilinearity is due to the presence of the term uuy.
Both linear and quasilinear first order PDEs often occur in systems involving

several dependent variables, and on occasion it is possible for all but one of the
dependent variables to be eliminated, leading to a single higher order equation in
the remaining dependent variable. The following is an example of a simple linear
system of first order equations involving the variables v(x, t) and w(x, t):

vt − c2wx = 0 and wt − vx = 0. (7)

Here c is a constant. In these equations the independent variables are denoted by
x and t , because in physical problems governed by these equations x is usually a
space variable (a length) and t is the time.
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When v and w are twice differentiable functions, partial differentiation of the
first equation with respect to t gives

vtt − c2wxt = 0,

and partial differentiation of the second equation with respect to x gives

wtx − vxx = 0.

Provided the second derivatives are continuous, the mixed derivatives are equal,
so that wxt = wtx. After the elimination of wxt between these two equations, the
following linear second order equation for v is obtained:

vtt − c2vxx = 0. (8)

Had the first equation in (7) been differentiated partially with respect to x and the
second equation partially with respect to t , this same argument would have given

wtt − c2wxx = 0,

showing that v and w both satisfy the same PDE.
Later this equation will be seen to describe an important form of wave prop-

agation in one space dimension and time, and for this reason it is called the one-
dimensional wave equation. In the wave equation the constant c is the speed with
which waves (disturbances) are propagated. Another linear example is provided
by the Cauchy–Riemann equations (see Section 13.2)

ux = vy and uy = −vx,

where u and v are the real and imaginary parts of an analytic function f (z) = u + iv,
with z = x + iy. In this case an argument similar to the one just used shows that
both u and v are harmonic functions, so as each is a solution of Laplace’s equation,

uxx + uyy = 0 and vxx + vyy = 0.

A more complicated system of quasilinear equations is provided by the equa-
tions of unsteady (time dependent) gas dynamics. In their simplest form these equa-
tions relate the gas density ρ, its pressure p = kργ with k and γ constants, and the
gas velocity u, all at time t and at some position vector r in space, through the system
of equations

ρt + div(ρu) = 0 and ut + u · ∇u + (1/ρ)∇ p = 0. (9)

The first equation is a scalar equation that describes the conservation of mass, and
the second is a vector equation with three scalar components that is related to the
equation that describes the conservation of momentum. The system in (9) couples
the density ρ and the three scalar components of u through a system of four scalar
quasilinear equations. In this case the structure of the system is such that it cannot
be replaced by a single higher order equation for one of the unknowns.

When introducing the linear first order PDE, mention was made of the fact that
the complexity of PDEs is such that general solutions can only be found in very
special cases. As a result, when dealing with higher order PDEs, instead of seeking
general solutions, methods are developed that enable solutions of specific problems
to be found. As already mentioned, to find the solution of a particular problem
involving a PDE it is necessary to require that the solution satisfy some auxiliary
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conditions that identify the problem. The additional conditions may be imposed
on spatial boundaries belonging to a region D where the solution is required, and
when this is done the conditions are called boundary conditions. A typical boundary
condition for a second order PDE defined in a rectangle could be that the solution is
required to assume specified values on the sides of the rectangle. If time is involved,
it is necessary to specify how the solution starts, and a condition of this type is called
an initial condition. Problems requiring initial and boundary conditions are called
initial boundary value problems (IBVPs).

boundary and
initial conditions

The definitions of linearity and quasilinearity extend quite naturally to PDEs
of all orders. A PDE of any order is linear if the unknown function u and all its
derivatives only appear linearly (to degree 1), so a general linear second order PDE
for the unknown function u(x, y) can be written

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f (x, y)u = h(x, y).
(10)

Analogously, a PDE of order n is said to be quasilinear when its partial deriva-
tives of order n occur linearly in the equation, but combinations of u and some of
its derivatives up to order n − 1 occur as coefficients of the nth order partial deriva-
tives. A general quasilinear second order PDE for the unknown function u(x, y)
can be written

linear, quasilinear,
and nonlinear
higher order PDEs

a(x, y, u, ux, uy)uxx + b(x, y, u, ux, uy)uxy

+ c(x, y, u, ux, uy)uyy + h(x, y, u, ux, uy) = 0,
(11)

where a, b, c, and h are arbitrary functions of their arguments, with at least one of
the functions a, b, and c depending on u and/or one or more of its first order partial
derivatives.

A PDE of any order that is not linear, semilinear, or quasilinear is said to be
nonlinear. The following is an example of a nonlinear second order PDE:

uuxx + sin(uyy) + xux + uy + u = 0.

Here the nonlinearity is caused by the term sin(uyy).
Although in principle a general solution of a linear first order PDE can be found,

unlike the general solution of a linear first order ordinary differential equation
(ODE) that contains an arbitrary constant, the general solution of a linear first
order PDE contains an arbitrary function. This situation is illustrated by the first
order PDE

ux + xuy = u + 2, (12)

which can be shown to have the general solution

u(x, y) = C exp{x + φ(ξ)} − 2, (13)

where ξ 2 = x2 − 2y, φ is an arbitrary differentiable function of its argument ξ and
C is a constant.

To find a specific solution suppose, for example, that a solution of (12) is required
to satisfy the auxiliary condition u(x, 0) = −1. Setting y = 0 in the general solution,
and noticing that as ξ 2 = x2 − 2y it follows that on the x-axis ξ = x, we find from
the condition u(x, 0) = −1 that the arbitrary function φ must be chosen such that

−1 = C exp{x + φ(x)} − 2, and so 1 = C exp{x + φ(x)}.
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This is only possible if C = 1 and φ(x) = −x, so replacing x in φ(x) by ξ = (x2 −
2y)1/2 gives φ(ξ) = −(x2 − 2y)1/2, so the solution becomes

u(x, y) = C exp{x − (x2 − 2y)1/2} − 2.

Differentiation confirms that this expression satisfies the PDE, so as it also satis-
fies the additional condition u(x, 0) = −1 it is the required classical solution. The
solution will be real provided x2 ≥ 2y, so the line y = 0 on which the Cauchy con-
dition is specified is seen to bound the region of the (x, y)-plane where the classical
solution is defined.

Two important questions that must be answered when working with PDEs are
(i) the existence question (does the PDE have a solution?) and (ii) the uniquenessexistence and

uniqueness question (if a solution exists, is it the only possible one?).
These questions can be answered in some detail for first order PDEs and higher

order linear equations, and to a lesser extent for other types of PDEs, but it will
suffice to say here that a solution of a linear PDE exists, and when the additional
condition in the form of a Cauchy condition is specified in a manner to be described
later, the corresponding solution will be unique.

To see that not every first order PDE has a solution, it is only necessary to
consider the nonlinear equation

u2
x + u2

y = −1.

The expression on the left is nonnegative, so clearly this equation cannot be satisfied
by any real function u(x, y).

To illustrate one of the ways in which first order PDEs arise from physical sit-
uations, we will derive the equation governing the transient heat balance between
a pipe transporting a hot fluid and the air surrounding the pipe at a constant tem-derivation of the

first order PDE
involving a
transient heat
balance

perature T0. Let the length of the pipe be L, the constant speed of the fluid through
the pipe be u, and the temperature of the fluid be T(x, t), where x is the distance
along the pipe and t is the time measured from the moment a particle of fluid enters
the pipe. The physical situation is represented in Fig. 18.1, and in order to arrive at
the transient heat balance equation we will consider the situation in an element of
the pipe of length �x.

The instantaneous energy balance that is to be modeled in the element of pipe
of length �x can be represented as follows:

{energy entering with fluid}−{energy leaving with fluid}−{heat transferred to air}
={energy stored in fluid}.

Δx

L

α(S/L)(T − T0) Δx

mcT
x

mc{T + Δx∂T}                  ∂x

mc∂T
     ∂x

FIGURE 18.1 Transient heat distribution in an element of the pipe of length �x.
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If �t is the time taken for a particle of fluid to travel through an element of the pipe
of length �x, the fluid speed u ≈ �x/�t . If we denote the mass of fluid present in
this element by M and the mass flow rate by m, the quantities M and m are related
by M = m�x/u.

If the fluid enters the element at the temperature T(x, t), its temperature when
leaving it can be approximated by T + �x(∂T/∂x). If we assume that the transfer
of heat from the surface of the pipe to the air is proportional to the temperature
difference T(x, t) − T0, and denote the heat transfer coefficient by α, the heat trans-
ferred from the surface of the pipe to the air will be (αS�x/L)(T − T0), where S is
the surface area of the pipe. The heat energy entering the element due to the fluid
is mcT, where c is the specific heat of the fluid, and the heat energy leaving with
the fluid is mc(T + �x∂T/∂x), whereas the stored energy in the fluid occupying
the element is Mc(∂T/∂t). Substituting these quantities into the energy balance
equation gives

mcT − mc
(

T + �x
∂T
∂x

)
− α

(
S�x

L

)
(T − T0) = Mc

∂T
∂t

. (14)

Cancelling terms, and dividing (14) by Mc = cm�x/u, this balance equation be-
comes the PDE for transient heat transfer:

∂T
∂t

+ u
∂T
∂x

= − αuS
mcL

(T − T0). (15)

Other examples of the derivation of PDEs that govern the behavior of impor-
tant but very different physical situations are to be found in Section 18.5 where the
three fundamental types of linear second order PDE are derived.

Summary First and second order partial differential equations (PDEs) of linear, quasilinear, and nonlin-
ear type have been defined. The Cauchy problem has been introduced and the questions
of the existence and uniqueness of solutions raised. A typical first order PDE has been de-
rived from a physical problem involving the transient heat balance between a pipe carrying
hot water and the surrounding air.

EXERCISES 18.1

Classify the PDEs in Exercises 1 and 2 as linear, semilinear,
quasilinear, or nonlinear.

1. (a) ux + u2uy = x + 2y.
(b) 3ux + 4uy = sin x.
(c) ux + xu2

y = u + 1.
(d) ux + 2uy = cos u.
(e) (x + 1)ux + yuy = 2u + ex .
(f) ux + (1 + ux)uy = u2.
(g) (x2 + 1)uxx − yuyy = 1 + cos x.
(h) uxx + (1 + u3/2

x )uyy = sin u.
2. (a) ux sin y + uy cos x = 1 + x2 + y.

(b) ux + (1 + u)uy = 2xy.

(c) (x2 + 1)ux + u2
y = 2x + 3.

(d) (1 + x + x2)ux + (2y + 1)uy = 1.
(e) (xy + 2)ux + (1 + y + u)uy = u.
(f) ux sin x + uy cos y = x + y + 3u.
(g) uxx − uyy = sin u.
(h) uxx − 2xuxy + (1 + cos u)uyy = 4.

In Exercises 3 through 6 use the general solution of the
PDE in (12) given in (13) to find the solution that satisfies
the given condition, stating any restriction that is required
for the solution to be valid.

3. u(x, 0) = 2, y > 0. 4. u(x, 0) = e2x − 2, y > 0.
5. u(x, 1) = −1, y > 0. 6. u(x, 2) = x − 2, y > 2.
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18.2 The Method of Characteristics

The method of solution of a quasilinear first order PDE involving the unknown
function u(x, y) contains within it as special cases the solution of linear and semi-
linear first order PDEs. Consequently it is only necessary to discuss the solution of
a Cauchy problem for a quasilinear equation that we will write in the form

p(x, y, u)ux + q(x, y, u)uy = f (x, y, u), (16)

where p, q, and f are assumed to be continuous functions of their arguments. The
Cauchy condition for u will be imposed on a curve � in the (x, y)-plane on which u
will be required to assume a prescribed functional form, with the function depending
on the position on �.

When the independent variables x and y are space variables, the curve � will
be called the Cauchy data curve. If, however, one independent variable is a space
variable and the other is the time, and � coincides with the x-axis, it is natural to

Cauchy data curve,
initial line

refer to � as the initial line and to the Cauchy condition itself as the initial condition
(or the initial data) for the PDE. It is then understood that as time increases the
solution will evolve away from the initial condition.

If the Cauchy data curve � is complicated, it is usually necessary to define it
parametrically by writing

x = x0(s), y = y0(s), (17)

for all values of a parameter s in some appropriate interval I. So, for example, if
� is the straight line through the origin ax − by = 0, one possible parametrization
of the line involves setting x = bs and y = as for −∞ < s < ∞.

In (17) the functions x0(s) and y0(s) are assumed to be continuous with
piecewise continuous derivatives x′

0(s) and y′
0(s) such that (x′

0(s))2 + (y′
0(s))2 �= 0.

This last condition ensures that the length element dl = √{(x′
0(s))2 + (y′

0(s))2}ds
along � increases steadily with s. We will see later that the Cauchy data curve �

cannot be specified in a completely arbitrary manner, and the nature of the restric-
tion that must be placed on it will become clear when the method of solution has
been developed.

When � has been defined parametrically in terms of s, the initial condition
u = u� on � can also be defined in terms of s by setting

u�(s) = u0(s), (18)

where u0(s) = u0(x0(s), y0(s)) is a prescribed function.
The total derivative of a function u(x, y) along an arbitrary curve defined

parametrically in terms of a parametric variable σ by the differentiable functions
x = x(σ ), y = y(σ ) is

du
dσ

= ∂u
∂x

dx
dσ

+ ∂u
∂y

dy
dσ

. (19)
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A comparison of (16) and (19) shows that by setting

dx
dσ

= p(x, y, u) and
dy
dσ

= q(x, y, u), (20)

the PDE in (16) can be expressed as the ODE

du
dσ

= f (x, y, u), (21)

provided x and y satisfy (20).
The two ODEs in (20) are called the parametric form of the characteristiccharacteristic

equations,
characteristics,
and the
compatibility
condition

equations of the PDE in (16), and when they are integrated to obtain an expression
of the form

�(x, y, k) = 0, (22)

where k is a constant of integration, they define a family of curves C in the (x, y)-
plane called the characteristic curves of the PDE, each of which is identified by a
different value of k. Notice that in quasilinear PDEs the characteristics depend on
the solution u, so in such cases it is necessary to solve (20) and (21) simultaneously.
For conciseness, the curves belonging to the family C are usually called the charac-
teristics of the PDE. The ODE in (21) is called the compatibility condition along
the characteristic.

If required, the parameter σ can be eliminated from the characteristic equations
and the compatibility condition by dividing the second ODE in (20), and the ODE
in (21), by dx/dσ given in the first of the equations in (20). This leads to the equation
for the characteristic curves

dy
dx

= q(x, y, u)
p(x, y, u)

(23)

and to the compatibility condition

du
dx

= f (x, y, u)
p(x, y, u)

. (24)

Although the equations (23) and (24) appear simpler than the equivalent ones
in (20) and (21), in many cases the equations in terms of the parameter σ are easier
to integrate.

The representation of the PDE in (16) as the set of ODEs in (20) and (21) or,
equivalently, as the ODEs in (23) and (24) forms the basis of a method of solution
for a first order PDE for u(x, y) called the method of characteristics.method of

characteristics The significance of the characteristic curves and the compatibility condition is
most easily understood by considering the intersection of a representative charac-
teristic curve and the Cauchy data curve �. Consider the characteristic curve C∗ in
Fig. 18.2 that intersects � at a point P corresponding to s = s∗ in the parametrization
of �. As P is the point (x0(s∗), y0(s∗)), in the (x, y)-plane, the Cauchy condition at
P is u = u0(s∗). The solution u(x, y) of the PDE will then be determined along the
characteristic curve C∗ by integration of the compatibility condition (21) subject
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to the initial condition u = u0(s∗), with similar interpretations when (23) and (24)
are used.

It can be seen from this argument that when the PDE in (16) is either linear
or semilinear, the characteristic curves can be determined independently of the
solution by integrating either (20) or (23), because in these two cases the solution
u does not enter into the functions p and q. Consequently, in these two cases,
solving the PDE in (16) reduces to the integration of the ODEs that determine the
family of characteristic curves C, followed by the integration of the compatibility
condition along the characteristic curves subject to an appropriate initial condition.
Figure 18.2 illustrates the application of the method of characteristics to linear and
semilinear PDEs written in the form

p(x, y)ux + q(x, y)uy = f (x, y, u), (25)

where f depends linearly on u when (25) is linear, and nonlinearly on u when it is
semilinear.

If the PDE is quasilinear, the solution u enters into the equations determining
the characteristics, so when this occurs the integrations can only be performed an-
alytically when the equations involved are simple. In general, when working with
quasilinear first order PDEs, and also with linear and semilinear PDEs with com-
plicated coefficients, the system of ODEs comprising the characteristic equations
and the compatibility condition must be solved simultaneously using a numerical
integration technique such as the Runge–Kutta method described in Chapter 19.

The uniqueness of the solution u(x, y) in (25) follows directly from the way
in which the method of characteristics produces the solution, and the fact that
integration along a typical characteristic C∗ of the compatibility condition (see
Fig. 18.2) leads to a solution for u(x, y) that depends uniquely on the initial condition
u = u0(s∗) associated with the characteristic. The solution will cease to be unique if
intersection of characteristics occurs at a point Q in the (x, y)-plane. This is because,
in general, the value of u at Q determined by integration of the compatibility
condition along each of the characteristics that meet there cannot be expected to
be in agreement.

The restriction that must be placed on the initial curve � can be seen by consid-
ering Fig. 18.3. Provided � is nowhere tangent to a characteristic, as is the case for
the characteristic CP through point P, the solution along CP will evolve according to

du
dσ = f (x, y, u)σ

Γ

x0

y
C∗

C : 
dy
dσ

= q(x, y)

dx
dσ

= p(x, y)

u = u0(s∗)
P

FIGURE 18.2 The solution of a linear or semilinear PDE by
the method of characteristics.

PQ

R

CpCQ

Γ

Γ

x0

y

FIGURE 18.3 Tangency and nontangency of
characteristic curves and the initial line �.
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the solution of the compatibility condition subject to the initial condition u = u0(P).
The situation is different, however, in the case of the characteristic curve CQ through
the point Q that becomes tangent to the Cauchy data curve � at point R.

In this case the Cauchy condition u = u0(R) specified at R where the Cauchy
data curve � is tangent to CQ cannot be expected to be in agreement with the so-
lution obtained by integrating the compatibility condition along CQ from Q to R
subject to the initial condition u = u0(Q) at Q. This shows that when specifying
a Cauchy problem for the PDE in (16) it is necessary that the initial curve � be
nowhere tangent to a characteristic curve. As the characteristics can be determined
independently of the solution u when the PDE is linear or semilinear, for such equa-
tions it is always possible to determine in advance that the nontangency condition
is satisfied. If, however, the equation is quasilinear, then although the nontangency
condition for � may be satisfied in neighborhood of �, this may not remain true as
the solution evolves.

A special case of the Cauchy problem for the PDE in (16) arises when the
Cauchy data curve � coincides with a characteristic curve of the equation. The
determination of a solution for such a problem, when it exists, is called the charac-characteristic Cauchy

problem teristic Cauchy problem.
The following examples illustrate the application of the method of character-

istics to linear, semilinear, and quasilinear first order PDEs, and also to a simple
characteristic Cauchy problem. In general, equations (23) and (24) are the simplest
to use when the Cauchy condition is prescribed on any straight line, and the para-
metric representation of the characteristic equations is only necessary when Cauchy
data is prescribed on a curve. However, to illustrate the parametric approach, the
second example makes use of equations (20) and (21) for the case where the Cauchy
data is prescribed on a straight line through the origin.

Once a solution has been found it must always be checked to see that it satisfies
both the prescribed Cauchy condition and the original PDE. The solution should
also be examined to identify any restrictions that need to be placed on it in order
to ensure that it remains real and finite.

EXAMPLE 18.1 Solve the Cauchy problem

ux + 3uy = 2u, given that u(x, 0) = ex.

Solution This is a linear equation, and as the Cauchy data curve is the x-axis, we
will use the characteristic equations given in (23) and (24).

From (23) the characteristic curves of the PDE are determined by dy/dx = 3,
so integration shows their equation to be y = 3x + ξ , where ξ is a constant of
integration that corresponds to the point of intersection (0, ξ) of the characteristic
and the x-axis.

The compatibility condition is du/dx = 2u, so integration shows that

ln u = 2x + f (ξ),

where f (ξ) represents the arbitrary constant introduced as a result of the integra-
tion. This constant depends on the characteristic involved, but as a characteristic
depends on ξ because of its point of intersection (ξ, 0) with the x-axis, it is neces-
sary to introduce the constant (on a particular characteristic) as f (ξ), where f is
an arbitrary function.
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Substituting ξ = y − 3x into the solution for u gives

u(x, y) = exp{2x + f (y − 3x)}.
To find the form of the arbitrary function f , we now make use of the Cauchy

condition, which in this case is u(x, 0) = ex. Setting y = 0 in the expression for
u(x, y) and imposing the Cauchy condition gives

ex = exp{2x + f (−3x)},
and after taking logarithms this becomes

−x = f (−3x), that is equivalent to f (x) = 1
3

x.

Replacing x by y − 3x in f (x), we have f (y − 3x) = 1
3 y − x, so substituting

f (y − 3x) into the expression for u(x, y) gives

u(x, y) = exp
{

x + 1
3

y
}

.

This function satisfies the Cauchy condition and differentiation confirms that
it is a solution of the original PDE, so it is a classical solution of the equation.
Inspection shows the solution to be valid throughout the entire (x, y)-plane. A
solution such as this that is valid without restriction on its independent variables is
called a global solution.

EXAMPLE 18.2 Solve the Cauchy problem

Cauchy problems for
linear, semilinear,
and quasilinear PDEs

3ux + 2uy = x, given that u(x, y) = 1 on the line � with the equation ax = by.

Solution This is a linear equation, with the Cauchy data curve � a straight line
through the origin, so to illustrate the parametric approach we will use the charac-
teristic equations given in (20) and (21).

We parametrize � by setting x = bs, y = as, where −∞ < s < ∞. The charac-
teristic curves (lines in this case) are determined by (20), which when integrated
become

x = 3σ + k1, y = 2σ + k2.

When σ = 0 we know that x and y lie on �, but then x = bs and y = as, so it follows
that k1 = bs, k2 = as, showing that

x = 3σ + bs, y = 2σ + as.

Solving these expressions for s and σ gives

s = 3y − 2x
3a − 2b

, σ = ax − by
3a − 2b

, for 3a �= 2b.

The compatibility equation (21) becomes

du
dσ

= x, but x = 3σ + bs,

so after integration

u(s, σ ) = 3
2
σ 2 + bσ s + f (s),
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where f (s) represents the usual arbitrary additive integration constant. As the
characteristic depends on the parameter s, the integration constant f (s) is shown
as a function of s. The Cauchy condition u(x, y) = 1 is imposed on �, corresponding
to σ = 0 in the preceding expression, so setting σ = 0 and replacing u(s, 0) by 1 we
find that 1 = f (s) for all s, and so in terms of s and σ the solution is seen to be given
by

u(s, σ ) = 3
2
σ 2 + bσ s + 1.

Replacing s and σ by their expressions in terms of x and y, we arrive at the
explicit solution in terms of x and y

u(x, y) = 3
2

(
ax − by
3a − 2b

)2

+ b
(

ax − by
3a − 2b

)(
3y − 2x
3a − 2b

)
+ 1, for 3a �= 2b.

This function satisfies the Cauchy condition on �, and differentiation confirms that
it satisfies the original PDE, so it is a classical solution of the equation. Inspection
shows the solution to be valid in the entire (x, y)-plane provided 3a �= 2b, so it is a
global solution if this condition is satisfied.

When 3a = 2b, the preceding solution fails because the Cauchy data line �

with the equation 2x − 3y = 0 coincides with the characteristic through the origin,
causing the problem to become a characteristic Cauchy problem.

To examine the solution in this case, we must allow for the fact that al-
though both � and the characteristic through the origin coincide, they are each
parametrized differently. From the equations defining the characteristics we have
dx/dσ = 3 on the Cauchy data line x = bs, so dx/ds = b.

The compatibility condition is

du
dσ

= x, so in terms of s this can be written
du
dσ

= bs.

To express the derivative on the left of this last result in terms of s we use the chain
rule

du
ds

= du
dσ

dσ

ds
= dσ

dx
dx
ds

du
dσ

, and so
du
ds

= b
3

du
dσ

.

Combining this result with du/dσ = bs gives

du
ds

= b2

3
s, and after integration this becomes u = b2

6
s2 + c, (c = constant).

Substituting x = bs into this result, we arrive at the solution

u(x, y) = 1
6

x2 + c.

This expression for u(x, y) is a degenerate solution of the original PDE along the
characteristic through the origin that coincides with the Cauchy data line. However,
this is not a solution of the characteristic Cauchy problem, because it does not satisfy
the Cauchy condition u(x, y) = 1 along the line �.

This shows that this characteristic Cauchy problem with the stated Cauchy
condition along � has no solution. A solution for the characteristic Cauchy problem
could only exist if the Cauchy condition on � is changed to u(x, y) = 1

6 x2 + c.
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This solution is not the most general one, because the fact that � has the equa-
tion 3y − 2x = 0 allows us to add to the preceding solution any arbitrary differ-
entiable function f (3y − 2x) that is a solution of the homogeneous form of the
PDE 3ux + 2uy = 0, since the result will still be a solution. This shows that the most
general solution of this characteristic Cauchy problem is

u(x, y) = 1
6

x2 + f (3y − 2x),

provided this expression also satisfies the Cauchy condition on �. In this result the
constant c that appeared earlier has been absorbed into the arbitrary function f .

This example demonstrates the fact that, in general, the characteristic Cauchy
problem has no solution, but when it does the solution is not unique, because it
contains an arbitrary function.

EXAMPLE 18.3 Solve the Cauchy problem

ux + uy = eu, given that u(0, y) = y.

Solution This is a semilinear equation, but this time the Cauchy condition is spec-
ified on the y-axis so it will be simplest to use the nonparametric form of the
characteristic equations.

The characteristics are determined by

dy
dx

= 1, and integration gives y = x + ξ,

where ξ is the point (0, ξ) on the y-axis through which the characteristic passes. The
compatibility condition is

du
dx

= eu, and after integration this becomes −e−u + f (ξ) = x.

Here f , an arbitrary function of its argument ξ that identifies the characteristic as
the one passing through the point (0, ξ), again represents the arbitrary constant
that enters as a result of the integration. Substituting ξ = y − x into this last result
gives

−e−u + f (y − x) = x, or u(x, y) = 1/ ln{ f (y − x) − x}.
To find f we must now make use of the Cauchy condition u(0, y) = y. Setting

x = 0, and replacing u by y, the preceding expression becomes

−ey + f (y) = 0, so f (y) = ey,

from which it follows that f (y − x) = ex−y. Substituting for f (y − x) in the expres-
sion for u(x, y), we find that

u(x, y) = ln
(

1
ex−y − x

)
for ex−y > x.

This expression satisfies the Cauchy condition specified, and differentiation con-
firms that it is a solution of the original PDE, so it is a classical solution. The re-
striction ex−y > x that ensures u(x, y) is real shows that the solution is not defined
over all of the (x, y)-plane, and so it is not a global solution.
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EXAMPLE 18.4 Solve the Cauchy problem

ux + uuy + u = 0, given that u(0, y) = 1 + y.

Solution This equation is quasilinear because of the presence of the term uuy,
and again the Cauchy condition is specified on an axis so the nonparametric form
of the characteristic equations will be used.

The characteristic curves follow by integration of the equation

dy
dx

= u,

on which the compatibility condition that determines u is

du
dx

= −u.

Let the solution along the characteristic through the point (0, ξ) on the y-axis be
u = g(ξ). Then integration of the compatibility condition along the characteristic
with respect to x gives

ln u = −x + ln g(ξ), so u = g(ξ)e−x.

It follows from the Cauchy condition that u = 1 + ξ at the point (0, ξ), so setting
x = 0 and replacing u by 1 + ξ in this last result, we find that

g(ξ) = 1 + ξ,

and so

u = (1 + ξ)e−x.

The equation determining the characteristic curves now follows if we use this
last result in the equation dy/dx = u, to obtain

dy
dx

= (1 + ξ)e−x.

Integration of this result using the fact that the characteristic passes through the
point (0, ξ) leads to the result

y = ξ + (1 + ξ)
∫ x

0
e−ηdη,

so

y = (1 − e−x) + ξ(2 − e−x).

When ξ is eliminated the solution becomes

u =
(

1 + y
2 − e−x

)
e−x, provided x �= − ln 2.

This function satisfies the Cauchy condition, and differentiation shows that it sat-
isfies the original PDE, so it is a classical solution. The solution is not defined
everywhere because it becomes infinite when x = −ln 2.

Summary This section introduced the method of characteristics for first order PDEs involving a scalar
function of two independent variables. The method was seen to involve replacing the sin-
gle PDE by two coupled ordinary differential equations (ODEs), one of which determined
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the family of characteristic curves, while the other determined the variation of the solution
along the characteristic curves. The method was seen to apply to linear, semilinear, and
quasilinear equations, and in the linear and semilinear cases the characteristic curves could
be determined independently of the solution. However, in the quasilinear case, the equa-
tions for the characteristics and for the variation of the solution along the characteristics
had to be solved simultaneously.

EXERCISES 18.2

In Exercises 1 through 18 solve the given Cauchy problem.
Verify that the result obtained is a solution, and comment
on any restrictions that need to be placed on it.

1. ux + 2uy = 2, u(x, 0) = x.
2. 3ux + 2uy = x, u(x, 0) = 1.
3. 4ux + 3uy = 1, u(x, y) = 3 on y = x.
4. yux + 3uy = y(1 + u), u(0, y) = y2.

5. 2ux + uy = cos x, u(x, 0) = 3
2

sin x.

6. ux + uy = u − 1, u(x, 0) = 2x.
7. ux + 2uy = 2x, u(x, y) = 2 on y = 3x + 1.
8. ux + xuu = u + 2, u(0, y) = 3y.

9. ux + 4xuy = 3 + 2xsec2x2, u(x, 0) = 3x.
10. yux + uy = y(u + 4), u(x, 0) = e2x .
11. ux + uy = u2, u(0, y) = y.
12. ux + 2uy = (1 + 2x)e−u, u(x, y) = 1 on y = x.
13. ux + uuy + u = 0, u(0, y) = sin y.
14. Obtain the solution in Example 18.2 without para-

meterizing the line ax = by.
15. ux + 2uuy + 3u = 0, u(0, y) = 4y.
16. ux + uuy + u = 0, u(0, y) = ey.
17. ux + uuy + u = 0, u(0, y) = 3 + 2y.
18. ux + 2uuy + 3u = 0, u(0, y) = 4y.

18.3 Wave Propagation and First Order PDEs

A first order PDE for the unknown function u(x, t) of two independent variables
x and t of the form

ut + p(x, t, u)ux + q(x, t, u) = 0, (26)

where x has the dimensions of length and t is the time, can be considered to de-
wave propagation
and hyperbolic PDEs

scribe wave propagation. Here the term wave is used to describe an identifiable
disturbance such as a sound or water wave that propagates at a finite speed through
space as time increases. The PDE in (26) is called a first order hyperbolic equation
because, like the second order wave equation to be considered later, it describes
wave propagation. A typical equation of this type characterizing a physical problem
was derived in Section 18.1, where a linear first order PDE was shown to model the
transient heat flow from a pipe transporting a hot fluid.

To understand the different types of wave propagation that can be described
by hyperbolic equations such as (26), it will be necessary to examine some typical
cases. The method of solution that will be used is the method of characteristics
described in Section 18.2. However, this time the variable x will be replaced by t ,
as it represents the time, and the variable y will be replaced by x, which represents
a length. A Cauchy condition for (26) specified at some fixed time, typically t = 0,
is an initial condition, and the line on which the initial condition is specified is then
the initial line.
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The Traveling Wave Equation
The simplest possible form of wave propagation described by the PDE in (26) occurs
when p(x, t, u) = c and q(x, t, u) = 0, causing the equation to simplify to

ut + cux = 0 (c = constant). (27)

This is a linear homogeneous constant coefficient first order PDE that is often

traveling wave
equation or the
advection equation

known as the advection equation.
The classical general solution of (27) can be found by inspection, but for what is

to follow it will be more useful if it is obtained by the method of characteristics. Using
the characteristic equations (23) and (24) with the new independent variables x and
t , we find that the characteristic curves are determined by integrating the equation

dx
dt

= c to obtain x = ct + ξ,

where the characteristic curve passes through the point (ξ, 0) on the x-axis (the
initial line). As c = constant, the characteristics are all parallel straight lines, and
the equation of the characteristic through the point (ξ, 0) has the equation

x − ct = ξ. (28)

The solution u(x, t) along the characteristic curve (line) through the point (ξ, 0)
follows by integrating the compatibility equation

du
dt

= 0 to obtain u(x, t) = f (ξ).

As u(x, t) is constant on a characteristic, the constant value must be equal to the
value assigned by the initial condition at the point where the characteristic intersects
the x-axis. It follows from this that along the characteristic x − ct = ξ that passes
through the point (ξ, 0) we must have u(x, t) = f (ξ). Substituting for ξ shows that
the general solution of (27) is

u(x, t) = f (x − ct). (29)

The derivative dx/dt = c has the dimensions of a speed, so (29) shows that
the profile of the initial disturbance determined by the function f (x) at the time
t = 0 is propagated with speed c, without change of shape or scale (size), in the
positive x-direction when c > 0, and in the negative x-direction when c < 0. A
wave of this type is called a traveling wave, and sometimes a wave of constant form.wave profile and

a traveling wave Figure 18.4 shows a typical traveling wave with an initial wave profile in the form of
a symmetrical pulse and a propagation speed c = 2. The plot illustrates the steady
propagation to the right of the initial profile in such a way that at a time t = t1 each
point has moved to the right through a distance 2t1.

A Typical Linear Constant Coefficient
Nonhomogeneous Equation
Let us consider the initial value problem

ut + 3ux − u = kx, with u(x, 0) = sin x (k = constant).
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t
x

u

FIGURE 18.4 A traveling wave moving in the positive
x-direction with c = 2.

The characteristics determined by integrating dx/dt = 3 are x = 3t + ξ , where
the characteristic intersects the initial line at (ξ, 0). The compatibility condition
is du/dt = u + kx, but x = 3t + ξ along the characteristic through (ξ, 0), so along
this characteristic u is determined by the solution of the ODE

du
dt

= u + 3kt + kξ.

Solving this linear first order ODE shows that

traveling wave
problems involving
linear, semilinear,
and quasilinear PDEs

u(x, t) = et f (ξ) − k(3t + 3 + ξ),

where f (ξ) with f an arbitrary function represents the arbitrary additive integration
constant introduced by the integration.

As ξ = x − 3t this solution becomes

u(x, t) = et f (x − 3t) − k(3 + x).

To determine the form of the function f, we now make use of the initial condi-
tion u(x, 0) = sin x. Setting t = 0 in the expression for u(x, t) and using the initial
condition we have

sin x = f (x) − k(3 + x),

and so

f (x) = sin x + k(3 + x).

Finally, replacing x in f (x) by x − 3t and substituting the result in u(x, t) we arrive
at the result

u(x, t) = et {sin(x − 3t) + k(3 + x − 3t)} − k(3 + x).

This expression satisfies the initial condition and the PDE, so it is the required
classical solution. Although the speed of propagation of the wave is constant, be-
cause dx/dt = 3, the wave shape changes from the initial sinusoid as it propagates.



Section 18.3 Wave Propagation and First Order PDEs 945

0.8

0.6

0.4

0.2

0

(a)

−10

−5

0

5

4

2

0

−4

−2
x

u

t

0.8

0.6

0.4

0.2

0

(b)

4

2

0

−2

−4

x

2
1
0
−1
−2

u

t

FIGURE 18.5 (a) The solution when k = 1; (b) the solution when k = 0.

Only when k = 0 is the shape of the wave preserved, though not its scale, because
of the presence of the multiplicative scale factor et . Figure 18.5a shows a plot of the
solution when k = 1 and a plot when k = 0 is shown in Fig. 18.5b, in each case for
−5 ≤ x ≤ 5 and 0 ≤ t ≤ 0.8.

A Typical Linear Variable Coefficient
Nonhomogeneous Equation
The following PDE illustrates the wave propagation properties of a typical linear
variable coefficient nonhomogeneous equation. Consider the initial value problem

ut + xux + u = 1, with u(x, 0) = tanh x.

The characteristic curves are determined by integrating the equation

dx
dt

= x to obtain x = ξet ,

where the characteristic curve passes through the point (ξ, 0) on the initial line
t = 0.

The compatibility condition is

du
dt

= 1 − u,

so when this is integrated along a characteristic curve we find that

u = 1 + e−t f (ξ),

where f is an arbitrary function of ξ . Substituting for ξ we have

u = 1 + e−t f (xe−t ).
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FIGURE 18.6 Decay of the initial condition u(x, 0) = tanh x to
the constant value u = 1.

The arbitrary function f must be determined by using the initial condition
u(x, 0) = tanh x. Setting t = 0 in the preceding expression for u and imposing the
initial condition gives

tanh x = 1 + f (x), so that f (x) = tanh x − 1.

Replacing x in f (x) by xe−t and using the result in the expression for u gives

u(x, t) = 1 + e−t tanh(xe−t ).

Wave propagation described by this PDE is not at a constant speed, because
dx/dt = x, nor is its initial shape preserved. Examination of the solution shows
that the wave profile changes shape as it propagates, and that after a suitable pe-
riod of time the profile decays to the constant solution u(x, t) = 1, as illustrated in
Fig. 18.6.

The last examples show that, in general, wave propagation described by first
order linear equations that are not of the form of (27) describe wave propagation
that may or may not preserve the shape of the initial wave profile, but will not
preserve the scale as time evolves, so their solutions are not traveling waves.

A Typical Semilinear Equation
The properties of semilinear PDEs can be illustrated by considering the initial value
problem

ut + ux = u2, with u(x, 0) = sin x.

The characteristic passing through the point (ξ, 0) in the (x, t)-plane obtained by
integrating dx/dt = 1 is x = t + ξ , and the compatibility condition along this char-
acteristic is du/dt = u2. Integrating the compatibility condition along the charac-
teristic gives

− 1
u

= t + f (ξ),
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FIGURE 18.7 The evolution of infinite values of u(x, t) as t → 1.

where f is an arbitrary function of ξ . Substituting ξ = x − t into this result, we have

u(x, t) = −1
t + f (x − t)

.

As u(x, 0) = sin x, setting t = 0 in u(x, t) and using the initial condition shows
that f (x) = −1/ sin x, from which it follows that f (x − t) = −1/ sin(x − t). Substi-
tuting for f (x − t) in the expression for u(x, t) then gives

u(x, t) = sin(x − t)
1 − t sin(x − t)

.

This function satisfies both the initial condition and the PDE, so it is the required
classical solution.

Examination of this solution shows that it is only defined in the strip 0 < t < 1,
because only in this strip is the denominator of u(x, t) nonzero. So, unlike linear
equations, this semilinear equation has a classical solution for only a finite time,
after which for some x the solution becomes infinite. The plot of u(x, t) in Fig. 18.7
shows the development of infinite values of the solution as t → 1.

A Typical Quasilinear Equation
The general properties of solutions of the first order quasilinear PDE

ut + p(x, t, u)ux + q(x, t, u) = 0 (30)

can all be illustrated by considering the typical initial value problem

ut + f (u)ux = 0, with u(x, 0) = g(x), (31)

where f and g are arbitrary functions of their arguments.
The characteristics of (31) are determined by integrating dx/dt = f (u), while

the compatibility condition determining the solution u that is valid along a charac-
teristic is seen to be du/dt = 0.
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The compatibility condition shows that u = constant along a characteristic,
with the value of the constant determined by the initial condition at the point of
intersection of the characteristic and the initial line. Furthermore, as u = constant
along a characteristic, it follows from dx/dt = f (u) that all characteristics will be
straight lines, and that the propagation speed f (u) associated with a characteristic
is determined by the constant value of u that is transported along it.

Thus, the characteristic through the point (ξ, 0) on the initial line (the x-axis)
where the initial condition is u = g(ξ) will have the equation

x = ξ + f (g(ξ))t, and along this characteristic u = g(ξ). (32)

Elimination of ξ between these equations, where it appears as a parameter, shows
that the solution u of the initial value problem in (31) is determined by the implicit
relationship

u = g{x − f (u)t}. (33)

To examine the nature of solutions of (31) we must consider the behavior
of the characteristic curves (lines in this case), and when doing so we follow the
usual convention that the x-axis is taken to be horizontal and the t-axis vertical.
Consequently, when drawn in the (x, t)-plane, the gradient of a characteristic curve
is dt/dx = 1/ f (u).

Let us now suppose that the function f (u) in (31) is a steadily increasing function
of u. Then the characteristics radiating out from points on the initial line will all fan
out, as illustrated in Fig. 18.8a. This shows that the initial value problem (31) willhow solutions of

quasilinear PDEs
can break down

have a unique solution throughout the upper half of the (x, t)-plane, because the
solution at any point will be the value of u associated with the characteristic that
passes through the point, and the characteristics never intersect. However, if f (u) is
a steadily decreasing function of u, the characteristics radiating out from points on
the initial line will converge, leading to the intersection of characteristics as shown
in Fig. 18.8b. When this happens the nature of the solution changes dramatically,
because different characteristics transport different constant values of u into the
upper half of the (x, t)-plane, so the intersection of characteristics corresponds

0 x

t

0 x

dx
dt = f (u)

characteristic

(a) (b)

characteristic

dx
dt = f (u)

t

FIGURE 18.8 The influence of f (u) on the behavior of characteristics. (a) f (u) an increasing
function of u; (b) f (u) a decreasing function of u.
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FIGURE 18.9 (a) f (u) an increasing function leading to smoothing because the top of the wave then moves slower than the bottom;
(b) f (u) a decreasing function leading to steepening due to the top of the wave moving faster than the bottom.

to the nonuniqueness of the solution of the initial value problem (31) wherever
intersection of characteristics occurs. This conclusion is implied by the implicit
form of the solution found in (33), because it is known from analysis that a function
determined by an implicit relationship need not be unique.

The qualitative properties of waves propagated by a PDE of the form

ut + f (u)ux = 0

can be deduced from the equation dx/dt = f (u) determining the characteristics
along which constant initial values of u are transported. To see this, suppose f (u)
is an increasing function of u, and consider the wave profile u(x, t). Then if P and
Q are adjacent points on a wave profile, with Q to the right of P and u(Q) > u(P),
it follows that point Q will propagate faster than point P, causing the wave to
become smoother as it evolves, as illustrated in Fig. 18.9a. When the converse is
true, and f (u) is a decreasing function of u, point P will propagate faster than point
Q, causing the wavefront to steepen, and eventually this will cause the solution to
become nonunique because of the intersection of characteristics, as illustrated in
Fig. 18.9b.

Partial differentiation of (33) with respect to x gives

∂u
∂x

= g′{x − f (u)t}
{

1 − f ′(u)
∂u
∂x

t
}
,

so

∂u
∂x

= g′{x − f (u)t}
1 + g′{x − f (u)t} f ′(u)t

. (34)
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This result shows ux can become infinite at finite time t = tc if the functions f
and g are such that g′{x − f (u)t} f ′(u) < 0 where tc is the smallest time for which 1 +
g′{x − f (u)t} f ′(u)t = 0. The development of an infinite derivative ux corresponds
to the time when a tangent to the wave profile first becomes vertical, marking
the start of the nonuniqueness. This feature can be seen in Fig. 18.9b, where the
tangent to the mid-point of the wave profile tends to a vertical position as t → 1.
An immediate consequence of this is that when characteristics converge, a classical
solution can only exist for a finite time in the strip 0 < t < tc in the (x, t)-plane.

Solutions of initial value problems for the more general first order quasilinear
PDE in (30) exhibit the same general properties as those of (31). As typical functions
p(x, t, u) in (30) and f (u) in (31) will have domains where they are increasing
functions of u and others where they are decreasing functions, in general classical
solutions of first order quasilinear PDEs can only exist for a finite time. The next
section examines how the concept of a solution can be extended to allow the solution
of some PDEs to be generalized so that a solution can be extended beyond the
time tc.

EXAMPLE 18.5 Solve the initial value problem

ut + (1 + u)ux + u = 0, given that u(x, 0) = 1 + x.

Solution This PDE is quasilinear because of the product term uux. The charac-
teristic curves are obtained by integrating dx/dt = 1 + u, and the compatibility
condition determining u along a characteristic is du/dt = −u.

Let the solution along the characteristic through the point (ξ, 0) on the initial
line be u = g(ξ), then integration of the compatibility condition gives

ln u = −t + ln g(ξ), and so u = g(ξ)e−t .

From this result and the initial condition at (ξ, 0) we have g(ξ) = 1 + ξ , so the
solution can be written

u = (1 + ξ)e−t .

Substitution of this result into the equation determining the characteristic
curves gives

dx
dt

= 1 + (1 + ξ)e−t ,

and so ∫ x

ξ

ds =
∫ t

0
[1 + (1 + ξ)e−τ ]dτ,

where s and τ are dummy variables. After integration this becomes

x = ξ(2 − e−t ) + t + 1 − e−t ,

from which it follows that

1 + ξ = 1 + x − t
2 − e−t

.

Finally, using this result to eliminate ξ from the expression for u, we find that

u(x, t) =
(

1 + x − t
2 − e−t

)
e−t .
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This function satisfies the initial condition and the original PDE, so it is the
required classical solution. As the denominator does not vanish for t > 0, this is the
classical solution for the initial value problem for t > 0.

More information on the method of characteristics, including applications, can
be found in references [7.1], [7.4], [7.6], [7.8], [7.11], [7.12], and [7.20].

Summary The concept of wave propagation was introduced and related to the method of character-
istics. Each characteristic curve was seen to transport the initial condition appropriate to
the characteristic according to the ODE determining the evolution of the solution along
the curve. It was shown how homogeneous linear first order PDEs can have traveling wave
solutions where the shape of the wave remains unchanged as it propagates with time.
However, the introduction of nonlinearity was seen to make traveling wave solutions im-
possible, and in certain cases to lead to the solution becoming nonunique after a finite
time.

EXERCISES 18.3

Solve the following initial value problems.

1. 2ut + 4ux = 3u, given that u(x, 0) = sin 2x.
2. ut − 2ux = x, given that u(x, 0) = x2.
3. ut − 3ux = 2u + 1, given that u(x, 0) = 1

2 cos x.
4. ut − ux = u + sin x, given that u(x, 0) = 1.
5. ut − 4ux = 3x, given that u(x, 0) = ex .
6. ut + 2ux = 2u + x, given that u(x, 0) = x.
7. ut − 3xux + 2u = x, given that u(x, 0) = x.
8. ut + 3xux − 2u = 4, given that u(x, 0) = x.
9. ut − 3xux + 2u = x, given that u(x, 0) = 3x.

10. (1 + t2)ut + ux = (1 + t2)(u − 1), given that
u(x, 0) = sinh x.

11. 3ut − 9xux + 6u = x, given that u(x, 0) = x.
12. ut + e2t ux = u + x, given that u(x, 0) = 1.
13. ut + ux = 2u2, given that u(x, 0) = cos x.
14. ut + 4xux = u2, given that u(x, 0) = sinh x.
15. ut + 2uux − u = 0, given that u(x, 0) = −2x.
16. ut + 2uux + 2u = 0, given that u(x, 0) = 3x.
17. ut − 3uux + 4u = 0, given that u(x, 0) = 1 + x.
18. ut + tuux − u = 0, given that u(x, 0) = 2x.

19. ut + (1 + t)uux −
(

1
1 + t

)
u = 0, given that

u(x, 0) = 3x − 1.

20. ut + uux −
(

1
1 + t

)
u = 0, given that u(x, 0) = 1 − x.

18.4 Generalizing Solutions: Conservation Laws
and Shocks

In many physical situations a commonly occurring feature of wave propagation is
the evolution of smooth solutions of PDEs to a point where their nature changes,
and jump discontinuities occur and propagate in a manner quite different from
the smooth solution. This happens in fluid and solid mechanics, in magneto-
hydrodynamics, and elsewhere when the governing PDEs are quasilinear and de-
scribe wave propagation.

generalizing solutions

The propagation of discontinuities in otherwise continuous and differentiable
solutions represents an extension of the concept of a solution that has been used
thus far. This is because although the solution on either side of the discontinuity
satisfies the original PDE, the solution is not a classical solution since it is not
differentiable at a jump discontinuity. In high-speed gas dynamics, and in elastic
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materials that behave nonlinearly, discontinuous solutions of this type are called
shock waves.

Jump discontinuities can also develop and propagate in water, as can be seen
in estuaries subject to suitable tidal conditions, where a mass of water across which
there is a large and abrupt change of level can propagate in a stable manner for
a considerable distance. A steplike disturbance of this type in water is called a
tidal bore, and when the effects of viscosity and turbulence are neglected the sit-
uation can be approximated mathematically by a jump discontinuity in the water
height.

Behavior of this type was suggested in the last section where it was seen that
classical solutions of initial value problems for first order quasilinear equations
may only exist for a finite time until the solution becomes nondifferentiable. This
suggests that a possible generalization of a classical solution u(x, t) could involve
a function that is differentiable and satisfies a PDE on either side of a moving
point x = σ (t) inside a fixed interval x1 ≤ x ≤ x2, but that across the moving point
the solution is discontinuous and experiences a finite jump. Let us see how such a
generalization of a solution can be obtained, and in the process examine some of
its properties and how it depends fundamentally on the notion of a conservation
law.

The fundamental idea that will be used to extend the notion of a classical
solution is most easily understood by considering the simple PDE

ut + uux = 0, (35)

which is a special case of (31) with f (u) = u. As uux = ∂
∂x ( 1

2 u2), the PDE in (35)
can be written

ut +
(

1
2

u2
)

x
= 0. (36)

To allow for a discontinuity we will use an integral representation of (36), be-
cause although the derivative of u(x, t) is not defined at a point where the function
is discontinuous, its integral over an interval x1 ≤ x ≤ x2 containing the disconti-
nuity is well defined. Let us now attempt to generalize the concept of a solution
of (36) to allow for a situation where u(x, t) satisfies the PDE to the left and right
of a moving interior point x = σ (t) in the interval x1 ≤ x ≤ x2, but across which it is
discontinuous, with u = uL at the point x = σ (t)L to the immediate left of x = σ (t)
and u = uR at the point x = σ (t)R to the immediate right, with uL �= uR.

Integrating (36) over the interval x1 ≤ x ≤ x2 gives

∫ x2

x1

∂u
∂t

dx +
∫ x2

x1

(
1
2

u2
)

x
dx = 0. (37)

Provided u is differentiable with respect to t , the time derivative can be taken
outside the first integral in (37), which then becomes

d
dt

∫ x2

x1

u(x, t)dx +
∫ x2

x1

∂

∂x

(
1
2

u2
)

dx = 0. (38)



Section 18.4 Generalizing Solutions: Conservation Laws and Shocks 953

An application of the fundamental theorem of integral calculus to the second
integral leads to the result

d
dt

∫ x2

x1

u(x, t)dx + 1
2

{
u2(x2, t) − u2(x1, t)

} = 0. (39)

To develop this result further by allowing for the discontinuity in u(x, t) across
x = σ (t), we now rewrite (39) as

d
dt

∫ σ (t)L

x1

u(x, t)dx + d
dt

∫ x2

σ (t)R

u(x, t)dx = 1
2

{
u2(x1, t) − u2(x2, t)}. (40)

conservation law
in integral form

This result is a conservation law in integral form for the quantity represented
by u(x, t). The term on the left is the rate of change of the amount of u(x, t) in the
interval x1 ≤ x ≤ x2, and the term on the right represents the difference between
the amount of u(x, t) entering through x = x1 and leaving through x = x2.

If Leibniz’ theorem (Theorem 1.5) for the differentiation of a definite integral
with respect to a parameter is applied to the term on the left of this equation, we
find that∫ σ (t)L

x1

ut (x, t)dx +
∫ x2

σ (t)L

ut (x, t)dx + dσ

dt
(uL − uR) = 1

2

{
u2(x1, t) − u2(x2, t)

}
.

(41)

Letting x1 → σ (t)L and x2 → σ (t)R, when u(x1, t) → uL and u(x2, t) → uR, simpli-
fies this result to

dσ

dt
(uL − uR) = 1

2

(
u2

L − u2
R

)
, (42)

because the boundedness of ut causes the two integrals to vanish in the limit as their
intervals of integration tend to zero.

If we set s = dσ/dt , and introduce the notation [[α]] = αL − αR, the jump con-
dition experienced by a discontinuous solution of this PDE across the discontinuity
at x = σ (t) becomes

s[[u]] = 1
2

[[u2]]. (43)

In terms of uL and uR this can be written

s(uL − uR) = 1
2

(
u2

L − u2
R

)
, (44)

so the speed of propagation of the discontinuity

s = 1
2

(uL + uR). (45)

shock waves and the
Riemann problem

A discontinuity across x = σ (t) is called a shock wave, or simply a shock, when
it arises because of the intersection of characteristics.
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FIGURE 18.10 Characteristics in Riemann
problem (I) converge to produce a discontinuous
generalized solution that forms a propagating shock
wave.
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FIGURE 18.11 A mathematically permissible but
nonphysical discontinuous solution in S for Riemann
problem (II) that is not produced by the intersection
of characteristics. The two constant solutions to the
left and right of region S are joined continuously in a
physically realistic manner by a centered simple wave
in S.

To illustrate some of the properties of this extension of a classical solution,
we now consider two special piecewise continuous initial value problems for (35)
called Riemann problems.

Riemann problem (I): Solve the initial value problem

ut + uux = 0, with u(x, 0) =
{

1, x < 0
0, x > 0,

(46)

where the initial condition is piecewise constant and decreases as x increases.
From (45) the speed of propagation of the discontinuity initiated by the

discontinuity in the initial data is seen to be s = 1
2 . Figure 18.10 shows that

this propagating discontinuity is a shock, because characteristics converge
onto the discontinuity line from both the left and right. In gas dynamics a
discontinuity of this type models an ideal shock wave in supersonic flow
across which there is a sudden change of pressure, which in supersonic flight
causes the sonic boom as an aircraft flies past.

Riemann problem (II): Solve the initial value problem

ut + uux = 0, with u(x, 0) =
{

0, x < 0
1, x > 0,

(47)

where the initial condition is piecewise constant and increases as x increases.
In this problem the speed of propagation of the discontinuity is again s = 1

2 , but

a mathematical
solution that is
nonphysical

Fig. 18.11 shows that the discontinuity cannot be a shock because no characteristics
converge onto the line along which the discontinuity is propagated. In applications,
a discontinuous solution of this type is a mathematical solution but not a physically
realizable one, as was the case in Riemann problem (I). This illustrates the fact that
a consequence of extending a classical solution to permit discontinuous solutions
can be to introduce nonphysical solutions that must be rejected when they do not
arise because of the intersection of characteristics.
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To examine Riemann problem (II) in more detail, having rejected its discon-
tinuous generalized solution as not physically realizable, we need to consider how
a differentiable solution can be found in the wedge-shaped region S in Fig. 18.11.
For a differentiable solution to exist in S it is necessary that the region be covered
by a family of characteristics that at the left and right extremes of S coincide with
the characteristics bounding the adjacent regions where u(x, t) is constant. This
can be achieved by straight line characteristics (rays) emanating from the origin
O, the equation of which can be written ζ = x/t with 0 ≤ ζ ≤ 1, because then the
rays at the edges of S coincide with the characteristics bounding the constant state
regions.

Let us now try to find a solution of (47) in region S of the form u(x, t) = U(ζ ),
where ζ = x/t . Then, as ut = U ′(ζ )∂ζ/∂t = −(x/t2)U ′(ζ ) and ux = U ′(ζ )∂ζ/∂x =
(1/t)U ′(ζ ), substitution into (35) followed by the cancellation of t and U ′(ζ ), neither
of which is zero, shows that

U(ζ ) = u(x, t) = x/t. (48)

This is the required solution of Riemann problem (II) in S. The solution u(x, t)
in S is constant along every characteristic issuing out from the origin, and at the
extremes of S these characteristics coincide with the characteristics bounding the
constant solutions to the left and right of S. This solution in S resolves the initial
discontinuity immediately and joins the constant solutions to the left and right of
S in a continuous manner. A solution of this type is called a centered simple wave
with its center located at the origin 0. This is a generalized solution because of the
discontinuity in derivatives across the characteristics that bound S. In applications,
a centered simple wave resolves discontinuous initial conditions that do not give
rise to the intersection of characteristics, and in Riemann problem (II) the non-
physical discontinuous generalized solution that is also possible must be rejected
and replaced by the physically realizable centered simple wave.

centered simple wave

A proper examination of shock waves, centered simple waves, and simple waves
of a more general type is beyond this brief introduction, as is a discussion of a
different form of generalization of a solution called a weak solution. Nevertheless,
the extension of a classical solution outlined here to include shock solutions has
many important practical consequences, as, for example, in fluid mechanics, solid
mechanics, and electromagnetic theory. In three space dimensions and time, these
ideas are used to examine shock waves produced by aircraft in supersonic flight,
and the bow shock wave produced by the Space Shuttle during its reentry into the
atmosphere.

A classical account of shock waves in gases can be found in reference [7.4].
References [7.9] and [7.13] consider the generalization of differentiable solutions
of PDEs to allow for discontinuous solutions; see also reference [7.20]. Refer-
ence [7.13] also covers in considerable detail various types of reaction–diffusion
problems. A useful and elementary introduction to the mathematical theory of
waves of several different types is to be found in reference [7.8]; reference [7.10]
develops the mathematical theory of PDEs in considerable detail. A standard refer-
ence to various types of wave propagation problem is to be found in reference [7.18].

Summary It was shown how, when a first order PDE describing a conservation law is written in
integral form, it is possible to extend the classical concept of a differentiable solution by
incorporating discontinuous solutions called shocks. This becomes necessary in order to
extend the concept of a solution to take into account the situation when the classical
solution becomes nonunique because of the intersection of characteristics, causing the
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solution to become nondifferentiable. It was seen that this generalization of a solution can
give rise to more than one shock solution. In physical situations, such as gas dynamics, only
one of these shock solutions is possible, so some selection principle must be introduced to
allow the physically realizable solution to be distinguished from among the mathematically
possible ones.

EXERCISES 18.4

1. Find the jump condition that must be satisfied by a shock
solution of

ut + unux = 0 for n = 1, 2, . . . .

2. Given that the differential equation

ut + f (u)ux = 0

has a discontinuous solution and that f (u) is a continu-
ous function of u, find the jump condition that must be
satisfied by its shock solution.

3. Given the two Riemann problems for the equation

ut + u2ux = 0,

determined by (a) u(x, 0) =
{

1, x < 0
2, x > 0 and (b) u(x, 0) ={

3, x < 0
1, x > 0 , find which problem has a shock solution and

determine its speed of propagation.
4. Show that the Riemann problem

ut + u3ux = 0 with u(x, 0) =
{

1, x < 0
2, x > 0

has a centered simple wave solution located at the ori-
gin. By setting ζ = x/t , u(x, t) = U(ζ ) and substituting

into the differential equation, find the analytical solu-
tion for the centered simple wave and determine the
region in the (x, t)-plane occupied by the simple wave
solution.

5.* Show that the Riemann problem

ut + uux = 0 with u(x, 0) =
{

0, x < 2
1, x > 2

has a centered simple wave solution. Generalize the
approach suggested in Exercise 4 to find the analytical
solution for the centered simple wave, stating the re-
gion in the (x, t)-plane occupied by the centered simple
wave solution.

6.* The compound Riemann problem

ut + uux = 0 with u(x, 0) =
⎧⎨⎩

1, x < 0
2, 0 < x < 2
0, x > 2

describes a solution that starts with both a centered sim-
ple wave and a shock located at different points on the
initial line. By considering the path of the shock and the
boundary of the centered simple wave, determine the
time at which the simple wave and the shock first meet.

18.5 The Three Fundamental Types of Linear
Second Order PDE

We now show how the three most important types of linear second order PDEs
can be derived from some representative physical problems. The equations are
classified as being of hyperbolic, parabolic, or elliptic type, and the basis of this
system of classification will be developed in the next section.

Vibrating Strings and Plates
Let us consider a uniform stretched linearly elastic string under a tension T that is

vibrating strings and
plates and the wave
equation

displaced from its equilibrium position and then released. This could, for example,
represent the response of a plucked violin string. To derive the PDE governing
the motion of the string after its release we must examine the forces acting on an
element PQ of the string at time t when it has been displaced through a small
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FIGURE 18.12 A transverse displacement of element PQ of a
stretched string.

distance in the u-direction transverse to its equilibrium position along the x-axis.
Figure 18.12 shows a typical element PQ when in its displaced position.

The element of arc length ds along the string when the displacement is u(x, t)
is given by ds = √

(1 + u2
x)dx. As the displacement u is small, the term u2

x is small
relative to 1, so to this order of approximation ds ≈ dx. In a linearly elastic string the
tension is proportional to the extension of the string, so as ds ≈ dx we may assume
that the string tension T remains constant as long as the transverse displacement is
small.

In the equilibrium condition let the element PQ lie along the x-axis between
the points P0 and Q0, where the length PQ is ds and the length P0 Q0 is dx. The
equation of motion of the element is obtained by equating the forces acting on
the element due to the tension T (gravity is neglected) and the rate of change of
momentum of the element in the u-direction. As the string is uniform, the mass of
the element PQ is dm = ρds, where ρ, called the line density of the string, is the
mass per unit length of the string. The momentum of the element in the u-direction
is ρds ut , so its rate of change of momentum in the direction is ρds utt . As T is
considered to be constant, the force acting on the element is simply the difference
in the components of the tension normal to the x-axis at each of its ends due to the
change in inclination of the string from an angle θ at P to an angle θ + dθ at Q. The
resultant force acting on the element is thus

T sin(θ + dθ) − T sin θ = T sin θ cos dθ + T cos θ sin dθ − T sin θ.

As dθ is small we may replace cos dθ by 1 and sin dθ by dθ , as a result of which
the transverse force acting on the string can be approximated by T cos θdθ . Finally,
equating the resultant force and the rate of change of momentum in the u-direction
shows that when dθ and the transverse displacements are small the equation of
motion is

T cos θdθ = ρds utt .

To eliminate θ we now use the fact that tan θ = ux, from which it follows by
differentiation with respect to x that sec2 θ dθ/dx = uxx, and so sec2 θ dθ = uxxdx.
Multiplying this by T cos3 θ , substituting into the preceding result, and using the
fact that in the limit as dx → 0 we have dx/ds = cos θ leads to the result

ρutt = T cos4 θ uxx.
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As tan θ = ux and sec2 θ = 1 + tan2 θ , we see that

cos2 θ = 1/
{
1 + (ux)2},

so the equation of motion becomes

utt = c2{1 + (ux)2}−2
uxx,

where c2 = T/ρ. This second order partial differential equation governing the mo-
tion of the string is quasilinear, but if the transverse displacement is sufficiently
small the term (ux)2 can be neglected, the linearized one-dimensional form of thethe wave equation

is the prototype
second order
hyperbolic PDE

equation of motion becomes

utt = c2uxx. (49)

This is a linear second order PDE of hyperbolic type called the one-dimensional
wave equation, and it is one of the three fundamentally different classes of second
order PDE.

Vibrations of membranes can be treated in a similar fashion to vibrating strings.
Figure 18.13 shows a vibrating rectangular element ABCD of a thin uniform mem-
brane with its sides of lengths dx and dy parallel to the x- and y-axes displaced
a small amount in the u-direction normal to its equilibrium position in the (x, y)-
plane (the plane u = 0). If L is a line of unit length drawn in the membrane, the
tension T in the membrane is defined as the force exerted on L by the material on
one side of the line. The tension will be said to be uniform when T is independent
of the direction of L and its location in the membrane.

Reasoning as in the case of the vibrating string, and considering a membrane
with a uniform tension T, we see that the resultant of the forces Tdx normal to
the boundaries AB and CD of the element is (Tdx)(uyydy) and, similarly, the re-
sultant of the forces Tdy normal to the boundaries AD and BC of the element is
(Tdy)(uxxdx). If the mass per unit area of the membrane ρ, called its area density,
is constant, the momentum of the element in the u direction is ρdxdyut , so its rate
of change of momentum in that direction is ρdxdyutt . Equating the forces acting
to the rate of change of momentum and proceeding to the limit as dx → 0 and

A0 B0

B

D0 C0dy

dx

y

x

0

u

A

D
Tdx

Tdx

Tdy

Tdy

C

FIGURE 18.13 An element of a uniform vibrating membrane with tension T.
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dy → 0, we find that the PDE describing the vibrations is

ρutt = T{uxx + uyy},
and after we set c2 = T/ρ this becomes

utt = c2{uxx + uyy}. (50)

This linear second order PDE, which is also of hyperbolic type, is called the two-
dimensional wave equation. Notice that the one-dimensional and two-dimensional
wave equations have second order partial derivatives with respect to both the time
and the space variables involved.

The Heat (Diffusion) Equation
We now derive the heat equation, also known as the diffusion equation, that de-
scribes the flow of heat through a heat-conducting solid material. The derivation
is based on the experimentally observed fact that heat flows in the direction of
decreasing temperature, and on the assumption that the rate of heat flow j at any
point P in the body is given by Fourier’s law

j = −K grad T, (51)

where T(x, y, z, t) is the temperature at any point P in the material at time t , and K,
called the thermal conductivity of the material, is a physical property that is usually
taken to be a constant.

If V is an arbitrary volume in the solid bounded by a surface S, the quantity of
heat leaving V in unit time is given by the surface integral∫

S
j · ndS, (52)

where n is the outward drawn unit normal to S. If we substitute for j in (52) and
allow K to be a function of position, an application of the divergence theorem to
this integral gives ∫

S
j · ndS = −

∫
V

div(Kgrad T)dV.

However, div (Kgrad T) = K�T + grad K · grad T, so the preceding expression
becomes ∫

S
j · ndS = −

∫
V

(K�T + grad K · grad T)dV. (53)

If the density of the material is ρ and its specific heat is c, the amount of heat in
an element of volume dV is given by cρTdV, where both ρ and c can be functions
of position. Integration of cρTdV over V shows that the total amount of heat Q in
V must be

Q =
∫

V
ρcTdV.

As V is a fixed arbitrary volume in the solid, differentiating this result with
respect to the time t shows that the rate at which Q decreases with respect to
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time is

−Qt = −
∫

V

∂

∂t
(ρcT)dV. (54)

Equating (53) and (54) and combining the integrals gives∫
V

{
∂

∂t
(ρcT) − K�T − grad K · grad T

}
dV = 0. (55)

This result must be true for all arbitrary volumes V, but this can only be possible if
the integrand of (55) is identically zero, so the PDE determining the flow of heat
when expressed in terms of the temperature T isthe heat or diffusion

equation is the
prototype second
order parabolic PDE ∂

∂t
(ρcT) = K�T + grad K · grad T. (56)

This PDE is a linear variable coefficient second order PDE for the temperature
distribution throughout the solid, and in general its independent variables are three
space variables and time. When, as is usually the case, the conductivity K, the density
ρ, and the specific heat c are taken to be constants, the linear second order PDE
in (56), which is an equation of parabolic type, reduces to

ρcTt = K�T, (57)

called the heat conduction equation, or simply the heat equation. The constantheat conduction
and diffusion κ2, where κ2 = K/(ρc), is called the diffusivity of the material, so in terms of the

diffusivity, (57) becomes

Tt = κ2�T. (58)

Values of the diffusivity κ2 for some common materials, in c.g.s. units and
degrees Celsius, are steel 0.12, copper 1.14, aluminum 0.86, silver 1.71, glass 0.006,
and concrete 0.004.

Notice that the heat equation that is of parabolic type involves a first order
partial derivative with respect to time and second order partial derivatives with
respect to the space variables involved.

An equation of the form (58) also describes the diffusion process caused by
an imbalance of concentration of a substance diffusing through material, and for
this reason (58) is also known as the diffusion equation. A typical diffusion process
involves the passage of a chemical with concentration k1 present in a liquid or gas
through a membrane to a liquid or gas on the other side of the membrane where
the concentration is k2 with k1 > k2.

Diffusion is used in many ways for the concentration of chemicals, and it occurs
naturally in plants where nutrients obtained from the soil are passed through the
plant by diffusion through plant membranes.
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The Laplace Equation
The Laplace equation characterizes a large group of physical problems that are
independent of the time, and for this reason they are usually called steady state
problems. An obvious example is provided by the heat equation in (58), because if
a heat transfer process attains a steady state the time derivative Tt vanishes and the
heat equation reduces to the Laplace equation �T = 0 that is the simplest PDE of
elliptic type. Some typical two-dimensional steady state temperature distributions
have already been obtained in Section 17.2 as applications of conformal transfor-
mation techniques, where it was also shown that Laplace’s equation governs the
velocity potential of the steady fluid flow of an incompressible, irrotational, and
inviscid fluid.

Other physical situations that give rise to Laplace’s equation can be found in

the Laplace equation
is the prototype
second order elliptic
PDE

the study of steady state electromagnetic fields. When the field exists in an isotropic
medium with dielectric constant ε, permeability μ, and charge distribution density
ρ, the electric vector E, the magnetic vector H, and the current j are related by the
Maxwell equationsthe Maxwell

equations of
electromagnetic
theory curl H = j + ε

∂

∂t
E

curl E = −μ
∂

∂t
H

div H = 0
div E = ρ/ε.

(59)

In electrostatics there is no change with respect to time of the electric vector E,
so the time derivative Et vanishes, and in an uncharged region (ρ = 0) Maxwell’s
equations reduce to

div E = 0 and curl E = 0.

This pair of equations can be satisfied by introducing a scalar electric potential
φ such that E = grad φ, because then curl E = curl(grad φ) = 0, so

div E = div(grad φ) = 0 and so �φ = 0. (60)

This has shown that the electrostatic potential distribution φ is a solution of the
Laplace equation, and that the electric field vector can be found from φ by using
E = grad φ. Various electrostatic potential distributions were found in Section 17.2electrostatics and

magnetostatics by means of conformal transformations.
A similar situation occurs in magnetostatics, because if the medium is non-

conducting j = 0, so the Maxwell equations reduce to

div H = 0 and curl H = 0.

This time a magnetic potential φ can be introduced by setting H = grad φ, and then
the magnetic potential is seen to be a solution of the Laplace equation �φ = 0.

An important physical problem that gives rise to the Laplace equation in three
dimensions is the gravitational potentialφ(x, y, z). The mathematics of gravitational
potentials is closely related to the cases considered above, but before we proceed
further, some definitions are necessary.
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A force field in a region D of space exerts a force F on a material solid particle
at a point (x, y, z) in D, where

F = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k.

It may happen that the force is proportional to the mass m of the particle,
as occurs in the earth’s gravitational field, where the constant of proportionality
between the mass of the particle and its weight is g, the acceleration due to gravity.

A curve in a force field with the property that at each point on the curve the
force fields and
lines of force

tangent to the curve is parallel to the direction of the force is called a line of force.
If the vector element along the line of force is dr = dxi + dyj + dzk, the lines of
force are determined by the equations

dx
F1

= dy
F2

= dz
F3

. (61)

When a particle moves in a force field from A to B along a path AB, the work
W done by the action of the field on the particle is given by the line integral

WAB =
∫

AB
(F1dx + F2dy + F3dz).

In general, the work WAB will depend not only on A and B, but also on the path
taken from A to B. A potential field is a force field in which the work done by
the force depends only on the points A and B, and not on the path joining them.
Consequently, a field is a potential field if the work done along every loop joining Apotentials and

conservative fields to itself is zero. It is for this reason that potential fields are also called conservative
fields, because work done by the force on a particle moving away from a point is
returned if the particle arrives back at its starting point.

Consider the two arbitrary paths APB and AQB shown in Fig. 18.14a. Then in
a potential field WAPB + WBQA = 0, so WBQA = −WAPB. Now let A in Fig. 18.14b
be a fixed point (x0, y0, z0), B be a general point (x, y, z), and C be a point
(x∗, y∗, z∗). Then if WAB = φ(x, y, z) is the work done moving from A to B, in a

P Q

A

B

B(x, y, z)

C(x*, y*, z*)

A(x0, y0, z0)

(a) (b)

FIGURE 18.14 (a) Two paths joining A to B. (b) A loop containing a
fixed point A.
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potential field WAB + WBC + WC A = 0, so WC A = −WAC = −φ(x∗, y∗, z∗) and so
WBC = φ(x∗, y∗, z∗) − φ(x, y, z). This shows that the work done by the force mov-
ing between any two points in a potential field is equal to the difference of the
potential between the two points.

A gravitational field is due to the presence of matter, so in free space between
the matter producing a gravitational force field there can be no sources, and so
div F = 0. This means that in a potential field div grad φ = 0 or �φ = 0, so a gravi-
tational potential φ is seen to be a solution of the Laplace equation.

The linear second order PDE called the Poisson equation isthe Poisson equation
and its connection
with the Laplace
equation �φ = F(x, y, z), (62)

and it is also a PDE of elliptic type. The Poisson equation arises in a variety of ways,
one of which is in electrostatics when a charge distribution is present in a dielectric
medium so that div E = ρ/ε. If we set F(x, y, z) = ρ/ε, and again introduce an
electric potential through E = grad φ, the equation div E = ρ/ε becomes the three-
dimensional Poisson equation in (62).

Electromagnetic Waves
Finally, we use Maxwell’s equations to show how the wave equation in three space
dimensions and time determines electromagnetic wave propagation though space.
Returning to the equations in (59), and considering the situation in a dielectric
medium where no current can flow so j = 0 and where there is no charge distribution
so ρ = 0, the equations reduce toelectromagnetic

waves in space

curl H = ε
∂E
∂t

and curl E = −μ
∂H
∂t

.

Differentiating the first equation with respect to t and substituting for ∂H/∂t from
the second equation gives

−curl curl E = εμ Et t ,

but curl curl E = grad div E − �E, but div E = 0, and so

Et t = (1/εμ)�E. (63)

We have shown that the electric vector E is a solution of the three-dimensional
wave equation.

A similar argument shows that the magnetic vector H is also a solution of the
same three-dimensional wave equation

Ht t = (1/εμ)�H, (64)

so that waves involving both the electric and the magnetic vector propagate with
the same speed c that is determined by c2 = 1/(εμ). In free space the speed of
propagation c of these electromagnetic waves is the velocity of light.
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Summary Using typical physical examples, the three fundamental types of linear constant coefficient
second order PDEs have been derived from first principles. These are the wave equation
that is of hyperbolic type, the heat or diffusion equation that is of parabolic type, and the
Laplace equation that is of elliptic type. Potential functions and conservative fields were
also defined and interpreted in terms of a force acting on a particle moving in the field.

18.6 Classification and Reduction to Standard
Form of a Second Order Constant
Coefficient Partial Differential Equation
for u(x, y)

In the previous section the three fundamental types of PDE were derived from typ-
ical physical situations, and they were then classed as being of hyperbolic, parabolic,
or elliptic type. The purpose of the present section is to explain the basis of this
classification where, for simplicity, in the main the discussion will be limited to linear
second order partial differential equations whose coefficients are either constants
or functions of the independent variables involved.

We have already seen that in the case of two dimensions, examples of these
equations involving a function u are as follows:

The one-dimensional wave equation

utt = c2uxx (65)

for the function u(x, t), where x is a space variable, t is the time, and c is a constant.the three
fundamental types
of second order PDE The one-dimensional heat equation

ut = κ2uxx (66)

for the function u(x, t), where x is a space variable, t is the time, and κ is a constant.

The two-dimensional Laplace equation

uxx + uyy = 0 (67)

for the function u(x, y), where x and y are both space variables.
These three equations are all special cases of the general linear PDE for an

unknown twice differentiable classical solution u(x, y) of the two independent vari-
ables x and y, or sometimes t and x, which is defined in some region D and can be
written

Auxx + 2Buxy + Cuyy + Pux + Quy + Ru = F(x, y), (68)

where A, B, C, P, Q, and R are functions of x and y.
In equation (68) the factor 2 multiplying Bhas been introduced for convenience

as it simplifies the calculations that are to follow. The functions A, B, . . . , R mul-
tiplying u and its derivatives are called the coefficients of the PDE, and F(x, y) is
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called the nonhomogeneous term. Equation (68) is called homogeneous if F(x, y)
is identically zero.

The two-dimensional Laplace equation (67) is an example of a homogeneous
constant coefficient PDE that can be derived from (68) by setting A= C = 1, B = 0,
and F(x, y) = 0. The corresponding nonhomogeneous equation

uxx + uyy = F(x, y) (69)

is the two-dimensional Poisson equation.
The operations of partial differentiation with respect to x and y are linear

when performed on u(x, y), so if two functions u1(x, y) and u2(x, y) are solutions
of the nonhomogeneous equation (68), it follows that their difference v(x, y) =
u1(x, y) − u2(x, y) will be a solution of the homogeneous equation

Avxx + 2Bvxy + Cvyy + Pvx + Qvy + Rv = 0. (70)

An immediate extension of this result that will be needed later is that if ui (x, y)
with i = 1, 2, . . . , k are solutions of the homogeneous equation and c1, c2, . . . , ck

are constants, then

u(x, y) =
k∑

i=1

ci ui (x, y) (71)

is also a solution of the homogeneous equation.
To understand why the three PDEs in (65) to (67) have fundamentally different

mathematical properties, it is necessary to examine their mathematical classification
according to type.

To arrive at the method of classification of second order linear constant co-
efficient PDEs, we consider the group of second order terms L[u] in (68) given
by

L[u] = Auxx + 2Buxy + Cuyy, (72)

called the principal part of (68), and at some point (x0, y0) in a region D where the
equation is defined associate with it the quadratic form

the quadratic form
used to classify a PDE

Q(α, β) = A(x0, y0)α2 + 2B(x0, y0)αβ + C(x0, y0)β2, (73)

where α and β are real variables. The differential equation in (68) is then classified
according to the following criteria:classification of PDEs

according to type
(a) the PDE is of hyperbolic type in D if B2 − AC > 0
(b) the PDE is of parabolic type in D if B2 − AC = 0 (74)
(c) the PDE is of elliptic type in D if B2 − AC < 0

The expression

d = B2 − AC (75)

is called the discriminant of the PDE, so it is hyperbolic if d > 0, parabolic if d = 0,
and elliptic if d < 0.

When this system of classification is applied to equations (65) to (67), it is
seen that the wave equation (65) is of hyperbolic type, the heat equation (66)
is of parabolic type, and the Laplace equation (67) is of elliptic type, as is the
Poisson equation in (62) because the nonhomogeneous term does not enter into
the classification.
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This apparently arbitrary classification of the PDEs in (68) is of fundamental
importance for the following reasons:

(a) The classification of a PDE is independent of the choice of coordinate system
used when formulating the equation. Expressed differently, the classification is such
that it does not depend on the choice of independent variables. So, for example, if a
PDE is of elliptic type when expressed in terms of the cartesian coordinates x and
y, it will still be of elliptic type when expressed in terms of any other coordinate
system like the cylindrical polar coordinates r , θ , and z.

(b) The nature of an appropriate domain Dand the associated auxiliary conditions
(initial and/or boundary conditions) that must be imposed on the PDE in order to
ensure a unique solution throughout D differ according to the classification.

why the
classification of
PDEs is important

We will only justify statement (a), as the significance of (b) will become apparent
when boundary and initial conditions are considered. Let us make a transformation
of the independent coordinate variables x and y to ξ and η in such a way that
one point in the domain D in the (x, y)-plane corresponds to one point in the
corresponding domain in the (ξ, η)-plane, and conversely (the transformation is
one-one between the two domains), by setting

ξ = ξ(x, y) and η = η(x, y), (76)

where the functions ξ and η are assumed to be twice continuously differentiable. The
transformation will be one-one if its Jacobian J (x, y) is nonvanishing throughout
D, where

J (x, y) = ∂(ξ, η)
∂(x, y)

=
∣∣∣∣ξx ξy

ηx ηy

∣∣∣∣ �= 0. (77)

Using the rules from the calculus for a change of variables to express the partial
derivatives of u with respect to x and y in terms of those with respect to ξ and η,
we find that

ux = ξxuξ + ηxuη, (78)

so dropping the variable u we obtain the operator relationship

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
(79)

with the corresponding result

uy = ξyuξ + ηyuη (80)

and the associated operator relationship

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
. (81)

To find uxx we start from its definition and proceed as follows:

uxx = ∂(ux)
∂x

= ∂

∂x
(ξxuξ + ηxuη) = ξxxuξ + ηxxuη + ξx

∂(uξ )
∂x

+ ηx
∂(uη)
∂x

.

Next, replacing the operator ∂/∂x by the result in (79), simplifying the result, and
using the equality of mixed derivatives uξη = uηξ , which is justified because we are
considering classical solutions that are continuously twice differentiable, we find
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that

uxx = ξ 2
x uξξ + 2ξxηxuξη + η2

xuηη + ξxxuξ + ηxxuη. (82)

Similar arguments show that

uxy = ξxξyuξξ + (ξxηy + ξyηx)uξη + ηxηyuηη + ξxyuξ + ηxyuη (83)

and

uyy = ξ 2
y uξξ + 2ξyηyuξη + η2

yuηη + ξyyuξ + ηyyuη. (84)

When working with transformations of derivatives, the use of the suffixes x and
y with u denoting partial differentiation with respect to x and y is to be understood
to imply that u is to be regarded as the original function of x and y, but that when
the suffixes ξ and η are used it is to be understood that u is then to be regarded
as the transformed function u = u(ξ, η). The expressions for x and y follow, if the
coordinate transformations (76) are solved to obtain x = σ (ξ, η) and y = μ(ξ, η),
which because the transformation is one-one will always enable x and y to be
expressed uniquely as functions of ξ and η.

After substituting these results into (68) and collecting terms, we obtain

Ãuξξ + 2B̃uξη + C̃uηη + P̃uξ + Q̃uη + R̃u = F̃(ξ, η), (85)

where

Ã = A(ξx)2 + 2Bξxξy + C(ξy)2 (86)

B̃ = Aξxηx + B(ξxηy + ξyηx) + Cξyηy (87)

C̃ = A(ηx)2 + 2Bηxηy + C(ηy)2, (88)

with P̃, Q̃, and R̃ defined in similar fashion, and F̃(ξ, η) = F(σ (ξ, η), μ(ξ, η)).
A routine calculation establishes the important result thatwhy a change of

variables does
not alter the
classification of
a PDE

B̃
2 − ÃC̃ = (ξxηy − ξyηx)2 (B2 − AC) = J 2(x, y)(B2 − AC).

As the Jacobian is nonvanishing and J 2(x, y) is positive, the classification of the
equation is seen to be unchanged by the transformation of the independent variables
in (76), so statement (a) has been proved.

The transformed PDE in (85) will be simplified if the coordinate transformation
can be chosen so that at the point (x0, y0):

(a) Ã= C̃ = 0, or Ã= −C̃, B̃ = 0, if the PDE is of hyperbolic type
(b) Ã= B̃ = 0, if the PDE is of parabolic type
(c) Ã= C̃ and B̃ = 0, if the PDE is of elliptic type.

Clearly this classification depends on the functions Ã, B̃, C̃, and the point (x0, y0),
though if the original PDE has constant coefficients this classification will be the
same for all points in the region D where the PDE is defined.

To see how to accomplish these reductions we again consider the quadratic
form Q(α, β) in (73) and make the substitutions

α = pξx + qηx and β = pξy + qηy,

when we find that

Q(α, β) = Ãλ2 + 2B̃λμ + C̃μ2.
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This is seen to be of exactly the same algebraic form as the transformation of the
principal term L[u] of (68).

So far the functions ξ(x, y) and η(x, y) have been arbitrary, so they can now
be used to achieve the simplifications in (a), (b), or (c). The standard forms, also
called canonical forms, of the hyperbolic, parabolic, and elliptic PDEs associated
with (68) that correspond to cases (a), (b), and (c) are as follows:

Hyperbolic standard forms

uξη = F1(ξ, η, u, uξ , uη) or uξξ = uηη + F2(ξ, η, u, uξ , uη); (89)

Parabolic standard form

uηη = G(ξ, η, u, uξ , uη); (90)

Elliptic standard form

uξξ + uηη = H(ξ, η, u, uξ , uη), (91)

where F1, F2, G, and H are linear combinations of u, uξ , and uη.
The equivalence of the two different standard forms in the hyperbolic case (89)

will be shown later.

Reduction of a Hyperbolic Equation
to Standard Form
To arrive at the first standard form in (89), ξ and η must be chosen such that
Ã= C̃ = 0. We see from this that ξ and η must be solutions of the first order PDEhow to reduce a

hyperbolic PDE to
standard form A(ϕx)2 + 2Bϕxϕy + C(ϕy)2 = 0, (92)

which can be factored into the product

(Aϕx + {B +
√

B2 − AC}ϕy)(Aϕx + {B −
√

B2 − AC}ϕy) = 0.

Now if ϕ1 and ϕ2 are solutions of

Aϕ1x + (B +
√

B2 − AC)ϕ1y = 0 and Aϕ2x + (B −
√

B2 − AC)ϕ2y = 0, (93)

they are also solutions of (92). These are called the characteristic equations asso-characteristic
equations and
characteristic
curves

ciated with PDE (68), and as the discriminant d = B2 − AC > 0 it follows from
Section 18.2 that each defines a family of characteristic curves of PDE (68) deter-
mined by the solutions of

dy
dx

= B + √
B2 − AC
A

and
dy
dx

= B − √
B2 − AC
A

. (94)
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These solutions can be written

ϕ1(x, y) = constant and ϕ2(x, y) = constant, (95)

so we now define the functions ξ and η in (76) as

ξ = ϕ1(x, y) and η = ϕ2(x, y). (96)

With this change of variables (68), and hence (85), reduces to

2B̃uξη + P̃uξ + Q̃uη + Ru = F̃(ξ, η), (97)

so

uξη = 1

2B̃
[F̃(ξ, η) − P̃uξ − Q̃uη − R̃u], (98)

from which the first result in (89) follows by setting F̃1(ξ, η, u, uξ , uη) = [F̃(ξ, η) −
P̃uξ − Q̃uη − R̃u]/(2B̃).

The equivalence of the two different standard forms in (90) is established
by making the substitution ξ = X + Y, η = X − Y in uξη = F1(ξ, η, u, uξ , uη). This
transforms the equation into uXX − uYY = F2(X, Y, u, uX, uY), and apart from a
change of notation the two results are the same, because F2 is simply the transfor-
mation of F1.

In the hyperbolic case the discriminant d is positive, so the two families of
characteristic curves associated with (68) are two separate families of real curves in
the (x, y)-plane.

EXAMPLE 18.6 Reduce to standard form

uxx + 8uxy + 7uyy + ux + 2uy + 3u + y = 0,

and find its characteristic equations and curves.

Solution Identifying the PDE with (68) shows A= 1, B = 4, and C = 7, so as the
discriminant d = 42 − (1)(7) = 9 > 0, the equation is hyperbolic. It is uncondition-
ally hyperbolic because the coefficients of the PDE do not depend on position.
From (94) the characteristic equations are

dy
dx

= 1 and
dy
dx

= 7.

Integrating these equations shows the characteristic curves to be given by the two
families of parallel straight lines

y = x + α and y = 7x + β,

where α and β are arbitrary constants of integration.
Setting ξ = α = y − x and η = β = y − 7x allows the principal terms in the

PDE to be replaced by 2B̃uξη, and simple calculations establish that B̃ = −18, ux =
−(uξ + 7uη), uy = uξ + uη, and y = 1

6 (7ξ − η). Substituting for ux, uy, and y in the
PDE and rearranging terms leads to its being expressed in the standard form

uξη = 1
36

[
uξ − 5uη + 3u + 1

6
(7ξ − η)

]
.
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Reduction of a Parabolic Equation
to Standard Form
The standard form in (90) arises when the discriminant d = B2 − AC = 0, in which
case the two characteristic equations in (94) coincide and so determine only one
family of characteristic curves given by

dy
dx

= B
A

with the characteristics y = (B/A)x + α, (99)

where α is an arbitrary constant of integration.

how to reduce a
parabolic PDE to
standard form

The required reduction is accomplished by equating ξ and α and choosing for
η any function of x and y that is independent of ξ , so in general we can set η = x.
Then with the change of variables

ξ = y − (B/A)x, η = x, (100)

the principal terms of PDE (68) can be replaced by Auηη, so that (85) becomes

Ãuηη + P̃uξ + Q̃uη + R̃u = F̃(ξ, η),

and so

uηη = 1

Ã
[F̃(ξ, η) − P̃uξ − Q̃uη − R̃u], (101)

from which (90) follows by setting G(ξ, η, u, uξ , uη) = (1/Ã)[F̃(ξ, η) − P̃uξ −
Q̃uη − R̃u].

EXAMPLE 18.7 Reduce to standard form

uxx + 4uxy + 4uyy + ux + 3x = 0.

Solution Here A= 1, B = 2, and C = 4, so the discriminant d = B2 − AC = 0,
showing that the PDE is unconditionally parabolic. In this case the transformation
ξ = y − (B/A)x and η = x becomes ξ = y − 2x, η = x, and this change of variables
allows the principal terms to be replaced by Auηη, so as ux = −2uξ + uη and x = η,
substitution into the PDE leads to the required reduction to standard form

uηη = 2uξ − uη − 3η.

Reduction of an Elliptic Equation
to Standard Form
When PDE (68) is elliptic, its discriminant d = B2 − AC < 0, so the right-hand sides
of the characteristic equations in (94) become complex, showing that an elliptic PDE
has no real characteristic curves. However, in the elliptic case the transformationhow to reduce

an elliptic PDE to
standard form

ξ = Ay − Bx√
AC − B2

, η = x, (102)

reduces (68) to

A(uξξ + uηη) + P̃uξ + Q̃uη + R̃u = F̃(ξ, η), (103)
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so as A �= 0 an elliptic equation can always be written in the standard form

uξξ + uηη = 1
A

[F̃(ξ, η) − P̃uξ − Q̃uη − R̃u], (104)

that is, of the form in (91) with H(ξ, η, u, uξ , uη) = (1/A)[F̃(ξ, η) − P̃uξ − Q̃uη −
R̃u].

EXAMPLE 18.8 Reduce to standard form

5uxx − 2uxy + 2uyy + 2uy + 4y = 0.

Solution Here A= 5, B = −1, and C = 2, so the discriminant d = B2 − AC =
−9, showing that the PDE is unconditionally elliptic. From (102) the transformation
to be used is ξ = 1

3 (5y − x) and η = x, and when this change of variables has been
made the principal terms can be replaced by A(uξξ + uηη), so substituting into (103)
and using the results uy = 5

3 uη and y = 1
5 (3ξ − η) gives the required reduction

uξξ + uηη = 1
75

[12η − 36ξ − 50uξ ].

EXAMPLE 18.9 Classify and reduce to standard form the PDE

uxx + yuyy + 1
2

uy + 4yux = 0.

Solution This is now a variable coefficient PDE with A= 1, B = 0, and C = y, so
the discriminant d = B2 − AC = −y. This shows the equation to be elliptic when
y > 0, hyperbolic when y < 0, and degenerately parabolic on the x-axis.

Elliptic Case y > 0
The characteristic equations become

dy
dx

= −√−y or
dy
dx

= −i
√

y, and
dy
dx

= √−y or
dy
dx

= i
√

y.

Integrating these complex characteristic equations gives

2
√

y = −i x + ξ − iη and 2
√

y = i x + ξ + iη,

and solving for ξ and η we find that ξ = 2
√

y and η = −x.
Substituting into (78), (80), (82), and (84) gives

ux = −uη, uy = 1√
y

uξ , uxx = uηη, and uyy = 1
y

uξξ − 1
2y3/2

.

Using these results to transform the original PDE gives the standard form

uξξ + uηη = ξ 2uη − 1
2

(1 − 2/ξ)uξ .

Hyperbolic Case y < 0
The characteristic equations become

dy
dx

= −√−y and
dy
dx

= √−y,
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with the respective solutions

−2
√−y = −x + ξ and −2

√−y = x + η,

so

ξ = x − 2
√−y and η = −x − 2

√−y.

Substituting into (78), (80), (82), and (84) gives

ux = uξ − uη, uy = (1/
√−y)(uξ + uη), uxx = uξξ − 2uξη + uηη,

uyy = −(1/y)uξξ − (2/y)uξη − (1/y)uηη + 1
2

(−y)−3/2(uξ + uη).

When these are substituted into the original PDE it becomes

uξη = 1
16

(ξ + η)2(uη − uξ ) −
(

1
ξ + μ

)
(uξ + uη).

This classification of PDEs can be extended to equations with n independent
variables by using the property of orthogonal matrices, which were introduced in
Chapter 4. Let the second order constant coefficient PDE for an unknown function
u(x1, x2, . . . , xn) in the n independent variables x1, x2, . . . , xn be written

n∑
i, j=1

ai j uxi xj +
n∑

i=1

bi uxi + cu = F(x1, x2, . . . , xn), (105)

where the coefficients ai j , bi , and c are real constants and F is a real function of

classification of PDEs
in n independent
variables

its n arguments. Then, because of the equivalence of mixed partial derivatives, it is
always possible to assume the ai j to be symmetric and to write ai j = a ji .

We now define an n element column vector x = [x1, x2, . . . , xn]T involving the
independent variables, and make a linear transformation of x to a new set of vari-
ables ξ1, ξ2, . . . , ξn that can be written as the column vector ξ = [ξ1, ξ2, . . . , ξn]T.
The linear transformation can be expressed in terms of an n × n matrix B = [bi j ]
with real elements by writing

ξ = Bx. (106)

As with second order PDEs in two independent variables, the classification of the
second order PDE (105) is determined by the way in which

L[u] =
n∑

i, j=1

ai j uxi xj (107)

transforms into a standard form that is free from mixed derivatives, so we need only
consider the effect of this linear transformation on its principal part L[u], the result
of which can be written

L[u] =
n∑

i, j=1

ai j uxi xj =
n∑

p,q=1

(
n∑

i, j=1

bpi ai j bqj

)
uξpξq . (108)

In matrix form this transformation of the leading terms is seen to have the
coefficient matrix BABT. As A is symmetric, its eigenvalues λ1, λ2, . . . , λn will all
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be real, and it follows from Theorem 4.10 that an orthogonal matrix Q can always
be associated with A in such a way that QTAQ = D, where D is a diagonal matrix
with the eigenvalues of A as the elements along its leading diagonal. Consequently,
if we set B = QT, and

Q =

⎡⎢⎢⎢⎢⎣
λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · λn

⎤⎥⎥⎥⎥⎦ ,

the principal terms of PDE (105) become

L(u) = λ1uξ1ξ1 + λ2uξ2ξ2 + · · · + λnuξnξn . (109)

A simple scaling of the variables ξ1, ξ2, . . . , ξn will always reduce the principal terms
in L[u] to the form

L(u) = ε1uξ1ξ1 + ε2uξ2ξ2 + · · · + εnuξnξn, (110)

where εi is +1 when λi > 0, −1 when λi < 0, and 0 when λi = 0.
The classification of PDE (105) involves a generalization of the case of two

independent variables to n independent variables as follows:

(a) PDE (105) is of hyperbolic type if none of the eigenvalues λ1, λ2, . . . , λn of A
vanishes and only one eigenvalue has a sign opposite to that of the remaining n − 1
eigenvalues. So, if the eigenvalues are ordered such that λ1 > 0, after scaling the
independent variables ξ1, ξ2, . . . , ξn a hyperbolic PDE of type (105) will have the
standard form

uξ1ξ1 = uξ2ξ2 + uξ3ξ3 · · · + uξnξn + F(ξ1, . . . , ξn, u, uξ1 , . . . , uξn ), (111)

where F is a linear combination of u, uξ1 , . . . , uξn .
(b) PDE (105) is of parabolic type if one of the eigenvalues λ1, λ2, . . . , λn of A

vanishes and the remaining n − 1 eigenvalues are all of the same sign. So, if theclassification
according to type of
PDEs in n independent
variables

eigenvalues are ordered so that λ1 = 0, after scaling the independent variables
ξ1, ξ2, . . . , ξn a parabolic PDE of type (105) will have the standard form

uξ2ξ2 + uξ3ξ3 · · · + uξnξn = G(ξ1, . . . , ξn, u, uξ1 , . . . , uξn ), (112)

where G is a linear combination of u, uξ1 , . . . , uξn .
(c) PDE (105) is of elliptic type if none of the eigenvalues λ1, λ2, . . . , λn of A

vanishes and all have the same sign that may be either positive or negative. So after
scaling the independent variables ξ1, ξ2, . . . , ξn an elliptic PDE of type (105) will
have the standard form

uξ1ξ1 + uξ2ξ2 + uξ3ξ3 · · · + uξnξn = H(ξ1, . . . , ξn, u, uξ1 , . . . , uξn ), (113)

where H is a linear combination of u, uξ1 , . . . , uξn .
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EXAMPLE 18.10 Classify the PDE

4ux1x1 + 4ux2x2 + ux3x3 − 2ux1x2 = 0,

and find the form to which it is reduced by an orthogonal transformation that
converts its coefficient matrix to a diagonal matrix.

Solution Because of the equality of mixed derivatives, the matrix form of the PDE
can be written AU = 0, where

A =
⎡⎣ 4 −1 0

−1 4 0
0 0 1

⎤⎦ and U =
⎡⎣ux1x1

ux2x2

ux3x3

⎤⎦ .

The eigenvalues of A are λ1 = 1, λ2 = 5, and λ3 = 3, so from (a) just shown, the
PDE is seen to be of elliptic type. As the PDE only contains principal terms, an
orthogonal transformation that transforms A into a diagonal matrix will transform
the PDE into

uξ1ξ1 + 5uξ2ξ2 + 3uξ3ξ3 = 0.

The actual change of variables from x1, x2, and x3 to ξ1, ξ2, and ξ3 necessary to
accomplish this was shown in Example 4.18 to be given by ξ = Qx, where x =
[x1, x2, x3]T and ξ = [ξ1, ξ2, ξ3]T, with the orthogonal matrix Q and the diagonal
matrix D given by

Q =
⎡⎣0 −1/

√
2 1/

√
2

0 1/
√

2 1/
√

2
1 0 0

⎤⎦ and D =
⎡⎣1 0 0

0 5 0
0 0 3

⎤⎦ .

So the necessary change of variables determined by ξ = Qx becomes

ξ1 = − 1√
2

x2 + 1√
2

x3, ξ2 = 1√
2

x2 + 1√
2

x3 and ξ3 = x1.

If necessary, the PDE can be further simplified by scaling the variables ξ1, ξ2, ξ3

to arrive at the new variables ζ1, ζ2, and ζ3 by writing

ζ1 = ξ1, ζ2 = 1√
5
ξ2 and ζ3 = 1√

3
ξ3,

because then the PDE reduces to the standard form

uζ1ζ1 + uζ2ζ2 + uζ3ζ3 = 0,

which is Laplace’s equation in three independent variables.

For more information on the classification of PDEs, see references [7.6] and
[7.19].

Summary Linear second order PDEs in two independent variables have been classified and shown to
belong to one of three distinct types, namely, PDEs of hyperbolic, parabolic, and elliptic
type. Changes of variable were introduced that simplified the structure of each type of
equation by reducing it to one of three standard forms. In each case, the method of
reduction to standard form was illustrated by an example, and the classification was then
extended to linear second order PDEs in n independent variables.
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EXERCISES 18.6

In Exercises 1 through 6 classify the given PDE.

1. 4uxx − 6uxy + 3uyy + 2ux + 6 = 0.
2. uxx + 8uxy − 2uyy + ux + 3uy + 2u − 3 = 0.
3. 2uxx − 2uxy + uyy + 4ux + 2u + 1 = 0.
4. 4uxx − 4uxy + uyy + 6ux − uy + (1 + x)u + 2 = 0.
5. 3uxx + 6uxy + 3uyy + (1 + sin x)u = 0.
6. 2uxx + 2uxy − uyy + 3uy + u + 5 = 0.

In Exercises 7 through 12 classify and reduce to standard
form the given PDE.

7. uxx − 2uxy + 5uyy + 3ux + 1 = 0.
8. 4uxx + 4uxy + uyy + 4uy + u = 0.

9. uxx − 10uxy + 9uyy + ux = 0.
10. uxx − 4uxy − 5uyy + 3uy + u + 4 = 0.
11. uxx + 6uxy + 9uyy − u + 5 = 0.
12. 2uxx − 6uxy + 5uyy + 4ux + uy − 2 = 0.

In Exercises 13 through 16 classify the PDE, and by using
a suitable orthogonal matrix Q followed, if necessary, by a
scaling of the independent variables, reduce it to standard
form.

13.* 5ux1x1 + 2ux2x2 + 8ux2x3 + 2ux2 + 4u + 1 = 0.
14.* 2ux2x2 − 4ux1x3 + ux3 + 1 = 0.
15.* 3ux1x1 + 2ux2x2 − 2ux2x3 + 2ux3x3 + 4u − 7 = 0.
16.* ux1x1 + 2ux2x3 + ux2 + 5u + 2 = 0.

18.7 Boundary Conditions and Initial Conditions

The PDEs derived in Section 18.5, and classified in Section 18.6, are special cases
of the general linear PDE for an unknown function u(x, y) of the two independent
variables x and y

Auxx + 2Buxy + Cuyy + Pux + Quy + Ru = F(x, y), (114)

though sometimes with y replaced by t .
Physical problems whose solution is governed by a PDE of this type are for-

mulated in some region D of the (x, y)-plane on the boundary � of which suitable
auxiliary conditions, called boundary conditions, are imposed that serve to iden-
tify a particular problem. The most important types of boundary conditions are as
follows:

(a) The specification of the functional form to be taken by the solution u(x, y) on
the boundary �, by requiring that

u(x, y) = �(x, y) for (x, y) on �, (115)

where �(x, y) is a given function. A boundary condition of this type is called aDirichlet boundary
condition Dirichlet condition.

(b) The specification of the functional form to be taken by the derivative of the
solution u(x, y) normal to the boundary �, by requiring that

∂u
∂n

(x, y) = �(x, y) for (x, y) on �, (116)

where �(x, y) is a given function and ∂/∂n is the directional derivative normal toNeumann boundary
condition the boundary �. A boundary condition of this type is called a Neumann condition.
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(c) The specification of the functional form to be taken by a linear combination
of a Dirichlet condition and a Neumann condition by the solution u(x, y) on the
boundary �, by requiring that

a(x, y)u(x, y) + b
∂u
∂n

(x, y) = c(x, y) for (x, y) on �, (117)

where a(x, y), b(x, y), and c(x, y) are given functions. A boundary condition of
this type is called a mixed condition, and sometimes either a Robin condition or amixed or Robin

boundary condition boundary condition of the third kind. When c(x, y) = 0, this condition is called a
homogeneous mixed condition.

(d) The specification on � of the functional form to be taken by both the solution
u(x, y) and its derivative normal to the boundary, by requiring that

u(x, y) = �(x, y) and
∂u
∂n

(x, y) = �(x, y) for (x, y) on �, (118)

where �(x, y) and �(x, y) are given functions and ∂/∂n is the directional derivative
normal to the boundary �. Boundary conditions of this type are called Cauchy
conditions for a second order PDE.Cauchy conditions

When the solution u is a function of a space variable x and the time t , and
Cauchy conditions are specified when t = 0, so that � becomes the x-axis and

u(x, 0) = �(x) and
∂u
∂t

(x, 0) = �(x), (119)

the Cauchy conditions are usually called initial conditions for a second order PDE.initial conditions

The types of boundary condition that can be imposed on PDE (114) depend
on its classification and the nature of the region D that is involved. Some typical
examples of boundary conditions and their associated regions for PDEs of hyper-
bolic, parabolic, and elliptic type were seen in Section 18.5 when the three types of
equation were derived from physical problems.

A region D is classified as being closed when it is enclosed by a boundary andopen and closed
regions every point on the boundary belongs to D, and as being open when either the

region D extends to infinity or, although D is contained within a boundary, not all
of the points of the boundary belong to D. Typical closed regions are the rectangle
a ≤ x ≤ b, c ≤ y ≤ d, and the annular region R1 ≤ r ≤ R2 centered on the origin.
Examples of open regions are the semi-infinite strip a ≤ x ≤ b, y ≥ 0, where the
boundary points on three sides of the strip belong to the region but there is no
upper boundary because y extends to infinity, and the annular region R1 < r ≤ R2,
where the points on the outer rim of the annulus belong to the region but the points
on the inner rim do not.

When the boundary conditions and the region Dare such that a unique solution
exists, and small changes in the boundary conditions only produce small changes in
the solution, the boundary value problem is said to be well posed, and the solutionwell-posed and

improperly posed
problems

is said to be stable. If, however, the boundary conditions and/or region are such
that although a solution exists, a small change in the boundary conditions causes a
large change in the solution, the boundary value problem is said to be improperly



Section 18.7 Boundary Conditions and Initial Conditions 977

posed and the solution is then said to be unstable. In what follows our concern will
only be with well-posed problems.

Listed next are the most frequently occurring combinations of boundary
conditions and regions that lead to properly posed problems for hyperbolic,
parabolic, and elliptic PDEs.

Type of PDE Conditions Type of Region

Hyperbolic Cauchy conditions Open
Parabolic Dirichlet, Neumann, or mixed Open
Elliptic Dirichlet, Neumann, or mixed Closed

The effect of imposing inappropriate boundary conditions on a PDE can lead

appropriate
conditions and
regions for the
three types of PDE

to one of the following situations: (a) no solution exists, (b) a solution exists, but
it is either trivial (identically zero) or not unique, and (c) a solution exists, but it is
not stable.

To demonstrate that appropriateness of the preceding conditions, by way of
example we prove that the Dirichlet problem for the Laplace equation in a closed
region is a properly posed problem. To do this we will make use of Theorem 14.17,
which showed that a harmonic function defined in a closed region D with boundary
� must attain its greatest and least values on the boundary �. A trivial corollary of
this theorem that will be needed, and that is almost immediately obvious, is that if
u(x, y) is harmonic in D and is equal to the constant k on the boundary of � of D,
then u(x, y) = k throughout D.

Let us use this theorem to prove the uniqueness of a function u that is harmonic
in D and satisfies a Dirichlet condition u|� = f (s) on �, where the parameter s can
be taken to be the arc length measured around � from some fixed point on the
boundary. Suppose, if possible, that this Dirichlet problem has two different solu-
tions u and v that satisfy the same Dirichlet condition, and set w = u − v. Then
because the Laplace equation is linear, w is also a solution of Laplace’s equa-
tion, and on � it satisfies the homogeneous boundary condition w|� = 0. Using
the corollary of the maximum–minimum theorem mentioned earlier, it follows at
once that w ≡ 0 throughout D, and so u ≡ v, and the uniqueness of the solution
has been established.

As a further demonstration of the appropriateness of Dirichlet conditions for
the Laplace equation, we now prove that small changes in the boundary condi-
tions produce small changes in the solution, because this shows the continuous
dependence of the solution on the boundary data (Dirichlet condition). Let u1

and u2 be solutions of two different Dirichlet problems for the Laplace equation
in a closed region D with boundary � on which u1 satisfies the Dirichlet condi-
tion u1|� = f1(s) and u2 satisfies the Dirichlet condition u2|� = f2(s), where s is
defined as before and | f1(s) − f2(s)| < ε on �, with ε > 0 arbitrarily small. The
difference u1 − u2 is also harmonic in D, so the condition on f1 − f2 is equivalent
to −ε < u1 − u2 < ε on �. It follows directly from the maximum–minimum theo-
rem that throughout D we must have −ε < u1 − u2 < ε, so |u1 − u2| < ε. This has
established that when the Dirichlet data is only changed by a small amount, the
same is true of the solution, so the continuous dependence of the solution on the
Dirichlet data has been established. This result, combined with the uniqueness of
the solution, shows that the Dirichlet problem for the Laplace equation is well
posed.
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Summary The main types of boundary condition suitable for second order PDEs were described,
and the notion of a well-posed problem was introduced. Open and closed regions were
defined and a short table was given listing suitable combinations of boundary condition
and region according to the type of PDE involved.

18.8 Waves and the One-Dimensional
Wave Equation

The general solution of the one-dimensional wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

(120)

has a useful interpretation in terms disturbances that move with speed c in opposite
directions along the x-axis.

It is known from Section 18.6 that the characteristic equations for the wave
equation are

dx
dt

= c and
dx
dt

= −c.

Integrating the first of these equations to find the characteristic through the point
(ξ, 0) on the x-axis (the initial line) gives

ξ = x − ct, (121)

and integrating the second equation to find the characteristic through the point
(η, 0) on the x-axis gives

η = x + ct. (122)

Changing the independent variables in (120) from x and t to ξ and η reduces
it to the standard form uξη = 0. Integrating this result partially with respect to η,
while regarding ξ as a constant in order to reverse the process of partial differen-
tiation, gives uξ = f (ξ), where F is an arbitrary differentiable function of ξ . Next,
integrating this result partially with respect to ξ , where η is now regarded as a con-
stant, leads to the result u(ξ, η) = f (ξ) + g(η), where f (ξ) = ∫

F(ξ)dξ and g is an
arbitrary differentiable function of η. Notice that as F(ξ) is an arbitrary function,
so also is f (ξ). Finally, if we revert to the original variables x and t , the general
solution of (120) becomesgeneral solution of

wave equation as
the sum of two
waves moving in
opposite directions

u(x, t) = f (x − ct) + g(x + ct). (123)

The function f (x − ct) will be constant along the characteristic x − ct = con-
stant, so considering all possible characteristics of this type the term f (x − ct), as
in Section 18.3, in (123) is seen to transport the initial shape of the function f to
the right along the x-axis with constant speed c without change of either shape or
scale. Similarly, the term g(x + ct) will transport the initial shape of the function g
to the left along the x-axis, also with the constant speed c and without change of
shape or scale.
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Disturbances that propagate through space at a finite speed as time increases are
called waves, so the general solution in (123) represents two traveling waves moving
in opposite directions, each with the constant speed c. The initial disturbances f (x)
and g(x) are called the wave profiles, so the shape of each wave profile in (123) is
preserved as it propagates.

The interpretation of the general solution (123) of the wave equation in (120)

waves and
wave profiles

is now clear, because it shows that an initial disturbance u(x, 0) is resolved into
two traveling waves, one moving to the right and the other to the left, each with
the same speed c and without change of shape or scale. The general solution also
shows that the disturbance (wave) propagated by the wave equation at any time t
is the sum of the disturbances caused by the traveling waves as they move to the
left and right, so that (123) describes the interaction of the two wave profiles. This
very important property of the wave equation is due to its linearity, which allows
the sum of any two solutions to be another solution.

To make effective use of this result when seeking the solution of a Cauchy
problem for the wave equation, it is necessary to know how the initial disturbance
u(x, 0) is resolved into the functions f (x) and g(x). We will see how to find f (x)
and g(x) in terms of the Cauchy conditions when the D’Alembert solution of the
one-dimensional wave equation is derived in the next section.

In Section 18.5 the wave equation was derived under the assumption that u(x, t)
is a continuous and twice differentiable function of its arguments. We will now
use result (123) to show how these conditions can be relaxed to allow for initial
wave profiles that have a discontinuity in their derivative, or even a finite jump
discontinuity in the functions themselves.

how to deal with
wave profiles with
discontinuities

Suppose that the wave profile f (x) has a discontinuity either in its derivative or
in the function itself at some point x = x∗. The characteristic through x = x∗ does
not depend on the solution, so the propagating wave profile can be separated into
two distinct parts, one to the left of the characteristic x − ct = x∗, and the other to
the right.

The characteristics to the immediate left and right of x − ct = x∗ are both
parallel to it. This means that the wave profile to the left of this characteristic will
propagate in the manner just described, independently of the wave to the right,
but bounded on the right by x − ct = x∗. Similarly, the wave profile to the right
of this characteristic will propagate in the manner described, independently of the
solution to the left, but bounded on the left by x − ct = x∗. As the solutions to the
immediate left and right move along the same characteristic x − ct = x∗, any initial
discontinuity in f will be propagated along this characteristic without change.

The same result is true for the initial wave profile g(x), so the interpretation of
the general solution (123) as the sum of disturbances due to the two wave profiles
propagating to the right and left remains valid even when a discontinuity in the
derivative or in the initial disturbance u(x, 0) itself is present. This generalizes the
concept of a solution of the wave equation, because it permits initial disturbances
with discontinuities in either a derivative or the function itself. This situation is
quite different from the quasilinear case considered in Section 18.4, because there
a discontinuity in the solution was seen to propagate at the shock speed, which is
quite different from that of the adjacent characteristic speeds.

We now use this generalization to examine the resolution of an initial distur-
bance that is localized in a finite part a < x < b of the x-axis, and zero outside it.
The purpose of this is to make clear how the two wave profiles interact until, after
a suitable lapse of time, they move clear of one another, after which all interaction
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FIGURE 18.15 The resolution of a finite-width initial disturbance into two separate waves that
move apart.

ceases. We consider the special case of two initial wave profiles of rectangular shape
and the same width, but different heights, that at time t = 0 are given by

f (x) =

⎧⎪⎨⎪⎩
0, x < −1
1, −1 < x < 1
0, x > 1

and g(x) =

⎧⎪⎨⎪⎩
0, x < −1
2, −1 < x < 1
0, x > 1.

The evolution of this initial disturbance is shown in Fig. 18.15 for the case c = 1.
Wave interaction continues until the two disturbances have separated, after which
the initial disturbance is represented by two distinct traveling waves.

This result can be explained differently if the wave equation is written in either
of the two equivalent forms(

∂

∂t
− c

∂

∂x

)(
∂u
∂t

+ c
∂u
∂x

)
= 0 or

(
∂

∂t
+ c

∂

∂x

)(
∂u
∂t

− c
∂u
∂x

)
= 0. (124)

An examination of the first of these representations shows that a solution of

degenerate solutions

the first order PDE obtained by equating to zero the second group of bracketed
terms, namely ut + cux = 0, is also a solution of the wave equation. The first order
PDE describes a traveling wave of constant shape that propagates to the right at a
constant speed c. This special solution is a degenerate solution of the wave equation,
because it is a solution of a first order PDE that is also a special solution of a second
order PDE. Furthermore, unlike the general solution of the wave equation, it is
a wave that only moves in one direction. When interpreted in terms of the initial
conditions used in Fig. 18.15, this degenerate solution is seen to describe the initial
wave profile f (x) that after all interaction has ceased becomes the part of the
solution of the wave equation that moves to the right.

A corresponding argument applied to the other form of the wave equation
when the second bracketed term is set equal to zero, so that ut + cux = 0, describes
a similar degenerate solution that this time moves to the left.

Summary The wave equation was shown to have a general solution that can be interpreted as the sum
of two independent waves moving with the same speed, but in opposite directions. The
nature of the solution was used to explain how in wave propagation involving an initial
wave profile with discontinuities, the discontinuities propagate along the characteristic
curves of the wave equation. A factorization of the wave equation operator was then used
to show how special degenerate solutions can arise.
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EXERCISES 18.8

In Exercises 1 through 4, the functions f (x) and g(x) re-
fer to the functions in the general solution of the wave
equation given in (123). Taking c = 1, plot the form of the
solution u(x, t) at two different stages during the interac-
tion of the waves, and plot the form of the solution after the
waves have separated and all interaction has ceased.

1. f (x) =
⎧⎨⎩

0, x < −1
1 + x, −1 < x < 1
0, x > 1

,

g(x) =
⎧⎨⎩

0, x < −1
1, −1 < x < 1
0, x > 1.

2. f (x) =
⎧⎨⎩

0, x < −π/2
cos x, −π/2 < x < π/2
0, x > π/2

,

g(x) =

⎧⎪⎨⎪⎩
0, x < −π/2

1 + 2
π

x, −π/2 < x < π/2

0, x > π/2.

3.* f (x) =
⎧⎨⎩

0, x < −1
1 − x2, −1 < x < 1
0, x > 1

,

g(x) =
⎧⎨⎩

0, x < −1
1, −1 < x < 1
0, x > 1.

4.* f (x) =
⎧⎨⎩

0, x < −1
2, −1 < x < 1
0, x > 1

,

g(x) =
⎧⎨⎩

0, x < −1
1 − x2, −1 < x < 1
0, x > 1.

18.9 The D’Alembert Solution of the Wave
Equation and Applications

We now derive the promised representation of the solution of the one-dimensional
wave equation in terms of its Cauchy conditions that shows explicitly the way in
which each of the initial conditions influences the solution. This form of solution is
called the D’Alembert solution, and the starting point for its derivation is the one-
dimensional wave equation for the unknown function u(x, t) where x is a space
variable and t is the time.

Let us consider the initial value problem for the homogeneous one-dimensional
wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

(c = constant), (125)

subject to the Cauchy conditions

u(x, 0) = h(x) and ut (x, 0) = k(x), (126)

where h and k are suitably differentiable functions defined on the initial line −∞ <

x < ∞.
It is known from (123) that the general solution of (125) is

u(x, t) = f (x − ct) + g(x + ct), (127)
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where f and g are arbitrary functions of their arguments. Our task will be to find
the functions f and g so the solution of the wave equation satisfies the Cauchy
conditions in (126). One equation relating f and g follows immediately by setting
t = 0 in (127) and using the first condition in (126), which gives

f (x) + g(x) = h(x). (128)

To find another equation we differentiate (127) once partially with respect to t , set
t = 0, and use the second condition in (126), when we obtain

−c f ′(x) + cg′(x) = k(x). (129)

Integration of (129) from an arbitrary fixed point a on the initial line to a general
point x gives

− f (x) + g(x) = 1
c

∫ x

a
k(σ )dσ + g(a) − f (a). (130)

Eliminating first f (x) and then g(x) between (128) and (130) gives

f (x) = 1
2

h(x) − 1
2c

∫ x

a
k(σ )dσ − 1

2
(g(a) − f (a))

and

g(x) = 1
2

h(x) + 1
2c

∫ x

a
k(σ )dσ + 1

2
(g(a) − f (a)).

If in the expression for f (x) we now replace x by x − ct , and in the expression
for g(x) we replace x by x + ct and add the results, it follows from (127) that the
solution u(x, t) becomes

u(x, t) = 1
2

{
h(x − ct) + h(x + ct) − 1

c

∫ x−ct

a
k(σ )dσ + 1

c

∫ x+ct

a
k(σ )dσ

}
.

Reversing the limits on the first integral, and compensating by changing its sign,
allows the two integrals to be combined to give the D’Alembert solution of thethe D’Alembert

solution of the
wave equation

wave equation:

u(x, t) = h(x − ct) + h(x + ct)
2

+ 1
2c

∫ x+ct

x−ct
k(σ )dσ. (131)

The structure of this solution gives important information about the way the
Cauchy conditions enter into the solution of the initial value problem. The impli-
cations of (131) can best be understood by interpreting the D’Alembert solution in
terms of Fig. 18.16. Consider a representative point P located at (x0, t0) in the upper
half of the (x, t)-plane, and trace back to the initial line the two characteristics that
pass through P with slopes ±c until they meet the line at points Aat x0 − ct0 and B
at x0 + ct0.

The D’Alembert solution in (131) then shows that the solution at P only de-

domain of
dependence and
determinacy

pends on the Cauchy conditions over the interval AB on the initial line. Specifically,
the solution u(x0, t0) only depends on the function h(x) through the two values
h(x0 − ct0) and h(x0 + ct0) at the ends of the interval AB, and on k(x) through its
integral over the same interval. Because of this, the interval x0 − ct0 ≤ x ≤ x0 + ct0
on the initial line is called the domain of dependence of the solution at the point
(x0, t0), and points inside the triangle ABP are said to belong to the domain of
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FIGURE 18.16 Domain of dependence and the
D’Alembert solution.

determinacy of the interval, because the solution at every point inside this triangle
is completely determined by the Cauchy conditions on this interval.

The D’Alembert solution also shows the suitability of Cauchy conditions for
the wave equation because they lead to a solution.

The solution is unique, because from the linearity of the wave equation, if
two different solutions u(x, t) and v(x, t) exist, both satisfying the same Cauchy
conditions, then the difference between the two solutions w(x, t) = u(x, t) − v(x, t)
must also be a solution. The Cauchy conditions for w are w(x, 0) = 0 and wt (x, 0) =
0, corresponding to h(x) ≡ 0 and k(x) ≡ 0, so we conclude from the D’Alembert
solution that w ≡ 0, and hence that u ≡ v.

We can also use the D’Alembert solution to show the stability of the solution of
the wave equation subject to Cauchy conditions, in the sense that a small change in
the Cauchy conditions only produces a correspondingly small change in the solution.showing the

stability of the
solution of a Cauchy
problem for the
wave equation

To show this, let us suppose that u1(x, t) and u2(x, t) are two different solutions of
the wave equation that correspond to the respective different Cauchy conditions

u1(x, 0) = h1(x), u1t (x, 0) = k1(x), u2(x, 0) = h2(x), and

u2t (x, 0) = k2(x).

Now let these two sets of Cauchy conditions be close together in the sense that

|h1(x) − h2(x)| < ε1 and |k1(x) − k2(x)| < ε2,

where ε1 > 0 and ε2 > 0 are two arbitrarily small numbers. Applying the elementary
integral inequality | ∫ b

a p(x)dx| ≤ ∫ b
a |p(x)|dx to this last result gives

|u1(x, t) − u2(x, t)| <
1
2
|h1(x − ct) − h2(x − ct)| + 1

2
|h1(x + ct) − h2(x + ct)|

+ 1
2c

∫ x+ct

x−ct
|k1(σ ) − k2(σ )|dσ,

so as |k1(x) − k2(x)| < ε2 this last result becomes

|u1(x, t) − u2(x, t)| <
1
2
ε1 + 1

2
ε1 + ε2

2c

∫ x+ct

x−ct
dσ.

Finally, after evaluating the integral, we arrive at the result

|u1(x, t) − u2(x, t)| < ε1 + ε2t.
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This shows that for any time τ ≤ t, and arbitrary fixed t , when the two sets of
Cauchy data are close together, the corresponding solutions of the wave equation
will also be close together, confirming the stability of the solution. The existence
of a unique stable solution of the wave equation subject to Cauchy conditions has
established that the problem is properly posed.

JEAN-LE-ROND D’ALEMBERT (1717–1783)
A French mathematician born in Paris who was abandoned as a baby near the church of Saint
Jean-le-Ronde where he was found by a gendarme who had him christened with the name of the
church where he was found. Later, for an unknown reason, he added the name D’Alembert. He
was brought up by the wife of a poor glazier, and when he showed early brilliance, his education
in law was paid for by his natural father, but his fascination with mathematics was such that he
soon abandoned law and devoted himself to the study of mathematics. At the age of 24 he was
admitted to the French Academy, and in 1743 he published his great work on mechanics based
on what is now known as D’Alembert’s principle. He made important contributions to the study
of fluid flow, to the study of waves on vibrating strings and elsewhere, and in 1754 made the
important suggestion, not to be acted upon until much later, that the then theory of limits
needed to be placed on a sound basis. His last years were spent working on the great French
encyclopedia.

For reference purposes we state without proof (see, for example, reference
[7.20]) that a modification of the preceding argument shows the solution of the
nonhomogeneous wave equationthe solution of the

nonhomogeneous
wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

+ f (x, t) (132)

is given by

u(x, t) = h(x − ct) + h(x + ct)
2

+ 1
2c

∫ x+ct

x−ct
k(σ )dσ

+ 1
2c

∫ t

0

∫ x+c(t−τ )

x−c(t−τ )
f (σ, τ )dσdτ.

(133)

An important and useful result can be derived directly from the general so-
lution of the wave equation in (123), and the fact that its characteristics are
x − ct = constant and x + ct = constant. Consider Fig. 18.17, where the four points
A at (xA, tA), B at (xB, tB), C at (xC, tC), and D at (xD, tD) lie at the corners of a
parallelogram, the sides of which are characteristics.

Using the equations of the characteristics, the coordinates of the points A, B,

a useful functional
relationship
connecting solutions
at the corners of a
parallelogram
formed by
characteristic lines

C, and D are seen to be related by

xB − ctB = xC − ctC, xA − ctA = xD − ctD

xA + ctA = xB + ctB, xD + ctD = xC + ctC.
(134)

The sums u(A) + u(C) and u(B) + u(D) of the solutions at A, B, C, and D can be
written

u(A) + u(C) = f (xA − ctA) + g(xA + ctA) + f (xC − ctC) + g(xC + ctC)

and

u(B) + u(D) = f (xB − ctB) + g(xB + ctB) + f (xD − ctD) + g(xD + ctD).
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FIGURE 18.17 A parallelogram with sides that
coincide with characteristics.

Using the results in (134), we see that these two results are equal, so we have proved
that

u(A) + u(C) = u(B) + u(D). (135)

This result can be used in various ways, one of which is in conjunction with
the D’Alembert solution to solve an initial boundary value problem for the wave
equation. Let us now find the solution of the wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

(136)

in the quarter-plane x ≥ 0, t > 0 shown in Fig. 18.18, where the solution u(x, t) is
required to satisfy the Cauchy conditions u(x, 0) = h(x) and ut (x, 0) = k(x) on the
positive x-axis x ≥ 0, and the boundary condition u(0, t) = U(t) on the line x = 0.

solving an initial
boundary value
problem

The D’Alembert solution (131) gives the solution in the lower triangular region
in Fig. 18.18, but not in the upper triangular region. To find the solution in the
upper triangular region we will make use of the D’Alembert solution and result
(135).

Solution determined
by D’Alembert’s formula

x

t

Q

0

Space boundary
with

u(0, t) = U(t)

P

S

R

FIGURE 18.18 An initial boundary value problem.
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Let P be any point in the upper triangular region, and draw the two character-
istics of the wave equation with slopes c and −c that pass through it. Let Q be the
point where the characteristic with slope c meets the boundary x = 0, and S be the
point where the characteristic with slope −c meets the upper boundary of the lower
triangular region. Let R be the point where the characteristic through Q with slope
−c meets the upper boundary of the lower triangular region. Then, as the sides of
the parallelogram PQRS are characteristics, result (135) can be used to relate the
solutions at P, Q, R, and S.

The solution u(x, t) at any point in the upper triangular region is now known,
because from (135)

u(P) = u(Q) + u(S) − u(R),

and the solutions at u(R) and u(S) are determined by the D’Alembert solution,
while the solution at u(Q) is determined by the given boundary condition u(0, t) =
U(t).

This method of solution of an initial boundary value problem in the first quad-
rant of the (x, t)-plane can be extended to include the case of a semi-infinite strip
a ≤ x ≤ b, t > 0 in a straightforward manner, though the details are left as an ex-
ercise.

A special case of an initial boundary value problem can be solved by means
of the D’Alembert solution without appeal to result (135). To see how this can be
done we consider the pure initial value problem for the wave equation

u(x, 0) = h(x) and ut (x, 0) = k(x), (137)

where h and k are bounded odd functions, so that h(−x) = −h(x) and k(−x) =
−k(x). Notice that as h and k are odd functions, this implies that h(0) = k(0) = 0.
The D’Alembert solution applies for all x and t > 0, so

u(x, t) = h(x − ct) + h(x + ct)
2

+ 1
2c

∫ x+ct

x−ct
k(σ )dσ, (138)

but as h(0) = k(0) = 0, (138) shows that u(0, t) = 0.
When in (131) the sign of x is reversed the result becomes

u(−x, t) = h(−x − ct) + h(−x + ct)
2

+ 1
2c

∫ −x+ct

−x−ct
k(σ )dσ. (139)

However, as h is an odd function, h(−x − ct) = −h(x + ct) and h(−x + ct) =
−h(x − ct), so the change of variable s = −σ coupled with the fact that k is also an
odd function shows that

1
2c

∫ −x+ct

−x−ct
k(σ )dσ = − 1

2c

∫ x+ct

x−ct
k(s)ds.

Using these results in (139) and comparing the result with (138) shows that

u(−x, t) = −u(x, t). (140)

The implication of this result is that if in the D’Alembert solution the Cauchy
conditions imposed on the initial line t = 0 are such that h and k are odd functions,
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then if attention is restricted to the first quadrant x ≥ 0, t > 0, the D’Alembert
solution of this initial value problem solves the initial boundary value problem in
which

u(x, 0) = h(x), ut (x, 0) = k(x) and u(0, t) = 0, for x > 0. (141)

A useful physical interpretation of this result can be obtained by considering
the boundary x = 0 to be a reflecting boundary, with the property that when a
wave moving to the left encounters the boundary it is reflected back in the positive
x-direction with a change of sign.

A corresponding result can be derived by assuming h and k to be even functions,

reflecting boundary

for then a similar argument shows that the boundary condition imposed on x = 0
is the condition

ux(0, t) = 0, (142)

but this time when a reflection occurs at the boundary x = 0, a wave moving to the
left is reflected back in the positive x-direction without a change of sign. The details
of the proof of this result are left as an exercise.

One-dimensional wave propagation governed by the wave equation is discussed
in some detail in references [7.3], [7.10], [7.11], and [7.17] to [7.20].

EXERCISES 18.9
1. Show by differentiation that if f and g are twice

differentiable functions of their arguments, u(x, t) =
f (x − ct) + g(x + ct) is a solution of the wave equation
utt = c2uxx .

2. For what value of c is

u(x, t) = 1
2

(x − 4t + 1)e−(x−4t) + 1
2

(x + 4t − 1)e−(x+4t)

a solution of the wave equation utt = c2uxx? Find the
Cauchy conditions that, when applied to this wave equa-
tion, give rise to this solution.

In Exercises 3 through 6 use the D’Alembert solution to
solve the given Cauchy problem for the wave equation
utt = c2uxx .

3. u(x, 0) = sin x, ut (x, 0) = 1/(1 + x2).
4. u(x, 0) = 1, ut (x, 0) = cos x.
5. u(x, 0) = tanh x, ut (x, 0) = sech2x.
6. u(x, 0) = ex, ut (x, 0) = e−x .
7. Suggest how the D’Alembert solution and result (135)

can be used to solve the initial boundary value prob-
lem for the wave equation utt = c2uxx in the semi-
infinite strip a ≤ x ≤ b, t > 0 when u(x, 0) = h(x)
with h(a) = h(b) = 0, ut (x, 0) = k(x) and u(a, t) =
u(b, 0) = 0. Does this method provide a practical way
of solving this initial boundary value problem?

8. By using the form of argument that led to the notion
of a reflecting boundary, show that by taking h(x) and

k(x) to be even functions, the solution given by the
D’Alembert formula in the first quadrant solves the ini-
tial boundary value problem in that quadrant when

u(x, 0) = f (x), ut (x, 0) = g(x) for x ≤ 0,

and u satisfies the boundary condition ux(0, t) = 0.
9. Suggest how the D’Alembert solution may be used

together with a reflecting boundary to solve the ini-
tial boundary value problem in the semi-infinite strip
−a ≤ x ≤ a, t > 0, subject to the initial and boundary
conditions

u(x, 0) = f (x), ut (x, 0) = g(x) and

u(−a, t) = u(a, t) = 0.

10. Repeat Exercise 9 with the same initial conditions but
with the boundary conditions changed to

u(−a, t) = 0 and ux(a, t) = 0.

11. Write down the D’Alembert solution for the wave equa-
tion utt = c2uxx given that the Cauchy conditions are
u(x, 0) = f (x) and ut (x, t) = 0. Sketch the solution at
the times t = 0, 1/(2c), 1/c, and 3/(2c) using the fore-
going initial conditions with

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0, x < −1
−1 − x, −1 ≤ x < 0
1 − x, 0 ≤ x < 1
0, x ≥ 1.
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12. Repeat Exercise 11, but with

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0, x < −1
1 + x, −1 ≤ x < 0
1 − x, 0 ≤ x < 1
0, x ≥ 1.

13. Write down the D’Alembert solution at the time t = 1
4

for the wave equation utt = uxx , given that the Cauchy

conditions are u(x, 0) = 0 and ut (x, 0) = g(x), where

g(x) =
⎧⎨⎩

0, x < −1
1 − x2, −1 ≤ x ≤ 1
0, x > 1.

14. Repeat Exercise 13 with the same Cauchy conditions,
but at time t = 1

2 .

18.10 Separation of Variables

The method of solution described in this section applies to homogeneous second
and higher order constant coefficient linear PDEs defined in regions Dwhose spatial
boundaries coincide with constant values of the coordinate variables involved. For
example, D may be a rectangle with sides parallel to the x-, and y-coordinate axes,
a semi-infinite strip parallel to the x-axis, the wedge r > 0, 0 ≤ θ ≤ π

4 in cylindrical
polar coordinates, or the exterior of a sphere of radius R, where it is natural to use
spherical polar coordinates with their origin located at the center of the sphere. The
success of the method of separation of variables rests on the following results:

1. If u1 and u2 are two linearly independent solutions of a homogeneous linear
PDE of first or higher order, then the linear superposition of the two solutions
to give u = c1u1 + c2u2 is also a solution of the PDE, where c1 and c2 are
arbitrary constants.

2. Under conditions that are satisfied in all ordinary applications, Property 1
extends to the fact that if u1, u2, . . . , is an infinite sequence of linearly inde-
pendent solutions of a homogeneous linear PDE of second or higher order,
then the linear superposition of an infinite number of the solutions to give
u = c1u1 + c2u2 + · · · is also a solution of the PDE, where c1, c2, . . . are arbi-
trary constants.

3. The orthogonality properties of the eigenfunctions associated with the PDE,
special cases of which were developed in Chapter 8, can be used to determine
the coefficients c1, c2, . . . in the linear superposition u = c1u1 + c2u2 + · · · to
make it satisfy the boundary conditions imposed on the PDE, and so become
the solution of the boundary value problem.

To illustrate the method we will solve some typical boundary value problems
for each of the three fundamental types of second order linear PDE.

Vibrations of a Clamped String
It was shown in Section 18.5 that if a uniform stretched string vibrates in a fixed
plane containing its equilibrium position, and the transverse displacement u of the
string in this plane remains small, then u must be a solution of the one-dimensional
wave equation. If the equilibrium position of the string is taken to coincide with the
x-axis and t is the time, the transverse displacement of the string u(x, t) will satisfy
the hyperbolic PDE

(1/c2)utt = uxx,
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where the propagation speed c = √
T/ρ, with T the tension in the string and ρ the

line density of the string.
Let a string of finite length L be clamped rigidly at each end, and choose the

origin of the x-axis to coincide with the left end of the string, so its right end will be
at the point x = L. The boundary conditions for the problem then become

u(0, t) = u(L, t) = 0, t ≥ 0,

because these conditions ensure that the ends of the string remain motionless for
all time. The Cauchy conditions

u(x, 0) = g(x) and ut (x, 0) = h(x)

determine how the vibration starts at time t = 0, with the initial transverse displace-
ment of the string defined by g(x) and its initial transverse speed by h(x). In general
the functions g and h are arbitrary, apart from the fact that as the ends of the string
are clamped they must be such that g(0) = g(L) = 0 and h(0) = h(L) = 0.

EXAMPLE 18.11 Consider the vibrations of a stretched string of length L that is clamped at each
end and starts from rest with the initial shape u(x, 0) = kx(L− x). Here k > 0 is a
positive constant chosen such that the maximum transverse displacement is small, in
agreement with the approximations made when deriving the wave equation. As the
string starts from rest, the Cauchy conditions to be imposed on the wave equation
in (143) are

u(x, 0) = kx(L− x) and ut (x, 0) ≡ 0.

The approach to be adopted involves seeking elementary solutions of the wave
equation of the form u(x, t) = X(x)T(t), and then using the linearity of the PDE to
express the required solution, subject to the boundary and Cauchy conditions, as a
linear combination of these elementary solutions. The name separation of variablesthe method of

separation of
variables

comes from the way the independent variables are separated in each elementary
solution. In this case the separation involves the product of a function X(x) only of
x and a function T(t) only of t .

Partial differentiation of u(x, t) = X(x)T(t) with respect to x only acts on the
function X(x), and partial differentiation with respect to t only acts on T(t), so
uxx = X′′(x)T(t) and utt = X(x)T′′(t), where primes indicate differentiation of the
associated function with respect to the appropriate single independent variable.

Substituting these results into the wave equation and dividing by X(x)T(t) gives

1
c2

T′′

T
= X′′

X
.

Inspection of this result shows that the expression on the left is independent of x
and so is only a function of t , while the expression on the right is independent of t
and so is only a function of x. As x and t are independent variables, the only way a
function of t can equal a function of x is if they are each equal to some constant p,
so that

1
c2

T′′

T
= X′′

X
= p,
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where p is a constant. So T and X must be solutions of the two ordinary differential
equations

T′′ = pc2T and X′′ = pX.

The constant p is called a separation constant, and before we proceed further it is
necessary to determine its sign.

Examination of the first equation for T(t) shows that the time variation is deter-

separation constant

mined by T′′ = pc2T, where c2 > 0, so this equation can only describe oscillatory
behavior with respect to the time if p < 0. Setting p = −λ2, with λ a positive real
constant, we see that the time variation of the solution is determined by

T′′ + c2λ2T = 0.

Our next task will be to find the permissible values of λ, and to do this we must
consider the x-variation of the solution that is described by the Sturm–Liouville
equationa Sturm–Liouville

problem
X′′ + λ2 X = 0.

The function X(x) determined by this equation must satisfy the boundary conditions
on u(x, t) that require u(0, t) = u(L, t) = 0. However, as u(x, t) = X(x)T(t) and x
and t are independent variables, these boundary conditions on u(x, t) can only
hold for all t if X(0) = X(L) = 0. This requires that we choose λ so X satisfies the
two-point boundary value problem

X′′ + λ2 X = 0, with X(0) = X(L) = 0.

This has the general solution

X(x) = Ãcos λx + B̃ sin λx,

where Ãand B̃are arbitrary constants. Imposing the two-point boundary conditions
X(0) = X(L) = 0, we have

(condition X(0) = 0) 0 = Ã,
(condition X(L) = 0) 0 = B̃ sin λL.

The last condition is satisfied if either B̃ = 0, or λL is a zero of the sine function.
The condition B̃ = 0 is unacceptable because it makes X(x) identically zero, in which
case u(x, t) will also vanish identically, so there can be no vibration of the string.
The only alternative is to make λL a zero of the sine function by setting λL = nπ

for n = 0, 1, 2, . . . , where the case n = 0 must be omitted because it corresponds to
u(x, t) ≡ 0. The permissible values of λ, called the eigenvalues of the differential
equation for X(x), are

λn = nπ

L
, n = 1, 2, . . . .

The x variation is now seen to be given byeigenvalues and
eigenfunctions of the
Sturm–Liouville
problem

Xn(x) = B̃ sin
nπx

L
, n = 1, 2, . . . ,

where the functions Xn(x) are called the eigenfunctions of the differential equation
for X(x), and as the equation for X is homogeneous, the value of the constant B̃ is
unimportant.



Section 18.10 Separation of Variables 991

Once we have determined the permissible values of the eigenvalues λ, the time
variation follows by integrating the equation T′′ + c2λ2T = 0, when we find that

Tn(t) = C̃ cos
ncπ t

L
+ D̃sin

ncπ t
L

, n = 1, 2, . . . ,

where the constants C̃ and D̃ still remain to be determined. If we substitute for the
functions Xn(x) and Tn(t), the permissible elementary solutions become un(x, t) =
Xn(x)Tn(t) for n = 1, 2, . . . , and these are called the eigensolutions of the wave
equation. As the constants in un(x, t) depend on n, if we replace B̃C̃ by Cn and B̃D̃
by Dn, the eigensolutions of the wave equation become

un(x, t) = sin
nπx

L

{
Cn cos

ncπ t
L

+ Dn sin
ncπ t

L

}
,

with n = 1, 2, . . . .

eigensolutions

Each eigensolution is an elementary solution of the wave equation that
satisfies the boundary conditions u(0, t) = u(L, t) = 0 for t ≥ 0, but not the Cauchy
conditions. As the wave equation is linear, a linear combination of eigensolutions
will also satisfy these same boundary conditions, so we now seek a solution of the
initial boundary value problem of the form

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

sin
nπx

L

{
Cn cos

ncπ t
L

+ Dn sin
ncπ t

L

}
,

where the coefficients Cn and Dn are to be chosen so that u(x, t) satisfies the Cauchy
conditions

u(x, 0) = kx(L− x) and ut (x, 0) ≡ 0.

To find the coefficients Cn and Dn we need to make use of Fourier series. First
setting t = 0 in the expression for u(x, t) and using the first initial condition gives

kx(L− x) =
∞∑

n=1

Cn sin
nπx

L
.

Then, assuming that differentiation of the series for u(x, t) with respect to t is
permissible, setting t = 0 in the result, and using the second initial condition gives

0 = cπ
L

∞∑
n=1

nDn sin
nπx

L
.

The series involving the coefficients Cn and Dn are simply the Fourier sine series
expansion of the functions on the left, so it follows immediately that Dn = 0 for n =
1, 2, . . . . To find the coefficients Cn we multiply series for kx(L− x) by sin mπx/L
and integrate from x = 0 to x = L, when we obtain∫ L

0
kx(L− x) sin

mπx
L

dx =
∫ L

0

∞∑
n=1

Cn sin
nπx

L
sin

mπx
L

dx

=
∞∑

n=1

∫ L

0
Cn sin

nπx
L

sin
mπx

L
dx,

where the justification for the interchange of the summation and integral signs has
been omitted. As the set of functions {sin(mπx/L)}∞m=1 is orthogonal on the interval
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0 ≤ x ≤ L, the preceding result reduces to∫ L

0
kx(L− x) sin

mπx
L

dx = Cm

∫ L

0
sin2 mπx

L
dx.

After the integrations are performed, this becomes(
− 2kL3

m3π3
cos mπ + 2kL3

m3π3

)
= L

2
Cm for m = 1, 2, . . . .

Using the result cos mπ = (−1)m, we see that the expression on the left vanishes
when m is even, so setting m = 2r with r = 1, 2, . . . , we have C2r = 0. However,
when m is odd the expression on the left no longer vanishes, and setting m = 2r + 1
with r = 0, 1, . . . simplifies the result to

4kL3

(2r + 1)3π3
= L

2
C2r+1.

The coefficients Cr are now all known and are given by

C2r = 0 and C2r+1 = 8kL2

(2r + 1)3π3
for r = 0, 1, . . . .

Substituting for the coefficients Cn in the series for u(x, t), and setting the
coefficients Dn = 0, we arrive at the required solution

u(x, t) = 8kL2

π3

∞∑
r=0

1
(2r + 1)3

sin
(2r + 1)πx

L
cos

(2r + 1)cπ t
L

,

for 0 ≤ x ≤ L and t ≥ 0.
The justification for differentiating the functional series u(x, t) term by term

with respect to t and for interchanging the summation and integral signs requires
arguments involving uniform convergence and so will be omitted.

It is instructive to interpret the eigenfunctions Xn(x) and the eigensolutions
un(x, t) in physical terms. Inspection of the solution shows that the eigenfunction
Xn(x) defines the nth mode of the vibration, in the sense that however Xn(x) is
scaled, it always specifies the shape of the string corresponding to a given value of
n. The nth eigensolution un(x, t) is seen to be the time modulation of the nth mode.
This describes how the nth mode vibrates with time and shows that it experiencesmodes of vibration
a periodic variation of amplitude and a change of sign. The solution is a linear
combination of all of the possible modes of vibration, chosen such that when t = 0
the shape of the string is u(x, 0) = kx(L− x).

If the initial shape of the string is changed, but the second Cauchy condition
ut (x, 0) ≡ 0 is retained, the new solution will simply be a different linear combina-
tion of these same eigensolutions.

Figure 18.19 shows the initial shape of the string at time t = 0, and its shape
at three subsequent times where, for convenience, we have set L = π , c = 1 and
graphed the approximation to the function û = ( π

8k)u(x, t) using only the first 10
terms of the series solution.

Vibrations of a Circular Membrane
To illustrate the method of separation of variables when applied to the wave equa-
tion in more than one space variable, we will examine the vibrations of a uniform
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FIGURE 18.19 The shape of the string at different times (a) t = 0, (b) t = 1, (c) t = 2, (d) t = 3.

circular membrane of unit radius clamped around its rim. Because of the circular
boundary, when we solve this problem the two space variables will be taken to be
the cylindrical polar coordinates (r, θ), with their origin at the center of the mem-
brane when in its equilibrium position, and the third independent variable will be
the time t . The displacement of the membrane normal to its equilibrium position
will be denoted by u(r, θ, t).

This problem can be considered to be a mathematical description of the vibra-
tions of a circular membrane covering a drum that is subjected to Cauchy conditions
at an initial time t = 0 that describe the vertical displacement u(r, θ, t) and the speed
ut (r, θ, t) of the membrane in a direction normal to its equilibrium position. It will
be shown that the response to arbitrary Cauchy conditions is expressible as a sum
of eigensolutions in a manner analogous to that of the vibrating string.

EXAMPLE 18.12 The geometry of the circular membrane problem suggests that cylindrical polar

a vibration problem
involving cylindrical
polar coordinates

coordinates should be used. When the wave equation is expressed in terms of
cylindrical polar coordinates it becomes

utt = c2
(

urr + 1
r

ur + 1
r2

uθθ

)
or utt = c2�u,

where in cylindrical polar coordinates the Laplacian � = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 .
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The boundary conditions are

u(1, θ, t) = 0 for 0 ≤ θ ≤ 2π and t > 0 (the rim is clamped)

and

u(r, θ, t) is finite for 0 ≤ r ≤ 1 and t > 0 (the displacement is finite),

while the initial, or Cauchy, conditions describing the initial shape of the membrane
and its initial speed normal to its equilibrium position are

u(r, θ, 0) = f (r, θ) and ut (r, θ, 0) = g(r, θ).

It will be simplest if the variables are separated in two stages, so first we sepa-
rate out the time t by setting u(r, θ, t) = H(r, θ)T(t), and then substitute into the
differential equation to obtain

HT′′ = c2T∇2 H,

where primes denote differentiation with respect to the independent variable t
occurring in T(t). Dividing by HT, we have

1
c2

T′′

T
= ∇2 H

H
,

but as the expression on the left is a function of the independent time variable t ,
and the one on the right is a function of the independent space variables r and θ ,
this can only be true if

1
c2

T′′

T
= ∇2 H

H
= k,

where k is a constant. The time variation is determined by T′′ − c2kT = 0, so for
the solution to be periodic in time, as is necessary if it is to describe vibrations, it
is necessary that k < 0. Accordingly, if we set the separation constant k = −λ2, the
equations for T and H become

T′′ + λ2c2T = 0

and

�2 H + λ2 H = 0.

The partial differential equation for H is called the Helmholtz equation, andHelmholtz equation
it plays a fundamental role in studies of the wave equation. To find the permissible
values of the eigenvalues λ we must now solve the Helmholtz equation, because the
eigenvalues will be determined by the boundary conditions that must be imposed
on H.

To this end we set H(r, θ) = R(r)#(θ), and after substituting for H in the
Helmholtz equation we obtain

#

(
R′′ + 1

r
R′
)

+ R
r2

#′′ + λ2 R# = 0.

Dividing this result by R# and rearranging terms gives

r2

R

(
R′′ + 1

r
R′
)

+ λ2r2 = −#′′

#
.
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The expression on the left is only a function of the independent variable r , and
the one on the right is only a function of the independent variable θ , so this can
only be possible if

r2

R

(
R′′ + 1

r
R′
)

+ λ2r2 = −#′′

#
= m,

where m is another separation constant. The preceding result can now be decoupled
to give the two Sturm–Liouville equations for R(r) and #(θ)

r2 R′′ + r R′ + (λ2r2 − m)R = 0 and #′′ + m# = 0.

To solve these equations it is necessary to supply boundary conditions for both
R and #. As the variables are separable, these conditions follow if we interpret the
boundary conditions for u(r, θ, t) in terms of H(r, θ) = R(r)#(θ). The boundary
conditions give rise to two conditions, the first of which corresponds to the clamping
of the rim that can be expressed by the requirement R(1) = 0, which ensures that
the rim of the membrane remains fixed at all times. The second condition, which at
first sight appears a little strange, is the requirement that R(r) be finite for 0 ≤ r ≤ 1.
The need for this seemingly obvious requirement will become clear later.

The condition to be imposed on θ follows from the fact that the membrane
is circular, so for the solution to have circular symmetry θ must be periodic with
period 2π . The equation for # can only give rise to solutions that are periodic if√

m > 0, in which case the solution becomes

#(θ) = Ãcos(
√

mθ + φ),

where Ã and φ are arbitrary constants. This solution will only be periodic with
period 2π , as is required by the nature of the problem, if

√
m = n for n = 0, 1, . . . ,

so setting m = n2, we see that the angular variation is determined by

#(θ) = Ãcos(nθ + φ).

The choice of reference line through the origin relative to which the polar angle θ

is measured is immaterial, so without loss of generality it will be chosen to make
the constant φ = 0, because then the angular variation is determined by

#(θ) = Ãcos(nθ).

If we substitute m = n2 for the separation constant, the radial variation is seen
to be governed by Bessel’s equation

r2 R′′ + r R′ + (λ2r2 − n2)R = 0 for 0 < r < 1, n = 0, 1, 2, . . . .

The general solution of this form of Bessel’s equation (see Sections 8.6 and 8.7)
how Bessel’s equation
and its zeros enter
into this solution of
the wave equation

is

R(r) = B̃Jn(λr) + C̃Yn(λr),

and to determine the two arbitrary constants B̃ and C̃ we now make use of the two
boundary conditions for R(r) that were found earlier. The need for the condition
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that R(r) remains finite for 0 ≤ r ≤ 1 will be used first. This boundary condition
shows that the term Yn(λr) must be omitted from the solution R(r) if u is to remain
finite when r = 0, because Yn(x) is infinite at the origin. So we must set C̃ = 0, when
the radial variation becomes

R(r) = B̃Jn(λr).

The permissible values of λ now follow by using the remaining boundary con-
dition R(1) = 0. This condition shows that we must set Jn(λ) = 0, so λ must be one
of the infinite number of nonvanishing zeros of Jn(x). If we denote these by jn,s for
s = 1, 2, . . . , the eigenvalues λ must be

λ = jn,s .

A listing of the first few of these zeros is given in Section 8.6.
Combining the foregoing results shows that the eigenfunction determining the

(n, s)-mode of vibration is

Hns(r, θ) = Ã B̃Jn( jn,sr) cos(nθ),

where the product of the arbitrary constants, itself another arbitrary constant, will
depend on n and s.

The time variation follows by integrating T′′ + λ2c2T = 0, when we find that

T(t) = D̃cos( jn,sct) + Ẽ sin( jn,sct),

where here also the two arbitrary constants depend on n and s.
Finally, combining results to obtain a general eigensolution gives

uns(r, θ, t) = Jn( jn,sr) cos(nθ){Pns cos( jn,sct) + Qns sin( jn,sct)}.

Here, because the arbitrary constants depend on n and s, and a product of arbitrary

typical vibrational
modes and nodal
lines

constants is also an arbitrary constant, we have set Pns = ÃB̃D̃ and Qns = ÃB̃Ẽ.
Before we solve the initial value problem, let us first examine the nature of the

eigenfunctions Hns(r, θ) that determine the shape of each mode of vibration. As
Hns(r, θ) is modulated by the time variation T(t), the general shape of the (n, s)-
mode can be seen by setting the product of arbitrary constants equal to 1 and tak-
ing the eigenfunction to be Hns(r, θ) = Jn( jn,sr) cos(nθ). The diagrams in Fig. 18.20
illustrate the first few vibrational modes. The shaded and unshaded areas in the
diagrams indicate where displacement occurs in opposite directions. The modula-
tion of an eigenfunction by the time variation T(t) simply alters the amplitude of
the displacement, and periodically reverses its direction. The lines bordering the
shaded and unshaded areas are called nodal lines, and these represent lines on
the surface of the membrane that are never displaced from their equilibrium posi-
tion. As n and s increase, so also does the complexity of the pattern of the nodal
lines. Figure 18.21a illustrates the membrane displacement in the eigenmode cor-
responding to n = 2 and s = 1, and Fig. 18.21b shows the corresponding contour
lines.
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n = 0, s = 1 n = 1, s = 1 n = 2, s = 1

n = 2, s = 2n = 0, s = 3n = 0, s = 2

FIGURE 18.20 Some typical vibrational modes.

As with the stretched string, we now express the required solution that satisfies
the Cauchy conditions as the linear combination of eigensolutions

u(r, θ, t) =
∞∑

n=0,s=1

uns(r, θ, t).

Substituting for uns(r, θ, t) gives

u(r, θ, t) =
∞∑

n=0,s=1

Jn( jn,sr) cos(nθ){Pns cos( jn,sct) + Qns sin( jn,sct)}.

To satisfy the Cauchy conditions it is necessary to set u(r, θ, 0) = f (r, θ) and
ut (r, θ, 0) = g(r, θ), and then to solve for the coefficients Pns and Qns . To do this
we will make use of the orthogonality of the set of cosine functions {cos(nθ)}|∞n=0
over the interval 0 ≤ θ ≤ 2π and the orthogonality of the set of Bessel functions

(a)

nodal lines

(b)

FIGURE 18.21 (a) The membrane displacement and (b) a contour plot for H21(r, θ).
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{Jm( jm,qr)}|∞q=1 over the interval 0 ≤ r ≤ 1, and when doing so we will make use of
the results of Example 8.25, where it was shown that∫ 1

0
r Jm( jm,pr)Jm( jm,qr)dr =

{
0, p �= q
1
2

[Jm+1( jm,q)]2, p = q.

Using the first Cauchy condition, setting t = 0, multiplying the result by
r Jm( jm,qr) cos(mθ), and integrating with respect to r over the interval 0 ≤ r ≤ 1,
and then with respect to θ over the interval 0 ≤ θ ≤ 2π gives∫ 1

0

∫ 2π

0
r Jm( jm,qr) cos(mθ) f (r, θ)dθdr

=
∞∑

n=0,s=1

Pns

∫ 1

0

∫ 2π

0
r Jm( jm,qr)Jn( jn,sr) cos(mθ) cos(nθ)dθdr.

The orthogonality properties of the Bessel and cosine functions in the series on the

using the
orthogonality of
Bessel functions to
determine the
coefficients

right cause all but the term in Pmq to vanish, so that the result reduces to the single
term ∫ 1

0

∫ 2π

0
r Jm( jm,qr) cos(mθ) f (r, θ)dθdr

= Pmq

{∫ 1

0
r [Jm( jm,qr)]2dr

}{∫ 2π

0
cos2(mθ)dθ

}
.

Evaluating the integrals and solving for Pmq, we find that

P0q = 1
π

∫ 1

0

∫ 2π

0
r J0( j0,qr) f (r, θ)dθdr/[J1( j0,q)]2 for m = 0, q = 1, 2, . . . ,

and

Pmq = 2
π

∫ 1

0

∫ 2π

0
r Jm( jm,qr) cos(mθ) f (r, θ)dθdr/[Jm+1( jm,q)]2 for m, q = 1, 2, . . . .

Differentiation of u(r, θ, t) with respect to t , followed by setting t = 0, shows
that after setting ut (r, θ, 0) = g(r, θ) we obtain

g(r, θ) =
∞∑

n=0,s=1

Qns jn,s Jn( jn,sr) cos(nθ).

The coefficients Qns can be found in the same way as the coefficients Pns , and
the formulas for them follow from the results for Pns by replacing f (r, θ) by
g(r, θ).

If the vibrations are circularly symmetric, and so do not depend on θ , the
expression u(r, θ, 0) simplifies to u(r, θ, 0) = h(r), say. If, in addition, the vibrations
start from rest, so ut (r, θ, 0) = 0, the solution simplifies still further, because then
m = 0 and only the coefficients P0q are nonvanishing, so that

P0q = 1
π

∫ 1

0

∫ 2π

0
r J0( j0,qr)h(r)dθdr/[J1( j0,q)]2.

After integrating with respect to θ (that introduces a factor 2π), we find that

P0q = 2
∫ 1

0
r J0( j0,qr)h(r)dr/[J1( j0,q)]2 for q = 1, 2, . . . .



Section 18.10 Separation of Variables 999

In terms of these coefficients the solution then takes the particularly simple
form

u(r, t) =
∞∑

q=1

J0( j0,qr)P0q cos( j0,qct) for 0 ≤ r ≤ 1, t > 0.

This same method of analysis can be used when the membrane is in the form
of an annulus r1 ≤ r ≤ r2, with Dirichlet and/or Neumann conditions imposed on
its inner and outer boundaries. In this case the solution is not required at the origin
r = 0, so the term Yn(r) must be retained in the solution for R(r), which then
becomes R(r) = B̃Jn(λr) + C̃Yn(λr). The eigenvalues λn follow by applying the
appropriate boundary conditions to R(r) at r = r1 and r = r2, but depending on the
boundary conditions the determination of the numerical values of the eigenvalues
can be difficult, so it is usually necessary to obtain them by numerical methods.

Time Variation of Temperature
in a Long Thin Metal Plate or Rod
The following example illustrates how the method of separation of variables can be
applied to a time-dependent heat flow problem in a long thin metal plate of width L.

EXAMPLE 18.13 We consider the long thin metal plate of width L in the x-direction illustrated in
Fig. 18.22, with negligible thickness in the y-direction and a length in the z-direction
that is much greater than L. The edge x = 0 is kept at zero temperature and the
edge x = L is thermally insulated, so no heat can pass through it. The temperature
distribution across the width of the plate will be assumed to be independent of z,
so as the thickness in the y-direction is negligible, the temperature distribution will
depend only on x and t . The initial temperature distribution across the width of the
plate applied at t = 0 will be taken to be u(x, 0) = u0(1 + x/L).

As the temperature distribution across the plate will be the same in any plane
z = constant, this situation also models a rod of length L in the plane z = 0, along
the x-axis, when its faces above and below the plane z = 0 are thermally insulated.
In each case the temperature distribution u(x, t) will be determined by the one-
dimensional heat equation

ut = κ2uxx.

ux(L, t) = 0

u(x, 0) = u0(1 + x/L)

u(0, t) = 0
0

x

z
y

L

FIGURE 18.22 The plate of width L and the
boundary and initial conditions.
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Solution The boundary conditions on the plate are

u(0, t) = 0 and ux(L, t) = 0 for t > 0,

where the first condition says that the left edge of the plate is maintained at zero
temperature, and the second says that there is no heat flux across the edge x = L.
The initial condition to be imposed across the plate is

u(x, 0) = u0(1 + x/L).

Setting u(x, t) = X(x)T(t), substituting into the heat equation, and dividing by
XT gives

T′

T
= κ2 X′′

X
.

As the expression on the left is only a function of t and the one on the right is only
a function of x, this can only be possible if

T′

T
= κ2 X′′

X
= k,

where k is a separation constant. To determine the sign of k, we appeal to the
physical condition that the temperature cannot become infinite with the increase of
time, so as T′ = kT, this can only be possible if k < 0, so we set k = −λ with λ > 0.
The differential equations governing T and X now become

X′′ + λ

κ2
X = 0 and T′ + λT = 0,

so the X variation is given by

X(x) = Ãcos(
√

λx/κ) + B̃ sin(
√

λx/κ).

The boundary conditions for X follow from the boundary conditions for the
temperature, so as the variables are separable, we require that X(0)T(t) = 0 and
X′(L)T(t) = 0 for t > 0. Thus, the boundary conditions on X must be X(0) = 0
and X′(L) = 0. The equation for X(x) is a Sturm–Liouville problem, so applying
these boundary conditions gives

(the condition X(0) = 0) 0 = Ã

(the condition X′(L) = 0) 0 =
√

λ

κ
B̃cos(

√
λL/κ).

If B̃ = 0, the solution vanishes identically, so as this is impossible, the eigenval-
ues λ must be solutions of

cos(
√

λL/κ) = 0,

which are the zeros of the cosine function√
λn

κ
L = (2n + 1)

π

2
, or λn = (2n + 1)2π2κ2

4L2
for n = 0, 1, . . . .

The eigenfunctions are thus

Xn(x) = B̃ sin(2n + 1)
πx
2L

for n = 0, 1, . . . ,

and the time variation of the eigenfunctions follows if we integrate

T′ + (2n + 1)2π2κ2

4L2
T = 0
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to obtain

Tn(t) = C̃ exp
[
− (2n + 1)2π2κ2t

4L2

]
.

If we set Cn = B̃C̃, because both coefficients depend on n, the nth eigensolution
becomes

un(x, t) = Cn sin(2n + 1)
πx
2L

exp
[
− (2n + 1)2π2κ2t

4L2

]
, for n = 0, 1, . . . .

We now seek a solution in the form of the linear combination of eigensolutions

u(x, t) =
∞∑

n=0

un(x, t) =
∞∑

n=0

Cn sin(2n + 1)
πx
2L

exp
[
− (2n + 1)2π2κ2t

4L2

]
.

To determine the coefficients Cn it is necessary to make use of the initial con-
dition u(x, 0) = u0(1 + x/L). Setting t = 0 in this expression and using the initial
condition gives

u0(1 + x/L) =
∞∑

n=0

Cn sin(2n + 1)
πx
2L

.

Multiplying this result by sin(2m + 1)πx
2L , integrating with respect to x over the

interval 0 ≤ x ≤ L, and using the orthogonality properties of the set of functions{
sin(2n + 1)πx

2L

}
leads to the equation for Cn

u0

∫ L

0
(1 + x/L) sin(2n + 1)

πx
2L

dx = Cn

∫ L

0

[
sin(2n + 1)

πx
2L

]2

dx.

Evaluating the integrals and then solving for Cn, we have

Cn = 4u0

π(2n + 1)

[
1 + (−1)n 2

(2n + 1)π

]
for n = 0, 1, . . . ,

and the solution now follows if we substitute this expression for Cn into the series
solution for u(x, t).

A computer plot of û(x, t)/u0, obtained by using the first 50 terms in the series
solution with L = 1 and κ = 1, is shown in Fig. 18.23. This confirms, as expected,
that the solution decays to zero as t increases. The scale of the plot is too small to
show the Gibbs phenomenon near x = 0, t = 0 where there is a discontinuity.

1
0.8 0.6

0.4
0.2 0.2 0.4

0.6
0.8

1
0

0.5

1

1.5

2

t 0 x

u~/u0

FIGURE 18.23 A plot of û(x, t)/u0 for 0 ≤ x ≤ 1, t > 0.
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The boundary conditions used so far have been particularly simple, but in
physical situations they are often more complicated, and instead of being either a
Dirichlet or Neumann condition they may involve a linear combination of both of
these conditions. For example, a condition of the form (∂u/∂x + Ku)|x=a = f (t)
describes how a combination of the temperature and heat flux is required to vary as
a function of time t at the boundary x = a. The next example involves a boundary
condition of this type, and it demonstrates how under such conditions the eigen-
values can become the zeros of a transcendental equation, and so must be found
numerically.

EXAMPLE 18.14 Solve the heat equation

∂u
∂t

= κ2 ∂2u
∂x2

, 0 ≤ x ≤ L, t > 0,

subject to the boundary conditions

u(0, t) = 0 and
(

∂u
∂x

+ Ku
)∣∣∣∣

x=L
= 0, K > 0,

and the initial condition

u(x, 0) = sin(πx/L).

Solution Separating variables by seeking elementary solutions of the form
u(x, t) = X(x)T(t), substituting into the heat equation, and dividing by X(x)T(t),
we obtain

X′′

X
= 1

κ2

T′

T
= −λ2,

where λ2 is a positive real separation constant. So, as usual, we arrive at the two
ordinary differential equations

X′′ + λ2 X = 0 and T′ + λ2κ2T = 0,

the first of which is a Sturm–Liouville problem.
The general solution for X(x) is X(x) = Acos λx + B sin λx. The boundary con-

dition u(0, t) = 0 shows that A= 0, so X(x) = B sin λx, while the boundary condi-
tion (∂u/∂x + Ku)|x=L = 0 leads to the condition

λBcos λL+ KB sin λL = 0, and so tan λL = −λ/K.

Setting μ = λL and p = KL > 0, we find that the eigenvalues μ are determined by
a transcendental
equation for the
eigenvalues

the zeros of the transcendental equation

tan μ = −μ

p
.

The positive values of μ can be estimated from the points of intersection the graphs
of y = tan μ and y = −μ/p for μ > 0. Figure 18.24 shows a typical case when p = 1.

Denoting the positive roots (the eigenvalues) of this equation by μ1, μ2, . . . and
solving the time variation equation T′

n + λ2
nκ

2Tn = 0 gives

Tn(t) = Cn exp

[
−
(

μnκ

L

)2

t

]
.
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FIGURE 18.24 Graphs of y = tan μ and y = −μ

for μ > 0.

The eigenfunction Xn(x) becomes Xn(x) = Bn sin
(

μnx
L

)
, so the eigensolution XnTn

becomes

XnTn = Dn exp

[
−
(

μnκ

L

)2

t

]
sin
(

μnx
L

)
.

We now seek a solution involving the linear combination of eigensolutions

u(x, t) =
∞∑

n=1

Dn exp

[
−
(

μnκ

L

)2

t

]
sin
(

μnx
L

)
,

where the constants Dn = BnCn are to be determined by use of the initial condition
u(x, 0) = sin(πx/L). Setting t = 0 and using this condition gives

sin
(

πx
L

)
=

∞∑
n=1

Dn sin
(

μnx
L

)
.

Multiplying by sin(μmx/L) and integrating over 0 ≤ x ≤ L gives

Dn =
(

2π sin μn

π2 − μ2
n

)(
p2 + μ2

n

p(p + 1) + μ2
n

)
,

and so

u(x, t) =
∞∑

n=1

(
2π sin μn

π2 − μ2
n

)(
p2 + μ2

n

p(p + 1) + μ2
n

)
exp

[
−
(

μnκ

L

)2

t

]
sin
(

μnx
L

)
.

When obtaining this solution we have used the result∫ L

0
sin(πx/L) sin(μmx/L)dx = π Lsin μm

π2 − μ2
m

,

and the orthogonality of the eigenfunctions Xn(x) of the associated Sturm–Liouville
problem over the interval 0 ≤ x ≤ L with respect to the weight function w(x) ≡ 1,

that after integration gives

∫ L

0
sin(μmx/L) sin(μnx/L)dx =

⎧⎨⎩
0, m �= n
L
2

(
p(p + 1) + μ2

n

p2 + μ2
n

)
, m = n,
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where

sin μn = −μn/
(

p2 + μ2
n

)1/2
, cos μn = p/

(
p2 + μ2

n

)1/2
.

In the next heat conduction example we consider a problem that requires the use
of cylindrical polar coordinates.

EXAMPLE 18.15 Find the time-dependent temperature distribution u(r, θ, t) in a thin semicircular
metal plate 0 ≤ r ≤ 1, 0 ≤ θ ≤ π , given that its plane faces are insulated to prevent
heat loss through them, the straight edge of the plate formed by the diameter 0 ≤a heat problem

involving plane
polar coordinates

r ≤ 1, θ = 0 and θ = π is insulated, the semicircular boundary is maintained at zero
temperature, and the initial temperature distribution is u(r, θ, 0) = (1 − r) cos θ .

Solution The geometry of this problem requires the use of plane polar coordinates,
in terms of which the temperature u(r, θ, t) must satisfy the two-dimensional time-
dependent heat equation (see Section 11.6)

∂u
∂t

= κ2
(

∂2u
∂r2

+ 1
r

∂u
∂r

+ 1
r2

∂2u
∂θ2

)
.

The bounding diameter 0 ≤ r ≤ 1, θ = 0, and θ = π is thermally insulated, so
as the derivative normal to the diameter is uθ , the boundary condition on this line
becomes uθ (r, 0, t) = 0 and uθ (r, π, t) = 0. The semicircular boundary is maintained
at zero temperature, so the boundary condition there is u(1, θ, t) = 0. A routine
check shows the initial condition to be appropriate, because it satisfies both the
boundary condition on the diameter and the one on the semicircular boundary.

We now separate the variables by seeking elementary solution of the form
u(r, θ, t) = R(r)#(θ)T(t). Substituting into the heat equation and dividing by R#T
gives

T′

T
= κ2

(
R′′

R
+ 1

r
R′

R
+ 1

r2

#′′

#

)
.

The expression on the left is only a function of t , and the one on the right is a function
of r and θ , so each must be equal to a separation constant. As the temperature must
decrease with time, it follows that the separation constant must be negative, so
setting it equal to −λ2 with λ > 0, we arrive at the two equations

T′ + κ2λ2T = 0 and r2 R′′

R
+ r

R′

R
+ λ2r2 = −#′′

#
.

In the second equation the expression on the left is only a function of r and the
one on the right is only a function of θ , so each must be equal to another separation
constant μ, so we obtain the two Sturm–Liouville equations

#′′ + μ# = 0 and r2 R′′ + r R′ + (λ2r2 − μ)R = 0.

The general solution for # is

#(θ) = A cos
√

μ θ + B sin
√

μ θ,

so as the boundary conditions on the diameter are uθ (r, 0, t) = 0 and uθ (r, π, t) = 0,
it follows that we must have #′(θ)|θ=0 = 0 and #′(θ)|θ=π = 0. The first of these
conditions gives B = 0, and the second gives sin

√
μπ = 0, so

√
μ = 0, 1, . . . . Setting√

μ = m, and using the fact that the equation for # is homogeneous, we may set
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the arbitrary constant A= 1 when

#m(θ) = cos mθ, for m = 0, 1, . . . .

The equation for R(r) now becomes Bessel’s equationhow Bessel’s
equation and its
zeros enter into this
time-dependent
heat equation

r2 R′′ + r R′ + (λ2r2 − m2)R = 0,

with the general solution

Rm(r) = PJm(λr) + QYm(λr).

The temperature must remain finite throughout the plate, so as Ym(λr) becomes
infinite when r = 0, we must set Q = 0, reducing the equation to Rm(r) = Jm(λr),
where because the equation is homogeneous we have set the arbitrary constant
P = 1.

To satisfy the boundary condition on the semicircular boundary u(1, θ, t) = 0,
we must have R(1) = 0, and so λ must satisfy the eigenvalue equation Jm(λ) = 0,
showing that the eigenvalues λ must be the positive zeros jm,n of the Bessel function
Jm(r) = 0, where jm,n is the nth positive zero of Jm(r). A short list of these zeros
can be found in Table 8.1 of Chapter 8.

Using these eigenvalues in the equation for the time variation T′ + κ2λ2T = 0
shows that Tm,n(t) = Cm,n exp{− j2

m,nκ
2t}, so combining the results for R(r), #(θ),

and T(t), we now seek a solution in the form of the following linear combination
of elementary solutions:

u(r, θ, t) =
∞∑

m=0,n=1

Cm,n Jm( jm,nr) cos mθ exp
{− j2

m,nκ
2t
}
.

To find the coefficients Cm,n we now make use of the initial condition, the orthogo-
nality of the cosine functions over the interval 0 ≤ θ ≤ π , and the orthogonality of
the Bessel functions over the interval 0 ≤ r ≤ 1. Setting t = 0 in the preceding se-
ries solution and equating the result to the initial condition u(r, θ, 0) = (1 − r) cos θ

gives

(1 − r) cos θ =
∞∑

m=0,n=1

Cm,n Jm( jm,nr) cos mθ.

Multiplying this by cos θ and integrating over the interval 0 ≤ θ ≤ π causes
every term on the right to vanish, with the exception of the one involving cos θ

corresponding to m = 1. Thus, the required series representation simplifies to

(1 − r) cos θ =
∞∑

n=1

C1,n J1( j1,nr) cos θ,

and so after cancellation of the factor cos θ to

(1 − r) =
∞∑

n=1

C1,n J1( j1,nr).

This same result could have been obtained by noticing that as only cos θ occurs
on the left, the linear independence of cosines of multiple angles requires that all
terms involving cos mθ on the right must vanish for m �= 1.

To find the coefficients C1,n we multiply the last result by r J1( j1,sr), integrate
over the interval 0 ≤ r ≤ 1, and after using the orthogonality of Bessel functions
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derived in (148) of Appendix 2 in Chapter 8, we obtain∫ 1

0
r(1 − r)J1( j1,sr)dr = C1,s

1
2

[J2( j1,s)]2.

Replacing s by n gives

C1,n = 2
∫ 1

0 (r − r2)J1( j1,nr)dr

[J2( j1,n)]2
for n = 1, 2, . . . .

In terms of these coefficients C1,n, the required solution becomes

u(r, θ, t) =
∞∑

n=1

C1,n J1( j1,nr) cos θ exp
{− j2

1,nκ
2t
}
.

Evaluating the first few coefficients numerically gives

C1,1 = 0.917184, C1,2 = 0.432800, C1,3 = 0.317323, C1,4 = 0.232474,

C1,5 = 0.193256, C1,6 = 0.158851, C1,7 = 0.139139, C1,8 = 0.120617.

On the diameter bounding the semicircle, when θ = 0 the initial condition is
u(r, 0, t) = 1 − r , and when θ = π it is u(r, π, t) = r − 1, so the solution u is discon-
tinuous at r = 0 on the bounding diameter.

Figure 18.25 shows a plot of the solution along the insulated diameter as a
function of time, using the eight terms in the series solution for u(r, θ, t) with κ2 =
0.1. The plot shows the development of the Gibbs phenomenon at t = 0 due to the
discontinuity in u at r = 0, and the way the temperature along the diameter relaxes
to zero as t → ∞.

Separation of Variables in the Elliptic Case
Laplace’s equation describes many different physical situations, from among which
we choose to solve three problems. The first two involve steady-state temperature
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FIGURE 18.25 The relaxation of the initial temperature
distribution with time along the diameter bounding the plate.
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distributions in two-dimensional regions, and the third involves finding the electro-
static potential distribution inside a spherical cavity. The equation determining the
steady-state temperature u in a heat-conducting material is the Laplace equation
�u = 0, and the first problem to be considered is as follows.

EXAMPLE 18.16 The diagram in Fig. 18.26 shows a rectangular region 0 ≤ x ≤ π , 0 ≤ y ≤ 2, in which
the steady state temperature distribution u(x, y) is required subject to the temper-
ature on the side 0 ≤ x ≤ π , y = 0, being u(x, 0) = x sin x, and the temperature on
the other three sides being maintained at u = 0. This can either be considered to
represent a cross-section of a long metal bar extending in the z-direction with the
boundary conditions on its sides independent of z, or as a thin metal plate with its
faces parallel to the (x, y)-plane thermally insulated.

Solution The domain is rectangular with its sides parallel to the coordinate axes,
so it is appropriate to express the Laplace equation in terms of the cartesian coor-
dinates x and y so the temperature must satisfy

uxx + uyy = 0.

Separating variables by setting u(x, y) = X(x)Y(y), substituting into the Laplace
equation, dividing by XY, and rearranging terms gives

X′′

X
= −Y ′′

Y
.

As the expression on the left is a function of only x and the one on the right is a
function of only y, these expressions must be equal to a separation constant k, so
that

X′′

X
= −Y ′′

Y
= k.

The sign of the separation constant must be chosen so the boundary conditions
are satisfied. As u(x, y) = X(x)Y(y), and neither X(x) nor Y(y) can be identi-
cally zero, the boundary conditions u(0, y) = 0 and u(π, y) = 0 imply that X(0) =
X(π) = 0. When k > 0, the general solution for X(x) is X(x) = A cosh x

√
k +

B sinh x
√

k, and the boundary conditions can only be satisfied if A= B = 0, which
is impossible. Consequently, k must be negative, so we set k = −λ2, where λ is posi-
tive and real. The separated equations give the following Sturm–Liouville equation

u = 0

u = 0u = 0 Δu = 0

u = x sin x0

2

y

xπ

FIGURE 18.26 The rectangular region and its
boundary conditions.
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for X(x) and the equation for Y(y):

X′′ + λ2 X = 0 and Y ′′ − λ2Y = 0.

Solving for X gives

X(x) = Ã cos λx + B̃ sin λx,

and imposing the left boundary condition X(0) = 0 shows that Ã= 0. The impo-
sition of the right boundary condition X(π) = 0 gives B̃ sin λπ = 0, so as B̃ �= 0, it
follows that the eigenvalues are the zeros of sin πx, and so

λn = n, for n = 1, 2, . . . .

Thus, the eigenfunctions are proportional to

Xn(x) = B̃ sin nx, for n = 1, 2, . . . ,

where, as the equation for Xn(x) is homogeneous, the value of B̃ is unimportant.
Solving the differential equation for Y(y) gives

Yn(y) = C̃ cosh ny + D̃sinh ny.

The boundary condition u(x, 2) = 0 is equivalent to X(x)Y(2) = 0, but as X(x) is
not identically zero, we must have Y(2) = 0. Applying this condition to Yn(y) gives

0 = C̃ cosh 2n + D̃sinh 2n,

but only the ratio is important, so we can set D̃ = 1 when

C̃ = − sinh 2n
cosh 2n

.

Using this result in the expression for Yn(y) gives

Yn(y) = C̃
cosh 2n

(sinh ny cosh 2n − cosh ny sinh 2n) = C̃
cosh 2n

sinh n(y − 2).

If we replace the product B̃C̃/ cosh 2n by Cn, the eigensolution un(x, y) = Xn(x)
Yn(y) becomes

un(x, y) = Cn sin nx sinh n(y − 2), for n = 1, 2, . . . .

We now seek a solution of the boundary value problem in the form of the linear
combination of the eigensolutions

u(x, y) =
∞∑

n=1

un(x, y) =
∞∑

n=1

Cn sin nx sinh n(y − 2).

To determine the coefficients Cn we must use the boundary condition u(x, 0) =
x sin x together with the orthogonality properties of the set of functions {sin nx}|∞1
over the interval 0 ≤ x ≤ π . Setting y = 0 in u(x, y) and multiplying the result by
sin mx, integrating over 0 ≤ x ≤ π , and using the orthogonality properties of the
set of sine functions gives∫ π

0
x sin x sin nxdx = −Cn sinh 2n

∫ π

0
sin2 nxdx, n = 1, 2, . . . .

Evaluating the integrals and solving for Cn we find that

C1 = − π

2 sinh 2
and Cn = 4n(1 + (−1)n)

(n2 − 1)2π sinh 2n
for n = 2, 3, . . . .
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FIGURE 18.27 A plot of the temperature distribution u(x, y)
using five terms.

The problem is solved by substituting these values of Cn into

u(x, y) =
∞∑

n=1

Cn sin nx sinh n(y − 2).

Figure 18.27 shows a computer plot of the temperature distribution u(x, y) in
the region 0 ≤ x ≤ π , 0 ≤ y ≤ 2 obtained by using the preceding result with five
terms.

The following is another example of the application of the method of separation
of variables to the Laplace equation when finding the steady state temperature
distribution.

EXAMPLE 18.17 Find the steady state temperature distribution in the semicircular region of radius ρ

lying in the upper half-plane and centered on the origin, as shown in Fig. 18.28.
The temperature on the straight boundary is u = 0, and that on the semicircular
boundary is u = u0θ(π − θ).

Solution The geometry of the problem suggests that the Laplace equation for
the steady state temperature distribution u should be expressed in terms of the
polar coordinates r and θ . In terms of these variables the Laplace equation �u = 0
becomes

urr + 1
r

ur + 1
r2

uθθ = 0.

To separate the variables we now set u(r, θ) = R(r)#(θ) and substitute into the
equation. After dividing by R# and rearranging terms, we find that

r2 R′′

R
+ r

R′

r
= −#′′

#
,
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−ρ ρu = 0

ρ

Δu = 0

θ

pr

u = u0θ(π − θ)

0

FIGURE 18.28 The semicircular domain and its
boundary conditions.

but as the expression on the left is a function of only r and the one on the right is a
function of only θ , both must be equal to a separation constant k, so we have

r2 R′′ + rR′ − kR = 0 and #′′ + k# = 0.

The sign of k is determined by the fact that only when k > 0 will the θ variation be
periodic in nature, as would be expected, because increasing θ by a multiple of 2π

will simply reproduce the original problem. If we set k = λ2, the functions R and #

are seen to satisfy the two equations

r2 R′′ + rR′ − λ2 R = 0 and #′′ + λ2# = 0.

The first of these equations is a Cauchy–Euler equation, which was seen in Sec-
tion 6.5 to have the general solution

how the Cauchy–Euler
equation arises

R(r) = Ãrλ + B̃
1
rλ

.

As the solution must be finite at the origin, we must set B̃ = 0, so R(r) must be of
the form R(r) = Ãrλ. Now, as u(r, θ) = R(r)#(θ) and u(r, 0) = u(r, π) = 0 (in polar
coordinates these two conditions represent the boundary condition on the straight
line boundary), it follows that the boundary conditions for # are #(0) = #(π) = 0.

The general solution for # is

#(θ) = C̃ cos λθ + D̃sin λθ,

so imposing the first of the boundary conditions gives C̃ = 0, and when the second
one is imposed we find that λ must satisfy

0 = D̃sin λπ,

so the eigenvalues λn are

λn = n, for n = 1, 2, . . . .

The eigenfunctions Rn(r) become

Rn(x) = Anrn, for n = 1, 2, . . . ,

and the eigensolutions un(r, θ) = Anrn sin nθ , where the product of the arbi-
trary constants ÃD̃, each of which depends on n, has been denoted by An.

We now seek a solution in the form of the linear combination of the eigenso-
lutions

u(r, θ) =
∞∑

n=1

un(r, θ) =
∞∑

n=1

Anrn sin nθ.
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FIGURE 18.29 A plot of the normalized solution
û = (π/8u0)u(r, θ).

Substituting the boundary condition u(ρ, θ) = u0θ(π − θ) on the left of this series
and setting r = ρ in the expression on the right gives

u0θ(π − θ) =
∞∑

n=1

Anρ
n sin nθ.

The coefficients An now follow from the orthogonality properties of the sine func-
tion over the interval 0 ≤ θ ≤ π . Multiplying the last result by sin mθ and integrating
over the interval 0 ≤ θ ≤ π , we find that

2u0

(
1 − (−1)n

n3

)
= 1

2
Anρ

nπ and so An = 4u0

π

(1 − (−1)n)
n3ρn

.

Substituting these coefficients into the series now gives the required solution,

u(r, θ) = 8u0

π

∞∑
n=1

(
r
ρ

)2n−1 sin(2n − 1)θ
(2n − 1)3

.

Figure 18.29 shows a plot of û = (π/8u0)u(r, θ) as a function of R = r/ρ for
0 ≤ R ≤ 1 and 0 ≤ θ ≤ π using 10 terms of the series.

The next example involving Laplace’s equation is a three-dimensional problem
for which spherical polar coordinates form the natural coordinate system to be used.
This example also shows how Legendre polynomials arise naturally when we work
with Laplace’s equation in spherical polar coordinates.
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FIGURE 18.30 The spherical polar coordinate system.

EXAMPLE 18.18 Find the electrostatic potential inside a spherical cavity of radius ρ when the bottom

a problem involving
spherical polar
coordinates

half of the spherical boundary is maintained at a potential U0 and the upper half is
maintained at a potential U1.

Solution The geometry of the problem indicates that for simplicity spherical polar
coordinates should be used, because the boundary of the region involved is a sphere
of radius ρ. Figure 18.30 shows the standard system of spherical coordinates. As
the potential on the boundary assumes a different constant value on each of two
hemispheres, the problem will be simplified if the origin is taken to be at the cen-
ter of the sphere with the z-axis chosen so the potential is u = U1 on the upper
hemisphere where z > 0, corresponding to r = ρ and 0 ≤ θ < π

2 , and u = U0 on the
lower hemisphere where z < 0, corresponding to r = ρ and π

2 < θ ≤ π .
In this case the boundary conditions are such that there is no variation with

respect to the angle φ (called the azimuthal angle), so as the potential inside the
spherical cavity will depend only on r and θ we set u = u(r, θ). Making use of
the expression for the Laplacian in spherical polar coordinates found in Exam-
ple 11.23(b) of Chapter 11, and setting the partial derivative with respect to φ equal
to zero, because there is no variation with respect to φ, gives

�u = 1
r2 sin θ

[
∂

∂r

(
r2 sin θ

∂u
∂r

)
+ ∂

∂θ

(
sin θ

∂u
∂θ

)]
= 0,

or

r2 ∂2u
∂r2

+ 2r
∂u
∂r

+ cot θ
∂u
∂θ

+ ∂2u
∂θ2

= 0.

For what is to follow, derivatives with respect to θ need to be transformed into
derivatives with respect to ξ , where ξ = cos θ . Using the results obtained from the
chain rule

∂u
∂θ

= −sin θ
∂u
∂ξ

and
∂2u
∂θ2

= sin2 θ
∂2u
∂ξ 2

− cos θ
∂u
∂ξ

,



Section 18.10 Separation of Variables 1013

we find that

�u = r2 ∂2u
∂r2

+ 2r
∂u
∂r

− 2ξ
∂u
∂ξ

+ (1 − ξ 2)
∂2u
∂ξ 2

= 0.

Separating variables by seeking elementary solutions of the form u(r, ξ) =
R(r)Q(ξ), substituting into the preceding equation, and then dividing by RQ gives

r2 R′′ + 2r R′

R
= 2ξ Q′ − (1 − ξ 2)Q′′

Q
= k,

where, as R = R(r) and Q = Q(ξ), these expressions must both be equal to a sep-
aration constant k whose value will be assigned later. Now that the variables have
been separated, the two differential equations that follow from this are

r2 R′′ + 2rR′ − kR = 0 and (1 − ξ 2)Q′′ − 2ξ Q′ + kQ = 0.

If we now choose the separation constant to be k = n(n + 1) with n = 0, 1, . . . ,
the second equation becomes

(1 − ξ 2)Q′′ − 2ξ Q′ + n(n + 1)Q = 0,

and from Section 8.2 of Chapter 8 its solution is seen to be Q(ξ) = Pn(ξ), where
Pn(ξ) is the Legendre polynomial of degree n. The equation for R now becomes
the Cauchy–Euler equation

r2 R′′ + 2rR′ − n(n + 1)R = 0.

The solution of this equation is found by setting R = rα and solving for α. As a
result we find α = n or α = −(n + 1), so the general solution for R(r) is

R(r) = Arn + Br−(n+1).

The potential u(r, ξ) must remain finite at the origin, so we must set B = 0. Thus,
the required elementary eigensolution un(r, ξ) = R(r)Q(ξ) becomes

un(r, ξ) = Anrn Pn(ξ).

We now use this result to find the potential inside the sphere in the form of the
linear combination of eigensolutionshow a

Fourier–Legendre
expansion arises u(r, ξ) =

∞∑
n=0

Anrn Pn(ξ),

which form a Fourier–Legendre expansion of u(r, ξ).
In terms of the new variable ξ , the boundary conditions on the spherical bound-

ary r = ρ become u(ρ, ξ) = U0 for −1 ≤ ξ < 0 and u(ρ, ξ) = U1 for 0 < ξ ≤ 1. The
coefficients An now follow by setting r = ρ in the Fourier–Legendre expansion for
u(r, ξ), substituting the boundary conditions, multiplying by Pm(ξ), and integrating
the result with respect to ξ over the interval −1 ≤ ξ ≤ 1, followed by use of the
orthogonality property of Legendre polynomials (see Chapter 8),∫ 1

−1
Pm(ξ)Pn(ξ)dξ =

{ 2
2n+1 , m = n
0, m �= n.

When this is done the coefficients An are found to be given by

An =
(

2n + 1
2ρn

)(∫ 0

−1
U0 Pn(ξ)dξ +

∫ 1

0
U1 Pn(ξ)dξ

)
, for n = 0, 1, . . . ,
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FIGURE 18.31 A plot of the normalized solution û(r, ξ).

and so

A0 = 1
2

(U0 + U1), A1 = 3
4ρ

(U1 − U0), A2 = 0, A3 = − 7
16ρ3

(U1 − U0), A4 = 0

A5 = 11
32ρ5

(U1 − U0), A6 = 0, A7 = − 55
256ρ7

(U1 − U0), A8 = 0, . . . .

Substituting for the An in the Fourier–Legendre series for u(r, ξ) shows the
solution to be

u(r, ξ) − U0

U1 − U0
={

1
2

+ 3
4

(
r
ρ

)
P1(ξ) − 7

16

(
r
ρ

)3

P3(ξ) + 11
32

(
r
ρ

)5

P5(ξ) − 55
256

(
r
ρ

)7

P7(ξ) + · · ·
}
,

for −1 ≤ ξ ≤ 1 with ξ = cos θ.

Figure 18.31 shows a plot of û(r, ξ) = [u(r, ξ) − U0]/(U1 − U0) obtained using
the preceding approximation with 0 ≤ r/ρ ≤ 1 and −1 ≤ ξ ≤ 1. The plot exhibits
the start of the Gibbs phenomenon in this Fourier–Legendre expansion due to the
discontinuity in the boundary condition across r = ρ when θ = π/2.

So far the method of separation of variables has only been applied to homoge-
neous equations. The next example illustrates a way in which the nonhomogeneous
one-dimensional heat equation may be solved by using variation of parameters in
the method of separation of variables.

EXAMPLE 18.19 The temperature u(x, t) in a slab of metal 0 < x < L with heat generated in it at
time t and position x at a rate H(x, t) is determined by the nonhomogeneous heat
equation

∂u
∂t

= κ
∂2u
∂x2

+ H(x, t),

subject to the initial condition

u(x, 0) = U(x)

and the boundary conditions

u(0, t) = u(L, t) = 0 for t > 0.
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Find the temperature distribution u(x, t) in the slab by combining method of vari-
ation of parameters with separation of the variables.

Solution The nonhomogeneous term does not allow separation of variables to be
used directly, so a modified approach must be adopted. Let us consider first the
solution of the problem when H(x, t) ≡ 0.

Separating variables by setting u(x, t) = X(x)T(t) and proceeding in the usual
manner leads to the separated equations

T′(t)
κT(t)

= X′′(x)
X(x)

.

Introducing a separation constant −λ with λ > 0, where the negative sign is chosen
to make the solution satisfy the physical requirement that it decays with time, we
arrive at the two separated ordinary differential equations

dT
dt

= −λκT and
d2 X
dx2

+ λX = 0.

To satisfy the boundary conditions on the temperature u(x, t), the function
X(x) must satisfy the boundary conditions X(0) = X(L) = 0. The equation for X(x)
together with these boundary conditions is a Sturm–Liouville problem that deter-
mines the eigenvalues λn and the associated eigenfunctions Xn(x). As the general
solution for X(x) is

X(x) = Acos(
√

λx) + B sin(
√

λx),

the boundary conditions will only be satisfied when λ = (nπ/L)2 and A= 0, so the
eigenvalues are λn = (nπ/L)2 and the associated eigenfunctions can be taken to be
Xn(x) = sin(nπx/L), with n = 1, 2 . . . .

Integrating the equation for the time variation T(t) with λ = λn gives Tn(t) =
exp(−λnκt), so the elementary solutions for this problem are

un(x, t) = exp

(
−
(

nπ

L

)2

κt

)
sin
(

nπx
L

)
, with n = 1, 2, . . . .

It follows from this that the solution for the temperature distribution will be of the
form

u(x, t) =
∞∑

n=1

anun(x, t) =
∞∑

n=1

an exp

(
−
(

nπ

L

)2

κt

)
sin
(

nπx
L

)
.

The coefficients an follow in the usual manner by setting t = 0 and using the
initial condition that n(x, 0) = U(x), when we find that

U(x) =
∞∑

n=1

an sin
(

nπx
L

)
.

Multiplying this result by sin(nπx/L) and integrating over the interval 0 ≤ x ≤ L
gives

an = 2
L

∫ L

0
U(x)sin

(
nπx

L

)
dx, for n = 1, 2, . . . .
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This completes the solution for the temperature u(x, t) when the heat equation is
homogeneous, because

u(x, t) =
∞∑

n=1

anun(x, t) =
∞∑

n=1

an exp

(
−
(

nπ

L

)2

κt

)
sin
(

nπx
L

)
.

To make use of this solution in the nonhomogeneous case, we start by seeking
a solution of the form

u(x, t) =
∞∑

n=1

�n(t) sin
(

nπx
L

)
,

where the functions �n(t) are still to be determined. We then expand H(x, t) in
terms of x as

H(x, t) =
∞∑

n=1

Hn(t) sin
(

nπx
L

)
,

where the time-dependent coefficients Hn(t) are obtained from H(x, t) by multi-
plying this last result by sin(nπx/L) and integrating over the interval 0 ≤ x ≤ L.

The initial condition u(x, 0) = U(x) has already been expanded as

U(x) =
∞∑

n=1

an sin
(

nπx
L

)
, with an = 2

L

∫ L

0
U(x) sin

(
nπx

L

)
dx, for n = 1, 2, . . .

so after substituting these results in the PDE and combining terms in sin (nπx/L),
we obtain

∞∑
n=1

[
d�n(t)

dt
+ κ

(
nπ

L

)2

�n(t) − Hn(t)

]
sin
(

nπx
L

)
= 0.

As the right-hand side of this equation is zero, multiplying the series by sin (nπx/L)
and integrating the result over the interval 0 ≤ x ≤ L shows that the unknown
functions �n(t) are solutions of the linear first order equation

d�n(t)
dt

+ κ

(
nπ

L

)2

�n(t) = Hn(t), with n = 1, 2, . . . .

The initial conditions for these equations follow from the two different expres-
sions for u(x, 0), namely,

u(x, 0) =
∞∑

n=1

�n(0) sin
(

nπx
L

)
and u(x, 0) =

∞∑
n=1

an sin
(

nπx
L

)
.

These must be true for all x, so when equated they give �n(0) = an, for n = 1, 2, . . . .

A straightforward integration of the linear first order differential equations for�n(t)
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shows the solutions, subject to these initial conditions, to be

�n(t) = an exp

(
−
(

nπ

L

)2

κt

)

+
∫ t

0
exp

(
−
(

nπ

L

)2

κ(t − s)

)
Hn(s)ds, for n = 1, 2, . . . .

Finally, after substituting for �n(t) in

u(x, t) =
∞∑

n=1

�n(t)sin
(

nπx
L

)
,

we arrive at the required solution

u(x, t) =
∞∑

n=1

an exp

(
−
(

nπ

L

)2

κt

)
sin
(

nπx
L

)

+
∞∑

n=1

(∫ t

0
exp

(
−
(

nπ

L

)2

κ(t − s)

)
Hn(s)ds

)
sin
(

nπx
L

)
.

The first summation on the right is seen to be the solution of the homogeneous
equation, whereas the second summation represents the contribution made to the
solution by the nonhomogeneous term.

The following example shows how the wave equation can be solved by separa-
tion of variables when the boundary conditions are dependent on the time.

EXAMPLE 18.20 Solve the wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

in the interval 0 ≤ x ≤ L, subject to the initial conditions

u(x, 0) = f (x) and ut (x, 0) = g(x)

and the time-dependent boundary conditions

u(0, t) = h(t) and u(L, t) = k(t).

Solution To take account of the time-dependent boundary conditions, we define
an auxiliary function

v(x, t) =
(

L− x
L

)
h(t) +

(
x
L

)
k(t)

that agrees with the boundary conditions at x = 0 and x = L. Next we seek a solu-
tion u(x, t) of the form

u(x, t) = v(x, t) + w(x, t).

With this choice of u(x, t), it is seen that w(x, t) must be a solution of

∂2w
∂t2

= c2 ∂2w
∂x2

+
(

x − L
L

)
d2h
dt2

−
(

x
L

)
d2k
dt2

,
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with

w(x, 0) = f (x) +
(

x − L
L

)
h(0) −

(
x
L

)
k(0) = F(x), say,

wt (x, 0) = g(x) +
(

x − L
L

)
h′(0) −

(
x
L

)
k′(0) = G(x), say,

and

w(0, t) = w(L, t) = 0.

The trick now is to write w(x, t) = P(x, t) + Q(x, t), with P(x, t) the solution
of the homogeneous boundary value problem

∂2 P
∂t2

= c2 ∂2 P
∂x2

,

with the initial conditions

P(x, 0) = F(x), Pt (x, 0) = G(x)

and the homogeneous boundary conditions

P(0, t) = P(L, t) = 0.

Arguments similar to those used with Example 18.11 then show that

P(x, t) =
∞∑

n=1

[
An cos

(
nπct

L

)
+ Bn sin

(
nπct

L

)]
sin
(

nπx
L

)
,

where

An = 2
L

∫ L

0
F(x)sin

(
nπx

L

)
dx and Bn = 2

nπc

∫ L

0
G(x) sin

(
nπx

L

)
dx, n = 1, 2, . . . .

The function Q(x, t) is then a solution of the nonhomogeneous problem

∂2 Q
∂t2

= c2 ∂2 Q
∂x2

+
(

x − L
L

)
d2h
dt2

−
(

x
L

)
d2k
dt2

.

If we use the method of Example 18.19, the solution Q(x, t) becomes

Q(x, t) =
∞∑

n=1

�n(t) sin
(

nπx
L

)
,

where

�n(t) = L
nπ

∫ t

0
sin
(

nπ

L
(t − τ )

)
Sn(τ )dτ,

with

Sn(t) = 2
L

∫ L

0

[(
x − L

L

)
d2h
dt2

−
(

x
L

)
d2k
dt2

]
sin
(

nπx
L

)
dx.

The next example concerns the Laplace equation subject to Dirichlet conditions
that are imposed on the boundaries of an annulus, and it demonstrates how a
logarithmic term can appear in the solution.
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u(r2, θ) = G(θ)

u(r1, θ) = F(θ)

P(r, θ)
Δu = 0

0r2

r1

r

θ

FIGURE 18.32 The Laplace equation in the annulus
r1 ≤ r ≤ r2.

EXAMPLE 18.21 Find solution u(r, θ) of the Laplace equation in cylindrical polar coordinates

∂2u
∂r2

+ 1
r

∂u
∂r

+ 1
r2

∂2u
∂θ2

= 0,

in the annulus r1 ≤ r ≤ r2 shown in Fig. 18.32, where u(r, θ) is periodic in θ with
period 2π and subject to the general Dirichlet boundary conditions

u(r1, θ) = F(θ) and u(r2, θ) = G(θ),

where F(θ) and G(θ) are continuous functions of θ that are periodic with period
2π . Apply the result to find u(r, θ) in the annulus 2 ≤ r ≤ 3, when F(θ) = 1 + sin θ

and G(θ) = cos θ + 1
3 cos 2θ .

Solution First, it is necessary to remember that in polar coordinates the polar
angle θ is indeterminate to within a multiple of 2π , so for u(r, θ) to be a continuous
function of θ it is necessary that the Dirichlet (boundary) conditions should be
periodic with period 2π . This can be expressed analytically by requiring that F(θ) =
F(θ + 2π) and G(θ) = G(θ + 2π).

Separating variables by writing u(r, θ) = R(r)#(θ), substituting u(r, θ) into the
Laplace equation, dividing by R(r)#(θ), and separating the terms in R(r) and #(θ)
gives

r2 R′′(r) + rR′(r)
R(r)

= −#′′(θ)
#(θ)

= λ,

where λ is a separation constant whose values and sign remain to be determined.
The equation for #(θ), namely #′′ + λ# = 0, will only be periodic in θ when

λ > 0, and it will only be periodic with period 2π if λ = n2 with n = 0, 1, . . . . Thus,
the eigenvalues of the problem are λn = n2 and the associated eigenfunctions are

#n(θ) = An cos(nθ) + Bn sin(nθ), for n = 0, 1, . . . .
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Setting λ = λn in the equation for R(r) shows that it must be a solution of the
Cauchy–Euler equation

r2 d2 R
dr2

+ r
dR
dr

+ n2 R = 0.

When n = 0, cancelling r , setting dR/dr = v(r), separating variables, and solving
for v gives v = b0/r, with b0 an arbitrary constant of integration. After we replace
v(r) by dR/dr in this last result, a further integration gives

R0(r) = a0 + b0 ln r,

with a0 as a second arbitrary constant of integration. When n = 1, 2, . . . , the
Cauchy–Euler equation has the usual solution

Rn(r) = anrn + bn

rn
,

with an and bn arbitrary constants.
Adding these results, which is permissible because Laplace’s equation is linear

and homogeneous, shows that we must now seek a solution for u(r, θ) of the form

u(r, θ) = a0 + b0 ln r +
∞∑

n=1

[(
anrn + bn

rn

)
cos(nθ) +

(
cnrn + dn

rn

)
sin(nθ)

]
,

though at present it is unclear how the coefficients an, bn, cn, and dn are to be
determined.

The approach we now use to find these coefficients in the series for u(r, θ)
involves first expanding the Dirichlet condition F(θ) as Fourier series in θ over the
interval 0 ≤ θ ≤ 2π (remember that F(θ) is periodic in θ with period 2π). Then,
after setting r = r1 in the expression for u(r, θ) and using the Dirichlet boundary
condition u(r1, θ) = F(θ), we will equate the known coefficients of cos(n θ) and
sin(n θ) in the expansion of F(θ) and the unknown coefficients of the corresponding
terms in cos(n θ) and sin(n θ) in the representation of u(r1, θ). A further set of
equations will then be obtained in similar fashion by expanding G(θ) as a Fourier
series, setting r = r2 in u(r, θ), and using the second Dirichlet boundary condition,
which gives u(r2, θ) = G(θ). Taken together, these equations will determine all of
the coefficients an, bn, cn, and dn.

Accordingly, let us represent the Fourier series expansions of F(θ) and G(θ)
as follows:

F(θ) = 1
2 P0 +

∞∑
n=1

[Pn cos(nθ) + Qn sin(nθ)]

and

G(θ) = 1
2 S0 +

∞∑
n=1

[Sn cos(nθ) + Tn sin(nθ)].

Equating the coefficients of corresponding terms in cos(nθ) and sin(nθ) gives
1
2 P0 = a0 + b0 ln r1

1
2 S0 = a0 + b0 ln r2

Pn = anrn
1 + bn

rn
1

Qn = cnrn
1 + dn

rn
1

Sn = anrn
2 + bn

rn
2

Tn = cnrn
2 + dn

rn
2
.
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Once these equations have been solved for an, bn, cn, and dn, the expansion of
u(r, θ) can be determined, so the general approach to the solution of the Dirichlet
problem for Laplace’s equation in an annulus has been established.

When F(θ) = 1 + sin θ and G(θ) = cos θ + 1
3 cos 2θ , the solution simplifies, be-

cause the functions F(θ) and G(θ) are already their own Fourier series. The only
nonzero coefficients in the Fourier expansion of F(θ) and P0 = 2 and Q1 = 1,
whereas the only nonzero coefficients in the Fourier expansion of G(θ) are S1 = 1
and S2 = 1

3 . Consequently, we only need equate coefficients of terms up to the
multiple 2θ , so that when r = 2 we obtain

1 = a0 + b0 ln 2, 0 = 2a1 + 1
2 b1, 0 = 4a2 + 1

4 b2,

1 = 2c1 + 1
2 d1, 0 = 4c2 + 1

4 d2,

and when r = 3 we obtain

0 = a0 + b0 ln 3, 1 = 3a1 + 1
3 b1,

1
3 = 9a2 + 1

9 b2,

0 = 3c1 + 1
3 d1, 0 = 9c2 + 1

9 d2.

These have the solutions

a0 = − ln 3
ln(2/3)

, b0 = 1
ln(2/3)

, a1 = 3
5
, b1 = −12

5
, a2 = 3

65
,

b2 = −48
65

, c1 = −2
5
, d1 = 18

5
, c2 = d2 = 0,

and so

u(r, θ) = ln r − ln 3
ln(2/3)

+ 3
5

(
r − 4

r

)
cos θ + 3

65

(
r2 − 16

r2

)
cos 2θ − 2

5

(
r − 9

r

)
sin θ,

and the solution is complete.

The next example is of a different type again, in that it involves the solution of
Laplace’s equation in a region that is unbounded in one direction.

EXAMPLE 18.22 Find the steady state temperature distribution T(x, y) in the uniform slab of metal
shown in Fig. 18.33, given that no heat sources are present in the slab and the
temperatures on the boundaries are

T(x, 0) = T(x, a) = 0 for 0 < x < ∞, and T(0, y) = f (y),

where f (y) is a bounded function. State any additional condition that must be
imposed on T(x, y) for the solution to be physically possible.

Solution As the metal is uniform and there are no heat sources present, it follows
that the steady state temperature must be a solution of the Laplace equation

∂2T
∂x2

+ ∂2T
∂y2

= 0.

The sides of the slab are parallel to the coordinate axes, and the equation is homo-
geneous, so we may separate variables by setting

T(x) = X(x)Y(y).
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y

a

T(0, y) = f(y)

InfinityΔT = 0

0 T(x, 0) = 0

T(x, a) = 0

x

FIGURE 18.33 A semi-infinite slab of metal.

Substituting this expression into Laplace’s equation and proceeding in the nor-
mal manner, we arrive at the separated form of the equation

Y ′′

Y
= − X′′

X
= −λ,

where λ > 0 is a separation constant.
This last result separates Laplace’s equation into the two differential equations

Y′′ + λY = 0 and X′′ − λX = 0,

where the boundary conditions for Y(y) are easily seen to be Y(0) = Y(a) = 0.

Thus, we have arrived at the following Sturm–Liouville problem for Y(y):

Y′′ + λY = 0 with Y(0) = Y(a) = 0.

The general solution for Y(y) is

Y(y) = Acos
(√

λy
)

+ B sin
(√

λy
)

.

Imposing these boundary conditions on the general solution for Y(y) shows that
the eigenvalues are λn = n2π2/a2 and the corresponding eigenfunctions are Yn(y) =
sin(nπy/a), for n = 1, 2, . . . .

Setting λ = λn in the equation for X(x) and integrating gives

Xn(x) = Cn exp(−nπx/a) + Dn exp(nπx/a).

To make further progress it is now necessary to recognize that when no sources
are present in the metal, and a finite temperature is imposed along the boundary
x = 0, 0 < y < a, a physically possible temperature distribution is one that must be
bounded throughout the metal. This being so, we must set the coefficients Dn = 0
to remove the terms exp(nπx/a) that would otherwise become infinite as x → ∞,

thereby causing the functions Xn(x) to simplify to Xn(x) = exp(−nπx/a). Notice
that for convenience we have set all scale factors Cn = 1, since in what is to follow
they will be absorbed into the new arbitrary constants dn.

Writing Tn(x, y) = Xn(x)Yn(y) = exp(−nπx/a)sin(nπy/a), we now seek a so-
lution of the form

T(x, y) =
∞∑

n=1

dn Xn(x)Yn(y) =
∞∑

n=1

dn exp(−nπx/a)sin(nπy/a).
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If we set x = 0 in this summation and use the boundary condition T(0, y) = f (y),
this reduces to

f (y) =
∞∑

n=1

dn sin(nπy/a),

from which it follows in the usual manner that

dn = 2
a

∫ a

0
f (y) sin

(nπy
a

)
dy, for n = 1, 2, . . . .

The solution has been found by imposing the extra condition that T(x, y) remains
bounded in the (open) semi-infinite strip, which compensates for the normal re-
quirement for elliptic equations that the region is closed (see page 977).

Other accounts of the method of separation of variables are to be found in
references [3.7], [7.5], [7.7], [7.10], [7.15], [7.17], [7.19], and [7.20].

Summary An application of the separation of variables method of solution to a PDE was seen to lead
to a Sturm–Liouville problem with its parameter formed by a separation constant. When
time was involved, the eigenvalues and eigenfunctions of the Sturm–Liouville problem
were seen to be determined by the boundary conditions of the problem. This, in turn,
was seen to determine the general structure of the solution as a series of functions of
space and time, but with the multiplicative coefficients of these functions undetermined.
The unknown coefficients were obtained by requiring the general series solution to satisfy
the initial conditions, and by using the orthogonality properties of the functions involved.
An exception was the solution of a Dirichlet problem for the Laplace equation in an annular
region, where the coefficients in the series solution were obtained by matching the coeffi-
cients of corresponding sines and cosines of multiple angles. The examples given required
the use of cartesian, cylindrical, and spherical polar coordinates.

EXERCISES 18.10

In Exercises 1 through 9 solve the stated boundary value
problems for the wave equation in two independent vari-
ables utt = c2uxx on the interval 0 ≤ x ≤ L.

1. A stretched string of length L, clamped at each end,
starts from rest at time t = 0 with the initial shape
u(x, 0) = kx2(1 − x/L). Find its transverse displace-
ment u(x, t) at any subsequent time t > 0.

2. A stretched string of length L, clamped at each end,
starts from rest at time t = 0 with the initial shape
u(x, 0) = kx(1 − x2/L2). Find its transverse displace-
ment u(x, t) at any subsequent time t > 0.

3. A stretched string, clamped at each end, is displaced
from its equilibrium position by having its mid-point
given a small transverse displacement k, so that its ini-
tial shape is given by

u(x, 0) =
{

2kx/L, 0 ≤ x ≤ L/2
2k(1 − x/L), L/2 ≤ x ≤ L.

If, while in this position, the string is released from rest
at time t = 0, find its transverse displacement u(x, t) at
any subsequent time t > 0.

4. A stretched string, clamped at each end, is displaced
from its equilibrium position by having a point on the
string at x = L/3 given a small transverse displacement
k, so that its initial shape is given by

u(x, 0) =
{

3kx/L, 0 ≤ x ≤ L/3
3
2

k(1 − x/L), L/3 ≤ x ≤ L.

If, while in this position, the string is released from rest
at time t = 0, find its transverse displacement u(x, t) at
any subsequent time t > 0.

5. A stretched string of length L, clamped at each end,
starts from rest at time t = 0 with the initial shape
u(x, 0) = ksin(πx/L). Use a simple argument to find
its transverse displacement u(x, t) at any subsequent
time t > 0.
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6. At time t = 0 a stretched string of length L, clamped at
each end, starts from its equilibrium position u(x, 0) = 0
with the transverse speed ut (x, 0) = ksin(2πx/L). Use
simple arguments to find its transverse displacement
u(x, t) at any subsequent time t > 0.

7. At time t = 0 a stretched string of length L, clamped
at both ends, starts from its equilibrium position
u(x, 0) = 0 with the transverse speed ut (x, 0) = kx(1 −
x/L). Find its transverse displacement u(x, t) at any sub-
sequent time t > 0.

8. At time t = 0 a stretched string of length L, clamped
at both ends, starts from its equilibrium position
u(x, 0) = 0 with the transverse speed ut (x, 0) = kx2(1 −
x/L). Find its transverse displacement u(x, t) at any sub-
sequent time t > 0.

9. A string of length L is clamped at the end x = 0, and
its other end is allowed to move along the line x = L
in such a way that its slope at x = L remains horizon-
tal, so that ux(L, t) = 0. If the string starts from rest
at the time t = 0 with the initial shape u(x, 0) = kx/L
with 0 ≤ x ≤ L, find its transverse displacement at any
subsequent time t > 0.

10. An approximate description of the oscillations of air
caused by blowing across the end of a tube is provided
by the wave equation ptt = c2 pxx , where c is the speed
of sound in air and p is the air pressure in the tube.
The velocity v of the air transverse to the axis of the
tube is given by ρvt = −px , where ρ is the density of
the air. When the tube is closed at the end x = 0 and
open at the end x = L, the boundary conditions are
px(0, t) = px(L, t) = 0. Find the eigenvalues determin-
ing the possible frequencies of oscillation, the associ-
ated eigensolutions, and the transverse speed v(x, t) as-
sociated with each mode.

11. Solve the initial boundary value problem uxx = uyy +
5uy when u(x, 0) = e−6x and uy(x, 0) = 0. Find the ap-
proximate form of the solution when y is large and pos-
itive.

12. A rectangular membrane with its corners at (0, 0), (a, 0),
(a, b), and (0, b) has its edges clamped. Show that the
eigenvalues λmn determining the vibrational frequen-
cies λmnc/2π are given by

λ2
mn =

√
(nπ/a)2 + (mπ/b)2,

and that the corresponding eigensolutions determining
the modes of vibration are proportional to

umn(x, y) = sin(nπx/a) sin(mπy/b) cos(λmnct).

13. The temperature u(x, t) in a strip of metal of width L is
governed by the heat equation kuxx = ut for 0 ≤ x ≤ L
and t > 0. Find the temperature in the strip given that
the initial condition is u(x, 0) = x and the boundary

conditions, corresponding to insulated ends of the strip,
are ux(0, t) = ux(L, t) = 0 for t > 0.

14. The electric potential u(x, y) in the semi-infinite strip
x > 0, 0 < y < a satisfies the Laplace equation uxx +
uyy = 0. Find the potential in the strip if u(x, y) is fi-
nite throughout the strip and it satisfies the boundary
conditions on the top and bottom of the strip

uy(x, 0) = uy(x, a) = 0,

corresponding to insulator sides of the strip, and the
potential

u(0, y) =
{

1, 0 ≤ y ≤ a/2
0, a/2 < y ≤ a

at x = 0 on the y-axis at the end of the strip.
15. Find the potential inside the spherical cavity in Exam-

ple 18.17 when the potential on the spherical boundary
r = ρ is zero for 0 ≤ θ < π

4 , U for π

4 < θ < 3π

4 , and zero
for 3π

4 < θ ≤ π .
16. Explain why when in spherical coordinates the solution

u(r, θ) of the Laplace equation does not depend on φ,
the solution outside a sphere on which the potential u
is given can be written as a linear combination of the
eigensolutions

un(r, θ) = 1
rn+1

Pn(ξ),

for n = 0, 1, . . . , where the Pn(ξ) with ξ = cos θ are
Legendre polynomials of degree n. Use this result to
find the first four terms in the Fourier–Legendre expan-
sion of the potential u(r, ξ) outside a sphere of radius ρ

when the potential on the surface r = ρ of the sphere
is zero for 0 ≤ θ < π

4 , U for π

4 < θ < π

2 , and zero for
π

2 < θ ≤ π .
17. A uniform rectangular membrane 0 ≤ x ≤ c, 0 ≤ y ≤ d

is clamped around its edges and performs small oscil-
lations governed by the equation c2(uxx + uyy) = utt ,
where u(x, y, t) is the displacement of the membrane
normal to the (x, y)-plane at time t and position (x, y),
and c is a constant. Derive a general series expansion
for u(x, y, t) when the membrane satisfies the boundary
conditions

u(0, y, t) = u(c, y, t) = 0 for 0 ≤ y ≤ d

and u(x, 0, t) = u(x, d, t) = 0 for 0 ≤ x ≤ c

and the initial conditions

u(x, y, 0) = f (x, y) and ut (x, y, 0) = g(x, y).

Use the result to find the form of the solution when

f (x, y) = 2 sin
(

3πx
c

)
sin
(πy

d

)
and g(x, y) = 0.

Explain why the solution is so simple.
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18. Show that the solution of �u = 0 in the rectangle
0 ≤ x ≤ l, 0 ≤ y ≤ L subject to the boundary condi-
tions u(0, y) = u(l, y) = 0 and u(x, 0) = sin(πx/ l) and
u(x, L) = sin(2πx/ l) is given by

u(x, y) = sinh(2πy/ l)
sinh(2π L/ l)

sin
(

2πx
l

)

− sinh(π(y − L)/ l)
sinh(π L/ l)

sin
(πx

l

)
.

19. Show that the solution of the diffusion equation ut =
κ2uxx for 0 ≤ x ≤ L, t > 0 subject to the boundary con-
ditions

u(0, t) = u(L, t) = 0, t > 0,

and the initial condition

u(x, 0) =
{

x, 0 ≤ x ≤ L/2
L− x, L/2 ≤ x ≤ L

is

u(x, t) = 4L
π2

∞∑
n=0

(−1)n

(2n + 1)2

× exp

[
− (2n + 1)2π 2κ2

L2
t

]
sin

(2n + 1)πx
L

.

20. Solve the Laplace equation

∂2u
∂r 2

+ 1
r

∂u
∂r

+ 1
r 2

∂2u
∂θ 2

= 0

in the annulus 3 ≤ r ≤ 5, subject to the Dirichlet con-
ditions

u(3, θ) = 2 + cos θ and u(5, θ) = 1 − sin 2θ.

21. Find the steady state temperature distribution deter-
mined by the Laplace equation

∂2T
∂x2

+ ∂2T
∂y2

= 0

in the semi-infinite block of metal x ≥ 0, 0 ≤ y ≤ π sub-
ject to the boundary conditions

T(x, 0) = T(x, π) = 0 for 0 ≤ x < ∞
and T(0, y) = y cos(y − π/2).

18.11 Some General Results for the Heat
and Laplace Equations

(a) Equations Reducible to the Heat Equation
The simplest form of the heat equation for the function u(x, t) occurs when the
thermal conductivity κ is a constant and κ = 1, so the equation becomes

∂u
∂t

= ∂2u
∂x2

. (143)

The following transformations reduce the given form of parabolic equation to the
form given in (143).

(i) The transformation τ = κ2t reduces the equation

∂u
∂t

= κ2 ∂2u
∂x2

to
∂u
∂τ

= ∂2u
∂x2

.

(ii) The transformation v(x, t) = exp(−at)u(x, t) reduces the equationPDEs that can be
reduced to the
heat equation ∂v

∂t
= κ2 ∂2v

∂x2
− aeat v to

∂u
∂t

= κ2 ∂2u
∂x2

.
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(iii) The transformation v(x, t) = exp[b(x − 1
2 bt)/(2κ2)]u(x, t) reduces the

equation

∂v
∂t

= κ2 ∂2v
∂x2

− bvx to
∂u
∂t

= κ2 ∂2u
∂x2

.

(iv) Successive applications of transformations (i), (ii), and (iii) reduce the equa-
tion

∂w
∂t

= κ2 ∂2w
∂x2

− bwx − aw to
∂u
∂t

= ∂2u
∂x2

.

(b) The Weak Maximum/Minimum Principle
for the Heat Equation
Physical intuition suggests that because heat flows from a region of high temperature
to one of lower temperature, the temperature u(x, t) at any interior point of the
interval 0 ≤ x ≤ L at a time t0 > 0 must be less than the maximum of the initial
temperature distribution on the interval when t = 0, or the maximum at the ends
x = 0 and x = L during the time 0 < t < t0. Conversely, the temperature u(x, t)
in the time interval 0 < t < t0 will be greater than the least of the minima of the
temperature distributions over the interval at the initial time, and at the ends x = 0
and x = L. These observations form the substance of Theorem 18.1, which is called
the weak maximum/minimum principle for the heat equation. The theorem is useful
when proving general properties of the heat equation, and also for finding bounds
on the solution without the need to solve the equation. The proof of the theorem
that follows is based on the approach used by Petrovsky.

THEOREM 18.1 The maximum/minimum principle for the heat equation Let u(x, t) be the solution
of the heat equation

∂u
∂t

= ∂2u
∂x2

in the rectangular region D formed by 0 ≤ x ≤ L, 0 ≤ t ≤ t0, and subject to the
boundary conditionsthe form taken by

the max/min
principle for the
heat equation

u(0, t) = h1(t) and u(L, t) = h2(t) for 0 ≤ t ≤ t0

and the initial condition

u(x, 0) = �(x).

Let m and M, respectively, be the smallest and greatest values assumed by u on
the partial boundary � of the rectangle D formed by the interval 0 ≤ x ≤ L on
the x-axis and the two vertical lines x = 0, 0 ≤ t ≤ t0 and x = L, 0 ≤ t ≤ t0, the line
forming the top of the rectangle being omitted. Then the solution u(x, t) is such that

m ≤ u(x, t) ≤ M.

Proof Let M be the maximum of u(x, t) in D and �, and m be the minimum
of u on �. Assume, if possible, that the statement of the theorem is false and there
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exists a solution u(x, t) such that M > m at some point (ξ, τ ) strictly inside D. Now
consider the function

v(x, t) = u(x, t) + M − m
4L2

(x − ξ)2.

Then on � we have

v(ξ, τ ) ≤ m + 1
4

(M − m) <
1
4

M + 3
4

m = kM,

where 0 < k < 1 and v(ξ, τ ) = M.
This shows that v does not assume its maximum value on �, so it must occur

at some point (ξ1, τ1) inside D. From the elementary calculus of maxima of twice
continuously differentiable functions of two variables, we must have ∂2v/∂x2 ≤ 0
and ∂v/∂t ≥ 0 at (ξ1, τ1). Consequently, at the point (ξ1, τ1) we have shown that

∂v
∂t

− ∂2v
∂x2

≥ 0,

but direct calculation shows that

∂v
∂t

− ∂2v
∂x2

= − M − m
2L2

< 0.

This is a contradiction, so the assumption that the maximum of u(x, t) can occur
inside D is false. The result concerning the minimum of u(x, t) follows by applying
the preceding result to −u(x, t), so the theorem is proved.

An almost immediate consequence to this theorem is the continuous dependence
of the solution of the heat equation on the boundary and initial conditions, showing
that it is a properly posed problem.

THEOREM 18.2 The continuous dependence of u(x, t) on the boundary and initial conditions
Consider the two problems

showing the
continuous
dependence of the
solution of the
heat equation on
the initial and
boundary
conditions

(I)
∂u
∂t

= ∂2u
∂x2

in the rectangular region D formed by 0 ≤ x ≤ L, 0 ≤ t ≤ t0, and subject to the
boundary conditions

u(0, t) = h1(t) and u(L, t) = h2(t) for 0 ≤ t ≤ t0

and the initial condition

u(x, 0) = �(x),

and

(II)
∂v
∂t

= ∂2v
∂x2

in the rectangular region D formed by 0 ≤ x ≤ L, 0 ≤ t ≤ t0, and subject to the
boundary conditions

v(0, t) = H1(t) and v(L, t) = H2(t) for 0 ≤ t ≤ t0

and the initial condition

v(x, 0) = �(x).
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Then, if for some arbitrarily small number ε > 0

|h1(t) − H1(t)| ≤ ε and |h2(t) − H2(t)| ≤ ε for 0 ≤ t ≤ t0,

and

|�(x) − �(x)| ≤ ε for 0 ≤ x ≤ L,

it follows that |u(x, t) − v(x, t)| ≤ ε for 0 ≤ x ≤ L and 0 ≤ t ≤ t0.

Proof Set w(x, t) = u(x, t) − v(x, t), and notice that as the heat equation is linear,
w(x, t) will also be a solution of the heat equation. It then follows from the boundary
conditions that

|w(0, t)| = |h1(t) − H1(t)| ≤ ε and |w(L, t)| = |h2(t) − H2(t)| ≤ ε for 0 ≤ t ≤ t0,

and from the initial conditions that

|w(x, 0)| = |�(x) − �(x)| ≤ ε for 0 ≤ x ≤ L.

From Theorem 18.1, the maximum of w(x, t) on the partial boundary � defined
in the theorem cannot exceed ε and it cannot be less than −ε, so −ε ≤ w(x, t) ≤ ε.
This is equivalent to

|u(x, t) − v(x, t)| ≤ ε,

so the theorem is proved.

To see how Theorem 18.1 can be used to place bounds on solutions of the
heat equation ut = uxx, consider the problem corresponding to h1(t) = t sin t and
h2(t) = 0 for 0 ≤ t ≤ π

2 and �(x) = sin(3x/2) − sin x for 0 ≤ x ≤ π .
The maximum and minimum values of h1(t) for 0 ≤ t ≤ π

2 are π
2 and 0, re-

spectively, and h2(t) is identically zero, whereas on the interval 0 ≤ x ≤ π a plot of
�(x) shows it has a maximum of 0.2233 at x = 0.6858 and a minimum of −1.2160
at x = 2.7084. The partial boundary � in Theorem 18.1 comprises the interval
0 ≤ x ≤ π on the x-axis, and the two vertical lines x = 0 and x = π for 0 ≤ t ≤ π

2 ,
so from Theorem 18.1

−1.2160 ≤ u(x, t) ≤ π/2 for 0 ≤ x ≤ π and 0 ≤ t ≤ π

2
.

(c) The Fundamental Solution
of the Heat Equation
It was proved in Section 10.2, using the Fourier transform, that when the heat
equation defined in the infinite interval −∞ < x < ∞ is written in the form

∂2u
∂x2

= 1
k

∂u
∂t

(k = κ2), (144)

its solution subject to the initial condition u(x, 0) = f (x) is given bythe fundamental
solution of the
heat equation
and the delta
function

u(x, t) =
√

1
4πkt

∫ ∞

−∞
f (x′) exp

{
− (x − x′)2

4kt

}
dx′. (145)
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Setting f (x) = δ(x), where δ(x) is the Dirac delta function, simplifies this result
to

u(x, t) =
√

1
4πkt

exp
{
− x2

4kt

}
.

This elementary solution, which corresponds to an initial condition in the form of a
single delta function located at the origin, is called the fundamental solution of the
heat equation, and it is often denoted by K(x, t), so that

K(x, t) =
√

1
4πkt

exp
{
− x2

4kt

}
. (146)

In terms of K(x, t), the solution of

∂2u
∂x2

= 1
k

∂u
∂t

subject to the initial condition u(x, 0) = f (x) can be written

u(x, t) =
∫ ∞

−∞
f (x′)K(x − x′, t)dx′,

showing that u(x, t) is the convolution of the initial condition f (x) and K(x, t).
The fundamental solution plays an important role in more advanced studies of

the heat/diffusion equation (see, for example, references [7.14] and [7.20]).

(d) The Maximum/Minimum Principle
for Solutions of the Laplace Equation
For the sake of completeness we restate the maximum–minimum theorem for har-
monic functions (solutions of the Laplace equation) that was established in Theo-
rem 14.17 of Chapter 14.

THEOREM 18.3 The maximum/minimum theorem for harmonic functions If the function u(x, y)
satisfies the Laplace equation (is harmonic)

∂2u
∂x2

+ ∂2u
∂y2

= 0

in some open bounded region D and continuous on its boundary �, then the maxi-again the max/min
theorem for harmonic
functions and
continuous
dependence on
Dirichlet conditions

mum and minimum values of u occur on �.

An argument similar to the one used in Theorem 18.2 establishes the continuous
dependence of solutions of the Laplace equation on Dirichlet conditions imposed
on �, showing that the problem is well posed.
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Summary Substitutions were given that reduce certain types of parabolic equation to the standard
heat equation. A maximum/minimum theorem was proved for the heat equation, and
used to show the continuous dependence of the solution on the initial and boundary
conditions. The delta function was then employed to derive the fundamental solution
of the heat equation that enables the solution to be found subject to an arbitrary initial
condition for a problem defined in the infinite interval −∞ < x < ∞.

18.12 An Introduction to Laplace and Fourier
Transform Methods for PDEs

The solution of partial differential equations by means of Laplace and Fourier
transforms has already been illustrated in Section 7.3(e)(ii) and Section 10.2. In
the examples just mentioned, the application of the Fourier transform, the Fourier
sine transform, and the Laplace transform to the one-dimensional heat equation all
involved the same three fundamental steps that are typical of transform methods,
so these are summarized below in terms of a function u(x, t) that satisfies a linear
constant coefficient PDE.

Steps in the solution of a PDE by means of an integral transform

STEP 1 Let the solution of a PDE be the function u(x, t) of the two inde-
pendent variables x and t . Transform u(x, t) with respect to one of its inde-
pendent variables by means of an integral transform suited to the problem. If,
for example, the transform is with respect to x, then a transformed variable
U(α, t) is obtained, where α is the transform variable. If a Laplace transform
is appropriate, the transform variable α will be s, and when a Fourier trans-
form is appropriate, α will be ω. Rearrange the result to obtain an ordinary
differential equation for the transformed variable U(α, t) where t is the single
independent variable and α is a parameter.

STEP 2 Find the general solution of the ODE for U(α, t) as a function of
t , with the transform variable α still appearing as a parameter in the solution,
and use the boundary and/or initial conditions of the original problem to
determine the precise form of the transform U(α, t).

STEP 3 Invert the transform U(α, t) to find the required solution u(x, t).
In simple cases the inversion can be performed with the help of a table of
transform pairs, but in general U(α, t) must be inverted using the appropriate
inversion integral.

The type of transform to be used, and the independent variable in u(x, t) that

the basic steps to be
followed when
solving a PDE using
an integral transform

is to be transformed, depends on the region in which the solution is required, and
also on the boundary and initial conditions of the original problem. In general, the
Laplace and the Fourier sine and cosine transforms can be used when the variable
to be transformed is defined over the semi-infinite interval [0, ∞), and a Fourier
transform is used when the variable to be transformed is defined over the entire real
line (−∞, ∞). If the transformed variable is defined over the semi-infinite interval
[0, ∞), the appropriate choice of transform is determined by the partial derivatives
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that are to be transformed and the nature of the boundary and/or initial conditions
of the original problem.

The following summary of the way in which derivatives transform illustrates
what must be known about u(x, t) in order that the necessary transforms of partial
derivatives can be determined and, consequently, which transform should be used.

The transform of derivatives by different transforms

The Laplace transforms of u(x, t) and its partial derivatives:how partial
derivatives transform
when using different
transforms tL{u(x, t)} = U(x, s) =

∫ ∞

0
e−st u(x, t)dt

tL
{

∂u(x, t)
∂t

}
= sU(x, s) − u(x, 0)

xL
{

∂u(x, t)
∂x

}
= sU(s, t) − u(0, t)

tL
{

∂2u(x, t)
∂t2

}
= s2U(x, s) − su(x, 0) − ut (x, 0)

xL
{

∂2u(x, t)
∂x2

}
= s2U(s, t) − su(0, t) − ux(0, t)

tL
{

∂nu(x, t)
∂xn

}
= dnU(x, s)

dxn
, n = 1, 2, . . . .

Corresponding results are easily written down for mixed and higher order
derivatives using the results for the ordinary Laplace transform given in
Theorem 7.3, so, for example,

tL
{

∂2u(x, t)
∂x∂t

}
= ∂

∂x

∫ ∞

0
e−st ∂u(x, t)

∂t
dt = ∂

∂x
(sU(x, s) − u(x, 0))

= s
dU(x, s)

dx
− ux(x, 0).

The Fourier transform of u(x, t) and its partial derivatives:

tF{u(x, t)} = U(x, ω) = 1√
2π

∫ ∞

−∞
u(x, t) exp{−iωt}dt

xF{u(x, t)} = U(ω, t) = 1√
2π

∫ ∞

−∞
u(x, t) exp{−iωx}dx.

Here the replacement of an independent variable by ω in the transformed
function U indicates that the Fourier transform has been performed with
respect to that variable:

tF
{

∂nu(x, t)
∂tn

}
= (iω)nU(x, ω), n = 1, 2, . . .

xF
{

∂nu(x, t)
∂tn

}
= ∂nU(ω, t)

∂tn
, n = 1, 2, . . .

tF
{

∂nu(x, t)
∂xn

}
= ∂nU(x, ω)

∂xn
, n = 1, 2, . . . .
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Corresponding results apply when mixed partial derivatives are involved
so, for example,

tF
{

∂2u(x, t)
∂x∂t

}
= ∂

∂x tF
{

∂u(x, t)
∂t

}
= iω

∂U(x, ω)
∂x

.

The Fourier sine and cosine transforms of u(x, t) and its partial derivatives:

xFC

{
∂ f (x, t)

∂x

}
= ωFS(ω, t) −

√
2
π

f (0, t)

xFS

{
∂ f (x, t)

∂x

}
= −ωFC(ω, t)

xFC

{
∂2 f (x, t)

∂x2

}
= −ω2 FS(ω, t) −

√
2
π

fx(0, t)

xFS

{
∂2 f (x, t)

∂x2

}
= −ω2 FS(ω, t) + ω

√
2
π

f (0, t)

xFC

{
∂n f (x, t)

∂tn

}
= ∂n FC(ω, t)

∂tn
.

Corresponding results can be written down for the transform of higher order
partial derivatives and also when the transform is with respect to t instead of
x. The transforms of mixed partial derivatives are obtained straightforwardly
from the preceding results so that, for example,

xFC

{
∂2 f (x, t)

∂x∂t

}
= ∂

∂t xFC

{
∂ f (x, t)

∂x

}
= ω

∂ FS(ω, t)
∂t

−
√

2
π

ft (0, t).

The examples that follow illustrate the use of different integral transforms when
solving some simple but typical problems.

EXAMPLE 18.23 Use a transform method to obtain the Poisson integral formula

u(x, y) = 1
π

∫ ∞

−∞

yf (ξ)
(x − ξ)2 + y2

dξ,

which solves the boundary value problem for the Laplace equation uxx + uyy = 0finding some
solutions using
integral transforms

in the half-plane −∞ < x < ∞, y > 0 subject to the boundary condition u(x, 0) =
f (x).

Solution As x belongs to the entire real line −∞ < x < ∞, only the Fourier trans-
form with respect to x can be used. Setting xF{u(x, y)} = U(ω, y) and transforming
the Laplace equation with respect to x gives

(iω)2U(ω, y) + d2

dy2
U(ω, y) = 0.

This has the general solution

U(ω, y) = A(ω)eωy + B(ω)e−ωy,

where A(ω) and B(ω) are functions of ω that are to be determined. As y > 0, and the
solution must be bounded for both positive and negative ω, this can only be possible
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if A(ω) = 0 when ω > 0 and B(ω) = 0 when ω < 0. Defining C(ω) = A(ω) + B(ω)
allows the transform U(ω, y) to be written

U(ω, y) = C(ω)e−y|ω|, for −∞ < ω < ∞ and y > 0.

Provided f (x) has a Fourier transform F{ f (x)} = F(ω), the result of trans-
forming u(x, 0) = f (x) is U(ω) = F(ω). Setting y = 0 in U(ω, y) and using this last
result shows that C(ω) = F(ω), and so

U(ω, y) = F(ω)e−y|ω|.

The result of Example 10.3(c) can be rewritten as

xF
{√

2
π

(
y

x2 + y2

)}
= e−y|ω|,

so applying the convolution theorem to U(ω, y) and using the foregoing result yields
the Poisson integral formula

u(x, y) = 1
π

∫ ∞

−∞

yf (ξ)
(x − ξ)2 + y2

dξ.

EXAMPLE 18.24 Use a transform method to derive the D’Alembert formula

u(x, t) = h(x − ct) + h(x + ct)
2

+ 1
2c

∫ x+ct

x−ct
k(σ )dσ,

which solves the initial value problem for the wave equation utt = c2uxx with
u(x, 0) = h(x) and ut (x, 0) = k(x), where −∞ < x < ∞, t > 0.

Solution As x belongs to the entire real line −∞ < x < ∞, only the Fourier trans-
form with respect to x can be used. Setting xF{u(x, t)} = U(ω, t) and transforming
the wave equation with respect to x gives

d2U(ω, t)
dt2

= c2(iω)2U(ω, t).

This ordinary differential equation in which ω appears as a parameter has the
general solution

U(ω, t) = A(ω) cos(ωct) + B(ω) sin(ωct),

where the functions A(ω) and B(ω) of ω are to be determined.
Provided h(x) has the Fourier transform F{h(x)} = H(ω), the result of trans-

forming the first initial condition u(x, 0) = h(x) with respect to x is

xF{u(x, 0)} = H(ω).

Differentiation of U(ω, t) with respect to t gives

∂U(ω, t)
∂t

= −ωcA(ω) sin(ωct) + ωcB(ω) cos(ωct),

and so

Ut (ω, 0) = ωcB(ω).
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Provided k(x) has the Fourier transformF{k(x)} = K(ω), as xF{ut (x, t)} = Ut (ω, t)
and ut (x, 0) = k(x), we see that Ut (ω, 0) = K(ω). Using these results in the expres-
sion for U(ω, t) we find that the Fourier transform of the solution is

U(ω, t) = H(ω) cos(ωct) + K(ω)
sin(ωct)

ωc
.

If we replace cos(ωct) by 1
2 (eiωct + e−iωct ), this becomes

U(ω, t) = 1
2

H(ω)(eiωct + e−iωct ) + K(ω)
sin(ωct)

ωc
.

The solution is now obtained by finding xF−1{U(ω, t)}. The transform U(ω, t)
is sufficiently simple that the inversion of the first group of terms can be performed
using Fourier transform pairs and Theorem 10.8, while the inversion of the last term
can be obtained with the help of Example 10.3(a) and the convolution theorem.
From Theorem 10.8(ii) the inverse transform of the first group of terms is seen to be

xF−1
{

1
2

H(ω)(eiωct + e−iωct )
}

= 1
2

[h(x + ct) + h(x + ct)],

while appeal to Example 10.3(a) and the convolution theorem shows that

xF−1
{

K(ω)
sin(ωct)

ωc

}
= 1

2c

∫ x+ct

x−ct
k(σ )dσ.

The D’Alembert formula now follows by addition of these results.

EXAMPLE 18.25 Use a transform method to find the solution of the modified wave equation

vxx = c2vtt + 2ckvt + k2v

that remains finite for t > 0 and satisfies the initial conditions v(x, 0) = 0 and
vt (x, 0) = 0 and the boundary condition v(0, t) = sin t for t > 0.

Solution Although both x and t lie in semi-infinite intervals, only the initial con-
ditions imposed on v(x, t) are sufficient to allow the Laplace transform of the PDE
to be taken with respect to t . Defining tL{v(x, t)} = V(x, s), using the initial con-
ditions v(x, 0) = 0 and vt (x, 0) = 0, and taking the Laplace transform of the PDE
with respect to t gives

d2V(x, s)
dx2

= c2s2V(x, s) + 2cksV(x, s) + k2V(x, s),

so

d2V(x, s)
dx2

− (cs + k)2V(x, s) = 0.

This ordinary differential equation with s appearing as a parameter has the
solution

V(x, s) = A(s) exp[(cs + k)x] + B(s) exp[−(cs + k)x],

where the functions A(s) and B(s) of s are to be determined. For the solution to
remain bounded for all t it is necessary that A(s) = 0, and so when x = 0

V(0, s) = B(s) exp[−(cs + k)x].
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Taking the Laplace transform of the boundary condition gives

tL{v(0, t)} = L{sin t} = 1/(s2 + 1),

and so B(s) = 1/(s2 + 1) and

V(x, s) = 1
s2 + 1

exp[−(cs + k)x] = e−kx e−cxs

s2 + 1
.

Using the table of transform pairs and the second shift theorem to invert the Laplace
transform V(x, s), we arrive at the solution

v(x, t) = e−kx sin(t − cx)H(t − cx),

where H is the Heaviside unit step function.
Examination of the form of the solution shows it to be a traveling wave that

decays exponentially with distance, and because of the delay introduced by the
Heaviside unit step function, the periodic disturbance at x = 0 will have no effect
at a position x = x0 until a time t such that t > cx0.

EXAMPLE 18.26 Use an integral transform to find the solution of the two-dimensional Laplace
equation uxx + uyy = 0 in the infinite strip 0 ≤ y ≤ a, given that u(x, 0) = 0 and
u(x, a) = f (x), and interpret the result in terms of two different physical problems.

Solution As −∞ < x < ∞, it is necessary to use the Fourier transform with re-
spect to x, so transforming the Laplace equation we find that

(iω)2U(ω, y) + d2U(ω, y)
dy2

= 0.

The solution of this ODE for the Fourier transform U(ω, y) of the solution u(x, y)
is

U(ω, y) = A(ω)eωy + B(ω)e−ωy,

where the functions A(ω) and B(ω) of ω are to be determined. Assuming that f (x)
has the Fourier transform F(ω), the Fourier transform of the boundary conditions
becomes

xF{u(x, 0)} = U(ω, 0) = 0 and xF{u(x, a)} = U(ω, a) = F(ω).

The transform U(ω, y) is required to satisfy these two-point boundary condi-
tions, and a routine calculation shows that

U(ω, y) = F(ω)
sinh(ωy)
sinh(ωa)

.

Applying the Fourier inversion integral to U(ω, y) gives

u(x, y) = 1√
2π

∫ ∞

−∞
U(ω, y)eiωxdω.

If G(ω, y) is defined as

G(ω, y) = sinh(ωy)
sinh(ωa)

,

we can write

U(ω, y) = F(ω)G(ω, y),
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and so

u(x, y) = 1√
2π

∫ ∞

−∞
F(ω)G(ω, y)eiωxdω.

If g(x, y) = xF−1{G(ω, y)}, an application of the Fourier convolution theorem to
the expression on the right gives

u(x, y) = 1√
2π

( f ∗ g).

By definition

g(x, y) = 1√
2π

∫ ∞

−∞

sinh(ωy)
sinh(ωa)

eiωxdω,

so after expansion of the factor eiωx this becomes

g(x, y) = 1√
2π

∫ ∞

−∞

sinh(ωy)
sinh(ωa)

cos(ωx)dω + i√
2π

∫ ∞

−∞

sinh(ωy)
sinh(ωa)

sin(ωx)dω.

The last integral is zero because its integrand is an odd function of ω, but the
integrand of the first integral is an even function of ω, so

g(x, y) = 1√
2π

∫ ∞

−∞

sinh(ωy)
sinh(ωa)

cos(ωx)dω =
√

2
π

∫ ∞

0

sinh(ωy)
sinh(ωa)

cos(ωx)dω.

Using these results in the convolution theorem now gives

u(x, y) = 1√
2π

( f ∗ g) = 1√
2π

√
2
π

∫ ∞

ω=0

∫ ∞

−∞
f (τ )

sinh(ωy)
sinh(ωa)

cos[(ω − τ )x]dτdω,

and so

u(x, y) = 1
π

∫ ∞

ω=0

∫ ∞

−∞
f (τ )

sinh(ωy)
sinh(ωa)

cos[(ω − τ )x]dτdω.

One physical interpretation of this problem is that it provides the steady state
temperature distribution in a slab of metal of thickness a when the lower face is
maintained at a temperature u(x, 0) = 0 and the upper face is maintained at the
temperature u(x, a) = f (x). Another interpretation is that it provides the potential
distribution in air between two parallel conducting plates a distance a apart, when
the lower plate is maintained at zero potential and the upper one is maintained at
the potential u(x, a) = f (x).

Fourier and Laplace transform methods for the solution of PDEs are also dis-
cussed in references [3.8] and [7.14].

Summary The basic steps to be followed when attempting to solve a PDE by means of an integral
transform were outlined, and the way in which partial derivatives are transformed by
different integral transforms was listed. The examples that followed showed how the nature
of the problem to be solved, together with the boundary and initial conditions, serves to
determine the appropriate form of transform that is to be used.
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EXERCISES 18.12

1. Find the solution T(x, t) that is finite for all x > 0,
t > 0 and such that Tt = kTxx subject to the conditions
T(x, 0) = T0 for x > 0 and T(0, t) = 0 for t > 0.

2. Find the solution T(x, t) that is finite for all x > 0,
t > 0 and such that Tt = kTxx subject to the conditions
T(x, 0) = 0 for x > 0 and T(0, t) = e−t for t > 0.

3. Find the solution T(x, t) that is finite for all x > 0,
t > 0 and such that Tt = kTxx subject to the conditions
T(x, 0) = T0 for x > 0 and T(0, t) = T0 cos at for t > 0.

4. Use the Fourier transform to solve the problem Tt =
kTxx subject to the condition T(x, 0) = T0/(1 + x2).

5. Solve utt = c2uxx − ku for −∞ < x < ∞, t > 0 subject
to the conditions

u(x, 0) =
{

U, |x| ≤ 1
0, |x| > 1

and ut (x, 0) = 0.

6. Find the bounded solution of ut = κuxx + Qδ(x) sub-
ject to the initial condition u(x, 0) = 0 for t > 0, where
δ(x) is the Dirac delta function.

7. Find the bounded solution of uxx + uyy = 0 in the upper
half-plane −∞ < x < ∞, y > 0 subject to the condition
that u(x, 0) = f (x).

8. Find the bounded solution of uxx + uyy = 0 in the
strip −∞ < x < ∞, 0 < y < a subject to the conditions
u(x, 0) = f (x) and u(x, a) = 0.

9. It was shown in Section 10.2 that

1
2π

∫ ∞

−∞
exp{iωx − ω2κt}dω =

√
1

4πκt
exp

{
− x2

4κt

}
.

By differentiating this result with respect to x, show that

xF−1
S {ω exp(−ω2κt)} = x

2
√

2(κt)3/2
exp

{
− x2

4κt

}
.

10.* Find the Fourier sine transform with respect to x of
the bounded solution of the heat equation ut = kuxx

defined for x > 0, t > 0 that is subject to the initial con-
dition u(x, 0) = 0 and the boundary condition u(0, t) =
u0e−t . Use the result of Exercise 9 to show the solution
u(x, t) is given by

u(x, t) = u0x√
4πk

∫ t

0
exp

{
−
(

τ + x2

4k(t − τ )

)}
dτ

(t − τ )3/2
, for x > 0 and t > 0.

11.* Find the Fourier transform with respect to x of the
bounded solution of the heat equation Tt = kTxx that
is defined for −∞ < x < ∞ and t > 0 and such that it
satisfies the initial condition

T(x, 0) =
{

T0, |x| ≤ a
0, |x| > a.

Use result (36) of Section 10.2 to invert the Fourier
transform, and express the solution in terms of the er-
ror function. Verify the solution by substituting f (x) =
T(x, 0) in the solution for T(x, t) derived in the heat
conduction problem in Section 10.2.

12.* Find the Fourier transform with respect to x of the
bounded solution of the heat equation Tt = kTxx that
is defined for −∞ < x < ∞ and t > 0 and is such that
it satisfies the the initial condition

T(x, 0) =
{

T0, x > a
0, x < a.

Use result (36) of Section 10.2 to invert the Fourier
transform, and express the solution in terms of the er-
ror function. Verify the solution by substituting f (x) =
T(x, 0) in the solution for T(x, t) derived in the heat
conduction problem in Section 10.2.
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CHAPTER 18

TECHNOLOGY PROJECTS

Project 1

Linear Wave Interaction

The linear wave equation utt = c2uxx with the propagation
speed c has been shown to have the general solution

u(x, t) = f (x � ct) � g(x � ct),

where the functions f and g are arbitrary. The aim of this
project is first to use this general solution to obtain a 3D plot
showing the resolution of an initial pulse into two waves
propagating in opposite directions. Then computer algebra
is to be used with the general D'Alembert solution for the
wave equation to make a 3D plot of the solution to a Cauchy
problem with localized initial conditions.

1. Make a 3D plot showing the interaction of two
waves, each with the propagation speed c = 1,
when

f (x) =

⎧⎪⎨⎪⎩
0, x < �π/2
cos x, �π/2 < x < π/2
0, x > π/2

and g(x) =
⎧⎨⎩

0, x < �π/2
1, �π/2 < x < π/2
0, x > π/2.

2. Use computer algebra to find the D'Alembert
solution of the wave equation utt = uxx when

u(x, 0) =
⎧⎨⎩

0, x < �π/2
2 cos x, −π/2 < x < π/2
0, x > π/2

and ut (x, 0) =
⎧⎨⎩

0, x < �π/2
x, �π/2 < x < π/2
0, x > π/2.

Make a 3D plot of the result for �5 ≤ x ≤
≤ ≤

5 and
0 t 3 to show how the initial condition is
resolved into waves propagating in opposite di-
rections.

Project 2

Vibrating Membranes

The aim of this project is to plot the shapes of some of
the eigenmodes in vibrating membranes, and to identify the
nodal lines in each of these modes

1. Using the information in Example 18.12, write
procedures to make 3D plots and contour plots
of the eigenmodes H31, H13, H22, and H23, and in
each case identify the nodal lines.

2. The eigenfunctions of a square vibrating mem-
brane with 0 ≤ ≤x ≤ ≤π and 0 y π are defined
by u(m, n, x, y) � sin(mx) sin(ny) cos(m2 + n2).
Make a 3D plot and a contour plot of the mode
u in which m � 4, n � 3, and identify the nodal
lines.

Project 3

A Vibrating String Problem

The objective of this project is to write a procedure that
reproduces the steps in the vibrating string problem at the
start of Section 18.10, and then to make a 3D plot of the
solution showing how the shape of the string changes with
time.

1. Write a procedure that mimics the steps leading
to the solution

u(x, t) �
8kL2

π3

∞∑
r=0

1
(2r � 1)3

� sin
(2r + 1)πx

L
cos

(2r � 1)cπ t
L

of the wave equation utt � c2uxx subject to
the initial condition u(x, 0) � kx(L � x) and
ut (x, 0) � 0, and the boundary conditions
u(0, t) � u(L, t) � 0.

1038
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2. By making 3D plots of the solution with L =
π, c = 1 using 5, 10, and 20 terms in the sum-
mation approximating u(x, t), show that a sat-
isfactory result is obtained by using only five
terms.

Project 4

The Korteweg--de Vries Equation

The motion of long waves in shallow water is governed by
the nonlinear partial differential equation

ut � 6uux � uxxx � 0,

called the Korteweg--de Vries equation, usually abbreviated
to the KdV equation, where u(x, t) can be considered to
describe the profile of the surface wave as a function of dis-
tance x and time t . This equation, which was first derived
by Korteweg and de Vries in 1895, has been shown to be of
fundamental importance to various types of nonlinear wave
propagation.

When the term uxxx is absent from the KdV equation,
it reduces to a quasilinear hyperbolic equation. It is known
from Section 18.3 that the solution of a Cauchy problem for
such an equation may become nonunique, and from Sec-
tion 18.4 that the solution can develop into a shock wave.
However, the term uxxx , called a dispersive term, smooths
the effect of the terms ut − 6uux in the KdV equation and
balances their steepening effect and leads to the existence
of smooth traveling wave solutions.

One form of smooth motion described by the KdV
equation involves what is called a solitary wave. This is a
localized disturbance in the form of the square of a hy-
perbolic secant function that propagates without change of
shape with a speed proportional to its amplitude relative
to the equilibrium water level on either side of the soli-
tary wave. The KdV equation is first order in time, and so
describes unidirectional wave propagation (propagation in
one direction). Thus, if propagation is to the right, and a
solitary wave of large amplitude starts well to the left of
a solitary wave of smaller amplitude, the larger wave will
overtake the smaller one.

The nonlinear nature of the KdV equation might be ex-
pected to cause the solution to cease to describe the prop-
agation of such waves once interaction occurs. However,
this is not the case, and after a nonlinear interaction during
which the amplitudes are not additive, the waves reappear
with their identity preserved, though with their positions
slightly altered because of the interaction. This remarkable
property, which occurs however many times these solitary
waves interact, led to these solitary waves being called soli-
tons by Zabusky and Kruskal, who were the first to ob-
serve this phenomenon as a result of numerical experiments.
The interaction process is now understood analytically, but

the purpose of this project is to observe this interaction and
to confirm some of its qualitative features.

1. Use computer algebra to confirm by differenti-
ation that

u1(x, t) � �2 sech2(x � 4t)

and u2(x, t) � �8 sech2(2x � 32t)

are both solutions of the KdV equation ut �
6uux � uxxx � 0. Make 3D plots of the negative
of u1(x, t) and u2(x, t) to show their shape and
amplitude, and that their respective speeds of
propagation are dx/dt � 4 and dx/dt � 16.

2. An analytical solution exhibiting soliton inter-
action for the KdV equation is

u(x, t) �

� 12
3 � 4 cosh(2x � 8t) � cosh(4x � 64t)
[3 cosh(x � 28t) � cosh(3x � 36t)]2

.

Using computer algebra, substitute u(x, t) into
F(x, t) � ut � 6uux � uxxx, and after simplifica-
tion by grouping terms show that F(x, t) 0,
confirming that u(x, t) is a solution of the KdV
equation. If simplification by grouping of terms
proves difficult, substitute various pairs of val-
ues of x and t into F(x, t) to show that F(x, t) �
0, to verify that in these particular cases u(x, t)
is indeed a solution of the KdV equation.

3. Make a 3D plot of the negative of u(x, t) for
�10 ≤ x ≤ 10 and −0.5 ≤ t ≤ 0.5, using suffi-
cient points for the plot to be relatively smooth.
Choose a suitable orientation for the plot so that
the crests of the propagating solitary waves are
easy to follow. Notice (a) that during the inter-
action process around the time t � 0 the ampli-
tudes are not additive, (b) that the solitons pre-
serve their shapes after interaction, and (c) that
after interaction, the path followed by the slow
soliton has been slightly delayed while the path
followed by the faster soliton has been slightly
advanced.

4. Compare the shapes of u1(x, t) and u2(x, t) with
the slow and fast solitons, respectively, both well
before and after their interaction, to confirm
that their shapes have been preserved.
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Project 5

The Sine–Gordon Equation

This project illustrates a different type of soliton that is a
solution of the nonlinear Sine–Gordon equation

uxx � utt � sin u.

The Sine-Gordon equation is second order in time and so
describes bi-directional wave propagation (propagation in
both directions).

1. Confirm by computer algebra that the function

u(x, t) = 4 arctan
[

exp
(

1
3

(5x − 4t)
)]

is a solution of the Sine–Gordon equation and,
using sufficient points, make a smooth 3D plot
of u(x, t) for �25 < x < 25 and �5 < t < 5. This
steplike function is called a kink soliton, and
when the step changes in the opposite sense the
result is called an antikink soliton.

2. Confirm by computer algebra that the function

u(x, t) � 4 arctan

[
2

3

sinh( 3t)
cosh(2x)

]
is a solution of the Sine–Gordon equation and,
using sufficient points, make a smooth 3D plot
of u(x, t) for �15 < x < 15 and �8 < t < 8. This
shows the collision of a kink soliton and an an-
tikink soliton.

Project 6

Dispersive Wave Propagation
and the Telegraph Equation

This project demonstrates how linear equations that de-
scribe wave propagation can distort a propagating distur-
bance because of an effect called dispersion. The telegraph
equation

utt � c2uxx � aut � bu � 0,

with c, a, and b positive constants describes bidirectional
wave propagation, and it was first derived to model tele-
phonic communication along land lines. To see how a har-
monic plane wave (a sinusoid) moving along the x-axis and
governed by this equation is propagated, we consider the
function u(x, t) that is the real part of

û(x, t) = Aexp[im(x − ct)] (Areal),

and start by substituting û(x, t) into the telegraph equation.
(This is equivalent to substituting u(x, t) = Acos[m(x − ct)]
into the equation.)

Defining the wavelength λ � 2π/m, the wave number
k � 2π/λ, and the frequency ω � 2πc/λ of the harmonic
wave allows û(x, t) to be written

û(x, t) � Aexp[i(kx � ωt)].

When this expression is substituted into the telegraph equa-
tion, the following compatibility condition is found between
k and ω in order that the harmonic wave is a solution of the
equation:

ω2 � iaω � (b � c2k2) � 0.

This result is called the dispersion relation for the telegraph
equation, and for real k it shows that ω is complex, with

ω

k
� �i

a
2k

±
1

2k
(4c2k2 � 4b � a2)1/2.

The quantity kx � ωt determines the phase of the wave,
so that a wave of constant phase propagates with kx −
ωt �constant, showing that the phase velocity of the wave is
vP � ω/k. However, the dispersion relation shows that ω/k
is a function of ω, so it follows that waves with different fre-
quencies ω will propagate with different phase speeds vp.
Consequently, with the use of Fourier series, any periodic
initial disturbance at time t � 0 can be decomposed into a
sum of harmonic components, so because each component
propagates with a different phase speed, when they are re-
combined to form the solution at later times t1, t2, . . ., it fol-
lows that the wave shape will have changed with time. This
change of shape of the wave is said to be due to dispersion.

When the dispersion relation is used in û(x, t), it turns
out that

u(x, t) � Re
{

Aexp
(

�
at
2

)
� exp

[
ik
[

x �
t

2k
(4c2k2 � 4b � a2)1/2

]]}
. (I)

This confirms the dispersive nature of the telegraph equa-
tion, and when a > 0 it shows that the magnitude of the
wave decays exponentially with time. If, however, 4b = a2

the dispersive effect vanishes and the wave propagates with-
out change of shape, but with an exponential decay called
dissipation. Such waves are said to be relatively undistorted.
It was this condition that was first used to adjust the pa-
rameters in a telephone land line to remove distortion of
the transmitted message due to dispersion. The decay, or
dissipation, was corrected by the insertion of amplifiers at
regular points along the line.

1. Let the initial wave profile be u(x, 0) � x(π � x)
in the interval 0 ≤ ≤x π , and let this profile be
repeated periodically along the x-axis with pe-
riod π . Use computer algebra to find the coeffi-
cients a0, a1, . . . , a6 of the Fourier cosine series
expansion of u(x, 0) on the interval 0 ≤ x ≤ π .

2. Set a = 0.2, b = 0.4, and c = 1 in (I), and take
the negative sign to describe a wave moving
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to the right with speed c � 1. Let uk(x, t) de-
note the solution corresponding to A= ak for
k � 0, 1, . . . , 6, and use computer algebra to
form the approximate solution of (I) given by
uA(x, t) �

∑6
k=0 uk(x, t).

3. The combined effects of dispersion and dissi-
pation on the initial wave profile can be seen by
making 2D plots of uA(x, t) at the times t � n for
n � 0, 1, 2, 3, and 4 over the respective intervals
n ≤ x ≤ n � π , where the x-interval moves with
speed c � 1 to follow the initial wave profile.

4. Repeat the calculations using a � 0.2, b � 0.01
and c � 1, and by again making the 2D plot in
Step 3 confirm that in this case the wave de-
cays, but is relatively undistorted (it preserves
its shape as it propagates, but not its amplitude).

5. A special case of the telegraph equation is the
Klein–Gordon equation

utt � auxx � bu, with a > 0, b > 0.

Relate this equation to the dispersion relation
in (I), and hence show that the Klein–Gordon
equation is purely dispersive and so does not
decay as time increases.

Project 7

Development of a Nonunique Solution

This project involves the construction of the envelope of
characteristics for the first order quasilinear equation

ut � uux � 0 subject to the initial condition u(x, 0) � sin x,

to demonstrate where and when the solution first becomes
nonunique because of the intersection of characteristics. It
also examines the shape of the nonlinear wave as it propa-
gates.

1. Plot the envelope of the characteristics together
with their asymptotes for the preceding problem
for 0 ≤ x ≤ 2π and 0 ≤ t ≤ 4, and confirm that
its cusp forms at x � π and t � 1.

2. Make 2D implicit plots of the solution u �
sin(x � ut) in the interval �5 ≤ x ≤ 5 for the
times t � 0, 0.5, 0.75, 1, and 2 to demonstrate
how the nonuniqueness of the solution devel-
ops, using sufficient points for the plots to be
smooth.

3. Make a 3D plot of the solution u = sin(x � ut)
for �2π ≤ x ≤ 3π,, 0≤ t ≤ 3, and �1 ≤ u ≤ 1 to
show the global development of the nonunique
solution, using sufficient points for the plot to be
smooth. Compare the result with the 2D plots
made in Step 2. (Hint: In the program MAPLE
V, this 3D plot can be made with PDEtools and
PDEplot).
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19C H A P T E R

Numerical
Mathematics

Unlike theoretical solutions to problems that give rise to general results that can then be
related to specific problems, numerical methods only yield answers to specific prob-

lems. Because of this, numerical methods are used in the analysis of specific mathematical
problems, where numerical solutions can become necessary for many different reasons.
It may, for example, happen that a theoretical solution is available but is inconvenient
to use, possibly because a system of linear equations arises requiring a solution that is so
complex the theoretical solution is not useful. When studying a specific problem it can also
happen that a definite integral occurs with no known closed form solution, or a nonlinear
differential equation arises that cannot be solved theoretically. Yet another reason might
be that a solution to a group of interrelated problems is so complicated that no theoretical
solution is possible. In all such cases, when solving specific problems, it becomes necessary
to use efficient numerical methods.

This chapter describes how to deal with the most frequently occurring types of numer-
ical problem. These are interpolation, root finding, numerical integration, the numerical
solution of large systems of linear equations, the numerical determination of eigenval-
ues and eigenvectors, and the numerical solution of initial value problems for linear and
nonlinear differential equations and systems.

The methods described here are the classical ones, so they are neither as efficient nor
as sophisticated as the methods used in currently available numerical symbolic algebra
packages, though they are practical and can be used for straightforward calculations. The
reason for their inclusion is because they illustrate in a concise way some of the most
important general principles that are involved, while at the same time showing both the
shortcomings and advantages of different methods. One essential difference between the
classical methods described in this chapter, and many of the codes used in practice, is that
modern codes are adaptive, so they can switch between methods of solution to speed
up convergence, or adjust step size when integrating differential equations to maintain a
predetermined accuracy.
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19.1 Decimal Places and Significant Figures

Many of the problems that occur in engineering and physics have no analytical
solution, and even when one can be found it is frequently the case that the

form in which it arises is difficult to use directly if numerical results are required.
There are many reasons for such limitations, some typical ones being that the zeros
of a function involved in the solution cannot be found analytically, a definite integral
that arises cannot be evaluated analytically, an analytical solution of a nonlinear
differential equation cannot be found, or a large system of linear simultaneous
equations must be solved. A situation of a different type arises when an analytical
solution is known, but its application in specific cases leads to a prohibitive amount
of calculation, so a more efficient numerical method becomes necessary.

As most numerical results can only be approximate, such as calculations in-
volving

√
2, e, or π , it is necessary to have a simple way of indicating their accuracy.

This is accomplished either by stating that a result is accurate to n decimal places,
or that it is accurate to a given number of significant digits (figures). For example,decimal places
when approximating a number such as

17.213622,

to three decimal places, the fourth digit after the decimal point is examined, and if
the digit is 5 or more the preceding digit is increased by one and the result truncated
to three places after the decimal point. However, if the fourth digit is 4 or less, the
previous digit is left unchanged and the result is truncated to the existing three digits
that follow the decimal point. When this process is applied to the above number to
approximate it to an accuracy of three decimal places it becomes

17.214,

whereas if it is approximated to an accuracy of four decimal places it becomes

17.2136.

This process of approximating a number to n decimal places by increasing the
nth digit by 1, if the (n + 1)th digit is a 5 or more, and then truncating the result after
n decimal places is called rounding up to an accuracy of n decimal places. Similarly,rounding up and

down the process of leaving the nth digit unchanged when the (n + 1)th digit is a 4 or
less, and truncating the result after n decinal places is called rounding down to an
accuracy of n decimal places.

To express a number accurately to n significant figures involves a somewhat
different argument from the one just described. The first nonzero digit that occurs
in a number, irrespective of where the decimal point is located, is called the first
(and most) significant digit, so in a number such as 3.496221 the first significant
digit is 3, and in a number such as 0.004713 the first significant digit is 4. Starting
from the first significant digit and counting n + 1 digits to the right, the nth digit
is rounded up or down, according as the (n + 1)th digit is 5 or more, or 4 or less,
as previously described. The number is then truncated after the group of n digits
obtained in this way, with zeros being entered in place of any other digits that appear
before the decimal point. This process is called expressing the number accurately
to n significant digits (figures). So, to three significant digits, the numbersignificant digits

315,814
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becomes 316,000, while to four significant digits the number

0.004723217

becomes 0.004723.
Accuracy can be lost if the (approximate) result of one numerical calculation is

used in a subsequent numerical calculation, and certainly if this process is repeated
many times. To avoid loss of accuracy it is necessary to work to a fixed number
of digits that is sufficiently large. Calculators and computers use a fixed number of
digits, but symbolic algebra computer packages allow the user to choose the number
so that high accuracy can be maintained throughout a sequence of calculations.

The form in which numbers have been represented so far is called a fixed pointfixed and floating
point numbers decimal representation, because the numbers are displayed relative to the decimal

point that is involved. The floating point representation used in most computer
calculations involves writing a number x in the form

x = r · Ns,

where the number N is called the base of the representation, the number r is called
the mantissa, and s is called the exponent. The mantissa is usually chosen to have
one digit in front of the decimal point. So, to the base 10, the number 453.7 has
the floating point representation 4.537 × 102, while the number 0.000369 has the
representation 3.69 × 10−4. A notation used for floating point representations in
machine computation to the base 10 involves representing x in floating point form by
writing the mantissa r first, then the symbol E followed by the exponent s, which may
be positive or negative. Most computers normalize so that the mantissa is between
0 and 1, so when using this convention the number 453.7 becomes 0.4537E3, and
the number 0.000369 becomes 0.369E–3.

Summary Accuracy in terms of decimal places and significant figures was defined, and the conven-
tion for rounding numbers up or down was explained. Floating point calculations were
introduced, and the importance of expressing accuracy in terms of significant digits when
working with floating point numbers was stressed.

19.2 Roots of Nonlinear Functions

Let f (x) be a real valued function defined for a ≤ x ≤ b. A number ξ is called a
root of the function f (x) in this interval if f (ξ) = 0 and, correspondingly, a number
x = ξ that makes f (x) vanish is called a zero of f (x). The need to find roots of
functions is fundamental to the development and application of mathematics, and
only in simple cases can the roots be determined analytically, so in all other cases it is
necessary to find them numerically. Many different methods exist for the numerical
determination of roots of functions, but of these only the bisection method, the fixed
point method, and Newton’s method will be described in any detail, as they are in
everyday use and are easily implemented on a computer.

(a) The Bisection Method
Apart from graphing f (x) and finding by inspection those values of x for which
f (x) = 0, the simplest systematic method for finding the roots of a function f (x)
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is the bisection method. The method is easily programmed, and it applies to roots
of functions f (x) with the property that f (x) changes sign when x crosses a root.
The determination of a root accurately by this method depends on the ability to
evaluate the function with sufficient accuracy that its sign change can be determined
correctly.

To understand how the method works, consider a continuous function f (x)
and numbers α < β such that f (α) and f (β) have opposite signs. Then from the
intermediate value theorem the function f (x) must vanish at least once (have at
least one root) ξ between α and β, as shown in Figs. 19.1a,b. However, if f (α) and
f (β) have the same sign, nothing can be deduced about the existence of roots in
the interval, as can be seen from Figs. 19.1c–e, which illustrate situations in which

y

f(α)
y = f(x)

(b)

α β x0

f(β)

y

f(α)

y = f(x)

(c)

α β x0

f(β)

y

f(α)

y = f(x)

(d)

α β

x

0

f(β)

y

f(β)

y = f(x)

(e)

α β x0

f(α)

y

f(α)

y = f(x)

(a)

α β x0
f(β)

FIGURE 19.1 Roots and the product f (α) f (β) in the interval α ≤ x ≤ β. (a) f (α) f (β) < 0,
one root. (b) f (α) f (β) < 0, three roots. (c) f (α) f (β) > 0, double root. (d) f (α) f (β) > 0,
two roots. (e) f (α) f (β) > 0, no roots.
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there are a double root, two roots, and no root, respectively. In what follows we
will assume that f (x) experiences a change of sign across the interval, and that
α and β are chosen sufficiently close that there is only one root in the interval, as
illustrated in Fig. 19.1a. When f (x) is sufficiently simple this can usually be achieved
by graphing f (x) and selecting suitable values for α and β.

To implement the bisection method, a simple test is needed to see if a function
f (x) has opposite signs at the ends of an interval α < x < β. Such a test is provided
by examining the product f (α) f (β), because when this is negative a sign change
occurs, but when it is positive there is no such sign change. When, as may happengeometrical

interpretation of the
bisection method

during a computation, a computer finds that f (α) f (β) = 0, the value of f (α) must
be examined to avoid interpreting as a true zero an approximate number α that
causes the computer arithmetic system to regard this product function as zero.

The first step in the bisection method involves dividing (bisecting) the in-
terval α ≤ x ≤ β into the two subintervals α < x < x1 and x1 < x < β, where
x1 = 1

2 (α + β). The subinterval to be considered next is obtained by replacing α

by x1 if f (α) f (x1) > 0, because in this case f (x) changes sign in the subinterval
x1 < x < β so this interval must contain a root of f (x). Conversely, if f (α) f (x1) < 0,
the subinterval to be considered is obtained by replacing β by x1, because in this
case f (x) experiences a change of sign in the subinterval α < x < x1, and so this
interval must contain a root ξ . The task of finding the root has now been refined
from considering the interval α ≤ x ≤ β and replaced by the task of finding the root
in an interval half the size.

The bisection process involves a repetition of this procedure, each time using
the smaller subinterval found at the previous stage of the calculation, so that after
m steps the root ξ will be contained in an interval of length |α − β|/2m. If the root
is required to be accurate to within an error of ε, where ε > 0 is a preassigned small
quantity, machine computation that works with a fixed number of digits proceeds un-
til the first time successive iterates xm and xm+1 satisfy the condition |xm − xm+1| < ε.
The required approximation to the root ξ is then taken to be xm ± ε.

The bisection method has the property that the bound placed on the error
involved is halved at each iteration. Unlike some other methods, provided the
bisection method is applicable it always converges to a root, though if more than
one root occurs in the initial interval α ≤ x ≤ β it is not known in advance to which
root the method will converge.

The bisection method has the advantage of being simple and using the minimum
amount of information, because it only depends on the functional values of f (x)
at the end points of an interval and not on the calculation of derivatives, though
other methods may converge faster. The practical implementation of the method
on a computer suffers from the fact that when the product f (α) f (β) is determined,
underflow of this floating point number becomes inevitable as the upper and lower
bounds approach the root. However, this is easily overcome by determining the
sign of f (α) f (β) by examining the signs of f (α) and f (β). Because the bisection
method is affected less by limiting precision, a different and faster method is often
used to start the calculation, and a switch is made to the bisection method once a
very accurate approximation to the root has been obtained.

The bisection method cannot be used to find a root x = ξ of a function that is
either convex or concave at x = ξ , as illustrated in Fig. 19.1e, because such functions
do not change sign as x crosses ξ . This can happen, for example, when seeking the
roots of polynomials of even order, the simplest case of which is f (x) = (x − a)2

with a double root at x = a.
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FIGURE 19.2 The function f (x) = 1 − 3x + 1
2 xex .

The numerical determination of multiple (repeated) roots is difficult, so only
an outline of a possible approach will be given here for a polynomial of degree
n with real roots, one of which is a double root. The difficulty that arises when
seeking multiple roots is because the calculation always leads to an ill-conditioned
problem—that is, to a problem in which an extremely small error in part of the
calculation leads to a very large error in the result.

The approach we now describe involves what is called the deflation of thedeflation of a
polynomial polynomial. First a single root of the polynomial is found, and the polynomial is

then divided by the corresponding factor to obtain a polynomial of degree n − 1.
A repetition of this process involving each of the n − 2 single roots will lead to
a quadratic whose double root can then be found from the quadratic formula.
When it is necessary, deflation must always be carried out with care to avoid the
compounding of errors.

It is important to remember that the bisection method cannot be used to com-
pute roots of even order, because in such cases no sign change is involved, but it
works well for roots of odd order irrespective of their multiplicity. One approach
to the multiple root problem involves using the bisection method with different
starting intervals, and another involves using other methods with different guesses.

EXAMPLE 19.1 Use the bisection method to find the smallest root of the function f (x) = 1 − 3x +
1
2 xex.

Solution Examination of Fig. 19.2 shows that an approximation to the smallest
root of f (x) = 0 is x = 0.45, and that suitable values for α and β are α = 0.43 and
β = 0.47, because f (α) = 0.0405 and f (β) = −0.0340, and the graph shows that
there is only one root between α and β.

If at each stage of the calculation the left end point of an interval containing
the root ξ is denoted by xl and the right end point by xr , the calculation can be
arranged as follows.

Left End Right End Approximate
n Point xl Point xr xn f (xl ) f (xn) f (xl ) f (xn) New Interval Root

1 α = 0.43 β = 0.47 0.45 0.0405 0.0029 >0 0.45 < ξ < 0.47 0.45
2 0.45 0.47 0.46 0.0029 −0.0157 <0 0.45 < ξ < 0.46 0.46
3 0.45 0.46 0.455 0.0029 −0.0064 <0 0.45 < ξ < 0.455 0.455
4 0.45 0.455 0.4525 0.0029 −0.0018 <0 0.45 < ξ < 0.4525 0.4525
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Continuing this process shows that to an accuracy of five decimal places the required
value of the root is x = 0.45154.

(b) Fixed Point Iteration
This method is well suited to machine computation provided numerical values of
the function involved are easily calculated, and a good approximation to the root
is used to start the iteration process. The idea is straightforward, and its success
depends on rewriting the given function f (x) whose root is required in the form

f (x) = x − g(x). (1)

Then if x = ξ makes the expression on the right of (1) vanish, it follows that ξ is
a root of f (x). The representation of f (x) in the form given in (1) is not unique,
because as will be seen in the examples that follow, g(x) can be written in more than
one way. Later we will derive a simple condition on the form of g(x) that must be
satisfied together with the value x0 = α used to start the iteration process in order
that the calculations are likely to converge to the root ξ .

If we now consider the function g(x) to map a point x into a point g(x), then
a root x = ξ of equation (1) has the property that g(x) maps the point ξ into itself,
and for this reason ξ is called a fixed point of the equation

x = g(x). (2)

The fixed point iterative scheme follows from (2) by writing it asfixed points and
iteration

xn+1 = g(xn), (3)

and starting the iteration process by setting x0 = α. The iteration will be said to
converge if the sequence of iterates xn approaches a limit as n → ∞, and to diverge if
no such limit exists. Suppose that when the iterations converge the result is required
to be accurate to within an error of ε, where ε > 0 is a preassigned small quantity.
Then the calculation proceeds until the first time successive iterates xm and xm+1

satisfy the condition |xm − xm+1| < ε. The required approximation to the root ξ is
then taken to be xn ± ε.

EXAMPLE 19.2 Find a fixed point iterative scheme for determining
√

a when a > 0, and use it to
calculate

√
2 to an accuracy of six decimal places.

Solution The required number
√

a is a solution of the equation x2 = a, so to
express this in the form given in (2) we write it as 2x2 = x2 + a, and then divide the
result by 2x to arrive at the result

x = 1
2

(
x + a

x

)
,

so in the notation of (2) the function g(x) = 1
2 (x + a

x ).
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The fixed point iterative scheme follows from this, as in (2), by replacing x on
the left by xn+1 and x on the right by xn to obtain

xn+1 = 1
2

(
xn + a

xn

)
.

The iteration is started by setting n = 0 and x0 = k, where k is an approximation to√
a.

To illustrate the scheme we will calculate
√

2, so as a = 2 the scheme becomes

xn+1 = 1
2

(
xn + 2

xn

)
,

and for simplicity we start by setting x0 = 1. The results of the calculation are

x0 = 1

x1 = 1.5

x2 = 1.41666667

x3 = 1.41421569

x4 = 1.41421356

x5 = 1.41421356.

As the x4 and x5 iterates are identical, rounding the result of x5 to six decimal places
gives

√
2 = 1.414214.

The fixed point iterative scheme in Example 19.2 converged rapidly, and it is
this scheme that is used in computers to determine the square root of any positive
number to an accuracy that is within the capability of the computing system and
software being used. Experimentation will show that this iterative scheme is stable
with respect to the choice of the starting approximation, because it will always
converge to

√
2, though a starting approximation close to

√
2 will, of course, lead

to the most rapid convergence.
To examine iterative schemes a little further, and to show that convergence

does not always occur, we consider the next example.

EXAMPLE 19.3 Devise fixed point iterative schemes to find the roots of the quadratic equation

examination of two
fixed point iterative
schemes

2x2 − 24x + 41 = 0,

and test them numerically.

Solution Two obvious fixed point iterative schemes that can be obtained directly
from the equation follow by first writing it in either of the forms

x = 1
24

(2x2 + 41) or x = 12 − 41
2x

.

Replacing x by xn+1 on the left and by xn on the right we obtain the following two
schemes:

Scheme A: xn+1 = 1
24

(
2x2

n + 41
)
, and Scheme B: xn+1 = 12 − 41

2xn
.

An application of the quadratic formula shows the two roots to be x =
6 − 1

2

√
62 = 2.0630 and x = 6 + 1

2

√
62 = 9.9370, so starting approximations close
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to these values are x0 = 2 and x0 = 10. Scheme A leads to the results

x0 = 2 x0 = 10
x1 = 2.0417 x1 = 10.0417
x2 = 2.0557 x2 = 10.1113

x3 = 2.0605
...

x4 = 2.0621 x8 = 12.4801
x5 = 2.0627 x9 = 14.6877

x6 = 2.0630
...

... x∞ = ∞
x∞ = 2.0630.

Clearly Scheme A is only partially successful, because although when started with
x0 = 2 it converges to the zero close to 2, it diverges when started with x0 = 10.

Scheme B produces the following results:

x0 = 2 x0 = 10
x1 = 1.75 x1 = 9.7222
x2 = 0.2857 x2 = 9.8914
x3 = −59.7500 x3 = 9.9275
x4 = 12.3431 x4 = 9.9350
x5 = 10.3392 x5 = 9.9370
x6 = 10.0172 x6 = 9.9370

x7 = 9.9535
...

... x∞ = 9.9370
x∞ = 9.9370.

Here also scheme B is also only partially successful, though this time for a different
reason. Although, as required, the iterates converge to the root close to 10 when
started with x0 = 9, when started with x0 = 2 they fail to converge to the root close
to 2 and again converge to the root close to 10.

To understand this behavior of iterative schemes we need the following theorem
that gives conditions for the choice of g(x) and the starting approximation x0 that
will ensure the convergence of the scheme.

THEOREM 19.1 Convergence of a fixed point iterative scheme Let g(x) be defined in the interval
a ≤ x ≤ b in which it has a fixed point ξ , and let g(x) be continuous throughout
this interval with a continuous derivative g′(x) such that |g′(x)| ≤ k < 1. Then the
equation x = g(x) has a unique fixed point ξ in the interval, and if x0 is such that
a ≤ x0 ≤ b the iterative schemecondition for

convergence of a fixed
point iterative scheme

xn+1 = g(xn)

will converge to ξ .
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Proof The proof involves two steps, in the first of which a fixed point ξ is assumed
and shown to be unique, whereas in the second we go on to prove the convergence
of the scheme and to justify the assumption of the existence of a fixed point. To show
that the fixed point is unique let us assume, if possible, that two different fixed points
ξ1 and ξ2 occur inside the interval, so that ξ1 = g(ξ1) and ξ2 = g(ξ2). Considering
the expression |ξ1 − ξ2|, applying the mean value theorem, and using the condition
|g′(x)| ≤ x0 < 1, we find that for some number η inside the interval a ≤ x ≤ b

|ξ1 − ξ2| = |g(ξ1) − g(ξ2)| = |g′(η)(ξ1 − ξ2)| ≤ x0|ξ1 − ξ2| < |ξ1 − ξ2|,
but this is impossible, so the contradiction implies the uniqueness of the fixed point.

Next, to prove the convergence of the scheme, we again make use of the mean
value theorem that asserts there is some point ζn between xn−1 and ξ such that

|ξ − xn| = |g(ξ) − g(xn−1)| = |g′(ζn)(ξ − xn−1)| = |g′(ζn)||ξ − xn−1| ≤ x0|ξ − xn−1|.
Repeated application of this inequality leads to the result |ξ − xn| ≤ xn

0 |ξ − x0|, but
as 0 ≤ x0 < 1 we have limn→∞ xn

0 = 0, so that

lim
n→∞ |ξ − xn| = 0, and hence lim

n→∞ xn = ξ.

With a little more trouble, the iterates can be shown to form a Cauchy sequence, and
an appeal to the completeness of real numbers then guarantees that the sequence
has a limit ξ , so the theorem is proved.

This theorem explains the results of Example 19.2. In Scheme A the function
g(x) = 1

24 (2x2 + 41), so |g′(x)| = 1
6 |x| and |g′(x)| < 1 when 0 < x < 6, showing the

scheme to be convergent to the root close to 2 when an initial approximation close
to 2 is used. However, when x = 10 the conditions of the theorem are not satisfied
so the scheme cannot be expected to converge to the root close to 10, though it
does not assert that it will diverge.

In the case of Scheme B we have g(x) = 12 − 41
2x so that |g′(x)| = 41

2x2 . This
shows that the scheme will converge to the root close to 10 for an x0 close to 10,
because then |g′(x)| < 1, but that it cannot be expected to converge to the root
close to 2 where the condition is violated, though again the theorem does not assert
that in this case it will diverge. It is possible to show that if |g′(ξ)| > 1, the iteration
will not converge, except by accident.

The reason for the convergence or divergence of iterative schemes is most easily
understood by using a graphical representation of a fixed point iteration process.
Typical cases are illustrated in Fig. 19.3, where diagrams (a) and (b) show how the
mapping xn+1 = g(xn), using the lines y = x and y = g(x), can lead to convergent
processes, while diagrams (c) and (d) show how divergent processes can arise.

convergent and
divergent iterations

(c) Newton’s Method
Our starting point for the derivation of Newton’s method for the determination of a
zero of a differentiable function f (x), also known as the Newton–Raphson method,
is the mean value theorem representation of f (x) about a point x = x0 that can be
written

f (x) = f (x0) + (x − x0) f ′(ξ), (4)

where ξ is a point between x0 and x.
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FIGURE 19.3 Typical convergent iterative processes in (a) and (b), and typical divergent iterative
processes in (c) and (d).

If we set h0 = x − x0, and choose h0 so that x0 + h0 is a zero of f (x), result (4)
becomes

h0 = − f (ξ)
f ′(ξ)

,

so the zero x = x0 + h0 of f (x) is given by

x = x0 − f (ξ)/ f ′(ξ). (5)

As ξ is unknown, replacing it by x0 produces the approximation x1 given by

x1 = x0 − f (x0)/ f ′(x0).

Iterating this result leads to the Newton’s methodNewton’s method

xn+1 = xn − f (xn)/ f ′(xn), (6)
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y

f(xn)

tanθn = f ′(xn)

y = f(x)

xn + 1 xn x

θn

ξ0

FIGURE 19.4 The tangent approximation used in
Newton’s method.

with n = 0, 1, 2, . . . . If a tolerance ε is set, where ε > 0 is a preassigned small quan-
tity, the calculations proceed until the first time the successive iterates xm and xm+1

satisfy the condition |xm − xm+1| < ε. The number xm+1 ± ε is then taken to be the
required approximation to the root ξ . Notice that Newton’s method is a special ex-
ample of fixed point iteration with g(x) = x − f (x)/ f ′(x) and, in connection with
Theorem 19.1, that the expression |ξ − xn| = |g′(ζn)||ξ − xn−1| tells us that |ξ − xn|
approximates |g′(ξ)||ξ − xn−1|as the iterations converge. Clearly, the smaller |g′(ξ)|,
the faster the convergence. For Newton’s method and a simple root, this quantity
is zero. So the argument suggests that for Newton’s method the iterations converge
faster than linearly, as is indeed the case. Typically, both fixed point iteration and
Newton’s method converge to the root nearest to the initial guess, though as has
already been remarked, this is not true of the bisection method. Newton’s method
is generally much faster than the bisection method for simple roots, though not for
multiple roots.

The geometrical interpretation of Newton’s method is illustrated in Fig. 19.4,
where the (n + 1)th approximation xn+1 is obtained from the nth approximation xn

by tracing back the tangent to the curve y = f (x) at the point (xn, f (xn)) to the
point xn+1 where it intersects the x-axis.

how Newton’s method
uses the tangent line
approximation

EXAMPLE 19.4 Use Newton’s method to find the zeros of f (x) = 1 − 3x + 1
2 xex accurate to five

decimal places.

Solution A graph of f (x) shows that it has zeros close to 0.5 and 1.6, so we will use
these as our starting approximations. As f ′(x) = 1

2 (1 + x)ex − 3, Newton’s method
becomes

xn+1 = xn −
(

1 − 3xn + 1
2

xnexn

)/(
1
2

(1 + xn)exn − 3
)

for n = 0, 1, 2, . . . .

Starting the calculation with x0 = 0.5 gives

x0 = 0.5 x3 = 0.451542
x1 = 0.450200 x4 = 0.451542
x2 = 0.451541,

so to an accuracy of five decimal places the smallest zero of f (x) is 0.45154.
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Similarly, when the calculation is started with x0 = 1.6, we find that

x0 = 1.6 x3 = 1.549538
x1 = 1.552769 x4 = 1.549538
x2 = 1.549552

so to an accuracy of five decimal places the largest zero of f (x) is 1.54954.

This example illustrates the speed with which Newton’s method can converge
to a zero when a good starting approximation is used and the tangent to the graph
y = f (x) at a zero is not inclined at a small angle to the x-axis making high accuracy
difficult to obtain. A poor starting approximation can cause Newton’s method todivergent and

repeated cycle
Newton iterations

diverge from the required zero, as illustrated in Fig. 19.5a where successive approx-
imations move further away from the zero. Sometimes an unfortunate choice of
starting approximation can lead to the situation illustrated in Fig. 19.5b where the
iteration cycles indefinitely. To avoid situations like these, machine computations
place a limit on the number of iterations to be performed to achieve the required
accuracy, after which a new starting approximation must be used.

y

x2 x0 0 ξ x1 x3 x

y = f(x)

y

0 ξ x1 x

(a)

(b)

y = f(x)

FIGURE 19.5 (a) Divergent process. (b) Repeated cycle.
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ISAAC NEWTON (1642–1727)
An English mathematician and scientist who was born on Christmas day to a farming family, his
father having died before he was born. His abilities as a child led to him study at Cambridge
University where he later held the Lucasian Chair of mathematics. He created the forerunner of
modern differential calculus, then called the theory of fluxions, by the age of 23. After a two-year
stay at home to avoid a severe outbreak of the bubonic plague elsewhere in England, he
returned to Cambridge in 1667 where for two years he pursued his interest in optics. The
Lucasian Professorship of Mathematics was held by Barrow, who resigned it in 1669 so that
Newton could be appointed. It was after this that many of his most important results were
published, including his world famous Philosophiae naturalis principia mathematica in 1687,
though many of his results were obtained long before they first appeared in print. He made
contributions throughout mathematics and science and is universally recognized as one of the
greatest mathematicians of all time.

Summary The need for the determination of roots of nonlinear functions arises in many ways. The
methods for the determination of roots discussed in this section were the bisection method,
fixed point iteration methods, and Newton’s method, which can be considered as a special
fixed point iteration method. It was stressed that the bisection method only works for
functions that change sign across a root, that its rate of convergence to a root is slow,
and that if more than one root occurs in an interval it is not known in advance to which
one the method will converge. The relative speeds of convergence of these methods were
mentioned.

EXERCISES 19.2

In Exercises 1 through 6 use the bisection method to find
the required root.

1. The root of sin x − 1
3 x = 0 close to x = 2.2.

2. The root of ex/3 − x2 = 0 close to x = 1.1.
3. The root of 3 ln x + x2 − 3 = 0 close to x = 1.3.
4. The largest positive root of x3 − 1.9x2 − 2.3x + 3.7 = 0.
5. The smallest root of x3 − 4.5x2 + 1.3x + 8 = 0.
6. The root of 1

2

√
1 − x2 − x2 = 0.

In Exercises 7 through 12 use a fixed point iteration scheme
to find the required roots.

7. Determine a1/n where a > 0 and n is an integer. Check
the result by finding 41/3.

8. Find the roots of x2 + 4x + 1 = 0 and check the results
by using the quadratic formula.

9. Find all three roots of x3 − 4.3x2 + 1.4x + 7.8 = 0.
10. Find the positive root of sin x − 1

2 x = 0.
11. Find the positive root of x2 − 2 sinh x + 1 = 0.
12. Find the positive root of x2 + 2 ln x − 4 = 0.

In Exercises 13 through 18 use Newton’s method to find the
required root.

13. Find 231/3 by solving for the zero of f (x) = 23 − x3.
14. Find the smallest positive root of tan x + 2tanh x = 0.
15. Find the largest root of x4 − 4x3 + x2 + 1.2 = 0.
16. Find the smallest root of x4 − 3x3 + 2x2 − 3x − 1.6 = 0.
17. Find the root of 3x − e−x = 0.
18. Find the root of 1 + tanh x − 2tan x = 0.

19.3 Interpolation and Extrapolation

Sometimes a function f (x) that is assumed to be smooth is only known in the form
of a set of discrete values yi = f (xi ) at a set of arguments x1, x2, . . . , xn such that
x1 < x1 < · · · < xn. When this occurs it often becomes necessary to estimate the
value f (α) when α lies between two of the known arguments xi . This process is
called the interpolation of the function f (x) between its known values, and the
interpolated value f (α) is estimated using some or all of the known values yi .
Various methods are available for interpolation, but nothing can be said about the
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error involved unless some assumptions are made about the function. As a general
rule the error is best reduced by selecting a method that reflects the apparent
variation of f (x). Some of the factors to be taken into account when choosing
an interpolation method are whether f (x) appears to be convex or concave for
x1 < x < xn, whether it is oscillatory, and whether it exhibits sharp curvature at a
point or points belonging to the interval.

The estimation of f (α) when α lies outside the interval, either to the left of x1 or
to the right of xn, is called extrapolation of the function f (x), and as the process can
be liable to considerable error it should be used with care. As with interpolation,
nothing can be said about errors produced by extrapolation unless some general
properties of the function involved either are known or are assumed. The use of
extrapolation is more frequent than might be expected. It is, for example, used in
Newton’s method when the curve at a point is replaced by its tangent that is then
extended (extrapolated) until it intersects the x-axis, again in the numerical solution
of ordinary differential equations to be discussed later, and elsewhere.

Linear Interpolation
Let the data points (x1, y1), (x2, y2), . . . , (xn, yn) belonging to an unknown smooth
function y = f (x) be plotted on a graph. Then the simplest way to estimate the
value of y(x) when x lies in the interval xi < x < xi+1 is to join the points (xi , yi )
and (xi+1, yi+1) by a straight line segment, and then to use the point on the line
segment with argument x as the approximation to y(x). This process is called linear
interpolation, and it is illustrated in Fig. 19.6, where A is the point (xi , yi ), B is the
point (xi+1, yi+1), and the straight line segment AB has the equation y = ỹ(x). Then,
in linear interpolation, point P on the line segment AB is used as the approximation
to Q on the curve y = f (x).graphical

interpretation of
linear interpolation

A simple calculation shows that the straight line segment y = ỹ(x) representing
the linear interpolation function between the two points (xi , yi ) and (xi+1, yi+1) is
given by

ỹ(x) =
(

yi+1 − yi

xi+1 − xi

)
(x − xi ) + yi , for xi < x < xi+1. (7)

If x is chosen so that either x < x1 or x > xn, result (7) becomes a linear ex-
trapolation formula for y = f (x) outside the interval x1 < x < xn.linear extrapolation

Result (7) is useful for interpolation when the variation of xi and yi between
adjacent data points is small, but as the formula introduces an error due to its failure

y

yi = f(xi)

yi + 1 = f(xi + 1)

0 xi x xi + 1

Q

PA

y = y~(x)

B y = f(x)

x

FIGURE 19.6 Linear interpolation.
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to take account of the curvature of the curve, the error can become large when the
result is used for extrapolation.

Lagrange Interpolation
Instead of using linear interpolation to join successive pairs of data points (x1, y1),
(x2, y2), . . . , (xn, yn), it is possible that a better result can be obtained by constructing
a polynomial y = P(x) that passes through each data point. As a polynomial is a
smooth curve, it is to be hoped that it will take some account of the curvature of
the function to which the data points belong, as exhibited by a set of data points,
and so provide a better interpolation formula.

In Lagrange interpolation the polynomial P(x) that is used is taken to be the
one with the lowest possible degree that passes through each of the data points, so
that when there are n data points the polynomial will be at most of degree n − 1.
The polynomial is unique, because n equations for its n coefficients can be found by
requiring it to pass through each of the n data points. The graph of this polynomial
over the interval x1 ≤ x ≤ xn is then used as an approximation to the unknown
function y = f (x) from which the data points are presumed to have been derived,
on the assumption that y = f (x) does not exhibit large variations as its argument
x moves between the successive arguments x1, x2, . . . , xn of the data points.

The polynomial y = P(x) given by

P(x) =
n∑

k=1

Lk(x)yk,

where

Lk(x) = (x − x1)(x − x2) · · · (x − xk−1)(x − xk+1) · · · (x − xn)
(xk − x1)(xk − x2) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

, (8)

has the property we require, because it is of degree at most n − 1, and it passes
through each data point, so it defines an interpolation formula over the interval
x1 ≤ x ≤ xn. The polynomials Lk(x), called fundamental Lagrangian interpolation
polynomials, are all of degree n − 1, but the linear combination forming the func-fundamental

Lagrangian
interpolation
polynomials

tion P(x) involving the set of data points can have a lower degree. That the Lk(x)
have the required property is easily seen from the fact that when x = xk each
Lr (xk) with r �= k contains a zero factor in its numerator so that Lr (xk) = 0, but
when r = k we have Lk(xk) = 1, showing that P(xk) = yk. The polynomial P(x)
provides the required Lagrange interpolation formula for the set of n data points
(x1, y1), (x2, y2), . . . , (xn, yn).

When n = 2 result (8) reduces to linear interpolation, and when n = 3 it be-
comes a quadratic, and so fits a parabola through the three points. A parabola is
a smooth curve with a steadily changing gradient, so as it takes some account of
the curvature of the unknown function y = f (x) over the three points that are
involved, it can be expected to provide a better approximation than simple linear
interpolation.

However, it is inadvisable to use Lagrange interpolation over many more than
three points, because when a polynomial of degree (n − 1) � 1 is forced to pass
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FIGURE 19.7 The function y = f (x) and its Lagrange interpolation approximation y = P(x) using six points.

through a set of n fixed points it usually produces a polynomial that introduces
large oscillations between adjacent pairs of data points, even though the points
themselves indicate no such behavior of the original function.

This undesirable characteristic of high degree Lagrange interpolation polyno-
mials can be illustrated by constructing a fifth degree interpolation polynomial for
the function

y(x) = sin(1/x),

in the interval 0.1 ≤ x ≤ 0.8 shown in Fig. 19.7a. When constructing an interpolation
function, the precise extrema of the function are seldom known, so to reflect this
uncertainty the six data points used will be the two end points and four internal
points, two of which are close to, though not at, the extrema of y(x) = sin(1/x) in
the interval 0.1 ≤ x ≤ 0.8. These six data points are shown as dots on the graph of
y(x), and they have the following (x, y)-coordinates:

(0.1, −0.544021), (0.13, 0.986959), (0.2, −0.958924), (0.3, −0.190568),

(0.5, 0.909297), (0.8, 0.948985).

The Lagrangian interpolation polynomial that passes through these six points
is

p(x) = −47.953442 + 1039.947347x − 7963.493901x2 + 26828.578780x3

−39901.683910x4 + 21121.453960x5.

The extreme oscillations that occur between the interpolation data points can be
seen by inspection of Fig. 19.7b that shows the graph of P(x) in the interval 0.1 ≤
x ≤ 0.8, on which the data points are marked as dots.

In this case, as only six data points are involved, it would have been better
to use three consecutive three point Lagrangian interpolation polynomials over
the intervals 0.1 ≤ x ≤ 0.2, 0.2 ≤ x ≤ 0.5, and 0.3 ≤ x ≤ 0.8, with the last interpo-
lation polynomial used only in the interval 0.5 ≤ x ≤ 0.8. However, although such
a composite interpolation scheme would provide a continuous approximation to
y(x) = sin(1/x) over the entire interval, the curve would not be smooth because of
discontinuities in its derivative at x = 0.2 and x = 0.5 where the parabolic approx-
imations meet.

We conclude this brief introduction to Lagrange interpolation by mentioning
that its main use is of a theoretical nature in connection with the derivation of effec-
tive numerical techniques of various kinds. The only one of which to be developed
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here is in connection with cubic spline interpolation, which can be considered to be
a refinement of the fitting of a polynomial of low degree over two points.

Cubic Spline Interpolation
An important use of an interpolation function arises in engineering design, and else-
where, when it becomes necessary to generate a smooth curve with an unknown
equation that passes through a set of data points, without the introduction of os-
cillations between these points. The approach to be outlined is motivated by the
old engineering drafting technique that produced such a curve by tracing along a
thin flexible metal strip, called a spline, that by the application of pressure at points
along its length was constrained to pass through each data point.

Clearly a Lagrange interpolation polynomial is unsuitable because of the os-
cillations it can introduce, and because in practice there may be many data points.
The approach we will use instead will be to approximate the curve in a piecewise
manner by a polynomial of degree 3 over each interval xi ≤ x ≤ xi+1 in such a way
that both the first and second derivatives of the curve at the ends of the interval
match those of the approximations to the immediate left at xi and those of the ap-
proximation to the immediate right at xi+1. Composite approximations of this type
are called cubic spline function approximations. In the mathematical approach tocubic splines,

nodes, and knots the determination of the spline function approximation through the n data points
(x1, y1), (x2, y2), . . . , (xn, yn), the xi are called the nodes of the approximation, and
the corresponding points yi where adjacent curves meet are called the knots of the
approximation.

The mathematical requirements to be satisfied by a spline function approxima-
tion are seen to be:

(a) Each curve through the adjacent points (xi , yi ) and (xi+1, yi+1) is a cubic.
(b) The composite curve over the entire interval must interpolate the data by

passing through each knot.
(c) The curve itself and the first and second derivatives of the composite curve

must be continuous at the nodes xi .
(d) Conditions must be prescribed at the end points x1 and xn of the interval,

depending on whether the data points indicate that beyond these points the
extrapolation curve is required to approach a straight line or a parabola, or to
exhibit some other behavior such as periodicity over the interval x1 ≤ x ≤ xn.

Because of conditions (i) to (iii) the second derivative f ′′(x) must vary linearly
over each interval xi ≤ x ≤ xi+1 and be continuous across each node, so using the
Lagrange interpolation formula we can write

f ′′(x) =
(

xi+1 − x
xi+1 − xi

)
f ′′(xi ) +

(
x − xi

xi+1 − xi

)
f ′′(xi+1) for xi ≤ x ≤ xi+1. (9)

Integrating this result twice with respect to x gives

f (x) = 1
6

(
3xi+1x2 − x3

xi+1 − xi

)
f ′′(xi ) + 1

6

(
x3 − 3xi x2

xi+1 − xi

)
f ′′(xi+1) + ax + b,

for xi ≤ x ≤ xi+1, (10)

where a and b are arbitrary constants of integration. As f (x) is required to pass
through the points (xi , yi ) and (xi+1, yi+1), substituting these two conditions into
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(10) determines a and b, and after setting di = xi+1 − xi we find that

f (x) = 1
6di

[
(xi+1 − x)3 f ′′(xi ) + (x − xi )3 f ′′(xi )

]
+ 1

6di

[
6yi − d2

i f ′′(xi )
]

(xi+1 − x)

+ 1
6di

[
6yi+1 − d2

i f ′′(xi+1)
]

(x − xi ), for xi ≤ x ≤ xi+1.

(11)

To proceed further we must now find conditions determining the derivatives
f ′′(xi ) and f ′′(xi+1), and this can be accomplished by using the as yet unused con-
dition that the first derivative f ′(x) must be continuous across each node. To apply
this condition we differentiate (11) once with respect to x, and require the deriva-
tive when x = xi+1 in the ith interval, that is, at its right-hand end point, to equal
the derivative when x = xi+1 in the (i + 1)th interval, corresponding to its left-hand
end point, as a result of which we find that

di−1 f ′′(xi−1) + 2(di−1 + di ) f ′′(xi ) + di f ′′(xi+1) = Yi , (12)

where

Yi = 6
(

yi+1 − yi

di
− yi − yi−1

di−1

)
. (13)

Result (12) is a set of n − 2 linear simultaneous equations for the n derivatives
f ′′(xi ), and when these are known the spline function approximation formed by
the set of functions in (11) defined over the consecutive intervals xi ≤ x ≤ xi+1 with
i = 1, 2, . . . , n − 1 can be constructed. It is crucial to the practical use of splines
that this linear system of equations be nonsingular, and that an extremely efficient
algorithm be available for solving it.

As the values of f ′′(x1) and f ′′(xn) cannot be found from the condition that
f ′(x) is continuous across the nodes x1 and xn these values must be specified as
additional conditions.

The choice of values for f ′′(x1) and f ′′(xn) prescribed as end conditions must
be made intuitively, based on the way the data points indicate that the interpolated
curve is most likely to behave (be extrapolated) beyond the end points of the interval
x1 ≤ x ≤ xn. Three typical choices are the natural or linear spline end condition,
the parabolic spline end condition, and periodic spline end conditions.

Natural or linear spline end conditions

This choice of end conditions involves settingspline end conditions

f ′′(x1) = f ′′(xn) = 0. (14)

These conditions are also called the linear spline end conditions because although
the polynomial used over the intervals is a cubic, the vanishing of the second deriva-
tive at x = x1 and x = xn causes the approximation to become linear beyond the
ends of the interval.



1064 Chapter 19 Numerical Mathematics

Parabolic spline end conditions

This choice of end conditions involves setting

f ′′(x1) = f ′′(x2) and f ′′(xn−1) = f ′′(xn). (15)

These conditions are called the parabolic spline end conditions because the conse-
quence of this choice is that f ′′(x) is constant in each of the end intervals, causing the
cubic interpolation formula to reduce to a quadratic or parabolic approximation.

Periodic spline end conditions

If there is reason to believe that the data is periodic over the interval x1 ≤ x ≤ xn,
then the following are the appropriate end conditions

f (x1) = f (xn−1) and f ′(xn) = f ′(x2). (16)

Other end conditions can be used and, of course, a linear spline end condition
may be applied at one end of an interval and a parabolic spline end condition at
the other if this is appropriate. An end condition that is more important than the
parabolic end condition is the condition that leads to the complete cubic spline,
namely the spline that interpolates f ′(x) as well as f (x) at both x1 and xn. This
spline has a higher rate of convergence as the maximum step size tends to zero, and
it is often implemented using a local approximation to the derivatives that preserves
the higher rate of convergence.

The function y(x) = sin(1/x) is shown in Fig. 19.8 as the dashed curve, on whichan example of a spline
approximation is superimposed the cubic spline approximation with natural end conditions. The

six interpolation data points are shown as dots.
For more information about topics in this section see references [2.14] through

[2.20].

Summary Linear and Lagrange interpolation were defined, and the desirability of using low degree
Lagrange interpolation in order to avoid the introduction of excessive oscillations between
interpolation data points was illustrated by example. Extrapolation was then defined, and
its attendant dangers were stressed unless something is known about the nature of the
function being extrapolated. Finally, spline interpolation was introduced, which produces

1

0.5

−0.5

−1

0.2 0.4 0.6 0.8

FIGURE 19.8 The function y(x) = sin(1/x), the
cubic spline approximation and the data
interpolation points.
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a smooth interpolated curve through each data point, and the different end conditions
that can be applied were explained together with their effects.

EXERCISES 19.3

Exercises in this set require the use of a computer.

1. Graph the function f (x) = x/(1 + x2) in the interval
0 ≤ x ≤ 3. Select four points on the graph, and after con-
structing a polynomial that passes through each of the
points graph the polynomial and compare the result with
the original function.

2. Graph the function f (x) = sin x/(1 + x2) in the inter-
val 0 ≤ x ≤ π . Select four points on the graph, and after
constructing a polynomial that passes through each of
the points graph the polynomial and compare the result
with the original function.

3. Graph the function f (x) = 1 + x sin x in the interval
0 ≤ x ≤ 2π . Select seven points on the graph, and after
constructing a polynomial that passes through each of the
points graph the polynomial and compare the result with
the original function. Try to improve the approximation
by choosing the seven points differently.

4. Graph the function f (x) = (1 − x5)1/5 in the interval
0 ≤ x ≤ 1. Select seven points on the graph, and after
constructing a polynomial that passes through each of

the points graph the polynomial and compare the result
with the original function. Try to improve the approxi-
mation by choosing the seven points differently.

5. Graph the function f (x) = 1 − 2x cos x in the interval
0 ≤ x ≤ 2π . Select seven points on the graph and con-
struct a spline function approximation to the function in
the interval 0 ≤ x ≤ 2π using parabolic spline function
end conditions. Graph the spline function and compare
it with the graph of the original function. Repeat the cal-
culation using linear spline function end conditions and
compare the result with the previous graph.

6. Graph the function f (x) = (1 − x7)1/7 in the interval
0 ≤ x ≤ 1. Select seven points on the graph, and con-
struct a spline function approximation to the function in
the interval 0 ≤ x ≤ 1 using linear spline function end
conditions. Graph the spline function and compare the
result with the original function. Repeat the calculation
using parabolic spline function end conditions and com-
pare the result with the previous graph.

19.4 Numerical Integration

The need for numerical integration, also called numerical quadrature, arises when
either a definite integral that is required cannot be evaluated analytically, or when
special functions involved in an analytical solution are too complicated to be of
direct use. A typical definite integral that can only be evaluated numerically is

I =
∫ 5

0

sin 3x√
x2 + x + 1

dx,

the value of which can be shown to be I = 0.364 873. In what follows, three different
numerical integration schemes for the evaluation of definite integrals will be derived
called, respectively, the trapezoidal rule, Simpson’s rule, and Gaussian integration.
Of these three methods the first is the least accurate, whereas the last provides high
accuracy with far fewer computational steps than the frequently used Simpson’s
rule.

The Trapezoidal Rule
The basis of this very simple rule can be understood from Fig. 19.9 in which the
integral I = ∫ b

a f (x)dx is approximated by the area of the trapezoid PQRS shown
as the shaded area in the interval a ≤ x ≤ b associated with the graph of y = f (x).
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FIGURE 19.9 A trapezoidal approximation to
I = ∫ b

a f (x)dx.

As the area PQRS = 1
2 (b − a)[ f (a) + f (b)], the approximation to the definite

integral in Fig. 19.9 is given by

∫ b

a
f (x)dx ≈ 1

2
(b − a)[ f (a) + f (b)]. (17)

Setting b − a = h, and denoting by E(h) the error made when approximating the
definite integral by a single trapezoid with base h, we have

E(h) = 1
2

(b − a)[ f (a) + f (b)] −
∫ b

a
f (x)dx,

so in terms of E(h) the approximation (17) can be replaced by the exact result∫ b

a
f (x)dx = 1

2
(b − a)[ f (a) + f (b)] − E(h). (18)

A different way of deriving result (17) is to use linear interpolation to represent
y(x) between x = a and x = b, and then to integrate the result.

Although the exact error E(h) is not known, an expression for the error can
be derived on the assumption that f (x) is suitably differentiable in the range of
integration a ≤ x ≤ b. The error term for the trapezoidal rule will be stated without
proof because its derivation is similar to that for the more accurate Simpson’s rule,
and this will be given later. When a definite integral is approximated by a single
trapezoid, as in Fig. 19.9, the error term in (18) is given by E(h) = 1

12 h3 f ′′(ξ), for
some ξ such that a ≤ ξ ≤ b. If we use this error term (18) becomes

∫ b

a
f (x)dx = 1

2
(b − a)[ f (a) + f (b)] − 1

12
h3 f ′′(ξ), (19)

for some ξ such that a ≤ ξ ≤ b.
A better estimate of the definite integral

∫ b
a f (x)dx can by obtained by di-

viding a ≤ x ≤ b into n subintervals, applying (19) to each of the n subintervals,
and then summing the result. Although not necessary, it is usual to choose all n
subintervals to be of equal length h = (b − a)/n, where h is usually called the step
size. Consequently, setting xi = a + ih for i = 0, 1, . . . , n, we arrive at what is called
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the composite trapezoidal rule

∫ b

a
f (x)dx = 1

2
h

[
f (a) + 2

n−1∑
i=1

f (xi ) + f (b)

]
− 1

12
(b − a)h2 f ′′(η), (20)

where the unknown number η in the error term is such that a ≤ η ≤ b.
The error term in the composite trapezoidal rule is obtained from the error term

in (19) by addition of the error terms in each subinterval. The details of the deriva-
tion will be left as an exercise, because they parallel those for the corresponding
case in the composite Simpson’s rule that will shortly be discussed in detail.

composite trapezoidal
rule with error term

Although η is not known, whenever it is possible to estimate the greatest and
least values of f ′′(x) in the interval a ≤ x ≤ b, bounds can be placed on the com-
posite trapezoidal rule result by assigning these values of f ′′(x) to f ′′(η).

In practical applications of the composite trapezoidal rule the error term is
usually only used to show that as the number n of subintervals increases, so the error
decreases as (b− a)h2/12, where h = (b− a)/n. The error is often approximated by
forming two approximations with different h and using the asymptotic behavior to
estimate the error of the result corresponding to the smaller h. Another approach
is to compare the result with the one obtained with Simpson’s method.

EXAMPLE 19.5 Use the composite trapezoidal rule with n = 10, 30, and 50 subintervals to evaluate

I =
∫ 5

0

sin 3x√
x2 + x + 1

dx,

and approximate the error when 50 subintervals are used.

Solution The following results were obtained by computer:

n 10 30 50

Itrap(n) 0.290422 0.356897 0.362010

The result for Itrap(50) should be compared with the result I = 0.364873 obtained
by a higher order method that is known to be correct to six decimal places.

Instead of using f ′′(η) when approximating the error with n = 50, where η is
unknown, we will use the easily computed average f ′′

av of f ′′(x) over the interval,
where

f ′′
av = 1

b − a

∫ b

a
f ′′(x)dx = 1

b − a
[ f ′(b) − f ′(a)].

We have b − a = 5 and the step size h = 5/50 = 0.1, so

f ′′
av = 1

5

∫ 5

0
f ′′(x)dx = 1

5
[ f ′(5) − f ′(0)] = −0.686.

Using f ′′
av in the error term instead of f ′′(η) leads to 1

12 · 5 · (0.1)2 · (−0.686) =
−0.002858 as the approximation to the error. Consequently, allowing for this
error, the estimate of the integral is 0.362010 − (−0.002858) = 0.364868. When this
is compared with the result I = 0.364873 we see that in this case the error approx-
imation is good.
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FIGURE 19.10 A parabolic approximation to
I = ∫ b

a f (x)dx.

Simpson’s Rule
In its simplest form, the trapezoidal rule applied to I = ∫ b

a f (x)dx represents f (x)
by the single trapezoidal area PQRS shown in Fig. 19.9, where in the interval
a ≤ x ≤ b the function y = f (x) is approximated by the straight line segment
QR. A more accurate result would be expected if a point on the curve y = f (x)
is chosen inside the interval a ≤ x ≤ b and f (x) is approximated by a parabola
that passes through the two end points and the single internal point, as shown in
Fig. 19.10.

Setting b = a + 2h, where h is the step size, and taking the additional point in
the interval of integration to be x = a + h, so it is midway between the ends of the
interval, the parabola to be fitted must pass through the three consecutive points
(a, f (a)), (a + h, f (a + h)), and (a + 2h, f (a + 2h)). The Lagrange interpolation
formula that fits a quadratic through these three points is

L(x) = 1
2

(x − a − h)(x − a − 2h)
h2

f (a) − (x − a)(x − a − 2h)
h2

f (a + h)

+ 1
2

(x − a)(x − a − h)
h2

f (a + 2h). (21)

Integrating L(x) over the interval a ≤ x ≤ a + 2h and simplifying the result
gives

∫ a+2h

a
f (x)dx ≈ 1

3
h[ f (a) + 4 f (a + h) + f (a + 2h)], (22)

which is the result known as Simpson’s rule, or sometimes Simpson’s 1/3 rule. Result
(22) can also be written in terms of the limits of integration a and b = a + 2h as

∫ a+2h

a
f (x)dx ≈ 1

6
(b − a)

[
f (a) + 4 f

(
a + h

2

)
+ f (b)

]
. (23)
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If the error in Simpson’s rule is denoted by E(h), the approximation in (22) can
be replaced by the exact result

∫ a+2h

a
f (x)dx = 1

3
h[ f (a) + 4 f (a + h) + f (a + 2h)] − E(h). (24)

We will now derive an expression for E(h) but before doing so, in order to simplify
the manipulation, it will be convenient to write the limits of integration in the more
symmetrical form a = c − h and b = c + h. In terms of c and h (24) becomes

E(h) = 1
3

h[ f (c − h) + 4 f (c) + f (c + h)] −
∫ c+h

c−h
f (x)dx.

We now differentiate this result with respect to h to obtain

E′(h) = 1
3

[ f (c − h) + 4 f (c) + f (c + h)]

+ 1
3

h[− f ′(c − h) + f ′(c + h)] − [ f (c + h) + f (c − h)],

where the last group of terms on the right follow from differentiating the definite
integral using Leibniz’s theorem (Theorem 1.5). If we set h = 0, this result shows
that E′(0) = 0.

Differentiation of E′(h) gives

E′′(h) = 1
3

[ f ′(c − h) − f ′(c + h)] + 1
3

h[ f ′′(c + h) + f ′′(c − h)],

so setting h = 0 we find that E′′(0) = 0. One final differentiation gives

E′′′(h) = 1
3

h[ f ′′′(c + h) − f ′′′(c − h)],

but this can be simplified by using the Taylor expansion of f ′′′(c + h) with a remain-
der after the first term, where the expansion is about the point c − h, so that

f ′′′(c + h) = f ′′′(c − h) + 2hf (4)(ξ),

where ξ is unknown but lies in the interval c − h < ξ < c + h.
The error term can now be found by integrating this last result three times using

the results E′(0) = E′′(0) = 0.
We have ∫ h

0
E′′′(t)dt = E′′(h) − E′′(0) = E′′(h),

so

E′′(h) = 2
3

f (4)(ξ)
∫ h

0
t2dt = 2

9
h3 f (4)(ξ).

A further integration using the result∫ h

0
E′′(t)dt = E′(h) − E′(0) = E′(h)
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gives

E′(h) = 2
9

f (4)(ξ)
∫ h

0
t3dt = 1

18
h4 f (4)(ξ).

Finally, after another integration we arrive at the result

E(h) = 1
18

f (4)(ξ)
∫ h

0
t4dt = 1

90
h5 f (4)(ξ), (25)

which is the required expression for the error term. Using this result in (24) gives

∫ a+2h

a
f (x)dx = 1

3
h[ f (a) + 4 f (a + h) + f (a + 2h)] − 1

90
h5 f (4)(ξ). (26)

As f (4)(ξ) enters as a factor in E(h), this shows the rather surprising result that
although Simpson’s rule was derived by requiring a quadratic polynomial to pass
through three points, the rule is actually exact for cubic polynomials.

As with the trapezoidal rule, the accuracy of Simpson’s rule can be improved by
increasing the number of subintervals, but as the rule is equivalent to constructing
parabolas through three consecutive equispaced points, to use the rule over more
than three points the number of points chosen for the interval a ≤ x ≤ b must be
odd, so that the number of intervals must be even. Dividing the interval a ≤ x ≤ b
into 2n equal subintervals each of length h = (b − a)/2n, and adding the results,
gives the composite Simpson’s rulecomposite Simpson’s

rule with error term ∫ b

a
f (x)dx = 1

3
h

[
f (a) + 4

n∑
i=1

f (a + (2i − 1)h) + 2
n−1∑
i=1

f (a + 2ih) + f (b)

]

− 1
180

(b − a)h4 f (4)(η)

(27)

where η is unknown but is such that a < η < b.
The error term in the composite rule (27) is obtained as follows. Let xi =

a + 2ih, with i = 0, 1, . . . , n, and let ξi be the value of ξ in the interval xi ≤ x ≤ xi+1

appropriate to the Simpson’s rule applied to that interval. Consequently, when the
composite Simpson’s rule is formed, the error term in each of these intervals will
be added. Now, each derivative f (4)(ξi ) must satisfy the inequality

min
a≤x≤b

f (4)(x) ≤ f (4)(ξi ) ≤ max
a≤x≤b

f (4)(x),

so the addition of these n results followed by division by n gives

min
a≤x≤b

f (4)(x) ≤ 1
n

n∑
i=1

f (4)(ξi ) ≤ max
a≤x≤b

f (4)(x).
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Finally, assuming f (4)(x) is continuous, it follows from the intermediate value
theorem that some number η exists, with a < η < b, such thaterror estimation

for composite
Simpson’s rule

f (4)(η) = 1
n

n∑
i=1

f (4)(ξi ).

If we use the result h = (b − a)/2n, the error term in the composite Simpson’s rule
is seen to be given by

− 1
90

h5
n∑

i=1

f (4)(ξi ) = − 1
180

(b − a)h4 f (4)(η).

EXAMPLE 19.6 Use the composite Simpson’s rule with n = 10, 30, and 50 subintervals to evaluate

I =
∫ 5

0

sin 3x√
x2 + x + 1

dx

and compare the results obtained with the result I = 0.364873, which is accurate
to six decimal places. Compare the result of integrating this definite integral by the
trapezoidal rule and Simpson’s rule.

Solution The following results were obtained by computer:

n 10 30 50

Isimp(n) 0.376738 0.365019 0.364892

Comparison of the result I = 0.364873, known to be correct to six decimal places,
with Isimp(50) = 0.364892, shows that Isimp(50) only overestimates the true result by
0.000025.

When comparing the composite Simpson’s rule with the composite trapezoidal
rule it should be remembered that Simpson’s rule subdivides the interval of inte-
gration into 2n subintervals, whereas the composite trapezoidal rule only uses n
subintervals. The following computer results provide a comparison on this basis:

n 20 40 60 80 100

Itrap(n) 0.346825 0.360395 0.362886 0.363756 0.364158
Isimp(n/2) 0.376738 0.365626 0.365019 0.364919 0.364892

Gaussian Quadrature
Many more numerical integration methods exist than have been outlined so far,
but the only other important one to be mentioned here is due to C. F. Gauss. He
showed that if, when evaluating numerically an integral in the standard form∫ 1

−1
f (x)dx,

the points xi at which the values of the integrand f (x) are sampled are chosen in a
special way, then when n sample points are used the result can be made exact in the
case that f (x) is an arbitrary polynomial of degree 2n − 1 or less. Unlike Simpson’s
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rule, in this method the n sample points xi are nonuniformly spaced through-
out the interval of integration −1 ≤ x ≤ 1, and they are all contained inside the
interval.

The sample points, or nodes as they are called, are chosen to get a formula that
will integrate exactly polynomials of as high degree as possible. It turns out that
the n sample points are real and lie in the open interval (−1, 1), and polynomials
of degree 2n − 1 are integrated exactly.

A somewhat different approach to integration involves specifying some of the
sample points to be used, and then trying to find the remaining ones so as to inte-
grate polynomials of as high degree as possible. Formulas of this type that evaluate
function values at the two ends of the interval of integration are called Lobatto
formulas, and the trapezoidal rule and Simpson’s rule are formulas of the lowest
order that belong to this family.

The point is that if it is useful to specify sample points at the end points of an
interval of integration it is possible to proceed in this way. However, as would be
expected, if this approach is adopted it is not possible to get a formula that is as
accurate as one in which no constraint is placed on the sample points.

The previous arguments are all based on the assumption that functions are
approximated by (algebraic) polynomials, though sometimes it is more natural to
approximate them by trigonometric polynomials (finite Fourier series).

The composite trapezoidal rule is, in fact, the optimal formula of Gaussian
integration type based on trigonometric approximation. As a result it converges
faster than any power of h when applied to a periodic analytic function over a
multiple of a period, so for this reason it is used to compute Fourier coefficients.

To illustrate the approach used to obtain this type of integration formula, we
consider the simplest situation in which n = 2, so as only the two sample points x1

and x2 are involved, with −1 < x1 < x2 < 1, the integration formula becomes

∫ 1

−1
f (x)dx ≈ w1 f (x1) + w2 f (x2).

At this stage the values of the two sample points x1 and x2 are unknown, as are
the numbers w1 and w2, called the weights for the integration formula at theseweights in integration

formula sample points. To determine these four numbers we impose the requirement that
this formula should be exact when f (x) is an arbitrary polynomial of degree
2n − 1 = 3 or less.

Let f (x) be the cubic polynomial

f (x) = c0 + c1x + c2x2 + c3x3,

in which the coefficients c0, c1, c2, and c3 are arbitrary. Then for the integration to
be exact, the numbers x1, x2, w1, and w2 must be such that∫ 1

−1
(c0 + c1x + c2x2 + c3x3)dx = w1

(
c0 + c1x1 + c2x2

1 + c3x3
1

)
+ w2

(
c0 + c1x2 + c2x2

2 + c3x3
2

)
.

Evaluating the integral on the left, and equating the respective multipliers of the
arbitrary coefficients c0, c1, c2, and c3 to make this result an identity, leads to the
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results

(coefficient c0) w1 + w2 = ∫ 1
−1 dx = 2

(coefficient c1) w1x1 + w2x2 = ∫ 1
−1 xdx = 0

(coefficient c2) w1x2
1 + w2x2

2 = ∫ 1
−1 x2dx = 2

3

(coefficient c3) w1x3
1 + w2x3

2 = ∫ 1
−1 x3dx = 0.

This set of equations has the unique solution x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1,
and w2 = 1. Consequently, when n = 2, we have

The sample points

x1 = −1/
√

3, x2 = 1/
√

3,

The weights

w1 = 1, w2 = 1,

so the extremely simple two-point integration formula that gives exact results
when f (x) is a polynomial of degree 3 or less is seen to be given by

∫ 1

−1
f (x)dx = f

(
− 1√

3

)
+ f

(
1√
3

)
.

When this approach is extended to n points, an examination of the derivation
of the formula shows that the sample points x1, x2, . . . , xn are simply the n roots of
the Legendre polynomial Pn(x) = 0 of degree n, with the corresponding weight wi

at xi given by wi = 2[P′(xi )]2/(1 − x2
i ), for i = 1, 2, . . . , n. The general integration

formula involving n points becomes

∫ 1

−1
f (x)dx ≈

n∑
i=1

wi f (xi )

and, collectively, these results are called Gaussian integration formulas or, some-
times, Gauss–Legendre integration formulas. It can be shown that the remainderGauss–Legendre

integration formulas term that must be added to the right-hand side of this last result for it to be ex-
act for any function f (x) with a continuous derivative f (2n)(x) is Rn = 22n+1(n!)4

(2n+1)[(2n)!]3

f (2n)(ξ), for some unknown ξ such that −1 < ξ < 1. A list of Gaussian sampling
points xi and their associated weights wi is given in Table 19.1 for n = 2, 3, 4, 5, 10,
and 16.

As would be expected, if f (x) is an arbitrary polynomial of degree 2n − 1error term in
Gaussian integration or less, it follows directly that Rn ≡ 0, confirming that in this case the result is

exact.
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TABLE 19.1 Gaussian Sampling Points and Weights

n i xi wi

2 1 −0.57735 02692 1.00000 00000
2 0.57735 02692 1.00000 00000

3 1 −0.77459 66692 0.55555 55556
2 0.00000 00000 0.88888 88889
3 0.77459 66692 0.55555 55556

4 1 −0.86113 63115 0.34785 48451
2 −0.33998 10436 0.65214 51548
3 0.33998 10436 0.65214 51548
4 0.86113 63115 0.34785 48451

5 1 −0.90617 98459 0.23692 68851
2 −0.53846 93101 0.47862 86705
3 0.00000 00000 0.56888 88889
4 0.53846 93101 0.47862 86705
5 0.90617 98459 0.23692 68851

10 1 −0.97390 65285 0.06667 13443
2 −0.86506 33667 0.14945 13492
3 −0.67940 95683 0.21908 63625
4 −0.43339 53941 0.26926 67193
5 −0.14887 43390 0.29552 42247
6 0.14887 43390 0.29552 42247
7 0.43339 53941 0.26926 67193
8 0.67940 95683 0.21908 63625
9 0.86506 33667 0.14945 13492

10 0.97390 65285 0.06667 13443

16 1 −0.98940 09350 0.02715 24594
2 −0.94457 50231 0.06225 35230
3 −0.86563 12024 0.09515 85117
4 −0.75540 44084 0.12462 89713
5 −0.61787 62444 0.14959 59888
6 −0.45801 67777 0.16915 65194
7 −0.28160 35508 0.18260 34150
8 −0.09501 25098 0.18945 06105
9 0.09501 25098 0.18945 06105

10 0.28160 35508 0.18260 34150
11 0.45801 67777 0.16915 65194
12 0.61787 62444 0.14959 59888
13 0.75540 44084 0.12462 89713
14 0.86563 12024 0.09515 85117
15 0.94457 50231 0.06225 35239
16 0.98940 09350 0.02715 24594

The apparent restriction of the integration to the standard interval −1 ≤ x ≤ 1
is unimportant, because if the integral involved is

I =
∫ b

a
f (x)dx,

where a and b are finite, the simple change of variable

x = 1
2

(b + a) + 1
2

(b − a)u
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converts the integral to

I = b − a
2

∫ 1

−1
F(u)du,

where F(u) is the function f (x) after the change of variable.
The accuracy obtained when using an n-point Gaussian integration formula de-

pends on the extent to which the integrand can be approximated by a polynomial of
degree 2n − 1. To illustrate matters, we apply the five-point formula to the following
integral for which there is an analytical solution that can be used for comparison:

I =
∫ 1/2

0

dx
(1 − x2)1/2

= Arcsin(1/2) = π

6
= 0.523599.

The change of variable x = 1
4 (1 + u) maps the interval 0 ≤ x ≤ 1

2 onto the interval
−1 ≤ u ≤ 1, so as dx/du = 1

4 , after changing the variable

I =
∫ 1

−1

du
(15 − 2u − u2)1/2

.

Setting f (u) = 1/(15 − 2u − u2)1/2 and applying the five-point Gaussian for-
mula gives

I ≈ 0.236927 f (−0.906180) + 0.478629 f (−0.538469) + 0.568889 f (0)

+ 0.478629 f (0.538469) + 0.236927 f (0.906180) = 0.523599.

In this case the numerical approximation is seen to be correct to six decimal places.
The key idea used in modern integration codes involves the use of an adap-modern adaptive

integration codes tive algorithm. In such codes the error of an integral evaluated over an interval is
approximated by comparing it to the result obtained by a higher order formula.
Thus, the error of the trapezoidal rule can be estimated by comparing the result
to the one obtained using Simpson’s rule. If the result is not sufficiently accurate,
the interval is split in half and the two intervals are then treated separately. Re-
ducing the length of an interval produces a significant reduction in the error. This
can be seen by considering the low-order trapezoidal rule. The effect of halving
the interval is to reduce the error in a half interval by a factor of approximately an
eighth, so as the operation of integration is linear, the error over the full interval is
reduced by a factor of approximately a fourth. When this argument is extended, we
see that if the interval of integration is divided into many pieces, accurate values
of the integral over all the pieces can be added together to get an accurate value
over the whole interval, with the same being true of the error estimates.

In this approach two formulas are applied to an interval using as many values
of f as possible in both formulas. That the method is computationally efficient
when the combination of the trapezoidal rule is used and Simpson’s rule is used can
be seen from the fact that only one extra evaluation of f is necessary in order to
estimate the error. Modern codes use a Gaussian formula of high order as the basic
formula, and a special formula of much higher order that makes use of as many
function evaluations as possible for estimating the error.
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As Gaussian integration formulas make no use of the values of the integrand
at the end points of the interval −1 ≤ x ≤ 1, they can be used to approximate a
convergent improper integral of the type

∫ b
a f (x)dx, where the integrand becomes

infinite at either end point.
For more information about numerical integration, see references [2.14]

through [2.20].

Summary The methods for numerical integration, also called numerical quadrature, introduced in
this section were the trapezoidal and composite trapezoidal rule, Simpson’s rule and the
composite Simpson’s rule, and Gaussian quadrature. The relative accuracies of the meth-
ods were explained; the high accuracies of Gaussian quadrature was stressed. The suit-
ability of the composite trapezoidal rule for the computation of Fourier coefficients was
mentioned.

EXERCISES 19.4

The following exercises require the use of a computer.

1. Use the composite Simpson’s rule with step length
h = 0.5 to determine

I =
∫ 3

1
(2x3 − 3x2 + 4x − 1)dx,

and hence verify that the rule integrates cubics exactly.
2. Use the composite trapezoidal rule with the step length

h = 0.1 to evaluate

I =
∫ 1

0

dx
1 + x2

,

and estimate the error term involved. Compare your re-
sults with the exact value I = π

4 . Repeat the calculation
using the composite Simpson’s rule with the same step
length, but without estimating the error.

3. Use the composite trapezoidal rule and Simpson’s rule,
each with 10 subintervals, to estimate

I =
∫ π

0

sin x
x

dx,

and compare your results with I = 1.851937, which is
exact to six decimal places.

4. Use the composite trapezoidal and Simpson’s rule, each
with step length h = 0.2, to estimate

I =
∫ 2

0
x2e−xdx,

and compare your results with the analytical solution
I = 1

13 + 1
2 Arctan 5 − 1

8 π .
5. Use the composite Simpson’s rule with step length

h = 0.4 to estimate

I =
∫ 6

2

ln(2 + 3
√

x)
1 + x2

dx,

and compare your result with the result I = 0.596545,
which is correct to six decimal places.

6. Use the composite trapezoidal and Simpson’s rule, each
with step length h = 0.4, to estimate∫ 4

0

(
1 − x

4

)4
x1/2dx.

Compare your results with the exact solution that fol-
lows from the general result

I(z, n) =
∫ n

0

(
1 − x

n

)n
xz−1dx

= 1 · 2 · 3 · · · n
z(z + 1)(z + 2) · · · (z + n)

nz.

It follows from the definition of the gamma function
that limn→∞ I(z, n) = �(z). Explain why replacing 4 by
50 in the original integral and evaluating the result using
the composite Simpson’s rule with more subdivisions is
not likely to lead to much improvement of the poor
estimate it provides of �(3/2) = 1

2

√
π .

7. The Bessel function J1(x) has the integral representa-
tion

J1(x) = 2
π

∫ π/2

0
sin(x cos θ) cos θdθ.

Use the composite Simpson’s rule with step length
h = π/20 to estimate J1(2), and compare your result
with the result J1(2) = 0.576725, which is accurate to
six decimal places.

In Exercises 8 through 10 use the integral representation

Jn(x) = 1
π

∫ π

0
cos(x sin θ − nθ)dθ.
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8. Estimate J2(2) using the composite Simpson’s rule
with step length h = π/8, and compare your result
with J2(2) = 0.352834, which is accurate to six decimal
places.

9. Estimate J1(4) using the composite Simpson’s rule with
step length h = π/10, and compare your result with
J1(4) = −0.066043, which is accurate to six decimal
places.

10. Estimate J3(4) using the composite Simpson’s rule
with step length h = π/10, and compare your result
with J3(4) = 0.430171, which is accurate to six decimal
places.

11. The modified Bessel function I0(x) has the integral rep-
resentation

I0(x) = 2
π

∫ π/2

0
cosh(x sin θ)dθ.

Use the composite Simpson’s rule with step length
h = π/16 to estimate I0(3.5), and compare your result
with I0(3.5) = 7.378203, which is correct to six decimal
places.

12. The modified Bessel function I1(x) has the integral rep-
resentation

I1(x) = 2x
π

∫ π/2

0
cosh(x sin θ)(cos θ)2dθ.

Use the composite Simpson’s rule with step size h =

π/16 to estimate I1(3), and compare your result with
I1(3) = 3.953370, which is correct to six decimal places.

In Exercises 13 and 16 use the 3-, 5-, and 10-point Gaus-
sian formulas to estimate the given integral and compare
the results with the exact value.

13. I =
∫ 3π/2

0
cos xdx.

The exact value is I = −1.

14. I =
∫ π/2

0
e−x cos x.

The exact value to six decimal places is I =
1
2 [1 + exp(− 1

2 π)] = 0.603940.
15. Use the 10-point Gaussian formula to estimate the value

of the convergent improper integral

I =
∫ 1/2

0

dx
(1 − 4x2)1/2

.

Compare the result with the exact value to six decimal
places I = π

4 = 0.785398.
18. Use the 10-point Gaussian formula to estimate the value

of the convergent improper integral

I =
∫ π/2

0

√
x

sin x
dx.

Compare the result with the exact value to six decimal
places I = 2.753142.

19.5 Numerical Solution of Linear Systems
of Equations

This section describes two approaches to the solution of systems of n nonhomoge-
neous linear equations in the n unknowns x1, x2, . . . , xn, both of which are impor-
tant. These methods, with various refinements, are all found in major linear algebra
software packages.

The first method, involving the successive elimination of unknowns, is of the
direct type, in which the solution is obtained after systematically eliminating n − 1 of
the n unknowns to find xn. The process of back-substitution is then used to find the
remaining unknowns in the reverse order xn−1, xn−2, . . . , x1. This method can also
be used when the number of equations is not equal to the number of the unknowns,
when it also shows automatically if a system of equations is inconsistent.

A related method is essentially the same as the first, apart from the way in
which details of the elimination process are recorded to permit solving conveniently
more than one system of equations with the same coefficient matrix. It applies to
systems in which the number of equations equals the number of unknowns. The
approach is to attempt to factorize the coefficient matrix A in the system Ax = b
into the product PA = LU, where L is a lower-triangular matrix with 1’s on its
leading diagonal, U is an upper-triangular matrix, and P is a permutation matrix,
the reason for which will be explained later. The method uses this factorization to
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determine the solution vector x. A failure of the method to achieve this factorization
indicates that A is singular, so then one or more of its rows is linearly dependent
on other rows.

The second type of approach is an iterative one, and it only applies to a system of
n nonhomogeneous equations in the n unknowns x1, x2, . . . , xn. The methods start
with an arbitrary approximation x(0) to the solution vector x, and this is iterated in
such a way that it leads to successive improved approximations x(1), . . . , x(i), x(i+1) to
x. The iterative process is terminated after N iterations as soon as the two successive
iterates x(N−1) and x(N) yield approximations x(N−1)

i and x(N)
i to xi , for i = 1, 2, . . . , n,

that differ by less than a small preassigned number ε > 0, called the tolerance. The
final iterate is taken to be the solution of the system of equations to within the
chosen tolerance. The number of iterations necessary to arrive at this approximation
to the solution vector is indeterminate, because it depends on the structure of the
equations, the iterative scheme involved, and the tolerance.

As all methods of the direct type are, in a sense, derived from the standard
Gaussian elimination process, it will be sufficient to describe this process in some
detail. Later a comment will be offered concerning a modification that must be
made to the process to ensure that the elimination procedure does not fail un-

tolerance in iterations

necessarily, and that round-off errors are minimized. The second direct method
retains information contained in the Gaussian elimination process and uses it to
derive the factorization PA = LU, after which the result is used to solve the system
Ax = b. This method is useful when solutions are required to a system Ax = b for
a sequence of nonhomogeneous vectors b while leaving the coefficient matrix A
unchanged. This can happen, for example, in the analysis of forces in a structure
due to changes in loading, where the matrix A representing the structure stays the
same, while the loading represented by the vector b is altered repeatedly.

Of the various iterative schemes that are available, we describe only the Jacobi
and Gauss–Seidel schemes. These are widely used, though for somewhat different
purposes, and they are applicable to systems of equations that possess a property
called diagonal dominance that will be described later. Iterative methods are used
when working with large matrices, where it frequently happens that many zero
elements are present, often occurring in diagonal bands parallel to the leading
diagonal of matrix A. Matrices of this type are called sparse matrices, and they
arise when solving partial differential equations, in spline interpolation, and in
many other applications of matrices. More information about refinements to the
Gaussian elimination process and about iterative methods in general can be found
in the references cited at the end of the section.

The Gaussian Elimination Process
Let us assume that the system of equations to be solved is of the form

Ax = b, (28)

where A = [ai j ] is an n × n matrix with constant coefficients, the column vector
x = [x1, x2, . . . , xn]T is the required solution vector, and the column vector b =
[b1, b2, . . . , bn]T contains the constant nonhomogeneous terms, not every one of
which is zero.
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When written out explicitly, (28) becomes

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2
...

xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b1

b2
...

bn

⎤⎥⎥⎥⎦ . (29)

It was shown in Chapter 3 that (29), equivalently (28), possesses a unique solution
provided the rank of matrix A and the rank of the augmented matrix [A|b] are
both equal to n, in which case the formal solution of (28) can be written x = A−1b.
However, the need to find different ways of calculating x arises from the fact that
solutions in terms of the inverse matrix are not practicable when n is large, because
of the magnitude of the task of calculating A−1 when n is large.

In both machine and hand computation, the foregoing full matrix form of the
system in (29) is abbreviated to the augmented matrix, and the calculations are then
performed on its entries. The augmented array corresponding to (29) is

⎡⎢⎢⎢⎣
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
...

an1 an2 · · · ann bn

⎤⎥⎥⎥⎦ . (30)

In this abbreviated notation the coefficients of x1, x2, . . . , xn in each equation are
identified by their position in the array, so the coefficient of x1 in the second equation
is a12, while the coefficient of x2 in the nth equation is an2.

As individual equations can be scaled by a number k, and a multiple of an
equation can be added to another equation, all without altering the solution, it
follows that these same operations can be performed on the array in (30). The basic
Gaussian elimination process makes use of these properties. The first stage of theGaussian elimination
elimination process involves assuming a11 �= 0, multiplying the first row by a21/a11,
and subtracting the result from the second row, when its first entry becomes zero.
The next step is to multiply the first row by a31/a11 and subtract the result from
the third row, to make its first entry zero. A repetition of this process n − 1 times
completes the first stage of the process, after which all entries below a11 are zero,
causing (30) to become ⎡⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

0 a(1)
22 · · · a(1)

2n b(1)
2

...
...

...
...

...
0 a(1)

n2 · · · a(1)
nn b(1)

n

⎤⎥⎥⎥⎥⎦ , (31)

where the a(1)
i j and b(1)

i represent the modified elements ai j and bi after subtraction
of the multiple of the corresponding elements in the first row.

The second stage of the elimination process involves assuming a(1)
22 �= 0, sub-

tracting suitable multiples of the modified second row in (31) from the n − 2 rows
below it to make all entries in the column below a(1)

22 zero. A continuation of this
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process, assuming no element used to eliminate those below it is zero, leads in the
end to all elements below the leading diagonal of the first n columns of the modified
augmented array becoming zero, so the final array becomes⎡⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

0 a(1)
22 · · · a(1)

2n b(1)
2

...
...

...
...

...
0 0 · · · a(n−1)

nn b(n−1)
n

⎤⎥⎥⎥⎥⎦ . (32)

The solution is then found by the process called back-substitution, which starts
with the last row in (32) that is equivalent to the equation a(n−1)

nn xn = b(n−1)
n , from

which it follows that

xn = b(n−1)
n /a(n−1)

nn . (33)

The second row from the bottom in (32) is equivalent to the equation

a(n−2)
n−1,n−1xn−1 + a(n−2)

n−1,nxn = b(n−2)
n−1 , (34)

from which xn−1 can be found after substituting the value of xn found in (33).
Continuing in this manner, all elements x1, x2, . . . , xn of the required solution vector
x can be found in the reverse order xn, xn−1, . . . , x1.

The elements a11, a(1)
22 , . . . , a(n−1)

nn used to reduce the coefficient matrix A to the
upper triangular form shown in the first n columns of (32) are called the pivotalpivotal elements
elements in the Gaussian elimination process, and the row containing a pivotal
element is called the pivotal row. This completes the basic Gaussian elimination
process.

Clearly, if at the r th stage in the process a row of zeros is obtained in the mod-
ified coefficient matrix A, but the modified r th element in the nonhomogeneous
vector b is nonzero, the system of equations is incompatible and no solution exists.
If, however, at the r th stage in the elimination process a row of zeros is obtained
in the modified coefficient matrix A, and the modified r th element in the nonho-
mogeneous vector b is also zero, then the r th equation is linearly dependent on the
first r − 1 equations, so the solution cannot be unique.

A difficulty arises if at any stage of the process the pivotal element in the
mth position on the leading diagonal of the modified matrix A becomes zero, as
would happen at the start if a11 = 0. Should this occur, the difficulty is overcome
by interchanging the order of the rows to bring a nonzero element into the pivotal
position. Errors can be introduced during the elimination process if a very small
pivotal element is used to reduce to zero entries in the column below it that are
significantly larger, so this must be avoided. As the order of equations can be
changed without altering the solution, these disadvantages can both be avoided as
follows. At the mth stage, from among rows m to n, a row is selected that contains
one of the elements of largest magnitude in its mth column. This row is then moved
upward to form the new mth row, after which the elimination process continues as
before. This process is called Gaussian elimination with partial pivoting, and it is aGaussian elimination

with partial pivoting standard feature of software codes.
It is easy to see this same method can be used when the number of equations is

not equal to the number of unknowns. The form of the modified augmented matrix
will then, as just described, indicate whether the system has no solution, a unique
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solution that can be found, or a nonunique solution depending on some arbitrary
parameters because of linear independence of rows.

Although det A is not required when using the Gaussian elimination process,
because the process reduces the original coefficient matrix A in an efficient mannerGaussian elimination

and det A to the upper-triangular form shown in the first n columns of (32), it follows at once
that

det A = a11a(1)
22 a(2)

33 . . . a(n−1)
nn , (35)

and it is this method that is used by software programs when finding det A, thereby
avoiding the many time-consuming multiplications involved when computing co-
factors.

EXAMPLE 19.7 Solve the following system of equations by Gaussian elimination:

2x1 − 2x2 + 3x3 + 4x4 = −18

4x1 + x2 − x3 + 2x4 = −11

x1 − x2 − x3 + 5x4 = −26

2x1 − 3x2 + 2x3 − x4 = −3.

Use (35) to find the determinant of the coefficient matrix A.

Solution The array to be considered is⎡⎢⎢⎣
2 −2 3 4 −18
4 1 −1 2 −11
1 −1 −1 5 −26
2 −3 2 −1 −3

⎤⎥⎥⎦ ,

in which the first four columns represent the coefficient matrix A and the last column
the nonhomogeneous vector b. As no element in the first column is small, there is
no need to interchange rows, so we will use the entry a11 = 2 as the initial pivotal
element. Subtracting twice the first row from the second row, half the first row from
the third row, and the first row from the last row shows that at the end of the first
stage of the Gaussian elimination process the modified array becomes⎡⎢⎢⎣

2 −2 3 4 −18
0 5 −7 −6 25
0 0 − 5

2 3 −17
0 −1 −1 −5 15

⎤⎥⎥⎦ .

The next element in the pivotal position is 5, so as this element is not small, the
order of the rows can be left unchanged and the element 5 used as the next pivotal
element. Adding one-fifth of row 2 to row 4 gives⎡⎢⎢⎣

2 −2 3 4 −18
0 5 −7 −6 25
0 0 − 5

2 3 −17

0 0 − 12
5 − 31

5 20

⎤⎥⎥⎦ .
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In the last stage of the elimination process we use −5/2 as the pivotal element and
subtract 24/25 times row 3 from row 4 to obtain⎡⎢⎢⎣

2 −2 3 4 −18
0 5 −7 −6 25
0 0 − 5

2 3 −17

0 0 0 − 227
25

908
25

⎤⎥⎥⎦ .

Back substitution now gives the solution, because if we reinsert the unknown
quantities x1, x2, . . . , xn it follows from the last row that

−227
25

x4 = 908
25

, so x4 = −4,

while the second row from the bottom becomes

−5
2

x3 + 3x4 = −17, so using x4 = −4 we find that x3 = 2.

Continuing in this manner and using the remaining two rows leads first to the result
x2 = 3 and then to x1 = −1, so the solution is seen to be

x1 = −1, x2 = 3, x3 = 2, x4 = −4.

Notice that in this case no pivotal element was small enough to necessitate
an interchange of rows, so the solution was obtained without the need for partial
pivoting.

The value of det A follows immediately from (35) as the product of the diagonal
entries in the upper-triangular array to which the matrix A has been reduced at the
end of the Gaussian elimination process, so

det A = 2 · 5 ·
(

−5
2

)
·
(

−277
25

)
= 277.

The LU Factorization Method
Suppose the n × n nonsingular matrix A in the system Ax = b can be factored as
the product A = LU, where L is an n × n lower-triangular matrix with 1’s along its
leading diagonal and U is an n × n upper-triangular matrix.

The method of solution of the system of equations Ax = b reduces to finding
the column vector y that is the solution of Ly = b, and then determining x from the
system of equations Ux = y. The advantage of this approach is that once L and U
have been found, the elements of the vector y can be obtained by forward substitu-
tion, after which the elements of the vector x then follow by backward substitution.
As already remarked, this approach is very efficient when the system Ax = b has to
be solved repeatedly with the same coefficient matrix A, but different nonhomoge-
neous vectors b. This is because L and U remain unchanged, so the solution vector
x can be found using only multiplications, the vector b, and the known factorization
of A. We remark here that, without introducing row permutations, it may not be
possible to factor a nonsingular matrix.

All the information necessary for the factorization of A into the product
A = LU is already contained in the Gaussian elimination method, so the most
straightforward form of LU factorization in which partial pivoting is not necessary
will be illustrated by means of an example. We will factor the matrix A in Exam-
ple 19.7, and then use the result to solve the system of equations in that example.
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When the first stage of the Gaussian elimination process was applied to matrix
A in the example, 2 times row 1 was subtracted from row 2, 1

2 row 1 was subtracted
from row 3, and 1 times row 1 was subtracted from row 4, causing matrix

A =

⎡⎢⎢⎣
2 −2 3 4
4 1 −1 2
1 −1 −1 5
2 −3 2 −1

⎤⎥⎥⎦ to become the matrix A1 =

⎡⎢⎢⎣
2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3
0 −1 −1 −5

⎤⎥⎥⎦ .

If we represent the elementary row operations involved in terms of premultiplica-
tion of A by a matrix M1, this can be written M1A = A1, where

M1 =

⎡⎢⎢⎣
1 0 0 0

−2 1 0 0
− 1

2 0 1 0
−1 0 0 1

⎤⎥⎥⎦ .

When the second stage of the Gaussian elimination process was applied to the
matrix A1, − 1

5 times row 2 was subtracted from row 4, causing A2 to become the
matrix

A2 =

⎡⎢⎢⎣
2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3

0 0 − 12
5 − 31

5

⎤⎥⎥⎦ ,

so in terms of matrix multiplication this becomes M2A1 = A2, or M2M1A = A2,
where

M2 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 1

5 0 1

⎤⎥⎥⎦ .

Finally, when the last stage of the Gaussian elimination process was applied to matrix
A2, 24/25 times row 3 was subtracted from row 4 to give the upper-triangular matrix

A3 =

⎡⎢⎢⎣
2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3

0 0 0 − 227
25

⎤⎥⎥⎦ ,

so in terms of matrix multiplication M3A2 = A3, or M3M2M1A = A3, where

M3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 24

25 1

⎤⎥⎥⎦ .

However, A3 = U is an upper-triangular matrix, and we have shown that

M3M2M1A = U, with U =

⎡⎢⎢⎣
2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3

0 0 0 − 227
25

⎤⎥⎥⎦ ,
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and so

A = M−1
1 M−1

2 M−1
3 U.

We will have succeeded in factoring A if we can show that M−1
1 M−1

2 M−1
3 is a lower-

triangular matrix of the required type.
To accomplish this last step notice that the special structure of the matrices Mi ,

for i = 1, 2, 3 is such that from the definition of the inverse matrix in terms of its
cofactors, the inverse matrix M−1

i can be obtained directly from Mi by reversing
the signs of the elements in its ith column that lie below the element 1, so without
further computation we can write

M−1
1 M−1

2 M−1
3 =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0
1 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

5 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 24

25 1

⎤⎥⎥⎦ .

The structure of these matrices allows their product to be written down on
sight, because the ith column of the product matrix is simply the ith column of the
matrix Mi , so that

M−1
1 M−1

2 M−1
3 =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0

1 − 1
5

24
25 1

⎤⎥⎥⎦ .

This is a lower-triangular matrix of the required form, so

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0

1 − 1
5

24
25 1

⎤⎥⎥⎦ ,

and the factored form of A is

A = LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0
1 − 1

5
24
25 1

⎤⎥⎥⎦
⎡⎢⎢⎣

2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3

0 0 0 − 227
25

⎤⎥⎥⎦ .

To use L and U to solve the system of equations in Example 19.7, we must first
solve the system Ly = b, where b = [−18, −11, −26, −3]T. This is the system⎡⎢⎢⎣

1 0 0 0
2 1 0 0
1
2 0 1 0

1 − 1
5

24
25 1

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−18
−11
−26
−3

⎤⎥⎥⎦ ,

from which we see that y1 = −18, and forward substitution then shows y2 = 25, y3 =
−17, and y4 = 908/25.
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The elements x1, x2, x3, and x4 of the required solution vector x now follow by
solving Ux = y, that is, the system⎡⎢⎢⎣

2 −2 3 4
0 5 −7 −6
0 0 − 5

2 3

0 0 0 − 227
25

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−18

25
−17

908
25

⎤⎥⎥⎦ .

This shows x4 = −4, so using back substitution we find that x3 = 2, x2 = −3, and
x1 = −1, so the system is solved.

This method has been described in its simplest form where straightforward
Gaussian elimination is used without partial pivoting. The modification that is nec-
essary to allow for row interchanges simply involves premultiplication at the appro-
priate stage by a permutation matrix. It will be recalled that a permutation matrix
P is a matrix obtained from a unit matrix by interchanging its rows. If, for example,
rows i and j of a unit matrix are interchanged to give the permutation matrix P,
then PA is the matrix obtained from A by interchanging its ith and jth rows. Use
is then made of the result PA = LU.

An analysis of the steps involved in the foregoing approach leads to the fol-
lowing algorithm for the LU factorization of a nonsingular matrix A when no row
interchanges are involved.

The LU factorization algorithm

The factorization of an n × n nonsingular matrix A into the product A = LU,
where L is a lower-triangular matrix with 1’s on its leading diagonal and U is
an upper-triangular matrix, can be accomplished as follows.the steps in LU

factorization
1. The matrix U is obtained by applying the Gaussian elimination process

to the rows of A to reduce it to an upper-triangular matrix.
2. At the ith stage of the Gaussian elimination process in Step 1, and in

the ith column, let mi j be the multiple of the ith element that must be
subtracted from the jth element to reduce the jth element to zero. Then
the matrix L is given by

L =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0 0

m21 1 0 · · · 0 0
m31 m32 1 · · · 0 0

...
...

... · · · 1 0
mn1 mn2 mn3 · · · mnn−1 1

⎤⎥⎥⎥⎥⎥⎦ .

EXAMPLE 19.8 Apply the LU factorization algorithm to determine the matrix L in Example 19.7.

Solution An examination of the Gaussian elimination process described in the
example used to derive the algorithm shows that in the first step m21 = 2, m31 = 1

2 ,
and m41 = 1, and in the second step m32 = 0 and m42 = − 1

5 , while in the last step
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m43 = 24/25, so from the algorithm

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0

1 − 1
5

24
25 1

⎤⎥⎥⎦ .

The Jacobi Iterative Process
To derive the Jacobi iterative process, the individual equations in (29) are rearranged
so the first expresses x1 in terms of the remaining unknowns and b1, the second
expresses x2 in terms of the remaining unknowns and b2, and so on until the last
is rearranged to express xn in terms of the other unknowns and bn, leading to the
result

x1 = (b1 − a12x2 − a13x3 − · · · − a1nxn)/a11

x2 = (b2 − a21x1 − a23x3 − · · · − a2nxn)/a22

· · · · · · · · · · · ·
xn = (bn − an1x1 − an2x2 − · · · − an n−1xn−1)/ann.

(36)

The Jacobi iterative process follows from this by defining the r th approximation to
the solution denoted by x(r)

1 , x(r)
2 , . . . , x(r)

n , in terms of the (r − 1)th approximation

denoted by x(r−1)
1 , x(r−1)

2 , . . . , x(r−1)
1 , by means of the equations

Jacobi iterative
method

x(r)
1 =

(
b1 − a12x(r−1)

2 − a13x(r−1)
3 − · · · − a1nx(r−1)

n

)
/a11

x(r)
2 =

(
b2 − a21x(r−1)

1 − a23x(r−1)
3 − · · · − a2nx(r−1)

n

)
/a22

x(r)
3 =

(
b3 − a31x(r−1)

1 − a32x(r−1)
2 − · · · − a3nx(r−1)

n

)
/a33

· · · · · · · · · · · ·
x(r)

n =
(

bn − an1x(r−1)
1 − an2x(r−1)

2 − · · · − an n−1x(r−1)
n−1

)
/ann.

(37)

The iteration is started with any initial choice for x(0)
1 , x(0)

2 , . . . , x(0)
n , typically

x(0)
1 = 1, x(0)

2 = 1, . . . , x(0)
n = 1. The iterative process is continued until for some r

the magnitude of the difference between corresponding elements of the (r − 1)th
and the r th iterates given by |x(r)

i − x(r−1)
i | for i = 1, 2, . . . , n is less than some

preassigned tolerance ε > 0, so that

∣∣∣x(r)
i − x(r−1)

i

∣∣∣ < ε, for i = 1, 2, . . . , n. (38)

This is the simplest of many possible conditions for the convergence of an iterative
process. The values x(r)

1 , x(r)
2 , . . . , x(r)

n obtained from the r th iteration at which con-
ditions (38) are first satisfied are taken to be the required solution x1, x2, . . . , xn,
to within the tolerance ε. It should be noticed that the Jacobi iteration process is a
fixed point iteration process for a system of linear equations.

Although it will not be proved here, a sufficient condition for the convergence
of the Jacobi iterative process for any initial choice of x(0)

1 , x(0)
2 , . . . , x(0)

n is that the
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system (29) is diagonally dominant. This means that in each row of the coefficientdiagonal dominance
matrix A, the magnitude of the element lying on the leading diagonal exceeds the
sum of the magnitudes of all the other elements in the row. Thus, matrix A will be
diagonally dominant if

|aii | > |ai1| + |ai2| + · · · + |aii−1| + |aii+1| + · · · + |ain|, for i = 1, 2, . . . , n

(39)

An examination of the equations in (37) shows the Jacobi method fails to make
use of current (improved) approximations as they are generated. This can be seen
in the second equation where the better estimate x(r)

1 could be used in place of the
estimate x(r−1)

1 , as it has already been found from the first equation. Proceeding in
this manner, and in each equation always using the currently available estimates,
leads to the Gauss–Seidel iterative process defined byGauss–Seidel

iterative method

x(r)
1 =

(
b1 − a12x(r−1)

2 − a13x(r−1)
3 − · · · − a1nx(r−1)

n

)
/a11

x(r)
2 =

(
b2 − a21x(r)

1 − a23x(r−1)
3 − · · · − a2nx(r−1)

n

)
/a22

x(r)
3 =

(
b3 − a31x(r)

1 − a32x(r)
2 − · · · − a3nx(r−1)

n

)
/a33

· · · · · · · · · · · ·
x(r)

n =
(

bn − an1x(r)
1 − an2x(r)

2 − · · · − ann−1x(r)
n−1

)
/ann.

(40)

A sufficient condition for the convergence of the Gauss–Seidel process is the same
as that for the Jacobi process, namely that A is diagonally dominant.

Other conditions for the convergence of iterative processes can be derived in
terms of the magnitude of the largest eigenvalue of A, called its spectral radius, butspectral radius
as this eigenvalue is difficult to compute when the number of equations n is large,
such results are mainly of theoretical importance.

When an iterative process diverges, successive iterates usually alternate in sign
and their magnitude grows without bound. In software programs a check is made
on the behavior of successive iterates, and if divergence is detected the computer
produces a message to this effect and terminates the computation.

EXAMPLE 19.9 Use the Gauss–Seidel iterative process to find the solution of the following system
of equations

1.2x1 + 4.4x2 − 1.9x3 = −4.2

5.1x1 − 1.3x2 + 2.4x3 = 2.7

−2.6x1 + 1.7x2 − 6.3x3 = 9.6.

Solution Applying the test for diagonal dominance in (39) shows that only the
third equation satisfies the condition, because

|−6.3| > |−2.6| + |1.7| but |1.2| < |4.4| + |−1.9| and |−1.3| < |5.1| + |2.4|.
However, if the first two equations are interchanged the system becomes diagonally
dominant, so when setting up the Gauss–Seidel iterative process in this case the
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equations must be used in the order

5.1x1 − 1.3x2 + 2.4x3 = 2.7

1.2x1 + 4.4x2 − 1.9x3 = −4.2

−2.6x1 + 1.7x2 − 6.3x3 = 9.6.

From (40) the Gauss–Seidel iterative process for this system of equations
becomes

x(r)
1 = 1

5.1

(
1.3x(r−1)

2 − 2.4x(r−1)
3 + 2.7

)
x(r)

2 = 1
4.4

(
−1.2x(r)

1 + 1.9x(r−1)
3 − 4.2

)
x(r)

3 = 1
6.3

(
−2.6x(r)

1 + 1.7x(r)
2 − 9.6

)
.

The result of starting the iterations with x(0)
1 = x(0)

2 = x(0)
3 = 1 is shown in the fol-

lowing tables, and the values obtained in the 10th iteration should be compared
with the solution x1 = 1.162946, x2 = −2.418817, and x3 = −2.656452 obtained by
Gaussian elimination.

Iteration Number

0 1 2 3 4 5

x1 1 0.313726 1.229617 1.219913 1.175631 1.162857
x2 1 −0.608289 −2.074693 −2.406137 −2.430951 −2.422740
x3 1 −1.817425 −2.591108 −2.676541 −2.664962 −2.657887

6 7 8 9 10

x1 1.162621 1.162815 1.162924 1.162946 1.162947
x2 −2.419348 −2.418785 −2.418784 −2.418809 −2.418816
x3 −2.656461 −2.656389 −2.656434 −2.656450 −2.656452

These results demonstrate the convergence of the iterations obtained from a diag-
onally dominant scheme to the solution obtained by the direct method.

If, instead, an iterative scheme had been derived from the original system of
equations without first rearranging them to make the system diagonally dominant,
we would have obtainedhow nondiagonal

dominance can
lead to divergence x(r)

1 = 1
1.2

(
−4.4x(r−1)

2 + 1.9x(r−1)
3 − 4.2

)
x(r)

2 = 1
1.3

(
5.1x(r)

1 + 2.4x(r−1)
3 − 2.7

)
x(r)

3 = 1
6.3

(
−2.6x(r)

1 + 1.7x(r)
2 − 9.6

)
.

Using this scheme, and starting the iterations as before with x(0)
1 = x(0)

2 = x(0)
3 = 1,

gives the results

x(1)
1 = −5.58333, x(1)

2 = −22.13462, x(1)
3 = −5.19241

x(2)
1 = 69.43894, x(2)

2 = 260.75140, x(2)
3 = 40.18034
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that demonstrate very clearly the divergence of the nondiagonally dominant
scheme.

Something must be said about how these two iterative methods are used. The
Gauss–Seidel method is used in computer codes mainly as a preconditioner for
more advanced schemes, where its use of the current approximation at each stage
requires only half as much storage as the Jacobi method. The Jacobi schemes are
used extensively as building blocks in much more complicated and efficient iterative
procedures, such as preconditioned conjugate gradient and multigrid methods.

For more information about numerical linear algebra, see references [2.15],
[2.16], [2.17], [2.19], and [2.20].

Summary Various examples were given, and it was seen that the LU factorization of an n × n matrix
A is only possible if det A �= 0.

Two essentially different types of methods have been derived for the solution of sys-
tems of nonhomogeneous linear equations, one of a direct type and the other based on
iteration. The two direct methods were Gaussian elimination and the LU factorization
method that is derived from it. The necessity to interchange rows when a pivotal element
was either zero or small was shown to lead to Gaussian elimination with partial pivoting.
The LU factorization method was shown to make use of the information produced by the
Gaussian elimination process at each step in a different manner, and it may also involve
partial pivoting.

The other method, involving iteration, started from an arbitrary initial approximation
and converged to the required solution to within a prescribed tolerance, provided the
system of equations was diagonally dominant.

EXERCISES 19.5

In Exercises 1 through 4, (a) solve the system of equations
using Gaussian elimination, and (b) compare the results
obtained in (a) with those found by solving the system us-
ing Gauss–Seidel iteration starting from the initial iterates
x(0)

1 = x(0)
2 = x(0)

3 = 1 and performing 10 iterations.

1. 4.7x1 + 1.3x2 − 1.6x3 = 1.3

x1 − 4.1x2 + 1.1x3 = 4.6

2.1x1 + 1.4x2 + 6.2x3 = 5.2.

2. 1.7x1 − 4.6x2 − 1.2x3 = 3.4

−3.1x1 + 2.3x2 + 7.2x3 = 2.7

3.2x1 + 1.2x2 + 1.4x3 = −4.2.

3. 2.1x1 + 6.5x2 − 3.1x3 = −6.4

−5.2x1 + 2.1x2 − 1.5x3 = 3.7

1.8x1 − 2.9x2 + 6.2x3 = −4.2.

4. 6.2x1 − 2.2x2 + 3.1x3 = −2.6

−1.6x1 + 1.9x2 + 8.4x3 = −2.6

2.3x1 − 8.4x2 + 3.2x3 = 6.5.

5. The n × n real symmetric matrix Hn with the element
hi j = 1/(i + j − 1) in its ith row and jth column is

called the Hilbert matrix, and its determinant rapidly
becomes vanishingly small as n increases. Matrices of
this type are said to be ill-conditioned, and when ill-
conditioned matrices occur as coefficient matrices in
systems of linear equations, large errors arise unless the
calculations are performed using very high precision.
The development of a vanishingly small determinant of
a Hilbert matrix can be seen, for example, even when
n = 4, because

H4 =

⎡⎢⎢⎢⎢⎣
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎤⎥⎥⎥⎥⎦ , and det H4 = 1/6,048,000.

When the fractions involved are not approximated, the
exact solution of the system of equations⎡⎢⎢⎢⎢⎣

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

2

3

4

⎤⎥⎥⎥⎦
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can be shown to be x1 = −64, x2 = 900, x3 = −2520,
and x4 = 1820. Typically, ill-conditioned matrices arise
in least squares approximations and orthogonalization.

Demonstrate the errors that arise when Gaussian
elimination is used to solve this system of equations and
the calculations are rounded to five decimal places. Use
the Gaussian elimination to calculate det H4 working
to five decimal places and compare the value obtained
with the true result.

6. Use Jacobi and Gauss–Seidel iteration to solve the
system

−4.2x1 + 1.1x2 − 2.1x3 = 1.4

3.6x1 + 9.2x2 − 3.1x3 = −3.2

1.4x1 + 2.9x2 − 6.4x3 = −1.2,

starting from the initial iterates x(0)
1 = x(0)

2 = x(0)
3 = 0

and performing six iterations. Compare the results with
the exact solution x1 = −0.39101, x2 = −0.18938, x3 =
0.01615. Derive an iterative scheme when the equations
are arranged in a nondiagonally dominant form, and
using the initial iterates x(0)

1 = x(0)
2 = x(0)

3 = 0 perform
three iterations to demonstrate the divergence of the
scheme.

In Exercises 7 through 12 use LU factorization to solve the
system of equations Ax = b for the given matrices A and b.

7. A =
⎡⎣ −4 1 −1

12 −1 5
−12 5 −4

⎤⎦ , b =
⎡⎣ 3

−2
2

⎤⎦.

8. A =
⎡⎣−1 2 3

−5 7 16
2 −10 −2

⎤⎦ , b =
⎡⎣−5

2
6

⎤⎦.

9. A =
⎡⎣ 4 −1 −1

−16 6 1
−4 7 −9

⎤⎦ , b =
⎡⎣ 0

6
−7

⎤⎦.

10. A =
⎡⎣ −5 −2 0

−15 −9 2
0 −6 8

⎤⎦ , b =
⎡⎣ 1

−2
3

⎤⎦.

11. A =

⎡⎢⎢⎣
2 1 0 2

−1 0 1 0
4 3

2 2 3
−2 0 8 1

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
1
2
1
4

⎤⎥⎥⎦.

12. A =

⎡⎢⎢⎣
3 0 1 −1
6 −1 3 −3

−3 1 0 1
−3 0 −5 4

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
−2

3
−1

5

⎤⎥⎥⎦.

19.6 Eigenvalues and Eigenvectors

In Chapter 4 an eigenvalue associated with an n × n matrix A was defined as a
number λ satisfying the matrix equation

Ax = λx, (41)

and the corresponding n × 1 vector x was defined as the associated eigenvector. It
follows directly from (41) that an eigenvector x of A corresponding to an eigenvalue
λ can be multiplied (scaled) by a nonzero number k and still remain an eigenvector,
because

A(kx) = λ(kx) is equivalent to kAx = kλx,

and cancellation of the scalar k reduces this last result to (41).
When eigenvalues and eigenvectors were determined in Chapter 4, result (41)

was rewritten as the homogeneous system (A − λI)x = 0, and the eigenvalues were
found by requiring the determinant of the coefficient matrix det(A − λI) to vanish,
leading to a polynomial in λ of degree n of the general form

P(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an,

called the characteristic polynomial associated with A. Once the zeros of P(λ) had
been found, that is, the eigenvalues λ1, λ2, . . . , λn of A, the associated eigenvectors
x1, x2, . . . , xn were then obtained by solving the matrix equation

Axi = λixi for i = 1, 2, . . . , n. (42)
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This theoretical approach is only useful when n ≤ 3, because then the zeros of
P(λ) can be determined analytically. In all other cases the task of finding the zeros is
difficult, and unless they are known accurately, significant errors can be introduced
when using them in (42) to compute the associated eigenvectors.

Computationally efficient numerical methods are available in computer alge-
bra packages for the determination of eigenvalues and eigenvectors that do not
involve first solving the characteristic equation for the eigenvalues. These are ca-
pable of finding real and complex eigenvalues, including repeated eigenvalues, and
the corresponding eigenvectors. Because of this the only method that will be de-
scribed here will be the power method, as it is easy to apply and its derivation is
straightforward. However, this is not the method that is used in practice, except in
certain special situations.

The derivation requires all of the eigenvalues of A to be ordered according to
absolute magnitude so that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (43)

When this ordering is adopted, the eigenvalue λ1 with the greatest magnitude
is called the dominant eigenvalue of matrix A, and the remaining eigenvalues
λ2, λ3, . . . , λn are then called the subdominant eigenvalues of A.dominant and

subdominant
eigenvalues

It was seen in Chapter 4 that an arbitrary n element column vector v0 can always
be expressed as the linear combination of eigenvectors x1, x2, . . . , xn,

v0 = c1x1 + c2x2 + · · · + cnxn, (44)

for some suitable choice of constants c1, c2, . . . , cn. The power method for the si-the power method
for the dominant
eigenvalue and its
eigenvector

multaneous determination of the eigenvalues and eigenvectors of A is an iterative
method, and it involves setting vr = Ar v0, multiplying (44) by Ar , and making use
of results (42) and (43). For r = 0, 1, 2, . . . , we have

vr = Ar (c1x1 + c2x2 + · · · + cnxn)

= c1λ
r
1x1 + c2λ

r
2x2 + · · · + cnλ

r
nxn

= λr
1{c1x1 + c2(λ2/λ1)r x2 + · · · + cn(λn/λ1)r xn}. (45)

The ordering of the eigenvalues in (43) causes the factors (λ2/λ1)r , (λ3/λ1)r , . . . ,

(λn/λ1)r in (45) all to tend to zero as r increases, so assuming that c1 �= 0, for suitably
large r equation (45) can be approximated by

xr ≈ λr
1c1x1. (46)

The assumption that c1 �= 0 is not restrictive, because if this is true, roundoff can
be expected to introduce a component in the direction of x1, so that although
convergence will be delayed, it will still take place in practice.

Result (46) shows that when r is large, vr can be taken to be proportional to
the eigenvector x1 associated with the dominant eigenvalue λ1. As vr = Ar v0 =
A(Ar−1v0) = Avr−1, it follows that the ratio (quotient) of corresponding elements
in vr and vr−1 approximate the dominant eigenvalue λ1.

When the power method is implemented, the elements in vr can become very
large or very small, so to keep the exponent range of the machine from being
exceeded, the fact that an eigenvector can be scaled and still remain an eigenvector
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is used to redefine the vector vr as vr = Aṽr−1, where ṽr−1 is a normalized vector vr−1.
Many normalizations are possible, but the most convenient one involves obtaining
ṽr−1 from vr−1 by dividing each element of vr−1 by αr−1, where αr−1 is its element
of greatest magnitude. As a result of this normalization vr−1 = αr−1̃vr−1, and the
element in ṽr−1 with greatest magnitude becomes 1.

The iteration equation vr = Avr−1 must now be replaced by vr = Aṽr−1 for
r = 1, 2, . . . , or, equivalently, by

vr+1 = Aṽr for r = 0, 1, . . . . (47)

Substituting vr+1 = αr+1̃vr+1 in the preceding result gives Aṽr = αr+1̃vr+1, so as
r becomes large and ṽr → ṽr+1, it follows that αr+1 → λ1 and ṽr+1 → x̃1, the
normalized eigenvector associated with λ1. The iteration process in (47) can
be started with any constant vector v0 = [v1, v2, . . . , vn]T that is often taken to

normalization of
vectors

be v0 = [1, 1, . . . , 1]T. The rate of convergence of the iterations is fastest when
|λ1| � |λ2|, but the convergence becomes very slow when |λ1| and |λ2| are close
together.

Various methods exist for the determination of the subdominant eigenvalues
once the dominant eigenvalue is known, though these will not be discussed here.

EXAMPLE 19.10 Use the power method to find the dominant eigenvalue λ1 and the normalized
eigenvector x1 when

A =

⎡⎢⎢⎣
1 4 1 2
4 0 3 1
1 3 1 2
2 1 2 1

⎤⎥⎥⎦ .

Solution As the matrix A is symmetric, its eigenvalues will all be real, so it is
appropriate to use the power method to determine its eigenvalues and eigenvectors.
In order to determine the dominant eigenvalue and its associated eigenvector, the
iterative process vr = Aṽr−1 will be started by setting v0 = [1, 1, 1, 1]T, and in the
table that follows the ith element of vr is denoted by v(i)

r while the corresponding
normalized ith element of ṽr is denoted by ṽ(i)

r .

Iterations Using vr+1 = Aṽr

Iteration r 0 1 2 3 4 5 6 7 8 9 10

v(1)
r 1 8 7.375 7.35593 7.34334 7.35018 7.34608 7.34881 7.34748 7.34770 7.34756

v(2)
r 1 8 7.375 7.33899 7.33642 7.33732 7.33674 7.33797 7.33695 7.33696 7.33695

v(3)
r 1 7 6.375 6.35593 6.34569 6.35112 6.34783 6.35008 6.34896 6.34913 6.34902

v(4)
r 1 6 5.5 5.47458 5.47006 5.47224 5.47091 5.47229 5.47137 5.47143 5.47135

αr 1 8 7.375 7.35593 7.34334 7.35018 7.34608 7.34881 7.34748 7.34770 7.34756

ṽ(1)
r 1 1 1 1 1 1 1 1 1 1 1

ṽ(2)
r 1 1 1 0.99770 0.99906 0.99825 0.99873 0.99852 0.99857 0.99854 0.99856

ṽ(3)
r 1 0.87500 0.86441 0.86406 0.86414 0.86408 0.86411 0.86410 0.86410 0.86410 0.86410

ṽ(4)
r 1 0.75000 0.74576 0.74424 0.74490 0.74450 0.74474 0.74465 0.74466 0.74465 0.74465
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This shows that after 10 iterations the approximation to λ1 provided by α1 is
λ1 ≈ 7.34756, and the associated normalized eigenvector x̃1 is

x̃1 ≈ [1, 0.99856, 0.86410, 0.74465]T.

A calculation using a software package shows that when approximated to five dec-
imal places λ1 = 7.34760 and ṽ1 = [1, 0.99855, 0.86410, 0.74465]T.

A different normalization that is often used involves dividing a vector u byEuclidean norm of
a vector ‖u‖ = (u2

1 + u2
2 + · · · + u2

n)1/2, where u1, u2, . . . , un are the n elements of u. ‖u‖ is
called the Euclidean norm, and it is useful when working with eigenvalues and
eigenvectors of symmetric matrices, because then the quotient of correspond-
ing terms in successive iterations provides a higher order approximation to the
eigenvalue.

The power method can also be used to find the eigenvalue λn of an n × n
matrix A with the smallest magnitude, together with its associated eigenvector. Thethe inverse power

method and finding
the eigenvalue
closest to a given
number

idea is simple, and it starts from the fact that if A is a nonsingular n × n matrix
with the real eigenvalues λ1, λ2, . . . , λn, then these are solutions of Ax = λx. As
A is nonsingular, it has an inverse A−1, and premultiplication of Ax = λx by A−1

gives A−1Ax = λA−1x, or A−1x = (1/λ)x, showing that 1/λ1, 1/λ2, . . . , 1/λn are
the eigenvalues of A−1 and that the eigenvectors associated with λi and 1/λi are
identical. Consequently, if the eigenvalues are ordered so that |λ1| > |λ2| ≥ |λ3| ≥
· · · ≥ |λn|, the eigenvalue of A with the smallest magnitude will be the dominant
eigenvalue of A−1. Thus, an application of the power method to A−1 will generate
its dominant eigenvalue μ1 = 1/λn, so that λn = 1/μ1.

When using this method the inverse matrix A−1 is not constructed, and instead
the equation

Avr+1 = vr (48)

is iterated, having first used LU decomposition to solve for vr+1 in terms of vr . The
decomposition only needs to be performed once because afterwards, at each stage
of the iteration, the elements of vr+1 can be found by back-substitution using the
elements of vr . This is just the situation where an LU decomposition is needed,
because the right-hand sides are not available in advance, so it is necessary to solve
a sequence of problems with the same matrix. Without the LU decomposition this
process is not really practical.

As with the previous iteration procedure it is again necessary to normalize vr

by dividing each of its elements by its element of greatest magnitude αr , or to use
some other form of normalization, to keep calculations within the exponent range
of the machine. This is because, unlike the previous case where the nonnormalized
elements of vr increased in magnitude as r increased, in this case they will decrease,
causing accuracy to be lost if normalization is not performed. This method is called
the inverse power method because it is equivalent to iterating the inverse matrix
A−1. If we denote the normalized column vector vr by ṽr , the iteration scheme to
be used analogous to (47) becomes

Avr+1 = ṽr for r = 0, 1, . . . . (49)
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EXAMPLE 19.11 Use the inverse power method to find the eigenvalue of A with the smallest mag-
nitude, given that

A =
⎡⎣4 2 4

3 9 2
5 6 9

⎤⎦ .

Solution The required eigenvalue will be obtained by iterating Aṽr+1 = vr with
the given matrix A, so the system to be considered is⎡⎣4 2 4

3 9 2
5 6 9

⎤⎦
⎡⎢⎢⎣

v(r+1)
1

v(r+1)
2

v(r+1)
3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ṽ(r)

1

ṽ(r)
2

ṽ(r)
3

⎤⎥⎥⎦ with r = 0, 1, . . . and

⎡⎢⎢⎣
v(0)

1

v(0)
2

v(0)
3

⎤⎥⎥⎦ =
⎡⎣1

1
1

⎤⎦ .

Using LU decomposition the system becomes

4v(r+1)
1 + 2v(r+1)

2 + 4v(r+1)
3 = ṽ(r)

1

15
2

v(r+1)
2 − v(r)

3 = ṽ(r)
2

67
15

v(r)
3 = ṽ(r)

3

and vr+1 now follows from ṽr by back-substitution. As r increases, so the ratio of
corresponding components of ṽr+1 and ṽr will tend to the eigenvalue μ1 of A−1

of greatest magnitude, so that the eigenvalue of A of smallest magnitude will be
λ3 = 1/μ1. The results of eight iterations are listed below, as in Example 19.10.

Iterations Using Avr+1 = ṽr

Iteration 0 1 2 3 4 5 6 7 8

v(1)
r 1 0.32090 0.57914 0.61488 0.61215 0.60984 0.60898 0.60871 0.60862

v(2)
r 1 0.02239 −0.12617 −0.16659 −0.17289 −0.17403 −0.17429 −0.17436 −0.17438

v(3)
r 1 −0.08209 −0.26606 −0.28158 −0.27571 −0.27282 −0.27183 −0.27152 −0.27143

αr 1 0.32090 0.57914 0.61488 0.61215 0.60984 0.60898 0.60871 0.60862

ṽ(1)
r 1 1 1 1 1 1 1 1 1

ṽ(2)
r 1 0.06977 −0.21786 −0.27093 −0.28243 −0.28637 −0.28620 −0.28644 −0.28652

ṽ(3)
r 1 −0.25582 −0.45941 −0.45794 −0.45040 −0.44736 −0.44637 −0.44606 −0.44598

This shows that the approximate value of the largest eigenvalue of A−1 given by α8

is μ1 ≈ 0.60862, so the approximate value of the smallest eigenvalue of A is λ3 =
1/μ1 = 1.64306, and the corresponding approximation to the associated normalized
eigenvector x3 provided by v8 is

x3 ≈ [1, −0.28652, −0.44598]T.

The results accurate to five decimal places found by using a software package are
λ3 = 1.64315 and x3 = [1, −0.28656, −0.44592]T.

As an extension of the previous argument, let k be a specified constant, and
consider the matrix B = A − kI. Then, in terms of matrix B, the eigenvalue equation
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Axi = λi xi becomes

Bxi = (λi − k)xi , (50)

showing the eigenvectors of A and B are identical, but the eigenvalues λi − k of B
are those of A reduced by k. This means that the eigenvalues of (A − kI)−1 for k �=
λi , with i = 1, 2, . . . , n, are 1/(λ1 − k), 1/(λ2 − k), . . . , 1/(λn − k). An application
of the inverse power method to (A − kI)−1 then determines the eigenvalue of A
closest to the specified constant k. This can be used as a basis for computing an
eigenvector once an eigenvalue has been found. In terms of this approach, the
initial application of the inverse power method is seen to involve the determination
of the eigenvalue of A closest to 0.

For more information about the numerical computation of eigenvalues and
eigenvectors see references [2.15], [2.16], [2.17], [2.19], and [2.20].

Summary The power method for the calculation of the eigenvalue of greatest magnitude of a matrix
together with its associated eigenvector was described. It was then shown how the inverse
power method can be used to find the eigenvalue of smallest magnitude, and by making
a small modification to the inverse power method, how the eigenvalue closest to a given
number k can be found.

EXERCISES 19.6

In Exercises 1 through 4 use the power method to find the
approximate value of the dominant eigenvalue and the asso-
ciated normalized eigenvector of the given matrix, starting
with x0 = [1, 1, 1]T and performing 10 iterations.

1. A =
⎡⎣ 18 3 −1

3 12 2
−1 2 4

⎤⎦.

2. A =
⎡⎣ 20 −2 1

−2 3 4
1 4 0

⎤⎦.

3. A =
⎡⎣ 2 −3 2

−3 12 1
2 1 28

⎤⎦.

4. A =
⎡⎣−31 −1 2

−1 −10 4
2 4 −2

⎤⎦.

In Exercises 5 and 6 use the power method to find ap-
proximations to the dominant eigenvalue λ1, and the associ-
ated normalized eigenvector, starting with x0 = [1, −1, 1]T

and performing 10 iterations.

5. A =
⎡⎣26 3 1

3 20 2
1 2 1

⎤⎦. 6. A =
⎡⎣19 2 2

2 14 1
2 1 2

⎤⎦.

In Exercises 8 through 10 use the inverse power method to
find approximations to the eigenvalue of smallest magni-
tude of the given matrix A and its associated eigenvector,
starting with x0 = [1, 1, 1]T and performing six iterations.

7. A =
⎡⎣ 6 1 −4

1 4 0
−1 −1 3

⎤⎦.

8. A =
⎡⎣ 3 3 −4

3 5 0
−5 −1 1

⎤⎦.

9. A =
⎡⎣ 2 5 −2

4 2 4
−3 1 0

⎤⎦.

10. A =
⎡⎣−3 5 −3

3 1 1
−2 1 2

⎤⎦.

19.7 Numerical Solution of Differential Equations

Most differential equations have no known analytical solution, and even when one
can be found it is often difficult to use. As a result, when solutions are required
and an analytical solution either is not known or is inconvenient to use, it becomes
necessary to use methods that produce a numerical solution directly. However,
unlike the general analytical solution of an initial value problem that can be adapted
to any appropriate initial conditions, a numerical solution is the solution of a specific
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initial value problem, so the calculation must be repeated if the initial conditions
are changed.

Many different techniques are available for the generation of a numerical so-
lution of an initial value problem, the most powerful of which are implemented in
the various numerical analysis software packages that are available. These include
extrapolation methods, codes based on a family of Adams–Moulton methods, and
others that use predictor–corrector methods with an Adams–Basforth method as
the predictor and an Adams–Moulton method as a corrector. References for these
methods are given later. In this section attention will be confined to the popular
family of Runge–Kutta methods.

Predictor–corrector methods first use an explicit formula and previously com-
puted solutions to predict a new solution. This prediction is then refined by using it
in an implicit corrector formula. The Runge–Kutta methods are one-step methods,
in the sense that the solution of a differential equation at the next step is determined
solely by the solution at the previous step.

To illustrate how numerical solutions can be obtained by Runge–Kutta type
methods, and to show the varying degrees of accuracy that can be attained by
different approaches, a few of the simpler methods of this type will be described.

Euler’s Method
The basis of this method has already been encountered in Section 5.3 when con-
sidering the direction field that can be associated with the first order differential
equation

dy
dx

= f (x, y). (51)

Preparatory to developing Euler’s method let us first recall the definition of
the direction field associated with (51). At any point (x0, y0) in the (x, y)-plane at
which f (x, y) is defined, (51) shows that the slope (gradient) of the solution curve
through the point is f (x0, y0). If a short line segment is drawn through the point
(x0, y0), making an angle θ with the positive x-axis, where tan θ = f (x0, y0), the line
segment will be tangent to the solution curve through (x0, y0). This line segment
will define a direction of change of the solution at the point (x0, y0) if an arrow is
added to the line segment indicating the sense in which y changes at that point as
x increases. A repetition of this construction at a mesh of points over the region
of the (x, y)-plane in which differential equation (51) is defined will then generate
a direction field associated with the equation. Examples of direction fields havea typical direction

field already been given in Chapter 5, and another for the linear differential equation

dy
dx

= sin x − y

is shown in Fig. 19.11.
It is a short step from the notion of the direction field for differential equation

(51) to Euler’s algorithm for the solution of an initial value problem for the dif-
ferential equation. An approximate numerical solution by Euler’s method for the
initial value problem

dy
dx

= f (x, y), subject to the initial condition y(x0) = y0, (52)
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2
y

3 x−3 0

−2

FIGURE 19.11 The direction field for
dy
dx = sin x − y.

is obtained as follows. A step size h in x is chosen, and the line segment through
(x0, y0) is extended from x0 to x0 + h, and the y-coordinate y0 + �y of the end point
of the line segment is taken as the approximation to y at x0 + h.

An increase in x of h from x0 will cause the point on the tangent line approxi-
mation to the solution curve through (x0, y0) to increase from y0 to y0 + �y, where
�y = h tan θ , but tan θ = f (x0, y0), so �y = hf (x0, y0). It then follows that if P is
the point (x0 + h, y1) on the tangent line approximation (cf Fig. 19.4),

y1 = y0 + hf (x0, y0). (53)

A repetition of this process produces a sequence of points (x0, y0), (x1, y1), . . . ,
(xn, yn), . . . , where xn = x0 + nh and n = 0, 1, 2, . . . . When these points are joined
by straight line segments, a polygonal line approximation to the solution of the
initial value problem in (52) is generated, called an Euler polygonal approximation
to the solution. The algorithm for generating such an approximate solution is easily
seen to be as follows.

The Euler algorithm

The approximate numerical solution of the initial value problemfinding an
approximate solution
by the Euler method

dy
dx

= f (x, y) subject to the initial condition y(x0) = y0

generated by the Euler method with step size h is obtained from the algorithm

yn = yn−1 + hf (xn−1, yn−1) for n = 1, 2, . . . ,

where xn = x0 + nh.

This is the simplest example of a one-step method, and an obvious modification
involves varying the step size from point to point, reducing it when the solution
changes rapidly and lengthening it when it changes slowly. However, it is not possible
to make such changes in a systematic manner without first having a way of estimating
the error. This is usually done by comparing the result at each step to the result
obtained by using a formula of higher order.



1098 Chapter 19 Numerical Mathematics

EXAMPLE 19.12 Use the Euler algorithm with a step size h = 0.2 to find an approximate solution of
the linear first order initial value problem

dy
dx

= sin x − y with y(0) = 1

in the interval 0 ≤ x ≤ 2, and compare it with the exact solution

y = 1
2

(sin x − cos x) + 3
2

e−x.

Solution This is an initial value problem for the differential equation whose di-
rection field is shown in Fig. 19.11. Setting h = 0.2, n = 10, and f (x, y) = sin x − y
in the Euler algorithm leads to the following results. The column yexact contains the
analytical solution.

n xn yn 0.2 f (xn, yn) yn+1 = yn + 0.2 f (xn, yn) yexact

0 0 1 −0.2 0.8 1
1 0.2 0.8 −0.1203 0.6797 0.8374
2 0.4 0.6797 −0.0581 0.6217 0.7397
3 0.6 0.6217 −0.0114 0.6103 0.6929
4 0.8 0.6103 0.0214 0.6317 0.6843
5 1 0.6317 0.0420 0.6736 0.7024
6 1.2 0.6736 0.0517 0.7253 0.7366
7 1.4 0.7253 0.0520 0.7773 0.7776
8 1.6 0.7773 0.0444 0.8218 0.8172
9 1.8 0.8218 0.0304 0.8522 0.8485

10 2 0.8522 0.0114 0.8636 0.8657

The error between yn+1 and yexact can be reduced, but not eliminated, by choosing
a smaller step size, though for significantly greater accuracy it is necessary to make
use of a different method.

Modified Euler’s Method
A source of error in Euler’s method is its failure to take account of the curvature of
the solution curve at a point (xi , yi ) when using the tangent line approximation to
the curve to estimate yi+1. An improvement can be obtained by using a two-stage
process to arrive at a modified gradient f̃ (xi , yi ) that can be used in Euler’s method
in place of f (xi , yi ).

The first step when finding the modified gradient involves computing the
gradient f (xi , yi ) and then using it in Euler’s method to compute the gradient
f (xi+1, yi+1) at the point (xi+1, yi+1). The second and final step involves averaging
these two gradients, to obtain the new gradient

f̃ (xi , yi ) = 1
2
{ f (xi , yi ) + f (xi+1, yi+1)}, (54)

and then using f̃ (xi , yi ) in place of f (xi , yi ) in Euler’s method at (xi , yi ) to find
an improved estimate ỹi+1 at the point (xi+1, yi+1). This way of computing the
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gradient is known as Heun’s method, and it takes some account of the curvature of
the solution curve at (xi , yi ). The following is an algorithm for the modified Euler
method.

The modified Euler algorithm

The approximate numerical solution of the initial value problem
dy
dx

= f (x, y) subject to the initial condition y(x0) = y0

generated by the modified Euler method with step size h is obtained from the
algorithmfinding an

approximate solution
by the modified Euler
method yn+1 = yn + 1

2
h[ f (xn, yn) + f (xn + h, yn + hf (xn, yn))]

for n = 1, 2, . . . ,

where xn = x0 + nh.

EXAMPLE 19.13 Repeat Example 19.12 using the modified Euler method with n = 10 and h = 0.2,
and compare the results obtained with both the Euler method and the exact solution.

Solution The results of the calculations together with the comparisons are shown
in the following table, in which results obtained using Euler’s method are denoted
by y(e)

n , results obtained using Euler’s modified method are denoted by y(mod)
n , and

the analytical result is denoted by yexact. As the calculations are straightforward,
the details have been omitted.

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y(e)
n 1 0.8 0.6797 0.6217 0.6103 0.6317 0.6736 0.7253 0.7773 0.8212 0.8522

y(mod)
n 1 0.8399 0.7435 0.6973 0.6887 0.7063 0.7397 0.7796 0.8181 0.8482 0.8643

yexact 1 0.8374 0.7397 0.6929 0.6843 0.7024 0.7366 0.7776 0.8172 0.8485 0.8657

A comparison of the results in last three rows of the table shows the improvement
in accuracy obtained when the modified Euler method is used.

Euler’s method is effectively a Taylor series expansion of the solution y(x), in
which y(xn + h) is predicted from y(xn) using only the first two terms of the Taylor
series expansion of y(x) about the point xn. An often-used general purpose numer-
ical method for the integration of initial value problems for first order differential
equations is the Runge–Kutta fourth order method.

There are several families of four-stage, fourth order Runge–Kutta formulas in
which the error after a step size h is of the order h5, but as their derivation involves
tedious algebra we will simply describe the most familiar one. However, before
quoting this method, we first demonstrate the general approach to the derivation
of Runge–Kutta methods by finding the modified Euler method.
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In essence, all Runge–Kutta methods are one-step methods that can be consid-
ered to be of the form

yi+1 = yi + hF(xi , yi , h), (55)

where F(xi , yi , h) represents some form of averaged value of f (x, y) over the in-
terval xi ≤ x ≤ xi+1. All of these methods can be obtained by adopting a particular
form of F that contains some undetermined constants, and then finding the equa-
tions determining the constants by requiring that F agree with the Taylor series
expansion of f up to a certain power of h.

In the case where F contains terms up to order h, so the error at each step
will be of order h2, using the chain rule and the fact that f (x, y) = f (x, y(x)), the
function F in (55) is approximated by the truncated Taylor series expansiona Runge–Kutta type

derivation of the
modified Euler
method F(x, y, h) = f (x, y) + 1

2
h
{

∂ f
∂x

+ ∂ f
∂y

dy
dx

}
,

but dy/dx = f (x, y), so

F(x, y, h) = f (x, y) + 1
2

h{ fx(x, y) + fy(x, y) f (x, y)}. (56)

We now seek a representation of the function F of the form

F(x, y, h) = w1 f (x, y) + w2 f (x + w3h, y + w4hf (x, y)), (57)

where as yet the constants w1 to w4 are unknown. Expanding f (x + w3h, y +
w4hf (x, y)) about the point (x, y) as a two-variable Taylor series with a remainder
after the first derivative terms gives

f (x + w3h, y + w4h( f (x, y)) = f (x, y) + w3hfx(x, y)

+ w4hfy(x, y) f (x, y) + R(h), (58)

where the error term R(h) is of order h2.
Substituting (58) into (57) and combining terms gives

F(x, y, h) = (w1 + w2) f (x, y) + h(w2w3 fx(x, y) + w2w4 fy(x, y) f (x, y)). (59)

If (57) and (59) are required to agree up to terms in h, by equating terms with
corresponding powers of h we find that

w1 + w2 = 1, w2w3 = 1
2
, and w2w4 = 1

2
.

These three equations relate the four arbitrary constants w1 to w4, so if one of these
constants, say w2, is assigned arbitrarily, the others will be determined in terms of
w2. From (57) we then have

F(x, y, h) = (1 − w2) f (x, y) + w2 f
(

x + 1
2

h/w2, y + 1
2

hf (x, y)/w2

)
. (60)

Making the choice w2 = 1
2 in (60), and using it in (55), gives the modified Euler

method

yi+1 = yi + 1
2

h{ f (xi , yi ) + f (xi + h, yi + h f (xi , yi ))}. (61)
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CARL DAVID TOLME RUNGE (1856–1927)
A German mathematician who was Professor of Applied Mathematics at Göttingen. His interests
were in the numerical solution of differential equations, and his approach was applied by
Wilhelm Kutta (1867–1944), a German aerodynamicist who used Runge’s work in the study
of fluid mechanics.

The fourth order Runge–Kutta method for a first order
differential equation

The approximate numerical solution of the initial value problem

dy
dx

= f (x, y) subject to the initial condition y(x0) = y0

with step length h is obtained from the following fourth order Runge–Kutta
algorithm, with xn = x0 + nh and yn = y(xn).

STEP 1 Calculate

k1n = hf (xn, yn)

k2n = hf
(

xn + 1
2

h, yn + 1
2

k1n

)
k3n = hf

(
xn + 1

2
h, yn + 1

2
k2n

)
k4n = hf (xn + h, yn + k3n).

STEP 2 Calculate

dn = 1
6

(k1n + 2k2n + 2k3n + k4n).

STEP 3 The numerical approximation yn+1 of the solution y = y(xn+1) is
given by

yn+1 = yn + dn,

for n = 1, 2, . . . .

EXAMPLE 19.14 Use the fourth order Runge–Kutta algorithm with a step size h = 0.2 to solve the
initial value problem

dy
dx

+ 2y = sin 3x with y(0) = 1

in the interval 0 ≤ x ≤ 2.4. Compare the results obtained with the results found by
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the modified Euler method and the analytical solution

y = 1
13

[9 cos x − 2 sin x + 4 sin 2x cos x − 12 cos3 x + 16e−2x].

Solution In the following calculations f (x, y) = sin 3x − 2y, the step length h =
0.2, so as the solution is required in the interval 0 ≤ x ≤ 2.4 it follows that n =
0, 1, . . . , 12. The details of the intermediate calculations for x = 0, 0.2, 0.4, and 0.6
are listed in the first of the following tables. Under the heading yrk, the second table
lists all of the results obtained by the Runge–Kutta algorithm up to x = 2.4, and
for purposes of comparison the columns with headings ymod and yexact show the
results obtained by using the modified Euler method and the analytical solution,
respectively.

Detailed Calculations for x = 0, 0.2, and 0.4

n xn yn f (xn, yn) k1n k2n k3n k4n yn+1

0 0 1 −2 −0.4 −0.2609 −0.28872 −0.17158 0.72153
1 0.2 0.72153 −0.87842 −0.17568 −0.09681 −0.11258 −0.05717 0.61292
2 0.4 0.61292 −0.29380 −0.05876 −0.03392 −0.03889 −0.03484 0.57305
3 0.6 0.57305 — — — — — —

Comparison of Results in the Interval 0 ≤ x ≤ 2.4

n xn yrk ymod yexact n xn yrk ymod yexact

0 0 1.0 1.0 1.0 7 1.4 0.05390 0.05090 0.05389
1 0.2 0.72153 0.73646 0.72142 8 1.6 −0.12324 −0.11730 −0.12328
2 0.4 0.61292 0.62788 0.61279 9 1.8 −0.23165 −0.21681 −0.23173
3 0.6 0.57305 0.58026 0.57295 10 2.0 −0.24192 −0.22174 −0.24202
4 0.8 0.52262 0.52056 0.52257 11 2.2 −0.15615 −0.13639 −0.15624
5 1.0 0.41675 0.40862 0.41674 12 2.4 −0.00809 −0.00531 −0.00816
6 1.2 0.25051 0.24208 0.25052 — — — — —

The fourth order Runge–Kutta algorithm is easily adapted to solve two simul-
taneous first order differential equations or, as a special case, a single second order
differential equation as follows.

The fourth order Runge–Kutta algorithm for two first order
simultaneous equations

The approximate numerical solution of the initial value problem for the si-
multaneous first order initial value problem

dy
dx

= f (x, y, z) and
dz
dx

= g(x, y, z)

subject to the initial conditions

y(x0) = y0 and z(x0) = z0
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generated by the fourth order Runge–Kutta method with step size h is ob-
tained from the following algorithm in which xn = x0 + nh, yn = y(xn), and
zn = z(xn).

STEP 1 Calculate in the following order

k1n = hf (xn, yn, zn) K1n = hg(xn, yn, zn)

k2n = hf
(
xn + 1

2 h, yn + 1
2 k1n, zn + 1

2 K1n
)

K2n = hg
(
xn + 1

2 h, yn + 1
2 k1n, zn + 1

2 K1n
)

k3n = hf
(
xn + 1

2 h, yn + 1
2 k2n, zn + 1

2 K2n
)

K3n = hg
(
xn + 1

2 h, yn + 1
2 k2n, zn + 1

2 K2n
)

k4n = hf (xn + h, yn + k3n, zn + K3n) K4n = hg(xn + h, yn + k3n, zn + K3n) .

STEP 2 Calculate

dn = 1
6

(k1n + 2k2n + 2k3n + k4n) and

Dn = 1
6

(K1n + 2K2n + 2K3n + K4n).

STEP 3 The numerical approximations of the solutions y = y(xn+1) and
z = z(xn+1) are given by

yn+1 = yn + dn and zn+1 = zn + Dn,

for n = 1, 2, . . . .

This fourth order Runge–Kutta algorithm with step size h is easily modified to
find the solution of the following initial value problem for the single second order
differential equation written in the standard formadapting the

Runge–Kutta method
to solve second order
equations

d2 y
dx2

= g
(

x, y,
dy
dx

)
with y(x0) = y0 and z(x0) = z0. (62)

All that is necessary is to reduce the second order equation to a system of two
simultaneous first order equations by setting

dy
dx

= z and
dz
dx

= g(x, y, z) (63)

in the preceding fourth order Runge–Kutta algorithm, and then to use the initial
conditions

y(x0) = y0 and z(x0) = y′(x0) = z0. (64)

EXAMPLE 19.15 Use the fourth order Runge–Kutta algorithm with step length 0.1 to find a numerical
approximation to the solution of the initial value problem for the Hermite equation

y′′ − 2xy′ + 8y = 0 with y(0) = 12 and y′(0) = 0

in the interval 0 ≤ x ≤ 1. Compare the results of the calculations with the analytical
solution y(x) = 16x4 − 48x2 + 12.
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Solution This is the Hermite equation with n = 4, and it has the analytical solution
H4(x) = 16x4 − 48x2 + 12. Using (62) and (63) we set z = dy/dx and g(x, y, z) =
2xz − 8y, and use the step size h = 0.1. The initial conditions are imposed at the
origin, so x0 = 0, y(x0) = 12, and z(x0) = y′(x0) = 0, corresponding to y0 = 12 and
z0 = 0. The details of the intermediate calculations for x = 0 and 0.1 are set out
below; the table that follows lists the results for the interval 0 ≤ x ≤ 1, with the
second order Runge–Kutta solution denoted by yrk and the analytical solution
by yexact .

x0 = 0

f (x0, y0, z0) = 0, g(x0, y0, z0) = −96, k1 = 0, K1 = −9.6, k2 = −0.48

K2 = −9.648, k3 = −0.4824, K3 = −9.45624, k4 = −0.945624

K4 = −9.403205, d = −0.478404, D = −9.535281 so that

y1 = 11.521596 and z1 = −9.535281, where z1 = y′(x1).

x1 = 0.2

f (x1, y1, z1) = −9.535281, g(x1, y1, z1) = −94.079824, k1 = −0.953528,

K1 = −9.407982, k2 = −1.423927, K2 = −9.263044, k3 = −1.416680,

K3 = −9.072710, k4 = −1.860799, K4 = −8.828252, d = −1.415924,

D = −9.151290 so that y2 = 10.105672 and

z2 = −18.686571, where z2 = y′(x2).

Comparison of Solutions for 0 ≤ x ≤ 1

n xn yrk yexact n xn yrk yexact

0 0 12 12 6 0.6 −3.205311 −3.2064
1 0.1 11.521596 11.5216 7 0.7 −7.676938 −7.6784
2 0.2 10.105672 10.1056 8 0.8 −12.164555 −12.1664
3 0.3 7.809827 7.8096 9 0.9 −16.380188 −16.3824
4 0.4 4.730055 4.7296 10 1.0 −19.997470 −20.0
5 0.5 1.000747 1.0 — — — —

When the solution of a differential equation changes rapidly in some intervals,
and slowly in others, it becomes necessary to vary the step size as the calcula-
tion progresses if accuracy is to be maintained. The F(4,5) Runge–Kutta–Fehlberg
algorithm, based on a form of the fourth order Runge–Kutta scheme, is imple-
mented in many numerical analysis software programs that are readily available,
and it determines the step size at each stage of the calculation. The increase in
complexity of the calculation is indicated by the fact that the F(4,5) algorithm usesthe F(4,5) adaptive

step size algorithm six stages in the calculation in place of the four used by the classical fourth or-
der Runge–Kutta algorithm. As the calculation proceeds, numerical estimates of
the solution after a given step size h are made using a form of the fourth order
Runge–Kutta method and an efficient fifth order formula. The difference of these
two estimates is compared with a preassigned tolerance, and the result is then used
to either reduce or increase the step size until the difference lies within the required
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tolerance. The resulting step size is then used to advance the calculation to the next
stage.

More detailed information about the numerical integration schemes for or-
dinary differential equations can be found in references [2.19], [2.20], and [3.20]
through [3.26].

Summary Of the many methods available for the numerical integration of ordinary differential equa-
tions, at an elementary level only the Euler and modified Euler methods have been de-
scribed. For greater accuracy the classical fourth order Runge–Kutta algorithm, which
belongs to a family of similar algorithms, was presented without derivation, though the
form of argument used was illustrated by deriving the modified Euler method. Finally, the
important adaptive F(4,5) Runge–Kutta–Fehlberg algorithm was mentioned that adjusts
the step size automatically as the calculation progresses in order to preserve a preassigned
accuracy.

EXERCISES 19.7

Solve the following initial value problems by computer us-
ing the fourth order Runge–Kutta algorithm.

1. y′ = (3x2 + y2)1/2 − y with y(2) = 0 and h = 0.2 over
the interval 2 ≤ x ≤ 3.

2. y′ = xy/(x2 + y2)1/2 with y(1) = 1 and h = 0.2 over the
interval 1 ≤ x ≤ 2.

3. y′ = (x2 + y2)1/2 − xy with y(1) = 2 and h = 0.2 over
the interval 1 ≤ x ≤ 2.

4. y′ = 1
2 (x2 + 2y2) − xy with y(1) = 0 and h = 0.1 over

the interval 1 ≤ x ≤ 1.5.
5. y′ = cos(2x + y) − 3y with y(1) = 1 and h = 0.2 over

the interval 1 ≤ x ≤ 2.
6. y′ = sin(x + y) − 2y with y(0) = 1 and h = 0.2 over the

interval 0 ≤ x ≤ 1.
7. y′′ − xyy′ + 2y = 0 with y(0) = 2, y′(0) = −1, and h =

0.1 over the interval 0 ≤ x ≤ 0.5.
8. y′′ + (3 + x)y′ + y2 = 0 with y(1) = 1, y′(1) = 2, and

h = 0.1 over the interval 1 ≤ x ≤ 1.5.
9. y′′ + (1 + sin 2x)y′ + 3y = 0 with y(0) = 1, y′(0) = 1,

and h = 0.1 over the interval 0 ≤ x ≤ 0.5.
10. y′′ + (1 + y2)1/2 y′ + y = 0 with y(2) = 0, y′(2) = 1, and

h = 0.1 over the interval 2 ≤ x ≤ 2.5.

11. y′′ + 2y′ − y2 = 0 with y(0) = 2, y′(0) = 1, and h = 0.2
over the interval 0 ≤ x ≤ 1.

12. y′′ − xy′ − y2 = 0 with y(0) = −1, y′(0) = 2, and h =
0.2 over the interval 0 ≤ x ≤ 1.

13. y′′ + yy′ − 3y = 0 with y(1) = 1, y′(1) = 1, and h = 0.2
over the interval 1 ≤ x ≤ 2.

14. y′′ + x2 sin y′ − 2y = 0 with y(1) = 0, y′(1) = −1, and
h = 0.2 over the interval 1 ≤ x ≤ 2.

15. y′′ − xy′ − y2 = 2x with y(0) = −2, y′(0) = 1, and h =
0.2 over the interval 0 ≤ x ≤ 1.

16. y′′ + 2yy′ − 3y = 1 − x2 with y(0) = 3, y′(0) = 2, and
h = 0.2 over the interval 0 ≤ x ≤ 1.

17. dx
dt = t x + (x + y)y and dy

dt = ty − (x + y)x with
x(0) = 1, y(0) = 0, and h = 0.2 over the interval
0 ≤ t ≤ 1.

18. dx
dt = (1 + t)y2 − 2x and dy

dt = y2 + t x with x(0) = −1,

y(0) = −3, and h = 0.2 over the interval 0 ≤ t ≤ 1.
19. dx

dt = sin(x + 4y) and dy
dt = 2 cos(x − 3y) with x(0) = 1,

y(0) = 1, and h = 0.2 over the interval 0 ≤ t ≤ 1.
20. dx

dt = sin x + 4 cos y and dy
dt = sin y − 3 sin x with

x(0) = 1, y(0) = −2, and h = 0.2 over the interval
0 ≤ t ≤ 1.
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CHAPTER 19

TECHNOLOGY PROJECTS

Project 1

Spline Function Approximation

This project uses a spline function computer package to gen-
erate a natural spline approximation to a given data set. The
data provided can be considered to be the scaled set of nine
points through which the profile of the side elevation of a
yacht hull complete with its keel must pass.

1. Make and plot a natural cubic spline function ap-
proximation to the following set of data points,
where in each number pair the first number
represents the x-coordinate and the second the
y-coordinate:

(0, 0), (4.5, �2.3), (10, �3.7), (12.3, �6.8),

(16.7, �6.8), (18.4, �3.4), (21.2, �2.3), (23, 0).

2. Design a different profile of your own involving
at least nine number pairs. Construct and plot
a corresponding spline function approximation,
and compare the result with the original profile.
If necessary, reposition the data points to make
the approximation a better fit.

Project 2

Newton's Method

The purpose of this project is to construct a procedure for
Newton's method, and then to use it to determine the zeros
of two expressions involving Bessel functions.

1. Plot f (x) � J2(x) for 0 ≤ x ≤ 35 and use the
graph to determine the approximate zeros of
J2(x) in this interval, the first six of which are
listed in Table 8.1. Construct a procedure for
Newton's method involving 10 iterations and
use it with the approximate values found from
the graph to determine the zeros of f (x) to 10
decimal places. Print out the values of these

zeros together with the value of f (x) at each
zero to confirm the accuracy.

2. Repeat some of the previous calculations using
poorer initial approximations to experience how
sometimes the calculation does not converge to
the expected zero and sometimes it diverges.
Notice that this numerical method only works
when f ′(x) can be found analytically.

3. The eigenvalues of a certain problem are deter-
mined by the zeros of the expression

J0(x)J1(1.5x) � J0(1.5x)J1(x) � 0.

Plot f (x) � J0(x)J1(1.5x) � J0(1.5x)J1(x) in the
interval 0 ≤ x ≤ 20 and determine from the
graph the approximate values of the first three
positive zeros of f (x). Use the procedure de-
veloped in part 1 with these approximate zeros
to find their values to 10 decimal places.

Project 3

Modified Euler and Runge--Kutta Methods

The purpose of this project is to construct procedures for the
modified Euler and the fourth order Runge--Kutta method
and then to compare the results obtained when they are ap-
plied first to a simple linear initial value problem and then
to a nonlinear initial value problem.

1. Construct a procedure for the modified Euler
method derived in Section 19.7.

2. Construct a procedure for the fourth order
Runge--Kutta method defined as follows:

Consider the differential equation dy/dx �
f (x, y), and let the initial condition at x � x0

be y(x0) � y0. Let the step size be h and
y1, y2, . . . , yr be the approximations to y(x)
at the respective points x1 � x0 � h, x2 � x0 �
2h, . . . , xr � x0 � rh. Then, for n � 0, 1, . . . ,

the values y1, y2, . . . are determined from the

1106
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algorithm

k1 � hf (xn, yn)

k2 � hf
(

xn �
1
2

h, yn �
1
2

k1

)
k3 � hf

(
xn �

1
2

h, yn �
1
2

k2

)
k4 � hf (xn � h, yn � k3)
with xn+1 = xn + h and

yn+1 = yn + 1
6

(k1 � 2k2 � 2k3 � k4).

3. Apply both methods to the linear initial value
problem dy/dx � y with y(0) � 1 and h = 0.1.
Print out the results for the interval 0 ≤ x ≤
1 and compare them with the exact solution
y(x) = ex.

4. Apply both methods to the nonlinear initial
value problem

dy/dx = sin(xy) sin(3x), with

y(0) = 1 and h = 0.1,

and compare the results over the interval 0 ≤
x ≤ 2.

Project 4

The Shooting Method

This project provides an introduction to the shooting
method when used to solve a two-point boundary value
problem for a linear second order differential equation. The
underlying idea of the method can be likened to the prob-
lem of projecting a particle from a fixed point at different
angles to the horizontal, and finding the angle of projection
at which the particle attains a prescribed altitude when at a
fixed horizontal distance from its point of origin.

Consider the two-point boundary value problem

d2 y
dx2

� P(x)
dy
dx

� Q(x)y � R(x),

with y(a) � k and y(b) � K (b > a),

where a, b, k, and K are given numbers.
Now consider two initial value problems with the

different initial conditions

(I) y(a) � k and y′(a) � K1

and

(II) y(a) � k and y′(a) � K2,

FIGURE 19.12 The two solutions yI (x) and yII (x).

where for the moment numbers K1 K2 are spec-
ified arbitrarily. If the corresponding solutions are
yI(x) and yII (x), their typical behavior is shown in
Fig. 19.12, where the value y(b) � K necessary to sat-
isfy the original two-point boundary value problem is
shown as the point (b, K).

Now set y(x) � K1 yI(x) � K2 yII (x), with K1 �
K2 � 1. Then substituting this result into the differ-
ential equation shows that it is a solution and, in
addition, that y(x) satisfies the boundary condition
y(a) � k. Setting x � b and y(b) � K in y(x) gives

K � K1 yI(b) � K2 yII(b),

so using the condition K1 � K2 � 1, solving for K1 and
K2, and substituting the results into y(x) shows that
the solution of the two-point boundary value problem
is given by

y(x) �

[
K � yII (b)

yI(b) � yII (b)

]
yI(x)

�

[
yI(b) � K

yI(b) � yII (b)

]
yI I(x).

Using the fourth order Runge-Kutta method to find
yI(x) and yI I(x), apply this method to the two-point
boundary value problem

2x2 d2 y
dx2

� 7x
dy
dx

� 10y � 3x,

with y(1) � 1 and y(2) � 4,

and find the solution for 1 ≤ x ≤ 2 at step increments
of 0.2. Compare your result with the analytical solu-
tion

y(x) � x �
x2(1 � x)

2 � 2 2
, for 1 ≤ x ≤ 2.
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y(x)

K

yI(b)
yI(x)

yII(x)
yII(b)

k

0 x



1108 Chapter 19 Numerical Mathematics

Project 5

Least Squares Fitting of Data

Instead of Lagrange or spline interpolation be-
tween known data points, it is sometimes better to fit
an expression of the form

P(x) � a0ϕ0(x) � a1ϕ1(x) � · · · � ϕm(x),

where the ϕ0(x), ϕ1(x), . . . , ϕm(x) is some convenient
set of functions. In the method of least squares,
the function P(x) is fitted to the set of data points
(x0, y0), (x1, y1), . . . , (xn, yn) by setting

S(a0, a1, . . . , am) �
n∑

i=0

[P(xj ) � yi ]2,

and requiring this sum of squares of errors between
P(x) at the points xi and the corresponding numbers
yi to be minimized.

A typical case involves fitting a quadratic in x to
the data points, so ϕr (x) � xr and

P(x) � a0 � a1x � a2x2.

The method of least squares then requires the sum
S(a0, a1, a2) to be minimized, where

S(a0, a1, a2) �
n∑

i=0

[ [
a0 � a1xi � a2x2

i � yi
2
.

Regarding the coefficients a0, a1, a2 as parameters, the
extremum of the square error S will be found by taking
the coefficients to be the solutions of the three equa-
tions ∂S/∂a j � 0; that is, by finding a0, a1, and a2 from
the three linear nonhomogeneous equations

a0

n∑
r=0

x j
r � a1

n∑
r=0

x j+1
r � a2

n∑
r=0

x j+2
r �

n∑
r=0

x j
r yr ,

for j � 0, 1, 2.

Substituting the coefficients a0, a1, and a2 into P(x)
then gives the required least squares fit.

(a) Define a function f (x) that can reasonably be
approximated by P(x) � a0 � a1x � a2x2 over an in-
terval x0 ≤ x ≤ xn. For some arbitrary increasing set
of points x0, x1, . . . , xn, typically with n � 20, set yj �
f (xj ). Using the points (x0, y0), (x1, y1), . . . , (xn, yn)
as data points, make a least squares fit of P(x).
Plot P(x) and the data points together to show
the nature of fit that is obtained. Examine how
changing the set of points x0, x1, . . . , xn alters the
nature of the fit.

(b) Extend the preceding analysis using P(x) �
a0 � a1x � a2x2 � a3x3. Repeat the calculations in (a),
but this time using a function f (x) that can reason-
ably be approximated by a cubic. Again plot P(x) and
the original set of data points together to show the na-
ture of the fit. Again examine how changing the set of
points x0, x1, . . . , xn alters the nature of the fit.
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A N S W E R S

Exercise Set 1.1

1. Consider a/
√

b+ b/
√

a − √
a − √

b= [a −√(ab)]/√
b + [b −√

(ab)]/
√

a = (a − b)(
√

a − √
b)/√

(ab) ≥ 0. Numerator and denominator have the
same sign, so the result follows.

3. P(n) is the stated proposition and P(1)
is true. (1 − rn)/(1 − r) + rn = (1 − rn+1)/(1 − r)
so P(n) implies P(n + 1), but P(1) is true so P(n)
is true for n ≥ 1.

5. Use the same form of argument as in Example 1.1.
A quick noninductive proof follows from Exam-
ple 1.1 by replacing ax by ax + π/2.

7. 81 + 216x + 216x2 + 96x3 + 16x4

9. 1
9 − 4

27 x + 4
27 x2 − 32

243 x3 + · · · , |x| < 3
2

11. 1
2 − 1

8 x2 + 3
64 x4 − 5

256 x6 + · · · , |x| <
√

2

Exercise Set 1.2

1. − 1
2 ± i

√
3

2

3. − 1
2 ± i

√
23
2

5. − 1
2 ± i

√
3

6

7. − 1
4 ± i

√
31
4

9. a = 5, b = −40
11.

√
10, 4 − i, −7 − 3i, 8 − i,

−30 − 45i,
√

65/5, 1
5 + i 4

15

Exercise Set 1.3

1. u + v = 3 + i, u − v = 1 + 5i
3. u + v = −6 − 4i, u − v = 4i
5. u + v = −1 + 8i, u − v = 7 + 4i
7. u + v = −8 − 8i, u − v = 12i

Exercise Set 1.4

1. Straightforward
3. Expand the left side of the identity (cos θ +

i sin θ)5 = cos 5θ + i sin 5θ and then equate real
and imaginary parts to obtain cos 5θ = cos5 θ −
10 cos3 θ sin2 θ + 5 cos θ sin4 θ and sin 5θ =
5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ .

5. Straightforward
7. zn + 1/zn = exp(inθ) + exp(−inθ) = 2 cos nθ , so

cos nθ = 1
2 (zn + 1/zn) and, similarly, sin nθ =

1
2i (zn − 1/zn), and with n = 1, cos θ = 1

2 (z + 1/z)
and sin θ = 1

2i (z − 1/z). Thus cos3 θ sin3 θ =
(1/2)3(z + 1/z)3(1/2i)3(z − 1/z)3. Expanding,
grouping terms, and using the above results gives
cos3 θ sin3 θ = 3

32 sin 2θ − 1
32 sin 6θ.

9. Proceed as in Exercise 7.
11. Proceed as in Exercise 7.
13. 8

√
2 exp(iπ/12),

√
2/4 exp(7iπ/12),

128 exp(−2π i/3)
15. 24 exp(−iπ/3), 2/3 exp(iπ/3),

√
2/32 exp(−iπ/4)

17. 64, π/2
19. Multiply numerator and denominator on the right

of Exercise 18 by eiθ/2 to obtain
∑n

k=1 exp(ikθ) =
exp[i(n+ 1

2 )θ]−exp( 1
2 iθ)

exp( 1
2 iθ)−exp(− 1

2 iθ)
. The Lagrange identity follows

by equating the real parts of this identity.

Exercise Set 1.5

1. ±
{(√

2 − 1
2

)1/2

+ i

(√
2 + 1
2

)1/2 }

3. ± 1√
2

(1 + i)

5. ±
{(√

13 + 2
2

)1/2

− i

(√
13 − 2

2

)1/2 }
7. ±(1/

√
2)(3 − i)

9. 21/3 exp(π i/9), 21/3 exp(7π i/9), 21/3 exp(13π i/9)
11. −(1/

√
2)(1 + i), (1/

√
2)(1 − i), (1/

√
2)(−1 + i),

(1/
√

2)(1 + i)
13. i, −(1/2)(

√
3 + i), (1/2)(

√
3 − i)

15. 0, [(
√

2 + 1)/2]1/2 − i[(
√

2 − 1)/2]1/2,

−[(
√

2 + 1)/2]1/2 + i[(
√

2 − 1)]1/2

17. ω may be any nth root of unity. Choose ω =
exp(2π i/n) and substitute for ω. The first result

1109
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follows by equating the real parts of the expres-
sion and the second by equating the imaginary
parts.

19. 1, 2 − 3i, 2 + 3i
21. The polynomial has complex coefficients, so its

roots do not occur in complex conjugate pairs.
z± = ±[(1/

√
2 + 1/2)1/2 − i(1/

√
2 − 1/2)1/2]

Exercise Set 1.6

1.
5
3

1
2x + 1

+ 2
3

1
x + 2

3.
29

2x + 5
− 13

x + 2

5.
1

x + 2
− 1

(x + 2)2

7. 1 − 4
x + 2

+ 5
(x + 2)2

9. (x + 2)2 + 1
11. 2(x + 3/4)2 − 57/8
13. 9(x − 1/9)2 + 17/9

Exercise Set 1.7

1. 18
3. 21
5. 0
7. 1

11. x1 = 10/23,

x2 = 15/23,

x3 = −6/23

Exercise Set 1.13

1. In Theorem 1.10 set n = 3 and make the iden-
tifications x1 = x, x2 = y, x3 = z, u1 = r , u2 = θ ,
u3 = z, X1 = r cos θ, X2 = r sin θ , X3 = z and sub-
stitute into the theorem.

3. In Theorem 1.10 set n = 3 and make the iden-
tifications x1 = x, x2 = y, x3 = z, u1 = r , u2 = θ ,
u3 = φ, X1 = r sin θ cos φ, X2 = r sin θ sin φ, X3 =
r cos θ and substitute the results into the theorem.

Exercise Set 2.1

3. (a) − (3/2)i − j − 3k (b) 2i − 9j − 9k
5. AB = −i − j + 5k, unit vector is (1/

√
27)

(−i − j + 5k)
7. AB = b − a, so the unit vector in this direction

is v̂ = (b − a)/|b − a|. Divide AB into m + n
parts of length |b − a|/(m + n), then AP
= m|b − a|/(m + n), so AP = AP v̂ = m(b − a)/
(m + n). As OP = OA + AP we have
r = a + m(b − a)/(m + n) = (na + mb)/(m + n).

a

r b

0

P

B

A

9. Use the same form of argument as in Exer-
cise 7 with M the mid-point of AC. Hence,
show that AM = (c − a)/2, OM = OA + AM =
(a + c)/2 and MB = OB − OM = b − (a + c)/2.
If P is 1/3 the distance along MB from M,
MP = MB/3. Position vector OP = OM + MP =
(1/3)(a + b + c). A similar argument yields the
identical result using the other two mid-points of
sides of the triangle, so the result is proved.

11. Let the forces along the x, y, and z axes be F1, F2,
and F3. Then F1 = 2i, F2 = j, and F3 = 4k, so S =
F1 + F2 + F3 = 2i + j + 4k, ‖S‖ = √

21, and Ŝ =
(1/

√
21)(2i + j + 4k).

13. The standard form of the equation of L is x + 1/2
3/2 =

y + 2/3
4/3 = z− 1/2

1/4 , so the position vector of a point on
the line is a = −(1/2)i − (2/3)j + (1/2)k. A vec-
tor along the line is b = (3/2)i + (4/3)j − (1/4)k,
so a unit vector along L is b/‖b‖ where ‖b‖ =√

589/12. To find the position vector of another
point on Lchoose an arbitrary value for x and use
it in the equation for L to find the corresponding
values of y and z.

15. (a) As (3, 2, 4) lies on L1 its position vector is
a = 3i + 2j + 4k. As (3, 2, 4) and (2, 1, 6) also lie on
L1 a vector b along L1 is b = (2i + j + 6k) − (3i +
2j + 4k) = −i − j + 2k. (b) The line L2 is also par-
allel to b, but it passes through a = −2i + j + 2k,
so L2 has the equation

x + 2
−1

= y − 1
−1

= z − 2
2

.

17. The position vector of a point on the line is a =
3i + 2j − 3k and a vector parallel to the line is b =
2i + 3j − 3k. If we set r = xi + yj + zk the vector
equation of the line r = a + λb becomes xi + yj +
zk = 3i + 2j − 3k + λ(2i + 3j − 3k), so the carte-
sian form of the equation is

x − 3
2

= y − 2
3

= z + 3
−3

= λ.
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The coordinates of three arbitrary points on the
line follow by assigning λ three different numeri-
cal values and then solving for x, y and z.

Exercise Set 2.2

1. (a) 2 (b) 4 (c) 0 3. (a) No (b) No (c) No (d) Yes
5. (a) 16 (b) −15 (c) 17 (d) 1
7. (a) cos θ = (

√
2/3), θ = 61.9◦ (b) cos θ = 6/7,

θ = 31◦ (c) cos θ = 8/
√

154, θ = 49.9◦

9. FC = F · n̂ = F · (i + j + k)/
√

3 so FC = 9/
√

3
11. a · b̂ = −2/

√
14, b · â = −2/3

13. (a) l = m = n = 1/
√

3, θ = 54.7◦

(b) l = 1/3, θ = 70.5◦, m = −2/3, θ = 131.8◦,
n = 2/3, θ = 48.2◦

(c) l = 4/
√

29, θ = 42◦, m = −2/
√

29,
θ = 111.8◦, n = 3/

√
29, θ = 56.1◦

15. ‖a‖ = √
14, ‖b‖ = √

54, ‖a + b‖ = √
118,

√
118 <√

14 + √
54

17. 2x − 3y + z = 3
19. 2x + z = −1
21. r · n/‖n‖ is the projection of the position vector

of a point on the plane onto the unit normal to
the plane, and so is the perpendicular distance of
the plane from the origin. If a · n > 0 the perpen-
dicular distance of the plane from the origin is
positive, so the plane then lies on the side of O
toward which n is directed, and conversely.

23. n1 = i + 3j + 2k, n2 = 2i − 5j + k so cos θ =
n1 · n2/‖n1‖‖n2‖ = −11/(

√
14

√
30), θ = 122◦

25. Component of a in direction of b is ab = a · b̂
so ab = (a · b)b/‖b‖2, but a = ab + ap, so ap =
a − (a · b)b/‖b‖2

27. W = F · âd = (F · a/‖a‖)d
29. ‖a‖2 = 26, ‖b‖2 = 14, |a · b| = 5, ‖λa + μb‖2 =

170. 170 ≤ (4) · (26) − (12) · (5) + (9) · (14) =
170, so in this case the equality holds.

Exercise Set 2.3

1. 5i − 14j + k
3. −18i − 7j + 21k
5. 2i − 4k
7. −5i + 8j − k
9. −2i − 11j − 5k

11. (b + c) × a = −24i
− 12j + 18k

13. (b + c) × a = −7j

15. (−i − 2j + 5k)/
√

30
17. (−4i + 3j + k)/

√
26

19. (i − j)/
√

z
21. 3x + 3y − z = 10
23. 4x + 2z = 10
25. No
27. Yes

29. N = αi + βj + γ k, a = i + j + 3k, b = 3i + 2j + k
a · N = 0 gives α + β + 3γ = 0 and b · N = 0 gives
3α + 2β + γ = 0. Set α = c (arbitrary). Then β =
−(8/5)c and γ = (1/5)c, so N = c(i − (8/5)j +
(1/5)k) and N̂ = (5i − 8j + k)/

√
90. Next a × b =

−5i + 8j − k, so n̂ = (−5i + 8j − k)/
√

90, show-
ing that N̂ = −n̂. The difference in sign is due to
the fact that a, b, and N do not necessarily form a
right-handed set of vectors.

Exercise Set 2.4

1. a.(b × c) = −15, V = 15
3. a.(b × c) = 25, V = 25
5. Yes
7. No

9. Yes
11. [a, b, c] = −10
13. [a, b, c] = 0

15. [λa + μb, c, d] = (λa + μb) · (c × d) = λa · (c × d)
+ μb · (c × d) = λ[a, c, d] + μ[b, c, d]

17. 7x + 2y − 4z = 2, n̂ = (7i + 2j − 4k)/
√

69
19. 5x − 10y − z = −20, n̂ = (5i − 10j − k)/

√
126

21. From Theorem 2.4(a) a × (b × c) = (a · c)b −
(a · b)c. Make the substitutions a → b, b → c, and
c → a to get b × (c × a) = (a · b)c − (b · c)a. Now
make the substitutions b → c, c → a, and a → b
to get c × (a × b) = (b · c)a − (a · c)b. The result
follows by adding these results.

23. Yes 25. Yes
27. Area of base = 1/2 area of parallelogram with

sides b and c, so S = (1/2)‖b × c‖. Vertical
height h = a · n̂, so volume of tetrahedron is V =
(1/3)hS = (1/6)|a · (b × c)|.

29. Take the dot product with b × c to get λa · (b × c)
+ μb · (b × c) + νc · (b × c) + d · (b × c) = 0. The
two middle terms are zero, so λa · (b × c) +
d · (b × c) = 0. So, provided a, b, and c are
linearly independent, a · (b × c) �= 0, so then
λ = −d · (b × c)/[a · (b × c)], and the other result
follows in similar fashion.

31. Write Theorem 2.4 in the form b × (c × d) =
(b · d)c − (b · c)d and form the dot product
with a to obtain a · [b × (c × d)] = (a · c)(b · d) −
(a · d)(b · c). Interchanging the dot and cross on
the left gives the result.

Exercise Set 2.5

1. Sum (3, 0, 2, 4, 6), norms
√

13,
√

26, dot product
13
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3. Sum (0, 0, 0, 0, 0), norms
√

11,
√

11, dot product
−11

5. Sum (3, 2, 1, 4), norms
√

10,
√

20, dot product 0
7. Sum (1, 1, −3, 0, 3), norms

√
22,

√
10, dot product

−6
9. 0.859 rad, unit n-vectors (1/

√
15)(3, 1, 2, 1),

(1/
√

10)(1, −1, 2, 2)
11. 0 rad, unit n-vectors (1/

√
7)(1, −1, −1, 2), (1/

√
7)

(1, −1, −1, 2)
13. No. Null vector belongs to S but the summation

and scaling laws fail.
15. No. The null vector is not contained in S and both

the scaling and summation laws are not satisfied.
17. Yes.
19. Yes, since a linear equation and a constant are

special cases of quadratic functions.
21. Yes.
23. No. As f ′(x) > 0 the zero function does not be-

long to S, and the scaling law is not satisfied when
λ < 0, for then f ′(x) < 0.

25. The null vector (0, 0, 0) in R3 does not belong to S.
27. ‖x + λy‖2 = (x + λy) · (x + λy) = ‖x‖2 +

2λ(x · y) + λ2‖y‖2 and ‖x − λy‖2 = (x − λy) ·
(x − λy) = ‖x‖2 − 2λ(x · y) + λ2‖y‖2. The result
follows by addition of these equalities.

29. Corresponding components must be equal, or x =
cy, c > 0.

Exercise Set 2.6

1. Linearly independent
3. Linearly independent
5. Linearly independent
7. Linearly dependent

9. Linearly independent
11. Linearly dependent
13. Linearly independent
15. Linearly dependent

17. e1 = (1, 1, 0, 0, 0), e2 = (1, 1, 1, 0, 0),
e3 = (1, 1, 0, 1, 0), e4 = (1, 1, 0, 0, 1); dimension 4

19. e1 = (2, 2, 1, 0, 0), e2 = (2, 2, 1, 1, 0),
e3 = (2, 2, 1, 0, 1); dimension 3

21. (a) 2 = 2(u + v) lies in V (b) No, because sin 2x =
2 sin x cos x does not lie in V (c) 0 = 0u + 0v lies
in V (d) cos 2x = cos2 x − sin2 x = u − v lies in V
(e) 2 + 3x does not lie in V (f) Yes, because 3 and
−4 cos 2x both lie in V

Exercise Set 2.7

1. i + 2j + k, (7/6)i − (2/3)j + (1/6)k, (5/11)i +
(5/11)j − (15/11)k

3. 2i + j, −(4/5)i + (8/5)j + k, (4/21)i − (8/21)j +
(16/21)k

5. −i + k, (1/2)i + 2j + (1/2)k, (2/3)i − (1/3)j +
(2/3)k

7. a1 = 3j − k, a2 = i + j, a3 = i + 2k. Starting with
u1 = a1; 3j − k, i + (1/10)j + (3/10)k, −(5/11)i +
(5/11)j + (15/11)k. Rearrange with a1 = i + j,
a2 = 3j − k, a3 = i + 2k; i + j, −(3/2)i + (3/2)j −
k, −(5/11)i + (5/11)j + (15/11)k

Exercise Set 3.1

1. a = −1, b = 3, c = 4 3. a = 1, b = 3, c = 2

5. A + B =
⎡⎣3 4 4 4

3 2 −3 3
1 0 1 1

⎤⎦ ,

A − B =
⎡⎣−1 4 2 8

1 0 3 1
1 −2 −1 1

⎤⎦

7. A + B =

⎡⎢⎢⎣
1 4 7
6 0 1
1 2 1
3 5 6

⎤⎥⎥⎦ , A − B =

⎡⎢⎢⎣
1 0 1
0 2 −1
1 0 −1
1 −1 2

⎤⎥⎥⎦
9. A + 3B =

⎡⎣7 13 −1
5 7 16
6 2 11

⎤⎦
11. 4A − 2B =

⎡⎣4 10 4
4 −4 0
2 6 0

⎤⎦
13. 14 15. 15 17. BA =

[
6 17 7
4 2 6

]
19. AB = BA = B

21. AB =

⎡⎢⎢⎣
17 8 25
24 16 30
20 28 56
17 10 37

⎤⎥⎥⎦

25. A =
⎡⎣4 5 −1 7

3 2 0 3
0 1 6 −7

⎤⎦ , x =

⎡⎢⎢⎣
u
v
w
z

⎤⎥⎥⎦ , b =
⎡⎣25

6
0

⎤⎦

27. A =
⎡⎣3 − λ 4 −2

2 −7 − λ 6
8 3 5 − λ

⎤⎦ , x =
⎡⎣x

y
z

⎤⎦ , b = 0
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29. X = 1
4

⎡⎣11 −1 1
25 7 19
12 −7 9

⎤⎦
43. Use A4 = A2A2 and A6 = A2A4 to show that

A6 = I.
45. (p = 0, q = 0, r = 1), (p = 0, q = 1, r = 0),

(p = 1, q = 0, r = 0)
46. n = 3
47. The structure of xTAx is such that it is a sum

of products of the form xi xj with i, j = 1, 2, 3.
xTAx = 3x2

1 + 8x1x2 + 6x1x4 + 2x2
2 + 4x2x3 +

12x2x4 + 5x2
3 + 2x3x4 + 7x2

4 .

51.

⎡⎣ 2 2 7/2
2 6 0

7/2 0 −9

⎤⎦
53. Use the fact that PE = E, so P2E = PE = E, etc.

Exercise Set 3.2

1. (a) Yes (b) No, there is one negative entry (c) No,
second row sum >1 (d) Yes

3.

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
1 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ 5.

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎦

Exercise Set 3.3

1. detA = −7 3. detA = 43
13. x1 = −7, x2 = −11, x3 = −15
15. P(λ) = −λ3 + 6λ2 − 3λ − 10; P(λ) = 0 when

λ = −1, 2, 5
17. detA = −14, detB = −18, det(AB) = 252

Exercise Set 3.5

5. E12 =
⎡⎣0 1 0

1 0 0
0 0 1

⎤⎦ , E2(3) =
⎡⎣1 0 0

0 3 0
0 0 1

⎤⎦ ,

E12(6) =
⎡⎣1 0 0

6 1 0
0 0 1

⎤⎦
7.

⎡⎣1 0 0 1/2
0 1 0 0
0 0 1 1/4

⎤⎦ 9.

⎡⎣1 0 0 3/2 1
0 1 0 2/3 0
0 0 1 −5/6 −3/2

⎤⎦

11.

⎡⎢⎢⎣
1 0 0 0 −2
0 1 0 0 1
0 0 1 0 2
0 0 0 1 −2

⎤⎥⎥⎦
13.

⎡⎣1 0 0 −4
0 1 0 0
0 0 1 8

⎤⎦ , x1 = −4, x2 = 0, x3 = 8

15.

⎡⎣1 0 0 −1 −2
0 1 0 2 2
0 0 1 −3 −3

⎤⎦ , x1 = k − 2, x2 = 2 − 2k,
x3 = −3 + 3k, x4 = k

17.

⎡⎢⎢⎣
1 0 1 0 2 0
0 1 2 0 1 0
0 0 0 1 4 0
0 0 0 0 0 1

⎤⎥⎥⎦, no solution

Exercise Set 3.6

1.

⎡⎣1 0 0 −2 −1/2 −1
0 1 0 −2 1/2 −1
0 0 1 8 0 5

⎤⎦,

rank = 3, row space {[1, 0, 0, −2, −1/2, −1],
[0, 1, 0, −2, 1/2, −1], [0, 0, 1, 8, 0, 5]}
column space {[0, 0, 1]T, [1, 0, 0]T, [0, 1, 0]T}

3.

⎡⎢⎢⎣
1 0 0 2 0
0 1 0 3 0
0 0 1 0 0
0 0 0 0 1

⎤⎥⎥⎦
rank = 4, row space {[0, 0, 0, 0, 1], [1, 0, 0, 2, 0],
[0, 0, 1, 0, 0], [0, 1, 0, 3, 0]}
column space {[0, 0, 0, 1]T, [0, 0, 1, 0]T,

[0, 1, 0, 0]T, [1, 0, 0, 0]T}

5.

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦
rank = 3, row space {[1, 0, 0], [0, 1, 0], [0, 0, 1]}
column space {[1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T}

7.

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦
rank = 3, row space {[1, 0, 0], [0, 1, 0], [0, 0, 1]},
column space {[0, 1, 0, −2/13]T, [0, 0, 1, −7/13]T,

[1, 0, 0, 20/13]T}

9.

⎡⎣1 0 −1/3 −2/3 −1/3 −5/3
0 1 2/3 7/3 8/3 13/3
0 0 0 0 0 0

⎤⎦
rank = 2, row space {[0, 1, 2/3, 7/3, 8/3, 13/3],
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[1, 0, −1/3, −2/3, −1/3, −5/3]},
column space {[0, 1, 1]T, [1, 0, 1]T}

11.

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
rank = 4, row space {[1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1]},
column space {[1, 0, 0, 0]T, [0, 1, 0, 0]T,

[0, 0, 1, 0]T, [0, 0, 0, 1]T}

13.

⎡⎣1 7 0 0
0 0 1 0
0 0 0 1

⎤⎦
rank = 3, row space {[0, 0, 1, 0], [0, 0, 0, 1],
[1, 7, 0, 0]},
column space {[0, 1, 0]T, [1, 0, 0]T, [0, 0, 1]T}

Exercise Set 3.7

1. x1 = −2a − 6b, x2 = a + 4b, x3 = −a − (7/2)b,
x4 = a, x5 = b

3. x1 = k, x2 = −k, x3 = 0, x4 = k
5. x1 = x2 = x3 = 0
7. x1 = −(1/4)a + (5/4)b − (3/4)c,

x2 = (1/20)a − (29/20)b + (7/20)c,
x3 = (3/20)a − (7/20)b + (1/20)c,
x4 = −(13/20)a + (37/20)b − (31/20)c,
x5 = a, x7 = b, x7 = c

9. x1 = (4/9)a + (37/9)b − (14/9)c, x2 = −a − 3b,
x3 = (1/9)a − (2/9)b + (1/9)c, x4 = a, x5 = b,
x6 = c

Exercise Set 3.8

1. x1 = 3, x2 = 1, x3 = −2, x4 = 4
3. x1 = −5/12, x2 = −1/12, x3 = 1/6, x4 = 1/2
5. Inconsistent; no solution
7. x1 = −15/11, x2 = 1/11, x3 = 8/11, x4 = 5/11
9. Inconsistent: no solution

Exercise Set 3.9

1.

⎡⎣−1/5 4/15 1/3
2/5 3/10 −1/2
0 −1/6 1/6

⎤⎦
3.

⎡⎣−2/73 16/73 −5/73
−9/73 −1/73 14/73
28/73 −5/73 −3/73

⎤⎦

5.

⎡⎣ 2 1 −2
−1 0 1

0 −2 1

⎤⎦

7.

⎡⎢⎢⎣
37/131 8/131 −31/131 43/131
52/131 −10/131 6/131 −21/131
−1/131 −25/131 15/131 13/131

−10/131 12/131 19/131 −1/131

⎤⎥⎥⎦
9. (AB)−1 = B−1A−1

=
⎡⎣ 31/276 1/207 −7/69

−19/276 1/414 −7/138
−4/69 19/414 5/138

⎤⎦
11.

⎡⎣ 25/27 −31/27 13/9
−7/27 13/27 −4/9
−1/27 −2/27 2/9

⎤⎦
13.

⎡⎣ −2/27 −1/9 16/27
28/27 5/9 −89/27

−11/27 −1/9 34/27

⎤⎦

15.

⎡⎢⎢⎣
27/29 −7/29 −1/58 −7/58

−28/29 18/29 15/58 −11/58
−3/29 4/29 −8/29 2/29

−11/29 5/29 9/58 5/58

⎤⎥⎥⎦
17. Elementary row operations require far less com-

putational effort.

Exercise Set 3.10

1.
dC
dt

=
[

3t2 1 + 4t sin t + t cos t + sinh t
1 + 2t −sin t 2 cos 2t − sin t

]
d2C
dt

=
[

6t 4 2 cos t − t sin t + cosh t
2 −cos t −4 sin 2t − cos t

]

3.
dC
dt

=
[

1 − 4e2t 0 −3t2

0 3 − 4t 2e2t − 2 cosh t

]
d2C
dt2

=
[−8e2t 0 −6t

0 −4 4e2t − 2 sinh t

]
7. dA−1

dt
=⎡⎣ −sin t −cos t 0

cos t −sin t 0
−sin t − 3t cos t + t2 sin t −cos t + 3t sin t + t2 cos t 0

⎤⎦
9. As AA−1 = I,

d
dt

(AA−1) = dA
dt

A−1 + A
dA−1

dt
=

0, so another differentiation gives d2A
dt2 A−1 +

2 dA
dt

dA−1

dt + A d2A−1

dt2 = 0. Now substitute for dA−1

dt to

find d2A−1

dt2 .
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Exercise Set 4.1

1. P(λ) = λ3 − 3λ2

3. P(λ) = λ3 − 3λ2 + 5λ + 1
5. P(λ) = λ3 − 4λ2 − 2λ

7. P(λ) = λ(λ − 1)(λ2 − λ − 2)

9. 1,

⎡⎣−1
0
1

⎤⎦; 2,

⎡⎣0
1
1

⎤⎦; −1,

⎡⎣1
2
0

⎤⎦
11. −1,

⎡⎣−1
0
1

⎤⎦; 1,

⎡⎣1
2
0

⎤⎦; 3,

⎡⎣0
1
1

⎤⎦
13. −2,

⎡⎣ 2
1

−2

⎤⎦; 1,

⎡⎣ 1
1

−2

⎤⎦; 0,

⎡⎣ 1
1

−1

⎤⎦
15. 1,

⎡⎣ 1
1

−2

⎤⎦; 2,

⎡⎣ 1
1

−1

⎤⎦; −2,

⎡⎣ 2
1

−2

⎤⎦
17. 1,

⎡⎣1
1
1

⎤⎦; 2,

⎡⎣0
1
0

⎤⎦; 0,

⎡⎣2
1
1

⎤⎦
19. 2,

⎡⎣1
1
1

⎤⎦; 1,

⎡⎣0
1
0

⎤⎦; 1,

⎡⎣2
0
1

⎤⎦
21. 0,

⎡⎣1
1
1

⎤⎦; 2,

⎡⎣0
1
0

⎤⎦; 2,

⎡⎣2
0
1

⎤⎦
23. P(λ) = (λ + 1)(λ3 − λ2 − 4λ + 4);

1,

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦; 2,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦; −2,

⎡⎢⎢⎣
−1

0
1
0

⎤⎥⎥⎦; −1,

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦
25. To obtain the first result expand the characteristic

determinant in terms of elements of the first col-
umn. The second part of the problem is illustrated

by A =
⎡⎣1 −2 1

0 1 2
0 0 2

⎤⎦ with eigenvalues λ1 =

λ2 = 1 and λ3 = 2 and eigenvectors x1,2 =
[1, 0, 0]T and x3 = [−3, 2, 1]T.

31. Premultiplication of a matrix by E interchanges
its ith and jth rows, while premultiplication by
ET reverses the process. Thus as E is obtained
from I, it follows that ETE = I. This shows that
ET = E−1, and so E is an orthogonal matrix. As

the product of two orthogonal matrices is an or-
thogonal matrix, if Q is an orthogonal matrix, so
also is the matrix EQ obtained from Q by a row
interchange. Multiplication of Q by a sequence
of elementary matrices E1, E2, . . . , Et will inter-
change the rows of Q in any desired order while
leaving the result still an orthogonal matrix.

Exercise Set 4.2

In solutions 1 through 12 a diagonalizing matrix P is
formed by using the given eigenvectors in any order as
the columns of P. The elements on the leading diago-
nal of the corresponding diagonal matrix are then ar-
ranged in the same order as the eigenvectors to which
they belong.

1. 1,

⎡⎣−1
1
0

⎤⎦; −1,

⎡⎣ 1
0

−1

⎤⎦; 2,

⎡⎣−1
1
1

⎤⎦
3. 2,

⎡⎣1
1
1

⎤⎦; −1,

⎡⎣0
2
1

⎤⎦; 1,

⎡⎣1
0
1

⎤⎦
5. 1,

⎡⎣−1
1
2

⎤⎦; 1,

⎡⎣0
1
1

⎤⎦; −1,

⎡⎣ 1
−1
−1

⎤⎦
7. 1,

⎡⎣ 1
1

−1

⎤⎦; 3,

⎡⎣ 1
0

−1

⎤⎦; 3,

⎡⎣−1
1
2

⎤⎦
9. 1,

⎡⎣1
0
1

⎤⎦; 2,

⎡⎣1
1
1

⎤⎦; −1,

⎡⎣0
2
1

⎤⎦
11. 0,

⎡⎣−1
−1

1

⎤⎦; −2,

⎡⎣1
2
0

⎤⎦; −2,

⎡⎣0
2
1

⎤⎦
13.

⎡⎣1
1
1

⎤⎦,

⎡⎣−1/3
−1/3

2/3

⎤⎦,

⎡⎣−1/2
1/2
0

⎤⎦
15.

⎡⎣−1
1
0

⎤⎦,

⎡⎣3/
√

18
3/

√
18

0

⎤⎦,

⎡⎣0
0
1

⎤⎦
17. 3,

⎡⎣1
0
0

⎤⎦; 2,

⎡⎣ 0
−1/

√
2

1/
√

2

⎤⎦; 4,

⎡⎣ 0
1/

√
2

1/
√

2

⎤⎦
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19. Two equal eigenvalues, but the corresponding
eigenvectors are orthogonal:

5,

⎡⎢⎣1/
√

2

1/
√

2
0

⎤⎥⎦; 3,

⎡⎢⎣−1/
√

2

1/
√

2
0

⎤⎥⎦; 3,

⎡⎣0
0
1

⎤⎦
21. Two equal eigenvalues, but the corresponding

eigenvectors are orthogonal:

6,

⎡⎢⎣1/
√

2

1/
√

2
0

⎤⎥⎦; 2,

⎡⎣0
0
1

⎤⎦; 2,

⎡⎢⎣ 1/
√

2

−1/
√

2
0

⎤⎥⎦
25. P(λ) = λ2 − 6λ + 11, A−1 =

[
4/11 −3/11

1/11 2/11

]

27. P(λ) = −λ3 + λ2 − 4,

A−1 =
⎡⎣ 0 −1/2 −1/2

1 1 1
−1/2 −1/2 −1

⎤⎦
Exercise Set 4.3

1.

⎡⎣ 1 1 − i 2i
1 + i 2 3 − i
−2i 3 + i 4

⎤⎦+
⎡⎣ i 2 + 2i 3

−2 + 2i 0 1 + 2i
−3 −1 + 2i 2i

⎤⎦
Hermitian skew-Hermitian

3.

⎡⎣ 4 2i 1 + i
−2i 1 3
1 − i 3 0

⎤⎦+
⎡⎣ −2i 1 − i 1 + i

−1 − i 2i 1
−1 + i −1 0

⎤⎦
Hermitian skew-Hermitian

5. 3
2 ±

√
21
2

7. 2 ± √
14

9. 1
2 i(3 ± √

41)

11. ±i
√

13

13. (1 + i)/
√

2,

[
1
1

]
; (1 − i)/

√
2,

[−1
1

]

15. i,
[

i
1

]
; 1,

[−i
1

]

Exercise Set 4.4

1.

⎡⎣1 0 2
0 3 −3
2 −3 −2

⎤⎦ 3.

⎡⎣−2 0 −1
0 3 2

−1 2 0

⎤⎦

5.

⎡⎢⎢⎣
3 −2 0 0

−2 0 −3 −1
−3 −3 2 0

0 −1 0 8

⎤⎥⎥⎦
7. 2x2

1 + x2
2 − x2

3 + 3x2
4 + 8x1x2 + 8x1x3 + 4x2x3 +

2x2x4 + 4x3x4

9. 3x2
2 + 2x2

3 + 7x2
4 + 4x1x2 − 8x1x3 + 4x1x4 +

2x2x3 + 2x3x4

11. Q =
⎡⎣0 1/

√
2 −1/

√
2

1 0 0
0 1/

√
2 1/

√
2

⎤⎦, D =
⎡⎣1 0 0

0 3 0
0 0 2

⎤⎦,

P = y2
1 + 3y2

2 + y2
3 , y = QTx, positive definite

13. Q =
⎡⎣ 0 1 0

−1/
√

2 0 1/
√

2
1/

√
2 0 1/

√
2

⎤⎦, D =
⎡⎣3 0 0

0 4 0
0 0 5

⎤⎦,

P = 3y2
1 + 4y2

2 + 5y2
3 , y = QTx, positive definite

15. Q =
⎡⎣0 −1/

√
2 1/

√
2

1 0 0
0 1/

√
2 1/

√
2

⎤⎦, D =
⎡⎣−1 0 0

0 1 0
0 0 2

⎤⎦,

P = −y2
1 + y2

2 + 2y2
3 , y = QTx, indefinite

17. Q =

⎡⎢⎣1 0 0

0 −1/
√

2 1/
√

2

0 1/
√

2 1/
√

2

⎤⎥⎦, D =
⎡⎣2 0 0

0 3 0
0 0 −1

⎤⎦,

P = 2y2
1 + 3y2

2 − y2
3 , y = QTx, indefinite

19. Ellipse 21. Hyperbolic 23. Ellipse

25. A =
[

1 4
4 1

]
, Q =

[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

]
,

D =
[−3 0

0 5

]
, x = Qy, x1 = (−y1 + y2)/

√
2,

x2 = (y1 + y2)/
√

2, −3y2
1 + 5y2

2

27. A =
[−2 2

2 1

]
, Q =

[
−2/

√
5 1/

√
5

1/
√

5 2/
√

5

]
,

D =
[−3 0

0 2

]
, x = Qy, x1 = −(2/

√
5)y1 +

(1/
√

5)y2, x2 = (1/
√

5)y1 + (2/
√

5)y2, −3y2
1 +

2y2
2 − (9/

√
5)y1 + (2/

√
5)y2

29. A =
[

35/17 4/17
4/17 50/17

]
, Q =

[
−4/17 1/

√
17

1/
√

17 4/
√

17

]
,

D =
[

2 0
0 3

]
, x = Qy, x1 = (−4y1 + y2)/

√
17

x2 = (y1 + 4y2)/
√

17, 2y2
1 + 3y2

2 + (4/
√

17)y1 +
(16/

√
17)y2

Exercise Set 4.5

1. n = 4 5. eAt =
[

emt 0
0 ent

]

7. eAt =
[

4
5 e−3t + 1

5 e2t − 2
5 e−3t + 2

5 e2t

− 2
5 e−3t + 2

5 e2t 1
5 e−3t + 4

5 e2t

]
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9. eAt =
⎡⎣2et − e2t −et − e2t 2et − 2e2t

2et − 2 2 − et 2et − 2
e2t − 1 1 − e2t 2e2t − 1

⎤⎦
11. Follows from the definitions.

Exercise Set 5.1

1. Homogeneous linear of order 3 and degree 1
3. Nonlinear of order 2 and degree 1
5. Nonlinear of order 2 and degree 1
7. Nonhomogeneous linear of order 1 and degree 1
9. Nonlinear of order 1

Exercise Set 5.2

1.
(

y − x dy
dx

)2
= 2xy

(
1 +

(
dy
dx

)2)
3. x d2 y

dx2 = U
V

(
1 −

(
dy
dx

)2)1/2

Exercise Set 5.3

1.

−2 −1 1

2

4

−2

−4

32

y

x

3.

−2−3 −1 1

2

4

6

−2

−4

−6

32

y

x

5.

−2 −1 1

1

2

−1

−2

2

y

x

Exercise Set 5.4

1. x2 + 2y + ln |2y − 1| = 3; Singular solution y =
1/2 does not satisfy y(1) = 1

3. y = (x2 − 3)/[2(x2 − 4)]
5. ln |y +√

(y2 − 1)| = 3(1 + x2)1/2 + C
7. 2ln |y + 2| + 2/(y + 2) = C − ln |x + 1|
9. 2ln |y| + 3y2 = 4x − 4(x + 1) ln |x + 1| + C

11. ln[(1 + x2)/(y2 + y + 1)] + (2/
√

3)Arctan[(2y +
1)/

√
3] = C

13. y = 2 + C cos2 x
15. Eliminate k between the original equation and

dy/dx = −1/k to obtain the differential equation
of the orthogonal trajectories dy/dx = −(x − a)/
(y − b), with the solution x2 + y2 − 2ax − 2by =
C, the equation of a family of concentric circles
with their center at (a, b).

17. Eliminate C between the original equation and
dy/dx = −1/{2Cxe2x(1 + x)} to obtain the dif-
ferential equation of the orthogonal trajectories
dy/dx = −x/{2y(1 + x)}, with the solution y2 =
−x + ln |1 + x| + C.

19. λ = ln(N2/N1)/(t2 − t1); predicts infinite growth
21. Approximately 50,200 years

Exercise Set 5.5

1. x/y2 + 1/y = C 3. y = x(4 ln |x| + C)1/2

5. −(1/2)x2 + xy + y2 = C
7. −2ln |x| + (1/2) cos(y/x) sin(y/x)

+ (1/2)y/x = C
9. −ln|x| − (1/2) cos(y/x) sin(y/x) + (1/2)y/x = C

11. x/(y + 2) − ln |y + 2| = C
13. x + 1 = [C(1 + x) exp{Arctan[y/(1 + x)]}]/

[y2 + (1 + x)2]1/2
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Exercise Set 5.6

1. (a) Not exact
(b) f (x, y) = x4 + sin x + 3xy2 + 2y = C

3. (a) f (x, y) = x sin x + y3 + sinh(x + 2y) = C
(b) Not exact

5. (a) f (x, y) = (x3 + y2)1/2 + 3y2 = C
(b) f (x, y) = y ln x + x2 sinh(y2) = C

7. (a) x2 y + 6 ln x + 4 ln y = C
(b) f (x, y) = x2/(2x + 3y2) + 2x = C

Exercise Set 5.7

1. y = 1/2 + Ce−2x

3. y = (1/3)(2x3 + 3x2 + 3C)/(x + 1)
5. y = (1/6)(6Cx3 −3x − 2)/x
7. y = (1/4)(4C + x4)/x2

9. y = sin x{C + 2 ln(cos x − 1)}/(1 + cos x)
11. y = x sin x + x 13. y = 2x2 − x − 1
14. y = x4/3 + 2/(3x2)
15. y = x/sin x − π/(2 sin x) − cos x
17. Approximately 173 seconds

19. dv/dt + kv + kt = 0; v(t) = (v0k−1)
k e−kt + 1

k − t ;
k = 4

(4−e)v0

Exercise Set 5.8

1. y1/2 = x − 1 + Ce−x

3. y1/2 = 1/(4 − 2x + Ce−x/2)
5. y = 1/(1 + Ce−2 cos x)
7. y1/2 = 4x/(4C − x2)
9. n(t) = n0a

n0b+(a−n0b)e−at . If a/b = n0, then n(t) = n0

(constant); otherwise n(t) approaches the value
a/b. Thus, if a/b > n0 the stock level increases to a
value greater than n0, and if a/b < n0 it decreases
to a value less than n0.

Exercise Set 5.9

3. y = x + exp(2x2/3)/{C − 2
∫

x exp(2x3/3)dx}
5. y = 1 + 1/(Ce−x − 2)

Exercise Set 5.10

1. Initial conditions can be imposed anywhere in the
part of the plane x < 1 other than on the line x = 1,
where ∂ f/∂x is infinite.

3. Initial conditions can be imposed anywhere in the
(x, y)-plane.

5. Initial conditions can be imposed anywhere in the
(x, y)-plane other than on the y-axis.

Exercise Set 6.1

1. (a) Linearly independent (b) Linearly inde-
pendent (c) Linearly independent

3. (a) Linearly independent (b) Linearly inde-
pendent (c) Linearly dependent

5. y = c1ex + c2e−4x

7. y = ex(c1 cos x + c2 sin x)
9. y = c1ex + c2e−3x

11. y = (c1 + c2x)e−3x

13. y = e2x(c1 cos x + c2 sin x)
15. y = e−3x(c1 cos 4x + c2 sin 4x)
17. y = c1e−4x + c2e−x

19. y = e3x/2{c1 cos(x
√

3/2) + c2 sin(x
√

3/2)}
21. y = 5e−2x − 4e−3x

23. y = e−x(3 cos x + 4 sin x) 25. y = 5e2x − 3e3x

27. y = e4x/5 − 6e−x/5
29. y = 3e−x/(3 − e2) − e−3x/(3e−2 − 1)
31. y = (1/5)e−3(1+x)(2 − 3x)
33. y = e−x{cos 5x + (3/2) sin 5x}
35. y = e−2x/(3e−3 − 2e−2) − e−3x/(3e−3 − 2e−2)
37. (a) Not unique (b) No solution (c) Unique
39. y = b sin λx, b arbitrary and λ = 0, ±1, ±2, . . . .
41. θ(t) = (α/p)exp(−kt) sin pt , and so the angular

velocity is dθ/dt = −(ak/p) exp(−kt) sin(pt) +
a exp(−kt) cos pt . The pendulum comes to rest
for the first time when dθ/dt first becomes
zero. This occurs at the smallest positive value
t = tC, say, such that tan ptC = p/k. The angu-
lar displacement at t = tC is given by θ(tC) =
aexp(−ktC)/(k2 + p2)1/2.

Exercise Set 6.2

1. yp = (2/5) sin x − (1/5) cos x,
yc = (2/5)(3 cos 2x + sin 2x)e−x

3. yp = −(1/2) cos x, yc = (3/2)(1 + x)e−x

5. yp = −(1/130)(9 cos 3x + 7 sin 3x),
yc = (13/10)e−x − (16/13)e−2x

7. yp = (A/10)(sin x − cos x),
yc = (A/5 + 10)e−2x − (A/10 + 7)e−3x

9. yp = (1/5)(cos x + sin x),
yc = (4/5)(4e−2x − 3e−3x), tan φ = −1

11. yp = (1/9) sin 3x,
yc = {2 + (23/3)x}e−3x, φ = 0
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13. yp = (3/40)(cos 2x + 3 sin 2x),
yc = (65/8)e−2x − (21/5)e−4x, tan φ = −1/3

15. y(t) = 2000 − m
10

− mt
10

+ m2

3200

+
(

m
10

− m2

3200

)
exp

(
−320t

m

)
,

dy
dt

= − m
10

− 320
m

(
m
10

− m2

3200

)
exp

(
−320t

m

)
.

After a long fall the terminal speed is |dy/dt | =
m/10, so setting |dy/dt | = 24 shows that M =
240 lbs.

17. x(t) = 2
9

g(ρ2 − ρ1)
η

a2t + 4
81

g(ρ2 − ρ)a4ρ1

η2

×
[

exp
(

− 9
2

ηt
a2ρ1

)
− 1

]
The container reaches the surface at a time t = T
given by x(T) = h. As it will reach its terminal
speed soon after release, the exponential term can
be ignored so T ≈ 9ηh/[2g(ρ2 − ρ1)a2].

19. Try, for example, ω1 = 1 and ω2 = 1.05 with
0 ≤ t ≤ 20. Use the result cos ω1t + cos ω2t =
2 cos{ 1

2 (ω1 + ω2)t} cos{ 1
2 (ω1 − ω2)t}. The high fre-

quency component is the term with argument
1
2 (ω1 + ω2)t , and this is modulated by the term
with argument 1

2 (ω1 − ω2)t .

Exercise Set 6.3

3. Not linearly independent; (1 + 2x)2 is a linear
combination of 3, −x and x2

5. y = c1 cosh x2 + c2 sinh x2 (for all x)
7. General solution: y = c1ex + (c2 cos 3x +

c3 sin 3x)e−2x (for all x); solution of i. v. p. is
y = (13/18)ex + (5/18)e−2x cos 3x − (1/18)e−2x

sin 3x
9. y = c1x + c2(8x2 − 1) (for all x)

11. y = c1x + c2 sin(x/2) (for all x)
13. 3/4 + (1/68)[9

√
17 sinh(x

√
17/2) +

17 cosh(x
√

17/2)]e−x/2

15. y = ((5/4) + (1/2) sin 2x − (1/4) cos 2x)e−x

17. y = (1/3) cosh(x
√

2) + (2/3) cos x
19. x(t) = Acos(ω1t − φ) + Bcos(ω2t − ψ), y(t) =

Asin(ω1t − φ) − B sin(ω2t − ψ), with ω1 =
1
2 (

√
4c2 + a + a), ω2 = 1

2 (
√

4c2 + a − a). If the
initial conditions make B = 0, the motion is in
a circle with angular speed ω1, whereas if they

make A= 0 the motion is also in a circle, but this
time in the opposite sense with angular speed ω2.

Exercise Set 6.4

1. y = −(14/9) − (1/3)x + (4/5)e2x + c1ex + c2e−3x

3. y = 5 + (3/8)ex − (1/2)xex + (1/4)x2ex + c1e−x

+ c2xe−x

5. y = −(2/5) cos x − (1/5) sin x + c1e−2x + c2xe−2x

7. y = (1/2)x + e−x + c1e−x cos x + c2e−x sin x
9. y = −x + 2x2 − (2/3)x3 + c1 + c2e−x cos x

+ c3e−x sin x
11. y = (7/144) + (1/12)x + (1/2)e2x − e3x − xe3x

+ c1e3x + c2e4x

13. y = −(9/80)x cos 4x + (3/80)x sin 4x + (57/1600)
sin 4x + (3/200)cos 4x + c1e−4x + c2e2x

15. y = (1/18)cos 3x + (1/36)sin 3x − (1/6)x cos 3x
+ (1/3)x sin 3x + c1 cos 3x + c2 sin 3x

17. y = (7/4) − (3/2)x + (1/2)x2 − 3e−2x − 3xe−2x

+ c1e−x + c2e−2x

19. y = −(1/2)xe−2x cos x + c1e−2x cos x
+ c2e−2x sin x

21. y = (1/3)e−3x cos x + (5/3)e−3x cos 2x
+ (7/2)e−3x sin 2x

23. y = (7/9) − (16/9) cos 3x + (4/9) sin 3x − (1/3)x
cos 3x − (2/3)x sin 3x

25. y = (1/5) + (1/8)e−x + (67/40)ex cos 2x
− (11/40)ex sin 2x

27. y = −(3/2) − (3/5) cos x − (1/5) sin x + ex

+ (11/10)e−x cos x + (13/10)e−x sin x

Exercise Set 6.5

1. y = c1x + c2/x3

3. y = (c1/x2) cos(
√

5 ln |x|) + (c2/x2) sin(
√

5 ln |x|)
5. y = c1x2 + c2/x4

7. y = c1/x + c2/x4

9. y = (c1/x2/3) cos( 1
2

√
7 ln |x|) + (c2/x2/3)

sin( 1
2

√
7 ln |x|)

11. The general solution is given in Solution 3.
13. y = c1x + c2x2 + c3x3

Exercise Set 6.6

1. y = c1ex + c2e−2x + (1/27)ex − (1/9)xex

+ (1/6)x2ex

3. y = c1e−2x + c2e−3x − 2e−2x + 2xe−2x − x2e−2x

+ (1/3)x3e−2x
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5. y = c1ex + c2xex − 2xex + 2xex ln |x|
7. y = c1e−2x cos x + c2e−2x sin x + (1/4)xe−2x

cos x + (1/4)x2e−2x sin x
9. y = c1 cos 4x + c2 sin 4x − (26/4913)ex − (4/289)

xex + (1/17)x2ex

11. y = c1e−2x + c2e−x + 3e−2x ln(1 + ex) + 3e−x

ln(1 + ex)
13. y = c1 cos x + c2 sin x − 1 − cos x +

2Arctanh[sin x/(1 + cos x)] sin x
15. y = c1x + c2/x3 − (4/7)

√
x

17. y = c1(2x2 − 1) + c2x(x2 − 1)1/2 + x/3
19. y = x3 − 2x2 ln x − x

21. y = 2 cos x − 2 + 4Arctanh
(

sin x
1 + cos x

)
sin x

23. y1(x) = x, y2(x) = 1 − x, W(t) = −1,

G(x, t) =
{

t(x − 1), 0 ≤ t < x
x(t − x), x < t ≤ 1

25. y1(x) = sin λx, y2(x) = sin λ(1 − x)
sin λ

, W(t) = −λ,

G(x, t) =

⎧⎪⎪⎨⎪⎪⎩
sin λt sin λ(x − 1)

λ sin λ
, 0 ≤ t < x

sin λx sin λ(t − 1)
λ sin λ

, x < t ≤ 1

27. y1(x) = x − 1/x, y2(x) = x − 4/x, W(t) = 6/t,

y(x) = e−x

x
(1 + x) + 1

xe2
(1 − x2) + 2

3xe
(x2 − 4)

29. y1(x) = 3x − x3, y2(x) = 4x − x3, W(t) = 2t3,

y(x) = x(4 − x ln x − x2) − 2x ln 2(3 − x2)

Exercise Set 6.7
1. y2 = e−2x

3. y2 = e−x sin x
5. y2 = x ln |x|

7. y2 = (1/x) cos x
9. y2 = ln |x|

Exercise Set 6.8

1. u′′ +
(

9
x

− 1
4x2

)
u = 0 3. y = c1ex + c2xe−x

5. y = e2x(c1 cos x + c2 sin x)
7. y = c1(1/x) sin x + c2(1/x) cos x

Exercise Set 6.9

1. x1 = c1e2t − c2et , x2 = −3c1e2t + c2et

3. x1 = −6e2t + 6e−t , x2 = 4e2t − 3e−t

5. x1 = (5/3) − 4et + 9e2t − (25/6)e3t − (3/2)e−t ,

x2 = −(4/3) + 2et − 3e2t + (25/12)e3t + (1/4)e−t ,

x3 = −(1/2)e−t + 2/3 − 2et + 6e2t − (25/6)e3t

Exercise Set 6.10

1. �(t) =
[

et cos t et sin t
−et sin t et cos t

]
3. �(t) =

[
cos t sin t

1
2 (cos t + sin t) 1

2 (sin t − cos t)

]
5. �(t) =[

e3t/2 cos 1
2 t e3t/2 sin 1

2 t

e3t/2
(
sin 1

2 t − cos 1
2 t
) −e3t/2

(
cos 1

2 t + sin 1
2 t
)]

Exercise Set 6.11

1. �(t) =
[

sin t
√

2 cos t
√

2

−√
2 cos t

√
2

√
2 sin t

√
2

]
;

x1(t) = C1 sin t
√

2 + C2 cos t
√

2,

x2(t) = C2
√

2 sin t
√

2 − C1
√

2 cos t
√

2
3. �(t) =[

−2e−t sin 2t e−t (cos 2t − 2 sin 2t)

e−t (sin 2t + cos 2t) e−t sin 2t

]
;

x1(t) = −(2C1 + C2)e−t sin 2t + C2e−t cos 2t,
x2(t) = (C1 + C2)e−t sin 2t + C1e−t cos 2t

5. �(t) =
⎡⎣1 sin 2t cos 2t

0 cos 2t − sin 2t
0 sin 2t cos 2t

⎤⎦;

x1(t) = C1 + C2 sin 2t + C3 cos 2t ,
x2(t) = −C3 sin 2t + C2 cos 2t,
x3(t) = C2 sin 2t + C3 cos 2t

7. x1(t) = 95
4 + 11

2 t − 3
2 C1e2t − 2C2e−t ,

x2(t) = − 27
2 − 3t + C1e2t + C2e−t

9. x1(t) = −(1/5) cos t + (3/5) sin t − (1/3)e3t

+ C1 + C2e2t

x2(t) = (2/3)e3t + (2/5) sin t + (1/5) cos t
+ C1 − C2e2t

11. x1(t) = (1/8) cos t + (1/4) sin t + C1et
√

7

+ C2e−t
√

7

x2(t) = (1/8) sin t + (1/3)C1(
√

7 − 2)et
√

7

− (1/3)C2(
√

7 + 2)e−t
√

7

13. x1(t) = −3 − (3/5) cos t + (4/5) sin t + C2e2t

+ 2(C1 + C3)e−t ,

x2(t) = 3 + C1e−t x3(t) = −6 − (1/5) cos t
+ (3/5) sin t + 2C2e2t + C3e−t

15. x1(t) = −3/5 − t − 2C1e−t + (C3 − C2)e2t sin t
+ C2e2t cos t
x2(t) = −4/5 + C1e−t − C2e2t sin t + (C3 − C2)
e2t cos t
x3(t) = 6/5 + 2C1e−t + C3e2t sin t + (2C2 − C3)
e2t cos t
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17. x1(t) = −4/3 − e−t + 2C1e3t + (C2 − C3) sin t
+ C2 cos t
x2(t) = 1/3 + t − (1/2)e−t + C1e3t − C2 sin t
+ (C2 − C3) cos t
x3(t) = 2/3 − 2t + e−t + 2C1e3t + C3 sin t
+ (C3 − 2C2) cos t

19. x1(t) = C1e2t + C2et , x2(t) = −3C1e2t − C2et

21. x1(t) = C1 sin t
√

2 + C2 cos t
√

2,

x2(t) = C2
√

2 sin t
√

2 − C1
√

2 cos t
√

2
23. x1(t) = (4C2 − 17C1)e−t sin 2t + C2e−t cos 2t

x2(t) = (C2 − 4C1)e−t sin 2t + C1e−t cos 2t
25. x1(t) = −(2C1 + C2)e−t sin 2t + C2e−t cos 2t,

x2(t) = (C1 + C2)e−t sin 2t + C1e−t cos 2t
27. x1(t) = −(7/5) cos t − (16/5) sin t − 9t − 9/2

− 2C1et − (3/2)C2e−2t

x2(t) = (3/5) cos t + (9/5) sin t + 2 + 5t + C1et

+ C2e−2t

29. x1(t) = −(4/5)t2 − (16/25)t + 8/125 + (2C1 + C2)
et sin 2t + C2et cos 2t
x2(t) = (2/25)t − 26/125 + (3/5)t2 − (C1 + C2)
et sin 2t + C1et cos 2t

31. x1(t) = −(3/4) − (1/2)t + (5/3)et + (1/12)e−2t ,

x2(t) = −3/2 + (5/3)et − (1/6)e−2t

33. x1(t) = 3t − et + 1 − 2tet ,

x2(t) = −6t + 1 + 2tet

35. x1(t) = −5/2 + (1/10) cos t + (3/10) sin t + 2e2t

− (61/10)e−2t + (15/2)e−t

x2(t) = −15/2 + 6t − (1/5) sin t + (3/5) cos t
− 2e2t − (61/10)e−2t + 15e−t

x3(t) = 15/4 − (5/2)t + (1/10) sin t − (3/10)
cos t + (61/20)e−2t − (15/2)e−t

Exercise Set 6.12

1. Saddle point at (0, 0)
3. Stable focus at (0, 0)
5. Stable focus at ( 46

13 , 2
13 )

7. Saddle point at (−2, 0) and an unstable node at
(2, 0)

9. Saddle point at (0, 0) and linear theory predicts
a center at ( 1

4 , − 1
2 ). An examination of the phase

portrait shows that the point ( 1
4 , − 1

2 ) is also a cen-
ter of the nonlinear system.

11. For ε ≤ −2, the point (0, 0) is a stable node.
For −2 < ε < 0, the point (0, 0) is a stable focus.
For 0 < ε < 2, the point (0, 0) is an unstable focus.
For ε ≥ 2, the point (0, 0) is an unstable node.

Exercise Set 7.1
5. 1/(s − 2)2

7. 1/s2 − 2/s3 + 6/s4

9. s/(s2 + 4s + 8)
11. 1/(5 + 3)2

13. (s3 − 2s − 5)/[s2(s2 + 2s + 5)]
15. eπ/2e−πs/2(s − 1)/(s2 − 2s + 2)
17. πe−πs/2/(2s) + e−πs/2/s2 − πe−πs/s − e−πs/s2

19. −e−π/2e−πs/2/(s2 + 2s + 2)
21. −1/4 + (5/4) cos 2t
23. 5/9 + sin 3t − (5/9) cos 3t
25. (9/5)te−2t− (96/25)e−2t+ (13/75)e3t + (14/3)e−3t

27. (1/4)e−t + (1/2)tet + (3/4)et

29. −(5/8)et + (13/12)e3t + (13/24)e−3t

31. F(s) = 1/s + (e−2as − 2e−as)/s
33. F(s) = k/s2 − ke−s/s2

35. F(s) = k(1 + e−2as − 2e−as)/as2

Exercise Set 7.2

3. s3 F(s) − s2 − 1 5. (1 − se−πs/2)/(s2 + 1)
7. (1/10) cos t − (3/10) sin t + (5/2)et − (8/5)e2t

9. −(8/81) − (1/9)t + 2et + (8/81)e−9t

11. 2/(s + 2) + 6/(s + 2)4

13. (4s + 4)/(s2 + 2s + 5)2

15. 3/[s2 − 4s + 13] 17. (1/3)e2t sin 3t
19. e−t (2 sin 2t − 3 cos 2t)
21. −(1/18)e−t + e2t [(1/18) cos 3t + (5/18) sin 3t]
23. 3/2 + e−2t [(3/2) cos 2t − (9/2) sin 2t]
25.

2

3

6

4 6 t

f

0

27.

2π

π

3π t

−1

1

0

f

29.

2ππ 3π t

−1

1

0

f
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31.

1

1

2 3 t

f

0

33. 6e−3s/s4

35. 2e−3πs/2/(4 + s2)
37. 3e−4s/(s2 − 9)
39. H(t − 2) cos(2t − 4)

41. H(t − π/2)eπ−2t (cos t + sin t)
43. H(t − 4)e8−2t {(1/3) sin(3t − 12) + cos(3t − 12)}
45. y(t) = 3e−2t − 2e−3t + (1/10)(3e3(π−t) −

4e2(π−1) − cos t − sin t)H(t − π)
47. y(t) = −(3/2)e2t + (4/3)e3t + 1/6 + (1/36)

(5 + 6t − 27e2t−4 + 28e3t−6)H(t − 2)
49. y(t) = −e−t cos 3t − (1/3)e−t sin 3t + (1/9)e−t

(1 − cos(3t − 3))H(t − 1)
51. 2(3s2 − 18s + 26)/(s2 − 6s + 10)3

53. 48s(s − 2)(s − 4)/(s2 − 4s + 8)4

55. 2e−3s/2(s2 − 4)/(s4 − 16a4)
57. 1/(27s4 + 12s2) 59. 1/(s + se−ks)
61. (1/s2) tanh ks 63. k/(as2) − ke−as/(s − se−as)
65. k(1 − 2ase−as − e−2as)/[as2(1 − e−2as)]
67. e−t − e−2t

69. t2 + 2 cos t − 2
71. (1/2)(sin t + t cos t)
73. 1/[s2(s + 2)]
75. 1/[s2(s2 + 2s + 2)]
77. (1/4)t − (1/8) sin 2t
79. (1/2)t cosh t + (1/2) sinh t
81. y(t) = t
83. y(t) = t2 + 2t + 2 − et/2{(2/

√
3) sin(t

√
3/2)

+ 2 cos(t
√

3/2)}
85. y(t) = 1 − (4/

√
3)e−2t sinh t

√
3

87. y(t) = (1/2)(1 + cosh t
√

2)
89. (12s2 − 16)/[s(s2 + 4)3]
91. (sin at − at cos at)/(2a3)
93. (1/2) ln{(s + 2)/(s − 2)}
95. (2/t)(1 − cosh at)
97. f (t) = 3/2 + (1/2) cos 3t ; f (0) = 1, f ′(0) = 0,

f ′′(0) = −3
99. f (t) = e2t (1 + t); f (0) = 1, f ′(0) = 3,

f ′′(0) = 8
101. −4/π

103. −8/(21π)

105. y(t) = (2/9) sin2(3t/2) + (1/3) sin(3t − 3)H(t −
1)

107. y(t) = (1/2)e−t (1 + t) − (1/2) cos t + (t −
π)eπ−t H(t − π)

109. y(t) = 1/2 + cos 2t − (1/2) cos2 t − (1/2)(1 −
cos2(t − 1))H(t − 1) + (1/2) sin(2t − 4)H(t −
2)

Exercise Set 7.3

1. x(t) = 27/49 + (8/7)t − (27/49)e−7t ,

y(t) = 71/49 + (20/7)t + (27/49)e−7t

3. x(t) = 3/2 + √
2 sinh t

√
2 − (5/2) cosh t

√
2,

y(t) = 1/2 + (3/2) sinh t
√

2 + (1/2) cosh t
√

2
5. x(t) = 5/2 + (1/2)t + et {33/2 sinh t

√
3 −

(1/2) cosh t
√

3}
y(t) = 1 + (1/2)t + et {(1/6)

√
3 sinh t

√
3

− 3 cosh t
√

3}
7. x(t) = 7/8 + (5/4)t − (1/4)t2 + (1/8)e−2t ,

y(t) = 1/8 + (7/4)t − (1/4)t2 − (1/8)e−2t

z(t) = 9/8 + (3/4)t − (1/4)t2 − (1/8)e−2t

9. x(t) = −1 + (1/4)e−t + (1/4)et (3 + 2t),
y(t) = 1 + 2t + (1/4)e−t + (1/4)et (2t − 1),
z(t) = −(1/4)e−t + (1/4)et (1 + 2t)

11.

[
1
4 e−2t + 3

4 e2t 3
4 e2t − 3

4 e−2t

1
4 e2t − 1

4 e−2t 3
4 e−2t + 1

4 e2t

]

13.

[
1
4 e−3t + 3

4 e5t 3
4 e5t − 3

4 e−3t

1
4 e5t − 1

4 e−3t 3
4 e−3t + 1

4 e5t

]

15.

[
e2t cos 4t + 1

2 e2t sin 4t − 5
4 e2t sin 4t

e2t sin 4t e2t cos 4t − 1
2 e2t sin 4t

]

17.

[
e2t cos 2t −2e2t sin 2t
1
2 e2t sin 2t e2t cos 2t

]
19.

[
e6t −te6t

0 e6t

]

21.

[
e−2t 4te−2t

0 e−2t

]

23.

⎡⎢⎣e5t 11
5 e5t − et − 6

5
8
5 e5t − et − 3

5

0 2 − et 1 − et

0 2et − 2 2et − 1

⎤⎥⎦
27. y(t) = (1/10)e2t− (3/10)e−t sin t − (1/10)e−t cos t,

W(t) = e−t sin t
29. y(t) = (1/16)e−5t + (1/4)te−t − (1/16)e−t ,

W(t) = (1/4)(e−t − e−5t )
31. x(t) = −1 − (5/14)e−t − (1/7)e6t + (3/2)et

y(t) = −3/2 − (3/14)e−t + (3/14)e6t + (3/2)et

39. x(t) = sin t − (1/3) sin 2t
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41. y(x) = M
24aEI

x4 + Q
6EI

(x − 3a/4)3 H(x −

3a/4) + a
384EI

(16M+9Q)x2 − Q
192EI

(16M + 5Q)x3; w(x) = M/a + Qδ(x − 3a/4)

43. i(t) = E0C√
R2C2 − 4LC

exp
(

− Rt
2L

)
×
{

exp

(
t
2

√
R2C2 − 4LC

LC

)

− exp

(
− t

2

√
R2C2 − 4LC

LC

)}
The solution is oscillatory if 4L > R2C; otherwise it
behaves exponentially.

45. x(t) = Qe−2t , y(t) = 2Q(e−2t − e−3t ), z(t) =
6Q(e−2t − e−3t − te−3t ) so w(t) = Q(1 − 9e−2t +
8e−3t + 6te−3t ). After 1, 2, and 3 time units
w(t)/Q = 48%, 88%, and 98%, respectively.

Exercise Set 7.4

1. (a) Order 3, roots s = 1, s = −2 ± 4i , unstable
(b) Order 3, roots s = −2, s = −1 ± 3i , stable
(c) Order 2, roots s = − 1

3 ± i, stable

Exercise Set 8.1

1. y(x) = 1 − x + (1/2)x2 − (1/6)x3 + (7/24)x4

− (19/120)x5 + · · ·
3. y(x) = −1 + x − x2 + x3 − (3/4)x4 + (11/20)x5

+ · · ·
5. y(x) = 1 + x − (1/2)x2 + (1/3)x3 + (5/8)x4

− (4/15)x5 + · · ·
7. y(x) = 2 − (1/3)x + (1/18)x2 + (35/162)x3

− (89/1944)x4 + (197/29160)x5 + · · ·
9. y(x) = a + bx + (1/3)bx3 − (1/12)ax4

+ (1/20)bx5 − (1/45)ax6 + (1/252)bx7 + · · ·
11. y(x) = a + bx + {−(1/2)a + 1/2}x2 + {−(2/3)b

+ 1/6}x3 + {(11/24)a − 3/8}x4 + · · ·
13. y(x) = a + bx − (1/6)ax3 − (1/12)bx4 +

(1/180)ax6 + (1/504)bx7 + . . .

15. y(x) = a + bx − (1/4)ax2 + (1/12)(2 − b)x3 +
(1/96)(5a − 12b)x4 + . . .

Exercise Set 8.2

1. y(x) = 2 − 3x − x2 + x3 − (3/10)x5 + (1/10)x6

+ · · ·

3. y(x) = 1 − 3x + (3/2)x2 − (2/3)x3 + (2/3)x4

− (43/120)x5 + · · ·
5. y(x) = 2 − x + x2 + (1/12)x4 + (1/40)x6 + · · ·
7. y(x) = 1 − x + x2 − (1/2)x3 + (1/3)x4

− (2/15)x5 + · · ·
9. y(x) = 1 − x − (1/2)x2 + (5/6)x3 − (11/24)x4

+ (67/120)x5 + · · ·
11. y(x) = 1 + 4x + 3x2 + 3x3 + (11/4)x4

+ (31/10)x5 + · · ·
13. y(x) = 2 − 3(x − 1) + (7/3)(x − 1)2 − (53/54)

(x − 1)3 + (11/81)(x − 1)4 + (319/3240)
(x − 1)5 + · · ·

15. y(x) = 1 + 5(x − 2) + 8(x − 2)2 + 6(x − 2)3

+ (13/6)(x − 2)4 + (7/30)(x − 2)5 + · · ·
17. Proceed as outlined in the exercise
19. Proceed as outlined in the exercise

Exercise Set 8.3

1. Regular singular point at x = 1
3. Irregular singular point at x = −1
5. Irregular singular point at x = −4
7. Irregular singular point at x = 3

Exercise Set 8.4

1. (a) a0xc−2 + (a0 + a1)xc−1 +
∞∑

n=0

(2an + an+1

+ an+2)xn+c

(b) 3a0xc +
∞∑

n=0

(2an + 3an+1)xn+c+1

3. (a) 1 + (1/2)x − (1/12)x2 + (1/24)x3 − (9/720)
x4 + · · ·

(b) 1 − (1/4)x2 − (5/24)x3 − (1/16)x4

− (11/480)x5 − · · ·
(c) 1 − (3/2)x + (4/3)x2 − (7/6)x3 + (31/30)x4

+ · · ·
5. (a) ln x − 2x − (1/4)x2 − (4/9)x3 − (15/32)x4

+ · · ·+ constant
(b) ln x − (1/4)x2 + (2/9)x3 − (1/32)x4

− (8/75)x5 + · · ·+ constant
(Hint: write the integrand as 1

x
ex

(1+x+x2) )

7. c = 1, y1(x) = x{1 − (1/10)x + (1/280)x2

− (1/15120)x3 + · · ·};
c = −1/2, y2(x) = x−1/2{1 + (1/2)x − (1/8)x2

+ (1/144)x3 + · · ·}
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9. c = 1, y1(x) = x{1 + (2/5)x + (2/35)x2 +
(4/945)x3 + · · ·};
c = −1/2, y2(x) = x−1/2{1 − 2x − 2x2 − (4/9)x3

− (2/45)x4 + · · ·}
11. y1(x) = 1 + 1

2! x2 + 7
4! x4 + 49

240 x6 + · · · , y2(x) =
x + 1

2 x2 + 13
40 x5 + 403

1680 x7 + . . .

13. y1(x) = 1 + x + 2
4 x2 + 2 · 5

4 · 9 x3 + 2 · 5 · 10
4 · 9 · 16 x4 + · · ·

y2(x) = y1(x) ln x − 2x − x2 − (14/27)x3 − · · ·
15. c = 1 (twice), y1(x) = xe−2x; c = 1, y2(x)

= y1(x){ln x + 2x + x2 + (4/9)x3 + · · ·}
17. c = 2, y1(x) = x2e−x; c = 1, y2(x) = y1(x)

{ln x − 1/x + (1/2)x + (1/12)x2 + · · ·}
19. c = 1/4 (twice), y1(x)

= x1/4

{
1 − x + 1

22
x2 − 1

2232
x3 + 1

223242
x4 + · · ·

}
c = 1/4, y2(x) = y1(x){ln x + 2x + (5/4)x2

+ (23/27)x3 + · · ·}
21. c = 3, y1(x) = x3{1 − (3/5)x + (1/5)x2 − (1/21)

x3 + (1/112)x4 + · · ·};
c = −1, y2(x) = x−1{1 − (1/3)x}

23. c = 2, y1(x) = x2(1 − (2/5)x + (1/10)x2 −
(2/105)x3 + · · ·); c = −2, y2(x) = y1(x)[

1
168

ln x − 1
4x4

+ 1
15x3

+ 1
100x2

− 13
1750x

+ · · ·
]

25. c = 2 ± 4i, y1(x) = x2 cos(4 ln |x|);
y2(x) = x2 sin(4 ln |x|)

27. Shift the critical point at x = −1 to the origin by
setting X = x + 1 and solve the resulting equation
to get

c = 1, y1(X) = 1 + 1
2 · 3

X2 + 1
(2 · 4)(3 · 7)

X4

+ 1
(2 · 4 · 6)(3 · 7 · 9)

X6 + · · ·

and

c = 1/2, y2(X)

= X1/2
(

1 + 1
2 · 5

X2 + 1
(2 · 4)(5 · 9)

X4 + · · ·
)

The required results follows by substituting X =
x + 1. The results converge in an interval of the
form 0 < x + 1 < d for some suitable d.

Exercise Set 8.5

1. �(5/2) = (3/4)
√

π, �(−5/2) = −(8/15)
√

π,

�(9/2) = (105/16)
√

π

3. �(5/4) = (1/4)�(1/4), �(−5/4) = −(4/5)
�(−1/4), �(7/4) = −(3/16)�(−1/4)

5. 5n+1�(6/5 + n + 1)/�(6/5)
7. 3n+1�(8/3 + n)/�(5/3)
9. ( 1

2 − n)�( 1
2 − n) = �( 3

2 − n), so �( 1
2 − n) =

−�( 3
2 − n)/(n − 1

2 ), similarly, ( 3
2 − n)�( 3

2 − n) =
�( 5

2 − n), so �( 3
2 − n) = −�( 5

2 − n)/(n − 3
2 )

giving �( 1
2 − n) = (−1)2�( 5

2 − n)/(n − 1
2 )×

(n − 3
2 ). Continuing this process leads to

�( 1
2 − n) = (−1)n�( 1

2 )/(n − 1
2 )(n − 3

2 ) . . . ( 1
2 ) =

(−1)n√π/(n − 1
2 )(n − 3

2 ) . . . ( 1
2 )

11. �(2n)
= (2n − 1)! = (2n − 1)(2n − 2) . . . 3 · 2 · 1
= 22n−1(n − 1

2 )(n − 1)(n − 3
2 ) . . . ( 3

2 ) · 1
= 22n−1{(n − 1

2 )(n − 3
2 ) . . . ( 1

2 )}
×{(n − 1)(n − 2) . . . 2 · 1}

= 2n−1{(n − 1
2 )(n − 3

2 ) . . . ( 1
2 )}�(n)

= 2n−1{(n − 1
2 )(n − 3

2 ) . . . ( 1
2 )�( 1

2 )}�(n)/�( 1
2 )

= 2n−1�(n + 1
2 )�(n)/

√
π

13. Make the substitution t = u2 in the definition of
�(x) in (32).

15. ψ(x+n) = d/dx{ln �(x+n)}=d/dx{ln[(x +
n − 1)�(x + n − 1)]}= 1/(x+n − 1) + d/dx{ln �

(x + n − 1)} a repetition of this argument leads
to ψ(x + n) = 1/(x + n − 1) + 1/(x + n − 2) +
· · · 1/x + ψ(x) = !n−1

k=0 1/(x + k) + ψ(x)
17. The result follows directly after integrating by

parts.

Exercise Set 8.6

1. J2(x) = (1/8)x2 − (1/96)x4 + (1/3072)x6

− (1/184320)x8 + (1/17694720)x10

−(1/2477260800)x12 + · · ·
5. 6 terms 7. 6 terms 9. 6 terms

11. (1/4)x2 − (1/64)x4 + (1/2304)x6 − (1/147456)x8;
max magnitude of error is a10/14745600

12 to 17. If x = λX, then d/dx = (dX/dx)d/dX =
(1/X)d/dx. Substitute x = λX and use results
(64)–(67).

19. The first two limits follow from the series for Jv(x)
in (54). The third follows by taking the limit as
x → ∞ in result (70):∫ ∞

0
J1(x)dx = −

∫ ∞

0
J ′

0(x)dx = [−J0(x)]∞0 = 1.

21. L{J0(x)} = ∫∞
0 e−xs J0(x)dx = 1/(s2 + 1)1/2. Set-

ting s = 0 gives
∫∞

0 J0(x)dx = 1. From (67)
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with v = 2n + 1 we have
∫∞

0 J2n(x)dx −∫∞
0 J2n+2(x)dx = 2[J2n+1(x)]∞0 = 0.

As
∫∞

0 J0(x)dx = 1 we have 1 = ∫∞
0 J0(x)dx =∫∞

0 J1(x)dx = ∫∞
0 J2(x)dx = · · ·

23.
∫

J4(x)dx = −2J1(x) − 2J3(x) +
∫

J0(x)dx

25.
∫

x J1(x)dx = −x J0(x) +
∫

J0(x)dx

Exercise Set 8.7

1. y(x) = C1 J2(x) + C2Y2(x)
3. y(x) = C1 J0(x) + C2Y0(x)
5. y(x) = C1 J0(x2) + C2Y0(x2)
7. y(x) = C1 J2(2x) + C2Y2(2x)
9. y(x) = x1/2{C1 J0(2x) + C2Y0(2x)}

11. a = 1, b = 1, c = 2, n = 1; y(x) = xZ1(x2)
13. a = 1, b = 3, c = 1, n = 0; y(x) = xZ0(3x)
15. a = 2, b = 2, c = 4, n = 1; y(x) = x3 Z1(2x4)
17. For u to depend on J0 and Y0, we must set a = 3

and ν = 1. Thus the general solution for u is
u(x) = AJ0(kx) + BY0(kx), so the general solu-
tion for y is y(x) = (1/x)(AJ0(kx) + BY0(kx)).

Exercise Set 8.8

5. Replacing sinh x and cosh x by their definitions in
terms of exponentials and comparing with (106)
shows that C1 = C2 = √

(2/π), so

I1/2(x) =
√

2/πx sinh x and

I−1/2(x) =
√

2/πx cosh x.

Using this with the result of Exercise 2 gives

I3/2(x) = −
√

2
πx

(
sinh x

x
− cosh x

)
and

I−3/2(x) = −
√

2
πx

(
cosh x

x
− sinh x

)
.

7. Replace x by i x in J±1/2(x) and J±3/2(x) and re-
move any multiplicative factors i to obtain the
results of Exercise 5.

9. Substituting the series for Iν(x) and I−ν(x) into
the expression on the left of Exercise 8 shows
that C, the coefficient of the term in (1/x),
is given by C = −2ν/{�(1 + ν)�(1 − ν)}. Using
�(1 + ν) = ν�(ν) and the result �(ν)�(1 − ν) =
π/ sin πν then gives C = −(2/π) sin πν.

11. The expression ( d2

dr2 + 1
r

d
dr + 1)( d2

dr2 + 1
r − 1)R is

equal to the left-hand side of the governing
equation, so d2 R

dr2 + 1
r

dR
dr + R = 0 and d2 R

dr2 + 1
r

dR
dr −

R = 0 are both special solutions of the original
fourth order equation. They have the respective
solutions R1(r) = AJ0(r) + BY0(r) and R2(r) =
CI0(r) + DK0(r), so the general solution of the
original equation is R(r) = R1(r) + R2(r). In a
particular problem the initial conditions will de-
termine the arbitrary constants A, B, C, and D.

Exercise Set 8.10

1.
d

dx
[xe−x y′] + λe−x y = 0 (Laguerre’s equation)

3.
d

dx
[(1 − x2)1/2 y′] + λ(1 − x2)−1/2 y = 0

(Chebyshev’s equation)

5. λn = n2π2/L2, n = 1, 2, . . . , ϕn = sin
nπx

L
7. λn = (2n − 1)2π2/4, n = 1, 2, . . . ,

ϕn = cos
(2n − 1)πx

2
9. λn = k2

n where kn are the roots of tan x = 2x,
ϕn = sin knx, λ1 = k2

1 ≈ (1.166)2 = 1.340, λ2 =
k2

2 ≈ (4.604)2 = 21.197
11. λn = n2π2, n = 0, 1, . . . ,

ϕn = {1, cos nπx, sin nπx}
13. General solution y = C1 cos(k ln x) +

C2 sin(k ln x), Eigenvalues λn = k2
n =

( nπ

2 ln 2

)2
,

ϕn = sin
(

nπ ln x
2 ln 2

)
15. ‖ϕn‖ = √

L/2 16. ‖ϕn‖ = 1/
√

2
17. ‖ϕ0‖ = √

L, ‖ϕn‖ = √
L/2, n = 1, 2, . . . .

19. An upper bound to λ1 is∫ π

0
4(π − x)2dx

/∫ π

0
x2(2π − x)2dx = 5/2π2

= 0.2533.

When � is substituted into the Rayleigh quotient,
the constant C cancels.

21. An upper bound to λ1 is{(∫ 1

0
x(1 − 2x)2dx +

∫ 1

0
x(1 − x)2dx

)/
∫ 1

0
x3(1 − x)2dx

}
= 15,

so j1,1 ≈ √
15 = 3.87.



1126 Answers

Exercise Set 8.11

1. (1/3)P0(x) + (12/5)P1(x) − (4/3)P2(x)
+ (8/5)P3(x)

3. (42/35)P0(x) + 2P1(x) + (18/7)P2(x)
+ (8/35)P4(x)

5. f (x) = (3/4)P0(x) − (1/4)P1(x) + (5/16)P2(x)
+ (7/16)P3(x) + · · ·

7. f (x) = (5/8)P0(x) + (9/32)P1(x) − (45/64)
P2(x) − (133/512)P3(x) + · · ·

9. f (x) = (1/2)(e − 1/e)P0(x) + (3/e)P1(x) + (5/2)
(e − 7/e)P2(x) −(1/2)(35e − 259/e)P3(x) + · · ·

11. −(7/8)T0(x) − T1(x) − (1/2)T2(x) + (3/8)T3(x)
13. (15/4)T0(x) + (1/4)T1(x) + T2(x) − (1/4)T3(x)

+ (1/4)T4(x)
15. f (x) = (1/2π)(5π − 2)T0(x) + (1/2π)(π + 4)

T1(x) − (2/3π)T2(x) − (2/3π)T3(x) + · · ·

Exercise Set 9.1

1. 2π 3. π 5. 12π

7. f (x) is not periodic 9. f (x) is not periodic
11. (a) (1/2) sin 2x (b) cos 2x (c) (1/2) sin 2x +

(1/2) sin 4x
17. If f (−x) = f (x) and g(−x) = g(x) then f (−x) +

g(−x) = f (x) + g(x), so the sum is an even func-
tion. If f (−x) = − f (x) and g(−x) = −g(x), then
f (−x) + g(−x) = − f (x) − g(x), so the sum is an
odd function.

19. (a) 2L2/π (b) −L2/π (c) 2L2/3π

23. f (x) = a + b
2

− 2(a − b)
π

∞∑
n=0

sin(2n + 1)x
2n + 1

.

Graph for a = 1, b = 3.

4

2

1

−π −π/2 ππ/20 x

f

3

25. f (x) = 1
2

+ 4
π2

∞∑
n=1

cos(2n − 1)πx
(2n − 1)2

1

−1 10 x

f

27. f (x) = 2
π

− 4
π

∞∑
n=1

cos 2nx
4n2 − 1

1

−π/2 π/20 π−π x

f

29. f (x) = 1
π

+ sin x
2

− 2
π

∞∑
n=1

cos 2nx
(4n2 − 1)

1

0.5

−π/2 0 π/2 π−π x

f

31. f (x) = 4π2

3
+ 16

∞∑
n=1

(−1)n cos 1
2 nx

n2

−6 −4 −2 0

10

20

30

40

2 4 6 x

f
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33. f (x) = 2 sin aπ

π

{
1

2a
+

∞∑
n=1

(−1)na cos nx
a2 − n2

}
.

Graph for a = 0.7, n = 10.

x

f

−π/2 0 π/2 π−π

1

35. f (x) = 4
3π

sin
1
2

x + 1
2

sin x

+ 4
π

∞∑
n=1

(−1)n+1 sin 1
2 (2n + 1)x

(2n + 1)2 − 4

π0 2π−π−2π x

f

1

−1

Exercise Set 9.2

1.
π2

8
=

∞∑
n=1

1
(2n − 1)2

3.
π4

90
=

∞∑
n=1

1
n4

5. Proceed as in the derivation of the Parseval re-
lation (27), but starting from the Fourier series
representation of f (x) on −L ≤ x ≤ L.

7. Set x = 0 with f (0) = 0 to get π2

12 = ∑∞
n=1

(−1)n+1

n2

9. f (x) = 1
2

− 2
π

∞∑
n=1

(−1)n

n
sin

1
2

nπx

− 4
π2

∞∑
n=1

cos 1
2 (2n − 1)πx

(2n − 1)2
.

Set x = 0 with f (0) = 0 to get π2

8 = ∑∞
n=1

1
(2n−1)2 ,

or set x = 2 with f (2) = 1 for the same result.
11. The Fourier series for f (x) = π2 − x2 is f (x) =

2π2

3 + 4
∑∞

n=1(−1)n+1 cos nx
n2 . As f (−π) = f (π),

Theorem 9.3 can be used to find the Fourier series
for f ′(x) by differentiating term by term to obtain

x = 2
∞∑

n=1

(−1)n+1 sin nx
n

.

Theorem 9.2 can also be applied to obtain

x(π2 − x2) = 12
∞∑

n=1

(−1)n+1 sin nx
n3

.

13. Transform the result to

Sn(x) = 1
π

∫ π

−π

f (u)

[
1
2

+
∞∑

r=1

cos[r(x − u)]

]
du.

Now set t = x − u to obtain

Sn(x) = 1
π

∫ x+π

x−π

f (x − t)
sin
[(

n + 1
2

)
t
]

2 sin 1
2 t

dt.

17. Sn(x) = 1
π

∫ π

0 [ f (x − t) + f (x + t)]Dn(t)dt .
When n is large Dn(t) can be replaced by �(t) to
give

Sn(x) ≈ (2n + 1)
4π

∫ 2π/(2n+1)

0

×[ f (x − t) + f (x + t)]dt,

and for large n the interval of integration is very
small so the integrand is almost constant over the
interval of integration, as a result of which integral
can be replaced by

Sn(x) ≈ (2n + 1)
4π

[ f (x − t) + f (x + t)] ×∫ 2π/(2n+1)

0
dt = 1

2
[ f (x − t) + f (x + t)],

and in the limit as n → ∞ this becomes an equal-
ity. So when f is continuous at x the Fourier se-
ries converges to f (x0), and when it is discontin-
uous it converges to the mid-point of the jump
1
2 [ f (x0− − t) + f (x0+ + t)].

Exercise Set 9.3

1. b1 = 2
π

(π2 − 4), b2 = − π, b3 = 2
27π

(9π2 − 4),

b4 = −π

2
, b5 = 2

125π
(25π2 − 4)

3. b1 = 1/π, b2 = 4/(3π), b3 = 1/π, b4 = 8/(15π),
b5 = 1/(3π)

5.
1
π

+ 1
2

cos x + 2
π

∞∑
n=1

(−1)n+1 cos 2nx
(4n2 − 1)

7.
1
π

+ 1
π

cos x − 2
3π

cos 2x − 1
π

cos 3x − 2
15π

cos 4x + 1
3π

cos 5x − 2
35π

cos 6x + · · ·

11.
2
π

∞∑
n=1

[1 + (−1)n+1e−π ]
n sin nx
(n2 + 1)
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13. The linearity of the integral used in the deriva-
tion of the Fourier series coefficients allows the
Fourier series of f (x) ± g(x) to be added or sub-
tracted term by term. The Parseval relation gives

1
π

∫ π

−π

[ f (x) ± g(x)]2dx

= a0 ± A0 +
∞∑

n=1

[(an ± An)2 + (bn ± Bn)2].

The result follows by subtracting the result with
the negative sign from the corresponding result
with the positive sign.

Exercise Set 9.4

1.
1
2

− 2
π

∞∑
n=1

sin(2n − 1)x
(2n − 1)

3.
π

2
−

∞∑
n=1

sin nπx
n

5. cn = (−1)n sinh 1(1 − inπ)
1 + n2π2

, n = 0, ±1, ±2, . . .

7. cn = e − 1
1 − 2nπ i

, n = 0, ±1, ±2, . . .

9. cn = (−1)n sinh π

π(1 − in)
, n = 0, ±1, ±2, . . .

Exercise Set 9.5

1. ω0 = 1/2, f (x) = π

2
− 4

π

∞∑
n=1

cos 1
2 (2n − 1)x

(2n − 1)2

+ 2
∞∑

n=1

(−1)n+1 sin 1
2 nx

n
A0 = π

2
,

A1 =
[(

4
π

)2

+ 2

]1/2

, A2 = 1,

A3 =
[(

4
5π

)2

+
(

2
3

)2
]1/2

, A4 = 1
2
, . . .

3. ω0 = 1, f (x) = −2 − 8
π

∞∑
n=1

sin(2n − 1)x
(2n − 1)

,

A0 = 2, A2n−1 = 8
π(2n − 1)

,

A2n = 0, n = 1, 2, . . .

5. ω0 = 4, f (x) = π2

48
+ 1

4

∞∑
n=1

(−1)n cos 4nx
n2

,

A0 = π2

48
, An = 1

4n2
, n = 1, 2, . . .

Exercise Set 9.6

3. Case (d); dmn = (−1)m+n 4
m3n

[m2π2 − 6]

5. Case (d); dmn = 16
mnπ

for m, n odd and dmn = 0

for m, n even

7. Case (d); dmn = (−1)m+n 32
π2mn

9. Case (d); (−1)m+1 4
mn3π

{2[(−1)n − 1]

+ (−1)n+1n2π2}

Exercise Set 10.1

1. A(ω) = 2 sin ω

ωπ
, B(ω) ≡ 0,

f (x) = 2
π

∫ ∞

0

cos ωx sin ω

ω
dω

3. A(ω) ≡ 0, B(ω) = 2b
ω2aπ

(sin ωa − ωa cos ωa),

f (x) = 2b
aω

∫ ∞

0

sin ωx(sin ωa − ωa cos ωa)
ω2

dω

When x = a, 1
2 [ f (a + 0) + f (a − 0)] = b/2, so

this result also shows that∫ ∞

0

sin ωa(sin ωa − ωa cos ωa)
ω2

dω = πa
4

5. f (x) =
∫ ∞

0

cos 1
2ωπ cos ωx

1 − ω2
dω

7. f (x) = 1
π

∫ ∞

0

ω[sin ωx − sin ω(π + x)]
ω2 − 1

dω

Exercise Set 10.3

11. FC{ f (x)} =
√

2
π

(
1 + cos ωπ

1 − ω2

)
13. FC{ f (x)} =

√
2
π

(
2 cos ω − 1 − cos 2ω

ω2

)
15. FC{ f (x)} = 2

√
2
π

(
sin ω − ω cos ω

ω3

)
25. FS{ f (x)} = −

√
2
π

(
ω(1 + cos ωπ)

1 − ω2

)
27. FS{ f (x)} =

√
2
π

(
ω − sin 2ω + sin ω

ω2

)

Exercise Set 11.1

1. dr/dt = (sin t + t cos t)i + (cos t − t sin t)j + 2tk,
(dr/dt)t=π/2 = i − (π/2)j + πk
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d2r/dt2 = (2 cos t − t sin t)i − (2 sin t + t cos t)j
+ 2k, (d2r/dt2)t=π/2 = −(π/2)i − 2j + 2k

3. dr/dt = 2 sin t cos t i + 2 sin t cos tj − k,

(dr/dt)t=π/4 = i + j − k
d2r/dt2 = 2(cos2 t − sin2 t)i + 2(cos2 t − sin2 t)j,
(d2r/dt2)t=π/4 = 0

5. dr/dt = (1 − cos t)i + sin tj, (dr/dt)t=π/2 = i + j
d2r/dt2 = sin t i + cos tj, (d2r/dt2)t=π/2 = i

9. dr/ds = 2si/(1 + s2) + 12s ln(1 + s2)j/(1 + s2)
− 2sk/(1 + s2)

11. dr/dt = 2t i − 8 sin 2tj + 6 cos 2tk. A unit vector
in the given direction is â = 2

3 i + 1
3 j + 2

3 k so the
component in the required direction is â · dr/dt =
4
3 t − 8

3 sin 2t + 4 cos 2t

19.
d
dt

{u · (v × w)} = −4t3 − 36t2 − 6t + 4

21. T = 1
(a2ω2 + b2)1/2

[−aω sin ωt i + aω cos ωtj + bk]

N = − cos ωt i − sin ωtj

B = 1
(a2ω2 + b2)1/2

[b sin ωt i − b cos ωtj + aωk]

κ = aω2

(a2ω2 + b2)

Exercise Set 11.2

1. (a) ((1/4) sin 2t − (1/2)t cos 2t)i + t3j − (3/2)t2k
(b) [(7/3) ln 7 − 2]i + (1 + e2)k

3. (a) [(1/6) cos 3t sin 3t + t(1/2)]i + (1/2)
[t − cos t sin t]j + (1/2)t2k
(b) (π + π3)i + (1/3)k 5. (π/2)(a2 + α2)1/2

7. Integrate F · dr between the limits t = 0 and
t = π/2 to obtain π/4

9. 2π2 10. 4 11. (a) 0, (b) −3π/4 13. 8π

Exercise Set 11.3

1.
√

5(π + 2
√

2)/10 3. (15e−2 − 2)/
√

17
5.

√
2[(π/8) − 1]/3 + 2e3

7. 4
√

5 cosh 2
11. (2x + 3yz)i + (3xz − z2)j + (3xy − 2yz)k
13. [(y − 3z)i + (x + 2z)j + (2y − 3x)k]

exp(xy + 2yz − 3xz)
15. A normal n to f (x, y) = constant is n = grad f , so

at point P(x0, y0), n = (grad f )P, so n = ( fx)Pi +
( fy)Pj. The vector equation of a line normal to
f at P is r = r0 + λ(grad f )P with r0 = x0i + y0j.

The cartesian equation is found by eliminating λ

between x = x0 + λ( fx)P and y = y0 + λ( fy)P to
obtain y = y0 + (x − x0)( fx/ fy)P.

17. A normal to the surface is grad f , so at (1, 2, 2)
the normal n = 9i + 3j + 4k. The tangent plane
through r0 = i + 2j + 2k is (r − r0) · n = 0, so the
plane has the equation 9x + 3y + 4z = 23.

19. The normal to the surface at r0 is (grad f )r0 so the
required equation is (r − r0) · (grad f )r0 = 0.

21. (2r sin θ + z2)er + r cos θeθ + 2rzez

23. grad ( f n) = nf n−1( fxi + fyj + fzk) = nf n−1F
If f = r then f = (x2 + y2 + z2)1/2 and
grad r = (xi + yj + zk)/(x2 + y2 + z2)1/2 = r̂.
If f = 1/r then grad f = −(1/r2)grad r =
−(1/r2)r̂ = −r/r3.

Exercise Set 11.4

1. Yes 3. No 5. No
7. f = xz3 + 3x2 y2 + constant; I = f (Q) −

f (P) = 11
9. f = x exp(xyz) + constant; I = f (Q) − f (P) = e2

11. f = x2 + x2 yz2 + constant; I = f (Q) − f (P) =
−17

Exercise Set 11.5

1. div F = 2xy + 2yz2 + 3xz2

3. div F = 6x + 4x2 y
5. Substitute φF into the definition of divergence

and expand the result.
7. curl F = (2xy − x2 y)i + (2xyz − y2)j +

(2xyz − xz2)k

9. curl F = i + x(3y2 + 2x2)
(x2 + 2y2)(x2 + y2)

k

11. Expand curl F, substitute into the definition of
divergence, and make use of the equality of mixed
derivatives.

13. Substitute F · G into the definition of grad and ex-
pand the result.

15. Substitute F × G into the definition of curl and
expand the result.

17. ∇2F = 0, so curl(curlF) = grad div F − ∇2F =
grad div F = 3(zi + yk)

21. Yes; f = ln(1 + x2 + 2y2z) = constant
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Exercise Set 11.6

1. ∇ · (aF) = a∇ · F; ∇ · (aF + bG) = a∇ · F +
b∇ · G;
∇ · (φF) = φ∇ · G + F · ∇φ;
∇ · (∇φ) = ∇2φ; ∇ · (φ∇ψ) = φ∇2ψ + ∇φ · ∇ψ ;
∇ · (φ∇ψ) − ∇ · (ψ∇φ) = φ∇2ψ − ψ∇2φ

5. h1 = h2 = √
2, h3 = cosh q3; q = (q1 − q2)i +

(q1 + q2)j + sinh q3k; e1 = 1
h1

∂q
∂q1

= 1√
2

(i + j),

e2 = 1
h2

∂q
∂q2

= 1√
2

(−i + j), e3 = k, so e1, e2, and

e3 form an orthonormal set.

grad f = e1
1√
2

∂ f
∂q1

+ e2
1√
2

∂ f
∂q2

+ e3
1

cosh q3

∂ f
∂q3

div F = 1√
2

∂ F1

∂q1
+ 1√

2

∂ F2

∂q2
+ 1

cosh q3

∂ F3

∂q3

7. h1 = h2 = sinh2 ξ + sin2 η, h3 = 1

q = cosh ξ cos ηi + sinh ξ sin ηj + zk

eξ = 1
h1

∂q
∂ξ

= 1

sinh2 ξ + sin2 η
(sinh ξ cos ηi +

cosh ξ sin ηj)

eη = 1
h1

∂q
∂η

= 1

sinh2 ξ + sin2 η
(−cosh ξ sin ηi +

sinh ξ cos ηj)

ez = k, so eξ , eη, and ez form an orthonormal set.
ξ = constant are ellipses and η = constant are
hyperbolas

grad f = 1

sinh2 ξ + sin2 η

∂ f
∂ξ

eξ + 1

sinh2 ξ + sin2 η

× ∂ f
∂η

eη + ez
∂ f
∂z

Exercise Set 12.2

1. Set F = a × G in the divergence theorem to obtain∫∫
S
(a × G) · dS =

∫∫∫
D

div(a × G)dV but

div(a × G) = −a · curl G, so∫∫
S
(a × G) · dS = −

∫∫∫
D

a · curlGdV or∫∫
S
(a × G).ndS = −

∫∫∫
D

a · curlGdV

The properties of the scalar triple product allow
the interchange of the dot and the cross to give

(because a is a constant vector)

a ·
∫∫

S
G × dS = −a ·

∫∫∫
D

curlGdV. As a is arbi-

trary this last result implies that
∫∫

S
G × dS

= −
∫∫∫

D
curlGdV.

3. Set F = φG in the divergence theorem and use the
result that div(φG) = (grad φ) · G + φ div G

5. Write div(κTgrad T) = div(T[κgrad T]) and ex-
pand the expression to get div(κTgrad T) =
(grad T) · (κgrad T) + T div
(κgrad T), so the heat equation becomes
div(κT grad T) = κ(grad T) · (grad T) + μρT∂T/

∂t . Now integrate over D and use the divergence
theorem to get

∫∫
S
κT(grad T) · dS =

∫∫∫
D
κ(grad T) · (grad T)dV

+
∫∫∫

D
μρT

∂T
∂t

dV

7. Replace F in Stokes’s theorem by φ F and use curl
(φF) = (grad φ) × F + φ curl F

Exercise Set 12.3

1. Reason as in Example 12.16 with q = ui + vj +
wk

3.
d
dt

∫∫∫
D(t)

f (r, t)dV

= d
dt

[∫ 1

0

∫ 1

0

∫ vt

ut
xytdzdydx

]
= d

dt

[
1
4

(v − u)t2
]

= 1
2

(v − u)t

Here, on the upper surface q = vk so dS = dxdyk,

while on the lower surface q = uk and dS =
−dxdyk, so∫∫∫

D(t)

∂ f (r, t)
∂t

dV +
∫∫

S(t)
f q · dS

=
∫ 1

0

∫ 1

0

∫ vt

ut
xydxdydz +

∫ 1

0

∫ 1

0
xytvdydx

−
∫ 1

0

∫ 1

0
xytudydx = 1

2
(v − u)t,

so the two results are in agreement.
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5. Use cylindrical symmetry when evaluating the
integrals with dV = 2πrhdr and dS = hrdθ .

d
dt

∫∫∫
D(t)

f (r, t)dV = d
dt

[∫ ut

0
r2t2πrhdr

]
= 5

2
πhu4t4 and∫∫∫

D(t)

∂ f (r, t)
∂t

dV +
∫

S(t)
f q · dS

=
∫ ut

0
r22πrhdr + hu4t4

∫ 2π

0
dθ = 5

2
πhu4t4,

so the two results are in agreement.

Exercise Set 13.1

1.

y

y

D D D

x x x

y

210 0 0 1

1⎢z⎥ = 2

⎢z − i⎥ = 1

⎢z⎥ = 1

⎢z⎥ = 1

i

(a) Closed set (b) Region (c) Open set

3. line y = −x from the origin to the point (−2, −2)
5.

1

−1
0−2 2

AB

y v

x

w = iz + 2

2

0 1 3 u

−2

B

A

7.

A20

z

y

α

γ

β

x

P

Angle OAP = π − β, but α + angle OAP + γ =
π , so γ = β − α. As α = Arg z, β = Arg (z − 2),
so Arg (z − 2) − Arg z = γ = π/2. From Eu-
clidean geometry point P must lie on a circle with
its diameter from the point (0, 0) to (2, 0). The
condition 0 ≤ Arg z ≤ π/2 defines the part of the
circle that lies in the upper half of the z-plane.

9. An ellipse with the foci at z = ±1 and eccentricity
e = 1/2

11. f (z)

=
(

2x2 + 2y2 + 3y + 1
x2 + (1 + y)2

)
− i
(

x
x2 + (1 + y)2

)
=
(

2r2 + 3r sin θ + 1
r2 + 2r sin θ + 1

)
−i
(

r cos θ

r2 + 2r sin θ + 1

)
(z �= 0)

u = Re{ f (z)}, v= Im{ f (z)}
13. f (z) = e−y(x cos x − y sin x)

+ ie−y(y cos x + x sin x)
= r exp(−r sin θ){cos θ cos(r cos θ)

− sin θ sin(r cos θ)}
+ ir exp(−r sin θ){sin θ cos(r cos θ)
+ cos θ sin(r cos θ)}

u = Re{ f (z)}, v= Im { f (z)}

Exercise Set 13.2

1. Re{ f (x)} = x3 − 3xy2 + 4x2 − 4y2 − 3x + 1,

Im{ f (x)} = 3x2 y − y3 + 8xy − 3y; continuous
for all z

3. Re{ f (z)} = 2xy2 + x(1 + x2 − y2)
(1 + x2 − y2)2 + 4x2 y2

,

Im{ f (z)} = y(1 + x2 − y2) − 2x2 y
(1 + x2 − y2)2 + 4x2 y2

;

discontinuous at z = ±i
5. f ′(z) = 3z2 + 1 for all z
7. f ′(z) = −1/(1 + z)2 for z �= −1
9. f ′(z) = 3z2 for all z

11. f ′(z) = 1 − 1/z2 for z �= 0
13. Substitute in the definitions of the functions on

the right and show they simplify to the function
on the left. The second result follows by setting
z1 = x and z2 = iy and using cosh(iy) = cos y and
sinh(iy) = i sin y.

15. To establish the first identity substitute in the def-
initions of the functions on the left and show they
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simplify to unity. The second identity follows from
the first one after division by cosh2 z and rear-
rangement of the result.

17. In the first identity substitute in the definitions of
the functions on the right and show they simplify
to the function on the left. The second result fol-
lows from the first by setting z1 = x and z2 = iy
and using cos(iy) = cosh y and sin(iy) = i sinh y.

19. Establish the first identity by substituting into the
definitions of the functions on the left and showing
the result simplifies to unity. The second result
follows from the first after division by cos2 z.

21. z = nπ, n = 0, ±1, ±2, . . .

23. z = nπ i, n = 0, ±1, ±2, . . .

25. z = (2n + 1)π ± 3i, n = 0, ±1, ±2, . . .

27. z = ±2 + (4n + 1)π i/2, n = 0, ±1, ±2, . . .

29. z = nπ i, n = 0, ±1, ±2, . . . (the zeros of sinh z)
31. (a) 0, ±π,

√
3eiπ/4,

√
3e5iπ/4 (b) z = 2{cos(2k + 1)

π/4 + i sin(2k + 1)π/4}, k = 0, 1, . . . (c) Nowhere
analytic because |z| is not an analytic function

33. 3 cos 3x cosh 3y − i3 sin 3x sinh 3y = 3 cos 3z
35. Using the change of variables from cartesian

to polar coordinates x = r cos θ, y = r sin θ , sub-
stitute in the change of variable formulas ux =
rxur + θxuθ etc. to find ux, uy, vx and vy. Use
these results in the cartesian form of the Cauchy–
Riemann equations to obtain their polar form.

37. f ′(z) = 1 − 1/z2

39. f (z) = 3z3 + z + 1, f ′(z) = 9z2 + 1

Exercise Set 13.3

1. f (z) = z3 + (2 − i)z + ic
3. f (z) = zeiz + 2iz + a
5. f (z) = zsinh 2z + a 7. f (z) = zcos 3z + ic
9. f (z) = z + (2 − i)z2 + ic

11. Show that the functions do not satisfy the Cauchy–
Riemann equations.

13. Say u ≡ constant. Then from the Cauchy–
Riemann equations vx = vy = 0, so v = constant,
and hence f (z) = u + iv ≡ constant in D. If f (z)
is not analytic there is no connection between u
and v, so if u ≡ 0 it is not necessary that v = 0. A
simple example is f (z) = |z| + i constant.

15. Combine similar terms and chose a and b to make
�� = 0 to get a = 1, b = −2.

Exercise Set 13.4

1. (4n + 1)π/2 − i ln(
√

5 + 2) using the principal
value of the square root function. (4n − 1)π/2 −
i ln(

√
5 − 2) using the value from the second

branch of the square root function. π/2 −
i ln(

√
5 + 2) using the principal values of the square

root and logarithmic functions.
3. (4n + 1)π i/4, π i/4 using the principal value of the

logarithmic function.
5. −(1/8)(8n + 1)π + (1/4)i ln 2, −π/8 + (1/4)i ln 2

using the principal branch of the logarithmic func-
tion.

7. arcsin z + arccos z = −i log[iz + (1 − z2)1/2] −
i log[z + i(1 − z2)1/2] = − i log{[iz + (1 − z2)1/2]
[z + i(1 − z2)1/2]} = − i log i . However, as i =
eiπ/2 · e2nπ i , so −i log i = π/2 + 2nπ .

9. From (59) log z = ln |z| + i Arg z so immediately
above the negative real axis Arg a = π and imme-
diately below it Arg z = −π , so there is a jump of
2π i across the negative real axis.

Exercise Set 14.1

1. AB: z = t + i t/2, 2 ≤ t ≤ 4
BC: z = t + i(2t − 6), 4 ≤ t ≤ 5

3. AB: z = t + i(2t − 5), 3 ≤ t ≤ 4
BC: z = 4 − t + i(3 + t), 0 ≤ t ≤ 3

5. 0 7. −18 − 18i
9. 36 + 21i 11. cosh 3 − cosh 6

13. cosh π(cos 2 − cos 3) + i sinh π(sin 3 − sin 2)
15. (1/2)(sinh 8 cos 4 + i cosh 8 sin 4)
17. e4/

√
2 − 1 + ie4/

√
2

19. On the semicircle �: z = 1 + eit , from t = π to t =
0 (in the negative sense)∫

�

dz
z − 1

=
∫ 0

π

1
eit

ieit dt = −π i

21. �: z = 2 + 2eit and as integration is in the positive

sense
∫

�

1
z + i

dz =
∫ 2π

0

1
2 + 2eit + i

2ieit dt =
[log(2 + 2eit + i]2π

0 = 0. Reversal of the direction
of integration gives the same result.

Exercise Set 14.2

1. cos 1 − (1/2)(e + 1/e); f (z) is analytic, so Theo-
rem 14.4 applies.
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3. 5/2 + 3i ; f (z) is not analytic, so Theorem 14.4
cannot be used.

5. 0; f (z) is analytic in |z| ≤ 1, so the Cauchy–
Goursat theorem applies.

7. 0; z is analytic but z̄2 is not, so
∫
�

f (z)dz =∫
�

zdz + ∫
�

z̄2dz = 0 + 0 = 0.
9. (a) The points ±i must not lie inside �. (b) The

points z = nπ, n = 0, ±1, . . . (the zeros of sin z)
must not lie inside �. (c) The points z = (2n + 1)
iπ/2, n = 0, ±1 . . . (the zeros of cosh z) must not
lie inside �. (d) The points z = nπ i, n = 0, ±1, . . .

must not lie inside �.

11. f (z) = z + 5
z2 + 3z − 4

= 6
5

1
z − 1

− 1
5

1
z + 4

so

(a)
∫

�

f (z)dz = 6
5

∫
�

dz
z − 1

+ 0 = 12π i
5

(b)
∫

�

f (z)dz = 0 − 1
5

∫
�

dz
z + 1

+ 0 = −2π i
5

13. f (z) = 2 − 7z
z2 + 3z

= 2
3

1
z

− 23
3

1
z + 3

so

(a)
∫

�

f (z)dz = 2
3

∫
�

dz
z

+ 0 = 4π i
3

(b)
∫

�

f (z)dz = 0 − 23
3

∫
�

dz
z + 3

= −46π i
3

15. f (z) = z2 + 2z
z2 − 2z + 1

= 1 + 3
(z − 1)2

+ 4
z − 1

;∫
�

f (z)dz = 0 + 0 + 4
∫

�

dz
z − 1

= 8π i

17. f (z) = 2z − 1
(z + 1)3

= 2
(z + 1)2

− 3
(z + 1)3

;∫
�

f (z)dz= 2
∫

�

dz
(z + 1)2

− 3
∫

�

dz
(z + 1)3

= 0 − 0 = 0

Exercise Set 14.3

1. 0
3. π i/

√
2

5. 2πe4i
7. π sin 1

9. π i
√

2
(

π

86
− 1

6

)
11. −2π i

13.
π i
3

(5 cos 1 − 6 sin 1)

15. −π

2
e−i

17. Set z − z0 = Reiθ in the Cauchy integral formula
for derivatives, take the absolute value, and use

the integral inequality in Theorem 14.1 to obtain

| f n(z0)| ≤
∣∣∣∣ n!
2π i

∫ 2π

0

f (z)Rieiθ

Rn+1ei(n+1)θ
dθ

∣∣∣∣
≤ n!M

2π Rn

∫ 2π

0
dθ = n!M

Rn
.

19.
∫

�

d
dt

[
(t2 − 1)n+1

(t − z)n1

]
dt

=
∫

�

(n + 1)(t2 − 1)n(t2 − 2tz + 1)
(t − z)n+2

dt = 0.

Express P′
n+1(z) − zP′

n(z) − (n + 1)Pn(z) in terms
of the integral definition of Pn(z) to show that
apart from a constant factor it is given by the con-
tour integral in Exercise 18, so P′

n+1(z) − zP′
n(z) −

(n + 1)Pn(z) = 0.

21.
∫

�

d
dt

[
t(t2 − 1)
(t − z)n

]
dt =

∫
�

[
(t2 − 1)n

(t − z)n

+ 2
nt2(t2 − 1)n−1

(t − z)n
− nt(t2 − 1)n

(t − z)n+1

]
dt = 0.

Express (n + 1)Pn + 1(z) − (2n + 1)zPn(z) +
nPn −1(z) in terms of the integral definition of
Pn(z) to show that apart from a constant factor it
is given by the contour integral in Exercise 18, so
(n + 1)Pn+1(z) − (2n + 1)zPn(z) + nPn−1(z) = 0.

23. Perform the indicated differentiation in Exer-
cise 22 to obtain an equivalent expression for that
result. Construct G(z) using the integral repre-
sentation for Pn(z) and show that after simplifi-
cation it reduces to G(z). As Exercise 22 estab-
lishes that G(z) = 0 it follows that the Legendre
differential equation is (1 − z2)P′′

n (z) − 2zP′(z) +
n(n + 1)Pn(z) = 0.

Exercise Set 14.4

1. If 0 ≤ k ≤ n,

1
2π i

Pk

zk+1
= 1

2π i

[ a0

zk+1
+ a1

zk
+ · · · + ak

z
+ ak+1

+ · · · anzn−k+1
]
.

Integrating around � shows that all integrals but

that of ak/z vanish, while
1

2π i

∫
�

ak

z
dz = ak, so

1
2π i

n∑
k=0

∫
�

Pn(z)
zk+1

dz =
n∑

k=0

ak.
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3. In terms of the given substitutions

f (reiθ ) = 1
2π i

∫ 2π

0

(R2 − r2) f (eiψ R)
eiψ R(zz̄ − zz̄0 − z0z̄ + z0z̄0)

ieiψ Rdψ , but zz̄ = R2, z0z̄0 = r2, zz̄0 + z0z̄ =
r Rcos(ψ − θ), so

f (reiθ ) = 1
2π i

∫ 2π

0

(R2 − r2) f (Reiψ)
R2 − 2r Rcos(ψ − θ) + r2

dψ .

The Poisson integral formula follows from this by
writing f (reiθ ) = u(r, θ) + iv(r, θ) and equating
the real parts.

5. If z0 lies inside the semicircle, then z̄0 lies outside
it, so from the Cauchy integral formula f (z0) =

1
2π i

∫
�

f (z)
z−z0

dz and 0 = 1
2π i

∫
�

f (z)
z−z̄0

dz. Subtracting
these results and combining the integrands gives

f (z0) = 1
2π i

∫
�

f (z)(z0 − z̄0)
(z − z0)(z − z̄0)

dz

= 1
2π i

∫
�

f (z)2iy0

(z − z0)(z − z̄0)
dz where

z0 = x0 + iy0

On the real axis

z = x so (z − z0)(z − z̄0) = x2 − 2xx0 + x2
0 + y2

0 =
|x − z0|2 so

f (z0) = 1
2π i

∫ R

−R

f (x)2iy0

|x − z0|2 dx

+ 1
2π i

∫
CR

f (z)2iy0

(z − z0)(z − z̄0)
dz,

which after cancellation of the factors i and re-
moval of the constant y0 from the integrand gives
the required result.

7. Pn(z) = anzn
(

1 + an−1

anz
+ an−2

anz2
+ · · · + a0

anzn

)
,

so as |z| → ∞ the bracketed term tends to 1,
showing that |Pn(z)| → |anzn| as |z| → ∞. Thus,
as |z| → ∞, |Qn(z)| → 1/|anzn| = 1/(|an|rn),
showing that |Qn(z)| → 0 as |z| → ∞.

9. f (z) = ez = ex+iy = ex(cos y + i sin y), so |ez| =
ex. In −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, |ez| = ex has its
greatest value e on x = 1 for all y and its least
value 1/e on x = −1 for all y, and thus 1/e <

|ez| < e for −1 ≤ x ≤ 1, −2 ≤ y ≤ 2.
11. u = x + 2x2 − 2y2 is harmonic so the max/min of

u occur on the boundary of the domain. Examina-
tion of u on the boundary shows Max u = 3 at x =

1, y = 0, and Min u = − 17/8 at x = − 1/4, y =
± 1, so −17/8 < u < 3 inside the domain.

13. u = ex(x cos y − y sin y) is harmonic so the max/
min of u occur on the boundary of the domain.
Examination of u on the boundary shows Max
u = e at x = 1 on y = 0 and Min u = −eπ/2 at x =
1, y = ±π/2, so −eπ/2 < u < e in the domain.

Exercise Set 15.1

1. (a) Only cluster point is at 1, so the sequence con-
verges to the limit 1, but the limit is not a member
of the series.
(b) Cluster points at 0 and 4. The point 0 belongs
to the sequence but the point 4 does not. The se-
quence has no limit.
(c) Only cluster point is at 5/2, so the sequence
converges to the limit 5/2, but the limit is not a
member of the sequence.

3. (a) This is one definition of the Euler number e,
so the sequence converges to the limit e, but the
limit is not a member of the sequence.
(b) Only cluster point is at π/2, so the sequence
converges to π/2, but the limit is not a member of
the sequence.
(c) Every member of the sequence is 1, so the
sequence converges to the limit 1 that is a member
of the sequence.

5. Convergent by comparison with !1/n2.
7. Divergent by comparison with !1/n.
9. Divergent by nth root test as L = 2.

11. Absolutely convergent by comparison with!1/n2

because for large n sin(1/n2) ≈ 1/n2.
13. Write 1

r(r+1) = 1
r − 1

r+1 so

n∑
r=1

1
r(r + 1)

=
(

1
1

− 1
2

)
+
(

1
2

− 1
3

)
+ · · ·

+
(

1
n

− 1
n + 1

)
= 1 − 1

n + 1
.

So in the limit at n → ∞ the series converges to 1.
This cancellation of terms is called the telescoping
of the series.

15. Convergent by nth root test because L =
(1/3)|2i − 1| lim n

√
n = √

5/2 > 1.
17. Use the approach in Exercise 13 to show that the

series converges to 1.
19. Absolutely convergent by the nth root test.
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21. R = 2; convergence for |z| < 2.
23. Alternate powers are missing so set u = z2 and

write as 2z!2nun/(4n + 1)2. This has a radius of
convergence R = 1/2, and so it converges for
|u| < 1/2, and so for |z| � 1/

√
2.

25. R = 0; convergence only for z = 0.
27. R = 2; convergence for |z| < 2.
29. R = 1; convergence for |z + 3| < 1.
30. R = 2; convergence for |z − 2| < 2.
31. R = 1; convergence for |z| < 1.
33. R = 1/2; convergence for |z| < 1/2.

35.

√
2

2 + √
2

+ 2
√

2

(2 + √
2)2

(z − π/4) − 2
√

2 + 6

(2 + √
2)3

(z − π/4)2 + · · ·
37.

1
2

(
1
e

− e
)

− 3
2

(
1
e

+ e
)

(z − 1) + 9
4

(
1
e

− e
)

(z − 1)2 − · · ·
39.

i
4

+ 7
16

(z − i) − 25
64

i(z − i)2 − 103
256

(z − i)3 + · · ·

41. 1 − 1
4

x2 − 1
96

x4 − 19
5760

x6 − · · ·

43.
(1 + i)√

2

[
1 − i

2
z +

∞∑
n=2

(−1)n−1 1 · 3 . . . (2n − 3)
2 · 4 . . . 2n

zn

]

45. 4π i + z −
(

1
2

+ 2π i
)

z2 − 1
6

z3 + · · ·

47.
1
2

z2 + z3 + 35
24

z4 + · · ·
49. 1 + z − 2z2 − 2z3 + · · ·
51. z − z3

3
+ z5

5
− z7

7
+ · · ·

53.
∫ z

0

sin u
u

du = z − 1
18

z3 + 1
600

z5 − · · · (divide the

series for sin u by u and integrate the result term
by term)

55. z + z2 + 5
6

z3 + 5
6

z4 + · · ·

Exercise Set 15.3

1. −1
2

∞∑
n=0

(
z
2

)n

, |z| < 2

3.
1

b − a

∞∑
n=0

bn+1 − an+1

an+1 + bn+1
zn, |z| < |a|

5.
1

a − b

∞∑
n=0

(
zn

bn+1
+ an

zn+1

)
, |a| < |z| < |b|

7. For z = 0;
f (z) = exp[1/(1 − z)] = exp[−1/(z − 1)]

= 1 − 1
(z − 1)

+ 1
2!(z − 1)2

− 1
3!(z − 1)3

+ · · · =
∞∑

n=0

(−1)n 1
n!(z − 1)n

,

0 < |z − 1| < ∞.

For |z| > 1; f (z) = exp[−1/(z − 1)] =
exp[− 1

z(1 − 1
z)−1]. Now expand (1 − 1

z)−1 by the
binomial theorem and multiply the result by
−1/z to obtain

f (z) = exp
[
−1

z
− 1

z2
− · · ·

]
= 1 −

(
1
z

+ 1
z2

+ · · ·
)

+ 1
2!

(
1
z

+ 1
z2

+ · · ·
)2

− · · · = 1 − 1
z

− 1
z2

+ · · · .

9. sin
(

z
1 − z

)
= −sin

(
1 + 1

z − 1

)
= −sin 1 cos

(
1

z − 1

)
− cos 1 sin

(
1

z − 1

)
Now substitute 1/(z − 1) into the series for sine
and cosine to obtain

sin
(

z
1 − z

)
= −sin 1

(
1 − 1

2!(z − 1)2
+ 1

4!(z − 1)4
− · · ·

)
− cos 1

(
1

z − 1
− 1

3!(z − 1)3
+ · · ·

)
= −

∞∑
n=0

sin
(
1 + 1

2 nπ
)

n!(z − 1)n
, 0 < |z − 1| < ∞.

11.
1
3

∞∑
n=1

(−1)n−12n−1 − 1
zn

, |z| > 2

13. Expand sinh(1 + u) as a Maclaurin series and then
set u = 1/z to obtain

1
2

(
e − 1

e

)
+ 1

2

(
e + 1

e

)
1
z

+ 1
4

(
e − 1

e

)
1
z2

− · · · ,
|z| > 0

15. Multiply the series for sin z and sin z/3 and divide
the result by z3 to obtain

1
3

1
z

− 5
81

z + 14
3645

z3 + · · · , |z| > 0

17. Simple poles at z = 0 and z = ±2
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19. z = 0 is an essential singularity
21. Removable singularity at z = 0 obtained by defin-

ing f (0) = 1
23. z = 1 is an essential singularity
25. z = (1 ± 2k)π/2, k = 0, 1, . . . are second order

poles
27. Removable singularity at z = 0 obtained by defin-

ing f (0) = −2

29. an = 1
2π i

∫
�

f (ς)
(ς−z)n+1 dς, n = 0, ±1, ±2, . . . where �

is the circle |z − z0| = R with

R1 < R < R2. So |an| ≤ 1
2π

∫ 2π

0

| f (ς)|
|ς − zn+1| Rdθ

≤ 1
2π

M
Rn

∫ 2π

0
dθ = M

Rn
.

31.
1
z

∞∑
n=0

(a
z

)n
, |z| > 3 33. −

∞∑
n=1

(−1)n

n
1

z2n
, |z| > 1

35. z = ∞ is a regular point
37. z = ∞ is a limit point of poles
39. There is an essential singularity at z = ∞

Exercise Set 15.4

1. Res[z = 2] = 5/4; Res[z = −2] = −1/4
3. Res[z = 0] = 3; Res[z = −1] = −2
5. Res[z = 0] = −1; Res[z = −1] = 0
7. Res[z = nπ ] = (−1)n(n2π + 3), n = 0, ±1,

±2, . . .

9. Res[z = (2n + 1)π/2] = −1, n = 0, ±1, ±2, . . .

11. Res[z = (2n + 1)π i] = −1, n = 0, ±1, ±2, . . .

13. z = 0 is a removable singularity so Res[z = 0]
= 0;
Res[z = nπ i] = (−1)ni sinh nπ, n = ±1, ±2, . . .

15. Res[z = 2] = 0

17. −π i/3 19. 12π i 21. −π i/
√

2
23. −2π i/9 25. π(1 − e−2)
27. −2π i{cos 1 + i sin 1}
29. 2π/(a2 − 1)1/2 31. π/

√
2 33. 2π/(1 − a2)

Exercise Set 15.5

1. π/(4a)
3. π/(2

√
2)

5. π/18

7.
π(1 + a)

4a3ea

9.
π

(a2 − b2)

(
e−b

b
− e−a

a

)
11.

π

2
exp[−ma/

√
2]

cos(ma/
√

2)

13. π

15.
π

2
(b − a)

17.
π

2b2
(1 − e−ab)

19. 3π/8

21.
π

4
[e−a + sin a]

23. π/
√

2
25. π/

√
3

27. π/3

Exercise Set 16.1

1. f (t) = (1/a2)(1 − cos at)
3. f (t) = (1/2)(t cos t + t sin t − sin t)
5. f (t) = t2/2 − t + 1 − e−t

7. f (t) = 1
2a2

(
sin at

a
− t cos at

)
9. f (t) =

√
3

2
�(2/3)
π t2/3

11. f (t) = H(t − 2)[cosh(t − 2) + sinh(t − 2)]

13. f (t) = 1√
a

erf(
√

at)

15. f (t) = e−at√
b−a

erf(
√

(b − a)t). Set L−1{1/
√

s + b}
= e−bt/

√
π t and L−1{1/(s + a)} = e−at and use

the convolution theorem followed by a change of
variable)

Exercise Set 17.1

1. A π/2 counterclockwise rotation, a uniform mag-
nification by a factor 2, and a shift of origin causing
the point z = 1 + i to map to the point w = 1 + 2i

3. w = (1 − i)(1 + 2z)
5. w = (3 − 2i)z + 2i − 10
7. As the transformation is linear it preserves shape,

so a mapping of one strip onto the other is ob-
tained by mapping a point on one side of the
strip in the z-plane onto a point on one side of
the strip in the w-plane, and then repeating the
process by mapping a point on the other side of
the strip in the z-plane onto a point on the other
side of the strip in the w-plane. Only the corre-
spondence between one pair of points is speci-
fied, namely the point z = ik in the z-plane maps
to the point w = 0 in the w-plane, so the trans-
formation will not be unique. If we choose to
map the point z = i(k + h) on the top of the strip
in the z-plane to the point w = 1 on the other
side of the strip in the w-plane, we must solve
the equations 0 = iak + b and 1 = ia(k + h) + b,
leading to the transformation w = −(iz + k)/h. A
different choice of points will lead to a different
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transformation between the two strips that still
preserves the condition w(ik) = 0.

9. Family of circles c(u2 + v2) + u + v = 0 tangent
to the straight line v = −u at the origin

11. w = i(1 + z)/(1 − z); interior of circle maps to
upper-half of the w-plane

13. w = (2i − z)/(2z + i); interior of circle maps to
the interior of a circle

15. x = c maps to circle u2 + v2 = exp(2πc/a); y = k
maps to radial line v = u tan πk/a

17. x = c maps to hyperbola u2

cos2 πc/a − v2

sin2 πc/a
= 1;

y = k maps to ellipse u2

cosh2 πk/a
+ v2

sinh2 πk/a
= 1

19. Write transformation as w = ( (1+z)(1−z̄)
(1−z)(1−z̄

)2 and use
the fact that on the circle zz̄ = |z̄|2 = |z|2 = 1.
Then find how the semicircular boundary and the
strip CA map and, finally, show that a point inside
the semicircle maps to a point in the upper half of
the w-plane.

Exercise Set 17.2

3. φ(x, y) = φ4 + 1
π

[
(φ1 − φ2)Arctan

(
y

x − x1

)
+ (φ2 − φ3)Arctan

(
y

x − x2

)
+ (φ3 − φ4)Arctan

(
y

x − x3

)]
5. T(x, y) = 30 + 240

π
Arctan

(
2y

1 − x2 − y2

)
7. φ(x, y) = 320 − 220

π
Arctan

(
1 − x2 − y2

2y

)
9. U

(
x2 y − y3 − 3x2 y − y3

(x3 − 3xy2)2 + (3x2 y − y3)2

)
= constant

11. The equation of the streamline is y
(
1 − 1

x2+y2

) =
constant. As this equation is an even function of
x, the streamlines are symmetric about the y-axis
and y′ = 0 for x = 0, y ≥ 1. Far from the origin the
streamlines are parallel to the x-axis. A bounding
streamline lies along the x-axis and around the
unit semicircle. Routine calculations show y′ > 0
for x < 0 and y′ < 0 for x > 0. Any streamline can
be replaced by a boundary, so as the flow is steady
any streamline ψ = constant can represent a free
surface.

13. The equipotentials u = c in the w-plane are the
hyperbolas x2

sin2 c
− y2

cos2 c = 1 and the flux lines v =
k are the ellipses x2

cosh2 k
+ y2

sinh2 k
= 1. In steady

state heat conditions this represents a semi-
infinite metal lamina with edge A∞ B at T = 200,
edge CD∞ at T = 100, with the edge BC insu-
lated. The equipotentials become isotherms and
flux lines become heat flow lines.

15. T(x, y) = 450 − 350
π

Arctan
(

1 − x2 − y2

2x

)

Exercise Set 18.1

1. (a) Quasilinear first order

(b) Linear first order

(c) Nonlinear first order

(d) Semilinear first order

(e) Linear first order

(f) Nonlinear first order

(g) Linear second order

(h) Nonlinear second order
3. u(x, y) = 4 exp[x − (x2 − 2y)1/2] − 2, x2 ≥ 2y
5. u(x, y) = exp[x − (x2 − 2y + 2)1/2] − 2, x2 ≥

2y − 2

Exercise Set 18.2

1. u(x, y) = x + 1
2 y; global

3. u(x, y) = x − y + 3; global
5. u(x, y) = 1

2 sin x − sin(2y − x); global

7. u(x, y) = 1 + 2y − 4x − y2 + 4xy − 3x2; global
9. u(x, y) = 3x + tan x2 + tan( 1

2 y − x2) for (x, y)
such that tan x2 and tan( 1

2 y − x2) are both finite

11. u(x, y) = (y − x)/(x2 − xy + 1) for (x, y) such
that x2 − xy + 1 �= 0

13. The solution in parametric form is u = e−x

sin ξ, y = ξ + (1 − e−x) sin y. An attempt to elim-
inate the parameter ξ leads to an implicit solution,
so it is best to use the parametric form.

15. The parametric form of the solution is u =
4ξe−3x, y = ξ + 8

3ξ(1 − e−3x). In this case the pa-
rameter ξ can be eliminated to give the simple
explicit solution u(x, y) = 12y/(11e3x − 8), for x
such that the denominator does not vanish.

17. The solution in parametric form is u = (3 +
2ξ)e−x, y = ξ + (3 + 2ξ)(1 − e−x). In this case the
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parameter ξ can be eliminated to give the simple
explicit solution u(x, y) = (2y + 3)/(3ex − 2), for
x such that the denominator does not vanish.

Exercise Set 18.3

1. u(x, t) = e3t/2 sin(2x − 4t)
3. u(x, t) = 1

2 e2t {cos(x + 3t) + 1} − 1
2

5. u(x, t) = ex+4t + 6t2 + 3xt
7. u(x, t) = x(2et − 1)
9. u(x, t) = x(4et − 1)

11. u(x, t) = 1
3 x(4et − 1)

13. u(x, t) = cos(x − t)
1 − 2t cos(x − t)

; provided the denom-

inator does not vanish

15. u(x, t) = −2xet

5 − 4et
; for 0 ≤ t < ln 5

4

17. u(x, t) = 4(1 + x)e−4t

1 + 3e−4t

19. u(x, t) = (3x − 1)(1 + t)
1 + 3t + 3t2 + t3

; for t > −1

Exercise Set 18.4

1. Write the equation in the conservation form ∂u
∂t +

∂
∂x

( un+1

n+1

) = 0. The shock condition is $(t)[[u]] =
1

n+1 [[un+1]].
3. Riemann problem (b) has a shock solution be-

cause of the intersection of its characteristics.
The conservation form of the equation is ∂u

∂t +
∂
∂x ( 1

3 u3) = 0, so the shock condition is $(t)[[u]] =
1
3 [[u3]], and hence the shock speed is seen to be
given by $(t) = (27−1)

3(3−1) = 13
3 .

5. A similar problem was solved in Section 18.4 with
the initial condition u(x, 0) = {0, x < 0

1, x > 0. The solu-
tion of Exercise 5 follows from the solution given
in Section 18.4 by replacing x by x − 2 to obtain
u = (x − 2)/t . The solution lies in the region t > 0
bounded by the characteristic x = 2 and the char-
acteristic x = t + 2.

Exercise Set 18.6

1. Elliptic 3. Elliptic 5. Parabolic
7. Elliptic; ξ = 1

2 (x + y), η = x : uξξ + uηη + 3
2 uξ +

3uη + 1 = 0
9. Hyperbolic; ξ = 9x + y, η = x + y : uξη =

− 1
64 (9uξ + uη)

11. Parabolic; ξ = y − 3x, η = x : uηη = u − 5

13. A =

⎡⎢⎣1 0 0

0 2
5

4
5

0 4
5

8
5

⎤⎥⎦, λ1 = 2, λ2 = 1, λ3 = 0, so the

PDE is parabolic

Q =
⎡⎣0 1/

√
5 2/

√
5

1 0 0
0 2/

√
5 −1/

√
5

⎤⎦, D =
⎡⎣2 0 0

0 1 0
0 0 0

⎤⎦,

so as ξ = Qx,
ξ1 = (1/

√
5)x2 + (2/

√
5)x3, ξ2 = x2, ξ3 =

(2/
√

5)x2 − (1/
√

5)x3.
The PDE becomes ∂2u

∂ξ 2
1

+ 1√
5

∂u
∂ξ1

+ 2√
5

∂u
∂ξ3

+ 2u +
1
2 = 0.

15. A =
⎡⎣3 0 0

0 2 −1
0 −1 2

⎤⎦, λ1 = 3, λ2 = 3, λ3 = 1, so

the PDE is elliptic

Q =
⎡⎣1 0 0

0 −1/
√

2 1/
√

2
0 1/

√
2 1/

√
2

⎤⎦, D =
⎡⎣3 0 0

0 3 0
0 0 1

⎤⎦,

so as ξ = Qx,
ξ1 = x1, ξ2 = −(1/

√
2)x2 + (1/

√
2)x3, ξ3 =

(1/
√

2)x2 + (1/
√

2)x3. The PDE becomes 3uξ1ξ1 +
3uξ2ξ2 + uξ3ξ3 + 4u − 7 = 0. The further scaling
ζ1 =(1/

√
3)ξ1, ζ2 = (1/

√
3)ξ2, ζ3 = ξ3 reduces

the PDE to the still simpler form uζ1ζ1 + uζ2ζ2 +
uζ3ζ3 + 4u − 7 = 0.

Exercise Set 18.8

In each case the solutions are given in the form of
computer generated plots at the respective times t =
0, t = 0.5, t = 1 and t = 3. The 3D plot shown at the
end of each solution illustrates how the waves evolve
away from the initial condition.

1.

0
0.5

1
1.5

2
2.5

32
1.5

3
2.5

1
0.5

0
−4 −2 0

x

t

2 4
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3.

0
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0
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1

Exercise Set 18.9

1. fxx = f ′′(x − ct), gxx = g′′(x − ct),
ftt = c2 f ′′(x − ct), gtt = c2g′′(x − ct), so
u = f + g satisfies utt = c2uxx

3. u(x, t) = 1
2
{sin(x − ct) + sin(x + ct)}

+ 1
2c

∫ x+ct

x−ct

ds
1 + s2

, and so u(x, t) = sin x cos ct

+ 1
2c

{Arctan(x + ct) − Arctan(x − ct)}

4. u(x, t) = 1 + 1
2c

∫ x+ct

x−ct
cos sds = 1 +

1
c

cos c sin ct

5. u(x, t) = 1
2
{tanh(x − ct) + tanh(x + ct)} +

1
2c

{tanh(x + ct) − tanh(x − ct)}, and so u(x, t) =(
c + 1

2c

)
tanh(x + ct) +

(
c − 1

2c

)
tanh(x − ct)

6. u(x, t) = 1
2
{ex−ct + ex+ct } + 1

2c

∫ x+ct

x−ct
e−sds =

ex cosh ct + 1
c

sinh ct

7.

a b x a b x

III
II

I

IV
5

Q

R P

Use D’Alembert in (I), then Use solutions in (I), (II) and
(128) to find u in (II) and (III) and (128) with character-
(III) istics PQ and RS to find

solution in (IV)

The situation is now back to the original prob-
lem and so can be continued as long as necessary.
This is a theoretical rather than a practical way of
solving the problem.

9.

−3a −a a 3a0 x

A B

I

Reflect the initial conditions as odd functions
about x = −a and x = a. Then the initial condi-
tions are known for −3a ≤ x ≤ 3a. D’Alembert’s
formula can now be used to find the solution in
(I). The solution is then known along AB, so the
argument can be repeated using the conditions
along AB as new initial conditions, etc.

11. From D’Alembert’s formula with g(x) ≡ 0 we
have

u(x, t) = 1
2
{ f (x − ct) + f (x + ct)}.

0.5

0

−0.5

−4
−2

0

x 2
4 0

1

2
t

3

4

13. u(x, 1/4) = 1
2

∫ x+1/4

x−1/4
g(s)ds, so

u
(

x,
1
4

)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x < −5/4
1
2

∫ x+1/4
−1 (1 − s2)ds, −5/4 ≤ x ≤ −3/4

1
2

∫ x+1/4
x−1/4 (1 − s2)ds, −3/4 ≤ x ≤ 3/4

1
2

∫ 1
x−1/4(1 − s2)ds, 3/4 ≤ x ≤ 5/4

0, x > 5/4
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Exercise Set 18.10

1. u(x, t) = 4kL2

π3

∞∑
n=1

1
n3

[2(−1)n+1 − 1]

× sin
nπx

L
cos

nπct
L

3. u(x, t) = 8k
π2

∞∑
n=1

1
n2

sin
nπ

2
sin

nπx
L

cos
nπct

L

5. u(x, t) = ksin
πx
L

cos
2πct

L

7. u(x, t) = 4kL3

π2

∞∑
n=1

1
n4

[1 + (−1)n+1]

× sin
nπx

L
sin

nπct
L

9. u(x, t) = 8k
π2

∞∑
n=0

(−1)n

(2n + 1)2
sin

(2n + 1)πx
2L

× cos
(2n + 1)πct

2L

11. u(x, y) = e−6x

13
(4e−9y + 9e4y). When y � 0,

u(x, y) ≈ 9
13

exp(4y − 6x).

13. u(x, t) = L
2

− 4L
π2

∞∑
n=1

exp
[
− (2n − 1)2π2kt

L2

]
× 1

(2n − 1)2
cos

(2n − 1)πx
L

17. u(x, y, t) = 2 sin 3πx
c sin

(
πy
d

)
cos(π t

√
(3/c)2 + (1/d)2).

The initial condition is an eigenfunction.

21. T(x, y) = 1 − 1
2

e−x cos y + 2
∞∑

n=2

(−1)n

× (1 − n2)
(1 − 2n2 + n4)

exp(−nx) cos(ny)

Exercise Set 18.12

1. Taking the Laplace transform of the PDE
with respect to t gives sT̄ − T0 = κ d2T̄

dx2 and
T̄(0, s) = 0 with the general solution T̄(x, s) =
Aexp

(√ s
κ

x
)+ Bexp

(−√ s
κ

x
)+ T̄0

s . The solution
can only be finite for all x if A= 0, so T̄(x, s) =
T0

{
1−exp

(
−x

√
s/κ
)

s

}
. Finding the inverse of this

transform then gives T(x, t) = T0erf
[

x
2
√

κt

]
.

3. Taking the Laplace transform of the PDE
with respect to t gives sT̄ − T0 = κ d2T̄

dx2 so the
general solution is T̄(x, s) = Aexp(x

√
s/κ) +

Bexp(−x
√

s/κ) + T0/s. The solution can only

be bounded for all x if A= 0, so T̄(x, s) =
Bexp

(− x
√

s/κ
)+ T0/s. Now L{T(0, t)} = T0s/

(s2 + a2) so setting x = 0 in the above result gives
T0s/(s2 + a2) = B + T0/s so that

T̄(x, s) = T0

(
s

s2 + a2

)
exp

(
−x

√
s
κ

)
− T0

1
s

exp
(

−x

√
s
κ

)
+ T0

s
.

Using the convolution theorem to invert the trans-
form gives

T(x, t) = T0

2
√

πκ

∫ t

0

cos aτ

(t − τ )3/2
exp

( −x2

4κ(t − τ )

)
dτ

− T0x
2
√

πκ

∫ t

0

1
τ 3

exp
(−x2

4κτ

)
dτ + T0.

5. Taking the Fourier transform of the PDE with
respect to x gives ūtt (ω, t) + (k+ c2ω2)ū(ω, t) = 0,
and so ū(ω, t) = a(ω) cos(t

√
k + c2ω2) + b(ω) ×

sin(t
√

k + c2ω2), showing that ūt (ω, t) =√
k + c2ω2

{
−a(ω) sin(t

√
k + c2ω2) + b(ω)×

cos(t
√

k + c2ω2)
}

.
From the initial conditions

a(ω) = ū(ω, 0) = U√
2π

∫ 1

−1
e−iωxdx

= U

√
2
π

sin ω

ω
,
√

k + c2ω2b(ω)

= ūt (ω, 0) = 0, so that ū(ω, t)

= U

√
2
π

sin ω

ω
cos(t

√
k + c2ω2).

Taking the inverse transform then gives

u(x, t) = 1√
2π

∫ ∞

−∞
ū(ω, t)eiωxdω

= 2U
π

∫ ∞

0

sin ω

ω
cos(t

√
k + c2ω2) cos ωxdω.

7. Take the Fourier transform with respect to x of
the PDE to obtain −ωū(ω, y) + d2ū

dy2 = 0 for y > 0,
where ū(ω, 0) = F(ω), the transform of f (x). For
the solution to remain bounded when y is large
it then follows that ū(ω, y) = F(ω)e−|ω|y. Taking
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the inverse transform then gives

u(x, y) = y
π

∫ ∞

−∞

f (τ )
y2 + (x − τ )2

dτ.

9. Differentiate the result with respect to x and ex-
pand eiωx by de Moivre’s theorem. The integral
containing ω cos ωx vanishes because this is an
odd function of ω and the remaining integral con-
taining the function ω sin ωx is an even function
of ω, so the result follows from the definition of
the sine transform after changing the interval of
integration to [0, ∞).

11. Proceed as in the heat conduction example in
Section 10.2 using the given form of T(x, 0).
The solution reduces to T(x, t) = 1

2 T0{erf[(x +
a)/(2

√
κt)] − erf[(x − a)/(2

√
κt)]}.

Exercise Set 19.2

1. 2.27886
3. 1.40619
5. −1.08601
7. xr+1 = 1

2 (xr + a/xn−1
r )

9. −1.08090, 2.54109, 2.83981

11. 0.67567
13. 2.84387
15. 3.70665
17. 0.25763

Exercise Set 19.4

1. I = 28 3. Itrap = 1.849317, Isimp = 1.851944,

Iexact = 1.851937
5. 0.596584
7. J1(2) = 0.576725 (the result obtained by

Simpson’s rule agrees with the exact result
to six decimal places)

9. J1(4) = −0.065743 (using Simpson’s rule)
11. I0(3.5) = 7.378203 (the result obtained by

Simpson’s rule agrees with the exact result to six
decimal places)

Exercise Set 19.5

1. x1 = 0.73826, x2 = −0.73918, x3 = 0.75556
(Gaussian elimination)

3. x1 = −0.90034, x2 = −1.14831, x3 = −0.95315
(Gaussian elimination)
Not diagonally dominant: interchange first and
second equations

5. x1 = −66.51395, x2 = 927.64721,

x3 = −2585.93671, x4 = 1862.64259

When calculations are rounded to five decimal
places det H4 = 1.6111 × 10−7. Exact value det
H4 = 1/6048000 ≈ 1.65344 × 10−7

7. L =
⎡⎣ 1 0 0

−3 1 0
3 1 1

⎤⎦ , U =
⎡⎣−4 1 −1

0 2 2
0 0 −3

⎤⎦ ,

x1 = −53/24, x2 = −7/6, x3 = 14/3

9. L =
⎡⎣ 1 0 0

−4 1 0
−1 3 1

⎤⎦ , U =
⎡⎣4 −1 −1

0 2 −3
0 0 −1

⎤⎦ ,

x1 = 131/8, x2 = 81/2, x3 = 25

11. L =

⎡⎢⎢⎣
1 0 0 0

−1/2 1 0 0
2 −1 1 0

−1 2 2 1

⎤⎥⎥⎦ , U =

⎡⎢⎢⎣
2 1 0 2
0 1/2 1 1
0 0 3 0
0 0 0 1

⎤⎥⎥⎦
x1 = −3/2, x2 = 10, x3 = 1/2, x4 = −3

Exercise Set 19.6

1. λ = 19.24435 (exact), x̃ = [1, 0.41089, −0.01169]T

3. λ = 28.19020 (exact), x̃ = [0.07079, 0.04865, 1]T

5. λ = 27.35196 (exact), x̃ = [1, 0.42720, 0.07037]T

7. λ = 2.55051 (exact), x = [1.44949, −1, 1]T (not
normalized)

9. λ = −3.04390 (exact), x = [−4.68367, 1, 4.94464]T

(not normalized)

Exercise Set 19.7

1.
xn 2.0 2.2 2.4 2.6 2.8 3.0
yn 0 0.66419 1.28937 1.89393 2.48875 3.08063

3.
xn 1.0 1.2 1.4 1.6 1.8 2.0
yn 2.0 2.17043 2.27255 2.29924 2.25314 2.14619

5.
xn 1.0 1.2 1.4 1.6 1.8 2.0
yn 1.0 0.40577 0.08015 −0.10414 −0.20593 −0.24801

7.
xn 0 0.1 0.2 0.3 0.4 0.5
yn 2.0 1.87998 1.71971 1.51888 1.27772 0.99787

9.
xn 0 0.1 0.2 0.3 0.4 0.5
yn 1.0 1.07995 1.12053 1.12465 1.09709 1.04377
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11.
xn 0 0.2 0.4 0.6 0.8 1.0
yn 2.0 2.24068 2.57043 3.01382 3.61800 4.46785

13.
xn 1.0 1.2 1.4 1.6 1.8 2.0
yn 1.0 1.23999 1.55909 1.95332 2.41386 2.92755

15.
xn 0 0.2 0.4 0.6 0.8 1.0
yn −2.0 −1.72167 −1.25453 −0.72717 −0.01088 0.90446

17.
tn 0 0.2 0.4 0.6 0.8 1.0
xn 1.0 1.00348 1.02480 1.07075 1.17222 1.32949
yn 0 −0.18397 −0.35117 −0.52343 −0.72280 −0.97510

19.
tn 0 0.2 0.4 0.6 0.8 1.0
xn 1.0 0.80588 0.64974 0.55084 0.49643 0.46921
yn 1.0 0.87511 0.79475 0.74186 0.70938 0.69102
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I N D E X

A
Abel formula, for Wronskian, 302, 504
Abel identity, 526
Absolute convergence, 796, 797
Absolute value, 4
Acceleration, 629
Acceleration wave, 259–262
Accumulation, point of, 792
Adams-Moulton method, 1096
Adaptive algorithms, 1075
Adjacency matrix, 123
Adjoint differential equation, 525
Adjoint, of a matrix, 168–169
Advection equation, 943
Airfoil profile, 896
Algebra, fundamental theorem of, 8,

776
Algebraic homogeneity, 247–250
Algebraic multiplicity, 179–180, 185
Algorithms, 450, 1075. See also Iterative

methods
Alternating series test, 45
Amplitude, of vibration, 284

amplification factor, 286
Amplitude spectrum, of a function,

577–578
Analytic functions, 711, 720–743

antiderivatives of, 761
branches, 738–739
Cauchy-Riemann equations, 722–724,

732–734
continuation of, 772
conversion of, 723
cuts, 737–738
definitions for, 444, 720
derivatives of all orders, 772
elementary, 735
examples of, 724–728
harmonic conjugates, 743
integration and, 745
Leibniz’s rule, 772
line integrals, 745, 748
linear fractional, 736–737
logarithmic, 739–741

multivalued, 739
nth root, 737
power series and, 444
properties of, 775–789
See also specific functions

Angle, between vectors, 71
Angular frequency, 284–286
Antiderivative, of a function, 761

of analytic functions, 761
defined, 41
of matrix exponential, 220
of vector function, 636
See also Integration

Arc length, 637
Arcsin function, 897–899
Arctan function, 909
Area density, 958
Area scale factor, 879
Argand diagram, 15
Argument, 18
Argument principle, 783
Asymptotic argument, 430
Asymptotic expansion, 491
Asymptotic stability, 353, 354
Attractors, 354
Augmented matrix, 143, 148
Autonomous systems, 351–377

attractors in, 354
center, 362
equilibrium points, 352
first integral, 357
Jacobian of, 356
limit cycles, 375–376
linearized, 355, 356–357
matrix form, 358
nonlinear, 366–368
phase portraits of, 356, 368
predator-prey, 354–355,

369–370
saddle points, 360
simple pendulum, 369–374
spiral points, 361
stability in, 353–366
time-invariance of, 352

unstable nodes, 359–366
van der Pol equation, 368, 375–376

Azimuthal angle, 1012

B
Back substitution, 151, 1080
Base of representation, 1047
Basis vectors, 82

linear combinations of, 185
for solution space, 274, 294, 297

Beams, bending of, 238–239, 430–432, 436,
504–509

Beats, in oscillatory solutions, 287
Bending, of beams, 238–239, 430–432, 436,

504–509
Bernoulli equation, 228, 259–262, 918
Bessel, F. W., 493
Bessel functions

approximations of, 540
derivatives of, 489
first kind, 485–495, 501
Fourier transform and, 602
fractional orders, 493
Frobenius method, 494
generating function for, 495
integral representation, 1076–1077
Laplace transform and, 428–429
modified, 501–504
norm of, 538
orthogonality of, 523–524, 528, 998
recurrence relations, 489
second kind, 495–502
series expansion, 428–429
zeros of, 492–499
See also Bessel’s equation

Bessel inequality, 533, 560, 567
Bessel’s equation, 428, 462, 485

eigenvalues and eigenfunctions, 517
general solution of, 488
heat equation and, 1005
modified, 502
Sturm-Liouville form, 510, 525, 538
temperature distribution, 500
wave equation and, 995–996

1147
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Bessel’s equation (Cont’d)
zeros of, 995, 1005
See also Bessel functions

Beta functions, 484
Bilinear transformation. See Linear

fractional transformation
Binomial theorem, 6–7, 429, 482, 807
Bisection method, 1047–1051
Block matrix, 116
Bonnet recurrence relation, 460
Bore, tidal, 952
Boundary conditions

boundary values and, 278
initial conditions and, 975–976
PDEs and, 931
vibrating string, 989
See also Boundary value problems;

Initial conditions
Boundary, of set, 712
Boundary points, 652, 712
Boundary value problems, 319, 985

bending of beams, 238–239, 430–432,
436, 504–509

conformal mapping and, 877–924
Dirichlet problems, 905
first and second kind, 905
fundamental, 907
Green’s function and, 317–319
Laplace equation and, 780, 781, 904–905
Laplace transform and, 430
mixed, 905
Neumann problems, 905
ordinary differential equations and, 231,

232
separation of variables and, 988
Sturm-Liouville equations and, 443
two-point, 278, 430–432, 443, 512, 1107
See also specific functions, equations

Bounded sequence, 792
Branch, of nth root function

branch cuts, 738
elementary functions and, 735–743
improper integrals and, 857–859
inverse functions and, 735–743
symmetry-preserving property, 888

Bridge collapse, 281

C
Calculus, fundamental theorem of, 41
Canonical forms. See Standard forms
Cantilevered beam, 436
Capacitors, 302
Carbon dating, 247
Cartesian components, 68

Cartesian form
of complex functions, 713
of complex numbers, 15

Catenary, 238, 240
Cauchy conditions

D’Alembert solution and, 979, 982
eigensolutions and, 997
for PDEs, 929, 976

Cauchy convergence principle, 795–796
Cauchy data curve, 934, 937
Cauchy-Euler equation, 309–311, 1010,

1013
Green’s function and, 320
particular integrals and, 315
variation of parameters and, 315

Cauchy-Goursat theorem, 756–757, 760,
836, 851

contour integrals and, 755–769
cuts and, 763
extended, 763–764, 818
Green’s theorem and, 757
Morera’s theorem and, 775–776
multiply connected domains, 763
trigonometric integrals and, 766

Cauchy inequalities, 774, 829
Cauchy integral formula, 769–775
Cauchy principal value, 42, 840
Cauchy problem, 929, 933

characteristic, 937–939
KdV equation and, 1039
PDEs and, 937
wave equation and, 983

Cauchy-Riemann equations, 711, 762, 930
defined, 722
polar form, 729

Cauchy-Schwarz inequality, 74–75, 91
Cauchy sequences, 795
Cayley-Hamilton theorem, 203–204, 222
Center, autonomous system, 362, 366, 375
Center, complex series, 800
Centered simple wave, 955
Change of variables, in PDEs, 46, 967
Characteristic curves, 935–937, 968
Characteristic equation, 222, 274, 374, 438,

1090
defined, 178
of higher order equations, 297, 301

Characteristic values. See Eigenvalues
Characteristics, method of, 934–951
Chebyshev approximation, 540
Chebyshev equation, 457, 510
Chebyshev, P.L., 459
Chebyshev polynomials, 443, 459, 524–528
Chemical reactions, 235–236, 417, 697

Circle of convergence, 800–801
Circles, mapping of, 890–892
Circulation, and irrotational flow, 639, 641
Classical solution, of PDEs, 965–967, 972
Closed regions, 976
Closed sets, 713
Cluster points, 792, 794
Co-planar vectors, 84
Collinear vectors, 82
Combinatorial problems, 121–124
Commutativity, 401, 633
Comparison test, for convergence, 797
Comparison test, improper integrals, 841
Compatibility condition, 935, 939, 945, 948
Complementary error function, 428
Complementary function, 231, 255, 282,

297–298, 301–303
Complete sets, of functions, 531
Complete solutions, of ODEs, 231
Completeness, of orthonormal systems,

533
Complex conjugate, 16, 207, 275
Complex eigenvalues, 188, 342–344,

361–362
Complex functions

cartesian form, 713
complex plane, 15–18, 745, 827–829
continuity of, 711, 718
derivatives of, 711, 719
discontinuous, 718
domain of definition, 712
exponential function, 724
hyperbolic functions, 725
integrals of, 787
integration of, 745–789
limits of, 711, 717
mappings of, 711–717
modulus argument form, 713–715
polar form, 713
series, 791–811
See also Analytic functions; Complex

numbers; specific functions
Complex numbers, 10–15

addition of, 12
algebraic rules for, 11
argument representation, 18–22
complex conjugate, 13
discriminant, 11
division of, 13
equality of, 11
general properties of, 14–15
imaginary part, 11
inner product, 208
modulus, 14, 18–22
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multiplication of, 12–13
null, 12
quotient of, 13
real part, 11
subtraction of, 12
zero, 12

Complex plane, 15–18, 739, 745, 827–829
Complex potential, 914
Complex series, 800

convergence of, 794–796, 800–801
Laurent series, 791, 814–829
Taylor series and, 791–811
See also specific functions

Complex vectors, 208
Composite functions, 720
Composite mappings, 900
Composite transformations, 126–127
Compressible fluids, 683
Computer algebra, 436
Computer graphics, 124–127
Computer integration, 267
Concentric circles, 890–892
Conformal mappings, 712

boundary value problems and, 877–924
Conic, general equation of, 364
Connected graph, 124
Connected regions, 657–658
Connected set, 712
Conservation laws, 373, 705–707, 951–956
Conservative fields, 650–659, 663, 962, 964
Consistent nonhomogeneous linear

equations, 159–162
Constant coefficient differential equations,

328, 379
first order differential equations, 339
general homogeneous higher order,

294–302
linear equations, 229, 306
matrix methods and, 339
nonhomogeneous second order, 280
nth order, 298
ordinary differential equations, 227
partial differential equations, 928
particular integrals, 306

Continuity, 625–636
of complex functions, 711, 718
in one or more variables, 35–38
of vector functions, 628
See also Discontinuities

Continuity, equation of, 705–706
Continuum mechanics, 405
Contour integrals, 748, 756

Cauchy-Goursat theorem, 755–769
complex z-plane and, 745

deformation and, 758
differentiation and, 772–773
indenting and, 842
Laurent series and, 791–862
Leibniz’s rule, 772–773

Contraction, of mapping, 881
Control theory, 394, 437–441
Convected derivative, 704. See also

Material derivative
Convergence, 792, 797, 839

absolute, 796, 797
Cauchy principle, 795
circles of, 800–801, 813
comparison test for, 797
of complex series, 794–796
Dirichlet theorem, 559
discontinuity and, 532
eigenfunction expansion, 532
exponential factor, 849
Fourier series and, 559, 561, 586
of improper integrals, 42–43
iterative schemes, 1052–1054, 1086
Laurent series, 817
necessary condition, 796
norms and, 532
nth root test for, 799–800
of power series, 813
radius of, 453, 633, 801
ratio test, 804
tests for, 792
uniform, 811–819

Convolution
commutativity of, 401
Fourier transform and, 603–604, 1034
integral, 406
Laplace transform and, 402, 406, 423
theorem of, 402, 414, 423, 1034
of two functions, 401, 414, 602–603

Cooling, law of, 245–246
Coordinate system, vectors and, 627
Cosine series, 569, 570–571, 583, 593–595,

611
Cosines, law of, 77
Counterclockwise integration, 746
Coupled equations, 327, 340, 441, 941
Cramer’s rule, 34, 140–141, 169
Critical damping, 283
Critical points, 366, 880
Cross-coupling, 441
Cross-product, 77–81, 210
Crystal lattices, 292
Cubic splines, 1062–1064
Curl, 659–665, 670–673, 677, 697
Curvature, radius of, 633

Curve, direction in, 627
Cut, in complex plane, 737
Cyclic permutation, 86
Cycloid, 635
Cylindrical coordinates, 47, 648–649,

673–675

D

D’Alembert formula, 1033
D’Alembert, J., 984
D’Alembert solution, 981–987
Damping, 236, 280, 373, 440, 442
De Moivre’s theorem, 19
Decay, of an integral, 845
Decimal places, 1046–1047
Decoupling, 995
Definite integrals, 41, 636–637, 763
Deflation, 777, 1050
Deflection, 239. See also Bending
Deformed contours, 758, 788
Degenerate nodes, 360
Degenerate solutions, of wave equation,

980
Degree, of ODEs, 229
Degree, of vertex, 124
Deleted complex plane, 739
Deleted neighborhood, 792
Delta function, 388, 410, 411, 412, 415, 1028
Dependence, domain of, 982
Dependent variables, 228, 927
Depression wave, 262
Derivatives, 38–40, 625–636, 717

Cauchy inequalities for, 774
Cauchy integral formula and, 769, 771
of complex functions, 711, 719
continuity and, 38
contour integrals, 772–773
directional, 644–650
Fourier transforms and, 599, 614–615
Laplace transform and, 396
of matrices, 171–173
operation of, 731
of power series, 45
of vector functions, 629
See also Analytic functions; Differential

equations
Determinacy, domain of, 983
Determinants, 335, 338

cofactors, 32, 135–136
definition of, 135–136
determinant test, 335
of elementary matrices, 146–147
expanding, 134
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Determinants (Cont’d)
leading diagonal, 34
minor, 32, 135
order, 133
properties of, 139
signed minor, 32
upper and lower triangular, 34
See also Matrices

Diagonal dominance, 1078, 1087
Diagonalization, of matrices

diagonal matrices, 114
eigenvalues and, 222, 340–344
eigenvectors and, 186, 222
Gram-Schmidt, 200–202
nonhomogeneous equations and, 342
orthogonality and, 200
procedure for, 196–205

Difference, of functions, 647
Difference, of vectors, 60–61
Differential-difference equation, 440
Differential equations. See specific orders,

types
Differential operator, 534, 731, 904
Differentiation. See Derivatives;

Differential equations
Diffusivity, 960. See also Heat equation
Digamma function, 485
Dimension, of vector space, 99
Dirac delta function, 410, 412, 442, 606
Directed curves, 878
Directed line segment, 56
Direction cosines, 73–74, 645, 690
Direction fields, 228, 240–242, 267, 1096
Direction ratios, 73–74
Directional derivatives, 644–650
Dirichlet boundary value problem, 905
Dirichlet conditions, 564, 591, 600, 975

harmonic functions and, 1029
Laplace equation and, 785–786, 977,

1018–1020
Dirichlet kernel, 568
Dirichlet, P.G.L., 559, 591
Disc, Poisson formula, 785
Discontinuities, 628

complex functions and, 718
convergence and, 532
eigenfunction expansions, 532
finite, 529
finite jump, 567
Laplace transform and, 386–389, 393
wave profiles and, 979
See also Continuity; Singularities

Discrete mathematics, 124
Discrete spectrum, 578

Discriminant, for PDE, 965
Dispersion, 1039–1040
Dissipation, 287, 1040
Div. See Divergence operator
Divergence operator (Div), 839

curl and, 663
curvilinear coordinates and, 670–673
divergence theorem, 677–685, 708, 959
grad and, 663
of improper integrals, 42–43
interpretation of, 660
iterative process for, 1051, 1054, 1087
Laplacian of, 661
properties of, 661
series and, 796
vectors and, 659–665

Divergent series, 792
Domain of definition, 712–713
Dominant eigenvalues, 1091
Dot product

Cauchy-Schwarz inequality, 74
commutativity and, 633
defined, 70–71
normal and, 75, 189–190, 208, 633
orthogonality and, 71, 189
properties of, 71–72
vectors and, 70–74, 90–91, 208

Double factorial notation, 483
Double Fourier series representation, 581,

582, 584
Double summations, 9
Doubly connected domains, 755–756
Drag coefficient, 290
Drum, vibrations in, 993
Dynamical systems, 223

E
Eccentric circles, 890–892, 911
Echelon form, of matrix, 147
Eigenfunctions, 509–526, 512, 518

completeness, 531–532
convergence and, 532
of differential equation, 990
discontinuity and, 532
expansion theorem, 532
expansions, 512, 527, 532, 534
Sturm-Liouville problem, 990
See also Eigenvalues; Eigenvectors

Eigenspace, 180
Eigenvalues, 207, 512, 1090–1095

algebraic multiplicity, 179
completeness and, 526–539
complex, 188, 342–344, 361, 362
degenerate node, 360

diagonalization and, 340–344
dominant, 1091
equal, 360
expansions, 526–539
fundamental properties of, 519
Hermitian matrix, 207
inverse power method, 1093
Jacobi matrix, 374
Laplace transform, 420
matrices and, 179–181, 186, 207
matrix exponential and, 420
power method and, 1091
real, 340
skew-Hermitian matrix, 207
spectral radius, 181, 1087
Sturm-Liouville problem, 990
subdominant, 1091
sum of, 187
transcendental equation for, 1002
unitary matrix, 207
See also Eigenfunctions; Eigenvectors

Eigenvectors, 1090–1095
algebraic multiplicity, 180
diagonal matrix and, 186
geometric multiplicity, 180
linear independence of, 179–180
matrices and, 179–181, 186, 209
normalization of, 183
unitary matrices, 209
See also Eigenfunctions; Eigenvalues

Elasticity, 259, 711
Electric potential, 904, 961
Electrical filters, 292
Electromagnetic theory, 961–963
Electrostatics, 460, 711, 961
Elementary functions, 735–743
Elementary matrices, 145–147
Elementary row operations, 143–144, 165
Elevation wave, 262
Elimination, solution by, 329
Ellipsoid, of inertia, 212, 223
Elliptic case, Laplace equation, 1007–1023
Elliptic cylindrical coordinates, 675
Elliptic PDE, 961, 963, 965, 968–973
Elliptical helix, 635
Entire function, 720, 758
Equilibrium points, 352, 362, 365

autonomous system, 367
center, 375
degenerate node, 360
trajectories, 363
unstable node, 360

Equipotentials, 233, 909, 916
Equivalent contours, 758
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Error function, 426–428
Error signals, 439, 441
Euclidean norm, of vector, 1093
Euler algorithm, 1097
Euler constant, 497
Euler formula,

real variable form, 20
complex form, 595, 724

Euler formulas for Fourier coefficients,
529, 547, 553, 556, 568, 595,

Euler-Mascheroni constant, 497
Euler method, 1098–1106
Euler polygonal approximation, 1097
Eulerian circuit, 124
Even function, 545, 554
Exact equations, 250–253
Exactness, test for, 252
Existence of solutions, 264–266, 277,

296–297, 308, 334, 932
Exponent, of representation, 1047
Exponential factor, integrals and, 597,

847–849
Exponential function

complex, 724, 899
Euler formula and, 20, 595, 724
extension of, 221
fundamental strips, 899
logarithmic function, 739–741

Exponential polynomial, 440
Exponential solutions, 276
Extended complex plane, 827–829, 886
Extrapolation, 1058–1065

F
F(4,5) algorithm, 1104
Factorial function, 481
Family of curves, 244
Feedback, 439
Fibonacci sequence, 51
Filtering property, 411
Finite jump discontinuity, 567
First integral, 357
First order differential equations, 227,

243, 252, 327, 339
First order PDEs, 942–951
First shift theorem, 394
Fixed point decimal representation, 1047
Fixed point iteration, 1051–1054
Fixed point, of a mapping, 884
Flexural rigidity, 239
Floating point numbers, 1047
Fluid-air interface, 921
Fluid mechanics, 702–711
Fluid potential, 233

Flux, 639–641, 910
defined, 698
transport problem, 677, 678, 704–708
transport theorem, 698

Focus points, 361, 366
Force field, 962
Forcing function, 228, 280, 416
Forward substitution, 1084
Fourier-Bessel expansions, 531
Fourier-Chebyshev expansions, 531
Fourier integrals, 589–590

complex, 595–596
cosine integrals, 593, 612
Fourier series and, 594
Fourier transform and, 589–622
general, 593
integral theorem, 591
linearity property and, 599
See also Fourier series; Fourier

transforms
Fourier, J., 548
Fourier-Legendre expansion, 530, 1013,

1014
Fourier series, 512, 528, 545–587

alternate forms of, 572–577
amplitude spectra and, 577–576
Bessel inequality, 560, 567
coefficients in, 529, 547, 560
complex, 572–576, 573, 574, 576, 587
convergence of, 559, 561, 567, 586,

597
differentiation of, 559–568
Dirichlet conditions and, 564
double, 581
Euler formulas and, 547, 556
even functions, 554
exponential, 572, 574
Fourier integral and, 594
functions of two variables, 586
fundamental interval, 548
generalized, 527
Gibbs phenomenon, 540
integration of, 559–568
nth partial sum, 552
orthogonality, 527
Parseval relation, 560, 566, 567
partial sums, 587
periodicity and, 548–549
Riemann-Lebesgue lemma, 560
shifted interval, 572
sine and cosine series, 568–572, 585
termwise integration, 564, 565
See also Fourier integrals; Fourier

transforms

Fourier transforms, 596, 604, 612, 619, 1031
Bessel function, 602
convolution theorem, 603
cosine and sine transforms, 612–618,

1032
derivatives and, 599–600
Dirac delta function, 606
Fourier integrals and, 589–622, 595
heat equation, 607
Laplace transform and, 589
Leibniz rule, 600
linearity of, 599
normalizing factors, 597
operational properties of, 599
Parseval relations, 604, 614, 615–616
partial derivatives, 606–609, 618
scaling, 605, 616
shifting, 616
sine and cosine transforms, 611–620,

1032
transform pair, 596
useful properties of, 605
See also specific functions, applications

Fourier’s law, 959
Fourth order system, 291–293
Framed structures, 127–129
Free surface, 921
Frequency spectrum, 577–578
Fresnel integrals, 851
Frobenius method, 443, 479

Bessel functions and, 494
power series method, 463–480
singular points, 462

Functional series, 811
Functions

amplitude spectra, 577
continuous, 35, 37
discontinuous, 36, 37
domain of definition, 35
generalized, 411
of a function, 720
limit of, 35
nondifferentiable, 38
periodic, 548
piecewise continuous, 36
range of, 712
smooth, 36, 38
See also specific functions

Fundamental interval, 548
Fundamental mapping theorem, 880
Fundamental matrix, 334–335, 338
Fundamental strips, 739, 899
Fundamental theorem of algebra, 8, 776
Fundamental theorem of calculus, 41
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G
Gamma function, 385, 480, 484
Gas dynamics, 661, 930, 951, 954–955
Gauss, C.F., 683
Gauss-Legendre integration formulas,

1073
Gauss mean value theorem, 777
Gauss-Seidel method, 1078, 1087–1089
Gauss’ theorem, 677, 685, 708, 959
Gaussian elimination, 1078–1082,

1089–1090
Gaussian integration formulas,

1071–1076
Generalized functions, 411
Generalized solutions, of PDEs, 928,

951–956
Generating functions

Bessel functions and, 495
Legendre polynomials and, 460

Geometric multiplicity, 180
Geometric series, 797
Gerschgorin circle theorem, 188–189
Gibbs phenomenon, 540, 563, 587,

1014
Global phase portrait, 368
Global properties, 240
Global solution, 938
Golden mean, 51
Gradient, 240, 245, 640, 644, 647

curl and, 662–663
curvilinear coordinates and, 670–673
cylindrical polar coordinates and, 649
difference of functions and, 647
directional derivatives and, 644–650
divergence and, 663
product of functions and, 647
properties of, 647
quotient of functions, 647
scalar functions and, 644

Gram-Schmidt process, 101–102,
200–201, 222

Graph theory, 123–124
Gravitational potential, 904
Green’s formulas, 694–695
Green’s function, 311–321, 423–424
Green’s theorems, 677, 678, 686, 689

Cauchy-Goursat theorem and, 757
first theorem, 535
Green’s formulas and, 678
Laplacian operator and, 678
one-dimensional form of, 534
in plane, 678, 686
second theorem, 535
Stoke’s theorem and, 691

H
Half-life, 236
Half-plane, 786
Half-range series expansion, 569
Harmonic frequency, 578
Harmonic functions, 772

conformal mappings, 906
conjugates, 731, 743
Dirichlet conditions, 1029
Laplace’s equation, 730–735
maximum/minimum principle, 780,

1029
mean value theorem, 777
partial derivatives, 772

Harmonic motion equation, 510
Heat equation, 665, 959, 960

Bessel equation, 1005
delta function, 1028–1029
flux lines, 913
Fourier transform, 607
fundamental solution, 1028–1029
generation rate, 500
heat flow, 233, 510
initial and boundary conditions, 1027
Laplace equation, 782, 1025–1026
Laplace transform, 432–434
law of cooling, 245–246
maximum/minimum principle,

1026–1028
Newton’s law, 245–246
one-dimensional, 432, 607, 610, 618
orthogonal trajectories, 913
PDEs reducible to, 1025–1026
time-dependent, 697
transients, 932–933

Heaviside step function, 386, 442, 602, 604,
627, 1035

inversion integral, 869
Helix, 627, 640
Helmholtz equation, 994
Hermite equation, 435, 436, 526, 1104
Hermitian matrices, 115, 205–207
Hertz, unit, 284
Heun’s method, 1099
Higher transcendental functions, 386, 454
Hilbert matrix, 1089
Homogeneous boundary conditions, 511
Homogeneous differential equations, 248

algebraic homogeneity, 247–250
constant coefficient systems, 348, 357
of degree n, 247
linear equations, 155–158, 228
linear superposition of solutions, 294,

333–334

PDEs, 928, 965
power series solutions, 447–460
structure of solutions, 333–334
substitution and, 248
systems of, 328

Homogeneous polynomial, 210
Hooke’s law, 259
Hubble Space Telescope, 223
Hump function, 595
Hurwitz’s theorem, 441
Hyperbolas, 364
Hyperbolic functions, 737, 740

complex, 725
Hyperbolic PDEs, 942, 959, 965, 973

quasilinear, 1039
standard form, 968–969
wave equation, 964

I

IBVPs. See Initial boundary value
problems

Ideal fluids, 913
Idempotent matrix, 120
Image, of a point, 712, 717, 878
Imaginary axis, 16
Implicit function theorem, 49
Improper integrals, 42–43

branch points, 857
comparison test for, 841
with exponential factor, 847
poles, 853
rational functions and, 842

Improperly posed problems, 976–977
Incompressible liquid, 661, 683, 913
Inconsistent nonhomogeneous systems,

159
Indefinite integral, 41, 636, 761
Indefinite quadratic form, 213
Indentation, 842, 854
Independent paths, 763
Independent variable, 228
Indicial equation, 465
Induction, mathematical, 5–6
Inertia, ellipsoid of, 212, 223
Inertia, moment of, 212
Infinite product, 9–10
Infinite sets, of functions, 524
Infinity, point at, 827–829
Initial boundary value problems (IBVPs)

defined, 931
heat equation and, 618
See also Boundary conditions; Initial

conditions
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Initial conditions, 273, 934, 942
boundary conditions and, 975–978
initial value problems and, 296
ordinary differential equations, 227–231
See also Boundary conditions; Initial

value problems
Initial value problems, 948

initial conditions and, 296–297
initial value theorem, 409, 415, 429
initial vector and, 329
Laplace transform and, 379, 400
linear first order differential equations,

254
matrix form, 329
matrix method of solution, 418
nonhomogeneous term, 328
ordinary differential equations, 231
system of equations and, 328–329
third order, 442
See also Initial conditions

Initial value theorem, 409, 415
Initial vector, 329
Inner product. See Dot product
Input, to system, 437
Instability, of system, 286, 353
Integers, 4
Integral calculus, vector, 677–708
Integral curve, 230
Integral equation, 404–405
Integral inequality, 847
Integral surface, 928
Integrating factors, 251

complementary function, 255
general solution with, 255
linear first order equations, 254–255
ordinary differential equations, 228
particular integral and, 255

Integration, 41–43
adaptive integration codes, 1075
analytic functions and, 745, 761
branch points, 859
Cauchy formulas, 769–775
of complex functions, 745–789
computer methods, 267
constant of, 244
contour, 748
D’Alembert formula, 1033
of decaying functions, 845–846
definite integrals, 41, 636–637, 763
exponential, 597
exponential factor, 849
Gauss-Legendre formulas, 1073
improper integrals and, 42–43, 841, 847,

853, 857

indented simple pole, 854
integral theorems, 678–697
integral transforms, 379–380, 406–407,

1030–1033
invariance of, 650, 651, 653, 658
line, 638, 653, 658, 664, 748
loops, 651
mean value theorem and, 653
modulus, 750
path of, 651–653, 658, 745, 763
Poisson formula, 1032
poles on real axis, 862
principal value, 839
real integrals, 839–862
scalar, 636–643
series obtained by, 807
using computers for, 267
vector functions, 636–643, 678–680
weights in, 1072
work integral, 638
See also Antiderivatives; Particular

integrals; specific functions,
methods, theorems

Integro-differential equations, 404, 405
Interior point, 712
Interpolation

cubic spline, 1062–1064
Lagrange, 1060–1062
Lagrangian, 1060–1062
linear, 1059–1060

Intrinsic equation, 633
Invariance, path, 650, 651, 653
Invariant systems, 352
Inverse functions, 49

branches, 735–743
elementary functions, 735–743

Inverse Laplace transform, 381–383
Inverse matrix, 163–170

adjoint matrix and, 169
basic properties of, 164
Cayley-Hamilton theorem, 203–204
uniqueness of, 164

Inverse points, 884
Inverse power method, 1093–1094
Inverse trigometric functions, 8–9, 740
Inversion, in circle, 884
Inversion integrals, 596, 608

Heaviside step function and, 869
Laplace transform and, 863–875

Inversion mapping, 883–885
Inviscid fluids, 913
Irrotational flow, 639, 913
Isochoric flow, 706, 707
Isoclines, 267

Isolated singularities, 825
Isothermal lines, 233, 911
Iterative methods, 1078

algorithmic, 450
convergence of, 1051–1054, 1086
divergence of, 1054, 1087
Gauss-Seidel method, 1087
Jacobi process, 1086–1089
tolerance in, 1078
See also specific methods

J

Jacobi, C.G., 666
Jacobi matrix, 356, 362, 374
Jacobi method, 1078, 1089
Jacobian, of transformation, 666
Jordan curves, 755
Jordan inequality, 847
Jordan’s lemma, 848
Joukowski transformation, 895–897, 915
Jump discontinuities, 951–953

K

KdV equation, 1039
Kelvin function, 502
Kernel, 380, 404
Kink solitons, 1040
Kirchoff’s laws, 120, 327
Klein-Gordon equation, 1041
Knots, 1062
Korteweg-de Vries equation, 1039
Kutta, W., 1101

L

L2 convergence, 532
Lagrange identity, 22, 88, 535
Lagrange, J. L., 536
Lagrangian interpolation, 1060–1062
Laguerre equation, 435
Laguerre polynomials, 435, 436
Laplace equation, 904, 961–963, 1011

boundary value problems, 780, 781
Dirichlet conditions, 1018, 1020
Dirichlet problem, 785, 977
harmonic functions, 730–735
heat conducting, 782
heat equation, 1025–1026
magnetic potential, 961
maximum/minimum principle, 1029
polar coordinates, 1011
unbounded two-dimensional, 1021

uniqueness of, 695–696
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Laplace expansion theorem, 33, 138
Laplace transform, 221, 379–442

Bessel functions and, 428–429
boundary value problems, 430
complementary function, 403
convolution integral, 406
delta function and, 411, 606
differentiation of, 396
discontinuous functions, 386
eigenvalues, 420
error function, 426
existence of, 407
Fourier transform and, 589, 711,

1030–1037
gamma function, 480
heat equation, 432–434
initial value problems, 379
integral equation, 405
inverse, 388
inversion integral, 863–875
linear first order equations, 415–420
linearity of, 383
matrix exponential, 420
operational properties of, 390–415
PDEs and, 1030–1037
periodic functions, 398, 399
rectangular pulse function, 871
s-shift theorem, 394
systems of equations, 415–437
temperature and, 434
transfer function, 438
transform of derivatives, 391

Laplacian operator, 47, 670–673, 695,
904

curvilinear coordinates, 670–673
divergence operator, 661
gradient and, 661
Green’s theorem, 678

Laurent, A., 820
Laurent series, 791, 814–829

Cauchy inequalities, 829
contour integration, 791–862
convergence, 817
principal part, 817
regular part, 817
residues, 791–862
uniqueness of, 820

Laurent’s theorem, 817–818
Least squares method, 1090, 1108
Legendre, A.M., 457
Legendre approximation, 540
Legendre equation, 443, 454

Sturm-Liouville equations and, 458,
462, 510

Legendre polynomials, 454, 537, 1073
alternative definitions of, 456
of degree n, 456
Gauss-Legendre formulas, 1073
generating function for, 460
Laplace equation and, 1011–1013
orthogonality, 522, 528

Leibniz formula, 563
Leibniz, G.W., 773
Leibniz’s rule, 317

analytic functions, 772
contour integrals, 772–773
Fourier transform and, 600

L’Hôpital’s rule, 834
Lienard system, 368
Lienard’s theorem, 368
Limit cycles, 367

van der Pol equation, 368, 375–376, 378
Limits, 625–636, 717

complex functions and, 711
of complex sequence, 794
of complex series, 795
definition of, 723
of sequence, 793
of vector functions, 628

Line density, 957
Line integral, 638, 664, 745, 748

path invariance, 653, 658
See also Analytic functions

Line of force, 962
Line sink, 923
Line source, 923
Linear autonomous system, 357, 358
Linear difference equations, 51
Linear differential equations

autonomous systems, 351–377
coefficients in, 228, 324, 945–946
complementary function, 255
constant coefficients, 270, 291–302,

943–945
general solution, 255
homogeneous, 155–158, 228, 291–302
initial value problem, 254
integrating factor, 254–255
Laplace transform, 415–420
linear first order PDE, 928–929
nonhomogeneous, 158–162
nth order, 228
particular integral, 255
PDEs, 928–931, 945–946
rules for solving, 256
singular points, 461–463
standard form, 253
variable coefficients, 324, 945–946

See also particular types
Linear extrapolation, 1059
Linear fractional transformation, 887–890
Linear functions, 736
Linear independence, 84

determinant test, 335
of functions, 271, 294–295
of solutions, 321–324, 334–335
tests for, 272
of vectors, 82–83, 96

Linear interpolation, 1059–1060
Linear operator, 230
Linear scale factor, 879
Linear superposition, of solutions, 231,

271, 294, 988
homogeneous equations and, 294
homogeneous systems and, 333–334
matrix vector solutions, 338
ordinary differential equations and, 231
vector space and, 339

Linear systems, 351
coefficients in, 106
differential equations, 333–338
homogeneous system, 106
matrix approach, 333–338
nonhomogeneous system, 106
numerical solutions of, 1077–1090

Linear transformation, 881
Linearity, 355

Fourier integral and, 599
Fourier transforms and, 613–614
Laplace transformation and, 383

Liouville, J., 510
Liouville problems, 526
Liouville’s theorem, 776
Loaded beam, 239
Lobatto formulas, 1072
Logarithmic decrements, 280
Logarithmic function, 10, 602

complex, 899
principal branch of, 740

Logarithmic mappings, 899
Logging operations, 223
Logistic equation, 236, 243
Loops, integrals on, 651
LU factorization method, 1082–1085, 1089

M

Maclaurin series, 44, 445, 805, 807, 814
Maclaurin’s theorem, 44
Magnetic potential, 961
Magnetostatics, 961
Magnification mapping, 881
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Malthus’ law, 247
Mantissa, 1047
Mappings, 711–712

arcsin z, 897–899
of circles, 890–892
combining, 900
by complex functions, 711–717
composition of, 900
conformal, 880, 904–924
contraction of, 881
of curves, 878
of exponential, 899
fixed points of, 884
fundamental theorem, 880
geometrical properties of, 881
image under, 878
implicit relationship and, 889
linear, 881
logarithmic, 899
magnification, 881
scale factor, 880
sine z, 897–899
z2, 892–893
See also Transformations; specific types

Markov process, 131
Mass, conservation of, 705
Mass-spring system, 129–130, 291, 442
Material derivative, 704, 708
Materials, memory in, 405
Mathematical induction, 5–6
Matrices, 205–210

addition of, 108
associative properties, 112
augmented, 143, 148
back substitution, 151
column numbers, 107
column vector, 106
complex elements, 187
definition of, 107
derivatives of, 171–173
diagonalization of, 114, 196–205, 222,

340–344
difference of, 109
echelon form of, 147
eigenvalues of, 179, 191, 340–344
eigenvectors of, 179, 186, 191
equality of, 108
general matrix product, 110
Hermitian, 205–207
ill-conditioned, 1090
inner product, 189
inverse, 164, 172
leading diagonal, 113
lower triangular, 1077, 1084

multiplication of, 113, 172
negative of, 110
nilpotent, 120, 219
noncommutative property, 111
nonsingular, 163
norm of, 189
notation systems, 328
orthogonal, 192–193
polynomial, 203
product, derivative of, 172
product of row and column vectors, 110
row number, 106
row operations, 145–148, 151
row vectors, 107
scaling, 109
similar, 195
singular, 163
skew-Hermitian, 205–207
spectral radius, 179, 185
sum, derivative of, 171
symmetric, 191, 200
trace of, 114
transpose of, 109
transposition of product, 112
triangular, 114–115
uniqueness of inverse, 164
unit, 114
unitary, 205–207
See also Eigenvalues; Matrix methods

Matrix exponential, 215–221, 344–348
antiderivative of, 220
defined, 217
eigenvalues of, 420
nilpotent, 219

Matrix methods
constant coefficient systems, 339
initial value problems, 418
linear first order equations, 418
linear superposition and, 338
for linear systems, 333–338
solutions in, 333
systems of equations, 418
vector solutions, 338
See also Matrices; specific methods

Maximum/minimum principle, 778
harmonic functions, 780, 1029
heat equation and, 1026–1028
Laplace equation and, 1029

Maximum modulus, 777
Maxwell equations, 961–963
Mean-square convergence, 532, 534
Mean value theorem

for derivatives, 44
harmonic functions, 777

for integrals, 41
integrals, 653

Membranes, vibrations of, 958, 992–999,
1038

Memory, in materials, 405
Meromorphic function, 825
Method of characteristics, for PDEs,

941
Minor determinants, 135
Mixed boundary value problems, 905
Mixed condition, 976
Mixed partial derivatives, 39–40
Mixed product, 210
Mobius transformation, 679–680
Modes, of vibrations, 992
Modulus, 18–19

complex functions, 715
integrals, 750
maximum, 777
maximum/minimum principle, 778
of vector, 59

Modulus argument form, 713
Morera’s theorem, 775–776
Molecules, vibration of, 292
Motor, 292
Multiple integrals, 664
Multiplicative inverse, 163
Multiply connected domains, 652, 755–756,

763–764
Multistatements, 7–8
Multivalued function, 739

N

Natural logarithm, 10
Near-homogeneous differential equation,

249
Necessary and sufficient conditions, 265,

296, 382
Negative quadratic forms, 213
Neighborhood, 792

of infinity, 827
of a point, 712

Neumann boundary condition, 905, 975
Neumann, C., 905
Neumann function, 498
Newton-Raphson method, 1054
Newton’s law, of cooling, 245–246
Newton’s method, 1054–1058, 1106
Nilpotent matrix, 120, 219
Nodal lines, 996
Nodes, 360, 366, 1062, 1072
Nonautonomous system, 352
Nondiagonally dominant form, 1090
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Nonhomogeneous differential equations,
416

diagonalization of, 342
existence of, 308
nonhomogeneous terms, 228, 329, 965
systems of, 328
uniqueness of solutions, 308
variable coefficient system, 338–339
variation of parameters and, 349
wave equation, 984

Nonlinear elasticity, 259
Nonlinear equations, 229

autonomous systems, 355, 366–368, 374
PDEs, 931

Nonlinear functions, 1047–1058
Nonlinear mechanics, 368
Nonlinear oscillations, 378
Nonorientable surfaces, 680
Nonphysical solutions, 954
Nonsimply connected regions, 656
Nonsingular matrices, 163, 165
Nonunique solutions, of ODEs, 232
Normalized functions, 518
Normalizing factors, 597
Normals, vector, 58, 75, 183, 190, 208,

633
Nth roots, 22–23, 45, 737, 799
N-tuples, 83–89
Null vector, 59
Numbers, types of, 4
Numerical quadrature. See Numerical

solutions
Numerical solutions, 1045–1108

of differential equations, 1095–1105
of linear systems, 1077–1090
numerical integration, 1065–1076

O

Odd functions, 546
ODE. See Ordinary differential equations
ODE solver package, 267
Ohm’s law, 258
One-dimensional heat equation, 432, 607,

610, 964
One-dimensional wave equation, 292, 930,

958, 964, 978–981
One-one functions, 713, 736
One-parameter family of curves, 233
One-step methods, 1100
One-to-one relationship, 49
Open region, 652, 657, 976
Open set, 713
Open surfaces, 679

Operational properties
discontinuous functions, 393
first shift theorem, 394
Fourier transform, 599
Laplace transform, 390–415,
second-shift theorem, 395
t-shift theorem, 395
transform of derivatives, 391

Orbits, 352
Order, of differential equations, 228, 438,

927
Ordered n-tuples, 88
Ordered number triple, 58
Ordinary differential equations (ODEs)

background to, 228–232
Bernoulli equation, 228
boundary conditions, 228
boundary value problem, 231, 232
complementary function, 231
complete solutions, 231
constant coefficient equations, 227
degree of, 229
direction field, 228
exact, 251
first-order, 227–267
general solution of, 230
homogeneous, 248
initial conditions, 227–231
initial value problem, 231
integral curve, 230
integrating factor, 228
Laplace transform and, 999
linear first order, 228
linear superposition, 231
mth order, 227
near-homogeneous, 249
nonhomogeneous, 228, 308, 416
nonunique solutions, 232
ODE solver package, 267
orthogonal trajectories, 233–235
particular integral, 231
particular solution, 230
separable equations, 228
singular solution, 230
unique solutions, 232
See also specific types of equations,

methods
Orientation, of surfaces, 679–680
Orthogonality, 71, 509–526, 547, 1090

Bessel functions and, 523, 528, 998
Chebyshev polynomials and, 524, 528
cosine functions and, 997
curvilinear coordinate system, 666
curvilinear coordinates and, 665–675

diagonalizing matrix, 202
Fourier series and, 527
of functions, 526–528
Gram-Schmidt method, 200–201, 222
heat flux lines, 913
Legendre polynomials and, 522, 528
main sets of, 527–528
matrices and, 115, 192–193, 198, 200, 206
matrix vectors, 189
normals, 58, 75, 183, 190, 208, 633
polynomials and, 531
in Rn, 92
of sine functions, 518, 522
Sturm-Liouville problem and, 522
symmetric matrices and, 202
of trajectories, 233–235, 881
of vectors, 71, 189–190

Orthonormal systems, 200, 518, 533
of vectors, 189–190

Oscillations, 280
beats, 287
damped, 236
differential equations, 236
logarithmic decrement, 280
nonlinear, 372, 378
pendulum and, 378
period of, 378
self-sustained, 368
solutions for, 280–291

Output, 437
Overdamping, 283

P

Parabolic cylindrical coordinates, 675
Parabolic PDEs, 965, 968–970, 973
Parabolic spline end conditions, 1064
Parachute, 290
Parallel vectors, 71
Parallelogram law, 16–17
Parameter of curves, 233
Parameters, variation of, 311–321
Parseval relations, 533–534, 561

cosine series, 571
Fourier cosine transforms, 615
Fourier series, 560, 566, 567
Fourier sine transforms, 615–616
Fourier transform and, 604
generalized, 571
sine series, 571

Partial derivatives, 38–40
first order, 39
Fourier transforms of, 606–609, 618
mixed, 39–40
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notation for, 8
partial differential operator, 47
second order, 39
See also Partial differential equations

Partial differential equations (PDEs), 610,
707, 927–1041

Cauchy conditions, 976
Cauchy problem, 937
change of variables, 967
characteristic curves, 968
characteristic equations, 968
classical solution of, 928
classification of, 965, 966, 967
coefficients of, 964
coordinates and, 966
coupled ODEs and, 941
discriminant of, 965
elliptic type, 961, 963, 965, 968–973
existence question, 932
hyperbolic type, 959, 965, 973
integral transform of, 1030
Laplace and, 1030–1037
linear constant coefficient second order,

964
linear first order, 928–929
linear second order, 956–964
linear variable coefficient

nonhomogeneous, 945–946
matrix form of, 972–974
method of characteristics, 941
n independent variables, 973
nonhomogeneous term, 965
parabolic type, 965, 973
Poisson equation, 963
quadratic, 965
quasilinear, 929, 936, 944, 947, 1039
second order constant coefficient,

964–974
second order hyperbolic, 958
second order parabolic, 960
semilinear first order, 929
uniqueness of the solution, 936
wave propagation, 951

Partial differential operators, 47
Partial fraction representation, 760, 808,

823
cover-up rule, 29
irreducible factors, 27
multiplicity of factors, 27
undetermined coefficients, 28

Partial pivoting, 1089
Partial sums, 552, 587, 792
Particular integrals, 282, 302

antiderivatives of, 316

Cauchy-Euler equations, 315
constant coefficient differential

equation, 306
linear first order differential equations,

255
nonhomogeneous equations, 309
ordinary differential equations and, 231

Particular solutions, 230, 338
Partitioning of matrices, 116–117, 143
Path of integration

complex z-plane, 745
definite integrals and, 763
invariance of, 650–653, 658, 763
line integrals, 653, 658

Pendulum, 370, 373, 378
Periodic extension, 549
Periodic functions, 348, 398, 399, 548
Periodicity, 737
Permutation matrix, 1085
Permutations, cyclic, 86
Phase angle, 285, 289, 351, 352, 356
Phase velocity, 1040
Pipe, temperature distribution, 246
Pivotal elements, 1080
Pivotal row, 1080
Plane curve, 641
Planes, equality of, 75–76
Plates, vibrating, 956, 958
Poincare-Bendixson theorem, 367
Point at infinity, 827–829, 886
Poisson equation, 963–965
Poisson integral formula, 785, 786, 1032
Polar coordinates, 18, 746

Cauchy-Riemann equations and, 729
complex functions and, 713
cylindrical, 648–649
Laplace’s equation and, 1011
spherical, 648–649
vibration problem and, 993

Poles
improper integrals and, 853
order of, 753, 825
on real axis, 842, 853, 862
transfer function, 438

Polygonal approximation, 1097
Polymers, 405
Polynomial coefficients, of ODEs,

426–430, 435
Polynomials

coefficients of, 8
degree of, 8, 26
roots of, 8, 25–26

Population growth, 236
Position vectors, 63–64

Positive definite forms, 213
Positive sense, 746
Potential, electrostatic, 460
Potential field, 962
Potential functions, 652, 904, 964

conservative fields and, 650–659
Power method, 1091
Power series, 445, 795

center of, 44
coefficients of, 44
complex, 791–811
convergence of, 44, 813
differentiation and, 813
divergence of, 44
expansions, 44, 451
functional series, 811
homogeneous equations and, 447–460
interval of convergence, 44
method of, 447–461, 463–480
properties of, 802–803
radius of convergence, 44
Taylor series, 806–807
ways of obtaining, 806–807
See also Fourier series; Laurent series;

specific types
Predator-prey system, 236, 354–355, 369
Principal axes theorem, 212
Principal branch, 738, 740
Principal normal, 633
Principal part, 817, 965
Principal value, of argument, 18, 49
Principal value, of integral, 839
Probability, 131
Product of functions, gradient of, 647
Profile wave, 943
Projection, of vector, 72–73, 645
Psi function, 485
Puget Sound bridge, 281
Pulse function, 594, 871
Pythagorean theorem, 631

Q

Quadratic forms, 120, 210–215,
223, 965

canonical form, 211
classification of, 213
general, 211
indefinite, 213
negative definite, 213
negative semidefinite, 213
positive definite, 213
positive semidefinite, 213
reduction of, 211, 223
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Quadratic forms (Cont’d)
standard form, 211
sum of squares, 211

Quantum mechanics, 412
Quasilinear PDEs, 929, 936, 944, 947, 1039
Quotient of functions, 647

R

Radioactive carbon dating, 247
Radioactive decay, 235–236
Radius, of convergence, 801
Radius, of curvature, 633
Range, of function, 712
Rank, 152–153
Ratio test, 800, 804
Rational functions, 27, 842, 844
Rayleigh quotient, 519, 520, 521, 525
Reaction rates, 235–236
Real axis, 16
Real integrals, 839–862

poles of, 853
Real line, 4
Real numbers, 4
Real quadratic form, 210
Reciprocal mapping. See Inversion

mapping
Rectangular pulse function, 594, 871
Recurrence relations, 51, 385, 447–451, 489
Reduction of order, 321–324, 474
Reduction, of quadratic forms, 211
Reflecting boundary, 987
Reflections, complex conjugate, 16
Regions, 713

connected, 657
open, 657

Regular points, 461, 816–817
Relative velocity, 70
Remainder term, Taylor’s theorem, 796,

805
Removable, singularities, 825
Repelling points, 354
Residues, 830, 836, 855

Jordan lemma, 848
Laurent series, 791–862
real integrals and, 839–862
residue theorem, 836, 855

Resonance, 286, 289
Restricted argument principle, 783
Reynold transport theorem, 677, 701
Reynolds number, 702
Reynolds, O., 702
Riccati equation, 262
Riemann-Lebesgue lemma, 560, 597

Riemann problems, 953–954
Riemann sphere, 827
Right-handed system, 57, 77
Rigid body mechanics, 212, 239
RLC circuit, 237, 406, 436–437
Robin condition, 976
Rod, temperature of, 999–1006
Rodrigues formula, 460
Roots, characteristic equation, 275
Rotations, 192
Rouche’s theorem, 440, 784
Rounding up, of decimal places, 1046
Routh-Hurwitz stability criterion, 188,

195
Row equivalence, in matrices, 145–147
Row space, 152
Runge, C.D.T., 1101
Runge-Kutta-Fehlberg algorithm,

1104–1105
Runge-Kutta method, 327, 936, 1096,

1100–1106

S

S-shift theorem, 394
Saddle points, 360, 364, 366, 375
Scalar fields, 625–636, 643–647
Scalar line integral, 638
Scalar product. See Dot product
Scalar triple product, 84, 85
Scalars, 55, 56
Scale factors, 668, 880
Scaling, of vectors, 60
Schrödinger, E., 412
Second-order constant coefficient

equations, 277–278
Second-order differential equations, 311,

314, 324
linear PDEs, 964, 988

Second shift theorem, 395, 402
Self-adjoint differential equation, 525
Semi-circular obstacles, to flow, 921
Semilinear equations, 929, 946
Sense, integration and, 747
Sense, of curve direction, 627, 878
Sense, of vector, 55, 56
Separable equations, 228, 242–247
Separation constant, 990
Separation of variables, 512, 989

elliptic case, 1007–1023
methods of, 526, 988–1024

Separatrix, 364
saddle points and, 360

Sequences, 791–793

Cauchy convergence principle, 795
Series

convergence of, 796
differential equations and, 323, 443–540
expansion of, 428–429
multiplication of, 808
partial sums, 552, 587, 792
special functions and, 443–540

Sets of functions, complete, 531
Shear on rod, 505
Shifting, in Fourier series, 572, 616
Shock waves, 260, 697, 951–956, 1039

gases and, 955
jump discontinuities, 952

Shooting method, 1107
Sifting property, 411
Significant digits, 1046–1047
Signum function, 9
Similarity transformation, 195
Simple closed curves, 755
Simple pendulum, 279
Simple pole, 825, 854
Simple zero, 830
Simply connected regions, 652, 656–657,

755
Simpson’s rule, 1068–1071, 1075,

1076–1077
composite, 1070

Simultaneous first order equations, 416
Sine functions

asymmetric truncated, 594
complex, 727, 897–899
Fourier series and, 568–572
integral representation, 593–594
inverse, 897, 898
orthogonal systems and, 522
Parseval relation, 571
series representation, 569, 570, 584
sine transforms, 611–620
truncated, 594

Sine-Gordon equation, 1040
Sines, law of, 87
Single-valued function, 712
Singular matrices, 163
Singular solutions, of ODEs, 230
Singularities, 444, 461

classification of, 814–829
essential, 825
Frobenius method, 463–480
of functions, 816
irregular, 461
isolated, 825
linear differential equations and,

461–463
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of order r , 825
regular, 461
removable, 825

Sinks, 660, 683
Sinusoidal forcing function, 289
Skew-Hermitian matrices, 115, 205–207
Skew-symmetric matrices, 115
Solenoidal vector, 683
Solitary wave, 1039
Solitons, 1039, 1040
Solution vector, 328
Source, 660, 683
Space curves

arc length of, 637
direction cosines, 645

Span, of vector space, 99
Sparse matrices, 1078
Special functions, 454

series solutions and, 443–540
Sturm-Liouville equations, 443–540
See also specific functions

Spectral radius, 179, 186
eigenvalues, 181, 1087
matrix, 179, 185

Spherical coordinates, 47–48, 648–649,
673–674, 1012

Spiral point, 361
Spline functions

approximations and, 1106
natural or linear, 1063
parabolic, 1064
periodic, 1064

Spring constant, 291
Spring damper system, 442
Square root function, 893

of complex number, 24
Square wave, 399, 400
Stability, 351, 353, 364, 438

degenerate nodes, 360
focus and, 365
Routh-Hurwitz criterion, 188, 195
saddle points, 360
of solutions, 983

Stagnation points, 917, 918
Standard domains, 757
Standard form, 69, 211, 223

of elliptic equation, 970–971
of hyperbolic equations, 968–969
of linear first order equations, 253
of parabolic equations, 970
of PDEs, 968
of quadratic forms, 211
of second order equations, 324

Steady state problems, 961

Steady state solution, 285, 289
Steering mechanism, 439
Step function, 386, 869
Step size, in approximations, 1066
Stochastic process, 120, 130–132, 198
Stokes’ theorem, 677, 678, 686, 691, 697
Straight line function, 594
Straight line path, 640
Stream function, 914
Stream tube, strength, 707
Streamlines, 233, 708, 914, 916
Strength, stream tube and, 707
String, vibrations of, 956–957, 988–932,

1038
Sturm, C.F., 510
Sturm-Liouville systems, 510–511,

519–520, 524, 536, 1022
Bessel equations and, 510, 525, 538
boundary value problems, 443
Chebyshev equation and, 510
differential equations and, 443–540
differential operator, 534
eigenfunctions of, 514, 990
eigenvalues of, 514, 520, 990
harmonic motion equation and, 510
Legendre equation and, 510
orthogonality, 522
periodic, 511
Rayleigh quotient, 521
regular, 511
singular, 512
special functions and, 443–540

Subdominant eigenvalues, 1091
Submatrices, 116
Subspaces, Euclidean, 93
Sufficient conditions, 265, 296, 382
Sum of squares, 211
Surface integrals, 684
Surfaces, orientation of, 679–680
Switching, 386
Symmetric matrices, 115, 200, 210

eigenvalues of, 191
orthogonal diagonalizing matrix, 202

Symmetric points, 884
Symmetry preserving property, 888
Systems of equations, 415–437

T

T-shift theorem, 395
Tacoma Narrows Bridge, 281
Tangent line approximations, 40–41, 1056
Tangent plane approximations, 40–41
Tangent vector, 632

Taylor series, 44, 355, 356, 445, 521, 805
binomial theorem, 807
complex power series, 791–811
degree of, 44
function of two variables, 45–46
polynomial approximation and, 44
power series expansions, 806–807
remainder term, 44, 805

Telegraph equation, 1040
Temperature distribution

along rod, 999–1006
Bessel equation, 500
Laplace transform and, 434
pipes and, 246

Tension, in membrane, 958
Termwise integration, 564, 565
Thermal conductivity, 959
Thermodynamics, 250

law of cooling, 245–246
See also Heat equation

Time-invariant systems. See Autonomous
systems

Time lags, 437–441
Torque, 440
Torricelli’s law, 247
Torsion, 280
Total differential, 40, 251
Trace, 187
Trajectories, 352, 365

equilibrium points, 363
family of curves, 244
general solution of system, 366

Transcendental equation, 516
Transcendental functions, 386
Transfer function, 393, 437–441

control theory and, 394
feedback and, 439
Laplace transform, 438
poles and, 438

Transform variable, 380
Transient heat balance, 932, 933
Transient solutions, 289

decayed, 283, 289
Translation, 56
Transport theorems, 677, 697–704

fluid mechanics and, 704–708
Transpose, 34
Trapezoidal rule, 1065–1067
Traveling wave equation, 943–944
Triangle inequality, 17, 74–75, 91
Triangle law, 16
Triangular function, 594
Trigonometric integrals, 766
Trivial solution, 509
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U

Uncoupled equations, 340
Undetermined coefficients, method of,

302–309, 314
Uniform convergence, 811–819
Uniqueness of solutions, 232, 264–266, 695

of Laplace’s equation, 695
of PDEs, 932, 936

Unit pulse function, 386, 410
Unit vectors, 62–63, 65, 634, 644
Unitary matrices, 205–207
Unstable nodes, 359, 360
Unstable solutions, 977

V

Van der Pol equation, 375, 378
Variable coefficient systems, 229, 323, 328,

338–339
Variables, separable, 242
Variables, separation of, 1007–1023
Variation of parameters, 311–321, 348–350

Cauchy-Euler equation, 315
nonhomogeneous systems, 349

Vector calculus, 625–675
continuity and, 628
derivatives and, 629
differentiability and, 629
integration, 642, 677–708
integration and, 636–643
limits and, 628
vector operators, 644, 664

Vector fields, 625, 647, 664
conservative, 663
scalar and, 625–636
two-dimensional, 959

Vector space, 339
Vector-valued functions, 625, 627, 630
Vectors, 55, 56

addition of, 61–62, 90
base, 57
complex elements, 211

components of, 58
curl and, 659–665
divergence and, 659–665
equality of, 59, 66
equation of a plane, 75
equations of straight line, 68
fields, 625–636
flux and, 641
inner product of, 190
magnitude of, 58
modulus, 58, 59
n-tuples and, 89–90
norm of, 58, 190, 1093
null, 59
orthogonal, 190
solution, 335
sum of, 60
tip of, 57
triple product, 86
vector space, 339
velocity and, 629
See also Vector calculus; Vector fields

Velocity, 629
Velocity potential, 914
Vertices, of graphs, 123
Vibrations

damping of, 280
of drum, 993
of membranes, 958, 993–999,

1038
modes of, 992
nodal lines, 996
of plates, 956, 958
in polar coordinates, 993
strings, 928–932, 956–957

Viscosity, 291
Volterra integral equation, 404–405
Volterra-Lotka model, 354
Volume element, 666–667
Volume integral, 684
Volume transport problem, 678,

701

W
Wave equation, 262, 958, 1017

Cauchy problem, 983
constant form, 943
D’Alembert solution, 981–987, 985
degenerate solution, 980
discontinuities, 979
dispersive term, 1038, 1040
eigensolutions, 991
general solution of, 978
Helmholtz equation, 994
hyperbolic type, 964
KdV equation, 1039
nonhomogeneous, 984
one-dimensional, 978–981
PDEs and, 942–951
two-dimensional, 959
wave number, 1040
wave profiles, 979

Wavefront, 259–262
Weak maximum/minimum principle, 1026
Weak solution, 955
Weber function, 498
Weierstrass M-test, 812, 818–819
Weighting function, 422–423, 435, 518
Weights, for integration formula, 1072
Well-posed problems, 976
Work integrals, 638
Wronskian determinant, 295–296

Abel formula, 302

Y
Young’s modulus, 238, 431

Z
Z-plane, 15
Z2 mappings, 892–893
Zeros

of Bessel equation, 995, 1005
of order n, 753, 830
of polynomials, 776, 788
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