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Preface

The primary goal of this work is to present some of the basic theoreti-
cal results pertaining to the three major problem areas of numerical analy-
sis: rounding error, discretization error, and convergence error (interpreted
here as pertaining only to the convergence of sequences and, consequently,
to the convergence of iterative methods). Indeed, the organization of the
book is in terms of these basic problems and the usual areas of linear
equations, differential equations, etc. play a subsidiary role.

An important and pervading aspect of the analysis of the three basic
types of error mentioned above is the general notion of stability, a concept
which appears in several different guises. The question of mathematical
instability, or “ill conditioning” in the numerical analysis parlance, is
treated separately, in Part I, as a backdrop to the basic errors. On the other
hand, results concerning the mathematical and numerical stability of par-
ticular methods are scattered throughout the rest of the book.

Notes on which this book is based have been used for some time at
the University of Maryland for a one-semester first-year graduate course
for computer science and mathematics majors. As such, it has provided a
common knowledge in the theory and analysis of numerical methods for
students who arrive with a wide range of backgrounds, and who may or
may not pursue more advanced work in numerical analysis.

This course, however, may also be taught on the undergraduate ievel.
In fact, the only prerequisites are courses in linear algebra and advanced
calculus; moreover, certain portions of linear algebra of particular interest

i



Xiv  PREFACE

to us are reviewed in Chapter 1. It is also tacitly presumed that the student
has had some undergraduate course in numerical analysis and is familiar
with such common numerical methods as gaussian elimination for linear
equations, Newton's method for nonlinear equations, Runge-Kutta and
multistep methods for differential equations, etc. However, the material is
essentially self-contained and it would be possible for the well-motivated
and mature student to take this course without prior work in numerical
analysis. Finally, some knowledge of ordinary differential equations would
be useful but is not essential.

The author would like to express his thanks to Professor Werner
Rheinboldt of the University of Pittsburgh, to Professor James Vandergraft
of the University of Maryland, to Professor William Gragg of the Naval
Postgraduate School, and, especially, to Jorge Moré at Argonne National
Laboratory for their many helpful comments and suggestions, and to Mrs.
Dawn Shifflett for her expert typing of the manuscript.
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INTRODUCTION

Numerical analysis has been defined{ as “the study of methods and pro-
cedures used to obtain approximate solutions to mathematical problems.”
While this definition is rather broad, it does pinpoint some of the key
issues in numerical analysis, namely, approximate solution (there is usually
no reasonable hope of obtaining the exact solution); mathematical prob-
lems; the study of methods and procedures. Let us illustrate and expand on
this definition in the context of a particular example.
Consider a second-order nonlinear differential equation

YO =f()1), a<t<b (1)
together with the boundary conditions
Wa)=a,  yb)=4. 2)

Here fis a given function and o and f given constants. We assume that this
boundary value problem has a unique solution; but, in general, there will
be no “closed form™ representation for it, and it is necessary to consider
methods which will yield an approximation to the solution. One of the
common methods for this problem is the finite difference method: First
divide the interval [a, b] by grid points

a=ty <t < <t,,,=b;
for simplicity, we will assume that the pounts ¢; are equally spaced with

T 8. Parter, Comm. ACM 12 (1969), 661-663.



2 INTRODUCTION

spacing A, that is, t;,=a+ih, i=0, ..., n+ 1 =(b — a)/h. Next, approxi-
mate y"(t;) by the standard second difference quotient:

V)= D) =)+ L i1,

Hence, using this approximation in (1), we have

y(’i+l) _2y(’l) +y(’i+|) ihZ_f(y(’:))s = ]a weeg 1

and if we solve the system of n (in general, nonlinear) equations

yi+l_2yi+yi—l=h2f(yi)t i=la"~tn! Yo=2a, yn+l=ﬁ (3)

the solution component y; is, one hopes, an approximation to the exact
solution y(t;) of (1) at the point ¢,.

In general, it will also be impossible to find an explicit solution of the
equations (3), and one will obtain an approximate solution by means of
some iterative process; for example, one of the simplest such iterative pro-
cesses for (3) is
,:5+1=y,,_[2y§‘—yf-‘—l—yf-‘+l+h2f(y.*)] i=1,....n (4

' 2+ W0 ’ T
where the superscript k& denotes the iteration number. (This is sometimes
called the Newton—Jacobi method; a fuller discussion of iterative methods
will be given in Part 111.) Now even if the iterates converge to the solution,
that is, if

)

lim y¥ - y;, i=1,...,n

k=
we will be forced to stop after some finite number K of iterations and take
yK as an approximation to y;. But, in general, we will not be able to com-
pute yX exactly because of the rounding error in carrying out the calculation
(4). Hence we will end up with, say, p¥, as an approximation to y; and hence
to y(1;).

The above example illustrates the three major sources of error in the
study of numerical methods. Given any ‘““continuous problem”—for
example, any differential or integral equation—the first step toward its
approximate solution is the reduction to a “discrete analogue” involving
only finitely many variables. Thus, the equations (3) form a discrete ana-
logue for (1) and (2). The variables in the discrete analogue need not be the
actual function values of the continuous solution at selected points but
may be Fourier coefficients, etc. In any case, the difference between the
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exact solution of the discrete analogue and the exact solution of the original
solution is called the (global) discretization error, and a major problem of
numerical analysis is to give estimates for this error, usually in terms of the
data of the original problem together with parameters of the discretization.
For the example above, one would be interested in knowing the behavior
of y; = y(h) as h— 0, in particular, does the solution of the discrete prob-
lem tend to that of the original and, if so, how fast. In Part 11 we shall
obtain estimates for the discretization error for both initial and boundary
value problems for ordinary differential equations.

The second major source of error comes from terminating an infinite
sequence at a finite number of terms; this will be called convergence error.
This error arises in numerous contexts—for example, summing an infinite
series—but its most prevalent occurrence is with the use of iterative pro-
cesses. In the above example, the convergence error is, of course, the differ-
ence |yf — y;|. We will investigate this type of error primarily in Part 111
for certain common iterative methods.

Finally, there is the question of rounding error which pervades essen-
tially every calculation. Chapter 9 will be devoted to obtaining bounds on the
rounding error in solving linear equations by elimination.

Underlying all three of the above sources of error is the general notion
of instability, which appears in various guises and situations but usually in
the sense of “small changes produce large changes.”” First, there is the
question of the stability of the solution of the problem to be solved;
generally, the solution will be said to be stable if “small” changes in the
data of the problem produce only “small’’ changes in the solution. For
example, if small changes in the boundary values « and 8 of (2) cause only
small changes in the solution of (1), then we would say that the solution is
stable (with respect to the boundary values) whereas if large changes in the
solution occur, then it is unstable or—in the more usual parlance of numer-
ical analysis—ill conditioned. The problem of ill conditioning effects essen-
tially every large class of mathematical problems, and in Part I we shall
examine several examples of both stable and unstable problems.

Secondly, there is the stability of the discrete analogue. It may be, for
example, that the solution of the original problem is stable but that of the
discrete analogue is unstable. As we shall see in Chapter 5, this is a severe
potential problem for initial value problems particularly. Since the most
common discrete analogues of differential equations are difference equa-
tions [(3) may be considered as a difference equation], this leads us to
consider in Chapter 4 the stability of solutions of difference equations as
well as solutions of differential equations.
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Since any iterative method may be viewed as a difference equation, and
the criteria for (asymptotic) stability for solutions of initial value problems
for difference equations correspond exactly to criteria for (local) conver-
gence for iterative processes, hence stability—in this technical sense—is
equivalent to certain questions in the study of convergence error forsequen-
ces. This connection will be explored more precisely in Part 1.

Finally, there is the question of *‘ numerical stability”’ or stability under
rounding error. In the sense used here this will mean that the sequence of
arithmetic operations embodying the final computer algorithm does not
lead to a catastrophic buildup of rounding error for, at least, well-con-
ditioned problems. For example, the gaussian elimination procedure with-
out row interchanges is a (potentially) unstable method in the above
sense. This type of stability is interwoven with the rounding error analysis
and will be considered in Chapter 9.
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LINEAR ALGEBRA

The most important tool in many areas of numerical analysis is linear
algebra and matrix theory. This is certainly and quite naturally true for
those computational problems that arise in linear algebra: solution of
linear systems of equations, computation of eigenvalues and eigenvectors
of a matrix, etc. But it is also true for a surprisingly large number of other
problem areas: nonlinear equations, differential equations, approximation
theory, etc. in which many times the analysis of the corresponding numeri-
cal methods hinges crucially on results from linear algebra. In more ad-
vanced work, infinite-dimensional linear algebra—functional analysis—
plays an analogous role.

In any case, linear algebra will provide much of the background for
this book, and we will review in this chapter many of those basic parts of
linear algebra which will be of most value to us. Additional, more special-
ized results are also scattered throughout other sections of the book.

i.1 EIGENVALUES AND CANONICAL FORMS

We denote by R" the real n-dimensional space of column vectors x with
components x, ..., X, and by C" the corresponding complex space. For
x € R", x" will denote the transpose, which is the row vector (x, ..., x,),
while if xe C", x" = (,, ..., X,) is the conjugate transpose.

The collection of linear operators from R™ to R"—or equivalently, as
the context dictates, the set of real n x m matrices—will be denoted by
L(R™, R") or simply L(R") if m = n. Similarly, the set of complex n x m

5



6 I LINEAR ALGEBRA

matrices is denoted by L(C™, C") or L(C") if m =n. The elements of a
matrix 4 € L(C™, C") will be written as a;;. We note that when we write
A € L(C™, C") we by no means preclude the possibility that A4 is, in fact,
real.

If A e L(R™, R"), then AT will denote the transpose of A, while if A is
complex, then 4" will denote the conjugate transpose. For any n x n
matrix A, det A is the determinant of A, and A~! the inverse. We will say
that A is nonsingular if A~" exists. We recall the following basic theorem
on invertibility.

I.I.I  Let A € L(C"). Then the following are equivalent:

(a) A is nonsingular;

(b) detAd #0;

(c) the linear system Ax = 0 has only the solution x = 0;

(d) for any vector b, the linear system AXx = b has a unique solution;

(e) The columns (and rows) of A4 are linearly independent; that is, if
u,,...,n, are the columns of 4 and oyu, + - + a,u, = 0, then
the scalars o, are all zero.

The last condition (I.l.l1e) may be rephrased to say that 4 has rank n
where, in general, the rank is defined as the number of linearly independent
columns (or rows) of the matrix.

If A € L(C"), then a (real or complex) scalar 4 and a vector x 3 0 are an
eigenvalue and eigenvector of A if

AX = Ax. e
By Theorem 1.1.1 it follows that A is an eigenvalue if and only if
det(4 — AI) =0, )

this is the characteristic equation of A. (Here, as always, [ is the identity
matrix.) Consequently 4 has precisely n (not necessarily distinct) eigen-
values, the n roots of (2). The collection of these n eigenvalues 4,, ..., 4, is
called the spectrum of A and

p(A) = max |4,] 3)

1€i<n

is the spectral radius of A.
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Eigenvalues are, in general, difficult to compute, but there is an im-
portant class of matrices in which they are available by inspection. These
are (upper or lower) triangular matrices:

ayy T 4y, ap, O

A= T, M K A= : . .
O Ay an1 e arm
Clearly, the eigenvalues of a triangular matrix are just the main diagonal

elements. An important special case of triangular matrices are diagonal
matrices

d, _ O
O
which we will usually denote by D = diag(d,,. ., d,).

For a general matrix A € L(C"), the eigenvalues of A may have an arbi-
trary distribution; but for certain common and important classes of
matrices, the eigenvalues are constrained tolie in certain portions of the com-
plex plane. For example, A € L(R") is orthogonal if AT = A~ ' and 4 € L(C")
is unitary if A" = 47", and the eigenvalues of either type of matrix are all
of magnitude one (El.l.1). Similarly, 4 € L(R") is symmetric if A" = A,
and A € L(C") is hermitian if A" = A. The eigenvalues of either a symmetric

or hermitian matrix are all real (El.1.2). Moreover, a matrix 4 € L(R") is
positive semidefinite if

D=

xTAx > 0, xeR" 4

and positive definite if strict inequality holds in (4) when x # 0. The
analogous definition holds for complex matrices with xT replaced by x*.
The eigenvalues of a symmetric or hermitian positive semidefinite matrix A4
are all nonnegative and are all positive if A is positive definite (E1.1.4).

One of the most important operations in matrix theory is the similarity
transformation. Two matrices A, B € L(C") are said to be similar if there is
a nonsingular P € L(C") such that

B=P14P. )

This operation arises naturally in considering a linear change of variables;
that is, consider the equation

y = Ax (6)
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and the change of variables
$=Ply, =P 'x.
Then in the variables %, ¢, the equation (6) assumes the form
§=Bx%

where B is given by (5).
A basic property of the similar transformation is given by the following.

1.1.2 If A, Be L(C") are similar, then A and B have the same eigen-
values.

Proof- We show that the characteristic polynomials of 4 and B are iden-
tical, This is immediate from the product rule for determinants, which
yields

det(A — AI) = det(P™'P) det(4 — Al)
= det P! det(4 — Al)det P = det(P~'AP — AI). 33%

An alternative proof for 1.1.2 is that, clearly, Ax = Ax if and only if
P 'APy = Ay wherey = P 'x # 0.
We prove next an important result about symmetric matrices.

1.1.3 Let A € L(R") be symmetric. Then there is a real orthogonal matrix
P such that PTAP is diagonal.

Proof: Leti,,..., A, bethe eigenvalues of A and X, an eigenvector corre-
sponding to 4, and with x[x, = 1; since the A, are real (El.1.2), we may

assume that x, is real. Let u,, ..., u,_, be n — 1 mutually orthogonal
vectors all orthogonal to x, and with wfu; =1, i=1,...,n— 1. Next,
define the n x (n — 1) matrix U, = (u,, ..., u,_,;) with columns u;, and

the corresponding n x n matrix P, = (x,, U,) with first column equal
to x,. Then the orthogonality conditions imply that P, is orthogonal and
UTx, =0, so that

xT A 0
PTAP, = [U‘T](a,xl,AU,)z [0' UIAU,]'
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Since
det(A — Al) = det(PTAP, — il) = (A, — 1) det(UTAU, — AI)

the (n—1) x (n — 1) symmetric matrix A4, = UTAU, has eigenvalues
Az, ..., A,. Therefore, we may perform the same transformation on A4,
and conclude that there is an (n — 1) x (n — 1) orthogonal matrix Q, so
that

014,0:=|5 ]

where A; is an (n — 2) x (n — 2) symmetric matrix whose eigenvalues are
A3, ..., A,. But then

Ay
PIPTAP P, = i
A3

where P, is the orthogonal matrix

=l o}

Continuing in this way, it is clear that we can construct a sequence of orthog-
onal matrices Py, ..., P, so that

P,TPTAPI P"=diag(ftl, ey '1")

and then the product P = P, -- P, is also orthogonal. $$$

We note that the same result holds for hermitian matrices if P is taken
to be unitary.
Let

D= diag(l,, ey lu)

be the diagonal matrix of |.1.3, where the A; are the eigenvalues of 4. Let
p;,i=1,...,n, denote the columns of P. Then equating the columns of

AP=PD ™)
yields
Ap; = ;p;, i=1,...,n; 8)

that is, the columns of P are the eigenvectors of A. Hence, an equivalent
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form of 1.1.3 is that a real symmetric matrix has » orthogonal eigen-
vectors,

The geometric interpretation of this result is as follows. Consider the
relation

xTAx = ¢ = constant 9

which is the equation of a “conic section” in R". For example, if 4 is
positive definite, (9) is the equation of an ellipsoid. Now make the change of
variable % = PTx, where P is as in |.1.3. Then (9) takes the form

c= ﬁTDﬁ = leﬁlz
i=1

which is the equation of a conic section in standard form. This is known as
the reduction to principal axes of the equation (9), and the eigenvectors of A
give the directions of the principal axes of the conic section.

Theorem 1.1.3 shows that a real symmetric matrix is similar to a diag-
onal matrix. Is this result true for an arbitrary square matrix ? Unfortunate-
ly, the answer is no, as will be seen for the simple matrix

0 1
A=[0 0]. (10)

We first prove the following necessary and sufficient condition.

1.1.4 A matrix A € L(C") is similar to a diagonal matrix if and only if 4
has » linearly independent eigenvectors.

Proof: 1f P"'AP = D, where D is diagonal, the relations (7) and (8)
show that the columns of P are eigenvectors, necessarily linearly inde-
pendent since P is nonsingular. Conversely, if there are » linearly inde-
pendent eigenvectors, these may be taken as the columns of P. $3$%

On the basis of this result another important sufficient condition for

similarity to a diagonal matrix may be given.

I.1.5 Assume that A € L(C") has n distinct eigenvalues. Then 4 is similar
to a diagonal matrix.
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Proof: let Ay, ..., 4, be the eigenvalues of 4 and x,, ..., X, the corre-
sponding eigenvectors. By |.1.4, it suffices to prove that the x; are linearly
independent; that is, if

o0X, 4+ +a,Xx,=0 an

then all «; are zero.
Let j be a fixed but arbitrary index; we will show that «; = 0. Define
the matrix

U=Tl4~-4D
i
and recall that any two matrices of the form A —al, A — I commute.
Hence

Ux, = [ I (A—lil)](A—,lkI)xk=0, k#j
i£j,k
so that, by (11),
0=Uloyx; + - +a,X,) =o; Ux;.
But

Ux; = T1(4 = 4D, = [1 (4 = 2)x; # 0

i#j

since the eigenvalues are distinct. Hence a; =0. $$3$

We return to the matrix of (10). Clearly, this matrix has only one
linearly independent eigenvector since in the relation

0 1}[x,
=0
[0 0] [xz
the component x, must always be zero. Hence, by 1.1.4, this matrix is not
similar to a diagonal matrix.
We now ask: What, in general, is the “simplest” form a matrix can

assume under a similarity transformation? We give, without proof, two
answers of general usefulness.

1.1.6 (Schur’s Theorem) Let A€ L(C"). Then there is a nonsingular
matrix P € L(C") such that P~ ' AP is triangular. Moreover, P may be chosen
to be unitary.
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I.1.7  (Jordan Canonical Form Theorem) Let AeL(C"). Then A is
similar to a block diagonal matrix

Sy

Im

where each J; is either the 1 x 1 matrix (4;) or a matrix of the form

where A, 1s an eigenvalue.

We will illustrate the last theorem by various examples and comments.
Note first that if 4 has distinct eigenvalues, then it is a consequence of
1.1.5 that each Jordan block J; is 1 x 1; that is, the Jordan form is diagonal.
But distinctness of the eigenvalues is by no means necessary in order to
have a diagonal canonical form, as has already been seen in the case of a
real symmetric matrix.

Although it is necessary for the matrix A to have multiple eigenvalues
in order to have a nondiagonal canonical form, the algebraic multiplicity
of an eigenvalue does not determine the structure of the Jordan form.
For example, suppose that 4 is 4 x 4 and has the eigenvalue 2 with multi-
plicity 4. Then the possible Jordan forms of A, up to permutations of the
blocks, are

2 2 2 1
2 2
2 ’ 2 170 21
2 2
2 1 2 1
2 1 2 1
2 2 1
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It is easy to see (El.1.10) that a matrix of the form

J= - 12
1
A
has precisely one linearly independent eigenvector. It follows from this
that, in general, a matrix A has precisely as many linearly independent
eigenvectors as it has Jordan blocks in its canonical form (EI.1.10).
These eigenvectors are certain columns of the matrix P of the transforma-
tion P~'AP to canonical form. If A has fewer than » linearly independent
eigenvectors, then the other columns of P are called generalized eigen-
vectors or principal vectors.

These principal vectors may be characterized algebraically in the follow-
ing way. Consider again the matrix (12), and denoteby e, =(1, 0, ..., 0)7,
..or€,=(0,...,0, )7, the unit coordinate vectors. Clearly, e, is an eigen-
vector of (12). Furthermore, it is a trivial calculation to see that

Je,=le, + e, k=2,...,n
Hence, since (J— Al)e, =0,
(J=AD""e,=e, (J—-AD'e¢, =0, k=1,...,n

These relations characterize principal vectors for a general matrix. That is,
x is a principal vector of degree k of A € L(C") if

A-ADx=0, (A-iD*"'x#0.

By this definition, an eigenvector is a principal vector of degree 1. We will
also say that x is a principal vector of maximal degree if x is of degree m
where m is the dimension of the largest Jordan block associated with the
corresponding eigenvalue.

Note that, just as eigenvectors are determined only up to scalar multi-
ples, principal vectors are determined only up to scalar multiples of them-
selves as well as linear combinations of principal vectors of lower degree.

We end this section with a note on real and complex matrices. In most
of our considerations in the sequel we will be interested only in problems
in which matrices are real; for example, a system of linear equations with a
real coefficient matrix A. However, the analysis of various methods for the
solution of such problems may require us to consider the eigenvalues and,
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more usually, Jordan canonical form of A. But even if A is real, its eigen-
values and eigenvectors may well be complex so that we are forced to shift
attention from the real space R" to complex space C". Hence, we will, on
occasion, be bringing in C", sometimes tacitly, in the midst of our analysis.

EXERCISES

El.l1.I Let A € L(R") be orthogonal. Show that all eigenvalues of A have
absolute value unity.

El.1.2 Let A€ L(R") be symmetric. Show that all eigenvalues of A are
real.

El.I.3 A matrix 4 € L(R") is skew-symmetric if AT = — A. Show that all
eigenvalues of a skew-symmetric matrix are imaginary.

El.1.4 Let A€ L(R") be symmetric positive semidefinite. Show that all
eigenvalues of A are nonnegative. Show also that all eigenvalues of A are
positive if A is positive definite.

El.I1.5 Let A € L(R") be symmetric and let x and y be eigenvectors corre-
sponding to distinct eigenvalues, Show that x and y are orthogonal.

El.I1.6 If A and x are an eigenvalue and corresponding eigenvector of
A € L(C"), show that A*x = A*x for any positive integer k. Hence conclude
that if A has eigenvalues 4,, ..., 4, and eigenvectors Xx,, ..., X,, then 4*
has eigenvalues A%, ., ., A¥ and eigenvectors x,, ..., X, . Show that the same
result holds for negative integers k if 4 is nonsingular.

El.I.7 With the notation of El.l.6, show that A — ¢/ has eigenvalues
A — ¢, ..., A4, — c. More generally, if p(A) =a,A"+ - + a,, define the
matrix polynomial p(4) by p(A4) = a, A" + - -~ + ay 1. Show that p(4) has
eigenvalues p(4;), i = 1, ..., n and eigenvectors X,, ..., X,.

El.1.8 Compute the eigenvalues, eigenvectors, and principal vectors for

10 0
A=[‘l‘ g] A=|-1 0o 1]
-1 -1 2

El.1.9 Use the Jordan canonical form theorem to show that det A =
AjAy -+ A,, where 4,, ..., A, are the eigenvalues of A. Can you give a proof
not using the Jordan form or |.1.6?7
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EI.1.10 Show that the matrix of (12) has precisely one linearly indepen-
dent eigenvector. Conclude from this that a matrix 4 € L(C") has precisely
as many linearly independent eigenvectors as it has Jordan blocks in its
canonical form.

El.l.11  Compute the powers of the n X n matrix (12). Show, in particular,
that
W‘ klk—l (5‘)1"'2 e (nf ,)lk—"+ 1™
A kakt
Jk — . .
kit
lk

for k > n.

El.1.12 Give a proof of Schur’s theorem 1.1.6 along the lines of 1.1.3.

{2 VECTOR NORMS

In this section, we will review the basic properties of norms on R” and
cn.

1.2.1 Definition A norm on R" (or C") is a real-valued function | -||
satisfying

(@ x| =0, vx; |[x| =0 only if x = 0;
(b) llox|| =1e|lx| for all x and all scalars «;
© Ix+yl<xl+ lyl, vx,y.

The main examples of norms with which we shall be concerned are

n 1/2
x|, = ( Yy |x,-|2) (the /, or. Euclidean norm) m
=1

Ixll, =Y x| (the I, or sum norm) )
i=1

Ixll, = max |x;] (the I, or max norm). 3)
1<i<n
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The norms (1) and (2) are special cases of the general class of /, norms

IxI, =(Z |xi|p)”" ()

where p € [1, 00). The norm (3) is the limiting case of (4) as p — 00. (See
El.2.2)

Another important class of norms are the so-called elliptic norms
defined by

IxIl = (x"Bx)'/? ®)

where Be L(R") is an arbitrary symmetric positive definite matrix, The
definitions (1)-(4) hold, of course, on either R" or C*; (5) holds on C" if
xT is replaced by x", and B is hermitian and positive definite.

It is easy to show that (2) and (3) satisfy the axioms of 1.2.1 (EI.2.1).
The verification that (5) defines a norm—including the special case B = I
which is (1)—is not quite so obvious. We will prove that (5) is in fact an
“inner product norm.”

.22 Definition A real-valued mapping (*,-) on R" x R" is an inner
product if

(a) (x,x)>0,V¥x; (x,x)=0onlyif x=0;

(b) (ox,y) = a(x,y) for all x,y € R"” and scalars «;
(C) (X, Y) = (ys X), VX, Yy,

(d (x+z,y)=(xy)+(zY),Vxyz

The same axioms define an inner product on C" x C" provided that the
mapping is allowed to be complex-valued, and (c) is replaced by (x,y) =

(y, x).

For any inner product, a norm may be defined by
x| = (x, x)"2. (6)

The verification of axioms (a) and (b) of 1.2.]1 is immediate. In order to
prove the triangle inequality (c), we first prove the Cauchy-Schwarz
inequality :

[(x, V)% < (x, x)(y, ). (7)
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This results from the observation that the polynomial
p(a) = &*(x, X) + 2a(X, y) + (¥, y) = (ex + y, ax + )

is always nonnegative and hence its discriminant, (x, y)* — (X, x)(y, y), is
nonpositive. Using (7), the triangle inequality follows from

Ix +yl2 = (%, %) + 2(x, ¥) + (¥, ¥) < (X, X) + 2(x, X)"*(y, !> + ¥, ¥)
= (IxIl + llyl)>.

Hence (6) is a norm. It is easily verified that if Be L(R") is symmetric
positive definite, then x"By is an inner product and therefore (5) is also a
norm.

The verification that (4) is a norm for arbitrary p € [I, o) is left to
El.2.3.

For any norm, the set {x: | x|l < 1} is called the unit ball while the
surface {x: ||x|| = 1} is the unit sphere. These sets are depicted in Figure
1.2.1 for the norms (1)-(5).

2 I <>
{o I I |
p large l ,
Elliptic Eliipse XTHX =1

Figure 1.2.1 Unit balls of several norms.
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Although the /,, I,, and I, norms are those most common in practice,
it is often useful, especially for theoretical purposes, to generate other
norms by the following mechanism.

1.2.3 Let |- || be an arbitrary norm on R" (or C*) and P an arbitrary non-
singular n x n real (or complex) matrix. Then ||x||" = [|Px]|| defines a norm
on R" (or C").

The proof is a simple verification of the axioms of 1.2.1 and is left to
El.2.4.

Given a sequence {X,} of vectors, convergence may be defined in terms
of the components of the vectors and this is obviously equivalent to con-
vergence in the [, norm; that is, x, —» x as k — oo if and only if

lim [|x, ~ x|, =0

ko

However, it is an interesting fact that convergence in some norm implies
convergence in any other norm. This is a consequence of the following
important result.

1.2.4 (Norm Equivalence Theorem) Let || and |||’ be any two norms
on R" (or C"). Then there are constants ¢, > ¢, > 0 such that

ollxll < Ix” < elixll, v (8)

Proof: Tt suffices to assume that ||’ is the /, norm. For if the two re-
lations

dilixll < Ixll2 < dplixll,  dilx|" < Ixll; < d5)x||’

both hold, then (8) holds with ¢, =d,/d, and ¢, = d,/d,.
Lete;,i =1,..., n, be the coordinate vectors, Then for arbitrary x

so that by the Cauchy-Schwarz inequality

n n 1/2
Il S.; Ix:] lleshh < Blxll,, B= ( 1 Ile,-llz) 9
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Hence, the left-hand inequality of (8) holds with ¢, = ~*. Also, using the
result of EI.2.5,

HIxI =Nyl < lIx =yl < Blx =yl
which shows that |- || is continuous with respect to the /, norm. Therefore,
since the unit sphere § = {x: ||x||, = 1} is compact, |- | is bounded away

from zero on §; that is, ||X|| = « > 0 for some o > 0 and all x & S. Hence
for arbitrary x

X

| = el
Il

IxIl = Il

so that the right-hand inequality of (8) holds with ¢, = a~!. $3$

EXERCISES

El.2.1 Verify that (2) and (3) satisfy the axioms of 1.2.1.

El.2.2 Let x be fixed but arbitrary. Show that (3) is the limit of (4) as
p— ©.

El.2.3 For any p € (1, o), verify the Hélder inequality

l/q

1

where p~' + ¢~ = 1. Use this inequality to show that (4) is a norm.

(Hint: Forany a>0,b5>0, 2> 0, > 0 with o + f =1, show that
a*b® < aa + pb

and apply this witha = p~', B =g~ ', a =|x;|°/Y |x|% b =|nilYY |yil%)
El.2.4 Prove Theorem 1.2.3.
El.2.5 Let ||-| be any norm on R" (or C"). Show that

Hixl =yl < lx —yll,  vx,y.
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1.3 MATRIX NORMS

Corresponding to any vector norm on R" there is a natural induced
matrix (or operator) norm.

1.3.1 Definition Let |||, ||-||" be arbitrary norms on R" and R™ re-
spectively. Then for any 4 € L(R", R™), the quantity

Ax|’
|A| = max u = max |[AX|’ (N
x#0 IxI yxp=1

is the corresponding matrix norm. The analogous definition holds for
C" and C™

Note that (1) implies that | Ax]" < ||4]|x|| for any x € R".
The following result shows that (1) defines a norm on the nm-dimen-
sional linear space L(R", R™).

1.32 (@) |A]| =0; JA]l =0onlyif A =0;
(®) oAl ={al 4l
(¢) 4+ Bl <Al + |IBIl.

An important additional property of matrix norms is that
4B| < 14l Bl 2

whenever 4 € L(R", R™) and Be L(R?, R" (provided, of course, that R"
has the same norm as the domain of 4 and the range of B). The proofs of
(2) and 1.3.2 are immediate consequences of 1.3.1 and the properties of
vector norms and are left to E1.3.1.

As with vectors, the convergence of a sequence of matrices may be de-
fined componentwise or, equivalently, in terms of any matrix norm. That
is, we write 4, > A as k — oo if in some norm |4, — A|| -0 as k — co.
By 1.2.4, convergence in some norm implies convergence in any norm.

The geometric interpretation of a matrix norm is that || 4| is the maxi-
mum length of a unit vector after transformation by A; this is depicted in
Figure 1.3.1 for the /, norm.
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h
N
&7
2
N\

Figure 1.3.1

As Figure 1.3.1 indicates for two dimensions, || 4| in the Euclidean
norm is the length of the major axis of the ellipse {4x: ||x|l, = 1}. This is
true in any number of dimensions and the length of the major axis is given
by (3). We first prove the following generally useful lemma.

1.3.3 Let Be L(R") be symmetric with eigenvalues 4, <--+ < A,. Then

Ax"™x <x"Bx < 1,x"x, VxeR"

Proof: By |.1.3, there is an orthogonal matrix P such that
PTBP = diag(4,, ..., 4,).

Hence, with y = PTx,
X"Bx =y"PTBPy =% A, yF <A, y"y=1,x"x.
i=]
The other inequality is proved analogously. 3$3$

The previous result also holds for hermitian matrices if xT is replaced
by x*. Similarly, the following theorem holds for complex matrices if AT
is replaced by A"

134 Let A € L(R". Then
41, = max | Ax]; = [p(ATA)]'/. 3

Ixff2=1
Proof: Set u = [p(ATA)]'/2. Then for any x € R", 1.3.3 shows that

Ax|? = xTATAx < p®x"x
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so that |4]l, < u. On the other hand, if u is an eigenvector of 4A*4 corre-
sponding to u?, then

uA"4u = p*uu
which shows that equality holds in (3). $$$

Since AA is positive semidefinite (EL.3.4) all of its eigenvalues are non-
negative. The square roots of these eigenvalues are called the singular values
of A. The number of positive singular values is precisely the rank of A
(EL3.5).

It is usually difficult to compute || 4| explicitly for an arbitrary norm, and
even for the /, norm as 1.3.4 shows. For the /; and /, norms, however, it is

immediate.

1.3.5 Let A €L(R"). Then

4, = max [4x|, = max ) |a;] 4)
%l =1 1<ign j=1
and
[All, = max |Ax|, = max . |a;]. (5
lixfii=1 1<jsni=1

Proof: Consider first the /, norm; then, for any x € R",

n n n n n
Zaijxj <Y Yagl Ix;0 =Y Ix;1 Y layl
ji=1 i=1 j=1 Jj=1 i=1

Ax], = Z

i=1

n
< max ) lagl x|,

I<jsni=1

To show that there is some x # 0 for which equality is attained in (5), let
k be such that

t<j<ni=%}

n n
max Z |aij| = Z lail.
i=1

Then, if e, is the kth coordinate vector and a, the kth column of A, we have

n
el = llall, = X [aul-
i=1
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The proof for ||A||, is similar. In this case, the maximum is taken on for
the vector defined by

X; = 4l |lagl,  @i#0
AL 4;=0

where, again, k is chosen so that the maximum in (4) is achieved. $3%%

We note that (4) and (5) obviously also hold for complex matrices.
The quantity of (4) is often called the *“ maximum row sum” of 4 while
(5) is the * maximum column sum.”

An important special case of 1.3.4 is that if A € L(R") is symmetric,
then

1412 = [p(AM]'? = [p(4)*1'2 = p(4)

where we have used the result of El.1.6.

The question thus arises as to the general relation of p(4) and || A|. If
Ais any eigenvalue of A and x # 0 a corresponding eigenvector, then in any
norm (perhaps necessarily on C"), we have

4l = |Ax|/lIx] = |4].
That is,
p(4) < || All.

On the other hand, for the matrix

A= (g g) ©)

we have p(4) = 0 and |4, = |«| so that, in general, the difference between
[|A4]l and p(A) may be arbitrarily large. In some sense, this is because of the
choice of the wrong norm as the following important result shows.

1.3.6 Let A € L(C"). Then given any ¢ > 0 there is a norm on C" such that
41l < p(4) + e
Proof: Let A =PJP ™', where J is the Jordan form of A4, and let

D = diag(l, ¢, 2, ..., ).
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Then it is easy to see that J = D~'JD is exactly the same as J except that
every off-diagonal 1 in J is replaced by &. Hence

171l < p(A) + &
Set Q = PD and define ||x| = |Q™'x||,, ; this is a norm by 1.2.3. Then
|4l = max |4x|| = max l||Q_lAX||w = max [Q"'AQyl,

IIxff=1 12~ 'xflo= [f¥llo=1

= max |Jyl, = 17l < p(4) +& 339

Iyllo=1

Theorem 1.3.6 gives the best possible result in the sense that it is not
always possible to find a norm for which

p(4) = |4]. 7

This is shown by the example (6) since for any norm we must have 4] > 0
provided that o # 0. In fact, for (7) to hold it is necessary and sufficient
that A belong to the following class of matrices.

1.3.7 Definition A matrix A € L(C") is of class M if for every eigenvalue
A such that |A| = p(A) every Jordan block associated with 4 is 1 x I.

Equivalently, we can say that A is of class M if and only if 4 is similar
to a matrix of the form
A, 0
0 4,

where A, is diagonal, p(4,) = p(A), and p(A4,) < p(A).

1.3.8 Let A € L(C"). Then there is a norm on C”" such that (7) holds if and
only if A is of class M.

Proof: For the sufficiency, we modify slightly the proof of 1.3.6 by
assuming that & > 0 is chosen so small that |A| + ¢ < p(A4), where 1 is any
eigenvalue of A such that || < p(4). Then it is easy to see that || J|, =
p(A). For the converse, assume that |4| = p(4) for some norm, but that
there is an m x m Jordan block, m > 2, associated with an eigenvalue A
such that |A| = p(A). Clearly, we may assume that 4 # 0 for otherwise we
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would have ||4| = 0 which implies that 4 = 0. Hence it suffices to con-
sider a Jordan block

Aol
J= S
A
and to show that ||J|| = || is not possible in any norm. If we assume that

I/l = | A| and set J = A~ 'Jthen, clearly, ||| = 1. But adirect computationt
shows that J*e, = (k/A, 1,0, ..., 0)T so that ||J*e,|| = co as k — co. This
contradicts |J|| = 1. $3$

As an important corollary of 1.3.6 and 1.3.8 we obtain the following
result on powers of a matrix.

1.3.9 Let A€ L(C". Then lim,_  A* =0 if and only if p(4) < 1. More-
over, |A¥|| is bounded as k - oo if and only if p(4) < I, or p(4) =1 and
A is of class M.

Proof: 1f p(A) < 1, then by 1.3.6 we may choose a norm on C" such that
Al < 1. Hence

4% < j14]* =0 as k- .

Conversely, suppose that p(4) > 1 and let A be some eigenvalue such that
|A| = 1. If x is a corresponding eigenvector, then

4% = 12| = x|

which implies that || 4*| > 1 for all k.

For the second part, we have already shown that 4 — 0 as k — oo if
p(A) < 1.If p(A) = 1 and A is of class M, then 1.3.8 ensures that we may
find a norm such that |A|| = 1. Hence [|4*| < I for all k. Conversely,
suppose that {A4*} is bounded. Then clearly p(4) < 1. Suppose that p(4) = 1.
Then an argument precisely as in |.3.8 shows that any Jordan block J such
that p(J)=11is 1 x 1. Hence, 4 is of class M. $3$

1 Alternatively, use J* as given by E.1.1.11.
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We end this section with another important corollary of 1.3.6, which is
the matrix analogue of the geometric series

=l+a+ad+-, |of <l
| —a

1.3.10 (Neumann Lemma) Let B e L(C") with p(B) < 1. Then ({ — B)"!
exists and

k
(I-B)"'=1lim ¥ B

k=0 i=0

Proof: The eigenvaluesof I — Bare | —4;,,i=1,...,n wherel, ...,
A, are the eigenvalues of B. Since p(B) < 1, it follows that I — B has no
eigenvalue equal to zero and, hence, is nonsingular. Now consider the
identity

({-BYI+B+ -+ BY=1I- B!
or
I+B+--+B=({-B) "' —(~B'B""

By 1.3.9 the second term on the right tends to zero as k — 0. $3%%

EXERCISES

El.3.1 Prove Theorem |.3.2. and verify (2).
El.3.2 Show that |I| = 1 in any norm.
El.3.3 Let A € L(R") and define

n 2 1/2.
1l =( 5 a.»,)
i,j=1

Show that (a), (b), and (c) of 1.3.2 hold, but that this is not a norm in the
sense of 1.3.1.

El.3.4 Let 4 € L(R"). Show that A"4 is always symmetric positive semi-
definite and positive definite if and only if A4 is nonsingular. State and prove
the analogous result for complex matrices.
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EI.3.5 Let A€ L(R"). Show that the number of positive eigenvalues of
ATA is equal to the rank of A.

El.3.6 Formulate and prove 1.3.3 and 1.3.4 for complex matrices. Form-
ulate and prove 1.3.4 and 1.3.5 for nonsquare matrices.

EI.3.7 Compute |Al,, |4]l,, and || 4], for the matrices of EI.1.8.

EI.3.8 Let | -] be an arbitrary norm on R" (or C") and P an arbitrary non-
singular real (or complex) matrix. Define the norm x|’ = [|[Px]||. Show
that 4|’ = |PAP ™).

READING

The majority of the material in Section 1.1 may be found in any of the
numerous books on linear algebra. In particular, the excellent treatise of
Gantmacher [1953] presents the Jordan canonical form in great detail from
both the algebraic (elementary divisor) and geometric (invariant subspace)
points of view. See also the books by Faddeev and Faddeeva [1960] and
Wilkinson [1965] for a review of many aspects of linear algebra in a form
most suitable for numerical analysis, and, in particular, for a thorough
study of norms. Householder [1964] develops the theory of norms in a more
geometric way in terms of convex bodies.

Normed linear spaces—in particular, Banach and Hilbert spaces—
play a central role in functional analysis, the study of infinite-dimensional
linear spaces. For an introduction to this subject see, for example, Dieu-
donné [1969].
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PART |

MATHEMATICAL
STABILITY AND ILL CONDITIONING

We shall begin our study of numierical analysis by examining certain typical
classes of problems—Ilinear equations, eigenvalues, differential equations,
etc.—from the point of view of the following question: If small changes
are made in the data of the problem, do large changes in the solution occur ?
If 50, the solution or problem will be said to be unstable or ill conditioned.

The answer to the above question is of fundamental importance to
numerical analysis in at least two distinct ways. First, if the problem is
unstable, there may be no point in even attempting to obtain an approxi-
mate solution. For if the data of the problem are measured quantities, or
otherwise known to only a limited precision, then even an exact solution
to the problem (exact with respect to numerical analysis error) is quite
likely to be meaningless. It may be much more important simply to detect
the instability so that perhaps the problem can be reformulated into a
more stable form. Second, there is usually no precise demarcation
between stable and unstable problems but, rather, a continuum of possi-
bilities. Some appropriate measure of this instability will usually enter into
the error estimates for all three of the fundamental errors—discretization,
convergence, and rounding. Therefore, it is desirable to have as precise a
knowledge as possible of this “ condition number.”
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CHAPTER 2

SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

2. BASIC ERROR ESTIMATES AND CONDITION NUMBERS

Consider the system of linear equations
AX=B (1

where 4 € L(R")and X, Be L(R", R"); that is, A is a real n x n matrix, and
X and B are real n x m matrices. (For simplicity, we consider only real
matrices although most of our results hold equally well for complex matrices.
Also, a complex system may always be converted to a real system of twice
the dimension: see E2.1.).) We will always assume that A4 is nonsingular
so that (1) has a unique solution X = 4~!B. Important special cases of (1)
arem =nand B = 1sothat X = A", and m =1 in the latter case, X and
B may be considered as vectors x and b in R" so that (1) becomes Ax = b.

Our concern in this section will be to give estimates for the difference
X — Y, where Y is the solution of the system

(A+E)Y=B+F. (2

’

The “perturbation”™ matrices E and F may arise in a variety of ways. It
may be that the elements of A and B are measured quantities subject to
some observation error. Hence the actual matrices with which we deal are
A + E and B + F rather than the “true” 4 and B. Similarly, the elements
of 4 and B may be the result of prior computations and, hence, contami-
nated by rounding error. The simplest example of this kind—but one of
importance—occurs by rounding (or chopping) the elements of A and B

31
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to a finite number of figures to enter them into a computer. Consider, for
example, the Hilbert matrix of order n,

112 - n
= | - s 3
1n e 1@ - 1)

if we were working with, say, a 27-bit binary machine, several of the
elements of H,—for example, +—would be truncated to 27 bits upon
entering H, in the machine.

Finally, we will see in Part 1V that as a result of the analysis of the
rounding error made in carrying out gaussian elimination on (1) that the
computed solution satisfies exactly an equation of the form (2).

Now assume that 4 + E is nonsingular and that Y satisfies (2). Then

X—Y=A"'B—(A+E'B+F)=A+E EX-F), @&

which gives an exact, although somewhat clumsy, representation of the
error X — Y. It will be convenient to recast this into a relative estimate
using norms. From (1) we have

X1 =141~ "1 BI 3)
so that from (4) it follows that
X -7 - IFIl
L <+ B (I + 14 ) 6
X Ii€ ) 1+ 14l IBI (6)

It is now necessary to obtain an estimate for | (A4 +E)™}|. The following
basic result also gives a sufficient condition that A +E be nonsingular.

2.1.1 (Perturbation Lemma, Banach Lemma) Let AeL(R") be non-
singular. If E e L(R") and |4 ||E] < 1, then A +E is nonsingular and
- 4=
A+E) < —ri.
WA+ B = T

Proof: Set B= —A 'E; then |B| <1. It follows from the Neumann
lemma 1.3.10 that I — B is nonsingular and that

(I-B) =% B
i=0
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Hence

R
=81~ 1= T4~ T IE]

ItI- Byl < 2 IBl*=
=0

But
A+ E=A(I+ A 'E)y= A - B)

so that A + E, as the product of nonsingular matrices, is nonsingular and

A—l
A+ B) =1 - By 4 < I47 | 555

~ 1A~ IEN

As a consequence of 2.1.1 together with (6) we may summarize our
error estimate as follows.

2.1.2 (Error Estimate Theorem) Assume that the conditions of 2.1.1
hold for A and E € L(R") and that X and Y satisfy (1) and (2), respectively.
Then

lx— Y| _ A~ 14 {IIEII IIFlI}_ )

X S 1A IEl 4] T 1Bl

Note that if E = 0, (7) reduces to simply

| X Y —1 IFI
—— <4 Al — E=0),
il | I 1Al 1Bl (

that is, the relative error in X is bounded by the relative error in B times
the factor |47 '] | A]l. This same factor plays a dominant role in (7) also,
and becomes a useful measure of the stability of the solution X.

2.1.3 Definition Let A € L(R"). Then

Al 11471 if A is nonsingular

k) = + 90 if A is singular

is the condition number of 4 (with respect to inversion and with respect to
the particular norm used).
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In terms of the condition number, (7) may be written as

X - Y| K(4) IEI  IFI
< Ll @)
(g 1 — K(ADE|/NA4D 4l |1B]
Since, by assumption, a= KA)(IE|/IAID = A" |E| <1, we may
expand (1 — @)~ ! by its geometric series

1 2
——=1ltata® +---
l—«a

and conclude that, to a first-order approximation, the relative error in X
is K(A) times the relative errors in A and B.

As indicated in 2.1.3, K(A4) depends upon the norm; for the /, /,, and
I, norms we will denote the corresponding condition number by K(4),
i=1,2, c0.

In any norm, 1 < K(A)<co and for “large” values of K(A4), the
matrix A is said to be ill conditioned. Here ““large’ must be interpreted in
somewhat subjective terms. For example, if K(A)=100, the estimate (8)
shows that relative changes of 107® in the right-hand side may cause
relative errors in the solution of 10~°, which may or may not be considered
to be a large degradation in the accuracy.

One limiting case of the condition number is when A is singular, while
the other limiting case is when K(4) =1 and then A is said to be per-
fectly conditioned. Note that whereas K(A4)= + co is norm independent,
the class of perfectly conditioned matrices depends on the norm. For
example, in the /, norm the perfectly conditioned matrices are precisely the
class of scalar multiples of orthogonal matrices, but this is not necessarily
true in other norms (see E2.1.5).

We return to the Hilbert matrix (3) which is perhaps the classical
example of an ill-conditioned matrix. Suppose that n =6 and let Hg
denote the matrix with elements truncated to 27 binary digits of accuracy
(Hgs would be the matrix actually sitting in the memory of a 27-bit
machine). Hence

IENl, _ IHg~Hell,
14l = " TH,

=10"8

The exact solutions of the systems

H6x=el, H(,i:el
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are given by
xT = (36, —630, 3360, — 7560, +7560, —2772)

X" =(36.04---, —631.8 ---,3374.8 -, —7602.6 -+, 7610.3 ---,

—2792.8 --7)
so that
Ix — Xl

1%l

that is, the relative error in the solution is about 5 - 10* times the relative
error in the coefficient matrix. We would guess from this that K(H,) is at
least 5 - 10*. Actually, it is even larger.

We note first that for any nonsingular symmetric matrix 4 € L(R"),
Theorem |.3.4 together with El.1.6 imply that

KZ(A) = |'1|max/"1| min (9)

where |A] ey @and | 4|, are, respectively, the maximum and minimum
absolute values of the eigenvalues of A. The eigenvalues of H, for the first
few values of n have been computed,t and the resulting condition num-
bers are tabulated in Table 1.

=5-107%;

TABLE 1 Condition Numbers of the Hilbert Matrix

n 3 5 6 8
K, (H) 5-102 5-10° 15-10°  15-10°

For an arbitrary nonsymmetric matrix, (9) does not necessarily hold
(see E2.1.10), but we always have

K(A)Z |'1|max/|'1|mm (10)
in any norm. This follows from
4l = p(A) = | A ax> 147 = p(A™Y) = 1| A] myia-

Hence, if A has any small eigenvalues, or more precisely if the ratio of
largest to smallest eigenvalue (in absolute value) is large, then A is ill

conditioned although the converse does not necessarily hold (see E2.1.10
and E2.1.11).

1 See, for example, R. Gregory and D. Karney, “A Coliection of Matrices for
Testing Computational Algorithms,” Wiley (Interscience), New York, 1969.
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We end this section by noting that Theorem 2.1.2 shows that the solu-
tion of the system AX = B is a continuous function of the elements of A
and B at any point for which A is nonsingular. It is important to realize
that there are many computational problems for which this basic property
of continuity does not hold; in some sense, discontinuity is the limiting
case of ill conditioning. Consider, for example, the problem of computing
the rank of A. This is, in general, an *‘ impossible >’ problem because rank
A is not necessarily a continuous function of A. For example, the matrix

w-ly |

has rank two for ¢ # 0 but rank A(0) = 1. This shows, in particular, that
the problem of determining whether a matrix is singular is, in general, also
“impossible.”

EXERCISES

E2.1.1 Show that thecomplex linear system AX = B, where A = A, +iA,,
B=B, +iB,, X=X, +iX,, i=(—1)!'?, may be solved by solving the

real system
4, —A][X]_ [Bs
AZ Al XZ BZ )

E2.1.2 Consider the system

Ax E[i :01][2] - B-Ol]

with exact solution x; = x, =1, and the system

(A +E)y E[} ;.011] B:] - [;.01]‘

Compute K_(A). Compute || x—y|l,/IIX|l, and the estimate for this from
the error estimate theorem 2.1.2.

E2.1.3 Prove 2.1.| and 2.1.2 for complex matrices.
E2.1.4 Calculate K,(A4), K,(4), and K (A) for
1 2
i

E2.1.5 Let A € L(R") be nonsingular. Show that K,(4) =1 if and only if
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A is a (nonzero) scalar multiple of an orthogonal matrix. Show, however,
that K(A4) # 1 for the orthogonal matrix

2 [2 —1].
Sz
E2.1.6 Llet A e L(R") be nonsingular. Show that K(4) = K(aA) for any

nonzero scalar a. Show that K,(4) = K,(AU) = K,(UA) for any orthogo-
nal U e L(R").

E2.1.7 Llet D =diag(107}, ..., 107 ') € L(R"). Compute det D and K,(D)
as a function of n. Comment on the size of the condition number compared
with the determinant.

E2.1.8 Let A € L(R") be nonsingular and E = a4 for |a| < 1. Show that
the solutions of Ax =b and (4 + E)y = b satisfy

Ix =yl < laf IxI/T = ja]).
[Note the absence of K(A).]

E2.1.9 Consider the matrix A = I + ouu” for some vector u with u™u = 1.
Show that the eigenvalues of A4 are 1, with multiplicity » — 1, and 1 + «.
Hence, for an arbitrary number N >1 choose « such that K,(4) = N.
(This gives a simple means of generating full matrices of arbitrary condi-
tion number.)

E2.1.10 Consider the matrices

- 1 -1
A=[1 —1.00001]’ B=[—1 1.00001]'

Show that the ratio of maximum to minimum eigenvalue is about 1 for A
and about 4 - 10° for B. Show, however, that K,(4) = K,(B). Conclude
that the ratio of maximum to minimum eigenvalue is not a good condition
number for nonsymmetric matrices. Is A well conditioned or ill condi-
tioned ?

E2.1.11 Consider the 100 x 100 matrix
0.501 -1
0.502 -1

O

O 0600,
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Show that the first component of the solution of Ax =e, is
x, = 1/(0.600 x 0.599 x --+ x 0.501) > (0.6)~'°° > 10?2

and hence K_(4)> 10?' although |A|,./|4|mia =1. (See Wilkinson
{1965] for further discussion of this example.)

22 A POSTERIORI BOUNDS AND EIGENVECTOR COMPUTATIONS

If Ae L(R" is ill conditioned, then small changes in the elements of A
or B may produce large changes in the solutions of

AX = B. (1)

Another consequence of ill conditioning is that it may be difficult to deter-
mine if an approximate solution Y of (1) is sufficiently accurate. The stan-
dard test of such an approximate solution is to compute the residual matrix

R=AY-B )

and if the elements of R are ““small” then one concludes that Y is satis-
factory. In fact, the ‘“smallness > of R is no guarantee that Y is close to the
true solution X. (See E2.2.1.) As in the previous section, it is the condition
number, K(A) = || 4| |47, which again plays the crucial role.

2.2.1 (A Posteriori Error Estimate) Let 4 € L(R") be nonsingular and
let X, Y, B, and R e L(R", R™) satisfy (1) and (2). Then

Y- X=d'R, 3)
and
Y- x| IR]
2= 20 ka2 4
i = KDy @

Proof: Clearly
Y- X=A""R+B)—A"'B=A"'R.
Then, since || X || >[4l BIl,

Iy —Xi _ 14" "R
hxl = 14h~'1BI

which is (4). $8$
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Note that in the special case B = I, we may obtain from the first line
of the proof that

lY—4""}

=R
4=l

It is important to realize that there are problems in which the coefficient
matrix of the linear system is necessarily ill conditioned, but that this does
not lead to erroneous results. Consider the computation of an eigen-
vector of A once an approximate eigenvalue 1 has been obtained. Although,
by definition, the eigenvector is a nonzero solution of the homogeneous
system (4 — AI)x = 0, it is much better in practice to attempt to solve the
inhomogeneous system

(A-IDx=> (5

for some “‘almost arbitrary ” right-hand side b.

In order to understand why this procedure is valid, and also what re-
strictions need to be placed on b, we will analyze the solution of (5) in terms
of the eigensystem of 4. Assume, for simplicity, that 4 has » linearly inde-
pendent eigenvectorsu,, ..., u,, corresponding to the eigenvalues 4, ... , 4,.
Then b may be expanded in terms of the eigenvectors as

i=1
Now assume that 1 = A, butthat 1 # A;,i =1, ..., n. Then (by El.1.6 and

EI.1.7) the eigenvalues of (4 —A)~ ' are (4; — D)™, i=1, ..., n, corre-
sponding to the eigenvectors uy, ..., u,. Hence

n ol

X=(A —II)-lb= .ZIT_L—IHI'. (6)

To understand the utility of this basic representation, suppose, for
example, that a; = --- = a, = 1, so that b has “equal weight” in all the
eigendirections, that 1 is a “good” approximation to 4,, say

1A, — 1] = 1078,

that A, is well-separated from the other eigenvalues, say |4, — 4;| > 1072,
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i=2, ..., n and that the eigenvectors have been normalized so that
lu;l =1,i=1, ..., n. Then (6) yields

|| < 32 — 1)1075

+x
lIxIl
where the sign is chosen so that +x and u, point in the same direction.
This estimate implies that +x/[|x| is an approximation to u; good to
approximately six decimal places (for small n).

In general, the goodness of the approximation (6) to u, depends on
three factors:

(@ |4, —4| should be as small as possible;
(b) |A;—1|,i=2,...,nshould be as large as possible;
©) J|oy|/|a], i=2,...,nshould be as large as possible.

Condition (c) simply states that the right-hand side, b, should be as much
in the direction of the sought eigenvector as possible; if b is in the direction
u,, then so is x, while if b contains no component of u, (i.e., if «, =0),
then neither does x. Condition (b) indicates that even if (a) holds, it may
be that 1, is in a “cluster ” of eigenvalues and x will be contaminated by
contributions from the corresponding eigenvectors. Condition (a), in con-
junction with (b), implies that we wish the coefficient matrix A — 1/ to beas
ill conditioned as possible; this follows from (2.1.10). This ill conditioning
is reflected in the fact that the rounding error produced in solving (5) may,
in fact, cause a large error in x; but if (b) holds, the effect is that x will be
in error primarily in the directionu,,and it is precisely this direction we are
attempting to find. Hence, this ill conditioning does not cause a deleterious
effect.

The above analysis has straightforward implications for a posteriori
bounds based on the residual. Suppose that 4 has a small eigenvalue and
that y is a corresponding eigenvector. Then if X is an approximate solution
of Ax =b, it follows that

r=Ax—-b=AX+y)—b @)

For example, suppose that the small eigenvalue is 4 = 1078, Then (7)
shows that the effect on the residual of adding y to X is 1078 of the effect
on the approximate solution itself. The implication of this is that large
errors in the solution in the direction of y are noteasily detectable by examin-
ing only the residual vector.
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EXERCISES

E2.2.1 Consider the system?

0.780x, + 0.563x, = 0.217
0.913x, + 0.659x, = 0.254.

Compute the residual vector, Ax — b, for the two approximate solutions
(0.341, —0.087) and (0.999, —1.001) and *conclude” from the size of
these residuals which is the better solution. Then show that (1, —1) is the
exact solution.

F222 Lett
L[ 9999, 99981 L [ 9999.9999 —9997.0001
= [10000. 9999.]° B =|-10001. 9998.
Show that
19998. 19995, 0.0001 0.0001
BA_’=[—19999. —19996.]’ AB_I_[O 0 ]

Using these residuals, compute a bound for 47! — B,

o[ ]

has eigenvalues 1 and 3 and compute the eigenvector u corresponding to 3.
Now suppose that 4 = 2.99 is an approximate cigenvalue and compute a
corresponding eigenvector by solving the system

E2.2.3 Show that the matrix

(4—-71Dx = (1, 2"

Normalize both u and x in some norm and comment on the accuracy of x.

READING

Excellent references for the material of this chapter are Wilkinson
[1965], Wilkinson [1963], and Forsythe and Moler [1967]. See also
Householder [1964] for a more theoretical treatment.

1 This example is due to C. B. Moler.
t This example is due to G. E. Forsythe, Amer. Math. Monthly 77 (1970), 931-955.



CHAPTER 3

EIGENVALUES AND EIGENVECTORS

3.1 CONTINUITY RESULTS

In this chapter we shall consider the following question. How do the
roots of a polynomial

PA=A"+a,_ "1+ +al+a M

vary as functions of the coefficients a4, ..., a,_,, and, more generally, how
do the eigenvalues and eigenvectors of a matrix 4 vary as functions of the
elements a;; of 4?7 Since the roots of (1) are just the eigenvalues of the
companion matrix

—Qy- e —4dp
1. 0 - 0
O 1 0
of p (see E3.1.1), the first question is really a special case of the second.
We begin with a basic theorem that the roots of a polynomial are con-
tinuous functions of its coefficients. The proof will be based on the follow-

ing famous result in complex variable theory. (For a proof, see essentially
any intermediate-level book on complex variables.)

2

Rouche’s Theorem Assume that f and g are analytic and single valued
in a domain D and on its boundary D, and that on D, |z) — g(2)| < |f(2)|.
Then f and g have exactly the same number of zeros in D.

42
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3.1.1 (Continuity of Roots Theorem) Let p be the polynomial (1) with
real or complex coefficients 4y, ..., a,_, and with roots 4, ..., 4,. Then
for any sufficiently small ¢ > 0, there is a 8 > 0 such that the roots u; of
any polynomial

g =A"+b,_ A 4+ b, (3
with |b; —a;| <8,i=0, ..., n— 1, can be ordered so that

[A; — | < e, i=1,..., n C)]

Prooft: lety,, ..., 7., be the distinct roots of p, assume that 0 <& <
yi—y;l fori, j=1,..., m, i#j (if m> 1), and define the disks D; =
{z: | z— ;| <e¢} with boundaries D;, i =1, ..., m. Then, since the D,
are disjoint, p does not vanish on any D, and, because of the continuity
of p and the compactness of D;, there is an m; > 0 so that

|p@)| =m;, zeD;.
Next let
M;=max{|z"" |+ --+|z| + 1:ze D}.
Then
l92) — pl2) | <oM;,  ze D,
and if o is chosen sufficiently small that M8 < m; it follows that
|p(2)| > |a(2) = p2)|,  ze D,.

Hence, Rouche’s theorem ensures that p and ¢ have precisely the same
number of roots in each D;, and the result follows. $$$

It is important to note that Theorem 3.1.1 does not imply that the roots
of a polynomial are well conditioned with respect to changes in its co-
efficients. Consider, for example, the polynomial

=0 (5)

t This proof is adapted from that given in J. Franklin, *“ Matrix Theory,” Prentice-
Hall, Englewood Cliffs, New Jersey, 1968.
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that is, the coefficients a,_,, ..., a, of (1) are all zero. Now change the
coeflicient a, by ¢ and consider the polynomial

M—-e=0 6)

where we assume ¢ to be positive. Then the roots of (6) are 4; = wlet/",

Jj=1,..., n, where w = exp(i2n/n) is an nth root of unity. Hence a change
of ¢ in one coefficient produces a change of modulus &'/” in the roots.

Figure 3.1.1

Note also that the multiple root A = 0 has “scattered ” into n simple roots
symmetrically placed about the origin in the complex plane (see Figure
3.1.1). Now suppose that # = 1¢0 and £ = 107°°, Then £'/" = 10! so that
the magnitude of the change in the root is 10°° times the change in the
coefficient. This is, of course, an extreme example but deleterious effects
can also occur for polynomials of very low degree. Consider, for example,
the quadratic

A* — 24 4 0.99999999

with roots 1 +10™%. If we change the constant term to 1, then the roots
both become 1, so that a change of 1072 in one coefficient has caused
changes 10* times as large in the roots.

The above discussion is indicative of the fact that multiple roots of a
polynomial are ill conditioned. But ““ well-separated ” roots may also be
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ill conditioned as the following example shows.t Consider the polynomial
20

phy =Tl -k ™)

k=1

and the perturbed polynomial p(4) = p(1) — eA'®. Fore =272* = 1077 the
roots are, rounded to the number of places given,

1.0 6.0 11.8 + 1.7i
2.0 7.0 14.0 + 2.5
3.0 8.0 16.7 + 2.8i
4.0 8.9 19.5 + 1.9¢

5.0 10.1 £ 0.6i  20.8

Since the coefficient of x'® in p(x) is 210, we see that a change in this one
coefficient of about 10779 has produced such large changes in some of
the roots that they have become complex.

We turn next to the effect of changes in the elements of a matrix upon
the eigenvalues of the matrix. A first basic result is the following.

3.1.2 (Continuity of Eigenvalues) The eigenvalues of a matrix are con-
tinuous functions of the elements of the matrix.

This is an immediate consequence of Theorem 3.1.1 together with the
fact (E3.1.4) that the coefficients of the characteristic equation are contin-
uous functions of the elements of the matrix.

It is important to note that 3.1.2 does not, in general, hold for the
eigenvectors of a matrix (E3.1.5). However, it does hold for simple eigen-
values as the following result shows.

3.1.3 (Continuity of Eigenvectors) Let A be a simple eigenvalue of
AeIL{C") and let x#0 be a corresponding eigenvector. Then for
Ee L(C"), A + E has an eigenvalue A(E) and eigenvector x(E) such that

ME) - 4 and x(E) — x as E-0.

t Whether the roots of (7) are, in fact, well separated is open to interpretation. The
coefficients a, of (7) range in magnitude up to 10?° and the /, norm of the companion
matrix (2) is about 102!, Relative to this norm, the roots of (7) are almost multiple. See
Wilkinson {1963, p. 43].
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Proof: Since 2 is simple, it follows immediately by consideration of the
Jordan form of 4 that 4 — AJ has rank n — 1. Hence, there are indices
i and j such that x satisfies the system

_Z (akm - 5km'l)xm = (akj - 5k_i'l)x_i’ k 76 i (8)

m# j

where the coefficient matrix of this system is nonsingular, and where §,,,
is the Kronecker delta. Without loss of generality, we may assume that
x; =1,

Now let 2(E) be an eigenvalue of 4 + E such that A(E) —» 2 as E - 0;
such a sequence of eigenvalues exists by 3.1.2. Moreover, for sufficiently
small |E|, 2(E) is also simple and the matrix 4 + E — A(E)/ is also of rank
n — 1; in fact, it follows from Theorem 2.1.| that the submatrix obtained
by deleting the ith row and jth column is nonsingular. Therefore, the
system

_Z (Am + Clm — i ME))x,(E) = (ai; + ej — 6y, AE)), k#i

m#j
has a unique solution x,(E), m # j, which, again by 2.1.1, is a continuous
function of E. That is, x,,(E) — x,, as E — 0 for m # j, and we may choose
xi(Ey=x;=1. $8%

EXERCISES

E3.1.1 ¥ A is the matrix (2), show that
det(l]— A) = " + a"_l}_""l + -+ a,.

E3.1.2 Denote the roots of the quadratic equation x* + bx + ¢ =0 by
x4 = x4(b, ¢), considered as functions of b and c. Show that

b 8xy 1

6xi_ 1 1_______ Oxy 1
b 22 —40 7 o YW Zaomn

= -+
ab 2
and that, therefore, these derivatives are infinite at a multiple root. Com-
ment on the relationship of this result to the conditioning of the roots.

E3.1.3 Consider the n x n matricesf

+ In this context, B is sometimes called the Forsythe matrix.
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a1 0O a1 O
O :

where A and B differ only in the (n, 1) element. Show that the eigenvalues
A; of B satisfy
[4; —a| = |g|'n, i=1,...,n

Consider the special case ¢ = 107" and discuss the percentage changes in
the eigenvalues as a function of both » and a.

E3.1.4 Let A € L(C"). Show that det 4 is a continuous function of the
elements of A and, more generally, that the coefficients of the character-
istic polynomial det(4 — AI) = 0 are continuous functions of the elements
of A4.

E3.1.5f Show that the matrix

_ |1+ ecos(2/e)  —esin(2/e)
Ate) = [ —esin(2/e) 1 — & cos(2/e)

has eigenvalues 1 + ¢ and corresponding eigenvectors (sin(1/e), cos(1/e))T,
(cos(1/e), —sin(1 /s))T. Conclude that these eigenvectors do not tend to a
limit as ¢ — 0 even though lim,_,,A(¢) exists.

], e#0

3.2 THE GERSCHGORIN AND BAUER-FIKE THEOREMS

Although the continuity results of the previous section are extremely
important, they do not give any information as to the magnitude of the
changes in the eigenvalues or eigenvectors as a result of changes in the
elements of the matrix. We now give several such results, The first is an
example of a localization theorem, that is, it gives regions in the complex
plane which are known to contain eigenvalues of the matrix.

3.2.1 (Gerschgorin Circle Theorem) For A =(a;;) e L(C"), define the
disks

Ri={z:|ai;—z|52|a1j|}, i=1,...,n
J#i

t This example is due to J. W. Givens.
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in the complex plane. Then every eigenvalue of A lies in the union
S = Ji- R;. Moreover, if § is a union of m disks R, such that S is
disjoint from all other disks, then § contains precisely m eigenvalues
{counting multiplicities) of A.

Proof: Suppose that 1 is an eigenvalue of 4 with corresponding eigen-
vector x # 0 and let i be an index such that

|x,| = max |x;].
1<j<n

Clearly, x; # 0 and hence it follows from

la; — Al |x;| = lagx; — Ax;| =

Yayxi| <Y layllxil

=i TFi

that 1 e R;. For the second part, define the family of matrices 4, = D + tB
fort € [0, 1], where D = diag(a,,, ..., a,,) and B = 4 — D. Let Ri(r) denote
the disk with center a;; and radius t Y ., |a;;|. Without loss of generality
we may assume that S = Ur R;. Set S =\)m ,R(t) and S(1) =
(- m+1 Ry(1). By assumption, S(1) is disjoint from S and, clearly, this im-
plies that S(t) and S5() are disjoint for all ¢ & [0, 1]. In particular, S(0) must
contain precisely m eigenvalues of 4,, namely, a,,, ..., @pm. Now the first
part of the proof implies that the eigenvalues of 4, are all contained in S(¢)

U S(#) for all ¢ € [0, 1]. But since S(¢) and S(¢) are disjoint, the continuity

theorem 3.1.1 shows that an eigenvalue of A4, cannot “jump” from

S(#) to 8(¢) (or conversely) as t increases. Hence, since S(0) contains pre-
cisely m eigenvalues of 4,, S(t) must contain precisely m eigenvalues of
A, for all t € [0, 1]. The situation is depicted in Figure 3.2.1. $3$%

RN

Ry1)

Ry(1) R,

Figure 3.2.1
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As a very simple example of the use of 3.2.1 consider the matrix

2 2 2
A=12 4 1}.
1 1 10
From p(A4) < || 4], we obtain the very crude estimate that all eigenvalues

lie in the disk {z : |z| < 12}, but by 3.2.] we have the sharper result that the
eigenvalues lie in

{z:]z=2| <4tufz:|z—4| <3 u{z:{z-10| <2}

Figure 3.2.2

Moreover, since the last disk is isolated, 3.2.1 ensures that it contains pre-
cisely one eigenvalue. The estimates are depicted in Figure 3.2.2. A more
interesting example is the followingt:

If the off-diagonal elements of a matrix are very small, then we expect
the eigenvalues to be approximately equal to the diagonal elements,
This statement can be made more precise by Gerschgorin’s theorem. Con-
sider the matrix

09 O 01 04 —02
B= 0.4 +107% 0.1 0.5 0.1 (1)
O o2 02 01 03

T Given in Witkinson [1965, p. 74).
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Then by 3.2.1 the exact eigenvalues of B satisfy
4, — (0.9 + 1079)] <06-10"% or [4, —09] <0.7-107%
A, —(04+0.5-107%)] <02:10"% or |4, —-04|<07-10"% (2)
A3 —(0.24+0.3:107%)| <0.3-107° or [4; —02] <0.6-10"3

While it would be rare that a matrix such as B would be presented to us
a priori, it might well arise by an a posteriori analysis of a computed eigen-
system. That is, suppose that for some 3 x 3 matrix A we have computed
approximate eigenvalues 0.9, 0.4, and 0.2, and corresponding approximate
eigenvectors which we take to be the columns of a matrix P. Now assume
that the matrix B of (1) is obtained by B = P~'4P, where we suppose, for
simplicity, that this similarity transformation is done exactly. Then B is
similar to 4 and has the same eigenvalues, so that the above procedure
provides an a posteriori error analysis.

Note that while the second set of inequalities in (2) gives bounds on the
originally computed eigenvalues, the first set gives slightly improved bounds
for a corrected set of eigenvalues obtained by adding in the diagonal ele-
ments of the second matrix of (1). A more interesting correction procedure
is to perform diagonal similarity transformations on B. Multiply the first
row of B by 1072 and the first column by 10°. This is a similarity trans-
formation with the diagonal matrix D, = diag(10~%, 1, 1) and hence

0.9 O 0.1-107% 0.4-107!° —0.2-1071'°
0.4 + | -0.1 0.5-1073 0.1-107% |.
2

O o 0.2 01-10"*  0.3-10"5

Since the first disk still does not overlap the other two, Theorem 3.2.1 now
ensures that

D.BD;' =

[A, —(09+107%)] <6-107'1,

Analogous similarity transformations using D, = diag(l, 107°, 1) and
D, = diag(l, 1,107 %) yield

|4, — (04 +0.5-107%)| <2-107", |4, —(0.2+ 10°%)| < 5-107 11,

Clearly these bounds are rather spectacularly better than those of (2) and
at the cost of very little effort.

We summarize the above correction procedure in the following
statement.
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322 (Wilkinson Correction Procedure) For A4 e L(C") assume that the
disk

R = {z: |z —ayl < aZ |aijf}
i#
is disjoint from all the disks
zi|z—ay| <o ayl + ), |akj|}, k=1,...,n k#i.
J#k, 1
Then R contains precisely one eigenvalue of A.

We turn our attention next to perturbation theorems, that is, to theo-
rems which give an estimate of how much the eigenvalues of 4 + E can
differ from those of A. The first result, a special case of which has already
been used in the previous example, is an easy consequence of 3.2.1.

3.2.3 Assume that A = PDP~'e L(C"), where D = diag(4,, ..., 4,), and
that 4 + E has eigenvalues y,, ..., y,. Then given any yu; there is a A;
such that

[4; = w;| <IP7'EP| . (3)
Moreover, if A; is an eigenvalue of multiplicity m and the disk
R={z:|z— 4] <|P 'EP|} 4
is disjoint from the disks
{z:]z— A&l <IP7'EPlo},  A# 4 (5)
then R contains precisely m eigenvalues of 4 + E.
Proof: Set C = P~*(4 + E)P; then C has eigenvalues y,, ..., u,. Denote

the elements of P"'EP by b;;, i, j =1, ..., n. Then the diagonal elements
of C are A, + b, and by 3.2.1 there is an i such that

| A+ bi = w5l < X [bael-
k#i
Hence

|'1i_iuj| Skzllbﬂ < "P—IEP"oo' (6)

The last statement follows directly from the last statement of 3.2.1. $$$
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Theorem 3.2.3 was proved in the /, norm, and it also holds, trivially,
in the I, norm (E3.2.8). For theoretical purposes, we would like the result
to be true in the /, norm. It turns out that this is the case and that, indeed,
it holds for any norm with the following property.

3.2.4 Definition A norm [|-|on R" or C" is monotonic (or absolute) if
for any diagonal matrix D = diag(d,, ..., d,) the corresponding operator
norm satisfies

It follows immediately from 1.3.4 and 1.3.5 that the /,, /,, and /, norms
are all monotonic. Indeed, any /, norm is monotonic as an immediate
consequence of the following characterization (which is usually given as
the definition). We note, however, that elliptic norms are not monotonic
in general (E3.2.9).

32.5t A norm on R" (or C") is monotonic if and only if |x;| < |y;],
i=1,..., nimplies that ||x|| < |y|.

We can now prove the desired extension of 3.2.3.

32.6 (Bauer-Fike Theorem)t The conclusions of 3.2.3 hold in any
monotonic norm,

Proof: Again,let C=P (4 + E)P = D + B with B =P 'EP, and con-
sider any eigenvalue u of C. If D — ul is singular, then u = ; for some i,
and the theorem is proved. Hence, assume that D — ul is not singular.
Then

C —pul=(D— ph[I + (D - ul)”'B],

and since C — ul is singular, it follows that 7 + (D — uI)~'B is singular.
Therefore, (D — ul)"'B has —1 as an eigenvalue so that

(D — )" "I | Bl = I(D — pu)""'Bll = 1. (M

1 For a proof, see Householder [1964, p. 471.

t F. Bauer and C. Fike, Numer. Math. 2 (1960), 137-141. Actually a slightly sharper
result [see J. Osborn, Numer. Math. 13 (1969), 152-153] already had been proved by
J. T. Schwartz, Pac. J. Math. 4 (1954), 415-458, in a different context.
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Since the norm is monotonic

1
(D — uD)~ ' = max = — ,
(D= ul) Al miml 4 — Al

and, hence, by (7),
min |4; — u| < |PT'EP|.

The second part follows precisely as in the Gerschgorin theorem 3.2.1. $$$

We have given an example of an a posteriori analysis based on
Gerschgorin’s theorem, and under the assumption thata complete approxi-
mate eigensystem was known. We next give a somewhat different result.

Suppose that 1 and x are an approximate eigenvalue and eigenvector
of A € L(C"). To test the accuracy of these approximations it is natural
to form the residual vector r = Ax — Ax. If r = 0, then, of course, A and x
are exact, but if ||r| is only small, then A may be far from an eigenvalue
(E3.2.10). The best estimates we can obtain depend upon the conditioning
of the eigenvalue.

3.2.7 Assume that 4 = PDP™' € L(C") with D = diag(4,, ..., 4,). Then,
in any monotonic norm, if |AXx — Ax|| < & with |x|| = I we have

min |[1; — A| <e||P7Y ||P). ®)

15ign

Proof: We may assume that D — A/ is nonsingular or else (8) is trivial.
Then

r=Ax —Ax =P(D - AP 'x
so that

P=xl = P(D—AD~'P 'rl < e|lP| |P™ " [}/min {4; — ]

which is (8). $3$

Theorems 3.2.3 and 3.2.6 show that a crucial factor in the analysis of
the eigenvalues of 4 + E is the matrix P~ 'EP. We now make a somewhat
finer analysis, still under the assumption that

P~ 'AP = D = diag(4,, ..., A,).
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Let x,, ..., X, denote the columns of P and s;'yT, ..., 57!yl the
rows of P~!, where we assume that ||x;|, = |ly;l, =1, i=1, ..., n. From
the fact that P™'P = [, it follows that yx; =s;6;;. Suppose, now, that
A; is a simple eigenvalue. Then for sufficiently small | E|,, the disk R
of (4) will be isolated from the disks (5) and 3.2.3 ensures that R contains
precisely one eigenvalue y; of 4 + E. Moreover, from (6) we have

[ —p;l < kZ iy;‘rEkaSd-
=1

The crucial factor in this estimate is the quantity s; = y/x;, and we will
use its reciprocal as a condition number of the eigenvalue ;.

3.2.8 Definition Let A be a simple eigenvalue of 4 € L(C") and let
Ax = Jx and y'4 = Ay", where x, y # 0. Then y is a left eigenvector of A
(and in this context x is a right eigenvector). Assume that x|, = |y[, = I.
Then |{y™x| ~! is the condition number of A.

Since we may take x as the ith column of P and a scalar multiple of y'
as the ith row of P!, where P is the matrix such that P~ '4P is the Jordan
form of A with A in the ith diagonal position, it follows from P"'P =17
that y™x # 0. Note that it is y* and not y" which is used, even if y is
complex. Note also that the condition number is bounded by K,(P) (see
E3.2.6).

In order to substantiate somewhat further the role that {y"x| ™! plays
as a condition number, we end this section with the limiting case of 3.2.3
as E-0.

3.2.9 Assume that 4 € L(C") is similar to a diagonal matrix and let A be
a simple eigenvalue with left and right eigenvectors y and x. Let C e L(C")
be fixed but arbitrary and set E = ¢C. Assume that ¢ is so small that the
disk R of (4) is isolated from the disks (5) and let A(g) be the unique eigen-
value of 4 + E in R. Then
T
2(0) = lim X0 =4 _ ¥ Cx

=0 & Y¥x

Proof: Let x(¢) be an eigenvector corresponding to A(g) so that

(4 + eC)x(e) = Ae)x(&).
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Then subtract Ax = Ax and add and subtract ix(¢) to obtain
A(x(e) —x) + eCx(e) = (Ae) — A)x(e) + A(x(e) —X)
Now multiply through by y'. Then the first and last terms cancel to leave
ey Cx(e) = (A(e) — A)y"x(e).

By 3.1.3, it follows that we may assume that x(g) is chosen so that x(g) — x
ase—0. $3%

EXERCISES

E3.2.1 Show that Theorem 3.2.! remains valid if R; is replaced by
{z:la; — 2| < Yjpilanl}.
E3.2.2 Suppose that

01 0 1.0 02

02 03 01 03

0.1 0.1 0.1 02
01 02 02 0.1

and observe that ||A4|;> 1, i=1, c. Show, however, that p(4) < | by
considering DA D' for a suitable diagonal matrix D.

E3.2.3 Consider the matrix
| 1075 1073
A=1}10"% 2 1073
1075 107 3

with eigenvalues 4, < 1, < A5 . Give the best bounds you can for {1; — j{,
Jj=1,2,3, by means of 3.2.1 and 3.2.2.

E3.2.4 Give a formal proof of 3.2.2.

E3.2.5 Give an example of matrices 4 and E such that || E| is arbitrarily
large but 4 and 4 + E have the same eigenvalues.

E3.2.6 Let 4 € L(C") have distinct eigenvalues, and let D= P~ 'AP be
diagonal, where it is assumed that the columns of P are normalized to
euclidean length 1. Show that

max ¢; < K,(P)
l<ign

where c,, ..., ¢, are the condition numbers of the eigenvalues.
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E3.2.7 Suppose that 4 € L(R™ has eigenvalues 4,, ..., 4,, corresponding
linearly independent right eigenvectors u,, ..., u,, and left eigenvectors
Y,, ..., V,, normalized so that |u,l, = |vill,=L i=1, ..., n. Set ¢; =
fvlu;} 7% i=1, ..., n. Show that the solution of Ax = b satisfies

n c'

Ixll, < IIblly Y —.

i=1 |Al|
Conclude that 4 is ill conditioned (with respect to the inverse problem)
only if either some 1; is small or some c; is large.

E3.2.8 Use E3.2.1 to conclude that 3.2.3 holds in the /; norm.

E3.2.9 Let B € L(R") be symmetric positive definite. Show that the norm
ixll = (x™Bx)'? is monotonic if and only if B is diagonal.

E3.2.10 Let
2 10"
=l 7]

and x" = (I, 107 '%T. Show that |4x — x|/, = 107 '® and thus * conclude ”
that | is an “approximate’ eigenvalue.

E3.2.11 Let A and x be an approximate eigenpair of 4 € L(C") with
]|, = I. Set r = Ax — Ax. Show that A and x are exact for some matrix
B e L(C™ such that rank(4 — B) < | and |4 — B||, < |r|,.

3.3 SPECIAL RESULTS FOR SYMMETRIC MATRICES

If Ae L(R") is symmetric, we know by 1.1.3 that A4 is orthogonally
similar to a diagonal matrix, that is, P~'AP = diag(4,, ..., 4,) where P
is orthogonal. Since |P|l, =P ', =1 for an orthogonal matrix, an
immediate corollary of 3.2.6 and 3.2.7 is the following.

3.3.1 Let A € L(R") be symmetric. Then for any eigenvalue i of 4 + E,
there is an eigenvalue A of A such that

|2 —ul <IEI,. (M

Moreover, if | Ax — x|, < & with ||x||, = I, then there is an cigenvalue 1
of A such that |1 — 1| <e.
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This result is a first indication of the fact that the eigenvalues of a
symmetric matrix are well conditioned. Indeed, if A4 is symmetric, then a
left eigenvector is just the transpose of the corresponding right eigenvector,
and hence the condition number of 3.2.8 is unity.

If the eigenvalues of A are distinct and || E| , is sufficiently small, it also
follows from 3.2.6 that the eigenvalues of 4 and A + E can be ordered
so that

{4 — u;| < |El,, i=1,...,n 2

But if E is also symmetric, it is an interesting fact that (2) holds regardless
of the distinctness of the eigenvalues of A or the size of | E|}, . This will be
a consequence of the following important theorem.

3.3.2 (Courant-Fischer Min-Max Representation) Let 4 € L(R") be sym-
metric with eigenvalues 1, > +++ > A,. Then

A= min max{x"Ax:xe V,, |x|,=1} 3
Vi

where V, is an arbitrary subspace of R" of dimension k.

Proof: Let u,, ..., u, be an orthogonal set of eigenvectors of 4 with
luill, =1,i=1,..., n, and let M, be the subspace spanned by u,, ..., u,.
Then dim M, = n — k + | so that if V, is any subspace of dimension k we

must have V, n M, 3¢ {0}. Therefore there is an x € ¥, ~» M, with ||x|, = I.
Thus, with x =Y 7., B, u;,

n n
Xax=ap =45 0 =
i= i=
so that, since V, was arbitrary,

min max x"4x > A,.

To prove the reverse inequality, let V} be the subspace spanncd by
u, ..., w and let xe V] with x|, =1 and x =Y’ , y;u;. Then

k
xTAx = Y 4y? < A,
i

so that
max{X"Ax :x e V, |xl, =1} <.

Hence, (3) follows. $$%
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As an easy consequence of the previous result, we obtain the afore-
mentioned perturbation theorem.

3.3.3 (Symmetric Perturbation Theorem) Let 4 and 4 + E in L(R") be
symmetric with eigenvalues A, > -+ > 4, and yu, > **- > u,, respectively.
Then

=

13

uil < IEl, i=1...,n

Proof: 1If y=|E|,, then E + yI is positive semidefinite. Hence, since
A + E + yI has eigenvalues y; + 7, 3.3.2 yields

p;+y=min max{x"(4 + E+yDx:xeV;, [x|,=1
Vi

> min max{x"4x:xeV;, [xll,=1=4;
Vi

so that u; — A; > —y. Similarly, since E — yI is negative semidefinite,
#; —y =minmax x"(4 + E — yI)x < minmax x"4x = ;

sothat u; — 1; <y. 333

Theorem 3.3.3 shows that small changes in the elements of the matrix 4
cause only correspondingly small changes in the eigenvalues of A. Hence
the eigenvalues of a real symmetric matrix are well conditioned. It is im-
portant to realize, however, that this statement pertains to absolute changes
in the eigenvalues and not relative changes. Consider, for example, chang-
ing the diagonal elements of 4 = diag(l, 10™',..., 107'%) by 107*°. Then
the relative error in the eigenvalue I is 107'°, but that in 107'% is |. This is
reflected in the observation that a good computational procedure for the
eigenvalues of a symmetric matrix should be able to obtain the largest
eigenvalues with a low relative error, but that there are intrinsic difficulties
in obtaining the lowest eigenvalues with a low relative error.

We next state without proof two famous theorems which complement
and supplement 3.3.3.

3.3.4 (Hoffman-Wielandt Theorem) Let A4, A + E, and E in L(R") be
symmetric witheigenvalues A, > - > 4,, i, = - > y;,andy, = - - = y,,

respectively, and define the vectors
j'=()‘|""’}“n)T’ l‘:(lll""’ﬂru)T’ y=(yl""’)'n)T‘
Then [|4 — pli; < livll2.
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Note that |yl is easily computed in terms of E = (e;) by Iy} =
z e,?, since diag (y,, <+ , v.) is orthogonally similar to F.

For the next result, recall that the convex hull of a set of vectors is the
smallest convex set which contains them.

3.3.5 (Lidskii-Wielandt Theorem) Under the conditions of 3.3.4, 4 lies
in the convex hull of the set of vectors of the form g + Py, where P runs
over all possible permutation matrices.

We give an example of the use of this last theorem as contrasted with
3.3.3. Suppose that n=2 and yu, =1, u, =2, y, = —¢, y, = 2¢. Then
|Ell, = {y2| = 2¢ and by 3.3.3

A, — 1] <2, [y — 2| € 2.

That is, the vector A lies in a square with center g = (1, 2) and side 4
(see Figure 3.3.1). On the other hand, it is easy to see that the convex hull

e
A
’L
Figure 3.3.1

C of 3.3.5 is simply the line segment between the points (I — ¢, 2 + 2¢)
and (| + 2¢, 2 — ¢) so that 3.3.5 gives a much more precise location of the
eigenvalues of 4. It is important to note, however, that 3.3.5 requires es-
timates for all eigenvalues of E.

We next obtain some results on the sensitivity of eigenvectors. We first
give an a posteriori error bound.

3.3.6 (A Posteriori Estimate) Let 4 e L(R") be symmetric with eigen-
values 1,, ..., A, and let | Ax — Ax]||, < ¢ for ||x]; = I. Suppose that

A=A =2d>0, i#j 4
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Then A has a normalized eigenvector u; corresponding to A; such that

Ix = ujll, < y(1 + 9%, (5)
where y = g/d.

Proof: Letu,,...,u, be normalized orthogonal eigenvectors correspond-
ingto 4,,..., 4, and let

Without loss of generality we may assume that a; > O since otherwise we
could work with —u; instead of u;. Now
n

> Ax - ixli= Y (k- Ded > d* T,

i=1 i)
so that, since [x|, = 1,

a=1=Yal=1-y" (6)

it]
Hence, since a; > 0,

(1-a)’ =0 -a)?/Q+a)’ <(1—ad) <y
Thus
Ix — ol =1 - ) + Yaf <yt +*
L]
which is the desired result. $3$3

Note that for this result to be useful, £ should be small compared to d.
It is interesting that as a simple corollary of 3.3.6 we may obtain a
result on the perturbation of eigenvectors. Recall (E3.1.5) that even if A
is symmetric, the eigenvectors are not necessarily continuous functions of
the elements of A unless the corresponding eigenvalues are simple. Hence,
the following estimate involves the eigenvalue separation as well as | E].

3.3.7 (Eigenvector Perturbation Theorem) LetAand 4 + EinL(R")be
symmetric with eigenvalues 4, > --- > A, and py, > - > u,. If

[A;— 4;| = B> |El,, i#], @)

then 4 and 4 + E have normalized eigenvectors u; and v, corresponding
to A; and y; such that

lu; = vills < v+ 972,
where y = | Ell /(B — [ Ell,).
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Proof: By 3.3.3, together with (7), we have
[Ai— | = (A=A = [A— ;] =B~ IEl,, i#j
while, clearly,
Av; — pyv; = —Ey;.
Hence 3.3.6 applies with x =v;and 1 = u;. 338
We consider next a useful procedure for improving an approximate

eigenvalue. Let 4 € L(R") again be symmetric and assume that ||x|, = 1.
Then the quantity

Ag = xTAx (8)

is called a Rayleigh quotient for 4. If x is a reasonable approximation to an
eigenvector, then Az will be an excellent approximation to an eigenvalue.
This is made precise in the following result.

3.3.8 (Rayleigh Quotient Theorem) Let A € L(R") be symmetric with
eigenvalues 1, ..., 4,, and for given x with ||x||, =1 define A; by (8).
Assume that |z — 4| >d>0, i#j, and set y=2¢/d, where &=
[Ax — Agx]l,. Then

[Ag — A, <ey/(1 —9%).
Proof: Let
X = Z o;u;
i=1
where u,, ..., u, are the normalized eigenvectors of 4. Then

2
Ay
i=1

M:

/{R = le‘a? = )'R

the latter equality being trivial since Y «? = 1. Hence
[4; — AR'“% < Z |4; — AR|°‘;‘2 =< (l/d)Z |2 — Ag | %
X} ity
< (l/d)‘;('{i — Ap)%} = (1d)| Ax — Ag x||3 < ey.

Also, by (6),

2 2
“iZl—Y,
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so that

gy &
12— Il < 5 < —

—— . $3%
af ~(1-9%

We consider an example of the previous theorems. Suppose that we
havé computed an approximate eigenvalue 1 and eigenvector x of the
symmetric matrix 4 € L(R"), and that

l4x — x|, <1078, x|, =L

Then, by 3.3.1, 1is within 10”2 of a true eigenvalue of 4. Toapply3.3.6and
3.3.8 we need to obtain estimates on the separation of the eigenvalues, and
we will assume, as is invariably the case, that this information is not
known a priori. Suppose, instead, that we have computed all approximate

eigenvalues and vectors 1, > --- > 1,, and X,, ..., X,, and that
min [4; — A;_,] = 1073 9)
iz2
while
max || Ax; — 4;x;ll, < 1078 (10)

|2

where we assume that |x;]|, = I. Hence, again by 3.3.1, each of the
intervals

L=, —107% 1, + 1079

contains at least one true eigenvalue of 4. More importantly, we can
conclude by (9) that each I, contains precisely one true eigenvalue ;;
for (9) shows that the /; are disjoint, so that if any /; contained two true
eigenvalues, then some /; would have no eigenvalue which would contra-
dict 3.3.1. Therefore, we may take the quantity d of (4) to be d > 107
—1078. Theorem 3.3.6 now shows that for each computed eigenvector
there is a normalized true eigenvector u; which satisfies

1078 1078 \2pi2
— S —_— =107%
b =l < 15=5—75s [1 " (10-3 = 10-8) ]

Finally, if we compute the Rayleigh quotients

R _ T ;
A =x; Ax;, i=1,...,n
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then E3.3.4 shows that (10) holds with 1; replaced by AF. Now assume that
(9) holds for the AR, Then we may again take d > 10~ ° — 107 ® in 3.3.8 and
obtain

(107%)?
~ Al < T 0

K

~ 10713

a considerable improvement over the original estimates.

EXERCISES

E3.3.1 Prove Theorems 3.3.1, 3.3.2, and 3.3.3 for hermitian matrices
in L(C").

E3.3.2 Let H, be the n x n Hilbert matrix of (2.1.3) and let H, be the
matrix obtained by truncating the elements of H, to 27 binary digits, as
discussed in Section 2.1. Give bounds for the deviation of the eigenvalues
of H, from those of H,.

E3.3.3 Let A e L(R") be symmetric with eigenvalues A, <--- < 4, and
let A,_, be the leading principal submatrix of 4 of order n — 1, obtained
by deleting the last row and column of 4. If u, <+ < u,_, are the
eigenvalues of A,_, show that 1, <y, <L <, < <1 <4,.
(Hint- Use 3.3.2.)

E3.3.4 Let A € L(R") be symmetric and x a fixed vector with ||x|, = 1.
Show that 1z = x"Ax minimizes the function

J) = 4% — Xx|,.

E3.3.5 Let A =diag(l,...,n)+ euu® where u' =(I,...,n). Give the
best estimates and error bounds that you can for the eigenvalues and
eigenvectors of A.

READING

The basic references for this chapter are Householder [1964], Wilkinson
[1963], and Wilkinson [1965].



CHAPTER 4

DIFFERENTIAL AND
DIFFERENCE EQUATIONS

4.1 DIFFERENTIAL EQUATIONS

Consider the system of differential equations
Y=Yy,  Yi=n (D
with the initial conditions
»nO =1,  »0=-1 (2

and the exact solution

t

n=et, )= —e"" 3)
Now consider a slight change in the initial condition for y,, say
710)=1+¢, 72(0)= —1.
With this initial condition, the exact solution of (1) is
Pt =12 + e)e™ " + dee, Pa(f) = =32 + g)e™ " + dee'.

That is, an arbitrarily small change ¢ in the initial condition produces a
change in the solution which grows exponentially; in particular,

fyi) = 90} - +0 as t— +o0, i=12 4)

The solution of the initial value problem (1), (2) is unstable with respect to
small changes in the initial conditions and the attempt to compute a
numerical solution will be thwarted by this *ill conditioning.”

64
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There is a well-developed mathematical theory of stability of solutions
of initial value problems. In this section, we shall give only some basic
results.

4.1.]1 Definition Let f: R" x R' — R". Then a solution y of the differen-
tial equation

y=f(,1 (%)

is stable (with respect to changes in initial conditions)} if given &£ >0
there is a 6 > 0 so that any other solution § of (5) for which

ly©) — §(OI < (6)
satisfies
ly() — §)l <&, if te(0, o). 0)
Moreover, y is asymptotically stable if, in addition to being stable,
ly(—§OI—-0 as t— +oo.
Finally, y is relatively stable if (7) is replaced by
ly(® — ¥l <ely®l, if te(©, ). $8%

As we shall see, the last concept of relative stability is probably of the
most importance to numerical analysis.

For linear equations with constant coefficients, stability can be charac-
terized completely in terms of the spectrum of the coefficient matrix as the
following basic theorem shows.

4.1.2 (Stability Theorem) A solution y of
y =4y (8)

is stable if and only if all eigenvalues of 4 € L(R") have nonpositive real
part and any eigenvalue with zero real part belongs to a 1 x 1 Jordan
block. Moreover, y is asymptotically stable if and only if all eigenvalues of
A have negative real part.}

t Also called “stable in the sense of Lyapunov.”
I Note that for the linear system (8), a given solution y is stable if and only if every
solution of (8) is stable.
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Proof: We recall that the solution of (8) with initial condition y(0) =y,
can be written in the form (see E4.1.2 and E4.1.3)

y(1) = e*y,.
Here, € is the matrix defined by the (always convergent) series
B : 1 2 l 3
P =I+B+3B +5B + . 9)

If § is any other solution of (8), then w =y — § satisfies (8), and it
suffices to show that the trivial solution of (8) is stable, i.e., that given
¢ > 0 there is a § > 0 so that whenever ||w(0)|| < &, then |w(7)| < & for all
t. The solution w can be represented as

w(t) = e*'w(0)

and since w(0) is arbitrary (except as to norm), it suffices to examine the
matrix function e?'. Let A = PJP~! where J is the Jordan form of 4. Then

eAt = ePJP‘lx = PeJ(P—l
and, using (9) and El.1.11, if J, is any Jordan block of J, then
1t - " Ym=-1)
o .
1
where m is the dimension of the block J,. Both results are now evident.

Clearly ¢’ = 0 as t = + o if and only if Re A < 0 while if Re A =0, then
¢’' remains bounded if and only if m = 1. $3%

As an illustration of this theorem, we return to the equation (1) which
may be written in the form (8) with

aE!

The eigenvalues of 4 are +1 and hence no solution of (1) s stable.
As another example, we consider the nth-order equation

YO g, YD 4 g,y =0 (10)

for which initial conditions will be prescribed for y(0), y(0), ..., y*~Y(0).
In the usual way, we change (10) to a system by introducing the variables
Ye=0 Y2 =Y.y o=y Then (10) is equivalent to (8) with
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0 1 0 0o ]
0 1
A= oo | (11)
0o 1
__ao —4a; @y

[Note that the system (1) arises from the equation )" = y in this way.] We
will need the following lemma about the matrix 4 of (11).

4.1.31 Let A4 be of the form (11) and let A be an eigenvalue of multi-
plicity m. Then there is only one Jordan block associated with 4, and it is
of dimension m.

Proof: The first n — 1 rows of A are linearly independent, and the same
is true of 4 — ul for any value of u; hence rank(4 — AI) =n — 1. Since
the Jordan form J and A4 are similar, they must have the same rank and
therefore rank(/ — AI) = n — 1. But if more than one Jordan block were
associated with 4 we would have rank(/ — AI) < n — 1 which would be a
contradiction. $3%%

According to Definition 4.1.1, the solution of (10)is stable if and only
if not only y but also all its derivatives up to order n — 1 are bounded
under small perturbations. It may seem more satisfying to adopt the
definition that y is stable if and only if | y*?(0) — 3P(0)| <46, i=0, ...,
n — 1, implies that | y(t) — $(1)| < ¢ for all t > 0. However, it is easy to see,
for linear equations, that this is equivalent to 4.1.1 (see E4.1.4). Hence, we
have the following corollary of Theorem 4.1.2 together with 4.1.3.

4.1.4 Any solution of (10) is stable if and only if the eigenvalues of the
matrix (11) have nonpositive real part and any eigenvalue with zero real
part is simple.

From the point of view of numerical analysis the type of stability in the
above results is not as important as relative stability. Consider again the
system (1) with the general solution

Y =ce”t + ¢y €, y() = —cie”t + cy €.

t Alternative formulation: Let 4 be of the form (11) and let Ay, ..., A, be the dis-
tinct eigenvalues of 4. Then the Jordan form of 4 has precisely p blocks.
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These solutions are easy to compute numerically by the usual methods
such as Runge~Kutta or predictor-corrector provided that ¢, # 0 (or very
small). It is true that for large ¢, the absolute error in the computed solu-
tion will be large but the relative error can be kept much smaller. However,
if ¢, =0, then the computed solution will be contaminated by unwanted
contributions from e, and it is extremely difficult to compute a solution
with small relative error. The solution with ¢, =0 is relatively unstable
while any solution with ¢, s 0 is relatively stable. This is an immediate
consequence of the following general theorem for linear equations with
constant coefficients.

4.1.5 (Relative Stability Theorem) For A € L(R"), let A denote the set of
eigenvalues of 4 with maximal real part. Then a solution y of the linear
system y' = Ay, y(0) = y°, is relatively stable if and only if y(0) has a
component in the direction of a principal vector that is of maximal degree
overall 1 € A.

Proof: Again write y(1) = e?'y® and §(t) = e4'§°, and consider first the
case in which 4 has diagonal canonical form. Let u,, ..., u, be linearly
independent eigenvectors corresponding to the eigenvalues 4, ..., 4,.
Then e has eigenvalues e** and eigenvectors u; (E4.1.5) so that

ly()) — I _ ey — 31 _ I} o e™uy]

Iy le*y°l 1Y Bre™uill”

The dominant terms in numerator and denominator are o;e*n; and
B;e*'a;, where A;€ A. Now suppose that B, =0 for all j such that
A;€ A. Then, since §° is arbitrary in direction, the corresponding a; may
be chosen to be nonzero and, clearly, the quantity of (12) tends to co. On
the other hand, if any §; #0, ;€ A, then the quantity is bounded and
indeed may be made arbitrarily small with «;. That is, it is necessary and
sufficient that y° have a component in the direction of some eigenvector
associated with an eigenvalue in A.

Next consider the general case. The dominant term in the denominator
will now have terms containing e*f"~ !/(m — 1)!, where m is the dimension
of the largest Jordan block of any eigenvalue in A, and it is necessary and
sufficient that the coefficients of these dominant terms do not all vanish.
This is precisely the condition that y(0) has a component in the direction of
a principal vector of maximal degree. $$$

(12)
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The previous theorems have all been for linear equations. For non-
linear equations, the possible behavior is much more varied, and there
may even be instability because solutions have a singularity for finite ¢.
Consider, for example, the equation

y=t(y—-2), y0)=y,.
The exact solution is
2y, )
Yo + (2 — yo)e’

Hence, for y, = 2, y(f) = 2, while for y, < 2, y(t) goes asymptotically to
zero as [ — +oo. However, for y,> 2, yp(f) has a singularity when
Yo + (2— yo)e'” = 0 (see Figure 4.1.1).

)=

yir
Y072 ()
fo2 Al
o< 2/\
rin
Figure 4.1.1

1t is possible, however, to give a local version of Theorem 4.1.2.

4.1.6 Consider the equation
y = Ay +f(y) (13)

where all the eigenvalues of 4 € L(R") have negative real parts. Assume
that f: R = R" is continuous in a neighborhood of 0 and that

im | /@Iyl =0.

Then there is a 6 > 0 such that for any y(0) with |y(0)|| < 6, the solution
of (13) satisfies

limy() =0.

t—
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We will not prove this theorem; its proof may be found in several
places (see, e.g., Coddington and Levinson [1955, p. 314)). Its analogue for
difference equations (Theorem 4.2.7) will be of particular importance to us.

EXERCISES

E4.1.1 Consider the differential equations

@ Yy +3y'+2y=0
() »y'+y =0
© 4"-y=0

with initial conditions y(0) = y,, y'(0) = y,. Give the stable, asymptoti-
cally stable, and relatively stable solutions as functions of y, and y,.

E4.1.2 Prove that the series (9) converges for any B € L(C").

E4.1.3 Verify both formally and rigorously that y(f) = e?'y, is the unique
solution of y' = Ay, y(0) =y,.

E4.1.4 Show that a solution of (10) is stable if and only if for given ¢ > 0
there is a 8 >0 so that [90) — y*%(0)| <48,i=0,...,n —1 implies
that | 9(t) — y()} < ¢eforali ¢t > 0.

E41.5 let AeL(R") have eigenvalues 4;,..., 4, and eigenvectors
Xy, ..., X, .Show that e? haseigenvalues e* and eigenvectors x;,i = 1,...,n.

42 DIFFERENCE EQUATIONS

We consider now results for difference equations analogous to the
results of the previous section for differential equations. These results will,
by and large, be of much more interest to us and, as will be seen in Part
II1, actually provide convergence theorems for iterative processes.

In analogy with the differential equation (4.1.5), consider the first-
order vector difference equation

y¥r=06G%k), k=01,... )



4.2 DIFFERENCE EQUATIONS 71

where G: R" x R' - R" is a given mapping and y° is assumed known. We
now paraphrase the definitions and results of the previous section in
terms of (1).

421 Definition Let G: R"x R* - R". Then a solution {y*} of the
difference equation (1) is

(a) stable if given ¢ > 0 there is a & > 0 so that if {§*} is another solu-
tion of (1) for which ||y® — §°|| < & then
Iy* — 94l <e,  k=1,... )
(b) asymptotically stable if, in addition,
Iy =91 -0 as k-0 A3)
{c) relatively stable if (2) is replaced by
Iy — 9"l <elyl,  k=1,.... 4

Note that this definition assumes that the solutions of (1) actually
exist.

We next give an analogue of Theorem 4.1.2 for the linear difference
equation with constant coefficients

y¥* = By 4 4, k=0,1,..., y° given. )]

4.2.2 (Stability Theorem) Let BeL(R") and de R". Then a solution
{y*} of (5) is

(a) stableif and only if p(B) < | and if p(B) = 1, then Bis of classt M
(b) asymptotically stable if and only if p(B) < 1.

Proof: (a) Let {§*} be any other solution of (5) and set w* = §* — y*,
k=0,1,.... Then

wt = Bw* 1 =-.. = B°, k=0,1,.... (6)

1 See Definition 1.3.7.



72 4 DIFFERENTIAL AND DIFFERENCE EQUATIONS

Suppose that {B*} is bounded, that is, that |B¥| <o,k =0, 1,.... Then
by (6), I — ¥*|| < & for all §° such that

1%~ y°lI <6 =¢lo.

Conversely, if {B*} is not bounded, then |B*x|| - oo as k — oo for some
x € R". Hence if $° is chosen so that y® — §° is in the direction x, it
follows that ||y* — 9| = + 00 as k — oo so that the solution is not stable.
Therefore, the result follows from Theorem 1.3.9.

(b) Proceeding as in (a), it is easy to see that the solution is asymptot-
ically stable if and only if B*— 0 as k — oo and, by Theorem 1.3.9,
this is true if and only if p(B) < 1. $3%%

We note that for the linear equation (2), asymptotic stability is equiva-
lent to global asymptotic stability; that is, (3) holds for any $°. We also
note that a result similar to 4.1.5 for relative stability is easily proved
(E4.2.2). Finally, we note that 4.2.2 contains the basic convergence
theorem for (5), when (5) is considered as an iterative process. We shall
return to this topic in Part 111

Theorem 4.2.2 corresponds exactly to Theorem 4.1.2 with the difference
that the condition on the real part of the eigenvalues in 4.1.2 becomes in
4.2.2 a condition on the spectral radius. This is quite natural; for consider
the differential equation

y' =4y (M
and Euler’s method for its numerical integration:
v = y* 4 hAy* = By, B =1+ hA. (®)

We expect intuitively that, for sufficiently small A, the stability properties
of (7) and (8) will be the same. The following simple result shows that this
is indeed true for asymptotic stability. Note, however, that it is not
necessarily true for stability (E4.2.3).

4.2.3 Let A € L(R"). Then the eigenvalues of A all have negative real part
if and only if there is a hy, > 0 such that for all 0 < k< Ay, p{I + hA) < 1.

Proof: I p(I + hA) < 1, then all eigenvalues of /4 lie in a disk centered
at —1 and with radius <1; that is, all eigenvalues of A4 have negative real
part and since 4 > 0 the same is true of A. Conversely, suppose that all
eigenvalues of 4 have negative real part. Since there are only finitely many,
they lie in some square with vertices —a + /b and —(a + b) 4 ib and hence
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the eigenvalues of I 4 44 lie in a square with vertices | + h{(—a =+ ib) and
1 + #{(~a — b + ib). Thus for p(I + hA) < 1, it suffices that

(1 —ah)* + H*b* < 1 and [l —(a+ b)) + h*b* < 1

and these inequalities can both be satisfied for sufficiently small 4. $3%

We consider next an nth-order linear difference equation of the form
Vi — Oy V-1 — "~ % Yi-n= 0, k=nn+1,... )

with given initial conditions y,, ..., y,_,. We convert this to a vector
difference equation by defining

Oy oo

Yitn—1 r 0o -0
y={ i |. B= S ¢ (10)
O 1 0
Then, clearly, (9) is equivalent to the difference equation
y**! = Byk k=0,1,.... an

Hence, as a corollary of 4.2.2, we have the following result (see also E4.2.7).

4.2.4 Let B e L(R") be given by (10). Then the solution of (11) is stable if
and only if all roots 4; of the polynomial

PA) =2 —ay A" = — (12)
satisfy |A4;] < | and if |4, = |, then A, is a simple root. The solution is

asymptotically stable if and only if all |4;] < 1.

Proof: Since B is the companion matrix of p(4), 4.1.3 shows that if A, isan
eigenvalue of multiplicity m > 1 then there is a Jordan block of dimension
m associated with A, so that B is not of class M. Hence, the result is a
direct consequence of 4.2.2. $3%

Suppose that the roots 4, ..., 4, of (12) are distinct. Then the general
solution of (9) may be written in the form

ve=S ok, k=0,1,... (13)
i=1
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for arbitrary constants ¢, ..., ¢,. This is an immediate consequence of the
fact that the solution of (11) is

Y =BY'=P Py, k=0,1,... (14)

where J is the Jordan form of B. Since the eigenvalues are assumed to be
distinct, J is diagonal and hence J*Py? is of the form d* = (1¥p,,..., 2*b)T.
By (10), y, is then the inner product of the last row of P~ ' and d*, which
shows that the solution is of the form (13).

The above analysis holds for any initial conditions yg, ..., y,_,.
However, if these are prescribed, then ¢y, . .., ¢, are completely determined.
Indeed, (13) for k =0, ..., n — |, gives the system of equations

Yo=c 4G,
yl=llcl+“'+lncn

Yn—1 = '1'1_1{"1 +o +'1:‘lcn

for the unknown constants in terms of ygy, ..., y,-, and 4,,..., 4,. The
coefficient matrix is the famous Vandermonde matrix which is nonsingular
since the A, are distinct.

More generally, if the polynomial (12) has distinct roots A, ..., 4,

with multiplicities ny, ..., n,, then 4.1.3 shows that the Jordan form J
of B has precisely m blocks J, that are either (4,) or of the form

A1
Ji =
.
X
Hence, following the analysis above,
Ji b,
yk=(al7"'aam) (15)
Jib,

where a is the last row of P™! and b = Py°, both partitioned according to
the structure of J, and, by El.1.11,

ko pqk=1 ... ¢ k SN2k—m+1 ni=1 i
A kA (n.—l)Ai b;, Z (’;-)b;j,"t'{"’
Jéb, = . ; S .

O llk bin,- '1'(‘ b.l'n,-
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Therefore, (15) shows that the solution y, is a linear combination of
ARG A kA LG DA
which, since (¥) is just a polynomial in k, is equivalent to taking a linear

combination of
LY TR < IV . | S LSRRI S iy L

The important thing to note is that various powers of k now appear, due
to the multiplicity of the roots.
We turn next to the linear difference equation

yk+l=Byk+dk, k=0,1,... (16)

with a nonconstant sequence {d*} of vectors. If @ = 0, the solution of (16)
may be written as y* = B*y®. More generally, we can obtain an expression
for the solution of (16) by the following calculation:

yk=B(Byk—2 +dk_2)+dk_l =BZyk—2 +Bdk—2 +dk_1

k—1
=---=B%"+ Y Bld-/ L )
j=0

j=

This exact formula is frequently useful. However, norm estimates which
derive from it are often more useful. One such result is the following.

4.2.5 Let Be L(R"). If the zero solution of the homogeneous equation
y*'=By,, k=0,1,... (18)

is stable, then, in some norm, the solution of (16) satisfies
k=1
Iyl < Iy°ll + .Zolld’ll, k=1,.... (19)
I=

If the zero solution of (18) is asymptotically stable, then there is a norm
and a constant « < | so that the solution of (16) satisfies
k-1
Iyl <oyl + 2 a2, k=1,.... (20

1=0

Proof: If the zero solution of (18) is stable, then 4.2.2 shows that either
p(B) < 1 or that p(B) = 1 and B is of class M. In either case we have by
1.3.6 or 1.3.8 that there is a norm such that |B| <1 and (19) follows
directly from (17). In case the zero solution of (18) is asymptotically stable,
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then 4.2.2 shows that p(B) < | and hence, by 1.3.6, | B|| < | in some norm.
Therefore, with « = || B|, (20) again follows directly from (17). $3$%

A corollary of 4.2.5 which will be useful in Chapter 5 is the following.
4.2.6 Assume that the roots A,,..., 4, of the polynomial (12) satisfy

|A;] < 1,i=1,...,n, and any 4, for which |4;| = | is simple. Then there
is a constant ¢ > | such that any solution of

Ve = O Y1 — 7" = O Yi—n = V> k=nn+l,... (21)
where {y,} is a given sequence, satisfies
k
15l Sc(o max |yl + 3 Iv,-l), k=mnal.... (2
<ign-—1 j=n

Proof: By the representation (10), we can write (21) in the form (16)
where d“ = (3,4,,0, ..., 0)F, and, by 4.2.5, there is a norm such that

k—n
I <0+ T k=mn ] 23)

But by the norm-equivalence theorem 1.2.4 there are constants ¢, > ¢, >0
so that

cllylew < Iyl < c2llyll -
Therefore, (22) follows from (23) with ¢ = ¢,/c,. $3%%

We end this section by considering the nonlinear difference equation

yk+l — Byk +f(yk) (24)
where fis ‘““small >’ for small y in the sense that
lim w =0 (25)
y~o [yl

4.2.7 (Perron’s Theorem) Assume that Be L(R") with p(B) <1 and
that f: R" — R" is continuous in a neighborhood of 0 and satisfies (25).
Then the zero solution of (24) is asymptotically stable.

Proof: By 1.3.6, we can choose a norm for which |B| =a < 1. Let
y > 0 be such that « + y < 1. Then, in this norm, there is a > 0 so that

I/l <ylyl if |yl <o.
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Hence, for any y° such that ||y°| < &, we have
Iyl < IBI 1Y%+ 1£QON < (@ + 9 1Y%l < 6.
It follows by induction that
Iy*l < (@ +»*Iy°ll <6, k=1,2..
so that y* >0 as k —» co. $$%

EXERCISES

E4.2.1 Consider the difference equations

@ Y+ 3y + 22 =0
() 4y, —y-2=0.
Give the stable, asymptotically stable, and relatively stable solutions as

functions of the initial conditions y, and y,. Contrast your results with
E4.1.1.

E4.2.2 Show that a solution {y*} of (18) is relatively stable if and only if
y? has acomponent in the direction of a principal vector of maximal degree
associated with an eigenvalue with modulus equal to p(B).

E4.2.3 Show that any solution of the system

. [ o

is stable but that no solution of the corresponding difference equation (8)
for Euler’s method is stable.

E4.2.4 Let Be L(R*) be the matrix of E3.2.2. For any d € R*, show that
every solution of (5) is globally asymptotically stable.

E4.2.5 Let Be L(R") satisfy p(B) < | and consider the difference equation
(16) where y° is given and {d*} is a given sequence satisfying |d*|| < 3,
k=0,1,....Show that there are constants ¢, c;, @ with a < |, such that

Iy, < e+ ¢,  k=0,1,....
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E4.2.6 Verify directly that (13) is a solution of (9).

E4.2.7 Define a solution of (9) to be stable if given € > 0 thereisa 6 > 0
sothat |, — ;] <6,i=0,1,...,n— | implies that |y;— y;| <&, i = n,
n+ 1,....Show that this is equivalent to 4.2.1 applied to (10) and (11).

READING

Stability theorems for ordinary differential equations are discussed
in numerous books; see for example, Coddington and Levinson [1955]
and Hahn [1967]. Corresponding results for difference equations are not
as readily available in textbook literature; see, however, Hahn [1967].

The concept of relative stability for either differential or difference
equations does not seem to have been previously explored.



PART i

DISCRETIZATION ERROR

We now begin our study of the three basic kinds of error in numerical
analysis. The first, to be considered in this part, is discretization error. This
error results, in general, whenever we must approximate a function de-
fined on a continuum of points by one which is specified by only finitely
many parameters. For example, in Chapter 5, we consider initial value
problems for ordinary differential equations. Here, a typical procedure is to
evaluate the function f of the equation y" = f(y) at a finite number of
grid points in the interval of integration and combine these values in one
way or the other to obtain an approximate solution at the grid points. The
fact that the solution depends on the values of fand y at all points of the
interval implies that, except in certain trivial cases, the approximate solu-
tion will be in error. The task is then to obtain estimates for this discretiza-
tion error and to show that the error tends to zero as the distance between
the grid points tends to zero. The problem is similar for the solution of
boundary value problems to betreated in Chapter 6; an added difficulty here
is that evaluation of the approximate solution requires, in general, the solu-
tion of a nontrivial system of equations.
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CHAPTER §

DISCRETIZATION ERROR
FOR INITIAL VALUE PROBLEMS

5.1 CONSISTENCY AND STABILITY

In this chapter, we will treat the initial value problem

Yx) =f(x,y(x)), a<x<b, y@a)=y, )

and the general class of integration methods

Vitn = Op1Vian—1 " F G Vi + AOXi s ooy Xis Viwns -+ o2 Va3 H)-
(2

Here x;=a+ih, i=1,..., N, where h=(b—a)/N is the constant
steplength; a,, ..., a,_, are given constants; ® is a given function which
depends on f, although we have not indicated this dependence explicitly;
and the initial values y,, ..., y,— are assumed to be known. For simplicity,
we shall assume that (1) is a scalar equation although many of our results
hold for systems of ordinary differential equations.

If n =1, then (2) is called a one-step method; otherwise, it is a multistep
method or, more precisely, an n-step method. If @ is independent of y, ..
then the method is explicit; in this case, y,,, may be computed simply by
evaluating the right-hand side of (2), while if the method is implicit a
(generally nonlinear) equation must be solved to obtain y, .

While (2) is not the most general procedure possible, it does contain
as special cases most of the usual methods of interest. We shall review some
of these briefly. The simplest method is that of Euler:

Visr = Vi + hfy, k=0,1,...;
81
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here, and henceforth, f, will denote f(x,, y,). More complicated one-step
methods are those of Heun (also called the second-order Runge-Kutta
method):

Vit = Y+ U+ f(xe 1 i + AA)] (3)

and the (fourth-order) Runge-Kutta method:

Yesr =2+ 30 +200, + 2, + T, ] 4)
where
I =hh Ty =~ + 3k p +3T)
Ty=hf(xi + 30,y +302), To=hf(x+h y+T3).

In the case of Euler’s method, the function ® of (2) is simply f itself, while
for (3) it is

D(x; y; h) = 3 (x, ») + f(x + s y + Bf(x, 1)) (5

1t is left to ES.1.1 to give ® for the method (4).
The above methods are all explicit. A simple example of an implicit
one-step method is the trapezoidal rule:

Viwr = Y+ YAl + (X Yis DL (6)

Note that both this method and (3) reduce to the usual trapezoidal rule
for numerical integration when fis independent of y.

A very important special case of (2) is the general linear multistep
method

Vitn =% tVkan-1 + F %oV + A fusk + 0+ Bofil Q)

where ag,....a,_; and By, ..., fi, are given constants. (The method is
called linear because the f; appear linearly—in contrast to the Runge-
Kutta methods, for example—not because the differential equation is
linear.) If 3, = 0 the method is explicit and otherwise is implicit. As well-
known examples of (7), we note the (fourth-order) Adams-Bashforth
method

Yira =Yurs + (W25 13 — 59 sz + 3Tfis 1 — 9l (®)

which is explicit, and the implicit (fourth-order) Adams-Moulton method

Yiws = Vaaz + W28 43+ 1942 — S H A (9)
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Recall that (8) and (9) are usually used in conjunction as a * predictor—
corrector ™ pair. Another pair of formulas of interest to us is that of Milne:

Vi+s = Yu—1 + @322 — fusr + 2£] (10)
and

Vie2 =Y+ BB fas 2 + w1 (11

Note that in all of these multistep methods, the supplementary initial
conditions y,, ..., y,_, must be supplied by some auxiliary mechanism,
usually a one-step method such as (4).

Let y be the solution of the differential equation (1) on the interval
[a, b) and yq, ..., yn, with Nh =b — a, the approximate solution given
by (2). Then the quantity

max |y(x,) — yi| (12)

O<i<N

is the global discretization error of the approximate solution. Our main
concern in this chapter will be to obtain an estimate of this discretization
error and to show that the approximate solution converges to the true
solution as the steplength /4 tends to zero. As a first step toward this goal,
we introduce a quantity which is easier to compute than (12).

5.1.1 Definition Assume that (1) has a solution y on the interval [a, b].
Then the local discretization errort of the method (2) at x € [a, b — nh] is
given by

wx, B) = b~ [p(x + k) — o y(x +(n = DA) — -+ — ag y(x)]
—O(x +nh, x +(n— Dh, ..., x; )(x + nh), ..., ) (x); h). (13)

Note that (x, 4) is simply the “residual,” divided by s, when the exact
solution y is substituted into the expression (2). The first term of 7(x, #) is,
in some sense, an approximation to y'(x) while the second is an approxi-
mation to f. The sense in which ® and the constants o, ..., o,_, define
suitable approximations is made precise by the following.

5.1.2 Definition Assume that 1) has a solution y on the interval {a, b].
Then the method (2) is consistent with the differential equation (1) if
lim,_, 4t(h) = 0 where

h)y = max |t(x, h)|. (14)

xe[a. b—nh}

t Some authors define the local discretization error to be hr(x, k). See also ES.1.2.
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where I, — A2y is nonsingular. Use the transformation n(n) = z(n) + Lx(n)
to show that the system is asymptotically stable if Aj; + A12(1 ~ Azz)“1A21 is
Hurwitz in a continuous-time sense; i.e. its eigenvalues have negative real parts,
and Aj; is Hurwitz in a discrete-time sense; L.e. its eigenvalues are inside the unit
circle (for more details see Litkouhi and Khalil, 1984).

Exercise 2.5

Compute the corrected slow and fast eigenvalues and eigenvectors for the
system

x() -1 1| x(

ex(t) 0 —1|]z(
and compare the exact slow and exact fast eigenvalues and eigenvectors
for a value of ¢ less than that given by the upper bound of Lemma 2.2.
Exercise 2.6

Show that the angle of the fast eigenvector
eApAy
L,
in (4.32) makes with the z-subspace is an O(&?) approximation of the angle
that v; in (4.27) makes with the z-subspace by considering the effect of an
e-correction of the term I, on its angle.

Hint: Proceed similarly to Example 4.2 by calculating the angular
difference

« — &, where cos (o — &) = (v, b¢)/|loe|l 5.
Exercise 2.7

Analyse the controllability and observability properties of the system
i=—-x+z-u,
&gz =—z+u,
y=x.

Exercise 2.8

Show that, in general, the fast eigenvalues of systems in the actuator form
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x € [a, b). Hence ©(x, h) =0 as h —0 uniformly for x e [a, b) and thus
7(h) =0 as h - 0.

Conversely, if the method is consistent, then (13) shows that p(1)y(x) =
0 for all x € [a, b]. Thus if y # 0, then (16) holds and, since G(x, /) — 0 as
h — 0, (18) ensures that (17) is valid. $3$$

Since p(1) = A — «, for a one-step method, 5.1.3 shows that a consistent
one-step method must have the form
Vet = Yk + AO(Xy 415 X5 Vw15 Vi s H)-

Moreover, since p’(1) = 1, (17) implies that also

®(x, x; y(x), p(x); 0) = f(x, y(x)).

It is easy to verify that all of the particular methods (3)~(6) satisfy this con-
dition. For the linear multistep method (7), the condition (17) reduces to

S Bimn— (= Doy~ =
i=0

and, again, it is easy to show that the methods (8)—(11) are consistent.

It is tempting to suppose that the consistency of a method will ensure
that the global discretization error tends to zero with 4. Rather surprisingly,
this indeed turns out to be true for one-step methods but not necessarily for
multistep methods.

Consider the methodt

Virz = W1 — 39— 20/,

which is readily seen, by 5.1.3, to be consistent. If we apply this method to
the differential equation ' = y with y(0) = 1, then it becomes the linear
difference equation

yk+2=4yk+l_(3 +2h)yk, y0= 1, yl=kl’]0WI’1. (19)
This difference equation is easily solved (E5.1.4) in the form (4.2.13),

and we obtain
(y,—2—1-2h)
y=y(h)=_ _ — k
S N TR A

(yi —2+1-2h) \
+ NS 2+ J1=2h) (20)

t This method arises in a natural way by differentiation of an interpolating poly-
nomial; for the derivation, see Henrici [1962, p. 219].
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Now take y, = ¢", and let k tend to infinity and 4 tend to zero in such
a way that x = kh remains fixed. Then it is easy to see (ES5.1.4) that
the first term of (20) converges to €*, the exact solution of the differential
equation, but that the second term tends to infinity; that is, the solution
of (19) does not converge to the solution of the differential equation
as h tends to zero, for the particular choice of y,. On the other hand, if we
take y, =2 — \/1 — 2h, then the second term of (20) is zero and the first
term still tends to e* as & — 0. However, this is the only value of y, for which
the second term is zero and for any other y, this term will ultimately dom-
inate. In other words, the solution

ye=2—/1 -2}
of (19), which approximates the solution of the differential equation, is
relatively unstable in the sense of 4.2.1.
The above discussion shows that an additional stability condition is

necessary in order that a consistent method be convergent as #—0. It
turns out that the condition is just stability of the linear part of (2).

5.1.4 Definition The method (2) is stable if every solution of the differ-
ence equation

Yian = OntVk4n-1 — """~ U = 0

is stable.t

By 4.2.4, we can restate this stability condition as follows.

5.1.5 (Root Condition) The method (2) is stable if and only if the
roots A; ..., 4, of the polynomial (15) satisfy |A;] <1,i=1,...,nand
any root of modulus 1 is simple.

Note that the method (19) is not stablesince the roots of 12 — 41 43 =0
are | and 3. Note also that any consistent one-step method is stable.

In the next section, we will show that for a stable and consistent method,
the global discretization error tends to zero with 4. It is important to realize,
however, that this alone does not necessarily imply a satisfactory numerical
procedure. Consider, for example, the method

Virz =Yk + 2hfisy. @n

1 Recall that the stability of solutions of this difference equation is defined by 4.2.1,
in terms of the system (4.2.10), (4.2.11).
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It is an immediate consequence of 5.1.3 and 5.1.5 that this method is
both stable and consistent. Now apply (21) to the differential equation

Yx)y=—yx), y0)=1 (22)
so that (21) becomes
Yirz = =21 + D, Yo=1, y1 = known. (23)
The solution of this linear difference equation is of the form
Y= A+ e b (24)
with
A=—h+J1+1, dy=—-h—J1+1h
and
1 Yi+h 1 (y,+h)
)y =- 4 ———— s Ch = — —m————e,
2 2 /14 k2 P2 2 /i ne

Now note that, for any #> 0, |4,| > | so that, except for the choice of
y, which makes ¢, =0, |y| = o0 as k— oo. Hence, since the exact
solution of (22) is e *, the approximate solution given by (23) will deviate
arbitrarily far from the exact solution for sufficiently large x.

Since the root A, above tends to 1 as # — 0, the above behavior would
be prevented if the root 1, had a limit strictly less than one in modulus.
This leads to the following class of methods.

5.1.6 Definition The method (2) is strongly stable if the roots of the
polynomial (15) satisfy |4;] <1, i=1,..., n with strict inequality for
n— 1 roots.

A stable method which is not strongly stable is sometimes called
weakly stable or weakly unstable.

Since 5.1.3 shows that for a consistent method p must have a root
equal to unity, the roots of p for a consistent strongly stable method must
satisfy

A =1, 4] <1, i=2,...,n

In particular, any consistent one-step method is strongly stable, as are
the Adams methods (8) and (9). The Milne methods (10) and (11), how-
ever, are only weakly stable (E5.1.6), and may exhibit unstable behavior
numerically, especially for problems with decreasing solutions.
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EXERCISES

ES.1.1 Give the function ® of (2) for the methods (4) and (6)-(11).

ES.1.2 Another definition of the local discretization error is the following.

Let y, ., be given by (2) and assume that y,, ..., y,, .-, are exact, that is,

Yi=y(x),i=k,...,k +n— 1, where y is the solution of (1). Then define
E(Xrns 1) = [Yisn — Y(xin)l-

Show that E(xk+n, h) = hl‘r(‘xks h)l .

E5.1.3 Show that the methods (3), (4), (6), and (8)-(11) are consistent.

E5.1.4 Show that (20) is the exact solution of (19). Now hold x = kh
fixed and let 4 — 0 and k — o0o. Show that the first term of (20) converges
to ¢* but that the second term diverges to — oo,

E5.1.5 Write a computer program to find the solution {y,} of (19)
[directly from (19)]. Experiment with different values of # and y,, and
comment on the accuracy of your results as approximations to e*. Do the
same for (23).

E5.1.6 Show that the Milne methods (10) and (11) are weakly unstable.
Write a computer program to verify numerically that they may show un-
stable behavior.

52 CONVERGENCE AND ORDER

In the previous section, we considered the initial value problem

Y@ =f(xyx), asx<b ya=y, (M
and various stability and consistency criteria for the method
Vv a=Qpn-1Vk+n-1 + - +a0yk+hq)(xk+n, s Xk Yt oo Vi h)
(2

We shall now prove the following basic theorem which shows that stability
together with consistency are sufficient to imply that the global discretiza-
tion error converges to zero with A.
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5.2.1 (Consistency plus Stability Implies Convergence) Assume that the
method (2) is stable and that the function ® satisfies

[ Og, ooy tnsthgseestin; B) — @(to, s b5 00y -y Uy s H)|

< ¢ max |u; — v (3)
O0<i<n
for all ¢, ..., t, in the interval [a, b], all uy,...,u,, vy, ..., 0,, and all

h >0, where ¢ is independent of 4. Assume that (1) has a solution y on
[a, 5] and denote the solution of (2) as a function of by y,(h),i =0, 1,....
Then there are constants ¢, and ¢, , independent of 4, such that
|y@@+ kh) — y(B)| < cr(h) + cytth), k=nn+1,...,(b—a)lh
@)
where 7 is given by (5.1.14) and

r(h) = max |y + kh) — y(h)| )

0<k<n—1

with yo(h), ..., y,_,(h) the given initial conditions of (2). In particular,
if #(h)—> 0 as #—0 and the method is consistent, then for each fixed
x € [a, b]

klim yi(h) = y(x) (6)
0
where the limit in (6) is taken so that @ + kA = x remains fixed.
Proof: For fixed h, set e; = y,(h) — y(x;). Then, adding h1(x,, h) to (2),
where t(x, h) is given by (5.1.13), we obtain
€in = Oy 1€+ p—1 +'“+aOek+‘yk+n’ k=0’ l’ (7)

where
Ye4n = h[q)(xk+na cons X s Vhwms ooos Vs h)
- q)('xk+n3 cees Xy ;y(xk+n)a LRRE] y(xk)’ h)] - h‘r(xk3 h) (8)

If we regard the y; in (7) as known, then 4.2.6 ensures that there is a
constant § > 1 such that

k
vl <B| max T+ X vl [, k=01,

O<ign—1
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Since from (3) and (8) we have that
el < hc max fer ] + [16r, B |
it follows that
|evsnl < Brih) + Bk + l)h[c max |e;| + ‘r(h)]. 9

Q<i<k+n

Now set

w, = max |e;|, k=0,1,....
0<i<k

Then (9) implies that

O in < Prh) + etk + Dhwyyy + Bk + DAT(h). (10)
For given A, we now assume that k is allowed to become only so large that
(k + Dh<(2Bc) ' =0, an

If this is true, then, by (10), we have
Wien < [1 = Betk + DA [Br(h) + Btk + Dhe(h)]
< 2B[r(h) + S1(A)]
so that
lexsnl < 2B[r(h) + d1(h)), (k+ Dh <. (12)

This gives an estimate for the interval /, = [a, a + J], where § is indepen-
dent of A. Now consider the next interval /, = [a@ + 8, @ + 26]. We may

assume that the ‘‘initial points” lie in I, and hence the errors for these
*“initial values” can be bounded by (12). Therefore we obtain

lewsn| < 2B{2Blr(k) + ot(M)] + Sx(h)}

for all k such that the grid points lie in /,. Since the interval [a, 5] may
be covered by finitely many intervals of length 4, it is clear that this pro-
cedure may be repeated to obtain an estimate of the form (4). $3$

In the previous section, we gave several examples of stable and con-
sistent methods. Hence, to apply 5.2.1 to these methods it remains only
to verify (3), which is invariably a consequence of a Lipschitz condition
on the function f of (1). That is, assume that f satisfies

| f(x, u) —f(x,0)] <Llu— v forall xe[a, bland all u, v (13)
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and consider the general linear multistep method (5.1.7) where @ is given by
q)(t09 U] tn sUgs oy Uy h) E._Zoﬁif(tia ui)'

Then

VD(tg,s ooty Uy oonstly; B) — D(tg, ooy 1,3 Vgy o evs Uy B

< 3 1B w) = 500,001 S LE, 1B 1=

< (LZ lﬁil) max {u; — v;|.
i=0 0<i<n
As another example, consider the one-step method (5.1.3) for which ®
is given by

O(t; u; h) = 3[f(t, ) + f(t + h, u+ hf (2, w)]. (14)
Then, again under the assumption of (13),
|®(t; u; h) — D(t; 03 B)|
<3| S w) -1, 0)]
+ S+ hou+ b, w) —f(t+ h o+ (2, D)]]
<3¥[Llu—v| +L|u+ hf(t,u) — v — K (t, v)|]
<Llu—v| +3Lh|lu—v| < L] + $ho)|u — v|

where h, is the largest value of 4 to be considered.

We note that 5.2.1 can be sharpened in regard to the condition (3) by
requiring that this hold only in some suitable neighborhood of the solution
of (1). A corresponding weakening of (13) may then be made; in particular,
it suffices that the partial derivative f, be continuous in a neighborhood
of the solution curve of (1).

An important aspect of the discretization error is the rate at which it
tends to zero as / tends to zero. A first measure of this rate is given by
the following condition on the local discretization error t(#). Recall that
the notation 1(#) = O(h”) means that 4~ P1(k) is bounded as # — 0.

5.2.2 Definition The method (2) is at least order p if, for any differential
equation of the form (1) with a p-times continuously differentiable solution,
(k) = O(#P). The method is exactly order p if, in addition, ©(k) # O(h"**)
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for some differential equation (1) with a (p + |)-times continuously dif-
ferentiable solution.

Although the order of the method is defined in terms of the local
discretization error, it can be linked to the global discretization error by
means of 5.2.1.

5.2.3 Assume that the conditions of 5.2.1 are satisfied for a differential
equation (1) with a p-times continuously differentiable solution, that
r(h) = O(h*), and that the method (2) is at least of order p. Then for A
tending to zero so that kA remains fixed, the global discretization error
satisfies

|y(@ + kh) — p()] = O(K).

The proof is an immediate consequence of (4) together with 5.2.2.

We next compute the order of some of the methods of the previous
section. Consider first the Heun method (5.1.3), for which the function ®
is given by (14), and assume that f is twice continuously differentiable as
a function of both its variables so that the Taylor expansion

f&x+ hy+q) =f(xp) + (x5, h + f,(x, v)g + O + ¢7) (15)

holds. Here the O(h* + g*) term arises rigorously by bounding the second
partial derivatives of fin a suitable region of interest. In the sequel such
necessary boundings will be assumed tacitly.

The assumption on f implies that the solution y of (1) is three times
continuously differentiable and hence (14) and (15) yield

(x, ) = (UR(x + B) — y(x)] — ®(x; y(x); h)
= (U @A + 1" (R + O] — 411 (x, y(x)) + f(x, y(x))
+ £:(x, YOk + £,(x, YOOWRf (x, y(x))] + O(K +(Hf (x, y(x))?))
= 0(H*)

since y'(x) = f(x, y(x)) and
d
Y@= J(x, y(0)) = ful(x, y(x)) + £,(x, y(x))y'(x).

It follows that (k) = O(#*), and hence the method is at least of order 2.
(The fact that the method is exactly of order 2 is left to E5.2.2.) We note
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that a similar, but more cumbersome, calculation shows that the Runge-
Kutta method (5.1.4) is of order 4.
We consider next the linear multistep method (5.1.7):
Vian = Op1Vkan—1 + + 0oV + AP furi + - + Bofil: (16)

Assume that the solution y of (1) is four times continuously differentiable
so that the Taylor expansions

Y(x + jh) = p(x) + Y’ (x)jh + 1y ()G + 1" (xR + Oh*)
and
Y'(x + jh) = y'(x) + y"(x)jh + 1" ()R + OH)
hold. Then recalling again that y'(x) = f(x, y(x)), we have
©(x, B) = (IR)y(x + nh) — oy Y(x +nh— k) — -+ — 0o y(x)]
— By (x +nh) + -+ oy (x)]
= (R + Y 0Inh + 17"k + 3y"()e’h® + O(h*)
— dyy [Y(x) + Y’ (x) = D+ 1y (x)(n — 1)
+3y"(x)n = 1)°K + O(h*)]

— oy [(x) + Y (R + 1" G + By (R + O(hY)] — ag y(x)}
= Buly'(x) + y"(x)nh + 1" (n*h* + O(h?)]

— By () + Y0 + 1y IR + O(hD)] ~ Boy'(x)

= (/R — ooy — =+ = )
+y0R =y —1) = —a; — B, — " — Bo]
+ Y ORI =y (r =12 — - —o) ] — B — - — By}
+ YRR — oy (n—1)° = — ] = $[B,0* — = B}
+ O(HY).

Now suppose that we wish the method to be at least of order 3. Then all
of the above terms except O(#*) must vanish independently of the solution
y. This leads to the conditions

do+ o, =1, Bot "+ Bu=n—(n—Dayy— -0y
(17
Bult+ Buor(n— 1)+ + By =3[n* —aty_y(n— 1) =+ —a,] (18)
HBun? + Buor(n— D2+ + Byl =3[0 — oy (n — 1) — - — a,].
(19)

Note that (17) is simply the consistency condition of 5.1.3.



94 5 DISCRETIZATION ERROR FOR INITIAL VALUE PROBLEMS

It is clear that if the solution y is suitably differentiable, we may carry
out the above expansions to higher order to obtain relations analogous
to (17)-(19). We summarize this in the following result.

5.2.4 The linear multistep method (16) is at least of order p if (17) holds

and in addition

Bl Ba = D e By = (DI — (= 1Y = — ],
j=2,...,p. (20)

The method is exactly of order p if it is at least of order p, but (20) does

not hold for j = p + L.

We give a simple example of the above result, Consider the method

Yi+2 =V + 2hfiin,

already discussed in the previous section in another context. Here n =2,
oag=1,0, =0, 8, =Py =0, and f, = 2. Hence

a0+d,=l, B2+B1+B0=2
and

28,4+ By =34 —-o)

so that the method is at least of order 2. However,
2B, + By # 32 — )

so that it is not of order 3; that is, the method is exactly order 2. We
leave to E5.2.3 the verification that the Adams and Milne methods
(5.1.8)-(5.1.11) are exactly order 4.

The conditions (17) and (20) may be viewed as a linear system of
equations in the «; and B;. If p = 2n, then there are 2n + 1 equations,
and these equations may be solved to obtain the 27 + 1 parameters
Ogs -5 Oyg and Bo, ..oy B

5.2.5 The parameters a,, ..., a,_, and f3,, ..., , may be chosen so that
the method (16) is at least of order 2n + 1.

It tures out that this result is of little consequence, however, in view
of the following remarkable result.
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5.2.6 (Dahlquist’s Theorem)t Any n-step method of the form (16) of
order greater than n + 2 is unstable. More precisely, if  is even, then the
highest-order stable method is of order n + 2; while if »n is odd, the
highest-order stable method is of order n + 1.

As an example of the use of 5.2.6, consider the Adams-Moulton
method (5.1.9):

Vi+s =Yir2 + (W20 Ysis + 1%i2 — S + AL

It is easy (E5.2.3) to verify that this method is of order 4. But since n = 3
is odd, 5.2.6 shows that the maximum order of a three-step method is 4
so that, in the sense of order, this is already an optimal three-step method.

EXERCISES

E5.2.1 Apply Theorem 5.2.1 to the methods (5.1.3)-(5.1.11) under the
assumption (13),

E5.2.2 Show that the method (5.1.3) is exactly order 2.
E5.2.3 Show that the methods (5.1.8)—(5.1.11) are all exactly order 4.

READING

The proof of the basic theorem 5.2.1 follows that given in Isaacson
and Keller [1966]. A much more detailed treatment of the material of this
chapter may be found in Henrici [1962]. For more recent results on stability
and references to the literature, see Gear [1971].

1 The proof of this as well as 5.2.5 may be found, for example, in Henrici [1962].



CHAPTER 6

DISCRETIZATION ERROR
FOR BOUNDARY VALUE PROBLEMS

6.1 THE MAXIMUM PRINCIPLE

In this chapter we consider boundary value problems for ordinary
differential equations. As sketched in the introduction, the finite difference
method for the boundary value problem

Y =f(xy(0,y(x), a<x<b y@=a yd)=p (1)

leads to the system of equations

y‘._l—2yi+yi+’=h2f(x‘.’y‘.,'l)ﬁ.i.2_hy_._i—_l)’ i=]"'-’n (2)
where x;=a+ih, h=(b—a)(n+ 1), and yo =a, y,+, = .

Provided that the boundary problem (1) has a unique solution, the first
problem is to ensure that the system (2) has also. Assuming that this is
true and denoting this solution by yi(#h), i =0, ..., n + 1, then we wish to
show that the global discretization error tends to zero; that is,

Y- y(x) as h-0 3)

where, as usual, x; = a + ik is fixed as 4 tends to zero and 7 tends to infinity.
Finally, one also wishes to know the rate of convergence of (3) in terms of 4,

We will give complete answers to the above questions only for the linear
problem

Y'(x) = p(0)y'(x) + g(x)y(x) + r(x), @) =a, ybd)=p )

96
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where p, g, and r are given continuous functions and
g(x)=0, x € [a, b]. 5)
We will also assume that
hlp(x)] <2, xelab] (6)

which is simply a condition that # is sufficiently small relative to p. Note
that if p =0, then (6) imposes no restriction upon A.
For (4), the difference equations (2) become

Pi .
Yicx = 20+ Vi =h2[ﬂ(}’e+: —Yi-)+ gy + ri]’ i=1...,n
(7

where we have set p;, = p(x;), and similarly for r; and g; . If we collect terms
and set

ai=(2+qih2)’ b;=1+1p;h, c;=1—4p;h ®)
the equations (7) become
—biyia + @y — ¢y = —rih i=lL...,n )]

which, since y, and y,, , are known, is a linear system of equations in the
nr unknowns y, ..., y,-
Now note that (5) and (6) imply that

b, >0, c; >0, b, +c;<a, i=1,...,n (10)

These conditions suffice to ensure a unique solution for the system (9)
by means of the following basic resuit.

6.1.1 (Maximum Principle) Assume that (10) holds. If
Fi=a;yi—biyi-1—cy+1=0, i=l...,n (11)
then

lyil <max(|yol, [yns1l) i=1,...,n (12)

Proof:  Suppose that maxp<;<n+; | yi| is achieved at |y, | for | < k < n,
Set u = by/ax and 1 = ¢xfax. Thenu + n < 1 and, by (11),

[yel <ply—1l +nlyes ol =max(lye- il lye+1l) (13)
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But, by assumption, the last term is less than or equal to | yx| and hence
equality holds throughout. Suppose that |yx| = |Vk+1| > |yc-1]. Then,
since u > 0,

|l <glye— il +mlyes il < 1yl
Therefore, it must be that |y, (| = |yx| = |yk-:|. Continuing this pro-

cedure at each point then shows that |yo| = *** = |Vs4+:1|. That is, if
{|y:|} takes on a maximum at an interior point, it is constant. $$$

As an immediate consequence of this result we obtain:

6.1.2 Assume that (10) holds. Then the system (9), with y, = o, y,+, = 5,
has a unique solution.

Proof: Write (9) in matrix form as Ay = d where

a, —c O —rh*+ b
_b2 a, .. ~r2h2
A= L . d=| (14
) B —Cu-1 _rn-lh2
O _bn-l a, _rnh2+cnﬁ

and consider the homogeneous system Ay = 0. If we set = f§ = 0, and
assume that I'; = 0,i= 1, ..., n, where T; is defined by (11), we see that
6.1.1 implies that y; = 0,i= 1, ..., n. That is, the system Ay = 0 has only
the trivial solution and, hence, 4 is nonsingular. $$$

We next give the basic discretization error result. For simplicity, we
shall assume that (5) is strengthened to

gx)=y>0, x e{a, b]. (15)
This condition is by no means necessary,t however, and in the next section

+ Condition (5), also, is only a convenient, and by no means necessary, restriction
ongq.
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we shall return to (5). We also assume that (4) has a solution y and define
the local discretization error by

(6 1) = 5 [0x = 1) = 200 + x4 )

e

7 (x + h) — y(x — A)] — g(¥)y(x) — r(x). (16)

6.1.3 (Gerschgorin’s Theorem) Assume that (4) has a unique solution
y and that (6) and (15) hold. Then there is a constant ¢, independent of A,
such that

|y(x) — ydh)| < ex(h), i=1,...,n (17)

where x;=a + ih, y,(h), ..., y(h) is the solution of (7) with y, =a«,
Yn+1 = B’ and

()= max |t(x, h)| (18)

at+th<x<b-h

with 1(x, A) defined by (16).
Proof: For fixed h, set e; = y(h) — y(x),i=0,...,n+ 1. Then from (9)
and (16) we obtain

"“biei_, +aiei—Ciei+, =h21:(x,-,h), i= l,...,n

where a;, b;, ¢, are given by (8). If we set e = max,.;., |e;|, note that
e = €, =0, and use (6), we see that |b;| + [¢;| = &; + ¢; =2, and thus

lase;| < bilei-y | + cilewss | + H(h) < 2e + h*2(h).
Now, by (15), a; > 2 + h*y so that
(2 + 1*y)|e;| <2e + h*1(h), i=1,...,n
and hence

(2 + H*y)e < 2 + h*t(h). $3$

The estimate (17) shows that the global discretization error,

max |y(x) — yi(h)|

1<ign

tends to zero as h — 0 provided that lim,_, 7(h) = 0. We next examine ©
in more detail.
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We first write 1(x, /) in the form

1
wx, B) = {7 D= 1) = 2500 + 30 + W] = ')

1
+ o35 D+ ) = y(x = ] =Y () (19

by putting into (16) the value of r(x) from the differential equation (4).
We note, in particular, that 7 is independent of g and r and depends essen-
tially only on the finite difference approximations to y" and p". It is easy to
see (E6.1.3) that if y is twice continuously differentiable then

|
lim 2 [Y0x = 1) = 200 + »0x + A = 709
(20)

1
}.Ln; > (x+ /) —y(x =] =y'(x)

uniformly in x. Hence 1(h) - 0 as # — 0 and as a first corollary to 6.1.3
we have:

6.1.4 If the solution of (4) is twice continuously differentiable and the
conditions of 6.1.3 hold, then

}.ing |¥(x) —y{h)| =0 (21
where 4 tends to zero so that x; = @ + ik remains constant.

If we assume more regularity for the solution y, then we can obtain an
estimate of the rate of convergence. In particular, if we assume that y is
four times continuously differentiable and use the Taylor expansions

Y(x £ hy = y(x) £ Y (0Dh + 1y (D £ 2y PR + Ay EDR (22)

we obtain

| 1
7 D =B = 2900 + y(x + DI =)"() + % DUAEL) + yOEIN?

and

D0+ B~y = Dl =) + PR + o) -y
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Therefore, if we set

= max |p(x)|, M;= max HP(x)|, =34

agx<h a<x<h
we obtain
wh)= max |t(x, h)| < 5M A + IM 0k + 55M  oh?
ath<x<b-h
=c,h? + c, b, (23)

If we put this estimate in (17), we can then summarize the rate of conver-
gence result as follows.

6.1.5 Assume that the solution y of (4) is four times continuously differen-
tiable and that the conditions of 6.1.3 hold. Then

ly(x) — ydh)| = OR?).

EXERCISES

E6.1.1 Let A be the tridiagonal matrix

Show that A has eigenvalues

Ah=2-2 )
X cosn_i_l

and corresponding eigenvectors

. km | 2kn . nkrx\T
sin ——, sin ——, ..., sin , k=1,...,n.
n+1 n+1 n+1

E6.1.2 Assume that the solution of the equations

(@ Y@=y +1-x%, y(0) =0, y)=1
®) YX)=Q+0D'x+yx+x,  p0=0, y)=1
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exist and are four times continuously differentiable with |y®(x)| < M35,
|y*(x)| < M, . Find the largest h, such that you can guarantee that for
all 0 < <hy, the discretization error satisfies |y(x) — yi(h)| <1075,
i=1,...,n

E6.1.3 Assume that y is twice continuously differentiable. Show that (20)
holds.

62 MATRIX METHODS

We turn next to a discussion of the discrete boundary value problem of
the previous section by means of matrix theoretic methods. We shall intro-
duce several important classes of matrices that arise naturally in connection
with boundary value problems. Moreover, many of the results we prove here
will also be of value in our study of iterative methods in the next chapter.

In the previous section, we showed that the matrix

a, —c
—b, .. O
A= 2 o ' (1

where

a>¢>0, a,>b,>0, b;>0, ¢;,>0, a,>2b,+c,,
i=2...,n—-1 (2)

is nonsingular, by means of the maximum principle. We now establish this
result as a consequence of certain interesting results in matrix theory.

Recall that a permutation matrix P is defined by the property that each
row and column of P has exactly one element equal to one while the other
elements are zero. Some easily verified properties of permutation matrices
are given in E6.2.1.

6.2.1 Definition An r x n real or complex matrix 4 is reducible if there
is a permutation matrix P so that

B B
-1 _{Pn 12
PAP —[ 0 Bzz]
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where B,, and B,, are square matrices. A matrix A is irreducible if it is not
reducible.

Clearly, any matrix all of whose elements are nonzero is irreducible.
More generally, A € L(C") is reducible if and only if there is a nonempty
subset of indices J<{l, ..., n} such that

a;=0, kel j¢J. )

1 0 1
A=|0 10
111

is reducible since with the permutation P which interchanges the second and

third rows
1 1 0
PAP™Y =]1 1 1.
0 0 1

Equivalently, we may take the set J of (3) to be {2}.
The criterion (3) is simply a restatement of the definition 6.2.1. A less
obvious equivalency is the following.

For example, the matrix

6.2.2 A matrix A € L(C") is irreducible if and only if for any two distinct
indices 1 <i,j < n, there is a sequence of nonzero elements of A of the
form

{ax,i,a Aipizs ovvs ai,,,j}- )

Proof: 1If there is a sequence of nonzero elements of the form (4), then
we will say that there is a chain for i, j. We first prove the sufficiency by
contradiction. That is, suppose that a chain exists for all i, j but that A4 is
reducible. Let J be such that (3) holds and choose i € J, j ¢ J. By assumption,
there is a chain (4) and g, ;, # 0. Hence i, € J and since a;,;, #0 also
i, € J. Continuing in this way we see that i, € J. Butj ¢ Jand hence a; ; = 0
s0 that the chain cannot be completed.

Conversely, assume that A is irreducible and, for given i, set J ={k:a
chain exists for i, k}. Clearly, J is not empty since, otherwise, a; =0,
k=1,...,n, and this would contradict the irreducibility. Now suppose
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that, for some j, there is no chain for i, j. Then J is not the entire set
{1, ..., n} and we claim that

ak,=0, keJ, I¢J (5)

which would contradict the irreducibility of A. But (5) follows immediately
from the fact that there is a chain for i, k so that if @;; # 0, we may add q,,
to obtain a chain for i, . This implies that [eJ. $33

As an application of this result, we have the following,

6.2.3 Assume that b,,..., b, and ¢,, ..., ¢,_, are ali nonzero. Then the
matrix (1) is irreducible.

Proof: If 1 <i<j<n, then the elements c;, ..., c;,_, satisfy the con-
ditions of 6.2.2, while if | <j <i<n we may take b;,y,..., b;. $$3

It is useful to examine the previous result in a more geometric way.
With any n x 7 matrix 4, we associate a graph as follows. We consider n
distinct points P,, ..., P,, which we call nodes, and for every nonzero
element a;; of A we construct a directed path or directed link from P; to
P

P, P,

J

As a result, we associate with 4 a directed graph. For example, consider the
matrix

——0o 0o
- 0o

1
.
0 b
1

O — —_- -

then the corresponding directed graph is shown in Figure 6.2.1.
We say that a directed graph is strongly connected if for any pair of
nodes P;, P; there is a path

—_— ey

PP ,....P P

st iyt i int j

P
P.P

connecting P; and P;. By comparison of this definition with 6.2.2, it is
clear that we have the following characterization of irreducibility.



6.2 MATRIX METHODS 105

Figure 6.2.1

6.2.4 A matrix A € L(C") is irreducible if and only if its associated directed
graph is strongly connected.

As another example, we construct the associated graph for the matrix
(1) under the assumption that ¢,, ..., c,-, and b,, ..., b, are all nonzero

A R A A A

Figure 6.2.2

(see Figure 6.2.2). Clearly, this graph is strongly connected, and we con-
clude again the result 6.2.3.

We continue now with some invertibility theorems. We first need to
delineate two important classes of matrices.

6.2.5 Definition A matrix 4 € L(C") is diagonally dominant if
Iai"IZZIaU,, i=l,...,n (6)
j#i

and strictly diagonally dominant if strict inequality holds in (6) for all i.
The matrix is irreducibly diagonally dominant if it is irreducible, diagonally
dominant, and strict inequality holds in (6) for at least one i.
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6.2.6 (Diagonal Dominance Theorem) Assume that 4 € L(C") is either
strictly or irreducibly diagonally dominant. Then A is nonsingular.

Proof: Assume first that A4 is strictly diagonally dominant and suppose
that there is an x # 0 such that 4x = 0. Let

| x| = max |x].
1<j<n

Then |x,| > 0, and the inequality

law! Ixi] =

Zaijj < {xl Z fay; | 7N
7 S

contradicts the strict diagonal dominance. Similarly, if A4 is irreducibly
diagonally dominant, again suppose that there is an x # 0 so that Ax = 0,
and let m be such that

Iamml> Z Iamjl' (8)
J#Em
Next, define the set of indices
J=¢k: |xl=|xl, i=1L...,n |x|>|x]| forsome;}.

Clearly, J is not empty, for this would imply that |x,| = --- =|x,| # 0and
hence the inequality (7), with k = m, would contradict (8). Now, for any
kel,

AR EMIEANES

FE

and it follows that a,; = O whenever | x,| > |x;|, or else the diagonal domi-
nance is contradicted. But for any k € J and j ¢ J, we must have |x,| > | x;|
and therefore

4,=0, kel j¢J.

But then A is reducible, and this is a contradiction. $$$

As an example of the use of this theorem we have:

6.2.7 Assume that the matrix (1) satisfies (2). Then A is nonsingular.

The proof is immediate since we have showniné.2.3 that A is irreducible,
and (2) shows that A4 is diagonally dominant as well as a, > ¢,. Hence 4 is
irreducibly diagonally dominant.

Another corollary of interest is the following.
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6.2.8 If A eL(R") is symmetric, irreducibly diagonally dominant, and
has positive diagonal elements, then A is positive definite. In particular,
if the matrix A of (1) satisfies (2) and is symmetric, then it is positive
definite.

Proof: Since A is symmetric, its eigenvalues A; are real and the Gersch-
gorin circle theorem 3.2.1 shows, since A is diagonally dominant, that
A;20, i=1,...,n But by 6.2.6 A is nonsingular so that 1;,>0, i=
1,...,n. $%%

We turn next to some results which involve the idea of a partial order-
ing. For vectors x, y € R" we define the natural or componentwise partial
ordering by

x<y ifand onlyif x;<y,, i=1,...,n
and similarly for matrices A, B € L(R"),
A<B if and only if a;<b;, Lj=1,...,n

In the special case that x =0 or A =0 we say that y>0 or B>0 is
nonnegative. An important class of nonnegative vectors or matrices is
given by the absolute values:

x| =Clxil, oo (DT (4] =(lag]).

We shall be interested primarily in conditions which ensure that a
given matrix has a nonnegative inverse. Qur first result follows from the
Neumann lemma 1.3.10.

6.2.9 Let B e L(R" be nonnegative. Then (I — B) ™! exists and is nonnega-
tive if and only if p(B) < 1.

Proof: 1If p(B) <1, then 1.3.10 ensures that (I — B)~! exists and that
(I—B)™' =3¢ B". Since every member of this sum is nonnegative, it
follows that (I — B)™! > 0. Conversely, assume that (/ — B)"! > 0 and let
A be any eigenvalue of B with corresponding eigenvector x £ 0. Then
(4] |x| < B|x| so that (I — B)|x| < (1 —|4])|x|. Hence

[x| < (1 —|A)I - B) x|
and, since x # 0, it follows that |A| < 1; that is, p(B) < 1. $3$$
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A particularly important class of matrices with nonnegative inverses is
given by the following:

6.2.10 Definition A matrix 4 € L(R") is an M-matrix if 47! >0 and
a; <0,i+#j. A symmetric M-matrix is a Stieltjes matrix.

The next result gives a characterization of M-matrices.

6.2.11 Let A e L(R") satisfy a;; <0, i #j. Then A is an M-matrix if and
only if a;;>0, i=1,...,n, and the matrix B=I— D" 'A, where D =
diag(a,,, ..., a,,), satisfies p(B) < 1.

Proof: Suppose that p(B) < | and that a;; >0, i=1, ..., n. Then, since
B >0, 6.2.9 ensures that (D" '4)"!=(I— B)"! >0, so that A™! exists
and, since D >0, 47! >0. Conversely, if 4 is an M-matrix, then the
diagonal elements of A are positive because if some a;; <0, then a; <0,
where a; is the ith column of 4. Hence, e, = 4~ 'a; <0, where ¢ is the ith
coordinate vector, and this is a contradiction. Hence D >0, and D!
exists. It follows that B>0 and (/— B)"'!=A4"1D >0 so that 6.2.9
ensures that p(B) < 1. $$§$

We next give a basic comparison result for spectral radii.

6.2.12 Let BeL(R")and C e L(C"). If |C| < B, then p(C) < p(B).

Proof: Set 6 = p(B), let ¢ > 0 be arbitrary, and set
B,=(c+¢7'B, C =(c+¢ 'C.
Clearly,
|C,|* < B, k=0,1,....

But p(B;) <1 so that B -0 as k- oo and hence C% -0 as k- co.
But then p(C,) < 1. Therefore p(C) < g + ¢ and, since ¢ was arbitrary,
p(C)<o. $3%

As an immediate corollary, we have the following useful result.
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6.2.13 Let C e L(R"). Then p(C) < p(| C|).

It is not in general true that the sum of M-matrices is again an M-matrix
(E6.2.8). However, a special case of importance is the following.

6.2.14 let AeL(R") be an M-matrix and D e L{R") be a nonnegative
diagonal matrix. Then 4 + D is an M-matrix and (4 + D) 1 < 4~1.

Proof: Write A= D, — H where D, = diaga,,,...,a,,) and set B; =
D7'H,B =(D + D,)”*H. Since A is an M-matrix, we have H >0, D, > 0,
and, clearly, 0 < B < B,. But 6.2.11 shows that p{B,) < 1 so that, by 6.2.12,
p(B) < 1. Hence 6.2.11 ensures that 4 + D is an M-matrix. The inequality
follows by multiplying A <4+ Dby A" and (4 + D)~'. $$%

As an immediate corollary of this theorem we obtain the following
result on symmetric M-matrices.

6.2.15 Let A € L(R") be a Stieltjes matrix. Then A is positive definite.

Proof: Suppose that A has an eigenvalue 4 < 0. Then 6.2.14 shows that
A — AI'is an M-matrix and hence nonsingular, But this is a contradiction
since A — Al is singular if A is an eigenvalue. $3$

The characterization theorem 6.2.11 is not very useful for checking
whether a given matrix is an M-matrix. We next give a useful sufficient
condition which is a consequence of the following result.

6.2.16 Let B e L(C") be irreducible. If

Y byl <1, i=1,...,n 9
j=1
and strict inequality holds for at least one i, then p(B) < 1.

Proof: Clearly (9) implies that p(B) < |B|, <1. Now suppose that
p(B) =1 and let A be any eigenvalue of modulus unity. Then Af — B is
singular, but, by (9),

|2 =bul=1—]by| =} |6yl

J#i
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and strict inequality holds for at least one i. Therefore, since Al — B is
irreducible with B, 6.2.6 shows that A — B is nonsingular. This is a con-
tradiction and we must have p(B) < 1. $3$%

6.2.17 Let A e L(R") be strictly or irreducibly diagonally dominant and
assume thata,; <0,i#janda;>0,i=1, ..., n. Then 4 is an M-matrix.

Proof: Define Be L(R") by B=1I — D~ 'A where, again, D is the diagonal
part of A. Then, by 6.2.11, it suffices to show that p(B) < 1. By the diagonal
dominance of 4, (9) holds for B and if A is strictly diagonally dominant,
then strict inequality holds in (9) for all i. In this case p(B) < ||B||, < 1. On
the other hand, if A is irreducibly diagonally dominant, then the result
follows immediately from 6.2.16. $33

For a corollary, we consider the tridiagonal matrix (1).

6.2.18 Let the matrix (1) satisfy (2). Then A is an M-matrix.
The proof is an immediate consequence of the previous result since
(2) ensures that A is irreducibly diagonally dominant.

To complete this section, we prove another version of Gerschgorin’s
theorem for the boundary value problem

Y'(x) = g(x)y(x) +r(x), ya)=a, yb)=p (10)
under the condition
q(x) =0, x € [a, b]. (11)

Since, for simplicity, we have set p(x) = 0, the difference equations of the
previous section now take the simpler form

Yiei =2+ yis1 =h2qiyi +h2"i, i=1,...,n Yo=0 Y,1=2§
(12)

with ¢, = g(x;) and r, = r(x,). These equations we can write as

Ay=b (13)
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where
[2 4+ h?q, -1 T [ —h%r, + o
-1 2+ h%q, -1 —h?r,
A= . ' . b=
-1 —h*r,_,
5 -1 2+ h%q,] h—hzr" + p]
(14)

We will now prove the following complement of é.1.3.

6.2.19 (Gerschgorin’s Theorem) Assume that (10) has a solution y and
that (11) holds. Then there is a constant ¢ > 0 such that

|¥x) ~yW)| <ch), i=1,...,n (15)
where y(h), i =1, ..., nis the unique solution of (12), and

wh)= max |t(x, h)|

at+th<x<b—h
with

1
w6 ) =23 D — B) = 2y(0) + y(x + B] = g(Iyx) — rx). - (16)

Proof: Let§ = (y(x,), ..., y(x,)) and T = (x(x1, k), ..., ©(x,, h))". Then,
by (16),

A9 =b KT
so that subtracting this from (13) gives
Ay - 9)=HT.

Now let 4, be the matrix obtained from A4 when g(x) =0. Then both
A, and A are irreducibly diagonally dominant and hence, by 6.2.6, non-
singular. Moreover, both 4, and 4 are M-matrices by 6.2.18,- and, by
6.2.14, A~! < A;'. Hence, using the absolute value, we have

ly =91 =#|A7'T| <A™ | <A F| < hi)dgle (1)
where e = (1, 1, ..., 1)T. We therefore need to evaluate A; 'e. Let

wi=¥x;—a)b—x), i=0,..,n+1
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Then wy = w,,; =0, and it is easy to verify that
—W,',1+2W"—Wi+l=h2, i=1a---7n

which is equivalent to A,w = A%, with w = (w, ..., w,)T. Hence A;'e =
h™ 2w so that (17) becomes

ly — 9| < o(h) | w|
or

|yih) — y(x))| <t(h) max |w;| < b — a)*r(h). $3$
1gign

The local truncation error t(h) may be estimated as in the previous
section. Hence, corresponding to 6.1.5, we have the following corollary.

6.2.20 Assume that the solution y of (10) is four times continuously
differentiable and that the conditions of 6.2.19 hold. Then

I)’(xi) - )’r(h)l = 0(h2)~

EXERCISES

E6.2.1 Let Pe L(R") be a permutation matrix. Show that

(a) P is orthogonal

(b) Pis obtained from the identity matrix by permutation of rows or
columns

{c) If AeL(R", the effect of the multiplication PA is to permute the
rows of A while the multiplication AP permutes the columns of
A.

E6.2.2 Decide whether each of the following matrices is reducible or
irreducible;

@ (2 11 () [0 1 O c [0 0 1
01 1 [1 0 1 010
1 01 010 1 00
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E6.2.3 Prove the Gerschgorin circle theorem 3.2.1 as a corollary of 6.2.6.
Prove that a strictly diagonally dominant matrix is nonsingular as a
corollary of 3.2.1.

E6.2.4 Which of the matrices of E6.2.2 are diagonally dominant? strictly
diagonally dominant ? irreducibly diagonally dominant ?

E6.2.5 Let A, Be L(R") be the tridiagonal matrices
a, by O a N O
G Y _' ",
" - by - c Y-
O Cn‘l an O ’Yn—'l an
where b;c; >0and y; = \/b;¢;, i=1,...,n— 1. Show that if

b, b -
D=diag(1,—l, ‘bz,...,b‘ by ‘)
€1 €10 €1 """ Camy

then B= DAD™'. Show also that if a; > |b;| + |c;—y|, i=2,...,n—1
and a, >|b,|, a, >|c,-|, then B is positive definite.

E.6.2.6 Let Ae L(R"). Show that A~ >0 if and only if there exist non-
singular, nonnegative P, Q € L{(R") such that PAQ = L.

E6.2.7 Which of the matrices of E6.2.2 are M-matrices ? Stieltjes matrices ?

E6.2.8 Give an example of a 2 x 2 M-matrix which is neither irreducible
nor diagonally dominant. Give an example of two 2 x 2 M-matrices
whose sum is not an M-matrix.

E6.2.9 Try an alternative proof of 6.2.19 along the following lines. Use
1.3.3 to show that A, < A, where 4, and A are the lowest eigenvalues of 4,
and A, respectively. Hence conclude that |A7!|, < | 45'll,. Now use
E6.1.1 to compute || Ay |, explicitly and then modify the proof of 6.2.19
accordingly. How does your bound compare with (15)?

E6.2.10 Prove Theorem6.1.3 along the lines 0f6.2.19 as follows : Show that
A(y — §) = h’T, where A is given by (14), and then prove that |47}, <
y~'h* by showing that || Az, > yh*|z||, for all ze R".
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READING

The treatment of Section 6.1 follows to some degree that of Isaacson
and Keller [1966], while that of Section 6.2 is along the lines pursued in
Varga [1962] and Ortega and Rheinboldt {1970]. For additional results
on discretization error for two-point boundary value problems, including
nonlinear problems, see Henrici [1962] and Keller [1968]. For extension to
partial differential equations, see Forsythe and Wasow [1960]. Excellent
references for the matrix theory of Section 6.2 are Householder [1964] and
Varga [1962].



PART Il

CONVERGENCE OF ITERATIVE METHODS

In the previous part we studied the discretization error that arises when a
**continuous problem” is replaced by a discrete one. We now take up the
next basic error—convergence error—which results when we truncate an
infinite sequence to finitely many terms. There are many intrinsic similari-
ties between this type of error and discretization error, but the spirit in
which we approach the errors is entirely different. There are also many
different types of problems in which convergence error may arise: for
example, summing an infinite series and analyzing the convergence of
sequences generated in many different ways. In the next two chapters we
shall restrict our attention to those sequences generated by iterative pro-
cesses.
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CHAPTER 7

SYSTEMS OF LINEAR EQUATIONS

7.l CONVERGENCE

Consider the system of linear equations
Ax =b (1)

where A e L(R") is assumed to be nonsingular, If n is reasonably small
(say, n < 200), the method of Gaussian elimination, to be discussed in
Chapter 9, is probably the most efficient method to approximate a solu-
tion of (1). However, for certain problems arising, for example, from
differential equations, » may be very large (say, » > 10*), and it may be
desirable to use an iterative method for (1).

One of the simplest iterative methods is that of Jacobi. Assume that

a; #0, i=1,...,n (2)

and that the kth vector iterate x* has been computed; then the components
of the next iterate x**! are given by

i
x;wlz_(b,._za,jx;), i=1,...n 3)
a“ Jj#i

If we let D = diag(a,, - -.,d,,) and B = D — A then, clearly, (3) may be
written as

xk+1=D_lek+D_lb, k=0, l, (4)

A closely related iteration may be derived from the following observa-
tion. If we assume that the computations of (3) are done sequentially
for i=1,2,...,n, then at the time we are ready to compute x;*! the

nz
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new components xi*!, ... x¥*1 are available, and it would seem reason-

able to use them instead of the old components; that is, we compute

1 i-1 n
—(bi—ZaUx}“— za,.,x;s), i=L..n (5
i j=1 1

i =i+

X+t =

This is the Gauss-Seidel iteration. Let —L be the strictly lower triangular
part of A and — U the strictly upper triangular part; that is,

0 O 0 a;, -+ ay

L=- , U=-
O . an—l,n
Apy *°° App—1 0 0
(6)
Then, with D = diag(a,,, ..., a,,), we have
A=D-L-U Q)

and (5) is equivalent to
ka+l =b +ka+l + ka'

The condition (2) ensures that D — L is nonsingular and hence the Gauss—-
Seidel iteration may be written in the formt

x¥*1 = (D - L)"'Ux* + (D — L)"'b, k=0,1,.... 8)
Both of the iterations (4) and (8) are of the general form
x**1 = Hx* 4+ d, k=0,1,... )

and it is easy to see that x* = Hx* + d if and only if Ax* =h. We next
prove the basic convergence theorem for the general iteration (9).

7.1.1 (Fundamental Theorem of Linear Iterative Methods) Let H € L(R")
and assume that the equation x = Hx + d has a unique solution x*. Then
the iterates (9) converge to x* for any x° if and only if p(H) < 1.

Proof: 1If we subtract x* = Hx* + d from (9) we obtain the error equa-
tion

xk+1 —x¥* = H(xk — x*) e e — Hk+l(x0 _ x*)'

1 But (3) and (5) should be used for actual computation, not (4) and (8).
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Hence, in order that lim, ., (x* — x*) = 0 for any x° it is necessary and
sufficient that lim,_H* =0. The result now follows from 1.3.9. $3%

It is interesting to note that we have previously proved 7.1.1 in the
context of difference equations. Indeed, in Theorem 4.2.2 we showed that a
solution of (9), considered to be a difference equation, is asymptotically
stable if and only if p(H) < 1, and this result is precisely equivalent to the
convergence theorem 7.1.1. We will see various other connections between
the theories of difference equations and iterative methods in the sequel.

Theorem 7.1.1 reduces the convergence analysis of (9) to the algebraic
problem of showing that p(H) < 1. We next give some sufficient conditions
that this spectral radius condition be satisfied. In the following results, we
use the notation for nonnegative matrices introduced in 6.2.

7.12 Definition Let A4, B,CeL(R"). Then A=B~— C is a regular
splitting of A if C > 0 and B is nonsingular with B™! > 0.

7.1.3  (Regular Splitting Theorem) Assume that 4 e L(R") is nonsingular,
that A~ > 0, and that A = B — C is a regular splitting. Then p(B™!C) < 1.
Hence the iterates

x**!=B~1Cx*+ B™y, k=0,1,...

converge to A~'b for any x°.

Proof: Set H= B~ 'C. Then H >0 and by the relations
(I+H+ -+ HYI—H =I—H"!, B l'=(I— HA™"
we have, since A7 >0,
O<(U+H+ --+HMWB '=(I-H""HYA 1<4!

for all m > 0. Since B~ > 0, each row of B™! must contain at least one
positive element, and it follows that the elements of I+ --- + H™ are
bounded above as m — c0. Therefore, since H > 0, the sum converges
and, consequently, lim,_, H*=0. Theorem 1.3.9 then shows that
o(H)< 1. $8%

As an immediate corollary of this result, we have the following con-
vergence theorem for the Jacobi and Gauss-Seidel iterations applied to an
M-matrix (6.2.10).
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7.1.4 Let A € L(R") be an M-matrix and let b € R" be arbitrary. Then the
Jacobi iterates (4) and the Gauss—Seidel iterates (8) converge to A~ 'b for
any x°.

Proof: Since A is an M-matrix, it is nonsingular and 4! > 0. Moreover,
the matrices L and U of (6) are nonnegative and, by 6.2.11, D=
diag(a,,, ..., a,,) is nonnegative and nonsingular. Hencef

D—-L)'=[I+D 'L+D L2+ +(D LD >0 (10)

where the series expansion terminates because L is strictly lower triangular.
Therefore 4 =(D — L) — U is a regular splitting and clearly 4 = D —
(L + U) is also. Hence 7.1.3 applies. $$3%

We next give another convergence theorem which does not rely on the
signs of the elements of A.

7.1.5 (Diagonal Dominance Theorem) Assume that be R" is arbitrary
and that 4 € L(R") is either sirictly or irreducibly diagonally dominant.
Then both the Jacobi iterates (4) and the Gauss—Seidel iterates (8) con-
verge to A~'b for any x°.

Proof: As in 6.2, let | B| denote the matrix whose elements are the abso-
lute values of those of B. Clearly, the matrix
A=|D| - |L| - |U|

is strictly or irreducibly diagonally dominant with 4. Hence, by 6.2.17,
A is an M-matrix and therefore we have shown in 7.1.4 that

p{IDI7HLI + U< 1, p{ID| = [LD7!U}< 1.
But
| DXL+ U)| < |D|7XIL| + |U])
|(D~LD)~'U| <(|D] - |L)7!|U]
where the second inequality follows from (10). Thus, by the comparison

theorem 6.2.12,
p{D™HML+ Uy <p{|D| (L] + |U])} <1

+ This also follows from 6.2.9.
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and
p{(D—L)'Uy <p{(|D| - |L)7!|U} < L.
The result then follows from 7.1.3. $$$

We turn next to a modification of the Gauss—Seidel iteration known as
successive overrelaxation (SOR). In this iteration, the Gauss-Seidel iterate
is computed as before by

1

gl =

i~-1 n
(b= Zaustt = 3 ayx) an
=1 =T 1

J=i+

]

but the new value of x; is taken to be
Xk =xf + o(F*! — x§) (12)
for some parameter . If w = 1, then clearly x**! is just the Gauss-Seidel
iterate (5).
In order to write this procedure in matrix form, first substitute (11)
into (12) to give

w i-1 n
k+1 __ _k k+1 k
T =(1-wxi+— (b.- - Yagxgtt— Y aijxj)
ay i=1 j=it1
and then rearrange into the form
i—1 L n
Jk+1 k+1 _ k k
apxf* 't o) apxitl =1 - wayxf—w Y, a;xi+ wb,. (13)
j=1 j=i+1

This relation of the new iterates x‘*! to the old x¥ holds fori=1,...,n
and, by means of the decomposition (7), may be written as

Dx**! — pLx**! = (1 — w)Dx* + wUx* + wb (14)
or, under the assumption (2),
X+ = H, x* + o(D — wl)"'h, k=0,1,... (15)
where we have set
H,=(D - oL) [l — 0)D + wU]. (16)

Again, it is evident that (15) reduces to the Gauss—Seidel iteration (8) when
w=1

We first prove a basic result which gives the maximum range of values
of w for which the SOR iteration can converge.
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7.1.6 (Kahan's Theorem) Assume that 4 e L(C") has nonzero diagonal
elements. Then

p(H) > |w—1]. (17

Proof: Because L is strictly lower triangular, det D™' = det{D — wL)™*
and we have

det H, = det(D — wL) ™! det{(1 — w)D + wlU}
= det{(1 — w)] + 0D U} = det{(1 — w)I} = (1 — w)"

since D™1U is strictly upper triangular. But det H,, is the product of the
eigenvalues of H,, and therefore (17) must hold. $3$%

In order that the iterates (15) converge for all x° it is necessary, by
7.1.1, that p(H,) < | and hence, by (17), that 0 < w < 2 if wis real. For
an important class of matrices, we shall show that this is also a sufficient
condition. We first introduce another class of splittings.

7.1.7 Definitiont Let A, B, and C be in L(R"). Then A=B—~C isa
P-regular splitting of A if B is nonsingular and B + C is positive definite.

Note that this definition does not require that either A or P=B + C
be symmetric. Rather, we want that x"Px > 0 for all nonzero x € R",
which is equivalent to the requirement that the symmetric part of P, de-
fined by (P + P"), be positive definite (E7.1.5).

The following result is the basis for the convergence theorems to follow.

7.1.8  (Stein’s Theorem) Let H e L(R") and assume that 4 € L(R") is a
symmetric positive definite matrix such that A — HTAH is positive definite.
Then p(H) < 1.

Proof: Llet A be any eigenvalue of H and u #0 a corresponding eigen-
vector. Then u' Au and u(4 — H"AH)u are real (E7.1.6) and positive and
therefore

uAdu > wHTAHu = (Aw)" A(Au) = | 1|%u" 4u,
so that [A|> < 1. $3$
1 This definition does not appear to be in the literature. It is motivated by Theorem

7.1.9 which was apparently first proved J. Weissinger, Z. Angew. Math. Mech. 33
(1953), 155-163.
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7.1.9 (P-Regular Splitting Theorem) Let A e L(R") be symmetric posi-
tive definite and A = B — C a P-regular splitting. Then p(B™!C) < 1.
Proof: By 7.1.8, it suffices to show that
Q=A—-(B1O)Y'4B™'C
is positive definite. Since B"'C = I — B~ A4, we have
O =(B 'A)A+ AB'A — (B 1A)TAB~ 14
=(B~'A)(B + B — A)B~A.
But B + B" — A = BT + C is positive definite with B + C and therefore Q
is positive definite (E7.1.7). $$$

For the SOR iteration 7.1.9 reduces to the following famous result.

7.1.10 (Ostrowski—Reich Theorem) Let 4 € L(R") be symmetric positive
definite and assume that 0 < w < 2. Then the SOR iterates (15) converge
to A b for any x° and b e R".
Proof: By7.1.1 and 7.1.9, it suffices to show that

A= (D -ol)— o '[(1 - 0)D + oL

is a P-regular splitting of A. Since the diagonal elements of A are positive,
D is positive definite and D — wL is nonsingular. Moreover, the symmetric
part of B + Cis

B+B —A=20"'"D-L—-IT—D4+L+L =02 - w)D

which, since 0 < w < 2, is positive definite, $$3$
We note that 7.1.8-7.1.10 all have interesting converses. For these we
refer to E7.1.8 and E7.1.9.

EXERCISES

E7.1.1 Consider the iterative process (9) and assume that the equation
x = Hx + d has a unique solution x*. Show that the sequence {x*} con-
verges to x* if and only if x° — x* liesina subspace spanned by eigenvectors
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and principal vectors of H associated with eigenvalues of modulus less
than unity.

E7.1.2 Show that the following converse of 7.1.3 holds: If A=B ~ Cisa
regular splitting of 4 and p(B™'C) < 1, then A~ ! exists and is nonnegative.

E7.1.3 A= B - C is a weak regular splitting of 4 e L(R") if B™! exists
and is nonnegative, and B"'C > 0 and CB~! > 0. Show that 7.1.3 and also
the converse in E7.1.2 remain valid for weak regular splittings,

E7.1.4 let A € L(R") be an M-matrix. Modify the proof of 7.1.4 to show
that p(H ) < 1 for w € (0, 1], where H, is given by (16).

E7.1.5 Let A e L(R"). Show that x"4x >0 for all x e R" if and only if
x"(4 + AMx >0 for all x € R".

E7.1.6 Llet A e L(R"). Show that 4 = A, + A, where A, is symmetric and
A, is skew-symmetric. Use this to show that u" Au is real for every complex
vector u if and only if 4 is symmetric.

E7.1.7 let A€ L(R") be symmetric positive definite and H e L(R") non-
singular. Show that HTAH is positive definite.

E7.1.8 Prove the following converse of 7.1.8; If p(H) < 1, there exists an
hermitian positive definite Ae L{(C") such that A — H"AH is positive
definite. { Hint: Choose P such that |PHP™!||, < 1 and set A = PHP. Then
show that |[PHx|, < ||Px}|, for all x e C".)

E7.1.9 Prove the following converse of 7.1.9. If 4 € L(R") is symmetric
and A = B — C is a P-regular splitting with p(B™!C) < 1, then 4 is positive
definite. Similarly, show that if 4 e L(R") is symmetric with positive
diagonal elements and p(H,) < 1 for some w € (0, 2), then A is positive
definite. [Hint: If X,,, = B"'Cx,, k =0, 1, ..., show that

X AX, — X 1A%y = (X — Xy 1) (B + OXX, — X4 1 q)
for all k > 0, and hence if x3 Ax, <0 for some x, the convergence of {x,}
to zero would be contradicted.]
E7.1.10 Show that the matrix
1
A=la
a

is positive definite for —} < a < 1 but that the Jacobi iterates (4) converge
only for —{<a< i

Q — K
— QR
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7.2 RATE OF CONVERGENCE

The introduction of the parameter w into the Gauss-Seidel iteration,
discussed in the previous section, is not done so as to force convergence
but, rather, to enhance the rate of convergence. In this section, we will in-
vestigate primarily the optimum choice of w in this regard. We first need
to make precise the concept of rate of convergence, and we do this for an
arbitrary iteration of the form

Xt =Gxt,  k=0,1,... )

where G is a (perhaps nonlinear) mapping from R" to R".

7.2.1 Definition Assume that x* = Gx* and let C be the set of all se-
quences {x*} generated by (1) such that lim,_, , x* = x*. Then

a = sup{lim sup |x* — x*|'*: {x}} e C (2)
k— o0
is the asymptotic convergence factor of the iteration (1) at x*.
In order to understand better the role of «, consider a single sequence
{x*} which converges to x* and let
B = lim sup [|x* — x* |, (3)
k= o
Since lim,_, ,(x* — x*) =0, clearly 0 < < 1, and thus the same is true
of a. From (3), it follows that for any ¢ > O there is a k, such that
Ix* — x*|| < (B +¢)* 4

for all k > k. Hence, if § < 1, we may choose ¢ so that B + ¢ < 1 and (4)

shows that, asymptotically, ||x* — x*|| tends to zero at least as rapidly as

the geometric sequence (§ + ¢)*. The supremum in (2) is taken so as to

reflect the worst possible rate of convergence of any individual sequence.

Clearly, the smaller « is, the faster the rate of convergence of the process.

We also note that o is independent of the particular norm used (E7.2.1).
For a linear iterative process

xk+l=ka+d, k=0,1,... (5)

it is possible to give a simple characterization of o,
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722 Llet H € L(R") and assume that p(H) < 1. Then the asymptotic con-
vergence factor of the iteration (5) is p(H).

Proof: For given ¢ > 0, 1.3.6 ensures that there is a norm such that
iH|| < p(H) +¢. Hence, if x* = Hx* + d, then

Ix* — x*|| < [H*IX® — x*|| < [p(H) + el Ix° —x*,  k=0,1,....
Since a'/* - 1 as k — oo for any a > 0, we have

lim sup |x* — x*||'* < p(H) + ¢
k- 0

so that o < p(H) + ¢. But since ¢ is arbitrary and « is norm independent
(E7.2.1), it follows that o < p(H). To show that equality holds it suffices
to exhibit a single sequence for which

lim sup ||)x* — x*|['* = p(H). (6)

k-

Suppose that there is a real eigenvalue A such that |i] = p(H). If we
choose x° such that x° — x* is in the direction of an eigenvector of H
associated with A, then

[[x* — x*|| = [|[HYx® — x*)|| = [A*x° — x*)|| = p(H)*|Ix° — x*||

so that (6) holds. On the other hand,} if there are no real eigenvalues of
modulus p(H), then, since H is real, there is a complex conjugate pair 1
and 1 of eigenvalues such that |1} = p(H) with (necessarily complex)
eigenvectors u and u. We may extend u; = uand u, = atoabasisu,, ..., u,
for the complex space C" and, hence, any vector y € R" may be written as
y = Y 7., §iu; where the coefficients §;may be complex. Then [ly|| = 37 ;| ;]
defines a norm on R" (E7.2.2). Now choose x° so that x° — x* = Re u =
1(u + W), which is necessarily nonzero (E7.2.3). Then

x* — x* = H¥x°® — x*) = $HYu + @) = (A", +1a,).
Hence, in the norm previously defined,

I — x*l = 4[4 + [2)) = p(H)*, k=0,1,...,
so that, clearly, (6) holds. $$$

We return now to the SOR iteration (7.1.15) and pose the problem of
choosing the parameter » so as to maximize the rate of convergence. More

+ The rest of this proof would not be necessary if we could choose x° € C".
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precisely, we shall seek to minimize the convergence factor « of 7.2.1 and,
by 7.2.2, this is equivalent to minimizing the spectral radius of

H,=(D - ol)™'[(1 - w)D + U], (M

where, as usual, D, — L, and — U are the diagonal, strictly lower triangular,
and strictly upper triangular parts of the coefficient matrix 4. We will be
able to give a complete solution to this problem for a certain class of
matrices. Throughout this section we will assume, of course, that 4 has
nonzero diagonal elements so that H, is well defined.

The Gauss-Seidel method, and hence also the SOR method, is depend-
ent upon the ordering of the equations, Of these n! possible orderings, we
will consider only those for which the corresponding coefficient matrix is
of the following type.

723 Definition The matrix A4 eL(R") is consistently orderedt if the
eigenvalues of

Bloy=a™ 'D 'L +aD™U

are independent of « for all o # 0.

As an example of a consistently ordered matrix consider the matrix

A= S ®)

t See N. Nichols and L. Fox, Numer. Math, 13 (1969), 425-433, and Young [1971]
for other definitions,



128 7 SYSTEMS OF LINEAR EQUATIONS
and it is easy to see (E6.2.5) that

e

SB(a)S™! =

S I

EUR |
O 10
where S = diag(1, «, ..., o~ !). Hence B(a) is similar to a matrix which is
independent of o and therefore the eigenvalues of B(«) itself are independ-

ent of a. Thus A is consistently ordered.
Along with consistent ordering, we shall need another property.

7.2.4 Definition The matrix 4 € L(R") is 2-cyclic (or has property A) if
there is a permutation matrix P such that

r_ D1 G
PAPT = [C2 o ©9)

where D, and D, are diagonal.

Consider again the matrix (8) and recall that it arose in Chapter 6 from
the two-point boundary value problem y” = 0, y(a) = o, y(b) = 8 with grid
points a + ih, i =0, ..., n + 1. Now label the grid points alternately red
and black and renumber the red points 0, 1, ..., g and the black points

g+1,...,n+ 1, as shown in Figure 7.2.1. Then the difference equations
| | ]
i | I
a a+h a-+2h
R B R
Xo Xg+1 X1
Figure 7.2.1

are of the form, for even n
x,~—~2x,1+,~+,+x,~+,=0, i=0,...,9-1
xq+i_2xl+xq+i+l =09 l=199q

1 For odd #, an obvious modification is necessary.
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or
-2 1 -~ T 7 [ ]
-1} 0
2 ~1{] x, Xyt
-1 2 qu Xo
-1 ’
- _] _1 2__xn . _0 o)

The renumbering of the grid points corresponds to a transformation PAPT
of A where P is a permutation matrix. Hence A is 2-cyclic.

We can now begin our analysis. We first prove a basic lemma which
shows that the eigenvalues of the Jacobi iteration matrix J = DXL + U)
occur in pairs, =+ u,, with the possible exception of the zero eigenvalue.

7.2.5 (Romanovsky's Lemma) Assume that 4 e L(R") is 2-cyclic with
nonzero diagonal elements. Then there are nonnegative integers p and r
with p 4+ 2r = n such that

det(Al — J) = A7 ]_‘[ (2 — 1) (10)

for certain (real or complex) numbers y,, ..., 4,.

Proof: 1t suffices to prove that if 4 is an eigenvalue of J then — u is also.
This, in turn, is proved if det{Af — J) = det(Al + J) for any A. Now since
A is 2-cyclic, there is a permutation matrix P so that (9) holds. Hence

det(l — J) = det P det(AI — J) det PT

_d t[ Al D,"C,]
~“bre,
—1 Al D,“’C,] [1 ]
—(—1) t 1 dt 1
(—1)'de [ 12] det[DZ_,C2 Al € -1,
-, D,”C,]
= (—1)"det = det(Al + J), 11
(-1 e[D{’CZ L det(Al + J) (11)

and the result is proved. $$$
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We note that if D;is r; x r; it may be shown that the integer r in (10)
is just the smaller of the r;.

We next need another lemma which utilizes the concept of consistent
ordering.

7.2.6 Llet AeI(R") be consistently ordered with nonzero diagonal
elements. Then for any constantst «, 8, and y,

det{yD — aL — pU} = det{yD — «'*B"*(L + U)}. (12)

Proof: If we multiply (12) by det D™, then it is clear that the result is
proved if we show that the eigenvalues of a D™!L + gD~ U are identical
with those of «'/28Y2D XL + U). If either a or f is zero, then the first
matrix is strictly triangular while the second is zero so that the eigenvalues
of both are all zero. Hence we may assume that neither o nor § is zero.
Set 5 = «/2/B/2, Then

aD7L + BD7U = o'2pY2{(6D™ 'L + 67 DU}

By the hypothesis of consistent ordering, the eigenvalues of the matrix on
the right are independent of §; hence we may set 4 = 1 and conclude that
the eigenvalues of a D™ 'L 4+ D 'U are the same as those of «'/2p!/2
{D7'L + D™'U}. $3$%

We are now able to prove a basic result which relates the eigenvalues
of the SOR iteration matrix (7) to those of the Jacobi iteration matrix
J=D"YL+U).

7.2.7 Assume that 4 € L(R") is consistently ordered and 2-cyclic with
nonzero diagonal elements, and that @ > 0. Then there are nonnegative

integers p and r with p + 2r = n and (real or complex) numbers y,, ..., Y4,
such that
det(ul — Jy = p* [T (* — ) (13)
i=1
and

det(il — Hy) = (A + o — 1P [[[(A+ 0 — 2 = Aol (14)

t Real or complex; it is not necessary that «, 8 > 0.
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Proof: Since D — wL is nonsingular, and det D™! = det(D — wL)™*, we
have, using 7.2.6,

det(Al — H,) = det( D — wL) ™! det{{ D — wL)A — (1 — w)D — wU}
=det{(A+w— ) — AwD™ 'L - 0D~ U}
= det{(A + w — ) — A%wJ}.
The representation (13) is a direct consequence of 7.2.5 as is (14) since the

eigenvalues of A'2wJ are scalar multiples of those of J and the variable
A + w — 1 now plays the role of 4. $$%

The importance of the last result is that it shows a direct correspondence
between the eigenvalues of H,, and those of J. In particular, if J has a
p-fold zero eigenvalue, then H, has p corresponding eigenvalues equal to
1 — w. Moreover, associated with the 2r nonzero eigenvalues +y; of J
are 2r eigenvalues of H,, which satisfy

A+ o — 1 = Lok (15)

We summarize these relationships in Table 1.

TABLE 1 Eigenvalues of J and H,

J H, H,

0 0 l—w
+ e 0, p.,z given by (15)

As indicated in Table 1, an immediate consequence of 7.2.7 is:
7.2.8 Under the conditions of 7.2.7, p(H,) = p(J)>.

If p(J) < 1, so that the Jacobi iteration is convergent, then 7.2.8 shows
that the Gauss-Seidel iteration is also convergent and, more importantly,
that the asymptotic convergence factor of the Gauss—Seidel iteration is the
square of that of the Jacobi iteration; that is, in terms of the asymptotic
convergence factors the Gauss-Seidel iteration is precisely twice as fast as
the Jacobi iteration.

We will next use 7.2.7 to choose w so as to minimize p(H,) and hence
maximize the rate of convergence of the SOR iteration. In the sequel, we
shall assume, in addition to the conditions of 7.2.7, that the eigenvalues of J
are real and p(J) < 1. This is the case, for example, for the matrix (8).
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We write (15) in the form
Aitw—Djw=21"4, (16)

and plot each side of this equation separately as a function of 4; for fixed
values of w € (0, 2) and y;. This is shown in Figure 7.2.2 where we have

F 2N rw-TVw

Ve
FON=XN""p,

ST

—.-{\)"

\ =Ny,

Figure7.2.2

denoted the roots of (16) as 4,— and A;,+ corresponding to the values + y;.
As w decreases from 1 to 0, it is clear that the line (4; + @ — 1)/w, with
slope w1, rotates about (1, 1) toward a vertical position and, consequently
the roots 4;+ and 1,— both increase monotonically. This accounts for the
behavior of all the eigenvalues of H,, which satisfy (16). The other (possible)
eigenvalues 1 = 1 — w also increase monotonically as w decreases from
1 to 0 and hence the same is true of p(H,); that is,

p(H,) < pH,) if w, <y <L. an

Therefore, the optimum w in the interval (0, 1] is w = 1.
As w increases from 1, the line (4; + w — 1)/ now swings upward (see
Figure 7.2.3) and the root 4, — increases while the root A;+ decreases until

FIN) =N, +w-w

/e
FIN)=X; Iy

i
|
1
|
|
i
A

A~
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they coalesce at the point that (4; + @ — 1)/w is tangent to the curve
f(A) = A}Y?u, . At this point of tangency, the slopes of the two curves as
well as the function values are equal; this gives

WP =pgo, Aht+o-1=1"yo (18)

If we eliminate 4; in these relations, we see that w must satisfy the quadratic
equation

ol —40+4=0
so that
2-2/1 -4 2
w= i —— (19)

ui 1+./1-

As w increases beyond this value, it is clear that the root pair 4, + becomes
complex. In fact, if we regard (16) as a quadraticin A}/2, then [with the plus
sign in (16)]

A = [op + oyt — 4w — D]/2

where the discriminant w?u? — 4w + 4 is negative if w exceeds the value
of (19). Hence

(A = AP0 = [P} — (0} — 4o+ Db =0 — 1. (20)

If we now consider the root pairs li;l-_ correspondingtou? < 13 <--- < p?
as w increases from 1, we see that 4, + first becomes complex with modulus
w — 1, then 4, + becomes complex, and so forth until finally 4, + becomes
complex at the value of w given by (19):

w 21
Ty \/ [— p() @
The p-fold root 1 — w of course has the absolute value w — 1 also so at the
value of w, given by (21) all of the eigenvalues of H,, have modulus w, — |
and as w increases further all eigenvalues have modulus w — 1, as shown
by (20). For values of ® < wyq, 4,4+ 1s still decreasing as w increases. Hence
p(H,) is minimized at the value of w given by (21). The behavior of the
roots of H,, in the complex plane is shown in Figure 7.2.4,
We summarize the above discussion in the following result. Note that
a sufficient condition that the roots of J be real is that A be symmetric
and positive definite (E7.2.7) and that sufficient conditions for p(J) < 1
were given in the previous section (7.1.4, 7.1.5).
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Figure 7.2.4 Roots of H, in complex plane.

7.2.9 Assume that 4 € L(R") is consistently ordered and 2-cyclic with
nonzero diagonal elements. Assume further that the eigenvalues of the
Jacobi iteration matrix J are real and that p(J) < 1. Then for any w € (0, 2),
p(H_) < 1 and there is a unique value of w, given by (21), for which

p(Ha)o) = min p(H,).

O<w<2

In Figure 7.2.5, we plot p(H ) as a function of w. It can be shown that
as w approaches w, from the left the slope of the curve becomes infinite,

1

W, 2 w—e

Figure 7.2.5

while to the right of w, the slope is 1. Hence, it is a better computational
tactic to approximate w, by a value which is too large rather than too
small.
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EXERCISES

E7.2.1 Use the norm equivalence theorem 1.2.4 to show that if x* — x*
as k — oo, then

lim sup [x* — x* ||*/*

k=

is independent of the norm. Hence conclude that the convergence factor
o of 7.2.1 is independent of the norm.

E7.2.2 Letu,,...,u,beabasisfor C"andforanyye R*let y = > 7., j,u;.
Show that |lyll = }7~,|#:| is a norm on R".

E7.23 Let H € L{R"). Show that if u is a (nonzero) eigenvector of H
corresponding to the complex eigenvalue 4, then Re u 3 0.

E7.2.4 Consider the matrices

el el

Show that a(A4,) =+ < of{A4,) = 4, where o is the convergence factor of
7.2.1, but that given any number N, we can choose § and x° so that

|A4x° < | 45x°|  for k=0,...,N.
E7.2.5 Use E6.l.1 to compute the optimum w for the matrix (8).
E7.2.6 Show that the matrix of (9) is consistently ordered.

E7.2.7 Assume that B, C e L(R") are symmetric and that B is positive
definite. Show that the eigenvalues of BC are real. Use this to show that if
A € L(R") is symmetric positive definite then the eigenvalues of its Jacobi
iteration matrix are real.

7.3 APPLICATIONS TO DIFFERENTIAL EQUATIONS

We will now apply the results of the previous two sections to discrete
analogues of differential equations. Consider first the system of equations

—Yier + 20— Yooy + RPqy + R =0, i=1...,n )
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wiere Yo =&, Vox1 =B, Ay qys .5 g, and ry, ..., r, are known. As dis-
cussed in Chapter 6, this system arises from the two-point boundary value
problem

Y'(x) =qgp(x) + r(x), Ha)=a, pb)=4.

As in Chapter 6, we write (1) in the form

Ax=b (2)
where
2 + h’q, -1 7 [ —h%r, + o]
-1 24hq, —h?r,
A= ' . b=| (3)
-1 —h%r,_,
| -1 2+ h%g,] | —h?r, + B

In Theorem 6.2.8, we showed that A was an M-matrix under the condition
that

q,=0, i=1,...,n 4

Hence, Theorem 7.1.4 applies and ensures that either the Jacobi iterates
(7.1.4) or the Gauss-Seidel iterates (7.1.8) converge to the unique solution
of (2) for any starting approximation x°. Moreover, since 4 is symmetric,
6.2.15 shows that A4 is positive definite. Hence, by the Ostrowski-Reich
Theorem 7.1.10 we may conclude that the SOR iterates (7.1.15) also con-
verge to A7 'b for any w € (0, 2). Finally, the same analysis as used in 7.2
can be used to show that A4 is 2-cyclic and consistently ordered (E7.3.1).
Moreover, it is also easy to see (E7.3.2) that the eigenvalues of the Jacobi
iteration matrix for 4 are real. Hence Theorem 7.2.8 holds and an
optimum w exists for the SOR iteration applied to (2).

Although,as we have just seen, all of the theoretical results of Sections 7.1
and 7.2 apply to the equation (2), it is far better in practice to use gaussian
elimination (see Chapter 9) to solve this type of linear system. For partial
differential equations, however, the situation is somewhat different and
iterative methods are, in most cases, to be preferred over direct methods. t

t Although direct methods seem to be increasingly competitive. See, for example,
B. Buzbee, G. Golub, and C. Neilson, On Direct Methods for Solving Poisson’s Equa-
tions, SIAM J. on Numer. Anal. 7 (1970), 627-656.
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We shall now illustrate how the results of the two previous sections apply
to what is probably the simplest situation: Laplace’s equation on a square.
We consider the equation

Au(s, )= u (s, 1) + u, (s, 1) =0, 5, teQ], (5)

where Q is the unit square [0, 1] x [0, 1], and u is to satisfy on the boundary
Q of Q the condition

ufs, t) = g(s, 1), s51eQ (6)

where g is a given function. We can obtain a discrete analogue for (5) in a
manner analogous to that used in Chapter 6 for ordinary differential
equations. First, we divide Q by a uniform square mesh with spacing A
and define the grid points P;; = (ih,jh), i,j=0,...,m+1, where
(m + )h=1; this is depicted in Figure 7.3.1 for # = 1. At each interior

on (1,1
° o
° o

(0.0} 1,0y
Figure 7.3.1

grid point, the second partial derivatives u,, and u,, are now approximated
by central difference quotients; that is,

u i, jh) = U,y ;= 2U; + Ui~:,j]/h2
uih, jhy = [U; ;,, —2U; + U,~‘j_,]/h2

where we have set U;; = u(ih, jh). If we use these approximations in (5),
we then obtain the discrete analogue

Uinr, ;= 20U+ Uiy Y+ U 50— 2054+ U, 0)IR =0
or, upon multiplying through by — A2,
4U,J_ Ui~|’j‘U,'+|,j—U,',j+|_U"’j~|=0, i,j= l,. PR (¢ (7)
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Since the values of U;; at the boundary grid points are assumed to be
known by (6), this is a system of n = m? equations in the unknowns
Ujsij=1,...,m.

In order to write (7) in matrix form, we associate a vector x € R" with
the unknowns U ; by the correspondence

X =Uity v s Xm=Upts Xmr1=Ui2s+.es %= Upnm

and define the block tridiagonal matrix

(B -1 o ]
4= L
= . . . , (8)
O : . =1
L -1 B
where I is the m x m identity matrix and B is the m x m matrix
[ 4 -1 o T
-1 o
B= : . . )

Then (7) may be written as
Ax=b (10)

where the components of the vector b are either zero or are the known
boundary values (E7.3.3).

We next show that the matrix A is irreducible and for this we will apply
Theorem 6.2.2, which states that A4 is irreducible if for any indices
1 <i<j<n there is a sequence of nonzero elements of 4 of the form
Qiiys Gy, iy - -5 @i, ;- This is shown most easily as follows. Assume that the
grid points are numbered left to right, bottom to top and consider the ith
and jth grid points. Then there is a path from the ith point to the jth point
consisting of links between grid points as shown in Figure 7.3.2 Each of
these links between grid points corresponds to a nonzero element of the
matrix A4, and it follows that A4 is irreducible.

Clearly A is diagonally dominant and strict diagonal dominance holds
for at least the first and last rows. Therefore, A4 is irreducibly diagonally
dominant and, by Theorem 6.2.6, is nonsingular. Moreover, since the off-
diagonal elements of 4 are nonpositive while the diagonal elements are
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Figure 7.3.2

positive, Theorem 6.2.17 shows that 4 is an M-matrix. Finally, 4 is sym-
metric and, hence, by 6.2.8, positive definite. We summarize these results
as follows. The proof of the convergence statements follows exactly as for
the matrix of (3).

7.3.1 The matrix A given by (8) and (9) is an irreducibly diagonally
dominant M-matrix and is also symmetric positive definite. The Jacobi
and Gauss—Seidel iterates converge to the unique solution of the system
(10) and, also, the SOR iterates converge for any w € (0, 2).

We note without proof that it can also be shown that the matrix A4 of
(8) is consistently ordered and 2-cyclic, and then Theorem 7.2.9 can be
invoked to show that an optimum w exists for the SOR iteration.

EXERCISES

E7.3.1 Show that the matrix 4 of (3) is 2-cyclic and consistently ordered.

E7.3.2 Use E7.2.7 to show that, under the condition (4), the eigenvalues
of the Jacobi iteration matrix for the matrix A4 of (3) are real.

E7.3.3 Write out the vector b of (10) explicitly.

READING

The SOR theory of Section 7.2 is due to D. M. Young in the early
1950s (see Young [1971]), but the presentation here follows that of Varga
[1962). See also Forsythe and Wasow [1960), Householder [1964],
Isaacson and Keller [1966], and Ortega and Rheinboldt [1970].



CHAPTER 8

SYSTEMS OF NONLINEAR EQUATIONS

8.1 LOCAL CONVERGENCE AND RATE OF CONVERGENCE

We consider now the problem of solving the nonlinear system of
equations

JiXisooes X)) =0, i=1,...,n 1))
which we usually write in the vector form
Fx=0 2

where F: R" - R" is the mapping} whose components are the f;; that is,

Fx=(fi(x),...,f(x)"
One of the basic iteration procedures for approximating a solution of
(2) is Newton’s method:

x*t=xk_ FF&ENYIFX, k=0,1,...,, 3)
where F'(x) denotes the Jacobian matrix

6,{,(X) 6"f3(X)
0 - o)

and where we have used 0;f,(x) to denote the partial derivative of f; with
respect to the ith variable and evaluated at x. In practice, one does not,

F'(x) = “)

t For simplicity we will assume that F is defined on all of R". This is no essential
loss of generality since if Fis defined only on a subset D, it can always be extended, in an
arbitrary way, to the whole space.

140
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of course, invert F'(x*) to carry out (3) but, rather, solves the linear system
F'(x")y = — Fx*,

and adds the “ correction”” y to x*.

In the analysis of Newton’s method, it will be necessary to assume that
the Jacobian matrix (4) is at least continuous at the solution x*; that is,
(IF'¢x* + h) — F'(x*)|| -0 as h— 0. It is easy to see (EB.1.1) that this will
be the case, in any norm, if and only if the partial derivatives d;f; are all
continuous at x*. On occasion, it will also be useful to assume, instead of
continuity of F’, that the derivative satisfies the following property.

8.1.1 Definition The mapping F: R" — R" is (totally or Frechet) differ-
entiable at x if the Jacobian matrix (4) exists at x and

lim I|F(x + h) — Fx — F'h||/[lh]| = 0. (5)

h-0

Note that if n =1, 8.1.1 reduces to the usual definition of differenti-
ability. Note also that if F is differentiable at x, then F is continuous at Xx;
this follows from the inequality

IFx + h) — Fx|| < [[Fx + h) — Fx — F'x)h|| + |[F'(x)h].

Finally, we note that it is possible to showt that if the Jacobian matrix is
continuous at x, then F is differentiable at x.

One of the basic tools of nonlinear analysis is the mean value theorem.
If Fis a differentiable function from R' to R', this states that

Fx—Fy=F@z)x— )

for some point z between x and y. Unfortunately, this result does not
extend verbatim to mappings from R" to R" (see EB.1.2). However we are
able to prove some results which are often just as useful. For the first, we
define the integral} (% G(1) dt of a mapping G : [a, b] = R' = R" as the

1 See, for example, Ortega and Rheinboldt [1970, p. 71].
1 The integral is assumed to be defined in the Riemann sense; in particular, conti-
nuity of the integrand on [a, b] is sufficient for its existence.
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vector with components jbg ) dt, i=1, ..., n, where g,, ..., g, are the
components of G. Thus, for example, if F: R" — R" the relation
1t
Fy—Fx= f F'(x + Ky — X))y — ) dt (6)
1]
is equivalent to
1 n
SO =0 = [ 9fix+ 1y =0}, = x)) de Y
=

fori=1,...,n

For n=1, (6) is simply the fundamental theorem of the integral
calculus. Hence the next result is a natural extension of that theorem to n
dimensions.

8.1.2 Assume that F: R" — R" is continuously differentiable on a convext
set D < R". Then for any x, y € D, (6) holds.

Proof: For fixed x, y € D define the functions g;: [0, 1] < R' - R' by
g =filx+ty—-x)), te[0,1], i=1,...,n

By the convexity of D, it follows that g; is continuously differentiable on
[0, 1] and thus the fundamental theorem of the integral calculus implies
that

o) = 9:0) = | gitn at. ®)

But a simple calculation shows that

gi(t) = -Z: 0;fi(x + Ky — X)) (y; — x))
I=
so that (8) is equivalent to (7). $$$

For the next result, we first need a lemma on integration.

8.1.3 Assume that G: [a, b] = R' — R" is continuous. Then

b b
f G(t)dt”s j 1G] dt. (9)

t Recall that a set D < R" is convex if tx + (1 — t)y € D whenever x, ye D and
te[o, 11
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Proof: Since any norm is a continuous functiont on R, both integrals of
(9) exist and therefore forany £ > 0 thereisa partitiona < tq < *** <t,<b
of [a, b] such that

be(t) dt— Zp Gt — t,._,)“ <e

and

f NGl dt — _i Gt — ti—l)‘ <e.

Hence

be(t) dtn s' 3 G(t)(1; — ti_l)» +¢
a i=1

4 b
< YIG@IG~ tio) + e [ 1G] de +2¢
i= a
and, since ¢ was arbitrary, (9) must be valid. $$$

By means of 8.1.2 and 8.1.3 we can prove the following useful alterna-
tive of the mean value theorem.

8.1.4 Assume that F: R" — R" is continuously? differentiable on the con-
vex set D < R". Then for any x,ye D,

IIFx—Fyllsosup IF(x+ ey —x)Il Ny —x|\. (10)

=t=<1

Proof: By 8.1.2 and 8.1.3 we have
1
IFx — Fy|| = “fo F'x+ 1y —x))(y —x)dt “
1
< J IF+ 1y = X0l lly = xde

1
< sup IF'(x+ iy =) [y = xllds

0<r<l

which is (10). $$3

1 See the proof of Theorem 1.2.4,
1 We note that this result still holds if F is only differentiable at each point of D, but
a different proof is required; see, for example, Ortega and Rheinboldt [1970, p. 69].



144 8 SYSTEMS OF NONLINEAR EQUATIONS

Finally, we prove one more often-used estimate.

B.1.5 Assume that F: R" — R" is differentiable and satisfies
IF'(w)— FWI <ylu—v] (I
for all u, v in some convex set D. Then for any x, ye D,
IFy = Fx ~ F'(x)(y ~ x)I < fy|x — y|*.

Proof: Since F'(x)(y — x) is constant with respect to the integration, we
have from 8.1.2 that

1
Fy— Fx — F'(x)(y — x) = fo [F(x + 1y — x)) — FF())(y — x) dt.

Hence, the result follows by taking norms of both sides, using 8.1.3 and
(11), and noting that [§ 1 dt = 4. $3%

In order to begin our analysis of Newton’s method, we consider first
the general iteration

x**1=Gxt, k=0,1,... (12)

where G: R"— R". A solution of the equation x = Gx is called a fixed
point of G, and when G arises as an iteration function for the equation
Fx = 0, then a solution of Fx = 0 should always be a fixed point of G.
For example, for Newton’s method G is given by

Gx=x— F(x)"'Fx

and, assuming that F'(x) is indeed nonsingular, x* is a fixed point of G
if and only *f Fx* = 0.

In contrast to iterative methods for linear equations, it is usually pos-
sible to analyze the convergence of (12) only in a neighborhood about a
fixed point.

8.1.6 Definition A fixed point x* of G: R" — R" is a point of attraction
of the iteration (12) (alternatively, one says that the iteration is locally
convergent at x*) if there is an open neighborhood S of x* such that when-
ever x° € S, the iterates (12) are well defined and converge to x*.
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We next give the basic local convergence theorem for the iteration (12).

8.1.7 (Ostrowski’s Theorem) Assume that G: R" —» R" is differentiable
at the fixed point x* and that p(G’(x*)) < 1. Then x* is a point of attraction
of the iteration (12).

Proof: Set o = p(G'(x*)) and take ¢ > 0. Then, by 1.3.6, there is a norm
on R such that |G'(x*)]| < ¢ + &. Moreover, since G is differentiable, (5)
ensures that there is a 6 > 0 so that if $= {x:|x — x*|| < §}, then

IGx — Gx* — G'(xX*)(x — x*)|| < gllx — x*]
whenever x € S. Therefore, for any x e S
IGx — Gx*|| < IGx — Gx* — G'(x*)(x — x¥)|| + |G"(x*)(x — x*)]|
< (o + 2e)|lx — x*|. (13)

Since o < 1, we may assume that ¢ > 0 is chosen so that a =0 + 2e < 1.
Hence, if x° € S, (13) shows that
Ix' — x*|| = [Gx® — Gx*|| < a|x® — x*||.

Therefore, x! € S, and it follows by induction that all x* are in S and, more-
over, that

Ik = x* [ < @t —x < < X - x

Thus, x* > x* as k > c0. $33

The previous result may be considered to be a local version of Theorem
7.1.1 which showed that the linear iterative process

x¥*'=Gx*=Hx*+d, k=0,1,...

is convergent for all x° if and only if p(H) = p(G’(x*)) < 1. Note that in the
case of 8.1.7, however, p(G’'(x*)) < 1 is not a necessary condition for con-
vergence. (See E8.1.3.)

It is also interesting to note that 8.1.7 is essentially Perron’s theorem
4.2.7 on the asymptotic stability of solutions of the perturbed linear dif-
ference equation

Y =By + (M, k=0,1,.... (14)
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Indeed, (12) is of the form (14) with y* = x* — x*, B = G'(x*), and
J) =Gx* +y) - Gx* — G'(x*)y

and thus 4.2.7 contains Ostrowski’s theorem.
We now apply 8.1.7 to the iterative process

xtl=xt— Cx"7'Fx,, k=0,1,... (15)

where C is a given matrix valued function. One concrete example of (15) is
Newton’s method in which C(x) = F'(x). Another example is when
C(x) is the lower triangular part of F'(x). That is, if we decompose

F'(x) = D(x) — L(x) — Ux)

into its diagonal, strictly lower triangular, and strictly upper triangular
parts, as in Chapter 7, then C(x) = D(x) — L(x) and the iteration (15)
becomes

xk+l=xk_[D(xk)_L(xk)]'l}:‘xk’ k=0,1,.... (l6)

In this iteration, only a triangular system of linear equations needs to be
solved at each stage, rather than the full system of Newton’s method. This
is sometimes called the Newton—-Gauss—Seidel method since (16) reduces to
the Gauss-Seidel iteration (7.1.8) when Fis linear.

In order to apply 8.1.7 to (15) we need to compute G'(x*) where

Gx=x — C(x)"'Fx. (17
Proceeding formally we have
G'(x)=1—- Cx)"'F'(x)— [Cx)" '] Fx (18)
so that, since Fx* = 0,
G'(x*) = I — C(x*)"1F'(x*). (19)

In order to make this computation rigorous, we would have to discuss the
differentiation in (18) more thoroughly. Alternatively, we can obtain (19)
as in the next lemma.

8.1.8 Assume that F: R"—> R" is differentiable at x*, where Fx* = (),
and that C: R" - L(R") is a matrix-valued mapping which is continuous at
x*. Assume, moreover, that C(x*) is nonsingular. Then the mapping (17)
is well defined in a neighborhood of x* and is differentiable at x*, and
(19) is valid.
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Proof: We first show that C(x) is nonsingular for all x in a neighborhood
of x*. Set B = [|C(x*)"!|| and let ¢ satisfy O < & < (28) . By the continuity
of C at x* there is a 6 > 0 so that

IC(x) — C(x*)I| < ¢

whenever x e S = {x: |[x — x*|| < 8}. Hence, Theorem 2.1.| ensures that
C(x) is nonsingular and that

p
1 — Be

Therefore, G is well defined for all x € S.

Next, since F is differentiable at x*, we may assume that § is chosen
sufficiently small that

ICE) ™ I<

< 2B, xXeSsS.

lIFx — Fx* — F'(x*)(x — x*)|| < ¢[lx — x*||
for all x € S. Clearly, x* = Gx* and we can make the estimate
IGx — Gx* — [ — C(x*) ™' F'(x*)](x — x*) ||
= [ICx*) ™ F'(x*)(x — x*) — C(x) ™ Fx||
< ICx) ™! [Fx — Fx* — F'(x*)(x — x")]|
+ ICx) T [Cx*) — C(X)IC(x*) ™ F'(x*)(x — x*) |
< (2Be + 282 F' (x*) ) IIx — x* || (20)
for all x e S. Since ¢ is arbitrary and |F'(x*)|| and f§ are constant, (20)

shows that G is differentiable at x* and that (19) holds. $3%$

We now apply 8.1.8 to the iteration (16).

8.1.9 Assume that F: R" — R" is differentiable in a neighborhood of x*
where Fx* = 0 and that F’ is continuous at x*. Assume, moreover, that
D(x*) is nonsingular and that

p{[D(x*) — L(x*)] "' U(x*)} < |

where U(x) is the strictly upper triangular part of F'(x). Then x* is a
point of attraction of the iteration (16).
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Proof: The assumptions imply that C(x) = D(x) — L(x) is continuous at
x* and that C(x*) is nonsingular. Hence 8.1.8 ensures that G is differen-
tiable at x* and that
G'(x*) = I — [D(x*) — L(x*)]” ' F'(x*)
= I - [D(x*) — L(x*)]'[D(x*) — L(x*) — U(x*)]
= [D(x*) - L(x*)]™ ' U(x*).
The result then follows from 8.1.7. $3$$

If Fx = Ax — b, for some A € L(R") with A = D — L — U its decom-
position into diagonal, strictly lower, and strictly upper triangular parts,
then F'(x) = A for all x and the iteration (16) becomes

x¥*1=x*— (D -L)"'(4x* - b)

which is the Gauss—Seidel iteration discussed in 7.1. The content of 8.1.9 is
that the iteration (16) is locally convergent provided that the Gauss-Seidel
iteration applied to a linear system with coefficient matrix F'(x*) is
convergent.

We return now to the Newton iteration (3).

8.1.10 (Local Convergence of Newton's Method) Assume that F: R" -
R" is differentiable at each point of an open neighborhood of a solution x*
of Fx =0, that F' is continuous at x*, and that F'(x*) is nonsingular.
Then x* is a point of attraction of the iteration (3) and

xR —x¥|

lim ——————— =0, 21)

kw1 — x| (
Moreover, if

IF'(x) — F'x*) Il < alix — x*]| (22)

for all x in some open neighborhood of x*, then there is a constant ¢ < + o0
such that

I+t = x*)| < ellx = x*|? 23)

for all k > k, where k, depends on x°.

Proof: Lemma 8.1.8 ensures that the Newton function

Gx=x- F(x)"'Fx



8.1 LOCAL CONVERGENCE AND RATE OF CONVERGENCE 149

is well defined in a neighborhood of x*, that G is differentiable at x*, and
that

G'(x*)=1- Fx* 'F(x*)=0. (24)
Therefore, it follows from 8.1.7 that x* is a point of attraction. Moreover,

since G is differentiable at x*, we must have

lim IGx* — Gx* — G'(x*)(x* — x*)|| _
ko o lIx* — x*||

0

whenever lim, _, . x* = x*; by (24), this is equivalent to (21). Finally if
(22) holds, then' an argument analogous to the proof of 8.1.5 shows that

IFx — Fx* — F'(x*)(x — x*)[| < fa[lx — x*||*.
Consequently, the first inequality of the estimate (20) yields
IGx — Gx*|| < [[F'(x)"*[Fx — Fx* — F'(x*)(x — x*)]|
+ [IFx)'F'(x) — F(x*)]x — x*)||
< Balx — x*|I* + 2Ba|lx — x*||?

in a suitable neighborhood of x*. Therefore, (23) holds with ¢ = 3«
provided that, for a given x°, k, is chosen so that x* lies in this neighbor-
hood for all k > k,. $$%

The property (21) is known as superlinear convergence while (23) is
called quadratic convergence. We note that (22) is ensured if the com-
ponent functions f; of F are all twice continuously differentiable in a
neighborhood of x*. Hence, under these mild differentiability assumptions
together with the nonsingularity of F’(x*), the content of B.1.10 is that
Newton’s method is always locally and quadratically convergent; that is,
the Newton iterates must converge to x*, and (23) must hold, as soon as
some x* is sufficiently close to x*. The theorem, as is typical of local
convergence theorems, thus exhibits an intrinsic property of Newton's
method rather than yielding checkable conditions that the iterates will
converge starting from a given x°. This latter type of result will be discussed
in the next section.

We end this section by applying 8.1.9 and 8.1.10 to the system of
equations

[il®) = ~x_y + 2% — x4 + BPg(x) =0,

i=1,...,n Xg=a x,=p. (25)
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As discussed previously, this system is a discrete analogue of the two-point
boundary value problem

Yy =g(»n), as<t<b, y@a=a yb)=04,

where a and § are given constants and g is a given function which we shall
assume to be twice continuously differentiable and satisfy

g'(s) =0, s € (— o0, ). (26)

Under these assumptions, it is knownt that the system (25) has a unique
solution x*.
It is clear that

-1, j=i—-1
0; (%) ={ 2+ hg(x), Jj=i

and O otherwise, so that

F(x) =4+ ®'(x) @27
where
2 -1
-1
A= . o
-1 2
@'(x) = h® diag(g'(xy), .-, g'(x,)- (28)

We have seen previously (6.2.18) that A is an M-matrix, and since, by (26),
®’(x) is nonnegative, Theorem 6.2.14 shows that F’(x) is also an M-matrix
and hence nonsingular. Since this is true of all x, it is true, in particular, for
x* and therefore 8.1.10 applies to show that Newton’s method is locally
convergent. Moreover, if A = D — L — U is the usual decomposition of 4
into diagonal, strictly lower triangular, and strictly upper triangular parts,
then it is a consequence of Theorem 7.1.4 that

p{[D+®'(x*)—L]"'U} < |
and therefore, by 8.1.9, the iteration (16) is also locally convergent.

t See, for example, Ortega and Rheinboldt (1970, p. 111}].
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EXERCISES

E8.1.1 Let F'(x) denote the Jacobian matrix of F: R" — R" at x. Show that
IF'(y) — F'(x)|| - 0 as y — x if and only if the partial derivatives 8; f; are
all continuous at x.

EB.1.2 Let F: R> - R? be defined by f;(x) = x7 and fy(x) = x3. Let
x=0andy=(l, )T. Show that there is no z € R? such that

Fx — Fy = F(z)(x — y).
EB.1.3 Consider the iteration ¥** 1 =Gx*=x* - (¥)*, k=0,1,..., in
R'. Show that 0 is a point of attraction although G'(0) = 1. On the other
hand, show that 0 is not a point of attraction of x*** = Gx* = x* + (x*)3,
k =0, |, even though, again, G'(0) = .
E8.1.4 Consider the iteration
X1 = x*k - w[D(x*) — wL(x"]"1Fx*, k=0,1,...

where o is a fixed parameter. Assume that the conditions of 8.1.9 hold and
that
PUDEXY — wL(x)] ™' [(1 — @) D(x*) + 0UH]} < 1.

Show that x* is a point of attraction.

E8.1.5 Prove 8.1.10 directly by using only the relevant parts of the proof
of 8.1.8.

E8.1.6 Consider the Newton iteration in one dimension for the functions
Fx =x* and Fx =x + x'** where 0 < o < 1. Show that, in both cases,
x* = 0is a point of attraction of the iteration but that the rate of conver-
gence is not quadratic.

E8.1.7 The iteration
Xt =xt— FEH'Fx, k=0,1,...

is known as the simplified Newton iteration. Use 8.1.7 to state a local con-
vergence theorem for this iteration.

EB.1.8 Show that the unique solution x* of the system
[ = =xoq + 20— Xppg + X i=hL...,n Xo=0o X1 =p

is a point of attraction for Newton’s method.



152 8 SYSTEMS OF NONLINEAR EQUATIONS

E¥.1.9 The method
Xl =x — DX IR, k=0,1,...,

where D(x) is the diagonal matrix consisting of the diagonal elements of
F'(x), is sometimes called the Newton-Jacobi method. Show that this
method reduces to that of equations (3) and (4) of the Introduction.
State and prove a result analogous to 8.1.9.

8.2 ERROR ESTIMATES

The local convergence results of the previous section serve to establish
certain intrinsic properties of the iterative methods considered. However,
they are generally useless when one tries to ascertain whether an iterative
process will converge starting from a given x°, and, also, what is the error
if the process is stopped with the kth iterate. In this section we will give
several results which are at least potentially useful in this regard.

A special case of the basic convergence theorem 7.1.1 for the linear
iterative process

x**'=Hx*+d8, k=0,1,... M

is that ||[H| < 1 is a sufficient condition in order that these iterates con-
verge to the unique solution of x = Hx + d for any x°. We shall extend this
result to the nonlinear iteration

xX**1=Gxk, k=0,1,... ()

in the following way.

8.2.1 Definition The mapping G: R" - R" is a contraction on the set
D < R" if there is a constant o < 1 so that

IGx — Gyl < allx — yll ?3)

for all x,y in D.
Clearly, the mapping Gx = Hx + d is a contraction on all of R" if
[H|| < I;in this case, o = ||[H||. (See also EB.2.1.)

We now prove one of the most famous theorems of analysis. In the
sequel, the notation GD < D will mean that Gx € D whenever xe D.
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8.2.2 (Contraction Mapping Theorem) Assume that G: R"—> R" is a
contraction on a closed set D and that GD < D. Then G has a unique fixed
point x* € D and for any x° € D, the iterates (2) converge to x*. Moreover,

x* —x*| < a(l — )" Yxk = x*~1)), k=1,2,... @)
where o is the contraction constant of (3).
Proof: By the assumption that GD < D, all of the iterates x* liec in D
and thus by (3)
R — x4 = [Gx - G <l — X TH, k=1,2,....

Therefore, for any k >0 and p > |

L4 . P -
”xk+p___xk”SZ”xk+z_xk+x ‘I]s(ac"+"'+a)l|x"—x" l”
i=1

<

Ix! — x°I. %)

] —a

This shows that the sequence {x*} is a Cauchy sequence and hence, because
D is closed, has a limit x* € D. Since G is a contraction, it 1S continuous
and therefore lim,_,,, Gx* = Gx*, which, by (2), also shows that x* is a
fixed point of G. The uniqueness of x* is apparent from the inequality

Ix* — y*|| = IGx* — Gy*|| < a[lx* — y*|

which is absurd if the fixed point y* € D is distinct from x*. Finally, the
estimate (4) follows from the first two inequalities of (5) by letting p tend
to +00. $3%$

The error estimate (4) is extremely useful when it can be applied. Sup-
pose that we know that « = 0.9 and that we are willing to tolerate an error
of 107* in the solution; that is, we wish to guarantee that the approximate
solution x* satisfies [[x* — x*|| < 107*. We can ensure this provided that
we iterate until ||x* — x*71|| < 107 since (4) then shows that

¥ — x*|| < 9[x* — x*~!|| < 107%.

The main difficulty in applying 8.2.2 is to obtain an estimate for the
contraction constant. Sometimes this may be done by estimating the
derivative as shown in the next result, which is an immediate consequence
of the mean value theorem 8.1.4.
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8.2.3 Suppose that G: R"— R" is continuously differentiable on the
convex set D and that

IG')| < « (6)
for all x e D. Then (3) holds for all x,y in D.

As an example of the use of these results, we consider the system (8.1.25)
written in the form

Fx=Ax+dx=0 (7)
where
[ 2 -1 . O ] --’129(350“01—1
-1 2_ . hg(x2)
A= ’ . o , ®x= : . (8)
: - =1 h?‘g(x,,,l)
L O _ 2 2 —
1 i LA (x,) — B

We will assume that
0=g'(s)=syu, —o0 <s§<+00 %)
and consider the * Picard iteration”
Xt = (4 + 97X = OxY,  k=0,1,... (10)

for some suitable constant y.

8.2.4 Assume that 4 € L(R") and ®: R" — R" are defined by (8) where
g: R' = R'is continuously differentiable and satisfies (9). Then the system
(7) has a unique solution x* and the iterates x* of (10) with y = h%u/2 are
well defined and converge to x* for any x°.

Proof: Define G: R"—> R" by
Gx = (A + yI) ' (yx — ®x). (n

By 6.2.15 and 6.2.18 A is positive definite and, since y > 0, A + yI is also
positive definite. Hence, G is well defined and has a fixed point x* if and



8.2 ERROR ESTIMATES 155
only if x* is a solution of (7). Moreover, G is continuously differentiable
on R" and

16l = A + 7)™l = COll, < 37— <1

where A > 0 is the minimum eigenvalue of 4. Therefore, 8.2.3 ensures that
G 1s a contraction on all of R" and the result then follows from 8.2.2. $$$

If G is a contraction on only part of R", our results so far do not answer
the question of whether for a given x° the iterates will converge. We dis-
cuss next a potentially useful result in this regard.

8.2.5 Let G: R" > R" be a contraction on D with constant o and assume
that x° e D is such that

SE{XZ”X—GXO”SI—-O-E—&”GXO—XO” «D. (12)

Then the iterates (2) converge to the unique fixed point x* of G in S.
Proof: 1If xe S, then

IGx — Gx°|| < allx — x°|| < of[Ix — GX°|| + IGx® — x°||]

o? 0 0 & 0 0
< + a] IGx° — x°|| = — |IGx" — x"|.
1—o 1 —a

Hence Gx € Ssothat GS < S. Clearly, Sis closed so that 8.2.2 applies. $33$

It is possible to apply the previous result to Newton’s method, but the
resulting theorem is not the best possible. We will prove the following
sharper result.

8.2.6 (Newton-Kantorovich Theorem) Assume that F: R"—> R is
differentiable on a convex set D and that

IF'(x) — FF(DIl < ypllx -yl (13)
for all X, y € D. Suppose that there is an x° € D such that

IFE)M<B,  IFE)'F=n, (14)
and
o= fyn < % (15)
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Assume that
S={x:[x-x°I<t}c D, t,=/B[ -1 -2 (16)
Then the Newton iterates
*tloxk _ xR, k=0,1,... (17

are well defined and converge to a solution} x* of Fx = 0 in S. Moreover,
we have the error estimate

lx* —x*[| < 28ylx' — x°|. (18)
Proof: Since, by (13),
IF'(x) — F'(x)l < ylix — X% < yt, < 1/

for any x € S, the perturbation lemma 2.1.1 shows that F’(x) is nonsingular
and that

P s b —r,  xes (19)
Consequently, the Newton function
Gx=x— F'(x)"'Fx
is well defined on S and if x and Gx are in S then
IG(G%) — GxI| = |F'(Gx) F(Gxl< - _’;‘ﬁ i‘:)ﬂ ||Gx”’ X, GX€ S.
(20)

But, by 8.1.5 and the definition of G, we have
IFGx)|| = IF(Gx) — Fx — F'(x)(Gx — )| < }ylIGx — x>
so that (20) becomes

ByllGx — x|1?
— Bylx° — Gx|[)’

We shall return to this basic estimate directly, but first we define the
scalar sequence

IG(Gx) — Gx|| <3 X, Gx€ S Q1)

1Byt — 1o+ 1

G K=OLes =0 (@)
k

i1 = 4 —

1 It may be shown that x* is not only unique in S but in the larger ball centered at
x° with radius (1/8y) [1 + (1 — 2e)'/2]. See Ortega and Rheinboldt [1970].
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It is easy to show that the sequence {t,} is well defined, monotonically
increasing, and converges to t, . In fact, these properties are geometrically
obvious (see Figure 8.2.1) by noting that (22) is just Newton’s method for
the quadratic p(t) = $Byt> — t + 5, whose smaller root is ¢, .

7\

3By 1147

Figure 8.2.1

Now assume that x°, ..., x* are in S and that
% —x"H<t; =154 (23)
fori=1,..., k;fork = 1, thisistrivial since |x! — x°|| = |[F'(x%) " 'Fx°| =
n=1,. By (23),

k k
x* — x° < Z ¥ —x" < Y (i —tim) =1
=1 i=1

and then (21) shows that
I — x4 = (IG(Gx*TY) — Gx* Y|
Bylixt — x*~ 1|2
T 21— Bylx® — x*[f)

t—t_)?
k

where the last equality follows from the fact that

—p(t)
t — =
k+1 k Pl(tk)

-1

1
[P(tk—l) + P (- Nty = t—) + ipﬂ(tk—l)(tk - tk—l)z]

Byt — 1
_ Byt — t-1)? )
2(1 — Byt)

It now follows from (24) that |x**! —x°|| < t,,; < t, so that X**' ¢ S.
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Hence the inductive step is complete, and we have shown that x € S and
(23) holds for all i. Therefore, for any k >0 and p > 1

P
[x¥*P — x*|| < Zl(tk+i_tk+i—l)=tk+p_tk’ (25
i=
and, since t, —t, as k— oo, {t,} is a Cauchy sequence. Therefore (25)
shows that {x*} is also a Cauchy sequence, which, by the closure of S,
must have a limit x* € S. But

IFx" ] = IF)E = 29l < IF )] IR — x| (26)

and since [x**! —x*| >0 as k> o0 and ||[F'(x)| is bounded on S the
right-hand side of (26) tends to zero as k — co. Hence Fx* — 0 as k — o0,
and the continuity of F implies that Fx* = 0.

Finally, to obtain the estimate (18), note that it follows from (25) as
p — oo that

[x* — x*| < 1, — 1.
In particular, we have
Ix* — x*{| < t, — n = $Bytk < 2Byn* = 2Bylx" - x°|?,

where we have used the inequality 1 — \/1 — 8 < 0 to estimate t,. $3$

Note that the previous result shows not only that the Newton iterates
starting from a given x° will converge but also that a solution exists. In
addition, the estimate (18) is another manifestation of the quadratic con-
vergence property of Newton’s method. The conditions of the theorem are
usually very difficult to verify in practice, however; in particular, there must
usually be a delicate balance between the set D being sufficiently large so
that (16) will hold and at the same time being sufficiently small so that the
quantity y is as small as possible. Clearly, the ease with which these condi-
tions may be satisfied depends crucially on how close x° is to a solution, as
reflected by the quantity [|F'(x%)™'Fx°|.

The importance of 8.2.6 lies perhaps more in the direction of obtaining
a posteriori error estimatest than in guaranteeing the convergence of the
Newton iterates. That is, suppose that the Newton iterates are computed

t The error estimate of this theorem is usually stated in the form [lx* — x*|| < (2x)?"/
(By24), k=0, 1,...;for a proof of this inequality, see Ortega and Rheinboldt [1970,
p. 423]. We have given an estimate of the form (18) since its proof is immediate and it
is just as useful for a posteriori bounds.
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until an error criterion of the form |[x/ — x/7!|| < ¢ is satisfied, and then
x/ is taken as the approximate solution. In order to obtain an estimate on
the accuracy of x/ we apply 8.2.6 with x° replaced by x/~!. Then a < fye,
where B > [[F'(x’"1)7!||, and provided that the conditions of the theorem
can be satisfied, (18) ensures that the estimate |[x* — x/|| < 2fye holds.
We end this section with a short discusston of a device which is some-
times useful in widening the domain of convergence of a given method, or,
alternatively, as a procedure to obtain sufficiently close starting points for
the method.
Given the mapping F: R" —» R*, we define a one-parameter family of
equations
H(x, 1) =0, te {0, 1] 27

with the properties that H(x, 1) = Fx and that the equation H(x,0) =10
has a known solution x°. For example, we may take

H(x, ) = tFx + (1 — )F,x (28)

where, for a given x°, Fyx = Fx — Fx°® or Fyx = x — x°,

Now suppose that for each ¢ € [0, 1] the equation (27) has a solution
x(t) which depends continuously on ¢; that is, suppose there is a continuous
function x: [0, 1] — R" such that

H(x(1),1)=0, te[0, 1], x(0)=x". 9)

Then x describes a space curve in R" with one endpoint at x° and the
other endpoint at the solution x* of Fx = 0; this is depicted in Figure
8.2.2.

x(1}

Figure 8.2.2
One way of using (29) to obtain an approximation to x* is as follows.
Partition the interval [0, 1] by the grid points
O=ty<ty < - <ty=1
and solve the equations

H(x,1,)=0, i=1,...,N
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by some iterative method, for example, Newton’s method, which uses the
solution x'~! of the (i — 1)st problem as a starting approximation for the
ith problem. If t; — t;_, is suitably small, then x~* will be sufficiently close
to x' so that convergence will occur.

We next consider a somewhat different approach and for simplicity we
restrict ourselves to the imbedding

Fx(t) — (1 —)Fx° = 0.
If we differentiate this equation with respect to ¢, we obtain
F'(x(n)x'(1) + Fx* =0,

so that, assuming that F'(x) is nonsingular along the solution curve, we
have
X(f) = — F'(x(1)) 'Fx°, (30)

Therefore, the solution curve x(?) is the solution of the differential equa-
tion (30) with initial condition x(0) = x°. This is Davidenko’s method of
differentiation with respect to a parameter. In principle, we can approximate
a solution of (30) by any of the initial value methods of Chapter 5.

EXERCISES

E8.2. Define G: R"— R" by Gx = Hx + d where H € L(R") and de R".
Show that there is a norm on R" in which G is a contraction if and only if
p(H) < 1.

EB.2.2 Suppose that G: R" - R" has the property that for any closed
bounded set C € R" there is a constant «, < | such that

IGx — Gyl < acllx -yl

for all x, y € C, and assume that G has a fixed point x*. Show that x*
is unique and that the iterates x**' = Gx*, k=0, 1, ... converge to x*
for any x°. Give an example in R' which shows that the condition on G
is not sufficient to guarantee that G has a fixed point.

E8.2.3 Let F: R" -» R" be defined by (7) and (8) and assume that, in place
of (9), g'(s) = 0 for all s e (— o0, o). Show that the function G of (11) is
not necessarily a contraction on all of R" no matter what (fixed) value of y
is chosen.
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E8.2.4 Assume that F: R" — R" is continuously differentiable in a neigh-
borhood of a solution x* of Fx = 0 and that F'(x*) is nonsingular. Show
that the Newton function Gx = x — F'(x)"!Fx is a contraction in some
neighborhood of x*.

8.3 GLOBAL CONVERGENCE

We turn now to the problem of global convergence of iterative methods,
that is, convergence for any x°. The results of Chapter 7 for linear equa-
tions were all of this type, but we have seen in the previous two sections
that for nonlinear equations the situation is quite different and global
convergence theorems are the exception rather than the rule.

Perhaps the simplest global convergence theorem is a special case of the
contraction mapping theorem 8.2.2.

8.3.1 Assume that G: R" — R"is a contraction on all of R". Then G has a
unique fixed point x* and the iterates

xktt = Gxk, k=0,1,... 1))

converge to x* for any x°.

We already gave an example of the use of 8.3.] in 8.2.4. However, it is
usually difficult, especially without very stringent assumptions, to show
that a given iteration function G is a contraction on all of R". In particular,
the application of 8.3.1 to Newton’s method yields rather limited results.
Therefore, we will pursue a different course in this section and extend to n
dimensions the following well-known result for Newton’s method in one
dimension.

We assume that F: R' —» R' is convex and monotone increasing. Then
for any x° to the right of the root x* the Newton iterates will converge
monotonically down to x*, while if x° is to the left of x* the first Newton
iterate will be to the right of x* so that the succeeding iterates will con-
verge monotonically downward. The situation is depicted in Figure 8.3.1.

In order to extend this geometrically obvious result to n dimensions,
we need to extend the concept of a convex function to mappings F: R* — R".
In the sequel, we shall use the natural partial ordering for vectors and
matrices introduced in 62; that is, x <y if x;<y;, i=1,...,n, and

AsBifa,'ijU,i’j=1,-..,”.
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Figure 8.3.1

8.3.2 Definition The mapping F: R" - R" is convex on a convex set
Dc R if

Flax + (1 —a)y) < aFx + (1 — ))Fy 2
for all x,ye D and x €0, 1].

Note that when n = 1, 8.3.2 reduces to the usual definition of a convex
function.

Recall that a one-dimensional differentiable function is convex if and
only if the graph of the function lies above all its tangent lines. This extends
to n dimensions in terms of the following basic differential inequality.

8.3.3 Assume that F: R" — R" is differentiable on the convex set D. Then
Fis convex on D if and only if

Fy — Fx 2 F'(x)(y — x) 3)
for all x,y e D.

Proof: Suppose first that (3) holds for all x, y € D, and for givenu,ve D
and a € [0, 1], set z= am + (I — a)v. Then z € D and hence

Fu— Fz > F'(z)(u — z), Fv— Fz > F'(z)(v — 2).

If we multiply these inequalities by « and 1 — «, respectively, and then add
we obtain

oFu+ (l —a)fv—-Fz> F @[+ (1 —a)v—2]=0.
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Hence F is convex on D. Conversely, if F is convex on D, then for any
X,y € D and a € (0, 1] we have, by rearranging (2),

Fy — Fx > (1/o)[F(x + a(y — X)) — Fx].
Since F is differentiable at x the right-hand side of this inequality tends to
F'(x)(y — x) as o — 0, which shows that (3) is valid. $$3

We are now able to prove the global convergence theorem previously
mentioned. In the following, the notation A = O will mean, as usual, that
the matrix A € L(R") has nonnegative elements.

8.3.4 (Newton-Baluev Theorem}) Assume that F: R"— R" is contin-
uously differentiable and convex on all of R", that F'(x) is nonsingular
and F'(x)”"' > 0 for all x € R", and that Fx = 0 has a solution x*. Then x*
is unique and the Newton iterates

X¥*t=xk— FH'FxY, k=0,1,... )
converge to x* for any x°. Moreover,
x*<xMt<xk k=1,2,.... &)
Proof: For arbitrary x° € R", 8.3.3 and the definition of x' show that
Fx' — Fx° > F(x%)(x' —x% = ~Fx°
Hence Fx' > 0. Another application of 8.3.3 yields
0 = Fx* > Fx' + F'(x")(x* — x')

and, since F'(x')™' > 0, we may multiply both sides of this inequality by
F'(x")" ! in order to obtain

x* <x' — F(x") 'Fxt < xh.
By induction, we may prove in a completely analogous way that
Fx*20, x‘=x*, k=1,2,.... (6)
Hence,
xtt=xt— xR <xb, k=1,2,...

which, together with (6), shows that (5) is valid. Therefore each component

1 Apparently first proved by the Russian mathematician A. Baluev, Dokl. Akad.
Nauk SSSR 83 (1952), 781-784.
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sequence {xf}, i=1,...,n of {x*} is monotone decreasing and bounded
below by x¥ and thus has a limit y, ; that is, the vector sequence {x*} has a
limit y. From the continuity of F’ it follows that
Fy = lim Fx* = lim F'(x*)(x* — x**') = 0.
k— o0 k—
Now suppose that x* and y* are any two solutions of Fx = 0. Then, using
8.3.3, we have

0 = Fy* — Fx* > F'(x*)(y* — x¥)
so that if we multiply through by F'(x*) ™! we obtain y* < x*. It follows by

reversing the roles of x* and y* that x* < y* and therefore x* = y*. Hence,
x* is the unique solution and therefore equal to the limit vector y. $%$

The inequality (5) is very useful because if we stop the iteration at any k
we know that x* is an “ upper bound * for the solution x*. In fact, by means
of a second sequence

g+ = g% — F'(x*) "' FR*, k=1,2,... )
we may obtain lower bounds, and hence the inequality
F<x*<xt, k=1,2,..., 8)

which provides the basis for an excellent stopping criterion for the itera-
tion. The situation is depicted for n =1 in Figure 8.3.2. Note that F’ is
evaluated in (7) at the Newton iterate x* and not at ®*.

Figure 8.3.2

8.3.5 Assume that the conditions of 8.3.4 hold and that in addition F’
satisfies the monotonicity condition F'(x) < F'(y) whenever x <y. Sup-
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pose that there is an X' such that FX! < 0. Then the sequence (7) satisfies
R < g*T < x¥, k=1,2,... Q)

and &% — x* as k — 0.

Proof: Since F'(x')™' > 0 and FX' <0, we have

£2=%' - F(x") " 'F&' > %"
Moreover, by 8.3.3,

0> FR' = FR' — Fx* > F'(x*)(' — x*)

so that multiplication through by F'(x*)™'> 0 yields &' < x*. Another
application of 8.3.3 shows that

F&' — Fx' > F(xH®' - x")
and thus

x'>x! - XD TURX =82+ x - % 4+ () TNFR - FxY) > %2
Therefore, by assumption F'(%%) < F'(x') and, again using 8.3.3, we have
FRE<FR'+ FRHK Y < FRR' + F(x)E* - %) =0.
By induction, we can prove in a similar way that
T < gk < x*, F&¥ <0, k=3,4,...,

and the conclusions of the theorem follow in a manner completely analo-
gous to 8.3.4. $%%

We illustrate the previous two results by the system given by (8.2.7) and
(8.2.8). If we assume that g is continuously differentiable and that g'(s) > 0
for all s € (— o0, 00), then we have shown in 8.1 that F'(x) = A + ®'(x) is
an M-matrix and thus, in particular, F'(x)""' > 0 for all x € R". We now
assume, in addition, that g is convex. Then it is easy to see (E8.3.2) that Fis
also convex. As mentioned in 8.1, it is possible to show that the system
Fx = 0 has a solution. Hence, all the conditions of 8.3.4 are satisfied.

In order to apply 8.3.5, we note that the convexity of g is sufficient to
imply that F'(x) < F'(y) whenever x <y (E8.3.2), and it remains only to
choose the point %'. Take

%' =x'— A" 'Fx!
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where, as usual, x' is the first Newton iterate, and note that
FRA =T+ d(x)A" >

since ®'(x) > 0 and A™' > 0. Consequently, using 8.3.3 and the fact that
we have shown that Fx' > 0, we have

FR'< I+ FR)E —x') = Fx! — F(G)A™ Fx' <0.

Finally, we note that if gaussian elimination is being used to solve the
linear systems of Newton’s method, then the subsidiary sequence (7) can
be computed with little additional work.

EXERCISES

EB.3.I Suppose that A: R" — L(R") is a matrix-valued function which is
continuous at some point y for which A(y) is nonsingular. Use 2.1.1 to
show that 4(x) is nonsingular for x in a neighborhood of y and that
A(x)™! is a continuous function of x at y.

E8.3.2 Assume that g: R' — R' is convex. Show that the mappings
®: R"—+ R" and F: R"— R" defined by (8.2.7) and (8.2.8) are convex.
Show, moreover, that if g is differentiable then F'(x) < F'(y) whenever
x<y.

EB8.3.3 Write a computer program to solve the system (8.2.7) by New-
ton’s method. For the choice g(x) = x*, experiment with different starting
values for the iteration.}

E8.3.4 Consider the functions F: R' — R' defined by Fx = tan™" x and
Fx = 2x + sin x. Show that in either case all the conditions of 8.3.4
except the convexity are satisfied, but that the Newton iteration is not
globally convergent.

READING

The material of this chapter is taken largely from Ortega and Rhein-
boldt [1970]. See also Daniel [1971] for the closely related problem of
minimization of functionals.

t An open mathematical question is the global convergence of Newton’s method for
this problem.



PART |V

ROUNDING ERROR

In this last part, we consider the important problem of rounding error,
which is, in many ways, the most difficult to analyze of the three basic
types of error. Although rounding error is present in essentially every
calculation carried out on a computer, we will restrict our attention to the
method of gaussian elimination for linear systems of equations and present
the famous backward error analysis of J. H. Wilkinson.
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CHAPTER ¢

ROUNDING ERROR
FOR GAUSSIAN ELIMINATION

9.1 REVIEW OF THE METHOD

In this chapter, we will analyze the effects of rounding error on the
most common method for solving a system of linear equations, We
begin by reviewing the form and some of the basic variants and properties
of this method.

We consider the linear system

Ax=b )

where A € L(R") is assumed to be nonsingular. Then the * pure” gaussian
elimination process may be described as follows. At the kth stage, we have
a “‘reduced ”’ system

A®x = p*? (2)

where A = 4 and b'") = b, and, in general, 4%’ and b are of the form

[k . .. k) [ 1, (k)
a® Al bp
AR = ai’;) . a,(",‘,) , b%) = -l Q)

k . (k) (k)
ar(:k, Qun - _bn )

169
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In order to obtain the next reduced system we assume that
@y #0 @

and define the elements of A**1) and b*+1 by

(k) el i<k orj
ag‘.*”: aij’, \ whenever i < k or j <k o)
al®) — my a®, i=k+1,...,n, j=k, ...,n
and
bk i<k
i+ = 6)
L3
b?"—m,-,‘bf"", i=k+1,...,n
where
m, =aPla®, i=k+1,...,n ©)

The effect of these computations is to introduce zeros into the positions of
the kth column below the main diagonal; hence, after n — 1 stages the
resulting matrix A“ is triangular. This completes the forward (or triangular)
reduction phase of the method. To obtain the solution, we then perform the
back substitution; that is, we solve the triangular system 4“x = b™ by

x, = b{"lal) (®)
and

Xp= (bf'") - a§7?+lxi+l - _alg,"r)txn)/ag?)’ i=n—-1L,n-2,...,1. (9

It is perhaps not immediately obvious that the vector x obtained in this
way is, in fact, the solution of (1), but this will be a consequence of the
following matrix representation of the process.

9.1.1 Let my, be given by (7) and define the vectors
m=0..,0m, ...m), k=1..n-1 (10)

and matrices

1 A

o ©

MW =] —mef= — My k- (n

o ' 0

— My 1

3
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where e, is the kth coordinate vector. Then the matrices 4 and vectors
b® defined above may be represented as

AW = =D g R = gD Dy 2 g

12
Proof: Clearly, (5) shows that
0 a0
AD = 4 _ | M T M | p ey y
myay o Mgy,

and similarly for b‘®), Continuing this process, we obtain the representation
(12). $%%

By means of 9.1.1, we see that the original system Ax = b is reduced to
the triangular form A®x =b™ by successive multiplications by the
matrices MV, .., M“ Y, Since each M®) is obviously nonsingular, the
reduced systems (2) all have the same solution.

The product M“~Y .- MY js lower triangular, and its diagonal ele-
ments are all equal to unity. Therefore

L= [M(n—l)...M(l)]—l (13)

is also lower triangular with diagonal elements equal to unity. (See E9.1.3
and also E9.1.4, for an explicit representation of L.) Therefore, since A™
is upper triangular by construction, 9.1.2 shows that 4 has been factored
into a lower triangular matrix times an upper triangular matrix; that is,

1 Uyy "7 Uy,

A=LU=]| | . L e
' O

1 Unn

i

nl

l

n,n—1

Hence, the (pure) gaussian elimination method is mathematically equivalent
to the procedure:

(a) Factor A as in (14) (forward reduction)
(b) Solve the triangular system Ux = L™ 'b (back substitution).
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All of the above discussion, including 9.1.1, is, of course, predicated
on the assumption (4). We next relate this condition to the matrix A itself.
Recall that a leading principal submatrix of A is of the form

a4y T Ay

G T By

where k may range from 1 to n.

9.1.2 (Triangular Decomposition Theorem) Assume that A e L(R") is
nonsingular. Then 4 has a factorization of the form (14) if and only if all
leading principal submatrices of A are nonsingular. Moreover, the factor-
ization is unique.

Proof: For the sufficiency, it suffices by our previous discussion to show
that the (pure) gaussian elimination process may be carried out and for this
it suffices to show that (4) holds. For k = 1, this is simply the condition that
a,, # 0; that is, the first principal leading submatrix is nonsingular. Now
suppose that a{f? £0,i=1, ..., k — 1 so that we have been able to com-
pute A®, ..., A% and the MY, .., M*~1 as given by (11). Write (12)
in the form

A(k,=[A‘h’ As*z]=[M<.*.-“ 0 ].”[Mw oHA.IAu] 0

AR AYL MDD MY % MDA 4,
where A{¥ is the leading principal submatrix of order k of A® and the

matrices M%) .., M), 4 are partitioned accordingly. Since the M
are lower triangular, it follows from (15) that

- 1
A(lkl) = M(lkl Do Mgl)All'
But all M{? are nonsingular and A4,, is nonsingular by assumption. Hence,
A is also nonsingular and thus det AY) =al} --- g #£ 0, so that (4)

holds.
For the necessity, we use a partition similar to (15) and write (14) as

[Lll 0 ][Ull UIZ] — [All AIZ]
L21 L22 0 UZZ A21 A22
where L,,, U;;, and A,, are all k x k. Since A is nonsingular, both L and

U, and hence L, and U,,, are nonsingular. But then 4;, = L,,U,, is non-
singular.
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Finally, the uniqueness is proved by assuming that L, U, =L, U, = 4
are two factorizations of the form (14). Then B = L7 'L, = U, U, " is both
upper and lower triangular with diagonal elements equal to unity. That is,
B=1Jsothat Ly =L, and Uy =U,. $%3

As an immediate corollary of 9.1.1 and 9.1.2 we have:

9.1.3 Assume that A € L(R") is nonsingular. Then the (pure) gaussian
elimination process (2)—(7) can be carried out if and only if all leading prin-
cipal submatrices of A are nonsingular.

The above result shows that pure gaussian elimination can be carried
out only if the restrictive principal submatrix condition is satisfied. (See
E9.1.5 for two classes of matrices for which this condition is automatically
satisfied.) For an arbitrary nonsingular matrix 4, a modification of the
process must be made and the simplest is the following. If at the kth stage,

(k) — 0, interchange the kth row of A® with a row for which a{’ # 0
for some i > k. Clearly, such a row must exist since otherwise 4%’ is singu-
lar which, by (12), implies that A itself is singular. We shall call this inter-
change process mathematical pivoting. The above discussion is summarized
in:

9.1.4 If A e L(R") is nonsingular, then gaussian elimination with mathe-
matical pivoting can always be carried out.

We note that these row interchanges may be viewed in matrix form as a
multiplication by a permutation matrix; that is, in place of (12) we now
have

AW = pe=DpG-=1) ... pg()pQ1) 4

where the permutation matrix P will be the identity if no interchange is
required. Hence

A= [M(n‘l)P("—l) v M(I)P(l)]—lA(n)

is the composition corresponding to (14). Again A™ is upper triangular,
but the first factor is no longer necessarily lower triangular.
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EXERCISES

E9.1.1 Assume that A eL(R") is nonsingular. Verify the Sherman-
Morrison formula:

A+uvN) =41 g 14" tayT4" !
where u, v e R" are such that a = | + vT4 tua £ 0.

E9.1.2 Show that
(I—me) ' =1+ mef
where e, is the kth coordinate vector and m, is given by (10).

E9.1.3 Show that the inverse of a nonsingular lower triangular matrix L
is lower triangular. Show, moreover, that if L has diagonal elements equal
to unity then so does L1,

E9.1.4 Let M ... M® " be given by (10) and (11). Use E9.1.2 to
show that

1 -
my; 1
L=[M("_”"'M(”]_‘= . My
1
[ My Myt M,y 1]

E9.1.5 (a) Assume that 4 e L(R") is symmetric positive definite. Use
E3.3.3 to show that all leading principal submatrices of A are
nonsingular.

(b) Assume that 4 € L(R") is strictly diagonally dominant. Show
that all leading principal submatrices are nonsingular.
Conclude, in either case, that pure gaussian elimination may be carried
out.

E9.1.6 The Cholesky decomposition of a symmetric positive definite
matrix A € L(R") is A = LL", where L is lower triangular with positive
diagonal elements. Use the fact that the leading principal submatrices of
A are nonsingular (E9.1.5) to show that this decomposition is possible.
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Alxly) = f(l +¢), ol <=+ @

and
fxty)y=x+y(+e), el <p™! &)

which imply the inequalities

|A(xy) = xp| < |xp| g~ C)
i =yl < 5L e ©

and
Axty)— ()l <lxtp|p™t ()

The equations (1)-(3) are the formal axioms for the relation of the computed
quantities to the exact quantities and reflect a machine in which the exact.
result is chopped (not rounded) to ¢ B-digits. Note that (1)-(3) give relative
error bounds. For division and multiplication, this will be realistic on
essentially all machines, but for addition and subtraction (3) is usually not
valid and must be replaced by

Axty)y=x(1 +e)ty(l +e&),  |a| <p~'*h )

Here, the computed result is equal to the result of exact arithmetic on
quantities with small relative errors. Although (7) is usually more realistic,
for simplicity we will use the assumption (3).

Before proceeding further, we give some examples of the use of (1).

Example | Let =10,¢=4, x =0.9999, and y = 0.1111-10* Then
xy =0.11108889 - 10°,  fA(xy)=10.1110-10*
so that
AGy) = xp(1 + ), e= —0.0008 ---.
Note that |¢| < 1073 = g~'*1,

Example 2 Let $=2,7=4, x =0.1010 and y =0.1111 - 2* where x and
y are given in the binary number system. Then

xy =0.10010110-23%,  A(xy)=0.100] - 23
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so that

|xy — filxy)|

=0.11-27% <273
[xy|

where the last quantity is the bound given by (4). Note that in this case the
bound is considerably larger than the actual error.

We return now to gaussian elimination and give some simple examples
of the effect of rounding error. Consider the system

1.00 < 107 %x, + 1.00x, = 1.00 @
1.00x, + 1.00x, = 2.00

and assume that we carry out gaussian elimination on a three-digit decimal
machine; that is, in the above notation, t =3 and # = 10. From (9.1.5)
—(9.1.7) we have

fimyy) = fayifay) = 10*  (exact)
A@?) =A(1.00—1.00-10% = —1.00 - 10*  (correct to three digits)
ABP) = fI2.00 - 1.00 - 10%) = —1.00- 10*  (correct to three digits).
Therefore the computed reduced triangular system is
1.00 - 107 *x, + 1.00x, = 1.00
—1.00-10* = —1.00- 10%

The back substitution is done exactly on our machine and produces the
computed results

ﬂ(xZ) = 1'001 ﬂ(xl) = 0.
But the exact solution of (8) is
X3 =0.99990, X = 1.00010 :-- (9)

so that while fI(x,) is a very good approximation to x, , fi(x,) is very poor.

It is of interest to view the above results in the context of Chapter 2.
First note that the coefficient matrix of (8) is very well conditioned (E9.2.1).
However, in our three-digit machine fi(x,) =0 and fi(x,) = 1.00 would
be the computed solution of any system of the form

1.00 - 107*x,; + 1.00x, = 1.00
l.OOx, + 022 x2 = b2
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where |a,,| <100. and |b,| < 100. Clearly, such large perturbations of
even a well-conditioned system must be expected to produce large changes
in the solution.
Consider now the simple artifice of interchanging the equations of (8);
that is, consider the system
1.00x, + 1.00x, = 2.00

1.00 - 10" *x,; + 1.00x, = 1.00.
Then gaussian elimination produces
fm, ) =10"*  (exact)
MA@ =£(1.00-1.00-10"% =1.00  (correct to three digits)
AG3) =A(1.00 —2.00-107%) =1.00  (correct to three digits)
so that

fxy) =100,  flx,)=1.00

which are excellent approximations to the exact solutions.
This simple example leads us to the following general interchange
strategy.

9.2.1 (Partial Pivoting Strategy) At the kth stage of gaussian elimina-
tion in which the subsystem

afdx, + - + alx, = b
: (10)

a®x, + - +aBx, = bO
is still to be reduced, let i be any index between k and r for which

lai’| = max |af

kSJjsn

and interchange the ith and kth rows.

Note that when the partial pivoting strategy is used, all of the multi-
pliers are less than or equal to one.

Even though gaussian elimination with the partial pivoting strategy
has proven to be quite reliable in practice, it is by no means foolproof. We
first note a danger which is not really the fault of the interchange
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strategy. Consider the system
1.00 - 10™%x; + 1.00x, = 1.00

11
1.00- 107 %x; + 1.00- 107 *x, = 2.00- 1074, (I
Since the elements of the first column are equal, no interchange is necessary
under the partial pivoting strategy and if one uses our hypothetical three-
digit machine, it is easy to see (E9.2.2) that fi(x,) =0 and fi(x;) = 1.00.
But (11) is precisely the system (8) with the second equation scaled by 1074,
and hence has the exact solution (9). Therefore, we have obtained the same
erroneous solution as we did with gaussian elimination with no interchanges
applied to the system (8). Note, however, that the coefficient matrix of
(11) is now very badly conditioned (E9.2.1).
The above example underlines the importance of proper scaling of the
coefficient matrix. This can take different forms, some of which are given
in the following.

9.2.2 Definition The matrix A € L{R") is row-equilibrated if the maximum
elements of each row are equal in modulus; that is, if

max |a,;| = max |ay;| =+ = max |a,;j|. (12)
1<j<n t<jsn 1<j<n

It is column-equilibrated if

max la; | = max |ap| =+ = max |a;,] (13)
I <j<n 1<j<n I<j<n

and equilibrated if it is both row and column equilibrated.

Given an arbitrary » x n matrix 4 it is essentially trivial to row equilib-
rate it or column equilibrate it. In practice, it is sufficient that the equalities
in (12) or (13) hold only approximately and the scaling should be done by
powers of the number base § so that no rounding error is introduced by
these preliminary operations. The important thing is to avoid badly
scaled problems such as (11).

We next show that the partial pivoting strategy can fail badly even on
an equilibrated matrix. For odd n, define the n x n matrixt

1 Due to J. Wilkinson, Error Analysis of Direct Methods of Matrix Inversion,
J. Assoc. Comp. Mach. 8 (1961), 281-330.
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C 1 0 0 0 17
1 10 0 -1
-1 1 - ' 1
A=l | L . : (14)
-1 1 0
: : (-1
(=1 (=1 T T B

and consider the linear system Ax = e,, whose solution is the first column
of A7 It is easy to verify (E9.2.4) that the exact solution is

x = 4(1,0,...,0, )7 (15)
Now define the matrix
B=A+ le,ef (16)

that is, B is identical with A except that the (n, n) element is 3 in place of 1.
The solution of the system By = e, is (E9.2.5)

y=@240,...,0,2™HT
(=271, 27 merl =3 - yTyg ooy (1)

so that the components of x and y differ by at most 273,

Now suppose that gaussian elimination with the partial pivoting
strategy is applied to the two systems Ax =e, and By = ¢,;. It is easy to
see that no interchanges are needed and, because of the structure of A,
the elements in the reduced matrices remain the same except in the column
whose elements are being set to zero, and the last column. The elements
in the last column successively build up during the forward reduction and,
in particular, the (1, n) element becomes 2" ! for 4 and 2"~ ! + 1 for B.
Clearly, the reduced triangular matrices for A and B differ in only this
one element. The elements in the right-hand sides of the equations also
build up, and, for both systems, the final right-hand side is given by

(1, —1,2, =2%, ..., —=2""3,2""2),

Assume that the above computations have been done on a binary
machine with an r digit fraction, for example, » = 27. Then the (r, n)
element of the reduced system for By = e, must be truncated from 2"~ 4
to 2"~!, while all other elements of the reduced systems will be exact.
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Hence the reduced triangular systems which are computed in this machine
will be identical and therefore the computed solutions of Ax = e, and
By = e, will also be identical. It is easy to see (E9.2.6) that no rounding
errors are committed during the computation on Ax = e, and, hence,
both computed solutions are given by (15). Therefore, the errors in the
computed elements of the solution of By = ¢, are almost as much as 273,
or 25% of |[x[ -

The difficulty encountered in the previous example may be circum-
vented by the following more powerful interchange strategy.

9.2.3 (Complete Pivoting Strategy) At the kth stage of gaussian elimina-
tion in which the subsystem given by (10) is still to be reduced, let i and
j be any indices between k and n for which

k
la| = max |af}|
k<i,m<n

and interchange the ith and kth rows of the subsystem and then interchange
the jth and kth columns.

The effect of the complete pivoting strategy is that, after the inter-
changes, the largest element in the entire submatrix still to be reduced is
in the (k, k) position. We shall see in the next section that much better
error bounds for the rounding error may be given for this interchange
strategy than for partial pivoting,.

EXERCISES
E9.2.! Computethe/; and /, condition numbers of the coefficient matrices
of the systems (8) and (11).

E9.2.2 Use gaussian elimination on the three-digit machine of the text
for the system (11) and show that #(x;) = 0, fi(x,) = 1.00.

E9.2.3 Row equilibrate the coefficient matrix of (11).

E9.2.4 Show, by direct computation, that the solution of Ax =¢;, w
A is given by (14), is x = (1, 0, ..., 0, ).

E9.2.5 Let 4 be given by (14). Show that the last column of A7}, ti.uc
is, the solution of Ax =e,, is given by

X =(=27"*1 27n*2 272 9=t gatly
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Use this in the Sherman—-Morrison formula of E9.1.! to show that the
solution of By = e,, where B is as in (16), is given by (17).

E9.2.6 Let A be given by (14) and assume that gaussian elimination
with partial pivoting is carried out for the system Ax = ¢, on a machine
with an r digit fraction. Show that no rounding error is committed during
the computation and, hence, the computed solution is the exact solution
(15). Verify this on a computer.

E9.2.7 Write a computer program to carry out gaussian elimination with
either the partial pivoting or complete pivoting strategies. Verify that a
good solution to Bx = ¢;, where B is given by (16), can be obtained using
complete pivoting.

93 BACKWARD ERROR ANALYSIS

There are two general approaches to rounding error analysis. In the
first, called forward error analysis, the cumulative rounding error is bounded
according to the sequence of arithmetic operations to be carried out. For
example, consider the error in the product abc under the assumption that
the basic inequality (9.2.4) holds. Then |fl(ab) — ab| < |ab|B~"*! so that

| A(fab)e) — abe| < | fA(fi(ab)c) — flab)c| + | fllab)e — abc|
< |fab)e|p™""" + |abe| g™
< |abc|(1 +ﬁ—r+l)ﬁ-—r+l + |abc|ﬁ—r+l
< |abc|(2+ﬁ"“)[3"“.

Clearly, the analysis of a lengthy calculation in this manner would be
very tedious.

The second approach, backward error analysis, attempts to show that
the computed solution is the result of exact computation on different
data. This is the approach we shall follow in this section and, in particular,
we will show that the effect of rounding error in solving the linear system
Ax =1 by gaussian elimination is that the computed solution % is the
exact solution of a system of the form

(A +FX=b. 0

An estimate for the actual error, 8 — 4~ 'b, may then be obtained by the
results of Chapter 2 in terms of | F||. Surprisingly, this analysis may be
carried out rather simply regardléss of the size of the matrix.
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In the sequel, we shall assume that the rounding error axioms (9.2.1)-
(9.2.3) hold as well as the inequalities (9.2.4)-(9.2.6) which they imply.
We will also assume that the matrices

k Ve k

aa: a4

K _ ) D R ()
A% = @ ay @

: :

afnk) afm)

discussed in Section 9.1, are those which are actually produced by the
machine.

Consider now the first stage in which A®) is computed from AV = A.
If we denote the computed multipliers of (9.1.7) by m;;, we have

_ a; _
m;; = flla,/ay,) = ;ﬁ a+mn), [ni, | <B rl

and the computed elements a3’ are then given by
agjz) = fila;; — (M a,))) = [ai; — A(m,a, )L + “if'l )]
=[ay — mpay, (1 +¥IA+oP),  Lj=2...,n ()

where |of}’| < p7"*! and |y{}’| < B '*'. By collecting terms in (3), we
obtain

2 — .,
ai(j)=a:j—mua;j+ef}’, Lj=2,...,n (C))
where
Q) A4 o )
€ij =1+a§})ai1 —MudyiYii's ih,j=2,...,n (5)
If we also set
1 .
e = apn, i=2,...,n (6)

then we may conclude that A is the result of exact arithmetic on the
matrix 4 + E) where the first row of E*) is zero and the other elements
of E® are given by (5) and (6).

Since A%*1 is the computed reduced matrix, in exactly the same
fashion we can say that A**1) is the result of exact calculation on the
matrix A% + E® where



184 9 ROUNDING ERROR FOR GAUSSIAN ELIMINATION

0 e 0
0 0
E® = k k N
0 el(‘-zl,k eill,"
3 ok e
0 el e,
with
. - 1
ei(f)=a§fk)'7ika l=k+1,-'-’n’ |'7ik|<ﬁ o (8)
oy 1
1 — . .
e) = 0 af* — my ady®, iLhj=k+1,...,n ©)
1+aij
and
- 1 - 1
lef] < p'*Y, |y < ph (10)

Now consider the complete reduction starting with the matrix
A+EV - EMTD. (11)
Exact arithmetic at the first stage produces the matrix
AP L E@ 4 oo 4 D) (12)

since the matrices E?, ..., E®~ 1V enter the calculation additively (€9.3.1).
Similarly, exact arithmetic at the second stage produces

A(3) + E(3) + E(""U

and so on until 4™ is the final result of exact arithmetic starting from (11).
We summarize our results so far as:

9.3.1 Under the assumption that the elements ai, i=1, ..., n— 1, are
all nonzero, the triangular matrix A produced by machine computation
the result of exact arithmetic applied to the matrix 4 + E where

E=E® 4.+ E"V (13)
with the E% given by (7)-(10).
Another way of viewing 9.3.1, in the context of the triangular decom-
position (9.1.14), is that, in exact arithmetic,

A+E=LU (14)
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where U = A and L is given (E9.1.4) in terms of the computed multipliers
my, by

1 O
le .
L=| . . . (15)
mnl ’Tln,n—l 1

We shall return to the important question of the magnitude of the
elements of E directly. First, let us complete the gaussian elimination
process by carrying out the back substitution. This is equivalent to solving
the triangular system

Ux=y (16)

where U =A™ and y is the computed reduced right-hand side of the
original system. By proceedingas above, it may beshownt that the computed
solution, %, of (16) satisfies exactly

(U+sU)r=y an

where dU is a matrix whose elements are bounded according to
2{ugy | 2luga| 3lugsl 0 nrlug,l

|6U] < cf'*? ' . : . 8)
@) ' © 2uy gyl

2|ty

Here ¢ is a constant} only slightly larger than 1, depending on the mag-
nitude of B7°.

The error in the right-hand side y of (16) may be analyzed in a similar
way. In fact, by the decomposition (14) it follows that if the arithmetic
in processing the original right-hand b were done exactly, with the excep-
tion of using the computed multipliers ;;, then the reduced triangular
system would be Ux = L™'b. Therefore, y is the computed solution of

+ The full analysis is given in Witkinson [1963].
} For example, if we assume that #8~* < 0.01 we may take c = 1.02.
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the system Lz = b and the same analysis as for the system (16) applies to
this triangular system. Hence we can say that y is the exact solution of

(L+6L)y=» 19
where
[ 2
2|m,, | 2
6L} < g+t . . . (20)
Lnlmnll e 2|mn,n—l| 2

We can now combine (17) and (19) to conclude that the final computed
solution % satisfies, in exact arithmetic,

(U + 8U)% = (L + 6L)"'b
or
(L + 8LYU + SU)R =b.

If we expand the left-hand side of this expression and use (14), we see
that % is the exact solution of

A+ PFx=> @1
where
F=E+6LU + LU + 8L 8U. (22)

We summarize these results as follows.

9.3.2 Assume that the elements a{¥, i=1, ..., n — 1 are nonzero. Then
the computed solution ® of Ax =b, produced by gaussian elimination,
satisfies in exact arithmetic the equation (4 + F)& = b, where F is given
by (22) with E defined by (13) and (7)-(10), L is defined by (15) in terms
of the computed multipliers, U is the computed upper triangular matrix
A™ and 6U and 8L are bounded by (18) and (20).

In order to obtain final bounds for the difference & — x between the
computed and the exact solution, we can apply the error estimate theorem
2.1.2. Thus, if |47} ||F|| < I, we obtain for the relative esror

- A7 |IF
Ix—%1 _ 14" 11F]

< = . 23
I 1— A7 IIF @)
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The crucial factor in this estimate which is determined by the computa-
tional process is || F||, and we now investigate this in more detail.

The magnitude of the elements of Fdepends primarily on the magnitude
of the multipliers i;; and of the elements &{’. Without interchanges of
any kind, the multipliers may be arbitrarily large and no useful estimates
may be obtained in general. (Recall that an example showing the effects of
large multipliers was given in the previous section.) Hence, in the sequel
we will assume that either the partial pivoting strategy 9.2.1 or the complete
pivoting strategy 9.2.3 is to be used. In either case, the computed multipliers
satisfy

|my| <1, k=1,...,n—1, i=k+1,...,n 29

It is important to note that interchanges of either rows or columns do not
affect the prior analysis in an essential way (of course, as noted in Section 9.1,
the matrix L of the decomposition (14) is no longer necessarily triangular).
In fact, we shall assume for the purpose of this analysis that all inter-
changes have been made prior to starting the computation although, of
course, we are not able to do this in actual practice.

We next obtain a bound for the matrix E under the assumption (24).
We define

1
a= max |a;|l, g¢=-~max |a¥|. 25)
1<i,j<n al,j.k

Then, from (8), (9), and (10),

leP| <agB™'*', k=1,...,n—1, i=k+1,...,n.  (26)
and, fori,j=k+1,...,n,
ﬁ—t+l 2
e’ <y gt lalf™ P +AT AR < pm g (@)
If we use these estimates in conjunction with (13) and (7) we have
o - - -0 0 0
12 - 2 0 . 0
|E| < agy{|. . 0o 2 214
12 2] Lo 1 2 2
0 . 0
+
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0 . . . 0
12 - - 2
< agy 3 4 - 4 s
13 - - - 2n—1)
where we have set y = f7'*1/(1 — p7'*1). Therefore,
ﬁ—!+l
We next obtain bounds for the matrix F of (22). Since U = A™, we
have |u;;| <ag, i, j=1, ..., n, so that
Ul < nag 29)

and, from (18),
16Ul < cagB™ "' 2+ 2+3 + - +n) < lcag(n + 1)’'*1. (30)
Similarly, (15), (20), and (24) imply that
ILlo <5, 1L, < Je(n + 1)>87' 1. 3D
By combining (28)-(31) with (22) we then obtain
IFlo < IElle + 0L IUlle + LI 10U Nl + 16L]| 10U |l

~t+1 c2(n + 1)4

< n’ag 51 +cn(n +1)%agp™ "t + 2 ag(p~"* %

(32

In order for this bound to be at all useful we must have the wordlength
t sufficiently large relative to n, and we shall assume that n”$~" < 1. Then
(1 -p7""H 1 <2 and since ¢c= 1 and a < ||4|,,, the estimate (32) may
be approximated by

IFll <20 + 1)*[1 4]l , g8~ (33)

which shows the basic factors on which || F||, depends. The quantity | 4|,
is simply a normalizing factor and 7' reflects, of course, the wordlength
of the machine. The crucial factors, then, are n° and g. The quantity g,
defined by (25), may be interpreted as a growth factor of the elements of
the successive reduced matrices A®), For the partial pivoting strategy, it
is easy to give a bound for g. In fact, since the multipliers satisfy |m;;| <1,
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we have

max la%D| = max a¥) — my al¥)| < 2max |a¥) |
Vv J ¥ ihj

and it follows that
g<2"' (partial pivoting). (34

This estimate also holds for the complete pivoting strategy but a much
better estimate, which we state without proof,} may be given:

g < ntl3(2- 3124113 ... gtinm )2 (complete pivoting).  (35)

There is a vast difference between the estimates (34) and (35) when n
is large. For example, if n = 100

2712 10%, A2 pVeT U2 = 3300,

Moreover, the estimate (34) is sharp in that for certain matrices it is
possible that g = 2"~!; an example of such a matrix is given by (9.2.14).

EXERCISES

E9.3.1 Verify that exact arithmetic in the first stage of gaussian elimina-
tion produces the matrix (12) from (11).

E9.3.2 Show that equality holds in (34) for the matrix of (9.2.14).

94 ITERATIVE REFINEMENT

Let x° be the approximate solution of the linear system 4Ax = b which
has been computed by gaussian elimination. It is sometimes possible to
obtain a better approximation by means of the following iterative pro-
cedure, usually called iterative refinement: Given the kth iterate x*;

(a) Compute the residual vector r* = b — Ax* in double precision
arithmetic
(b) Solve the system Ay* =r* and set x**! = x* 4 y*,

1 See Wilkinson, Error Analysis of Direct Methods of Matrix Inversion, J. Assoc.
Comp. Mach. 8 (1961), 281-330. A long-standing conjecture of Witkinson is that (35)
may be improved to g(n) < n.
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Since the coefficient matrix A is always the same in all of the systems
Ax =b, Ay® =1°, ..., we need only do the forward reduction of 4 once
provided the multipliers and interchange information are saved. The
successive right-hand sides b, r° r!, ... are then reduced using these
multipliers.

We next write this iterative process in a functional form. We showed
in the previous section that the computed solution 2 of the system Az =¢
satisfies (4 + F)2 = ¢ where Fis a matrix which is composed of two parts:
the matrix E which depends only on A4, and the matrix F — E which results
from the reduction of the right-hand side of the system and from the back
substitution. This latter matrix, and hence F also, depends upon the
solution of the system, and, therefore, the vectors y* above satisfy, in
exact arithmetic, equations of the form

(A + Fk)y" =r* (1
where the subscript on F denotes its dependence on y*. Hence, the vectors
x* satisfy

X1 =xk 4+ (4 + F) ', k=01, ... )
assuming, of course, that the inverses exist.
In the following analysis, we shall assume that r* is evaluated exactly;

since, in practice, we insist that the r* be computed in double precision
arithmetic, this is not an unreasonable assumption. Therefore,

f=b— Ax*
and (2) becomes

X =xt (A + F)T'b—Ax) =4 + R)T'EX +b). ()

Now observe that if F, =0, then x**! = A7 'b; that is, if the system
Ay* = r* could be solved exactly, x* + y* would be the exact solution of
Ax = b. Note, also, that if x* = A7 !b, then

X*1=(A+ F) '(F,A'b+b)=4""1b. )

This latter property shows that the iteration (2) is consistent in the sense
of the following definition.

9.4. Definition Let G,: R" — R" be a sequence of mappings. Then the
iterative method

xk+l=kak, k=0, 1,...
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is consistent with x* if
x* = G, x*, k=0,1,....

Suppose that in the iteration (3) the matrices F, were independent of k,
that is, F; =F, k=0, 1, .... Then Theorem 7.1.1 would show that the
iterates x* converge to x* = A~ !b if p{(4 + F)"'F} < 1. This theorem
does not extend directly to iterative methods of the form

xX*T1=Hx*+d, k=01,..., )

with variable iteration matrices H, (see E9.4.1), but the following simple
result will suffice for our purposes.

9.42 Let {H,} c L(R") be a sequence of matrices such that
IHll<a<l, k=0,1,... (6)
and suppose that the iteration (5) is consistent with x*. Then x* — x* as
k = co for any x°.
Proof: By consistency, it follows that
x*tLox* = H(x*—x*, k=0,1,...
so that

I+ — x*| < ol — x*| < <@ Ix® - x*). $88

We now apply this result to the iterative process (3).

9.43 Let A € L(R") be nonsingular and suppose there is a constant y for
which

1
< PYWES TR =091,“‘- 7
IR <y < g & ™

Then the matrices A + F,, k =0, |, ... are all nonsingular and the iterates
(3) converge to x* = 4~ 'b for any x°.

Proof: By the perturbation lemma 2.1.l, we have that 4 + F, is non-
singular and that

A! A7
R

= < — > =0,1,....
IATHIEN = 1 —yl47"]

1A+ F) M <=
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Therefore, if we set H, = (4 + F,)"'F, and B = y|4A™"| we obtain
"Hk"<i—<l, k=0,19----
<73
Hence, 9.4.2 applies. $3$%

In the previous section we obtained the approximate estimate
IFille < 2(n + 1)*1 41l o g8~ ®

under the assumption that n8~" < 1. Therefore, in order that (7) hold we
need

20n + 1)K (A)gp™" <%

where K (A) is the condition number of A. This inequality states, roughly,
that the iterative refinement procedure will converge if the precision of
the arithmetic used, represented by B, is sufficiently high and that s,
the condition number of 4, and the growth factor g are not too large.

EXERCISES

E9.4.1 Define the 2 x 2 matrices

Hk=[g 2], k odd; Hk=[g g], k even.

Show that the iterates (5), with d = 0, do not converge to x* = 0 for all
x® even though p(H) =0, k=0,1,....
E9.42 Consider the system

0.832x, + 0.448x, = 1.00
0.784x, + 0.421x, = 0.

The exact solution, to three figures, is
x‘ = _439., x2 = 817.

Solve the system using three-digit decimal unrounded arithmetic; your
computed solution should be

x9 = ~-506., x)=942
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Now carry out two steps of iterative refinement, computing the residuals
in double precision and chopping back to single precision. Show that

r)=-0024, r9=0.122, xi=-429, x}=798.
P =042,  ri=0378, x2— —430, x2 =8I0,

Note that one cannot detect the improvement via the residuals.

READING

The basic references for rounding error analysis for gaussian elimina-
tion are Wilkinson [1963] and Wilkinson [1965], which also include analyses
of methods for computing roots of polynomials and eigenvalues of
matrices. See also Forsythe and Moler [1967] for a very readable summary
of Wilkinson’s work on linear equations. For a theoretical development
of gaussian elimination and related direct methods see Householder [1964].
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A

A posteriori estimates, 38, 50, 53, 59, 158
Absolute norm, 52
Absolute value

of matrices, 107

of vectors, 107
Adams-Bashforth method, 82, 87
Adams-Moulton method, 82, 87, 95

B

Back substitution, 172

Baluev, A., 163

Banach lemma, 32

Bauer, F., 52

Bauer-Fike theorem, 52

Boundary value problem, 1, 96, 136

discrete analogue of, 96ff, 111, 136f,

150, 154

Buzbee, B., 136

C

Cauchy-Schwarz inequality, 16
Characteristic equation, 6
Cholesky decomposition, 174
Class M matrix, 24

Coddington, E., 70, 78, 195
Companion matrix, 42
Complete pivoting, 181, 189
Condition number, 29, 32, 35, 54
Consistent method
for differential equations, 83
iterative, 191
Consistently ordered matrix, 127
Contraction, 152, 155, 160-161
Contraction mapping theorem, 153
Convergence error, 3, 115
Convergence factor, asymptotic, 125
Convergence of iterative methods, 1154
global, 1614
local, 144ff
quadratic, 149
superlinear, 149
Convex, hull, 59
Convex mapping, 162
Convex set, 142
Courant-Fischer theorem, 57

D

Dahiquist’s theorem, 95
Daniel, J., 166, 195
Davidenko’s method, 160
Derivative (Frechet), 141
Diagonal dominance, 105, 120

197
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(Diagonal Dominance—continued)
irreducible, 105
strict, 105
Diagonal matrix, 7
Differential inequality, 162
Dieudonné, J., 27, 195
Difference equations, 3, 4, 70, 119
Discretization error, 3, 79, 83, 88, 96,
11
global, 83, 92, 96
local, 83, 99

E

Eigenvalue, 6, 14, 42, 45, 101
Eigenvector, 6, 14, 39, 42, 45, 60, 101
generalized, 13
left and right, 54
Etliptic norm, 16
Equilibrated matrix, 179
column, 179
row, 179
Error analysis
backward, 1824
forward, 182
Euclidean norm, 15
Euler’s method, 72, 77, 81
Explicit method, 87

F

Faddeev, D., 27, 195

Faddeeva, V., 27, 195

Fike, C., 52

Finite difference method, 1, 96

Fixed point, 144

Forsythe, G., 41, 46, 114, 139, 193, 195

Forward reduction, 170

Fox, L., 127

Franklin, J., 43

Fundamental theorem of integral calculus,
142

G

Gantmacher, F., 27, 195
Gauss—Seidel method, 118, 120, 131, 136,
139, 146, 148
Gaussian elimination, 117, 169§
pure, 169, 171
Gear, C., 95, 195
Generalized eigenvector, 13
Gerschgorin circle theorem, 47
Gerschgorin’s theorem (for discretization
error), 99, 111
Givens, J., 47
Golub, G., 136
Graph, 104
directed, 104
strongly connected, 104
Gregory, R., 35
Grid points, 1, 136
Growth factor, 188

Hahn, W., 78, 195

Henrici, P., 85, 95, 114, 195

Hermitian matrix, 7, 21

Heun’s method, 82, 92

Hitbert matrix, 32, 34, 63

Hoélder inequality, 19

Hoffman-Wielandt theorem, 58

Houscholder, A., 27, 41, 52, 63, 114, 139,
193, 195

1

1it conditioned, 3, 29, 34, 45
Imbedding method, 159
Implicit method, 87

Inner product, 16

Instability, see Stability
Inverse, 6

Irreducible matrix, 103
Issacson, E., 95, 114, 139, 195
Iterative refinement, 1894
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J (Matrix—continued)
symmetric, 7, 14, 21, 56
Jacobi’s method 117, 120, 131, 135, 136, triangular, 7

139 two-cyclic, 128
Jordan block, 12, 15, 67 unitary, 7
Jordan canonical form, 12, 27 Matrix norm, 20

Maximum principle, 96f
Mean value theorem, 141

K Milne’s method, 83, 87
Moler, C., 41, 193, 195
Kahan’s theorem, 122 Monotonic norm, 52
Karney, D., 35 Muttistep method, 81
Keller, H., 95, 114, 139, 195 tinear, 82, 85, 94
L N

I, norm, 16, 22

Levinson, N., 70, 78, 195
Lidskii-Wielandt theorem, 59
Local convergence, 144/
Localization theorem, 47
Lyapunov, A., 65

Neiison, C., 136

Neumann lemma, 26, 107

Newton—-Baluey theorem, 163

Newton-Gauss—Seidel method, 146, 147,
150

Newton-Jacobi method, 2, 152

Newton-Kantorovich theorem, 155

Newton’s method, 140, 144, 148-151, 155-

M 158, 161, 163-166
simplified 151
M-matrix, 108 Nichols, N., 127
Matrix Nonnegative matrix, 107
class M, 24 Nonsingular matrix, 6
companion, 42 Norm
consistently ordered, 127 absolute, 52
diagonal, 7 elliptic, 16
equilibrated, 179 Euclidean, 15
hermitian, 7, 21 1,, 16,22
Hilbert, 32, 34, 63 matrix, 20
irreducible, 103 monotonic, 52
M-, 108 operator, 52
nonnegative, 107 vector, 52
nonsingular, 6 Norm equivalence theorem, 18

orthogonal, 7, 14
permutation, 102, 112
positive definite, 7, 14

reducible, 102 O
residual, 38
skew-symmetric, 14 One-step method, 87

Stieltjes, 108 Operator norm, 20
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Order, 91ff

Ortega, J., 114, 139, 141, 143, 150, 156,

166, 195
Orthogonal matrix, 7, 14
Osborn, J., 52
Ostrowski-Reich theorem, 123
Ostrowski’s theorem, 145

P

Partial ordering, 107
Partial pivoting, 178(
Perfectly conditioned, 34
Permutation matrix, 102, 112
Perron’s theorem, 76, 145
Picard’s method, 154
Pivoting

complete, 181, 189

partial, 178(f
Point of attraction, 144
Polynomial, continuity of roots, 43
Positive definite matrix, 7, 14
Principal submatrix, 63, 172
Principal vector, 13

degree of, 13
Property A4, 128

Q

Quadratic convergence. 149

Rank, 6
Rate of convergence

of discretization error, 91, 1004, 112

of iterative methods, 1256, 140f
Rayleigh quotient, 61
Reducible matrix, 102
Reduction to principal axes, 10
Residual matrix, 38

Rheinboldt, W., 114, 139, 141, 143, 150,

156, 166, 195
Romanovsky’s lemma, 129

Rouche’s theorem, 42
Rounding error, 3, 167§
Runge-Kutta methods, 82, 93

S

Schur’s theorem, 11, 15
Schwartz, J., 52
Second difference quotient, 2
Sherman-Morrison formula, 174
Similarity transformation, 7
Singular value, 22
Skew-symmetric matrix, /4
SOR method, 121, 123, 127, 1314, 136,
139

Spectral radius, 6, 23
Spectrum, 6
Splitting

P-regular, 122

regular, 119

weak regular, 124
Stability, 3, 4, 29, 65, 71

asymptotic, 65, 71, 119

of methods, 86, 89

numerical, 4

relative, 65, 68, 71

strong, 87

weak, 87
Stein’s theorem, 122
Steplength, 81
Stieltjes matrix, 108
Successive overrelaxation, see SOR method
Superlinear convergence, 149
Symmetric matrix, 7, 14, 21, 56

Transpose, 3, 6

Trapezoidal rule, 82
Triangutar decomposition, 172
Triangular matrix, 7
Two-cyclic matrix, 128



Unit ball, 17

sphere, 17
Unitary matrix, 7
Unstable, see Stability

v

Varga, R., 114, 139, 195
Vector
absolute value of, 107
nonnegative, 107
principal, 13
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Vector norm, 15, 21

w
Wasow, W., 114, 139, 195
Weissinger, J., 122

Wilkinson, J., 27, 38, 41, 45, 49, 51, 63,
167, 179, 185, 189, 193, 195

Y

Young, D., 127, 139, 195



