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Preface

This book is a self-contained unit which encompasses a broad range of
topics that connect many areas of mathematics, including fractal geometry,
number theory, spectral geometry, dynamical systems, complex analysis,
distribution theory and mathematical physics.
The material in our earlier book, Fractal Geometry and Number Theory

([Lap-vF5], Birkhäuser, January 2000), has been recast and greatly ex-
panded, taking into account the latest research developments in the field.
Compared with that foundational monograph, the present book is longer by
almost 200 pages and has twice as many illustrations. Further, it contains
two new chapters, Chapter 3 about the complex dimensions of nonlattice
self-similar strings, and Chapter 7 about flows, and a new appendix, on
an application of Nevanlinna theory, as well as many new sections within
the original chapters of [Lap-vF5]. It also provides a number of new ex-
amples, comments and theorems, many of which have not previously been
published in the mathematical literature.
Chapter 1 provides a gentle introduction to some of the main topics.

We extend the definition of self-similar string in Chapter 2 to include self-
similar strings with more than one gap, following [Fra1, 2]. These self-
similar strings correspond to (standard) self-similar sets in R. Moreover,
their geometric zeta functions may have both poles (i.e., complex dimen-
sions) and zeros, so that, as shown in the new Section 2.3.3, cancellations
may occur and some of the potential complex dimensions may disappear
as a result.
Since the publication of [Lap-vF5], the material on Diophantine approx-

imation of complex dimensions of nonlattice strings, which was included
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in [Lap-vF5, Sections 2.4–2.6], has grown into a new chapter, Chapter 3.
In that chapter, we give a large amount of new information on the fine
structure of the complex dimensions of nonlattice self-similar strings. In
particular, both qualitatively and quantitatively, we obtain a much better
understanding of the quasiperiodic patterns of the complex dimensions.
Our new theoretical and numerical results are illustrated by a variety of
diagrams throughout Chapter 3, and several conjectures and open prob-
lems are proposed. Further, dimension-free regions are obtained that are
used to derive good (and sometimes sharp) error estimates in much of the
remainder of the book. In addition, we introduce Dirichlet polynomials and
we slightly change the definition of generic nonlattice. We use a new ap-
proach to computing the density of the complex dimensions of a nonlattice
self-similar string, improving upon the density results of Chapter 2. We
have kept the argument of [Lap-vF5] in Chapter 2, and the relevant parts
of Nevanlinna theory are presented in the new Appendix C. These results
were first partly presented in the paper [Lap-vF7] (see also [Lap-vF9]).
We have added a new and previously unpublished discussion of the Eu-

ler product of the spectral operator in Section 6.3.2. The interest of this
construction is that it provides an operator-valued Euler factorization of
the spectral operator (associated with the spectral counting function) that
is valid in the critical strip 0 < Re s < 1.
Chapter 7 has been largely expanded from Section 2.1.1 of [Lap-vF5]. It

contains material about the periodic orbits of self-similar flows, leading to
an Euler product representation of the geometric zeta function of a self-
similar fractal string. We obtain an explicit formula (expressed in terms of
the underlying dynamical complex dimensions) for the prime orbit counting
function of a suspended flow, and thereby deduce a Prime Orbit Theorem in
this context. Our results are most precise in the special case of self-similar
flows for which we determine (via Diophantine approximation) dimension-
free regions, from which we deduce a Prime Orbit Theorem with (often
sharp) error term. This chapter is partly based on the paper [Lap-vF6].
We found a more efficient way to study the tubular neighborhoods of

fractal strings (Chapter 6 of [Lap-vF5]), which led us to establish a point-
wise tube formula in Section 8.1.1, Theorem 8.7. Under suitable somewhat
stronger hypotheses, this theorem complements and improves upon the
conclusion of Theorem 8.1 (the distributional tube formula). The latter
theorem is central to our book (and played a key role in [Lap-vF5] as well).
In fact, upon the request of some of our readers, we have provided more
details for the proof of Theorem 8.1 as well as of several other results in
Chapter 8. Thanks to Erin Pearse, we were also able to include Figure 8.1,
illustrating the structure of the proof of Theorem 8.15 and the interde-
pendence of many of the explicit formulas and other results in Chapters 5
and 8. In Sections 8.4.2 and 8.4.4, which discuss the important class of
self-similar strings, we have provided a significantly more detailed discus-
sion of the lattice case and of the nonlattice case. Furthermore, our earlier
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statements are extended to general self-similar strings (i.e., lattice and non-
lattice strings with multiple gaps). In Section 8.4.3, we define and compute
the average Minkowski content of an arbitrary lattice string.
The geometry and the spectrum of Cantor strings and truncated Cantor

strings is presented in Chapter 10 (Chapter 8 of [Lap-vF5]). The material
on truncated Cantor strings is new, and is applied in Section 11.1.1.
We include in Chapter 11 (Chapter 9 of [Lap-vF5]) an exposition of the

work of Mark Watkins on shifted arithmetic progressions [Watk,vFWatk].
We thank him for allowing us to include this result. We also include in
Section 11.1.1 an exposition of [vF3], on finite arithmetic progressions of
zeros of the Riemann zeta function. These works build upon and further
develop the earlier work in [Lap-vF5, Chapter 9] on infinite arithmetic
progressions of zeros. They also provide additional tools to attempt to solve
some of the problems and conjectures proposed in [Lap-vF5, Section 10.1]
(see Section 12.1).
Chapter 12 contains a summary of the recent results of Erin Pearse and

the first author [LapPe1] on the complex dimensions and the volume of the
tubular neighborhoods of the von Koch snowflake curve (see Section 12.3.1),
which is pursued in a somewhat different direction in [LapPe2–4] (see Sec-
tion 12.3.2). The latter work can be viewed as a step towards the long-term
goal of developing a higher-dimensional theory of complex dimensions of
fractals. We also discuss (in Section 12.4.1) recent results of Ben Hambly
and the first author [HamLap] on the complex dimensions of random fractal
strings, including random self-similar strings and the zero set of Brownian
motion. Furthermore, in Section 12.4.2, we give a short introduction to the
theory of fractal membranes (quantized fractal strings), proposed by the
first author in the forthcoming book [Lap10] (see also [Lap9]) and further
developed by Ryszard Nest and the first author in the papers in prepara-
tion [LapNes1–3]. The last section of the book, Section 12.7, corresponding
to [Lap-vF5, Chapter 10.5], has been expanded, elaborating our proposed
theory of complex cohomology.
In Appendix A, we have added a brief introduction to the two-variable

zeta functions of Pellikaan [Pel], Schoof and van der Geer [SchoG], and
Lagarias and Rains [LagR].
Several mistakes and misprints were pointed out to us by a number of

people and have been corrected. We want to thank those people for their
helpful comments. Without a doubt, new mistakes have been added, for
which we take full responsibility. As was the case for the first book [Lap-
vF5], we welcome comments from our readers.
Some, but by no means all of the main results of this book appeared

in [Lap-vF1–7, 9]. Our earlier book [Lap-vF5] combined and superseded
our two IHES preprints [Lap-vF1–2] and was announced in part in the pa-
per [Lap-vF4], which was a slightly expanded version of the IHES preprint
M/97/85. Most of the material in [Lap-vF5] was entirely new. The inter-
ested reader may wish to consult [Lap-vF4], as well as the research expos-
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itory article [Lap-vF9]—in conjunction with the introduction and Chap-
ter 1—to have an accessible overview of some of the main aspects of this
work.

Michel L. Lapidus and Machiel van Frankenhuijsen

May 2006
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Overview

In this book, we develop a theory of complex dimensions of fractal strings
(i.e., one-dimensional drums with fractal boundary). These complex dimen-
sions are defined as the poles of the corresponding (geometric or spectral)
zeta function. They describe the oscillations in the geometry or the fre-
quency spectrum of a fractal string by means of an explicit formula. Such
oscillations are not observed in smooth geometries.
A long-term objective of this work is to merge aspects of fractal, spectral,

and arithmetic geometries. From this perspective, the theory presented in
this book enables us to put the theory of Dirichlet series (and of other zeta
functions) in the geometric setting of fractal strings. It also allows us to
view certain fractal geometries as arithmetic objects by applying number-
theoretic methods to the study of the geometry and the spectrum of fractal
strings.
In Chapter 1, we first give an introduction to fractal strings and their

spectrum, and we precisely define the notion of complex dimension. We
then make in Chapter 2 an extensive study of the complex dimensions of
self-similar fractal strings. This study provides a large class of examples
to which our theory can be applied fruitfully. In particular, we show in
Chapter 3 that self-similar strings always have infinitely many complex
dimensions with positive real part, and that their complex dimensions are
quasiperiodically distributed. This is established by proving that the lattice
strings—the complex dimensions of which are shown to be periodically dis-
tributed along finitely many vertical lines—are dense (in a suitable sense)
in the set of all self-similar strings. We present the theory of Chapter 3—in
which we analyze in detail the quasiperiodic pattern of complex dimen-
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sions, via Diophantine approximation—by using the more general notion
of Dirichlet polynomial.
In Chapter 4, we extend the notion of fractal string to include (pos-

sibly virtual) geometries that are needed later on in our work. Then, in
Chapter 5, we establish pointwise and distributional explicit formulas (ex-
plicit in the sense of Riemann’s original formula [Rie1], but more general),
which should be considered as the basic tools of our theory. In Chapter 6,
we apply our explicit formulas to construct the spectral operator, which
expresses the spectrum in terms of the geometry of a fractal string. This
operator has an Euler product that is convergent, in a suitable sense to be
explained in Section 6.3.2, in the critical strip 0 < Re s < 1 of the Rie-
mann zeta function. We also illustrate our formulas by studying a number
of geometric and direct spectral problems associated with fractal strings.
In Chapter 7, we use the theory of Chapters 3 and 5 to study a class of

suspended flows and define the associated dynamical complex dimensions.
In particular, we establish an explicit formula for the periodic orbit counting
function of such flows and deduce from it a prime orbit theorem with sharp
error term for self-similar flows, thereby extending in this context the work
of [PaPol1, 2]. We also obtain an Euler product for the zeta function of a
self-similar fractal string (or flow).
In Chapter 8, we derive an explicit formula for the volume of the tubular

neighborhoods of the boundary of a fractal string. We deduce a new cri-
terion for the Minkowski measurability of a fractal string, in terms of its
complex dimensions, extending the earlier criterion obtained by the first
author and C. Pomerance (see [LapPo2]). This formula suggests analogies
with aspects of Riemannian geometry, thereby giving substance to a geo-
metric interpretation of the complex dimensions.
In the later chapters of this book, Chapters 9–11, we analyze the con-

nections between oscillations in the geometry and the spectrum of fractal
strings. Thus we place the spectral reformulation of the Riemann hypothe-
sis, obtained by the first author and H. Maier [LapMa2], in a broader and
more conceptual framework, which applies to a large class of zeta func-
tions, including all those for which one expects the generalized Riemann
hypothesis to hold. We also reprove—and extend to a large subclass of the
aforementioned class—Putnam’s theorem according to which the Riemann
zeta function does not have an infinite sequence of critical zeros in arithme-
tic progression. This work is supplemented in Section 11.1.1 with an upper
bound for the possible length of an arithmetic progression of zeros, and in
Section 11.4.1, where we present Mark Watkins’ work on the finiteness of
shifted arithmetic progressions of zeros of L-series.
In the final Chapter 12, we propose as a new definition of fractality the

presence of nonreal complex dimensions with positive real part. We also
make several suggestions for future research in this area. In particular, we
summarize the recent results of [LapPe1] on the complex dimensions and
the volume of the tubular neighborhoods of the von Koch snowflake curve,
which provides a first example of a higher-dimensional theory of complex
dimensions of fractals.



Le plus court chemin entre deux vérités dans le domaine réel

passe par le domaine complexe.

[The shortest path between two truths in the real domain passes through
the complex domain.]

Jacques Hadamard



Introduction

A fractal drum is a bounded open subset of Rm with a fractal boundary.
A difficult problem is to describe the relationship between the shape (geo-
metry) of the drum and its sound (its spectrum). In this book, we restrict
ourselves to the one-dimensional case of fractal strings, and their higher-
dimensional analogues, fractal sprays. We develop a theory of complex di-
mensions of fractal strings, and we study how these complex dimensions
relate the geometry and the spectrum of fractal strings. See the notes to
Chapter 1 in Section 1.5 for references to the literature.
In Chapter 1, we define the basic object of our research, fractal strings. A

standard fractal string is a bounded open subset of the real line. Such a set
is a disjoint union of open intervals, the lengths of which form a sequence

L = l1, l2, l3, . . . ,

which we typically assume to be infinite. Important information about the
geometry of L is contained in its geometric zeta function

ζL(s) =
∞∑

j=1

lsj .

We assume throughout that this function has a suitable meromorphic ex-
tension. The central notion of this book, the complex dimensions of a fractal
string L, is defined as the poles of the meromorphic extension of ζL. These
can also be referred to as the complex fractal dimensions of L.



2 Introduction

The spectrum of a fractal string consists of the sequence of frequencies1

f = k · l−1
j (k, j = 1, 2, 3, . . . ).

The spectral zeta function of L is defined as

ζν(s) =
∑

f

f−s.

The geometry and the spectrum of L are connected by the following for-
mula [Lap2]:

ζν(s) = ζL(s)ζ(s), (∗)

where ζ(s) = 1 + 2−s + 3−s + . . . is the classical Riemann zeta function,
which in this context can be viewed as the spectral zeta function of the
unit interval.
We also define a natural higher-dimensional analogue of fractal strings,

fractal sprays, the spectra of which are described by more general zeta
functions than ζ(s) [LapPo3]. The counterpart of (∗) still holds for fractal
sprays and can be used to study their spectrum. We refer the interested
reader to Appendix B for a brief review of aspects of spectral geometry—
including spectral zeta functions and spectral asymptotics—in the classical
case of smooth manifolds.
We illustrate these notions throughout Chapter 1 by working out the

example of the Cantor string. In this example, we see that the various
notions that we have introduced are described by the complex dimensions
of the Cantor string. In higher dimensions, a similar example is provided
by the Cantor sprays.
This theory of complex dimensions sheds new light on, and is partly

motivated by, the earlier work of the first author in collaboration with
C. Pomerance and H. Maier (see [LapPo2] and [LapMa2]). In particular, the
heuristic notion of complex dimension suggested by the methods and results
of [Lap1–3, LapPo1–3, LapMa1–2, HeLap1–2] is now precisely defined and
turned into a useful tool.
In Chapters 2 and 3, we make an extensive study of the complex dimen-

sions of self-similar strings, which form an important subclass of fractal
strings. This amounts to studying the zeros of the function

f(s) = 1− rs
1 − rs

2 − · · · − rs
N (s ∈ C),

for a given set of real numbers rj ∈ (0, 1), j = 1, . . . , N , N ≥ 2. We intro-
duce the subclass of lattice self-similar strings, and find a remarkable differ-
ence between the complex dimensions of lattice and nonlattice self-similar

1The eigenvalues of the Dirichlet Laplacian −d2/dx2 on this set are the numbers
λ = π2k2l−2

j (k, j ∈ N∗). The (normalized) frequencies of L are the numbers
√

λ/π.
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strings. In the lattice case, each number rj is a positive integral power of
one fixed real number r ∈ (0, 1). Then f is a polynomial in rs, and its zeros
lie periodically on finitely many vertical lines. The Cantor string is the sim-
plest example of a lattice self-similar string, and we refer to Section 2.3 for
additional examples. In contrast, the complex dimensions of a nonlattice
string are apparently randomly distributed in a vertical strip. In Chap-
ter 3, however, we show that these complex dimensions are approximated
by those of a sequence of lattice strings. Hence, they exhibit a quasiperiodic
behavior (see Theorems 2.17 and 3.6, along with Section 3.4). On page 52,
Figure 2.12, the reader finds a diagram of the complex dimensions of the
golden string, one of the simplest nonlattice self-similar strings. This and
other examples are discussed in Section 2.3, and many other such examples
are discussed in more detail in Chapter 3. In fact, much of Chapter 3 is
devoted to the careful study (via Diophantine approximation techniques)
of the beautiful and intriguing quasiperiodic patterns of the complex di-
mensions of nonlattice strings, both rigorously and computationally. We
also obtain in that chapter specific dimension-free regions of the complex
plane for nonlattice self-similar strings (see Section 3.6). When combined
with our explicit formulas from later chapters, this will enable us, in partic-
ular, to give good estimates for the error term in the resulting asymptotic
formulas, depending on the Diophantine properties of the scaling ratios.

Chapters 4, 5 and 6 are devoted to the development of the technical tools
needed to extract geometric and spectral information from the complex
dimensions of a fractal string. In Chapter 4, we introduce the framework in
which we will formulate our results, that of generalized fractal strings. These
do not in general correspond to a geometric object. Nevertheless, they are
not just a gratuitous generalization since they enable us, in particular, to
deal with virtual geometries and their associated spectra—suitably defined
by means of their zeta functions—as though they arose from actual fractal
geometries. In Chapters 9, 10 and 11, the extra flexibility of this framework
allows us to study the zeros of several classes of zeta functions.
The original explicit formula was given by Riemann [Rie1] in 1858 as

an analytical tool to understand the distribution of primes. It was later
extended by von Mangoldt [vM1–2] and led in 1896 to the first rigorous
proof of the Prime Number Theorem, independently by Hadamard [Had2]
and de la Vallée Poussin [dV1] (as described in [Edw]). Writing f(x) for the
function =

∑
pn≤x

1
n that counts prime powers pn ≤ x with a weight 1/n,

the explicit formula of Riemann is (see [Edw, p. 304 and Section 1.16])

f(x) = Li(x)−
∑

ρ

Li(xρ) +
∫ ∞

x

1
t2 − 1

dt

t log t
− log 2,

where the sum is over all zeros ρ of the Riemann zeta function, taken
in order of increasing absolute value, and Li(x) is the logarithmic inte-
gral

∫ x

0
dt/(log t) (see (5.78)). For numerical purposes, the left-hand side of
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Riemann’s explicit formula is easy to compute. For theoretical purposes,
however, the right-hand side is more useful. For example, the Prime Num-
ber Theorem f(x) = Li(x)(1 + o(1)) as x → ∞,2 which was the primary
motivation for Riemann’s investigations, follows if all zeros satisfy Re ρ < 1,
that is, the function log ζ(s) has a singularity at s = 1 but no other singu-
larities on the line Re s = 1.
An example of an explicit formula in our theory is formula (∗∗) below,

which expresses the volume of the tubular neighborhoods V (ε) of a fractal
string as an infinite sum of oscillatory terms ε1−ω, where ω runs over the
complex dimensions of the fractal string (and hence 1 − ω runs over the
complex codimensions). Much like Riemann, we use that formula to show
that V (ε) = ε1−D(v + o(1)) as ε → 0+, for some constant v which is related
to the D-dimensional volume of the fractal, if and only if there are no
nonreal complex dimensions on the line Reω = D. Here, D denotes the
Minkowski dimension of the fractal boundary of the string.
In Chapter 5, we state and prove our explicit formulas, which are the

basic tools for obtaining asymptotic expansions of geometric, spectral or
dynamical quantities associated with fractals. Our first explicit formula,
which expresses the counting function of the lengths as a sum of oscillatory
terms and an error term of smaller order, is only applicable under fairly
restrictive assumptions. To obtain a more widely applicable theory, we show
in Section 5.4 that this same function, interpreted as a distribution, is
given by the same formula, now interpreted distributionally. The resulting
distributional formula with error term is applicable under mild assumptions
on the analytic continuation of the geometric zeta function. We also obtain
a pointwise and a distributional formula without error term, which exists
only for the geometry of a smaller class of fractal strings, including the self-
similar strings and the so-called prime string. In Section 5.5, we use this
analysis of the prime string to give a proof of the Prime Number Theorem.
We note that our explicit formulas are close relatives of—but are also

significantly more general than—the usual explicit formulas encountered in
number theory [Edw, In,Pat]. (See the end of Section 5.1 and the notes in
Section 5.6 for further discussion and additional references.)

In the subsequent chapters, we investigate the geometric, dynamical, and
spectral information contained in the complex dimensions. The main theme
of these chapters is that the oscillations in the geometry or in the spectrum
of a fractal string are reflected in the presence of oscillatory terms in the
explicit formulas associated with the fractal string.
In Chapter 6, we work out the necessary computations to find the os-

cillatory terms in the explicit formulas of a fractal string. We define the
spectral operator, which relates the spectrum of a fractal string with its

2We have Li(x) = x
log x

(1 + o(1)) as x → ∞, but the approximation Li(x) for f(x) is
better than x

log x
.
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geometry and obtain an Euler product representation for it, which provides
a counterpart in this context to the usual Euler product expansion for the
Riemann zeta function, but is convergent in the critical strip 0 < Re s < 1.
We also illustrate our results by considering a variety of examples of geo-
metric and direct spectral problems. We study the geometric and spectral
counting functions as well as the geometric and spectral partition functions
of fractal strings. In particular, we analyze in detail the geometry and the
spectrum of self-similar strings, both in the lattice and the nonlattice case.
We show in Chapter 7 that the geometric zeta function of a self-similar

string coincides with a suitably defined dynamical (or Ruelle) zeta function,
and hence that it admits an appropriate Euler product; see Section 7.2. For
example, the zeta function of the self-similar flow (or dynamical system)
with weights w = w1, w2, . . . , wN is given by

ζw(s) =
1

1−∑N
j=1 e−wjs

,

which is the geometric zeta function of a self-similar fractal string with
scaling ratios rj = e−wj (j = 1, . . . , N) and a single gap (see Chapter 2).
The connection in this dynamical context with Marc Frantz’s more general
self-similar strings with multiple gaps still remains to be clarified.3 We
apply the theory of Chapters 5 and 6 to obtain a suitable explicit formula
and an associated Prime Orbit Theorem for self-similar flows: the function
which counts primitive periodic orbits with their weight has the asymptotic
expansion

ψw(x) = G(x)
xD

D
+

∑
Re ω<D

xω

ω
+R(x),

where the sum is over all the (dynamical) complex dimensions of the flow,
repeated according to their multiplicity, and R(x) = O(1) as x → ∞
(see Section 7.4). Here, G(x) = 1 in the nonlattice case, when D is the
only complex dimension with real part D, and G(x) is multiplicatively
periodic in the lattice case. As was alluded to earlier, using the results of
Section 3.6 on dimension-free regions, we deduce from this formula a prime
orbit theorem with error term. We may analyze this error term (beyond
the leading term) in terms of the Diophantine properties of the weights wj .
For example, self-similar flows with weights that are badly approximable
by rationals have a larger dimension-free region and hence a better (i.e.,
smaller) error term in the above asymptotic formula. (See Section 7.5.)

3Such self-similar strings, the boundary of which corresponds to self-similar sets in R,
were introduced in [Fra1, 2] after the publication of [Lap-vF5], where the prototypical
case of a single gap was studied. They are discussed in Chapter 2. With the exception
of Chapter 7, our theory can be applied immediately to this more general setting.
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Analogous comments hold with regard to all our explicit formulas when
they are applied in the self-similar case.
In Chapter 8, we derive an explicit formula for the volume V (ε) of the

inner4 ε-neighborhood of the boundary of a fractal string. For example,
when the complex dimensions of L are simple, we obtain the following key
formula:

V (ε) =
∑
ω

cω
(2ε)1−ω

ω(1− ω)
+R(ε), (∗∗)

where ω runs over the complex dimensions of the fractal string L, cω denotes
the residue of ζL(s) at s = ω, and R(ε) is an error term of lower order.
Formula (∗∗) yields a new criterion for the Minkowski measurability of a
fractal string in terms of the absence of nonreal complex dimensions with
real part D, the dimension of the string. (See Section 8.3.) This extends
the joint work of the first author with C. Pomerance [LapPo1; LapPo2,
Theorem 2.2], in which a characterization of Minkowski measurability was
obtained in terms of the absence of geometric oscillations in the string. A
comparison, in Section 8.2, of our formula with Hermann Weyl’s formula
for tubes in Riemannian geometry [BergGo, p. 235] suggests what kind of
geometric information may be contained in the complex dimensions of a
fractal string.
The last part of Chapter 8 (Section 8.4) is devoted to a detailed discussion

of the tube formulas for the class of self-similar strings, both in the lattice
and nonlattice case. The tube formula (∗∗) takes a particularly concrete
form for lattice strings, while the error term R(ε) in (∗∗) can be estimated
by using some of the results of Chapter 3. In particular, it follows that a
self-similar string is Minkowski measurable if and only if it is nonlattice.

In Chapters 9, 10, and 11, we shift the emphasis from the geometry of
fractal strings to the relationship between the geometry and the spectrum
of fractal strings.
In Chapter 9, we study the inverse spectral problem, the problem of de-

ducing geometric information from the spectrum of a fractal string: Does
the absence of oscillations in the spectrum of a fractal string imply the ab-
sence of oscillations in its geometry? In other words, we consider the ques-
tion (à la Mark Kac [Kac]) “Can one hear the shape of a fractal string?”
This inverse spectral problem has been considered before by the first au-
thor jointly with H. Maier in [LapMa1–2], where it was shown that the

4We use the inner tubular neighborhood (see Equation (1.3) in Chapter 1) so
that V (ε) does not depend on the placement of the lengths lj in space (the geometric
realization of the fractal string). Likewise, the Minkowski dimension and Minkowski con-
tent are independent of the geometric realization of the fractal string, as opposed to the
Hausdorff dimension and measure. This is the main reason why in [Lap1,LapPo2], the
Minkowski dimension is used as well.
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audibility of oscillations in the geometry of a fractal string of (Minkowski)
dimension D ∈ (0, 1) is equivalent to the absence of zeros of the Riemann
zeta function ζ(s) on the line Re s = D. In our framework, this becomes the
question of inverting the spectral operator. We deduce, in particular, that
the spectral operator is invertible for all fractal strings of dimension D �= 1

2
if and only if the Riemann hypothesis holds, i.e., if and only if the Riemann
zeta function ζ(s) does not vanish if Re s �= 1

2 , Re s > 0.
By considering (generalized) fractal sprays, instead of fractal strings, we

extend the above criterion for zeros of ζ(s) in the critical strip to a large
class of zeta functions, including all those for which the analogue of the
generalized Riemann hypothesis is expected to hold. We thus characterize
the generalized Riemann hypothesis as a natural inverse spectral prob-
lem for fractal sprays. In addition to the Epstein zeta functions, this class
includes all Dedekind zeta functions and Dirichlet L-series, and more gen-
erally, all Hecke L-series associated with an algebraic number field. It also
includes all zeta functions associated with algebraic varieties over a finite
field. We refer the interested reader to Appendix A for a brief review of
such number-theoretic zeta functions.
In Chapter 10, we make an extensive study of the geometry and the

spectrum of generalized Cantor strings. The complex dimensions of such
strings form an infinite sequence in vertical arithmetic progression, with
real part the Minkowski dimension D of the string. We show that these
strings always have oscillations of order D in both their geometry and
their spectrum. In Chapter 11, we deduce from this result that the explicit
formulas for the geometry and the spectrum of Cantor strings always con-
tain oscillatory terms of order D. On the other hand, if ζ(s) had a vertical
arithmetic progression of zeros coinciding with the arithmetic progression
of complex dimensions of L, then, by formula (∗), the explicit formula for
the frequencies would only contain the term corresponding to D, and not
any oscillatory term. Thus we prove that ζ(s) does not have such a sequence
of zeros. This theorem was first obtained by Putnam [Pu1, 2] in 1954. How-
ever, his methods do not apply to prove the extension to more general zeta
functions. We also apply this idea in Section 11.1.1 to the geometry and
the spectrum of the truncated generalized Cantor strings, to deduce an ex-
plicit upper bound on the maximal possible length of a vertical arithmetic
sequence of zeros.
By considering (generalized) Cantor sprays, we extend this result to a

large subclass of the aforementioned class of zeta functions. This class in-
cludes all the Dedekind and Epstein zeta functions, as well as many Dirich-
let series not satisfying a functional equation. It does not, however, include
the zeta functions associated with varieties over a finite field, for which this
result does not hold (this is explained in Section 11.5). Indeed, we show
that every Dirichlet series with positive coefficients and with only finitely
many poles has no infinite sequence of zeros forming a vertical arithmetic
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progression. In Section 11.4.1, we present Mark Watkins’ extension to finite
shifted arithmetic progressions.

We conclude this book with a chapter of a more speculative nature,
Chapter 12, in which we make several suggestions for the direction of fu-
ture research in this area. Our results suggest that important information
about the fractality of a string is contained in its complex dimensions. In
Section 12.2, we propose as a new definition of fractality the presence of at
least one nonreal complex dimension with positive real part. In this new
sense, every self-similar set in the real line is fractal. On the other hand, in
agreement with geometric intuition, certain compact subsets of R, assoc-
iated with the so-called a-string, are shown here to be nonfractal, whereas
they are fractal according to the definition of fractality based on the no-
tion of Minkowski dimension. We suggest one possible way of defining the
complex dimensions of higher-dimensional fractals, and we discuss the ex-
amples of the Devil’s staircase and of the snowflake drum (see Figures 12.1
and 12.6). In particular, the Devil’s staircase is not fractal according to the
traditional definition based on the Hausdorff dimension. However, there is
general agreement among fractal geometers that it should be called fractal.
(See [Man1, p. 84].) We show that our new definition of fractality does
indeed resolve this problem satisfactorily. In spite of this positive outcome,
we stress that the theory of the complex dimensions of higher-dimensional
fractals still needs to be further developed.
The first steps towards such a theory are discussed in Sections 12.3.1

and 12.3.2. In Section 12.3.1 (based on [LapPe1]), a tube formula for the
Koch snowflake curve is given and the corresponding complex dimensions
are inferred, by analogy with formula (∗∗). In Section 12.3.2, we briefly
discuss aspects of a work in progress ([Pe], [LapPe2–4]) where a theory of
complex dimensions of self-similar fractals (and tilings) is developed.
In Section 12.4, we discuss two types of extensions of the main framework

of this book, that of fractal strings. Namely, in Section 12.4.1—based on
the paper [HamLap]—we give an overview of some of the main results
on random fractal strings, such as random self-similar strings and stable
random strings (which, in a special case, have for boundary the zero set
of Brownian motion), and their associated complex dimensions. Moreover,
in Section 12.4.2, we discuss the notion of fractal membrane (or quantized
fractal string) introduced in [Lap10] and further developed in [LapNes1, 2].
In Sections 12.2 through 12.7, we discuss several conjectures and open

problems regarding possible extensions and geometric, spectral, or dynam-
ical interpretations of the present theory of complex dimensions, both for
fractal strings and their higher-dimensional analogue, fractal drums, for
which much research remains to be carried out in this context. We explain
the connection with geometries over finite fields in Section 12.7.1. We also
propose in Section 12.7.2 to develop a suitable fractal cohomology theory in
the context of the theory of self-similar strings and their associated complex
dimensions.



1
Complex Dimensions
of Ordinary Fractal Strings

In this chapter, we recall some basic definitions pertaining to the notion
of (ordinary) fractal string and introduce several new ones, the most im-
portant of which is the notion of complex dimension. We also give a brief
overview of some of our results in this context by discussing the simple but
illustrative example of the Cantor string. In the last section, we discuss
fractal sprays, which are a higher-dimensional analogue of fractal strings.

1.1 The Geometry of a Fractal String

LapMa1–2, HeLap1–2]. A (standard or ordinary) fractal string L is a
bounded open subset Ω of R. It is well known that such a set consists
of countably many open intervals, the lengths of which will be denoted by
l1, l2, l3, . . . , called the lengths of the string. Note that

∑∞
j=1 lj is finite and

equal to the Lebesgue measure of Ω. From the point of view of this work,
we can and will assume without loss of generality that

l1 ≥ l2 ≥ · · · > 0, (1.1)

where each length is counted according to its multiplicity. We allow for Ω
to be a finite union of open intervals, in which case the sequence of lengths
is finite.
An ordinary fractal string can be thought of as a one-dimensional drum

with fractal boundary. Actually, we have given here the usual terminology
that is found in the literature. A different terminology may be more sug-
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l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

. . .

Figure 1.1: A fractal harp.

gestive: the open set Ω could be called a fractal harp, and each connected
interval of Ω could be called a string of the harp; see Figure 1.1.

The counting function of the reciprocal lengths, also called the geometric
counting function of L, is the function

NL(x) = #{j ≥ 1: l−1
j ≤ x} =

∑
j≥1, l−1

j ≤x

1, (1.2)

for x > 0.1

Estimates for this function are closely related to estimates for the se-
quence of lengths, as the following proposition shows.

Proposition 1.1. Let L be an ordinary fractal string with sequence of
lengths l1, l2, l3, . . . . Then

NL(x) = O
(
xD

)
, as x→∞ if and only if lj = O

(
j−1/D

)
, as j →∞.

Proof. Suppose we have the estimate

NL(x) ≤ C · xD.

1Beginning in Chapter 4, Definition 4.1, we adopt the convention that the integers j
such that l−1

j = x must be counted with the weight 1/2. A similar convention will be
assumed for the spectral counting functions (such as, e.g., in Equation (1.34) below). For
the moment, the reader may ignore this convention. With this convention, the explicit
formula without error term also holds at jumps of the counting function (see, for example,
Equation (1.31) below, for x = 3n).
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Taking x = l−1
j , we find j ≤ C · l−D

j . Therefore lj = O
(
j−1/D

)
.

On the other hand, if
lj ≤ C · j−1/D

for all j = 1, 2, . . . , then given x > 0, we have l−1
j ≥ x for j ≥ (Cx)D. We

conclude that NL(x) ≤ (Cx)D.

The boundary of L, denoted ∂L, is defined as the boundary ∂Ω of Ω.
Important geometric information about L is contained in its Minkowski
dimension D = DL and its Minkowski content M = M(D;L), defined
respectively as the inner Minkowski dimension2 and the inner Minkow-
ski content of ∂Ω. To define these quantities, let d(x, A) denote the dis-
tance of x ∈ R to a subset A ⊂ R and let vol1 denote the one-dimensional
Lebesgue measure on R. For ε > 0, let V (ε) be the volume of the inner
tubular neighborhood of ∂Ω with radius ε :

V (ε) = vol1{x ∈ Ω: d(x, ∂Ω) < ε}. (1.3)

Definition 1.2. The dimension of a fractal string L is defined as the inner
Minkowski dimension of ∂L,

D = DL = inf{α ≥ 0: V (ε) = O(ε1−α) as ε → 0+}. (1.4)

The fractal string L is said to be Minkowski measurable, with Minkowski
content

M =M(D;L) = lim
ε→0+

V (ε)ε−(1−D), (1.5)

if this limit exists in (0,∞). The upper and lower Minkowski content are
respectively defined by

M∗ =M∗(D;L) = lim sup
ε→0+

V (ε)ε−(1−D), (1.6a)

and

M∗ =M∗(D;L) = lim inf
ε→0+

V (ε)ε−(1−D). (1.6b)

Thus 0 ≤ M∗ ≤ M∗ ≤ ∞, and L is Minkowski measurable if and only
ifM∗ =M∗ =M is a nonzero real number.

Remark 1.3. The definitions of Minkowski dimension and content of ∂Ω
extend naturally to the higher-dimensional case when Ω is an open bounded
subset of Rd, with d ≥ 1, provided that we substitute the exponent d − α
for 1−α in (1.4) and d−D for 1−D in (1.5) and (1.6), and that in (1.3),

2The Minkowski dimension is also called the capacity dimension or the (upper) box
dimension in the literature on fractal geometry.
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vol1 is replaced by vold, the d-dimensional Lebesgue measure on Rd; see,
e.g., [Lap1, Definition 2.1 and §3]. The meaning of the exponent d −D is
the codimension of the boundary ∂Ω in the ambient space Rd. Thus V (ε)
decreases as ε ↓ 0 like ε to the power the codimension.

Remark 1.4 (Independence of the Geometric Realization). Observe that
the Minkowski dimension of a self-similar set coincides with its Haus-
dorff dimension. The basic reason for using the Minkowski dimension is
that it is invariant under displacements of the intervals of which a frac-
tal string is composed. This is not the case of the Hausdorff dimension
(see [BroCa], [Lap1, Example 5.1, pp. 512–514], [LapPo2]). See also Re-
mark 2.22 below for further comparison between the various notions of
fractal dimensions and for additional justification of the choice of the notion
of Minkowski dimension in the context of fractal strings. Throughout this
work, an ordinary fractal string L is completely determined by the sequence
of its lengths. Hence, we will often denote such a string by L = {lj}∞j=1.

Remark 1.5. The more irregular the boundary ∂Ω, the larger D. More-
over, we always have d− 1 ≤ H ≤ D ≤ d, where H denotes the Hausdorff
dimension of ∂Ω, and d is the dimension of the ambient space, as in Re-
mark 1.3. Intuitively, D corresponds to coverings of ∂Ω by d-dimensional
cubes of size exactly equal to ε, whereas H corresponds to coverings by
sets of size at most ε. As is discussed in [Lap1], this key difference explains
why—from the point of view of harmonic analysis and spectral theory—the
Minkowski dimension should be used instead of the more familiar Hausdorff
dimension in this setting. In the case of fractal strings, both the Minkow-
ski dimension and content depend only on the lengths lj , and hence are
invariant under arbitrary rearrangements of the intervals Ij (i.e., of the
connected components of Ω). See, in particular, Equation (1.9).

1.1.1 The Multiplicity of the Lengths

Another way of representing a fractal string L is by listing its different
lengths l, together with their multiplicity wl:

wl = #{j ≥ 1: lj = l}. (1.7)

Thus, for example,

NL(x) =
∑

l−1≤x

wl. (1.8)

In Chapter 4, we will introduce a third way to represent a fractal string,
similar to this one, namely, by a measure.
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1
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1
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1
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1
27

1
27

1
27

1
27

Figure 1.2: The Cantor string.

Figure 1.3: The .037-tubular neighborhood of the Cantor string.

1.1.2 Example: The Cantor String

We consider the ordinary fractal string Ω = CS, the complement in [0, 1]
of the usual ternary Cantor set (Figure 1.2). Thus

CS = ( 13 , 2
3 )∪( 19 , 2

9 )∪( 79 , 8
9 )∪

(
1
27 , 2

27

)
∪
(

7
27 , 8

27

)
∪
(

19
27 , 20

27

)
∪
(

25
27 , 26

27

)
∪ṡ,

so that l1 = 1/3, l2 = l3 = 1/9, l4 = l5 = l6 = l7 = 1/27, . . . , or alterna-
tively, the lengths are the numbers 3−n−1 with multiplicity w3−n−1 = 2n,
for n = 0, 1, 2, . . . . We note that by construction, the boundary ∂Ω of the
Cantor string is equal to the ternary Cantor set.
In general, the volume of the tubular neighborhood of the boundary of L

is given by (see [LapPo2, Eq. (3.2), p. 48])

V (ε) =
∑

j: lj≥2ε

2ε+
∑

j: lj<2ε

lj = 2ε ·NL

(
1
2ε

)
+

∑
j: lj<2ε

lj . (1.9)

We explain the first equality in formula (1.9).3 When the two endpoints
of an interval of length lj are covered by intervals of radius ε, then these
discs overlap if lj < 2ε, covering a length lj , or they do not overlap if
lj ≥ 2ε, in which case they cover a length of 2ε.
Applying (1.9) to the Cantor string, we find, for 0 < ε ≤ 1/2,

VCS(ε) = 2ε · (2n − 1) +
∞∑

k=n

2k · 3−k−1 = 2ε · 2n +
(
2
3

)n

− 2ε,

where n is such that 3−n ≥ 2ε > 3−n−1; i.e., n = [− log3(2ε)].4 See Fig-
ure 1.3 for a picture of the tubular neighborhood of inner radius .037. In
this picture, the lengths of the Cantor string have been put vertically.

3In view of (1.2), the second equality is obvious.
4For x ∈ R, we write x = [x] + {x}, where [x] is the integer part and the fractional

part of x; i.e., [x] ∈ Z and 0 ≤ {x} < 1.
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M∗

M∗ 1
2

1
6

1
18

Figure 1.4: The function εD−1(VCS(ε) + 2ε), additively.

The above formula is valid, provided n ≥ 0; i.e., ε ≤ 1/2. We also note
that VCS(ε) is independent of the geometric realization. For example, we
could have taken (0, 1

3 )∪ ( 13 , 4
9 )∪ ( 49 , 5

9 )∪ ( 59 , 16
27 )∪ . . . for the Cantor string.

To determine the minimal α such that VCS(ε) = O(ε1−α) as ε → 0+, we
write

bn = b[− log3(2ε)] = b− log3(2ε)−{− log3(2ε)} = (2ε)− log3 bb−{− log3(2ε)}

for b = 2 and for b = 2/3. Putting

D = log3 2 :=
log 2
log 3

, (1.10)

we find, for all positive ε ≤ 1/2,

VCS(ε) = (2ε)1−D

((
1
2

){− log3(2ε)}
+

(
3
2

){− log3(2ε)})
− 2ε. (1.11)

The function between parentheses is bounded, nonconstant, and multi-
plicatively periodic: it takes the same value at ε and ε/3 (see Figures 1.4
and 1.5). It does not have a limit for ε → 0+. This is a simple example of
what we call geometric oscillations. It follows that the Cantor string has
Minkowski dimension D = log3 2, and that it is not Minkowski measurable.
The upper and lower Minkowski content are computed in [LapPo2, Theo-
rem 4.6, p. 65]:

M∗ = 22−D = 2.5830,

M∗ = 21−DD−D(1−D)−(1−D) = 2.4950.
(1.12)

Figure 1.4 shows a graph of the periodic factor between the parentheses
of formula (1.11), with a linear scale on the horizontal (i.e., ε-) axis. To
make clearer the multiplicative periodicity of this function, in Figure 1.5,
we present a graph of the same function with a logarithmic scale on the
horizontal axis.
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18

1
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Figure 1.5: The function εD−1(VCS(ε) + 2ε), multiplicatively.

We continue our analysis of the inner tubular neighborhood VCS(ε) of the
Cantor string by using the Fourier series of the periodic function u �→ b−{u},
for b > 0, b �= 1:5

b−{u} =
b− 1

b

∑
n∈Z

e2πinu

log b+ 2πin
. (1.13)

Writing p = 2π/ log 3 and substituting (1.13) into formula (1.11), we find,
for all positive ε ≤ 1/2,

VCS(ε) =
1

2 log 3

∞∑
n=−∞

(2ε)1−D−inp

(D + inp)(1−D − inp)
− 2ε. (1.14)

The number p = 2π/ log 3 is called the oscillatory period of the Cantor
string; see Definition 2.14. A counterpart of formula (1.14) will be derived
for a general fractal string in Section 8.1.

Remark 1.6 (Reality Principle). Note that (1.14) expresses V (ε) as an
infinite sum of complex numbers. Likewise, for real values of b, (1.13) ex-
presses the real-valued function b−{u} as an infinite sum of complex values.
These sums are in fact real-valued, as can be seen by combining the terms
for n and −n into one, for n ≥ 1. Indeed, these two terms are the complex
conjugate of one another, and hence their sum is real-valued. Thus we find
the following alternative expression for V (ε):

VCS(ε) =
2−Dε1−D

D(1−D) log 3
+

1
log 3

∞∑
n=1

Re
(

(2ε)1−D−inp

(D + inp)(1−D − inp)

)
− 2ε.

(1.15)

Using (2ε)−inp = cos(np log(2ε))− i sin(np log(2ε)), one could continue to
derive a formula involving the real-valued functions sine and cosine, thus
exposing more clearly the oscillatory behavior of the terms in this sum.
In this way, we find VCS(ε) as a sum of the term at D and an infinite
sum of real-valued terms. In the next section, we define the complex di-
mensions of a fractal string, and in Section 1.2.2, we will find that the
complex dimensions of the Cantor string are the numbers D+ inp (n ∈ Z).

5By Dirichlet’s Theorem [Fol, Theorem 8.43, p. 266], this series converges pointwise.
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Thus the real-valuedness of (1.14) ultimately follows from the fact that
the complex dimensions of the Cantor string come in complex conjugate
pairs {D + inp, D − inp} (n ∈ N∗). This holds in general: the nonreal com-
plex dimensions of a fractal string come in complex conjugate pairs (see
Remark 1.15). We call this the reality principle for ordinary fractal strings.
A similar comment applies to the expressions that we will obtain for V (ε)

in more general situations, as in Chapter 8.

Remark 1.7. Note that in view of (1.14), we have

ε−(1−D)VCS(ε) = G(ε)− 2 εD, (1.16)

as ε → 0+, where G is a nonconstant multiplicatively periodic function
of multiplicative period 3 = e2π/p which is bounded away from zero and
infinity:

0 < M∗ ≤ G(ε) ≤M∗ <∞,

where M∗ and M∗ are given by (1.12) above. Alternatively, G can be
viewed as an additively periodic function of log ε−1 with additive period
log 3 = 2π/p. Namely,

G(ε) = F
(
log ε−1

)
with6

F (u) =
1

2 log 3

∞∑
n=−∞

21−D−inpeinpu

(D + inp)(1−D − inp)
. (1.17)

1.2 The Geometric Zeta Function
of a Fractal String

Let L be a fractal string with sequence of lengths {lj}∞j=1. The sum
∑∞

j=1 lσj
converges for σ = 1. It follows that the (generalized) Dirichlet series

ζL(s) =
∞∑

j=1

lsj

defines a holomorphic function for Re s > 1. We show in Theorem 1.10
below that this series converges in the open right half-plane Re s > D,
defined by the Minkowski dimension D, but that it diverges at s = D.

We refer to Equation (1.7) above for the definition of the multiplicity wl

in the following definition.

6Note that since p = 2π/ log 3 and u = − log ε, we have eipu = ε−ip. Further, the
Fourier series in (1.17) is absolutely convergent.
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Definition 1.8. Let L be a fractal string. The geometric zeta function of L
is defined as

ζL(s) =
∞∑

j=1

lsj =
∑

l

wl · ls, (1.18)

for Re s > σ = DL (see Theorem 1.10 below).

Some values of the geometric zeta function of a string L have a special
interpretation. If there are only finitely many lengths l, then ζL(0) equals
the number of lengths of the string. Similarly, the total length of the fractal
string L is

L := ζL(1) = vol1(Ω) =
∞∑

j=1

lj . (1.19)

In Definition 1.2, we defined the (Minkowski) dimension D = DL of L
as 1 − c, where c is the exponent of ε in the asymptotic volume of the
tubular neighborhood of L with radius ε. We now show directly that this
dimension coincides with the abscissa of convergence of ζL in case the
number of lengths of L is infinite. On the other hand, if L has finitely
many lengths, then D = 0 but σ = −∞ since the series for ζL(s) converges
for all s ∈ C.

Definition 1.9. The abscissa of convergence of the series
∑∞

j=1 lsj is de-
fined by

σ = inf
{

α ∈ R :
∑∞

j=1
lαj <∞

}
. (1.20)

Thus {s ∈ C : Re s > σ} is the largest open half-plane on which this series
converges. The function ζL(s) =

∑∞
j=1 lsj is holomorphic in this half-plane;

see, e.g., [Ser, §VI.2].
Theorem 1.10. Suppose L has infinitely many lengths. Then the abscissa
of convergence of the geometric zeta function of L coincides with D, the
Minkowski dimension of ∂L.

Proof. We write σ for the abscissa of convergence of ζL. Let d > D. In view
of definition (1.4) of the Minkowski dimensionD, there exists a constant C1

such that V (ε) ≤ C1ε
1−d. For n ≥ 1 we choose ε = ln/2 to obtain

nln ≤ nln +
∞∑

j=n+1

lj = V (ln/2) ≤ C1(ln/2)1−d. (1.21)

It follows that for every positive number s, lsn ≤ C2n
−s/d, for some positive

constant C2. Hence the series (1.18) converges for s > d, so that σ ≤ d.
Since this holds for every d > D, we obtain σ ≤ D.
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If σ = 1, we conclude that D = σ, since V (ε) ≤ vol1(Ω) is bounded.
Otherwise, let s be such that σ < s < 1. Then, by the definition of σ the
series (1.18) converges. Since the sequence of lengths is nonincreasing, we
find that

nlsn ≤
n∑

j=1

lsj ≤ ζL(s).

Since s is fixed, we deduce that ln ≤ (C3/n)1/s for all n ≥ 1, for some
positive constant C3. Given ε > 0, it follows that ln < 2ε for n > C3(2ε)−s.
For j ≤ C3(2ε)−s, we estimate the j-th term in the first or the second sum
in formula (1.9) for V (ε) by 2ε, and for j > C3(2ε)−s, we estimate this
term in the second sum by (C3/j)1/s. Thus we have

V (ε) ≤ C4(2ε)1−s,

for some positive constant C4. It follows that D ≤ s. Since this holds for
every real number s > σ, we conclude that D ≤ σ. Therefore, these two
quantities coincide.

Using this connection with the volume V (ε), and noting (as in the fore-
going proof) that V (ε) ≤ vol1(Ω) is bounded, we derive the following corol-
lary:

Corollary 1.11. The dimension of an ordinary fractal string satisfies

0 ≤ D ≤ 1.

1.2.1 The Screen and the Window

In general, ζL may not have an analytic continuation to all of C. We there-
fore introduce the screen S as the contour

S : S(t) + it (t ∈ R), (1.22)

where S(t) is a continuous function S : R → [−∞, DL]. (See Figure 1.6.)
The set

W = {s ∈ C : Re s ≥ S(Im s)} (1.23)

is called the window, and we assume that ζL has a meromorphic extension7

to a neighborhood of W , with the set of poles D = DL(W ) ⊂ W , called the
(visible) complex dimensions of L. We also require that ζL does not have
any pole on the screen S.
In Chapter 4, we will define generalized fractal strings, which also have

a screen and a window associated to them. See Section 5.1.1 and the be-
ginning of Section 5.2 for an explanation of the role of the screen in our
explicit formulas.

7Following traditional usage, we will continue to denote by ζL the meromorphic
extension of the Dirichlet series given by (1.18).
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Figure 1.6: The screen S and the window W .

Definition 1.12. (i) The set of visible complex dimensions of the fractal
string L is defined as

DL = DL(W ) = {ω ∈W : ζL has a pole at ω} . (1.24)

(ii) If W = C (that is, if ζL has a meromorphic extension to all of C), we
call

DL = DL(C) = {ω ∈ C : ζL has a pole at ω} (1.25)

the set of complex dimensions of L.

Complex dimensions may also be called complex fractal dimensions. This
is partly justified by our proposal in Chapter 12 to define “fractality” in
terms of this notion. (See especially Section 12.2.) For conciseness, however,
we usually refer to them in the briefer way.
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Remark 1.13. According to Theorem 1.10, ζL(s) is holomorphic in the
half-plane Re s > D and hence

DL = DL(W ) ⊂ {s ∈W : Re s ≤ D} . (1.26)

Moreover, since it is the set of poles of a meromorphic function, DL(W ) is
a discrete subset of C. Hence its intersection with any compact subset of C
is finite. When L consists of finitely many lengths, we have DL = ∅, since
then, ζL(s) is an entire function.

Remark 1.14. In general, the limit of ζL(s) as s → DL from the right
is ∞ (this follows, e.g., from [Ser, Proposition 7, p. 67] and is due to the
fact that the Dirichlet series (1.18) has positive coefficients). Thus s = DL
is always a singularity of ζL(s), but not necessarily a pole. If D = DL is a
pole and DL ∈W , then

DL = max {Reω : ω ∈ DL} , (1.27)

since ζL is holomorphic for Re s > D.

Remark 1.15. Assume that W is symmetric with respect to the real axis.
Since ζL(s) = ζL(s), it then follows that the nonreal complex dimensions
of a (standard) fractal string always come in complex conjugate pairs ω, ω;
that is, ω ∈ DL if and only if ω ∈ DL.

The general theme of this monograph is that the complex dimensions
describe oscillations in the geometry and the spectrum of a fractal string.
The following theorem is a simple illustration of this philosophy.

Theorem 1.16. Let L be a fractal string of dimension D, and assume
that ζL has a meromorphic extension to a neighborhood of D. If

NL(x) = O
(
xD

)
, as x→∞,

or if the volume of the tubular neighborhoods satisfies

V (ε) = O
(
ε1−D

)
, as ε → 0+,

then ζL has a simple pole at D.

Proof. First, recall from Remark 1.14 or from [Pos] or [Wid] that D is a
singularity of ζL. Suppose NL(x) ≤ C ·xD and NL(x) = 0 for x ≤ x0. Then
for s > D,

ζL(s) = s

∫ ∞

0

NL(x)x−s−1 dx ≤ Cs

s−D
xD−s

0 .

It follows that the singularity at D is at most a simple pole. Since by
assumption, ζL has a meromorphic extension to a neighborhood of D, it
follows that D is a simple pole of ζL.
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The second part follows from the first part and Proposition 1.1 since

V (ε) = 2εNL

(
1
2ε

)
+

∑
j: lj<2ε

lj = O
(
ε1−D

)
, as ε → 0+,

implies that NL(x) = O
(
xD

)
as x→∞.

The following example shows that the condition that the geometric zeta
function of a fractal string has a meromorphic continuation is not al-
ways satisfied, and indeed the vertical line Re s = D can be a natural
boundary for the analytic continuation of ζL. It also shows that the func-
tion (s−D)ζL(s) can have a finite and positive limit as s → D+, even
if NL(x) is not of order xD as x → ∞ and V (ε) is not of order ε1−D

as ε → 0+. This does not contradict the results of Chapters 6 and 8, which
hold for strings having a geometric zeta function that does have a mero-
morphic continuation beyond Re s = D. The example is formulated in the
language of generalized fractal strings of Chapter 4, for which the multi-
plicities of the lengths may be nonintegral.

Example 1.17. Let

ζL(s) =
∞∑

j=1

jeDj2
e−j2s. (1.28)

That is, we consider the generalized fractal string with lengths e−j2
, each

repeated with multiplicity jeDj2
, for 0 < D < 1 (we obtain an ordinary

fractal string with the same properties if we choose for the multiplicity the
integer nearest to jeDj2

). Thus

NL(x) =
n∑

j=1

jeDj2 ≥ neDn2

for en2 ≤ x < e(n+1)2 . For x = en2
, NL(x) ≥ xD

√
log x, and hence NL(x)

is not of order xD as x→∞.
On the other hand, (s − D)ζL(s) has limit 1/2 as s → D+, as we now

show. For t > 0, we have

tζL(D + t) = t

∞∑
j=1

je−j2t =
∞∑

j=1

j
√

te−(j
√

t)2
√

t.

This is a Riemann sum for the integral
∫∞
0

xe−x2
dx, with mesh width

√
t.

The value of this integral is 1/2.
We conclude, in particular, that the vertical line Re s = D is a natural

boundary for the analytic continuation of ζL.
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1.2.2 The Cantor String (continued)

The geometric zeta function of the Cantor string is

ζCS(s) =
∞∑

n=0

2n · 3−(n+1)s =
3−s

1− 2 · 3−s
. (1.29)

We choose W = C. The complex dimensions of the Cantor string are found
by solving the equation 1 − 2 · 3−ω = 0, with ω ∈ C. (Note that they are
all simple poles of ζCS.) Thus

DCS = {D + inp : n ∈ Z} , (1.30)

where D = log3 2 is the dimension of CS and p = 2π/ log 3 is its os-
cillatory period.8 (See Figure 2.4 in Section 2.3.1.) Formula (1.14) above
expresses V (ε) as a sum of terms proportional to ε1−ω, where ω = D+ inp
runs over the complex dimensions of the Cantor string. (See also Sec-
tions 8.1.1, 8.4.1 and 8.4.2.)
In Section 8.3, we will extend and reinterpret in terms of complex di-

mensions the criterion for Minkowski measurability obtained in [LapPo1;
LapPo2, Theorem 2.2, p. 46]. In particular, under mild growth conditions
on ζL, we will show in Theorem 8.15 that an ordinary fractal string is
Minkowski measurable if and only if D is a simple pole of ζL and the only
complex dimension of L on the vertical line Re s = D is D itself. Heuris-
tically, nonreal complex dimensions above D would create oscillations in
the geometry of L, and therefore in the volume of the tubular neighbor-
hood, V (ε); see (1.31) below and (1.14)–(1.17) above, and compare with
the intuition expressed in [LapMa1] or [LapMa2, esp. §3.3].
In view of (1.29) and (1.30), this makes particularly transparent the

non-Minkowski measurability of the Cantor string (deduced above and es-
tablished earlier in [LapPo2, Theorem 4.6]). As we will see in Chapter 8, a
similar argument can be used in many other situations. (See, in particular,
Theorem 8.23 in Section 8.4.2.)

As another example of an explicit formula involving the complex dimen-
sions of the Cantor string, we compute the counting function of the recip-
rocal lengths. There are 1 + 2 + 4 + · · · + 2n−1 lengths greater than x−1,
where n = [log3 x]. Thus NCS(x) = 2n − 1. Using the Fourier series (1.13),
we obtain

NCS(x) =
1

2 log 3

∑
n∈Z

xD+inp

D + inp
− 1 = 1

2 log 3

∑
ω∈DCS

xω

ω
− 1. (1.31)

8Compare [Lap2, Example 5.2(i), p. 170] and [Lap3, p. 150], where our present ter-
minology was not used.
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Again, we find a sum extended over the complex dimensions of the Cantor
string. In Chapter 5, we will formulate and prove the explicit formulas that
allow us to derive such formulas in much greater generality.

1.3 The Frequencies of a Fractal String
and the Spectral Zeta Function

Given a fractal string L, we can listen to its sound. In mathematical terms,
we consider the bounded open set Ω ⊂ R, together with the (positive)
Dirichlet Laplacian Δ = −d2/dx2 on Ω. An eigenvalue λ of Δ corresponds
to the (normalized) frequency f =

√
λ/π of the fractal string.

The frequencies of the unit interval are 1, 2, 3, . . . (each counted with
multiplicity one), and the frequencies of an interval of length l are l−1,
2l−1, 3l−1, . . . (also counted with multiplicity one). Thus the frequencies
of L are the numbers

f = k · l−1
j , (1.32)

where k, j = 1, 2, 3, . . . ; that is, they are the integer multiples of the re-
ciprocal lengths of L. The total multiplicity of the frequency f is equal
to

w
(ν)
f =

∑
j: f ·lj∈N∗

1 =
∑

l: f ·l∈N∗
wl = w1/f + w2/f + w3/f + · · · . (1.33)

To study the frequencies, we introduce the spectral counting function and
the spectral zeta function. Note that Nν and ζν depend on L. However, for
simplicity, we do not indicate this explicitly in our notation.

Definition 1.18. The counting function of the frequencies, also called the
spectral counting function of L, is

Nν(x) = #{f ≤ x : frequency of L, counted with multiplicity}
=

∑
f≤x

w
(ν)
f , (1.34)

for x > 0.9

The spectral zeta function of L is

ζν(s) =
∞∑

k,j=1

(
k · l−1

j

)−s =
∑

f

w
(ν)
f f−s, (1.35)

which converges for Re s sufficiently large. In the second equality of (1.34)
and (1.35), the sum is extended over all distinct frequencies of L.

9According to footnote 1, the frequency f = x should be counted with the weight 1/2.
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Let ζ(s) be the Riemann zeta function defined by ζ(s) =
∑∞

n=1 n−s for
Re s > 1. It is well known that ζ(s) has an extension to the whole complex
plane as a meromorphic function, with one simple pole at s = 1, with
residue 1.
The following theorem relates the spectrum of an ordinary fractal string

with its geometry. It will become very helpful when we study direct or
inverse spectral problems.

Theorem 1.19. The spectral counting function of L is given by

Nν(x) = NL(x) +NL

(
x

2

)
+NL

(
x

3

)
+ . . . (1.36)

=
∞∑

j=1

[ljx], (1.37)

and the spectral zeta function of L is given by

ζν(s) = ζL(s)ζ(s), (1.38)

where ζ(s) is the Riemann zeta function. Thus ζν(s) is holomorphic for
Re s > 1. It has a pole at s = 1 with residue L, the total length of L
(see (1.19)). Moreover, it has a meromorphic extension to a neighborhood
of the window W of L.

Proof. For the spectral counting function, this follows from the following
computation:

Nν(x) =
∞∑

k=1

∑
j: k·l−1

j ≤x

1 =
∞∑

k=1

#{j : l−1
j ≤ x/k} =

∞∑
k=1

NL

(
x

k

)
.

Observe that this is a finite sum, since NL(y) = 0 for y < l−1
1 . The second

expression is derived similarly:

Nν(x) =
∞∑

j=1

∑
k≤ljx

1 =
∞∑

j=1

[ljx].

For the spectral zeta function, we have successively

ζν(s) =
∞∑

k,j=1

k−slsj =
∞∑

j=1

lsj

∞∑
k=1

k−s = ζL(s)ζ(s).

This completes the proof of the theorem.

Using formula (1.37) for Nν(x), we can derive Weyl’s asymptotic law
for fractal strings. More precise results will be obtained in Chapter 6,
Section 6.3, and in Chapters 9 and 10. (See Appendix B, especially for-
mula (B.2), for a formulation of Weyl’s asymptotic law. See also [Lap1]
and [LapPo2].)
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Theorem 1.20 (Weyl’s Asymptotic Law). Let L be a fractal string of di-
mension D and of total length

vol1(L) =
∞∑

j=1

lj = ζL(1)

(as defined in (1.19)). Then, for every δ > 0,

Nν(x) = vol1(L)x+O
(
xD+δ

)
, as x→∞. (1.39)

The leading term,

WL(x) = vol1(L)x, (1.40)

is called the Weyl term.

Proof. We write {x} for the fractional part of x. By formula (1.37),

Nν(x) =
∞∑

j=1

ljx−
∞∑

j=1

{ljx} .

Both sums are convergent, and the first sum equals WL(x). Let δ > 0.
By formula (1.21), we have that lj ≤ C2j

−1/(D+δ), for some positive con-
stant C2. It follows that ljx < 1 for j > (C2x)

D+δ. In the second sum, we
estimate {ljx} ≤ 1 for j ≤ (C2x)

D+δ, and {ljx} = ljx for j > (C2x)
D+δ.

Thus
∞∑

j=1

{ljx} ≤ (C2x)
D+δ + x

∫ ∞

(C2x)D+δ

C2j
−1/(D+δ) dj = O

(
xD+δ

)
,

as claimed.

One of the problems we are interested in is the inverse spectral prob-
lem for fractal strings (as considered in [LapMa1–2] in connection with the
Riemann hypothesis); i.e., to derive information about the geometry of an
ordinary fractal string from certain information (for example, asymptotics)
about its spectrum. We study this problem in Chapters 9 and 11, with the
help of explicit formulas for the frequency counting function, which will be
established in Chapters 6 and 10, using the results of Chapter 5. These ex-
plicit formulas express the various functions associated with the geometry
or the spectrum of a fractal string as a sum of oscillatory terms of the form
a constant times xω, where ω runs over the complex dimensions of L. In
particular, in the case of the direct spectral problem where Nν(x) is ex-
pressed in terms of the geometry of L, the spectral counting function Nν(x)
is given by (6.23). We stress that if ω is simple, then the coefficient of xω

in the explicit formula for Nν(x) is a multiple of ζ(ω), the value of the
Riemann zeta function at the complex dimension ω; see formula (6.24b).
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We note here that if the Riemann zeta function had a zero at one
of the complex dimensions of a fractal string, then the expansion of the
counting function of the frequencies (given in (6.23) and (6.24)) would no
longer have the corresponding term. Thus, for example, the Cantor string
would sound similar to a string without the complex dimensions D± 37ip,
if ζ(D ± 37ip) = ζ(log3 2± 74πi/ log 3) happened to vanish. This line of
reasoning—based on the now rigorous notion of complex dimensions and
the use of the explicit formulas—enables us to reformulate (and extend to
many other zeta functions) the characterization of the Riemann hypothesis
obtained in [LapMa1–2]. (See Chapter 9.)
Observe that in particular if ζ(s) were to vanish at all the points D+inp

for n ∈ Z\{0}, the Cantor string would sound the same as a Minkowski
measurable fractal string of the same dimension D = log3 2. (See, in partic-
ular, Theorem 8.15.) In Chapter 11, we will show, however, that this is not
the case for a rather general class of zeta functions, and for any arithmetic
sequence of points D + inp (n ∈ Z). These zeta functions can be thought
of as being associated with fractal sprays, as discussed in the next section.
In Chapter 10, we will study generalized Cantor strings, which can have
any sequence {D + inp}n∈Z (for arbitrary D ∈ (0, 1) and p > 0) as their
complex dimensions. We note that such strings can no longer be realized
geometrically as subsets of Euclidean space.

1.4 Higher-Dimensional Analogue: Fractal Sprays

Fractal sprays were introduced in [LapPo3] (see also [Lap2, §4] announcing
some of the results in [LapPo3]) as a natural higher-dimensional analogue
of fractal strings and as a tool to explore various conjectures about the
spectrum (and the geometry) of drums with fractal boundary10 in Rd. In
the present book, fractal sprays and their generalizations (to be introduced
later on) will continue to be a useful exploratory tool and will enable us
to extend several of our results to zeta functions other than the Riemann
zeta function. (See especially Chapters 9 and 11.)
For example, we will consider the spray of Figure 1.7, obtained by scaling

an open square B of size 1 by the lengths of the Cantor string L = CS.
Thus Ω is a bounded open subset of R2 consisting of one open square of
size 1/3, two open squares of size 1/9, four open squares of size 1/27, and
so on. The spectral zeta function for the Dirichlet Laplacian on the square
is the function

ζB(s) =
∞∑

n1,n2=1

(
n2

1 + n2
2

)−s/2
, (1.41)

10Of course, when d ≥ 2, a drum with fractal boundary in Rd can be much more
complicated than a fractal spray.
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Figure 1.7: A Cantor spray: a fractal spray Ω in the plane, with basic shape B,
the unit square, scaled by the Cantor string.

and hence the spectral zeta function of this spray is given by

ζν(s) = ζCS(s) · ζB(s). (1.42)

A fractal spray Ω in Rd (d ≥ 1) is given by a nonempty bounded open
set B ⊂ Rd (called the basic shape), scaled by a fractal string L. More
precisely, we call a fractal spray of L on B (or with basic shape B) any
bounded open set Ω in Rd which is the disjoint union of open sets Ωj

for j = 1, 2, . . . , where Ωj is congruent to ljB (the homothetic of B by the
ratio lj) for each j. (See [LapPo3, §2].) Note that a fractal string L = {lj}∞j=1
can be viewed as a fractal spray of L with basic shape B = (0, 1), the unit
interval.
Let {λk(B)}∞k=1 be the sequence of nonzero eigenvalues (counted with

multiplicity and written in nondecreasing order) of the positive Laplacian
(with Dirichlet or other suitable boundary conditions) Δ = − sumd

q=1∂
2/∂x2

q

on B. That is,

0 < λ1(B) ≤ λ2(B) ≤ · · · ≤ λk(B) ≤ · · · → ∞, as k →∞.
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Then the (normalized) frequencies of the Laplacian Δ on B are the numbers
fk = fk(B) = π−1

√
λk(B) (for k = 1, 2, 3, . . . ),11 and the spectral zeta

function of B is

ζB(s) :=
∞∑

k=1

(fk(B))
−s = πs

∞∑
k=1

(λk(B))
−s/2

. (1.43)

Traditionally, as in [Se1,Gi], one writes (λk(B))−s instead of (λk(B))−s/2.
We adopt here the convention of [Lap2–3] and of Appendix B. As in Equa-
tion (1.32), a simple calculation (see, e.g., [LapPo3, §3])—relying on the
invariance of the spectrum of the Laplacian under isometries—shows that
the frequencies of the spray (that is, of the Laplacian Δ on Ω) are the
numbers

f = fk(B) · l−1
j , (1.44)

where k, j = 1, 2, 3, . . . . The total multiplicity of the frequency f is given
by the analogue of (1.33) in this more general context:

w
(ν)
f = #

{
(k, j) : f = fk(B) · l−1

j

}
= wf1(B)/f + wf2(B)/f + wf3(B)/f + · · · .

(1.45)

It follows, exactly as in the proof of formula (1.38), that the spectral
zeta function ζν(s) of the fractal spray—defined by (1.35), with w

(ν)
f as

in (1.45)—is given by

ζν(s) = ζL(s) · ζB(s). (1.46)

For example, if B ⊂ Rd is the d-dimensional unit cube (0, 1)d, with its
opposite sides identified (so that Δ is the Laplacian with periodic boundary
conditions on B), then12

ζB(s) = ζd(s) =
∑

(n1,...,nd)∈Zd\{0}

(
n2

1 + · · ·+ n2
d

)−s/2
. (1.47)

Thus ζd(s) is the classical Epstein zeta function, and hence admits a mero-
morphic continuation to all of C, with a single simple pole at s = d (see [Ter,
§1.4, p. 58] or Section A.4 in Appendix A). Note that ζ1(s) = 2ζ(s).
As an example, in light of (1.29), (1.46) and (1.47), for the fractal spray of

the Cantor string CS on the unit square B (as represented in Figure 1.7),

11The spectrum of the Dirichlet Laplacian Δ is always discrete if B is bounded (or more
generally, if B has finite volume); further, 0 is never an eigenvalue. For the Neumann
Laplacian, we assume that B has a locally Lipschitz boundary or more generally, that B
satisfies the extension property, to ensure that the spectrum is discrete.

12Recall that we exclude the eigenvalue 0.
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the corresponding spectral zeta function for the Laplacian with periodic
boundary conditions on each square is given by

ζν(s) =
3−s

1− 2 · 3−s
ζ2 (s) . (1.48)

It is meromorphic in all of C. Further, it has a simple pole at s = 2 and at
each point s = log3 2 + 2πin/ log 3 (n ∈ Z) where ζ2(s) does not vanish.

Later on, we will use generalized fractal sprays to extend several of our
results to number-theoretic zeta functions and many other Dirichlet series.
(See especially Sections 9.3 and 11.2.)

Remark 1.21. The next step towards a theory of complex dimensions
of higher-dimensional fractals would be to include more general drums
with fractal boundary or drums with fractal membrane. For example, the
complex dimensions of the Koch snowflake curve have been calculated
in [LapPe1], based on a detailed analysis of V (ε), the volume of the in-
ner tubular neighborhoods of this curve (see Section 12.3.1). Furthermore,
the beginning of a higher-dimensional theory of the geometric complex di-
mensions of self-similar fractal boundaries (and systems) is developed in the
work [Pe] and [LapPe2–4] (see Section 12.3.2). See also, e.g., [BroCa,Lap1–
4, HeLap2] as well as Sections 12.3 and 12.5 of Chapter 12 for a discussion of
drums with fractal boundaries. The papers [Lap1, 3, FlLeVa,LapPan,Lap-
NeuRnGri,GriLap,LapPe1–2] study from a variety of viewpoints the Koch
snowflake drum (see Figure 12.6), the higher-dimensional drum with frac-
tal boundary that has been studied most extensively so far. See [KiLap1–2,
Ki2,Lap5–6; Lap-vF10, Part 1] and the relevant references therein for infor-
mation on the geometry and the spectrum of drums with fractal membrane.

1.5 Notes

The notion of fractal string was formally introduced in [LapPo1–2], build-
ing in particular on the study of the a-string in [Lap1, Example 5.1 and
Appendix C], and further extensively studied from different points of view
in [Lap2–3, LapMa1–2, LapPo3, HeLap1–2, Lap-vF4–7, 9, Lap10], among
other references.
Since fractal strings—viewed as vibrating objects—are one-dimensional

drums with fractal boundary, their investigation involves a special (but sur-
prisingly fruitful) case of the notion of fractal drum. We refer to [Berr1–2,
BroCa, Lap1–6, LapPo1–3, LapMa1–2, HeLap1–2, FlVa, KiLap1–2, Lap-
vF5, Tep1–2, Lap10] and the many relevant references therein for fur-
ther mathematical and physical motivations for the investigation of fractal
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drums. See also, in particular, Sections 9.1, 12.3, 12.5 and 12.8, along with
Appendix B in the present book for further discussion and references.13

Some of the earlier mathematical works in which the idea of complex di-
mension plays a role, if not defined explicitly, are [LapPo1], [LapPo2, §4.4b],
[LapMa1], [LapMa2, §3.3], [Lap2, Figure 3.1 and §5], as well as [Lap3, §2.1,
§2.2 and p. 150]. See also Remark 9.1, Figure 9.1, and the notes to Chap-
ter 9. The primary motivations of the authors of those papers came from
the investigation of the oscillatory phenomena in the geometry and the
spectrum of fractal drums [Lap3] (including self-similar drums) and, in
particular, of fractal strings, where the connections between direct or in-
verse spectral problems and the Riemann zeta function or the Riemann
hypothesis were first discovered in [LapPo1, 2] or [LapMa1, 2], respectively.
See Remark 12.17 for a sample of references in the physics literature—of

which we have become aware recently and with rather different motiva-
tions, coming from the study of turbulence, lacunarity, biophysics, and
other applications.
The mathematical theory of complex dimensions of fractal strings, as dis-

cussed in this chapter, was first developed in [Lap-vF5] (partly announced
in [Lap-vF1–4]) and was then pursued in [Lap-vF6, 7, 9]. It is, of course,
broadly expanded in this monograph.
Section 1.1: for further information about the notions of Minkowski

dimension and content in a related context, we refer to [BroCa, Lap1–
3, LapPo1–3, LapMa1–2, LapFl, FlVa, Ger, GerSc1–2, Ca1–2, vB, vB-Le,
HuaSl,FlLeVa,LeVa,MolVa,Fa4,vB-Gi,HeLap1–2]. For the notion of Min-
kowski(–Bouligand) dimension—which was extended by Bouligand from
integer to real values of D—see also [Bou,Fed2,KahSa,Man1,MartVu,Tr1–
3; Fa3, Chapter 3]. See [Fa3, Chapters 2 and 3], [Lap1, §2.1 and §3], [Mat,
Chapter 5], [Rog] and [Tr1–2] or [Tr3, Chapters 2 and 3] for a detailed
discussion of the Hausdorff and Minkowski dimensions.
Further arguments for the use of the Minkowski instead of the Hausdorff

dimension are given in [Lap1, Example 5.1, pp. 512–514]; see also [LapPo2].
They exclude similarly another notion of fractal dimension, the packing di-
mension P [Su,Tr2]. This dimension satisfies the inequality H ≤ P ≤ D.
Somewhat paradoxically, as is pointed out in [Lap1, Remark 5.1, p. 514],
the Hausdorff and packing dimensions are ruled out in the context of frac-
tal strings (or drums) precisely because they are good mathematical no-
tions. Indeed, they are both associated with countably additive measures,
which implies that countable sets have zero dimension. By contrast, the
Minkowski content is only finitely subadditive, so that countable sets can
have positive Minkowski dimension, as in the example of the a-string in
Section 6.5.1 (see especially Equation (6.65)).

13Note that a fractal string is a drum with fractal boundary, and its boundary is a
drum with fractal membrane; see, e.g., [Lap3, 6, 10] and the recent papers [Tep1, 2].
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The Cantor string was studied, in particular, in [LapPo1] and [LapPo2,
Example 4.5, pp. 65–67], where it was first shown, among other things, that
it is not Minkowski measurable. However, the techniques developed in this
book enable us to obtain more precise results for this and related Cantor-
type strings; see, e.g., Sections 6.4.1 and 8.4.1, along with Chapter 10.
Theorem 1.10: the fact that the Minkowski dimension coincides with the

abscissa of convergence was first observed by the first author in [Lap2,
Eq. (5.4), p. 169] using a key result of Besicovich and Taylor [BesTa]; see
also [LapPo2, LapMa2].
Section 1.3: we refer to [Da,Edw, In, Ivi,Pat,Ti] for the classical theory

of the Riemann zeta function. The factorization formula (1.38) of Theo-
rem 1.19 was established in [Lap2, Eqs. (5.2) and (5.3), p. 169] and used,
in particular, in [Lap2–3, LapPo1–3, LapMa1–2, HeLap1–2].
See [BiSo, Met, EdmEv], [Maz, §1.5.1], or [Lap1, esp. Chapter 2 and

pp. 510–511], as well as the relevant references therein for more information
on spectral geometry.
Section 1.4: the notion of fractal spray was introduced in [LapPo3]. The

main examples studied, e.g., in [BroCa], [Lap2, §4 and §5.2], [Lap3, §4.4.1b],
[FlVa,Ger,GerSc1–2, LapPo3, LeVa], are special cases of ordinary fractal
sprays.



2
Complex Dimensions of
Self-Similar Fractal Strings

Throughout this book, we use an important class of ordinary fractal strings,
the self-similar fractal strings, to illustrate our theory. These strings are
constructed in the usual way via contraction mappings. In this and the
next chapter, we give a detailed analysis of the structure of the complex
dimensions of such fractal strings.

2.1 Construction of a Self-Similar Fractal String

Given a closed interval I of length L (called the initial interval), we con-
struct a self-similar string L as follows. Let N ≥ 2 and let Φ1,Φ2, . . . ,ΦN

be N contraction similitudes mapping I to I, with respective scaling factors
r1, r2, . . . , rN satisfying

1 > r1 ≥ r2 ≥ . . . ≥ rN > 0. (2.1)

Assume that
N∑

j=1

rj < 1, (2.2)

and that the images Φj(I) of I, for j = 1, . . . , N , do not overlap, except
possibly at the endpoints. (This is the open set condition, see Section 2.1.1.)
In a procedure reminiscent of the construction of the Cantor set, subdi-

vide the interval I into the pieces Φj(I). The remaining pieces in between
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L

r1L g1L r2L g2L r3L r4L

L
32

L
32

L
48

L
48

L
48

L
48

L
48

L
48

...

Figure 2.1: The construction of a self-similar string with four scaling ratios r1 = 1
4
,

r2 = r3 = r4 = 1
6
, and two gaps g1 = g2 = 1

8
. The lengths of the string are

indicated by the bold lines.

are the first intervals1 of the string, of length lk = gkL, for k = 1, . . . , K,
where the scaling factors g1, . . . , gK of the gaps satisfy

1 > g1 ≥ . . . ≥ gK > 0 (2.3)

and
N∑

j=1

rj +
K∑

k=1

gk = 1. (2.4)

Repeat this process with the remaining intervals Φj(I), for j = 1, . . . , N . As
a result, we obtain a self-similar fractal string L = l1, l2, l3, . . . , consisting
of intervals of length ln given by

rν1rν2 . . . rνqgkL, (2.5)

for k = 1, . . . , K and all choices of q ∈ N and ν1, . . . , νq ∈ {1, . . . , N}; see
Figure 2.1. The lengths are of the form (with e1, . . . , eN ∈ N)

re1
1 · · · reN

N gkL.

The number of ways to write re1
1 . . . reN

N as a product rν1 . . . rνq
of the

scaling ratios (where q = e1 + · · · + eN and for each μ = 1, . . . , N , the
exponent eμ equals the number of j such that νj = μ), is given by the
multinomial coefficient(

q

e1 . . . eN

)
=

q!
e1! · · · eN !

(with q =
∑N

j=1 ej). (2.6)

1It would be better to call them the first strings of the fractal harp, see Section 1.1
and Figure 1.1.
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Therefore the total multiplicity of a length l is the sum of all such multi-
nomial coefficients for every choice of k = 1, . . . , K and e1, . . . , eN which
satisfies the equation re1

1 . . . reN

N gkL = l. In other words, we have

wl =
K∑

k=1

∑
(e1,...,eN )∈Ek

(∑N
j=1 ej

e1 . . . eN

)
, (2.7)

where Ek = {(e1, . . . , eN ) : re1
1 · · · reN

N gkL = l}.
Remark 2.1. Note that we allow that the gaps and the images of I do
not alternate. In particular, there may be more gaps than scaling factors.

Remark 2.2. Throughout this book, we will always assume that a self-
similar string is nontrivial; that is, we exclude the trivial case when L is
composed of a single interval. This will permit us to avoid having to consider
separately this obvious exception to some of our theorems.

2.1.1 Relation with Self-Similar Sets

It may be helpful for the reader to recall that a self-similar set in Rd is the
union of N scaled copies of itself. More precisely, a compact subset F of Rd

is said to be a self-similar set if there exist N similarity transformations Φj

(j = 1, . . . , N , N ≥ 2) of Rd with scaling ratios rj ∈ (0, 1) such that

F =
N⋃

j=1

Φj(F ).

(See, for example, [Mor,Hut] or [Fa3, Sections 9.1 and 9.2].) As explained
below, the boundary of a self-similar string is a self-similar set in R. Con-
versely, every self-similar set in R satisfying the open set condition can
essentially be obtained in this way.
Let N be an integer ≥ 2. For j = 1, . . . , N , let

Φj : [0, 1]→ [0, 1]

be a contraction similitude of R with scaling ratio rj (0 < rj < 1); i.e.,

|Φj(x)− Φj(y)| = rj |x− y|, for all x, y.

We assume that the system of maps

{Φj : j = 1, . . . , N}

satisfies the open set condition; i.e., there exists a nonempty open subset U
of [0, 1], such that

Φj(U) ∩ Φj′(U) = ∅ for all j �= j′, j, j′ ∈ {1, . . . , N},
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and Φj(U) ⊂ U for all j ∈ {1, . . . , N}. (See, for example, [Hut] or [Fa3,
p. 118].) Then the associated self-similar set F is the unique nonempty
compact subset of [0, 1] satisfying the fixed point equation

F =
N⋃

j=1

Φj(F ). (2.8)

The existence and uniqueness of the fixed point F in (2.8) follows from the
Contraction Mapping Principle, applied to the complete metric space of
nonempty compact subsets of [0, 1], equipped with the Hausdorff metric.
It is well known that F can also be obtained as the limit of repeated
applications of the maps Φj . (We assume that F is not a single interval.)
More precisely,

F =
∞⋂

n=0

⋃
J∈Jn

ΦJ([0, 1]), (2.9)

where for each integer2 n ≥ 0,
Jn = {1, . . . , N}n

denotes the set of all finite sequences of length n in the symbols 1, . . . , N ,
and for J = (j1, . . . , jn) ∈ Jn,

ΦJ := Φjn ◦ · · · ◦ Φj2 ◦ Φj1 .

Let the open intervals Gk (k = 1, . . . , K) be the connected components
of (0, 1)\⋃N

j=1 Φj([0, 1]) (we exclude the case K = 0 or N = 1 in order to
avoid the trivial situation when F is an interval). Then

[0, 1] =
N⋃

j=1

Φj([0, 1]) ∪
K⋃

k=1

Gk.

(See Figure 2.2.) Without loss of generality, we may assume that the com-
pact set F spans the interval [0, 1], so that minF = 0 and maxF = 1.
Also, we may assume that the closed intervals Φj([0, 1]) do not intersect,
except possibly at their endpoints (which means that the open set condi-
tion is satisfied with U = (0, 1)). Thus 0 is the left endpoint of one of the
intervals Φj([0, 1]) and 1 is the right endpoint of one of them.
The length of the open interval Gk (k = 1, . . . , K) is denoted by

gk = vol1(Gk)

and called a gap.3 Clearly, the intervals Φj([0, 1]) (j = 1, . . . , N) have
length rj . Note that by construction, the identity (2.4) is satisfied.

2By convention, J0 = {∅} consists of the empty sequence and Φ∅ is the identity map.
3In [Fra2], these intervals are called the initial gaps.
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0 1

Φ1([0, 1])

r1

Φ2([0, 1])

r2

G1

g1

Φ3([0, 1])

r3

G2

g2

Φ4([0, 1])

r4

G3

g3

Figure 2.2: The first iteration in the recursive construction of a self-similar set
F with scaling ratios r1, . . . , r4 and initial gaps Gk of length gk (k = 1, . . . , 3).
Here, N = 4, K = 3, and min F = 0, max F = 1.

Much as in the recursive construction of the standard (middle third)
Cantor set,4 we see that each iteration of the system of maps gives rise to
a new collection of open intervals (the deleted intervals)

GJk = ΦJ (Gk) ,

with n ≥ 0, J = (j1, . . . , jn) ∈ {1, . . . , N}n and k ∈ {1, . . . , K}, of length

lJk = gk

n∏
ν=1

rjν
.

(See Equation (2.9) above.) Then the self-similar string L is defined as the
sequence {lJk}J,k, written in nonincreasing order.
In our terminology, the fractal string L is a self-similar string with scaling

ratios r1, . . . , rN and gaps g1, . . . , gK . It is called the self-similar string
associated with the self-similar set F . Note that F is the boundary of the
open set Ω defining L in the above construction: ∂Ω = F , where

Ω = [0, 1]\F

is the disjoint union of the deleted intervals. Conversely, it is clear from
the above discussion that every self-similar string L of total length L = 1
determines a self-similar set F ⊂ [0, 1] (with minF = 0 and maxF = 1)
satisfying the open set condition (with the open set U = (0, 1)) and with
boundary equal to L.
In summary, the class of self-similar strings L with (possibly) multiple

gaps essentially corresponds (via the correspondence L = Ω↔ F = ∂Ω) to
the class of self-similar sets F of R satisfying the open set condition.
In closing, we note that the special (but prototypical) case of a self-

similar string with a single gap (i.e., K = 1), discussed in Section 2.2.1, is
the one studied in [Lap-vF5, Chapter 2].

4For the Cantor set, N = 2, K = 1, and r1 = r2 = g1 = 1/3; see Section 2.3.1 below.
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2.2 The Geometric Zeta Function
of a Self-Similar String

In Section 2.1, we have explained the construction of a self-similar string
with scaling ratios r1, . . . , rN and gaps scaled by g1, . . . , gK , satisfying the
conditions (2.1)–(2.4).

Remark 2.3. The gaps of L have lengths g1L, . . . , gKL. By abuse of lan-
guage, we will usually refer to the quantities g1, . . . , gK as the gaps of the
self-similar string L.
Theorem 2.4. Let L be a self-similar string as in Section 2.1. Then the
geometric zeta function of this string has a meromorphic continuation to
the whole complex plane, given by

ζL(s) =
Ls

∑K
k=1 gs

k

1−∑N
j=1 rs

j

, for s ∈ C. (2.10)

Here, L = ζL(1) is the total length of L, which is also the length of I, the
initial interval from which L is constructed.

Proof. Indeed, we have

N∑
ν1=1

· · ·
N∑

νq=1

(
rν1 · · · rνq

)s =
N∑

ν1=1

· · ·
N∑

νq=1

rs
ν1
· · · rs

νq
=

(
N∑

j=1

rs
j

)q

.

Hence, in view of (1.18) and the discussion surrounding (2.5), we deduce
that

ζL(s) =
K∑

k=1

∞∑
q=0

(
N∑

ν1=1

. . .

N∑
νq=1

(
rν1 · · · rνqgkL

)s

)

=
K∑

k=1

(gkL)s
∞∑

q=0

(
N∑

j=1

rs
j

)q

.

Let D be the unique real solution of
∑N

j=1 rs
j = 1 (see also the first part

of the proof of Theorem 2.17, in particular Equations (2.46) and (2.47)
below). For Re s > D, we have

∣∣∑N
j=1 rs

j

∣∣ < 1, so that the above sum
converges (hence D is the dimension of L). We obtain that

ζL(s) =
Ls

∑K
k=1 gs

k

1−∑N
j=1 rs

j

.

This computation is valid for Re s > D, but now, by the Principle of
Analytic Continuation, the meromorphic continuation of ζL to all of C
exists and is given by the last formula, as desired.
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Throughout this chapter, we choose W , the window of L (as defined
in Section 1.2.1), to be the entire complex plane, so that W = C and
DL = DL(C) can be called (without any ambiguity) the set of complex
dimensions of L (as in Definition 1.12(ii)). This choice of W is justified by
Theorem 2.4.
Note that in view of Remark 1.15, the nonreal complex dimensions of a

self-similar string come in complex conjugate pairs ω, ω. This is also clear
in view of the following corollary.

Corollary 2.5. Let L be a self-similar string constructed with a single gap
size g1 = g2 = · · · = gK . Then the set of complex dimensions DL of L is
the set of solutions of the equation

N∑
j=1

rω
j = 1, ω ∈ C, (2.11)

with the same multiplicity.
In general, when the gaps have different sizes, DL is contained in the set

of solutions of Equation (2.11), and each complex dimension has a multi-
plicity of at most that of the corresponding solution.

Equation (2.11) could be called the complexified Moran equation. As is
discussed in Remark 2.22 below, the usual Moran equation is given by (2.11)
restricted to real values of s. It has a unique real solution, necessarily equal
to the Minkowski dimension of L.
Remark 2.6. The length L of the initial interval I of a self-similar string
may be normalized so that the first length of L equals 1 by choosing

L = g−1
1 , (2.12)

where g1 is the largest gap (see (2.3)). This assures that lims→+∞ ζL(s)
equals the multiplicity of the first length, which is also the multiplicity of
the largest gap. It does not affect the complex dimensions of the string.

Remark 2.7. For a self-similar string, the total length of L is also the
length L of the initial interval I in the construction given in Section 2.1.
Further, the complement of L in I is the boundary ∂L, and ∂L has length 0,
since the Hausdorff dimension of ∂L is less than one. Note that in the above
construction, the Hausdorff dimension and the Minkowski dimension of ∂L
coincide. This is no longer the case if we were to represent L as a sequence
of intervals of lengths l1, l2, . . . , so that ∂L is a sequence of points with a
single limit point. In that case, only the Minkowski dimension of this set
of points gives the dimension of the fractal string. See also Remark 1.4.

Remark 2.8. Note that the zeros of the geometric zeta function ζL(s)
given by Equation (2.10) correspond to the solutions of the Dirichlet poly-
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L

r1L r2L r3L r4L

...

l1 = g1L

1
16L 1

24L 1
24L 1

24L

Figure 2.3: The construction of a self-similar string with N = 4 and similitudes
with scaling ratios r1 = 1

4
, r2 = r3 = r4 = 1

6
and a single gap g1 = 1

4
. The

first group of scaled intervals each have size rjL = vol1 (Φj(I)), and the first five
lengths of the string are l1 = 1

4
L, l2 = 1

16
L, l3 = 1

24
L, l4 = 1

24
L, and l5 = 1

24
L.

nomial equation

K∑
k=1

gs
k = 0, s ∈ C, (2.13)

to be studied in Chapter 3. In Chapter 7, we apply our explicit formulas
of Chapter 5 in a dynamical context. The resulting expressions will involve
both the zeros and poles of ζL.

2.2.1 Self-Similar Strings with a Single Gap

In the case where there is only one gap (see Figure 2.3) the situation is
somewhat simpler.

Theorem 2.9. Let L be a self-similar string, constructed as above with
scaling ratios r1, . . . , rN , and a single gap g1. Then the geometric zeta
function of this string has a meromorphic continuation to the whole complex
plane, given by

ζL(s) =
(g1L)

s

1−∑N
j=1 rs

j

, for s ∈ C. (2.14)

Here, L is the total length of L (as defined by (1.19)), which is also the
length of I, the initial interval. The first length of L is l1 = g1L, of
multiplicity one.

In particular, Corollary 2.5 applies to this case. Thus, the complex dimen-
sions of a self-similar string with a single gap are given by Equation (2.11),
with the same multiplicity.
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Note that if L is normalized as in Remark 2.6, then its first length equals 1
and therefore

ζL(s) =
1

1−∑N
j=1 rs

j

, for s ∈ C. (2.15)

For notational simplicity, we will often normalize our examples in this way
(see, for instance, Section 2.3).

Remark 2.10. In Section 7.2, we will find an Euler product for ζL, coming
from a dynamical system associated with the string, also called a self-similar
flow. We only define this dynamical system in the case of a single gap,
but it would be very interesting to have a general definition. The lengths
correspond to the periodic orbits of this dynamical system. See also [Lap-
vF6, Remark 2.15].

Remark 2.11. An interesting new feature of self-similar strings with mul-
tiple gaps is that in general (i.e., when K ≥ 2), the geometric zeta function
may have zeros as well as poles, and that in some cases, certain cancella-
tions may occur. (See Remark 2.8 above and Section 2.3.3 below.) Further-
more, in [HamLap], Ben Hambly and the first author have considered an
even broader extension to random recursive constructions (in R), including
random self-similar strings. See Section 12.4.1.

2.3 Examples of Complex Dimensions
of Self-Similar Strings

In each of these examples, the given self-similar string has a single gap, as
in Section 2.2.1, and we normalize it so that its first length is 1, as was
explained in Remark 2.6.

2.3.1 The Cantor String

We take two equal scaling factors r1 = r2 = 1/3 and one gap g1 = 1/3.
The self-similar string CS with total length 3 and these scaling factors is
the Cantor string.5 It consists of lengths 3−n with multiplicity 2n, n ≥ 0.
The geometric zeta function of this string is

ζCS(s) =
1

1− 2 · 3−s
. (2.16)

The complex dimensions are found by solving the equation

2 · 3−ω = 1 (ω ∈ C). (2.17)

5It differs from the Cantor string discussed in Chapter 1 in the normalization of the
first length. Alternatively, one could say that we have used another unit to measure the
lengths. The initial interval of the Cantor string introduced in Section 1.1.2 has length 1.
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0 1D
◦

10

p ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

Figure 2.4: The complex dimensions of the Cantor string. D = log3 2 and p =
2π/ log 3.
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0 1D
◦

10
p

1
2p

◦

◦

◦

◦

◦

◦

−D

◦

◦

◦

◦

◦

◦

Figure 2.5: The complex dimensions of the Fibonacci string. D = log2 φ and p =
2π/ log 2.

We find

DCS = {D + inp : n ∈ Z}, (2.18)

with D = log3 2 and p = 2π/ log 3. (See Figure 2.4.) All poles are simple.
Further, the residue at each pole is 1/ log 3.

Remark 2.12. This example will be studied in much more detail and
extended to generalized Cantor strings in Chapter 10. See also Chapter 1,
Sections 6.4.1 and 8.4.1, along with Example 8.22 below.

2.3.2 The Fibonacci String

Next we consider a self-similar string with two lines of complex dimensions.
The Fibonacci string is the string Fib with total length 4 and scaling factors
r1 = 1/2, r2 = 1/4 and a gap g1 = 1/4. Its lengths are

1,
1
2
,
1
4
,
1
8
, . . . ,

1
2n

, . . . ,
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M∗

M∗
11

2
1
4

1
8

1
16

εD−1(VFib(ε) + 2ε)

21−Df1

(
log2(2ε)−1

)
Figure 2.6: The functions 21−Df1

(
log2(2ε)−1

)
and εD−1(VFib(ε)+2ε), additively.

with multiplicity respectively

1, 1, 2, 3, . . . , Fn+1, . . . ,

the Fibonacci numbers. Recall that these numbers are defined by the fol-
lowing recursive formula:

Fn+1 = Fn + Fn−1, and F0 = 0, F1 = 1. (2.19)

The geometric zeta function of the Fibonacci string is given by

ζFib(s) =
1

1− 2−s − 4−s
. (2.20)

The complex dimensions are found by solving the quadratic equation

(2−ω)2 + 2−ω = 1 (ω ∈ C). (2.21)

We find 2−ω =
(
−1 +

√
5
)
/2 = φ−1 and 2−ω = −φ, where

φ =
1 +

√
5

2
(2.22)

is the golden ratio. Hence

DFib = {D + inp : n ∈ Z} ∪ {−D + i(n+ 1/2)p : n ∈ Z}, (2.23)

with D = log2 φ and p = 2π/ log 2. (See Figure 2.5.)6 Again, all the
poles are simple. Further, for all n ∈ Z, the residue at the poles D + inp
equals φ+2

5 log 2 and the residue at −D + i(n+ 1/2)p equals 3−φ
5 log 2 .

The volume VFib(ε) of the tubular neighborhood of the Fibonacci string
can be computed directly, as we did in Section 1.1.2 for the Cantor string. It

6By abuse of language, we may say that the Fibonacci string has two lines of complex
dimensions (by which we mean discrete lines).
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M∗

M∗
11

2
1
4

1
8

εD−1(VFib(ε) + 2ε)

21−Df1

(
log2(2ε)−1

)

Figure 2.7: The functions 21−Df1

(
log2(2ε)−1

)
and εD−1(VFib(ε) + 2ε), multipli-

catively.

is well known, and it follows by solving the linear recurrence relation (2.19),
that

Fn =
φn − (1− φ)n√

5
. (2.24)

By (1.9), we have

VFib(ε) = 2ε
∑

2−n≥2ε

Fn+1 +
∑

2−n<2ε

Fn+12−n,

provided ε < 1 (for 1/2 < ε < 1, the first sum is empty). By formula (2.24),
both sums are geometric. We write x = log2(2ε)−1, so that x increases by
one unit if ε is halved in value. Evaluating the above sums, we find that,
for ε < 1,

VFib(ε) = (2ε)1−Df1(x)− 2ε+ (2ε)1+Df2(x),

where x = log2(2ε)−1 and

f1(x) :=
1√
5

(
φ3φ−{x} + φ4(φ/2)−{x}

)
,

f2(x) :=
(−1)[x]

√
5

(
φ−3φ{x} − φ−4(2φ){x}

)
.

The functions f1 and f2 are periodic and continuous. See Figures 2.6
and 2.7.
Computing the Fourier series of the functions f1 and f2 by using (1.13),

we find the explicit formula

VFib(ε) =
φ√
5 log 2

∞∑
k=−∞

(2ε)1−D−ikp

(D + ikp)(1−D − ikp)
− 2ε

+
φ− 1√
5 log 2

∞∑
k=−∞

(2ε)1+D−ip/2−ikp

(−D + ip/2 + ikp)(1 +D − ip/2− ikp)
,

(2.25)
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L = 3

r1 = 1
9 r2 = 1

9 r3 = 1
9

r4 r5

...
...

...

g2 = 1
9 g1 = 1

3

L
g3 = 1

9
g4

Figure 2.8: The construction of the modified Cantor string, with five scaling ratios
r1 = r2 = r3 = 1

9
, r4 = r5 = 1

27
, and four gaps g1 = g3 = 1

9
, g2 = 1

3
, g4 = 1

27
.

for ε < 1, where, as earlier, D = log2 φ and p = 2π/ log 2.
In Section 8.4.2, Theorem 8.25 and Corollary 8.27, we will derive the

counterpart of Equation (2.25) for general lattice strings, by using the
pointwise tube formula without error term of Section 8.1.1, given in the
second part of Theorem 8.7. We note that the result (2.25) of the above
direct computation of V (ε) is in agreement with this result. See especially
Example 8.32.

2.3.3 The Modified Cantor and Fibonacci Strings

The string with five scaling ratios r1 = r2 = r3 = 1/9, r4 = r5 = 1/27 and
four gaps g1 = 1/3, g2 = g3 = 1/9, g4 = 1/27 in an interval of length 3 (see
Figure 2.8) has for geometric zeta function

ζL(s) = 3s 3
−s + 2 · 3−2s + 3−3s

1− 3 · 3−2s − 2 · 3−3s
. (2.26)

The denominator factors as 1−3x2−2x3 = (1−2x)(1+x)2, with x = 3−s,
and the numerator as x(1 + x)2. Hence the zeta function simplifies to the
geometric zeta function (2.16) of the Cantor string, with two scaling ratios
r1 = r2 = 1/3 and one gap g1 = 1/3, in an interval of length 3. Thus
the sequence of its lengths coincides with the sequence of lengths of the
Cantor string, as defined in Section 2.3.1. The poles (of (2.26) or (2.16))
are simple, located at D+ ikp (k ∈ Z), with D = log3 2 and p = 2π/ log 3.
The residue at each pole is equal to 1/ log 3.

Remark 2.13. The initiator of a self-similar fractal string is not unique
since one can always find a Dirichlet polynomial Ls(gs

1 + · · · + gs
K) with

positive coefficients such that the product of this Dirichlet polynomial by
the denominator of ζL is again of the form 1−rs

1−· · ·−rs
N . Indeed, repeated

application of the identity
1

1− rs
1 − · · · − rs

N

=
1 + rs

1 + · · ·+ rs
N

1− (rs
1 + · · ·+ rs

N )2

shows that every fractal string has infinitely many initiators.
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The following example gives an alternative initiator for the Fibonacci
string. Let r1 = r2 = g1 = 1/4, r3 = g2 = 1/8 in an interval of length 4.
This initiator generates a self-similar string with geometric zeta function

ζL(s) = 22s 2−2s + 2−3s

1− 2 · 2−2s − 2−3s
=

1
1− 2−s − 2−2s

.

Hence the sequence of lengths of this string coincides with that of the
Fibonacci string of Section 2.3.2.

2.3.4 A String with Multiple Poles

Let L be the self-similar string with scaling factors r1 = r2 = r3 = 1/9,
r4 = r5 = 1/27, one gap g1 = 16/27 and with total length L = 27

16 (so that
its first length is 1). Then the geometric zeta function of L is given by

ζL(s) =
1

1− 3 · 9−s − 2 · 27−s
. (2.27)

The complex dimensions are found by solving the cubic equation

2z3 + 3z2 = 1, z = 3−ω (with z, ω ∈ C). (2.28)

This factors as (2z−1)(z+1)2 = 0. Thus we see that there is one sequence
of simple poles ω = D + inp (D = log3 2 and p = 2π/ log 3, n ∈ Z), each
with residue 4

9 log 3 , corresponding to the solution z = 1/2, and another
sequence of double poles ω = 1

2 ip + inp (n ∈ Z) corresponding to the
double solution z = −1. (See Figure 2.9.) The Laurent series at a double
pole is

1
3(log 3)2

(
s− 1

2 ip− inp
)−2 +

5
9 log 3

(
s− 1

2 ip− inp
)−1 +O(1),

as s → 1
2 ip+ inp.

2.3.5 Two Nonlattice Examples : the Two-Three String
and the Golden String

The above examples are all self-similar lattice strings, as will be defined in
Section 2.4. The reader may get the mistaken impression that in general it
is easy to find the complex dimensions of a self-similar string. However, in
the nonlattice case, in the sense of Definition 2.14 below, it is practically
impossible to obtain complete information about the complex dimensions.
Nevertheless, in Sections 2.5–2.6 and Chapter 3 (see Theorem 2.17 below),
we obtain a large amount of information about the location and the density
of the complex dimensions of a nonlattice string.
We now give our first explicit example of a nonlattice string, which may

be called the Two-Three string . (See Remark 2.16 and Section 3.1.1 for
some further information.) We take two scaling factors r1 = 1/2, r2 = 1/3.
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Figure 2.9: The complex dimensions of a string with multiple poles. D = log3 2
and p = 2π/ log 3. Here, the symbol ◦2 denotes a multiple pole of order two.
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Figure 2.10: The complex dimensions of the nonlattice string with scaling ratios
r1 = 1/2, r2 = 1/3 and one gap g1 = 1/6.
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The self-similar string L with total length 6, a single gap g1 = 1/6 (so that L
is normalized as in Remark 2.6) and these scaling factors is nonlattice. It
consists of lengths 2−m3−n with multiplicity the binomial coefficient

(
m+n

m

)
for m, n = 0, 1, . . . (see Section 2.1). The geometric zeta function of this
string is

ζL(s) =
1

1− 2−s − 3−s
. (2.29)

The complex dimensions are found by solving the transcendental equation

2−ω + 3−ω = 1 (ω ∈ C). (2.30)

However, we cannot solve this equation exactly. We cannot even find the
exact value of the dimension D of this string; i.e., the precise value of
the unique real solution of Equation (2.30). But it can be verified that all
complex dimensions have real part ≥ −1 = Dl (see Theorem 2.17), and that
D ≈ .78788 . . . . With the help of a computer (and Theorems 3.14 and 3.18
of the next chapter), we have sketched in Figure 2.10 an approximate plot
of the set of complex dimensions D = DL(C). See Section 3.8 for some
information about these computations.

The Golden String

Next, we consider the nonlattice string GS with a single gap and scaling
factors r1 = 2−1 and r2 = 2−φ, where φ is the golden ratio given by
formula (2.22). We call this string the golden string . As usual, we normalize
it so that the first length equals 1, by choosing the total length to be

L =
1

1− 2−1 − 2−φ
.

Its geometric zeta function is

ζGS(s) =
1

1− 2−s − 2−φs
, (2.31)

and its complex dimensions are the solutions of the transcendental equation

2−ω + 2−φω = 1 (ω ∈ C). (2.32)

A diagram of the complex dimensions of GS is given in Figure 2.11.
We have not obtained it by directly solving (2.32) numerically. Instead,
we have obtained it by applying Theorems 3.14 and 3.18 of Chapter 3,
in which the complex dimensions of a nonlattice string are approximated
by those of a lattice string with a large oscillatory period: we chose the
approximation φ ≈ 987/610 to approximate L by the lattice string with
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Figure 2.11: The complex dimensions of the golden string (the nonlattice string
with scaling ratios r1 = 2−1 and r2 = 2−φ).

scaling factors r1 = r610, r2 = r987, where r = 2−1/610, and hence with
multiplicative generator 2−1/610.
We note that the theory of Chapter 3, in particular Lemma 3.29, provides

a concrete method for obtaining more and more accurate approximations
of D = DGS(C). In particular, the dimension D of the golden string is
approximately equal to D = .77921 . . . . See also Section 3.8.
Our numerical investigations—and the theoretical information contained

in Lemma 3.29 and Theorem 3.18—indicate that the complex dimensions
of the golden string have a very interesting and beautiful structure; see
Figure 2.12 and also Figure 3.6 to see the development of the quasiperiodic
pattern. In Chapter 3, we make a detailed study of the complex dimensions
of nonlattice strings.

2.4 The Lattice and Nonlattice Case

There is an important dichotomy regarding the scaling ratios r1, . . . , rN

with which a self-similar string is constructed. Indeed, recall that an ad-
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Figure 2.12: The quasiperiodic behavior of the complex dimensions of the golden
string.
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ditive subgroup of the real numbers is either dense in R or else discrete.
In the latter case, if the group is not trivial, there exists a number w > 0,
called the additive generator , such that the subgroup is equal to wZ.
We now apply this basic fact to the additive group

A =
N∑

j=1

(log rj)Z,

generated by the logarithms log rj (j = 1, . . . , N) of the scaling factors.
Alternatively, in light of the isomorphism x �→ ex between the additive
group (R,+) and the multiplicative group (R∗

+, ·), we formulate the next
definition in terms of the multiplicative subgroup

G =
N∏

j=1

rZ
j (2.33)

of R∗
+, the positive real line.

Definition 2.14. The case when G is dense in R∗
+ is called the nonlattice

case. We then say that L is a nonlattice string.
The case when G is not dense (and hence discrete) in R∗

+ is called the
lattice case. We then say that L is a lattice string. In this situation there
exist a unique real number r, 0 < r < 1, called the multiplicative generator
of the string, and positive integers k1, . . . , kN without common divisor, such
that 1 ≤ k1 ≤ · · · ≤ kN and

rj = rkj , (2.34)

for j = 1, . . . , N . The positive number

p =
2π

log r−1
(2.35)

is called the oscillatory period of the lattice string L.
We note that r is the generator of the multiplicative group

∏N
j=1 rZ

j such
that r < 1. Similarly, by taking logarithms, we see that log r−1 is the
positive generator of the additive group

∑N
j=1(log rj)Z. Thus w = log r−1,

in the above notation.

Remark 2.15. The nonlattice case is the generic case, in the sense that
if one randomly picks at least two numbers r1, . . . , rN ∈ (0, 1), then, with
probability 1, they will generate a nonlattice string. A key objective of the
rest of this chapter and the next chapter is to demonstrate the relationship
between lattice and nonlattice equations as well as to understand the qual-
itative and quantitative differences between various nonlattice equations in
terms of the Diophantine properties of their scaling ratios (or weights). In
Section 3.6, we apply our results to the case of the complex dimensions of
a nonlattice string.
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Remark 2.16. For Dirichlet polynomials, to be introduced in the next
chapter, we refine the definition of the nonlattice case by distinguishing the
generic nonlattice case. See Definition 3.1 of Section 3.1. The two nonlattice
strings discussed in Section 2.3.5 are generic nonlattice.

2.5 The Structure of the Complex Dimensions

The following key theorem summarizes many of the results that we obtain
about the complex dimensions of self-similar strings. It provides, in partic-
ular, a useful criterion for distinguishing between a lattice and a nonlattice
string, by looking at the right-most elements in its set of complex dimen-
sionsD. It also gives the basic structure ofD in the lattice case. We establish
most of the facts stated in Theorem 2.17 in Chapter 3, where we formu-
late the counterpart, Theorem 3.6, for the more general case of Dirichlet
polynomial equations. The statement regarding Minkowski measurability is
proved in Chapter 8. More precise and additional information can be found
in the latter sections as well as in Theorems 8.23 and 8.36 (along with Re-
mark 8.38, Corollary 8.27 and Theorem 8.25) of Sections 8.4.2 and 8.4.4.

Theorem 2.17. Let L be a self-similar string of dimension D, with scaling
ratios r1, . . . , rN and gaps g1, . . . , gK , as defined in Section 2.1. Then all
the complex dimensions of L lie to the left of or on the line Re s = D :

D = DL(C) ⊂ {s ∈ C : Re s ≤ D} . (2.36)

The value s = D is the only pole of ζL on the real line. (In particular,
Equation (1.27) holds, with D = DL.) Moreover, 0 < D < 1 and D is
equal to the Minkowski dimension of the boundary of the string. The set
of complex dimensions of L is symmetric with respect to the real axis and
is contained in a horizontally bounded strip Dl ≤ Re s ≤ D, for some real
number Dl. It is infinite, with density at most

#(DL ∩ {ω ∈ C : | Imω| ≤ T}) ≤ log r−1
N

π
T +O(1), (2.37)

as T → ∞. Here, the elements of DL are to be counted according to their
multiplicity as poles of ζL. The dimension D is never canceled. If there
are no other cancellations, for example if the gaps are all equal to a single
value, then the density of the complex dimensions is exactly given by the
right-hand side of (2.37).

In the lattice case, the complex dimensions ω are obtained by finding the
complex solutions z of the polynomial equation (of degree kN )

N∑
j=1

zkj = 1, with rω = z. (2.38)
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In that case, the poles lie periodically on finitely many vertical lines, and
on each line they are separated by the oscillatory period p = 2π/ log r−1 of
the string (see Definition 2.14, Equation (2.35)). In other words, there exist
finitely many poles ω1(= D), ω2, . . . , ωq (with Reωq ≤ · · · ≤ Reω2 < D)
such that

DL = {ωu + inp : n ∈ Z, u = 1, . . . , q}. (2.39)

The multiplicity of the complex dimensions corresponding to one value
of z = rω is the same as that of z. In particular, the poles on the line
above D are all simple. It follows that a lattice string is not Minkowski
measurable: its geometry has oscillations of order D.

Finally, if the gap sizes gjL are also integral powers of the multiplicative
generator r of L, i.e.,7

gjL = rk′
j , where k′

j ∈ Z for j = 1, . . . , K, (2.40)

then ζL(s) is a rational function of rs, and hence is a periodic function
of s with period ip. Furthermore, the residue of ζL(s) at s = D + inp is
independent of n ∈ Z and equal to

res (ζL(s);D + inp) =

∑K
j=1 rk′

jD

log r−1
∑N

j=1 kjrkjD
. (2.41)

Also, for u = 1, . . . , q, the principal part of the Laurent series of ζL(s)
at s = ωu + inp does not depend on n ∈ Z. In general, when (2.40) is not
necessarily assumed, we have

res (ζL(s);D) =

∑K
j=1 (gjL)

D

log r−1
∑N

j=1 kjrkjD
, (2.42)

and moreover, for each u = 1, . . . , q, the residue of ζL(s) at s = ωu + inp
(with n ∈ Z) is given in Remark 2.19 below, provided ωu is simple.

In the nonlattice case, D is simple and is the unique pole of ζL on the
line Re s = D. The residue of ζL(s) at s = D is equal to

res (ζL(s);D) =

∑K
j=1(gjL)D∑N

j=1 rD
j log r−1

j

. (2.43)

Moreover, there is an infinite sequence of simple complex dimensions of L
coming arbitrarily close (from the left) to the line Re s = D. These complex
dimensions are not canceled by zeros of the numerator of ζL.

7This is true, in particular, if L has a single gap and is normalized (i.e., K = 1
and g1L = 1; see Remark 2.6).
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Finally, the complex dimensions of L can be approximated (via an ex-
plicit procedure) by the complex dimensions of a sequence of lattice strings,
with larger and larger oscillatory period. Hence the complex dimensions of
a nonlattice string have a quasiperiodic structure.

Remark 2.18. In Section 8.4.3, Theorem 8.30, we also compute the av-
erage Minkowski content of a lattice string, as given in Definition 8.29.
Moreover, it follows from the fact that a nonlattice string has no nonreal
complex dimensions with real part D that a nonlattice string is Minkowski
measurable: its geometry does not have oscillations of order D. Further, the
Minkowski content and average Minkowski content of a nonlattice string
are given by

M =Mav =
21−D

∑K
j=1 (gjL)

D

D(1−D)
∑N

j=1 rD
j log r−1

j

. (2.44)

Proof of part of Theorem 2.17. The statement about the existence of com-
plex dimensions approaching Re s = D is proved in Theorem 3.23 below,
with a refinement in Theorem 3.25. Also, the statement about Minkow-
ski measurability is most naturally stated in the general context of fractal
strings, and is proved in Chapter 8. (See Theorems 8.36 and 8.23, along with
Remark 8.38, Corollary 8.27 and Theorem 8.25, in Sections 8.4.2 and 8.4.4.)
The other statements—concerning the asymptotic density estimate (2.37)
and the fact that the complex dimensions lie in a horizontally bounded
strip—are most naturally formulated and proved in the more general con-
text of Dirichlet polynomials of Chapter 3 (see Theorem 3.6). A weaker form
of this result is formulated and proven in Section 2.6, using the Nevanlinna
Theory of Appendix C.
We prove the existence and uniqueness of D (on the real line and on

the line Re s = D in the nonlattice case). Recall from Corollary 2.5 that
the complex dimensions of L are given by the complex solutions of Equa-
tion (2.11):

1−
N∑

j=1

rs
j = 0. (2.45)

Consider the Dirichlet polynomial

f(s) = 1−
N∑

j=1

rs
j (2.46)

for real values of s. Because 0 < rj < 1, f is strictly increasing. Since
f(0) = 1 − N < 0 and f(1) = g1 + · · · + gK > 0, there exists a unique
value D strictly between 0 and 1 such that f(D) = 0. This is the only real
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value of s where ζL has a pole. Since
∑K

j=1 gD
j > 0, this pole is not canceled

by a zero of the numerator of ζL.
Consider now a complex number s with real part σ > D. For this number,

|1− f(s)| ≤
N∑

j=1

rσ
j <

N∑
j=1

rD
j = 1. (2.47)

It follows that f(s) cannot vanish, hence all the poles of ζL lie to the left
of or on the line Re s = D.
Suppose there is another pole on the line vertical Re s = D, say at

s = D + it. Without loss of generality, we may assume that t > 0. The
first inequality in (2.47) is an equality if and only if all numbers rs

j have
the same argument (i.e., point in the same direction), and then f(s) itself
vanishes if and only if all the numbers rs

j are real and positive. This means
that rit

j > 0, and hence is equal to 1, for all j = 1, . . . , N . Thus there exist
a positive integer l and positive integers kj without common divisor, such
that

t log r−1
j = 2πkj l (j = 1, . . . , N).

This means that we are in the lattice case. Note that 1 ≤ k1 ≤ . . . ≤ kN

and that s = D + it/l is also a pole of ζL.
In this case, we proceed as follows. Write z = rs, so that rs

j = rkjs = zkj ,
for j = 1, . . . , N . Then, by (2.46), f(s) = 0 is equivalent to

N∑
j=1

zkj = 1. (2.48)

This is a polynomial equation of degree kN . Therefore, it has kN complex
solutions, counted with multiplicity. To every solution z = |z|eiθ (−π <
θ ≤ π) of this equation there corresponds a unique solution

s0 = −
log |z|
log r−1

− iθ

log r−1

with imaginary part −π/ log r−1 ≤ Im s0 < π/ log r−1, and a sequence of
solutions

s = − log |z|
log r−1

− i(θ − 2nπ)
log r−1

= s0 + inp,

with n ∈ Z. If all gap sizes are equal, there is no cancellation from the
numerator of ζL, and these values are all poles of ζL; i.e., complex dimen-
sions of the string. Note that the orders of these poles are all equal, and
coincide with the multiplicity of the corresponding solution z of the alge-
braic equation (2.48). In general, some poles may be canceled by zeros of
the numerator of ζL. (See the examples given in Section 2.3.3 above.) How-
ever, in the lattice case, D itself is never canceled, as was shown above. By
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the methods of Chapter 3 (Diophantine approximation, see Section 3.4),
the sum

∑K
j=1 g

D+inμp
j is close to the nonvanishing value

∑K
j=1 gD

j for a
subsequence {nμ}∞μ=−∞ of the integers, and hence does not vanish itself.
Therefore, only a strict subsequence8 of the poles D+ inp (n ∈ Z) may be
canceled by a zero of the numerator of ζL(s). Hence, L always has infinitely
many complex dimensions on the line Re s = D (of the form D + inμp,
with nμ ∈ Z, nμ → ±∞ as μ→ ±∞).9 Note that a similar argument does
not work in general for the other lines of complex dimensions (through the
complex dimension ωu for u �= 1), since the examples of Section 2.3.3 above
show that an entire line of complex dimensions may be canceled.
SinceD is simple, we find by a direct computation, analogous to that car-

ried out for the Cantor and the Fibonacci strings in Sections 2.3.1 and 2.3.2,

res (ζL(s);D) = lim
s→D

(s−D)
∑K

j=1(gjL)s

1−∑N
j=1 rs

j

=

∑K
j=1(gjL)D∑N

j=1(log r−1
j )rD

j

. (2.49)

If also each gjL is an integral power of r, then ζL(s) is periodic, with
period ip. It follows that for u = 1, . . . , q, the principal part of the Laurent
series of this function at s = ωu + inp does not depend on n ∈ Z. In
particular, the residue at s = D+ inp is equal to the residue at s = D.

The rest of the proof of Theorem 2.17 can be found in several places in
the book: The statement about the density of the poles is proved in Chap-
ter 3 (see Theorem 3.6), where we will also show that the poles of ζL lie
to the right of some vertical line; see Equations (3.8a) and (3.8b), along
with Remark 3.10. In the nonlattice case, the statement about poles of ζL
close to the line Re s = D is proved in Theorem 3.23. Further, that about
the Minkowski measurability is proved in Sections 8.4.2 and 8.4.4, Theo-
rems 8.23 and 8.36. (In the nonlattice case, it was proved by different means
in [Lap3, §4.4] and later on, independently, in [Fa4]; see Remark 8.40.)
The last statement of the nonlattice case of Theorem 2.17—concerning

the approximation of the complex dimensions of nonlattice strings by those
of a sequence of lattice strings—follows from Theorems 3.14 and 3.18 in
Section 3.4. The explicit procedure is provided by the method of proof of
Theorem 3.18 and by Lemma 3.29 or 3.39.

Remark 2.19. In the lattice case, if ωu is a simple pole of ζL(s), then
a computation similar to that leading to formula (2.49) shows that for

8Of course, if L has a single gap (i.e., K = 1), then none of the poles above D (or
more generally, above ωu, for u = 1, . . . , q) can be canceled, since the numerator of ζL(s)
does not have any zeros in that case.

9It follows that a lattice string always has (multiplicatively periodic) oscillations of
order D. In Chapter 8, Theorem 8.23 (along with Corollary 8.27), we deduce from this
fact that a lattice string cannot be Minkowski measurable.
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u = 1, . . . , q,

res (ζL(s);ωu + inp) =

∑K
j=1(gjL)inp+ωu

log r−1
∑N

j=1 kjrkjωu

, for n ∈ Z. (2.50)

If, in addition, gjL is an integral power of r for each j = 1, . . . , K, as in
Equation (2.40), then (gjL)

inp = 1 and so this residue only depends on ωu,
but not on n. More precisely, in that case, (2.50) becomes, for u = 1, . . . , q,

res (ζL(s);ωu + inp) =

∑K
j=1 rk′

jωu

log r−1
∑N

j=1 kjrkjωu

, for n ∈ Z. (2.50′)

In particular, if we set u = 1 (so that ω1 = D), we recover formula (2.41)
of Theorem 2.17.

Remark 2.20. For a general lattice string, the degree kN of the polyno-
mial equation (2.38) can be any positive integer. Indeed, given any integer
k ≥ 1, the lattice string with N = 2 and scaling ratios r1 = r and r2 = rk,
with 0 < r < 1 (and only one gap), gives rise to the algebraic equation of
degree k

zk + z = 1 (2.51)

for the complex dimensions.

The following corollary of Theorem 2.17 will show that every (nontriv-
ial) self-similar string is fractal in the new sense that we will introduce
in Section 12.2. Namely, it has at least one (and hence at least two com-
plex conjugate) nonreal complex dimensions with positive real part. Recall
from Remark 2.2 that we exclude the trivial case when L consists of a single
interval.

Corollary 2.21. Every self-similar string has infinitely many complex di-
mensions with positive real part.

Proof. In the lattice case, this follows from the fact that D always con-
tains the vertical line of complex dimensions D + inp, for n ∈ Z (see
formula (2.39) in Theorem 2.17).
In the nonlattice case, this follows from the fact that D > 0, combined

with the statement about the complex dimensions approaching Re s = D
from the left in the nonlattice part of Theorem 2.17 (which will be estab-
lished and made more precise in Theorem 3.23).

We first comment on some aspects of Corollary 2.21.

Remark 2.22. It is well known that for a self-similar set satisfying the
open set condition—as is the case of the boundary of a self-similar string L
considered here, see Section 2.1.1 above—the Minkowski dimension is the



60 2. Complex Dimensions of Self-Similar Fractal Strings

unique real solution of Equation (2.11). (See, for example, [Fa3, Theo-
rems 9.1 and 9.3, pp. 114 and 118].) In other words, D is equal to the
similarity dimension [Man1], defined by the Moran equation [Mor]

N∑
j=1

rs
j = 1 (s > 0). (2.52)

In our terminology, this is the unique complex dimension of L located on
the real axis. In view of Theorem 2.4 and Corollary 2.5, what is new and
much less easy to establish in the statement of Corollary 2.21 is that Equa-
tion (2.11) (or equivalently, (2.52)) has infinitely many complex solutions
with positive real part.

We briefly comment on some aspects of the lattice vs. nonlattice di-
chotomy exhibited by Theorem 2.17.

Remark 2.23. As was noted earlier, the Cantor string, the Fibonacci
string and the example of a self-similar string with multiple poles given
in Sections 2.3.1, 2.3.2 and 2.3.4, respectively, are all lattice strings. Their
multiplicative generator r is equal to 1/3, 1/2 and 1/3, respectively. Fur-
ther, the algebraic equation (2.38) giving rise to their complex dimensions is
provided, respectively, by (2.17), (2.21) and (2.28), which are, respectively,
of degree 1, 2 and 3.

Remark 2.24. As was mentioned in Section 2.3.5, in the nonlattice case,
the poles of the geometric zeta function ζL = ζL(s) are usually intractable.
For example, we expect that in general all, or almost all, poles are simple
and that there are no, or hardly any, cancellations. This issue is studied in
Chapter 3, but the question is still very open. (As a first step, we show in
Section 3.5.2, Theorem 3.30, that when N = 2—or, more generally, when L
is defined by two distinct scaling ratios with positive multiplicities—all the
complex dimensions are indeed simple.)
As for the real parts of the poles, they could be dense in the critical

interval (i.e., the intersection of the real line with the narrowest strip that
contains all the poles). Or there could be dense pieces (or a discrete set
of points) with pole-free regions in between; i.e., substrips of the critical
strip that contain no poles. Regarding these questions, we formulate two
conjectures in Section 3.7.1; see also Problem 3.4 in Section 3.2.1 and Prob-
lem 3.22 in Section 3.4.2. However, thanks to the algebraic equation (2.38),
we can say a lot more in the lattice case.
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2.6 The Asymptotic Density of the Poles
in the Nonlattice Case

In the lattice case, the algebraic equation (2.38) allows one to gain a com-
plete understanding of the structure of the poles. To study the poles in the
nonlattice case, we may use Nevanlinna theory to obtain information about
the solutions of the equation

∑N
j=1 rs

j = 1. We will prove that the solutions
of this equation lie in a bounded strip, and that they have the same asymp-
totic density as in the lattice case; that is, a linear density given by (2.37).
A stronger version of Theorem 2.25 will be formulated in Theorem 3.6 of
the next chapter.

We apply Theorem C.1 of Appendix C, choosing for a1, . . . , aM the se-
quence of distinct numbers among r1, . . . , rN , and letting m0 = −1 and mj

be the number of integers k in {1, . . . , N} such that rk = aj . In Theo-
rem C.1, rj = e−wj for j = 1, . . . , N and r0 = 1. This theorem applies
since N ≥ 2 ensures that ∑N

j=1r
0
j = N �= 1. We then obtain the following

result:

Theorem 2.25. Let L be a self-similar string with a single gap size. Then
the number of complex dimensions (counted with multiplicity) of the non-
lattice string with scaling ratios r1 ≥ r2 ≥ · · · ≥ rN > 0 in the disc |s| ≤ T
is asymptotically given by

log r−1
N

π
T +O

(√
T
)
, as T → +∞. (2.53)

In general, when the gaps have different sizes, complex dimensions may be
cancelled by zeros of the numerator of ζL, in which case (2.53) provides an
upper bound for the asymptotic density.

In the next chapter, Theorem 3.6, we show by a different method that the
error is actually a bounded function of T . Clearly, that last result is best
possible in the sense that the error is at least 1/2 when one approximates
an integer-valued function by a continuous one.

Remark 2.26. Let L be a self-similar string with scaling ratios r1, . . . , rN .
Then, in view of Corollary 2.5, Theorem 2.25 yields the asymptotic den-
sity (2.37) of the set of complex dimensions DL, as stated in Theorem 2.17.
Moreover, the fact (also stated in Theorem 2.17) that the complex zeros of
the equation 1−∑N

j=1 rs
j (and hence the poles of ζL(s)) lie in a bounded

strip Dl ≤ Re s ≤ D, also follows from Theorem C.1, with the aforemen-
tioned choice of the numbers mj and aj . (Recall that we already know
that DL is contained in the left half-plane {s : Re s ≤ D}.) Observe that
Theorem C.1 implies that Dl ≥ σl, where σl is the real number given
by (C.7),

σl = −
1

wM − wM−1
log

(
2
∑M

j=0

|mj |
|mM |

)
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(recall that wj is defined by rj = e−wj for j = 0, . . . , N , with r0 := 1);
i.e., σl is uniquely determined by Equation (C.6a). Even though, in gen-
eral, σl does not give the optimal choice for Dl, it provides an effective
estimate for Dl. See also Theorem 3.6 of Section 3.3 and Remark 3.10,
where we obtain a better left and right estimate for the critical strip.

2.7 Notes

Section 2.1.1: for the construction of self-similar sets (via possibly nonlin-
ear contractions), see the original articles by Moran [Mor] and Hutchin-
son [Hut]. See also the exposition in [Fa1] and [Fa3, Sections 9.1 and 9.2].
In [Lap-vF4] and [Lap-vF5], only self-similar strings with a single gap

were considered. The present theory of self-similar strings with multiple
gaps was initiated by Mark Frantz in [Fra1, 2]. Following Frantz, we have
extended the results of [Lap-vF2, Chapter 2] to the multiple gap setting in
the papers [Lap-vF7, Section 5] and [Lap-vF9].
The dichotomy lattice vs. nonlattice comes from (probabilistic) renewal

theory [Fel, Chapter XI] and was used in a related context by Lalley
in [Lal1–3]. It was then introduced by the first author in [Lap3, Section 4] in
the present setting of self-similar strings—or, more generally, of self-similar
drums. (In [Fel], the lattice and nonlattice case are called the arithmetic
and nonarithmetic case, respectively.) See also, for example, [Lap3, Sec-
tion 5] and [KiLap1,Lap5–6] for the case of self-similar drums with fractal
membrane (rather than with fractal boundary), [Fa4,LeVa,Gat,HamLap]
and the relevant references therein, as well as [Str1–2] for a different but
related context.
That the Minkowski dimension is the unique real solution to (2.11) is

essentially due to Moran [Mor] in the one-dimensional situation, and in
higher dimensions, it follows from the results of Hutchinson in [Hut], along
with the fact that for a self-similar set satisfying the open set condition, the
Hausdorff and Minkowski dimensions coincide (see, e.g., [Fa3, Theorem 9.3,
p. 118]).
Section 2.3.2: the Fibonacci string (or harp), introduced in [Lap-vF4]

and [Lap-vF5, Section 2.2.2], was recently given a geometric realization
and shown in [CranMH] to be connected with a well-known dynamical
system defined by the baker’s map x �→ 2x (mod 1) of the unit interval.
We expect analogous results to hold for other lattice strings, using some of
the results and methods of Section 4.4.



3
Complex Dimensions of Nonlattice
Self-Similar Strings:
Quasiperiodic Patterns and
Diophantine Approximation

The study of the complex dimensions of nonlattice self-similar strings is
most naturally carried out in the more general setting of Dirichlet polyno-
mials. In this chapter, we study the solutions in s of a Dirichlet polynomial
equation

m1r
s
1 + · · ·+mMrs

M = 1.

In view of Corollary 2.5 of Chapter 2, this includes as a special case the
equation satisfied by the complex dimensions of a self-similar string. We
distinguish two cases. In the lattice case, when the numbers rj are integral
powers of a common base r, rj = rkj for all j ≥ 1, the equation corresponds
to a polynomial equation, which is readily solved numerically by using a
computer. In the nonlattice case, when some ratio log rj/ log r1, j ≥ 2,
is irrational, we obtain valuable information by approximating the (non-
lattice) equation by lattice equations of higher and higher degree. This is
accomplished by means of suitable Diophantine approximation techniques
(Section 3.4). In that section, we show that the set of lattice equations is
dense in the set of all equations, and deduce that the roots of a nonlat-
tice Dirichlet polynomial equation have a quasiperiodic structure, which we
study in detail both theoretically and numerically (see, especially, Theo-
rem 3.18 and the comments following it).
An important consequence is that nonlattice strings are approximated

by lattice strings with larger and larger oscillatory periods, which explains
how the quasiperiodic patterns of the complex dimensions of a nonlattice
string emerges progressively out of the periodic patterns of the complex
dimensions of the approximating lattice strings.
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We also establish a number of specific theorems that enable us to obtain
a very good quantitative and qualitative understanding of the quasiperiodic
patterns of complex dimensions in terms of the arithmetic properties of the
scaling ratios rj (Section 3.5). Further, we analyze the asymptotic density of
the real parts of the complex dimensions and discuss (in Section 3.7) several
open problems motivated by our theoretical and computational work.
In Section 3.6, we obtain concrete dimension-free regions for nonlattice

self-similar strings, and estimate their size in terms of the Diophantine
approximation properties of the scaling ratios. The significance of such es-
timates is that—once combined with the explicit formulas of Chapter 5—
they will enable us to obtain corresponding error terms in the asymptotic
expansions of various geometric, spectral or dynamical quantities assoc-
iated with self-similar strings (see Chapters 6–8 for many applications).
For instance, it will follow that if the logarithms of the scaling ratios rj are
badly approximable by rational numbers, then the resulting dimension-free
regions will be better (i.e., larger) and hence the associated asymptotic
error estimate will be better as well.
The results in this chapter suggest, in particular, that a nonlattice string

possesses a set of complex dimensions with countably many real parts (frac-
tal dimensions) which are dense in a connected interval. We give several
examples and, as was alluded to above, formulate conjectures in Section 3.7.
Apart from being natural generalizations of the equations satisfied by

the complex dimensions of self-similar strings (cf. Corollary 2.5), Dirichlet
polynomial equations arise in several other parts of mathematics (see, for
example, [JorLan1–3]). It is therefore worthwhile to extend the scope of
our investigations to this broader setting.
The main results of this chapter go well beyond those obtained in the cor-

responding part of [Lap-vF5, Chapter 2, especially Section 2.6]. They were
first published in [Lap-vF7], and a preliminary version of that paper was
provided, in lesser generality, as an MSRI preprint. We have, moreover,
included some additional material and several new examples and conse-
quences of our approximation techniques.

3.1 Dirichlet Polynomial Equations

Let 1 > r1 ≥ · · · ≥ rN > 0 be N positive real numbers. The equation

rs
1 + · · ·+ rs

N = 1 (3.1)

has one real root, called D, and many complex roots. More generally,
for M + 1 scaling ratios r0 > r1 > · · · > rM > 0 (which we now assume
to be unequal), and multiplicities mj ∈ C (j = 0, . . . , M), an expression of
the form

m0r
s
0 + · · ·+mMrs

M (3.2)
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is called a Dirichlet polynomial. In this chapter, we study the complex
solutions of the Dirichlet polynomial equation

m0r
s
0 + · · ·+mMrs

M = 0. (3.3)

Without loss of generality, we assume the normalization

r0 = 1 and m0 = −1.

We also define the weights

wj = − log rj (3.4)

for j = 0, . . . , M . Thus w0 = 0 and wj > 0 for j = 1, . . . , M . (In Chapter 7,
these numbers are interpreted as the weights of a self-similar flow associated
with a self-similar string L.) Let

f(s) = 1−
M∑

j=1

mjr
s
j = 1−

M∑
j=1

mje
−wjs. (3.5)

We refer to f as an integral (respectively, positive) Dirichlet polynomial if
all multiplicities mj (j = 1, . . . , M) are integers (respectively, positive).
As was mentioned above, in this chapter we will study in detail the

complex roots of the Dirichlet polynomial equation

f(s) = 0, (3.6)

and later deduce from it suitable dimension-free regions for nonlattice self-
similar strings (Section 3.6), as well as corresponding error estimates for
tube formulas (Chapter 8) or various counting functions (Chapters 6 and 7).

3.1.1 The Generic Nonlattice Case

Recall Definition 2.14 of the lattice and nonlattice case. Thus the lattice
case occurs when f(s) is a polynomial of rs for some r > 0, and the
nonlattice case occurs when f cannot be so written.
We now refine the definition of the nonlattice case. Let

A =
M∑

j=1

wjZ (3.7)

be the group introduced in Section 2.4. Since A is a free abelian group,
another way of phrasing Definition 2.14 is as follows: the lattice case is
when the rank of A equals 1, and the nonlattice case is when this rank
is ≥ 2.
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Definition 3.1. The generic nonlattice case is when the above-defined
group A has rank M, the number of different scaling ratios, and M ≥ 2. In
other words, M ≥ 2 and w1, . . . , wM are rationally independent.

Remark 3.2. This definition is different from the one used in [Lap-vF5].
There, a nonlattice string was called generic nonlattice if the rank of the
group A equals N , where N =

∑M
j=1 mj is the sum of the multiplicities

of rj , in case mj ∈ N∗ for j = 1, . . . , M . The present definition is better
suited to distinguish the different behaviors of the complex dimensions of
nonlattice strings.

3.2 Examples of Dirichlet Polynomial Equations

The examples of self-similar strings discussed in Section 2.3 immediately
provide examples of Dirichlet polynomials, since the denominator of the
geometric zeta function of the corresponding fractal string is a Dirichlet
polynomial. In the examples below, we assume for simplicity that the nu-
merator of the geometric zeta function is trivial; i.e., the corresponding
self-similar string has a single gap. See Section 2.2.1.

Figure 2.4 in Section 2.3 gives a diagram of the complex roots of the
linear lattice equation

1− 2 · 3−s = 0,

and Figure 2.5 is a diagram of the complex roots of the quadratic lattice
equation

1− 2−s − 4−s = 0.

These correspond, respectively, to the complex dimensions of the Cantor
string of Section 2.3.1, and of the Fibonacci string of Section 2.3.2. More-
over, the example of Section 2.3.4 shows that lattice equations can have
multiple roots.

3.2.1 Generic and Nongeneric Nonlattice Equations

The following example is closely related to the 2-3 nonlattice string, dis-
cussed at the beginning of Section 2.3.5. Indeed, it can be regarded as the
nongeneric nonlattice counterpart of this string. Interestingly, there is a
correspondence between the complex roots of this 2-3-4 equation and the
complex roots (or dimensions) of the 2-3 equation, but only for the roots
with positive real part . This can be checked by laying Figure 2.10 over
Figure 3.1.
Let us consider three scaling factors r1 = 1/2, r2 = 1/3 and r3 = 1/4,

each with multiplicity one. Figure 3.1 gives the complex roots of the assoc-
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Figure 3.1: The complex roots of the nongeneric nonlattice equation 2−s +3−s +
4−s = 1. The accumulative density of the real parts of the complex roots. The
dotted lines and the associated markers are explained in Example 3.46.
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iated nongeneric,1 nonlattice Dirichlet polynomial

f(s) = 1− 2−s − 3−s − 4−s.

The dotted lines and the associated markers are explained in Example 3.46
on page 102 in the context of the golden string. (See also Remarks 3.33
and 3.41.) The markers 1, 2, 5, 12, 41, 53, . . . come from the denominators
of the convergents of the continued fraction of log 3/ log 2.
The graph below the diagram of the complex roots in Figure 3.1 gives a

plot of the density of the real parts of these roots. It will be explained in
more detail in Section 3.5, Theorem 3.36 and Remark 3.42.
We observe the interesting phenomenon that the complex roots of the

nongeneric nonlattice equation f(s) = 0 tend to be denser at the boundaries
Re s = 1.082 and Re s = −1.731 of the critical strip, and around Re s = 0.
As mentioned above, comparing the complex roots of Figure 2.10 and Fig-
ure 3.1 more closely, one does indeed observe that each complex root of
Figure 2.10 has its counterpart in Figure 3.1, in the half strip Re s > 0, and
extra complex dimensions are found to the left of Re s = 0 to bring the aver-
age density of the roots to log 4 / 2π instead of log 3 / 2π. This phenomenon
is further illustrated by six stages of approximation to the nongeneric non-
lattice string with scaling ratios r1 = 1/2, r2 = 1/4, r3 = 2−1−

√
2 of Fig-

ure 3.2 and Example 3.3, which should be contrasted with the two generic
nonlattice strings of Example 3.5 below, illustrated in Figures 3.3 and 3.7.
See Theorem 3.6, Equation (3.10).

Example 3.3 (A Nongeneric Nonlattice String). Consider the self-similar
string with scaling ratios r1 = 1/2, r2 = 1/4, r3 = 2−1−

√
2 and one gap

g = 1/4−r3. Figure 3.2 gives six approximations to its complex dimensions
(along with an associated graph of the density of their real parts in the lower
diagrams, to be explained below) corresponding to the successive approxi-
mations to

√
2 (obtained by the continued fraction expansion [HardW], see

also Sections 3.4.1 and 3.5.1 below):
pn

qn
=
3
2
,
7
5
,
17
12

,
41
29

,
99
70

,
239
169

, · · · →
√
2.

For example, the first approximation gives the lattice string with scaling
ratios r̃1 = 2−1, r̃2 = 2−2, r̃3 = 2−5/2, the complex dimensions of which
are the solutions to the equation z2 + z4 + z5 = 1, 2−ω/2 = z. The oscil-
latory period of this lattice approximation is p = 4π/ log 2. One sees the
development of a quasiperiodic pattern: the complex dimensions of the non-
lattice string are well approximated by those of a lattice string for a certain
finite number of periods of the lattice approximation. Then that periodic
pattern gradually disappears, and a new periodic pattern, approximated by
the next lattice approximation, emerges. See Figure 3.7 on page 86 (the left
diagram) for an impression on a larger scale of the quasiperiodic behavior
of the complex dimensions of this nongeneric nonlattice string.

1Note that the rank of the group A is equal to 2 in this case, whereas M = N = 3.
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√
2 ≈ 3/2

p

√
2 ≈ 7/5

p

√
2 ≈ 17/12

p

√
2 ≈ 41/29

p

√
2 ≈ 99/70

p/2

√
2 ≈ 239/169

Figure 3.2: Six stages of approximation of the complex dimensions of the non-
generic nonlattice string of Example 3.3, with r1 = 2−1, r2 = 2−2 and r3 =

2−1−
√

2. Lower parts: The density graph of the real parts of the complex dimen-
sions.
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r1 = 1
2 , r2 = 1

4 ,
r3 = 2−1−

√
2

r1 = 1
2 , r2 = 2−1−

√
2 r1 = 1

4 , r2 = 2−1−
√

2

Figure 3.3: Comparison of the densities of the real parts for the nongeneric non-
lattice string of Example 3.3 (left) and the two generic nonlattice strings of Ex-
ample 3.5 (center and right).

The middle and right diagram in Figure 3.7 give the complex dimensions
of the two generic nonlattice strings of Example 3.5 below. One sees that
the complex dimensions in the left diagram of the nongeneric nonlattice
string of the above example are much denser to the left of vanishing real
part. One sees this even more clearly in Figure 3.3, where the cumulative
density of the real parts is graphed for these three self-similar strings. We
have no explanation for this apparent phase transition, and we formulate
this question as a problem (see Theorem 3.6 and Equation (3.8b) for the
definition of Dl):

Problem 3.4 (Transition in the Nongeneric Nonlattice Case). A non-
generic nonlattice string has a vertical line of transition inside the vertical
strip Dl ≤ Re s ≤ D, to the left of which the density of the real parts is
infinitely higher than to the right. Such a transition does not occur for
generic nonlattice strings.

Thus, for the nongeneric nonlattice string of Example 3.3, this transi-
tion occurs at Re s = 0, as indicated by the corner of the density graph
at this point, and the vertical part of the graph to the left of Re s = 0.
Moreover, from other numerical evidence, it seems that this line of tran-
sition often occurs at Re s = 0. However, it is clear that by replacing the
multiplicity mj of rj by mjr

−a
j (j = 1, . . . , N), we can shift this line to any

position Re s = a.

Another surprising phenomenon is that in the right diagram in Fig-
ure 3.7, and also to a lesser extent in the middle diagram, the complex
roots appear to lie on sinusoidal curves. The quasiperiodicity only partially
explains this pattern. This does not seem to be a general phenomenon, as
the left diagram in Figure 3.7 shows, but we have no explanation for it
when it occurs.

Example 3.5 (Two Generic Nonlattice Strings). We also include in Fig-
ures 3.3 and 3.7 the analogous diagrams for two generic nonlattice strings.
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These are respectively the nonlattice fractal strings with two scaling ra-
tios r1 = 1/2 and r2 = 2−1−

√
2, in the middle diagrams in both figures, and

with r1 = 1/4 and r2 = 2−1−
√

2, in the right diagrams in both figures. Each
of these strings has a single gap of length respectively g1 = 1/2− 2−1−

√
2

and g1 = 3/4− 2−1−
√

2. Note that for the second string, the one with scal-
ing ratios r1 = 1/4 and r2 = 2−1−

√
2, the approximation 1+

√
2 ≈ 408

169 leads
to the equation

z2·169 + z408 = 1, 2−ω/169 = z.

Since this is an equation in z2, the oscillatory period of the lattice equation,
namely, 169 · π/ log 2, is only slightly larger than that of the lattice equation
corresponding to the previous approximation, 1+

√
2 ≈ 169

70 , which is equal
to 70 · 2π/ log 2.

3.2.2 The Complex Roots of the Golden Plus Equation

In Figure 3.4, we give a diagram of the complex dimensions of the golden+
string, defined as the nongeneric nonlattice string with M = N = 3 and
scaling ratios 2−1, 2−φ and 2−2, so that

ζL(s) =
1

1− 2−s − 2−φs − 2−2s
,

where φ = (1 +
√
5)/2 is the golden ratio of Equation (2.22). The complex

dimensions of L are found by solving the Dirichlet polynomial equation
2−s + 2−φs + 2−2s = 1.

For the real parts, we observe the same phenomenon of phase transition
in the complex dimensions as discussed in Example 3.3 and Problem 3.4.
The complex dimensions with positive real part again correspond to those
of the golden string of Section 2.3.5, like in the 2-3-4 equation discussed at
the beginning of Section 3.2.1.

To produce this diagram, we approximated 1 − 2−s − 2−φs − 2−2s by
1− z2584 − z4181 − z5168, for z = rs, r = 2−1/2584. See Section 3.8 for more
details.

3.3 The Structure of the Complex Roots

The simplest example of a Dirichlet polynomial equation is

1−m1r
s
1 = 0,

with M = 1 and one scaling ratio with multiplicity m1. In that case, the
complex roots are

ω =
logm1

w1
+
2πik

w1
(k ∈ Z).



72 3. Complex Dimensions of Nonlattice Self-Similar Strings

Figure 3.4: The complex dimensions of the golden+ string; the accumulative den-
sity of the real parts. The dotted lines and the associated markers are explained
in Example 3.46.
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Hence the complex roots lie on the vertical line Re s = (log |m1|)/w1, and
they are separated by 2πi/w1.
For M ≥ 1, the complex roots of a Dirichlet polynomial equation al-

ways lie in a horizontally bounded strip Dl ≤ Re s ≤ Dr, determined as
follows: Dr is the unique real number such that

M∑
j=1

|mj |rDr
j = 1, (3.8a)

and Dl is the unique real number such that

1 +
M−1∑
j=1

|mj |rDl
j = |mM |rDl

M . (3.8b)

The following theorem describes the structure of the complex roots of
Dirichlet polynomials and is the counterpart of Theorem 2.17 in the present
more general context.

Theorem 3.6. Let f be a Dirichlet polynomial with M different scal-
ing ratios 1 > r1 > · · · > rM > 0 and complex multiplicities mj as
in Equation (3.5). Then, both in the lattice and the nonlattice case, the
set Df of complex roots of f is contained in the horizontally bounded
strip Dl ≤ Re s ≤ Dr defined by (3.8):

Df = Df (C) ⊆ {s ∈ C : Dl ≤ Re s ≤ Dr} . (3.9)

It has density wM

2π (with wM = log r−1
M ) :

# (Df ∩ {ω ∈ C : 0 ≤ Imω ≤ T}) = wM

2π
T +O(1), (3.10)

as T →∞. Here, the elements of Df are counted according to multiplicity.
If all the numbers mj are real, for j = 1, . . . , M, then the set of com-

plex dimensions is symmetric with respect to the real axis. Furthermore,
if all the multiplicities mj in (3.5) are positive, for j = 1, . . . , M, then
the value s = D = Dr is the only complex root of f on the real line, and
it is simple. If, moreover, the multiplicities are integral (i.e., mj ∈ N∗

for j = 1, . . . , M), and M ≥ 2 or m1 > 1, then D > 0.

In the lattice case, f(s) is a polynomial function of rs = e−ws, where r
is the multiplicative generator of f . Hence, as a function of s, it is periodic
with period 2πi/w. The positive number

p :=
2π
w
=

2π
log r−1

(3.11)

is called the oscillatory period of the lattice equation f(s) = 0. The complex
roots ω of this equation are obtained by finding the complex solutions z of
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the polynomial equation (of degree kM )

M∑
j=1

mjz
kj = 1, with e−wω = z. (3.12)

Hence there exist finitely many roots ω1, ω2, . . . , ωq such that

Df = {ωu + inp : n ∈ Z, u = 1, . . . , q}. (3.13)

In other words, the complex roots of f lie periodically on finitely many
vertical lines, and on each line they are separated by p = 2π/w. The multi-
plicity of the complex roots corresponding to z = e−wω is equal to the
multiplicity of z as a solution of (3.12).

In the nonlattice case, all roots of f, except D, have real part less than D.
The complex roots of f can be approximated (via an explicit procedure
specified in Theorem 3.18 below) by the complex roots of a sequence of lattice
equations with larger and larger oscillatory period. Hence, the complex roots
of a nonlattice equation have a quasiperiodic structure. Furthermore, there
exists a screen2 S to the left of the line Re s = D, such that 1/f satisfies L1
and L2 with κ = 0 (see Chapter 5, Equations (5.19) and (5.20)), and the
complex roots of f in the corresponding window W are simple.

Finally, in the generic nonlattice case (i.e., if M ≥ 2 and the weights
w1, . . . , wM are independent over the rationals), we have

Dl = inf{Reω : ω is a complex root of f} (3.14)

and

Dr = sup{Reω : ω is a complex root of f}. (3.15)

Otherwise, the infimum of the real parts of the complex roots may be larger
than Dl and the supremum may be smaller than Dr.

Corollary 3.7. Every integral positive3 Dirichlet polynomial has infinitely
many complex roots with positive real part.

Remark 3.8. Since by Theorem 2.4, the denominator of ζL(s) is an inte-
gral positive Dirichlet polynomial, Theorem 3.6 (along with Corollary 3.7)
can be applied to deduce a corresponding statement regarding the complex
dimensions of a self-similar string L. In that case, we have Dr = D = DL,
the Minkowski dimension of L.

2See Section 1.2.1.
3i.e., such that mj ∈ N∗ for j = 1, . . . , M .
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Remark 3.9. Note that in the case of the geometric zeta function of a
self-similar fractal with multiple gaps of unequal size, as we have seen
in Section 2.3.3, some poles may be canceled by zeros of the numerator,
so that the density (3.10) provides only an upper bound for the density
of the complex dimensions. A weaker density estimate was proved using
Nevanlinna Theory in [Lap-vF5] (see also Section 2.6 and Appendix C).
The present argument used to estimate the density of the complex roots
was first published in [Lap-vF7, Theorem 2.5]. We provide here a lot more
details of that argument.

Proof of Theorem 3.6. The case of positive and integral weights was proved
in Section 2.5. There, the real numbers Dl and Dr were not defined, but
their main property (3.9) can be deduced by an argument similar to that
used for D. Indeed, let s be a complex number with real part σ > Dr. Then

|1− f(s)| ≤
M∑

j=1

|mj |rσ
j < 1,

by the defining property (3.8a) of Dr. Hence f(s) �= 0 for Re s > Dr.
Similarly, let s be a complex number with σ = Re s < Dl. Then∣∣r−s

M f(s) +mM

∣∣ = ∣∣∣∣r−s
M −

∑M−1

j=1
mj(rj/rM )s

∣∣∣∣
≤ r−σ

M +
M−1∑
j=1

|mj |(rj/rM )σ < |mM |,

by the defining property (3.8b) of Dl. Hence again f(s) cannot vanish
for Re s < Dl.
To establish (3.15), assume that M ≥ 2 and the weights w1, . . . , wM are

rationally independent. Using Diophantine approximation (see Lemma 3.16
below), we can find real values t such that mjr

it
j is very close to |mj | for

every j = 1, . . . , M . We obtain that

f(Dr + it) = 1−
M∑

j=1

mjr
Dr+it
j

almost vanishes. By Rouché’s Theorem [Ahl, Corollary to Theorem 18,
p. 153], applied to f(s+ it) and the approximation 1−∑M

j=1 |mj |rs
j , which

has a root at Dr, there exists a root of f near Dr + it. The same argument
applies to Dl, since the numbers wM , w1 − wM , . . . , wM−1 − wM are also
rationally independent, in order to establish (3.14).
In order to establish the density estimate (3.10), we will estimate the

winding number of the function f(s) = 1−∑M
j=1 mjr

s
j when s runs around

the contour C1 + C2 + C3 + C4, where C1 and C3 are the vertical line
segments c1 − iT → c1 + iT and c3 + iT → c3 − iT , with c1 > Dr and
c3 < Dl, respectively, and C2 and C4 are the horizontal line segments
c1 + iT → c3 + iT and c3 − iT → c1 − iT , with T > 0. (See Figure 3.5.)
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Figure 3.5: The contour C1 + C2 + C3 + C4.

For Re s = c1, we have ∣∣∣∣∑M

j=1
mjr

s
j

∣∣∣∣ < 1;

hence the winding number along C1 is at most 1/2. Likewise, for Re s = c3,
we have ∣∣∣∣1−∑M−1

j=1
mjr

s
j

∣∣∣∣ ≤ 1 +M−1∑
j=1

|mj |rc3
j < |mM |rc3

M ;

so the winding number along C3 is that of the last term mMrs
M of f(s),

up to at most 1/2. Hence the winding number along the contour C1 + C3

equals (T/π) log r−1
M = wMT/π, up to at most 1.

We will now show that the winding number along C2 + C4 is bounded,
using a classical argument, originally applied to the Riemann zeta func-
tion (see [In, p. 69]). Let n be the number of distinct points s on C2 at
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which Re f(s) = 0. For real values of z,

2Re f(z + iT ) = 2−
(∑M

j=1
mjr

z+iT
j +

∑M

j=1
mjr

z−iT
j

)
.

Hence, putting

g(z) = 2−
(∑M

j=1
mjr

z+iT
j +

∑M

j=1
mjr

z−iT
j

)
,

we see that n is bounded by the number of zeros of g in a disc contain-
ing the interval [Dl, Dr]. We take the disc centered at Dr + 1, with ra-
dius Dr −Dl + 2. We have

|g(Dr + 1)| ≥ 2− 2
M∑

j=1

|mj |rDr+1
j ≥ 2(1− r1) > 0,

since
∑M

j=1 mjr
Dr
j = 1. Furthermore, let G be the maximum of g on the

disc with the same center and radius e · (Dr −Dl + 2). Then

G ≤ 2 + 2
M∑

j=1

r
Dr+1−e(Dr−Dl+2)
j .

By [In, Theorem D, p. 49], it follows that n ≤ log |G/g(Dr+1)|. This gives
a uniform bound on the winding number over C2. The winding number
over C4 is estimated in the same manner.
We conclude from the above discussion that the winding number of f

over the closed contour C1 + C2 + C3 + C4 equals wMT/π, up to a con-
stant (depending on f), from which the asymptotic density estimate (3.10)
follows.
The approximation of a nonlattice equation by lattice equations—along

with the quasiperiodic structure of the complex roots of a nonlattice equa-
tion mentioned at the end of the statement of the theorem—is discussed in
Section 3.4 below. See especially Theorem 3.18.

Remark 3.10. As in Appendix C (see σl and σr of formula (C.7)), we
determine a left and a right bound for the critical strip. Recall that the
weights are ordered in increasing order: w0 = 0 < w1 < · · · < wM and
that m0 = −1. Define the real numbers dl and dr by the equations

e(wM−wM−1)dl

M∑
j=0

|mj | = |mM | and e−w1dr

M∑
j=0

|mj | = |m0| , (3.16)

respectively. In other words, we have

dl = −
1

wM − wM−1
log

M∑
j=0

|mj |
|mM |

and dr =
1
w1

log
M∑

j=0

|mj |. (3.17)
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Then the vertical strip of complex numbers s whose real part satisfies

dl ≤ Re s ≤ dr (3.18)

contains all the complex roots of f , with strict inequality if M ≥ 2. This
can be seen as in Appendix C, Section C.2, noting that the values of dl

and dr ensure that |f(s)| > 0 for Re s < dl or Re s > dr, and for Re s ≤ dl

or Re s ≥ dr if M ≥ 2. The relationship between these values, the num-
bers Dl and Dr defined in (3.8), and an arbitrary root ω of f is given
by

σl < dl < Dl ≤ Reω ≤ Dr < dr < σr.

See also Remark C.3 in Appendix C.

3.4 Approximating a Nonlattice Equation
by Lattice Equations

The generic self-similar string is nonlattice. Such a string has a slightly
more evenly distributed behavior in its geometry because it is Minkowski
measurable. This fact is explained in Sections 8.4.4 and 8.3, Theorem 8.15,
by the absence of nonreal complex dimensions with real part D. On the
other hand, a lattice string is never Minkowski measurable and always has
periodic oscillations of order D in its geometry because its complex dimen-
sions with real part D form an infinite, vertical arithmetic progression. (See
Theorems 8.23 and 8.36 for more details.)
In the present section, we show, in particular, that the set of lattice

strings is dense (in a suitable sense) in the set of all self-similar strings:
every nonlattice string can be approximated by lattice strings. This ap-
proximation is such that it results in an approximation of the complex di-
mensions: given any fixed T > 0, there exists a lattice string such that the
complex dimensions of the nonlattice string with imaginary part less than T
(in absolute value) are approximated by those of the lattice string. More-
over, the oscillatory period of this lattice string is much smaller than T .
This means that the complex dimensions of all self-similar strings exhibit
a quasiperiodic behavior.

We use the language of Dirichlet polynomial equations in order to for-
mulate our results. We begin by stating several definitions and a result
regarding the convergence of a sequence of meromorphic functions and of
the associated (zero minus pole) divisors. In Section 3.4.1 below, we will
study in more detail the particular situation of Dirichlet polynomials.
We measure the convergence on the Riemann sphere P1(C), using the

metric

‖a, b‖ = |a− b|√
1 + |a|2

√
1 + |b|2

,
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for a, b ∈ P1(C) (see also Appendix C, Equation (C.1)). More precisely, the
meromorphic functions (e.g., zeta functions) involved are viewed as taking
their values in P1(C), and their value at a pole is the point at infinity (e.g.,
the north pole) of the Riemann sphere.

Definition 3.11. Let f be a meromorphic function on the closed4 sub-
set W of C, and let f1, f2, . . . be a sequence of meromorphic functions
on W1, W2, . . . . The sequence fn converges to f (notation: fn → f) if for
every compact set C ⊆ W , we have that C ⊆ Wn for all sufficiently large n,
and ‖fn(s), f(s)‖ → 0 uniformly on C.

The (visible) divisor of a meromorphic function f defined on W , is the
set of zeros and poles of f in W , counted with multiplicity. A zero of f is
counted with a positive multiplicity, and a pole with a negative multiplicity.
Thus, the divisor of f is the formal sum

D = D(W ) =
∑
s∈W

ord(f ; s)(s), (3.19)

where the order of f at s is defined as the integer m such that the func-
tion f(z)(z− s)−m is bounded away from 0 in a neighborhood of s. Hence,
if s is a zero of (positive) order m, then ord(f ; s) = m, whereas if s is a pole
of (positive) order n, then ord(f ; s) = −n = m is negative. In particular,
ord(f ; s) = 0 if s is neither a pole nor a zero of f . The set of zeros and
poles of f is called the support, suppD(W ), of D(W ).

Definition 3.12. Let D = D(W ) be the divisor of a meromorphic func-
tion f and let Dn = D(Wn) be the sequence of divisors of the meromorphic
functions {fn}∞n=1. We say that the sequence of divisors of fn converges
locally to the divisor of f (and write Dn → D), if for every compact
set C ⊆ W and every ε > 0, there exists an integer n0 such that for all
integers n ≥ n0 there exists a finite cover of C by open sets U of diameter
at most ε such that for each set U in the cover, the multiplicities of the
points in suppDn ∩ U add up to the sum of those in suppD ∩ U , and for
any two such covering sets U and V , there are no points of the support
of D or Dn in U ∩ V .

This applies to the zeta function of a self-similar fractal string with a
nonvanishing numerator; i.e., there is a single gap (K = 1) or more gener-
ally, all the gaps have the same size (g1 = g2 = · · · = gK). In that case, the
zero divisor is trivial, and D(W ) is simply the set of (visible) complex di-
mensions D(W ), relative to the window W , where each complex dimension
is counted with a (negative) multiplicity. In general, ζLn

could have poles
that are canceled in the limit by a root of the numerator of ζL.

4This means that f is meromorphic on an open neighborhood of W ; similarly, fn is
meromorphic on an open neighborhood of Wn.
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Definition 3.13. Let L be a fractal string with window W ⊆ C, and
let {Ln}∞n=1 be a sequence of fractal strings with windows Wn. We say
that the sequence Ln converges to L (and write Ln → L) if for every
compact set C ⊆ W , we have that C ⊆ Wn for all sufficiently large n,
and ‖ζLn

(s), ζL(s)‖ → 0 uniformly on C.

In the next theorem, we use the notations fn → f and Dn → D of
Definitions 3.11 and 3.12. A similar theorem holds for a convergent sequence
of fractal strings Ln → L. (See Corollary 3.15 below.)

Theorem 3.14. Let f be a meromorphic function and let {fn}∞n=1 be a
sequence of meromorphic functions such that fn → f . Then Dn → D.

Proof. Let C ⊂ W be compact and choose circles T0 and T∞ around 0
and ∞, respectively, so small that the pre-image f−1(T0 ∪ T∞) ∩ C is the
union of disjoint small circles (really, closed Jordan curves) around each
point ω in C ∩ suppD. Let ε > 0 and assume that ε is smaller than the
radius of T0 and T∞. Let n0 be such that

‖fn(s), f(s)‖ ≤
ε

2
,

for all n ≥ n0 and all s ∈ C. On the circle around ω, fn(s) is away from 0
(respectively,∞) by at most ε/2. By the MaximumModulus Principle [Ahl,
Theorem 12′, p. 134], fn (respectively, 1/fn) has a zero (respectively, pole)
inside the circle in f−1(T0) (respectively, f−1(T∞)) around ω. Refining
this argument, by comparing the complex arguments of fn and f , we see
that fn has the same number of zeros (respectively, poles) inside the circle
around ω as the multiplicity of ω. Thus we can use the preimages f−1(T0)
and f−1(T∞) to define the cover as in Definition 3.12. We conclude that
Dn → D.

If a zero of fn cancels a pole in the limit f , then Dn → D in the sense of
Definition 3.12, but it is not true that fn → f in the sense of Definition 3.11.
Thus, if fn → f , then Dn → D in the stronger and more straightforward
sense that to every zero (or pole) of f there corresponds a nearby zero (or
pole) of fn. In particular, the converse of Theorem 3.14 is false.
Note that by the above proof, the divisors of zeros and of poles converge

separately. In the following corollary of Theorem 3.14, we use the notation
Dn(∞)→ D(∞) to denote that the divisors of poles converge in the sense
of Definition 3.12. We also use the notation Ln → L of Definitions 3.13.

Corollary 3.15. Let L be a fractal string and let Ln be a sequence of
fractal strings such that Ln → L. Then Dn(∞)→ D(∞).
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3.4.1 Diophantine Approximation

We now focus our attention on the case of self-similar strings or, what
amounts to the same thing, Dirichlet polynomials. Our main objective in
the present section is to show that in the sense of Definition 3.11, every non-
lattice string can be approximated by a sequence of lattice strings (Theo-
rem 3.18). In view of Theorem 3.14 and Corollary 3.15 above, this will show
that the complex dimensions of a nonlattice string can be approximated by
those of a sequence of lattice strings. It will imply, in particular, that the
complex dimensions of a nonlattice string have a quasiperiodic structure,
and that they come arbitrarily close to the line Re s = D (Theorem 3.23),
as was stated in Theorem 3.6.
The results of this section will be used in Chapter 6 to establish our

explicit formulas for nonlattice strings, and in Chapters 7 and 8 to derive
a good error term in the explicit formula for respectively the counting
function of the periodic orbits of a nonlattice self-similar flow and for the
volume of the tubular neighborhoods of a nonlattice string.

We continue to use the language of Dirichlet polynomials. In other words,
we focus on the denominator of ζL. Let scaling ratios r1 > r2 > · · · > rM

be given that generate a nonlattice Dirichlet polynomial f ; i.e., by Def-
inition 2.14, the dimension of the Q-vector space generated by the num-
bers wj = − log rj (for j = 1, . . . , M) is at least 2.
The following lemma on simultaneous Diophantine approximation can

be found in [Schm, Theorem 1A and the remark following Theorem 1E]. It
says that if at least one of the real numbers α1, . . . , αM is irrational, then
one can approximate these numbers by rational numbers with a common
denominator. Thus one can find integers q such that for each j = 1, . . . , M ,
the multiple qαj has a small distance to the nearest integer.

Lemma 3.16. Let w1, w2, . . . , wM be positive weights (see Equation (3.4))
such that at least one ratio wj/w1 is irrational, for some j = 2, . . . , M .
Then for every Q > 1, there exist integers q and k1, . . . , kM such that
1 ≤ q < QM−1 and

|qwj − kjw1| ≤ w1Q
−1

for j = 1, . . . , M . In particular,

|qwj − kjw1| < w1q
−1/(M−1)

for j = 1, . . . , M.

Remark 3.17. Note that |qwj − kjw1| �= 0 when wj/w1 is irrational, so
that q →∞ as Q→∞.

Theorem 3.18. Let weights w0 = 0 < w1 < · · · < wM and multiplici-
ties m0 = −1 and m1, . . . , mM ∈ C be given as in (3.5), such that at least
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one ratio wj/w1 is irrational, for some j = 2, . . . , M . Let

f(s) = 1−
M∑

j=1

mjr
s
j ,

with rj = e−wj for j = 1, . . . , M, be the corresponding nonlattice Dirich-
let polynomial. Let Q > 1, and let q and kj (j = 1, . . . , M) be as in
Lemma 3.16. Further, let w̃ = w1/q. Then the lattice Dirichlet polynomial

f̃(s) = 1−
M∑

j=1

mj r̃
s
j , log r̃j = −w̃j = −kjw̃

approximates f in the sense of Definition 3.11. This approximation is such
that for every given ε > 0, the complex roots of f are approximated (in the
sense of Definition 3.12 ) up to order ε for 2εCQ (positive and negative)
periods of f̃ , where

C =

∑M
j=1 |mj |
2π

( ∑M
j=0 |mj |

min{1, |mM |}

)−2wM / min{w1,wM−wM−1}

.

Proof. Let rj = e−wj for j = 1, . . . , M , and r̃ = e−w̃. To show that f is
well approximated by f̃ , we consider the expression

rs
j − r̃kjs = −s

∫ wj

kjw̃

e−sx dx.

Using kjw̃ = w̃j and |wj − w̃j | ≤ w1/(qQ), we obtain∣∣rs
j − r̃kjs

∣∣ ≤ |s||wj − w̃j |e−σwj max{1, e−σ(w̃j−wj)}
≤ |s|w1

qQ
e(wM+w1/(qQ))|σ|

for j = 1, . . . , M and with σ := Re s. We simplify this bound further, using
w1/(qQ) < wM in the exponent, to find

∣∣f(s)− f̃(s)
∣∣ ≤ M∑

j=1

∣∣mjr
s
j −mj r̃

kjs
∣∣ ≤ |s|w1

qQ
e2wM |σ|

M∑
j=1

|mj |.

By Equation (3.18) in Remark 3.10, we may restrict s = σ + it to

−
log

∑M
j=0 |mj/mM |

wM − wM−1
≤ σ ≤

log
∑M

j=0 |mj |
w1

.
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For such s,

∣∣f(s)− f̃(s)
∣∣ ≤ |s|w1

qQ

M∑
j=1

|mj |
( ∑M

j=0 |mj |
min{1, |mM |}

)2wM / min{w1,wM−wM−1}

= |s| w1

2πqQ
C−1.

Thus, if |s| < εCQ2πq
w1

then |f(s)− f̃(s)| < ε. Since 2πiq
w1

is the period of f̃ ,
the theorem follows.

Note that the sequence fn is obtained by constructing approximations of
the scaling ratios of f . The following theorem shows that this is the only
way to approximate a given Dirichlet polynomial by a sequence of Dirichlet
polynomials. It is of independent interest even though it will not be used
in the sequel.

Theorem 3.19. Let f be a Dirichlet polynomial, with scaling ratios

r0 = 1 > r1 > · · · > rM > 0

and multiplicities mj ∈ C. Let {fn}∞n=1 be a sequence of Dirichlet polyno-
mials, with scaling ratios

1 > r
(n)
1 > · · · > r

(n)
Mn

> 0

and multiplicities m
(n)
j ∈ C. Let W = Wn = C for all n. If fn → f, then

the scaling ratios converge with the correct multiplicity; i.e., for every ε > 0,
there exists n0 such that for all n ≥ n0 there exists a j′ for each j such
that |r(n)

j − rj′ | < ε, and for each j′,∣∣∣∑
j
m

(n)
j −mj′

∣∣∣ < ε,

where the sum is over those j between 1 and Mn for which |r(n)
j − rj′ | < ε.

Remark 3.20. Note that the statement of Theorem 3.19 only starts to be
interesting for

ε ≤ min
1≤j<M

(rj − rj+1)/2;

that is, when ε is so small that |r(n)
j −rj′ | < ε uniquely determines j′. Then

it says that the numbers r
(n)
j start to cluster around the rj′ in the sense

that for each j there is a unique j′, and the corresponding multiplicities
add up to approximate mj′ .

Proof of Theorem 3.19. Suppose first that fn and f are lattice polynomi-
als with the same multiplicative generator r. Since, then, both functions
are polynomials in rs, the theorem follows from [Ahl, §5.5]. In general, we
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choose lattice strings approximating everything on the level of the scaling
ratios. Then the lattice strings are close, from which we deduce the con-
vergence of the scaling ratios. It follows that the original scaling ratios are
close, with multiplicities that are close.

3.4.2 The Quasiperiodic Pattern of the Complex Dimensions

The number of periods for which the approximation in Theorem 3.18 re-
mains good tends to infinity as Q → ∞. Thus the complex dimensions of
a nonlattice string are almost periodically distributed like that of a lattice
string for a certain (large) number of periods of that lattice string. Then the
complex dimensions of the nonlattice string start to deviate from this peri-
odic pattern, and a new periodic pattern, associated with the next lattice
approximation, gradually emerges (see Figure 3.6). Each lattice approxi-
mation corresponds to a value of the denominator q in Theorem 3.18. See
also Examples 3.3 and 3.5 in Section 3.2 above (and the accompanying Fig-
ures 3.2 and 3.7) for more examples of the emergence of the quasiperiodic
pattern of complex dimensions.
It takes fairly large approximations to see this quasiperiodic pattern

emerge. For example, the complex dimensions of the three nonlattice strings
of Examples 3.3 and 3.5 are respectively approximated to within a dis-
tance 0.1 by the points in the three diagrams of Figure 3.7 for only about
two periods p of the respective lattice strings (four periods for the last
one, since p is half the size, as explained in Example 3.5). This is found by
adapting the proof of Theorem 3.18 to these strings, since a direct applica-
tion of this theorem would give only half a period of good approximation.
The number of periods (of the lattice string) for which the approxima-
tion is good does grow linearly in the denominator of the approximation.
Note that the period itself also grows like this denominator, so that the
vertical range for which the approximation is good (i.e., better than some
prescribed bound) grows like the square of the denominator of the chosen
lattice approximation.

Remark 3.21. In [Lap-vF5] and in [Lap-vF4, 6], we have used the term
“almost periodic”. Then, in later papers [Lap-vF7, 9] we have used the term
“quasiperiodic” instead, which we continue to use in this book. However,
neither of these expressions refers to its counterpart encountered in the
standard literature in function theory (almost periodicity as in [Bohr]) or
in the theory of dynamical systems (quasiperiodicity). In fact, we are not
able at this point to formalize the notion of quasiperiodic pattern encoun-
tered in the present situation. However, we now have a substantial amount
of mathematical and numerical information (much more than in [Lap-vF5]),
provided here and throughout this chapter, about the nature of such pat-
terns. It would be desirable in the future to give an appropriate formal
definition of quasiperiodicity, as encountered in this context.

The reader may wonder if there is any connection between our notion of
quasiperiodicity in this chapter and the beautiful theory of mathematical
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Figure 3.6: Consecutive approximations of the complex dimensions of the golden
string. Emergence of the quasiperiodic pattern.
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p
2

p
2

p

Figure 3.7: An impression of the quasiperiodic pattern of complex dimensions
on a larger scale, for the self-similar string of Example 3.3 (left) and those of
Example 3.5 (center and right).

and physical quasicrystals and of quasiperiodic tilings (see, e.g., [Sen,Moo,
LagP] and [Lap10, Appendix F]). We suspect that this might be the case
but have not yet been able to find a precise relationship. Therefore, we
formulate the following open problem.

Problem 3.22. Is there a natural way in which the quasiperiodic pattern
of the set of complex dimensions of a nonlattice self-similar string can
be understood in terms of a suitable (generalized) quasicrystal or of an
associated quasiperiodic tiling?

Recall that the simplest and most common examples of quasicrystals
in Rm—often referred to as model sets or cut-and-project sets—are ob-
tained by suitably projecting a higher-dimensional periodic lattice onto Rm

(see [Sen, Chapter 3] and [Moo]). The most important examples of quasi-
crystals are usually both model sets and substitution tilings. Preliminary
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investigation by the authors seems to indicate that these notions of quasi-
crystals are too restrictive to understand the type of quasiperiodicity
encountered in this and the previous chapter. More general notions of math-
ematical quasicrystals include Delone sets and Meyer sets (see [Sen,Moo,
LagP] and [Lap10, Appendix F]), but further extensions of the classical
notion of quasicrystal may need to be introduced in this context in order
to address Problem 3.22.

3.4.3 Application to Nonlattice Strings

We give three applications of the foregoing theory of approximation of non-
lattice strings that will be used in Chapters 5, 6 and 8. For the application
to a fractal string with scaling ratios 1 > r1 > · · · > rM > 0 and gaps
scaled by g1, . . . , gK (see Remark 2.3), we fix in this section mj ∈ N∗ to be
the multiplicity of rj (for j = 1, . . . , M).
In Theorems 3.23 and 3.26 below, we apply the construction of the proof

of Theorem 3.18 in the following way. We choose ε > 0 and a large value
for Q. Let f be the function defined by (3.5) and determine an approxi-
mation f̃ as in Theorem 3.18. Then f is approximated by f̃ to within an
error of ε for 2εCQ (positive and negative) periods of f̃ . The period of f̃
is ip = 2πiq/ log r1.
The next theorem completes the proof of the nonlattice part of Theo-

rem 2.17 (with the exception of the statement regarding the Minkowski
measurability, which will be established in Theorem 8.36). Recall that we
write

ζL(s) =
∑K

k=1(gkL)s

1−∑M
j=1 mjrs

j

(3.20)

and f(s) = 1−∑M
j=1 mjr

s
j .

Theorem 3.23. Let L be a nonlattice self-similar string. Then there ex-
ists a sequence of simple complex dimensions of L approaching the line
Re s = D from the left.

Proof. Note that limσ→+∞ f(σ+ it) = 1 and limσ→−∞ |f(σ+ it)| =∞, for
any given real value of t. Given t ∈ R, let

l(t) = inf
σ∈R

|f(σ + it)| (3.21)

be the infimum of |f(s)| on the horizontal line s = σ + it (σ ∈ R). Thus
for every t ∈ R, 0 ≤ l(t) ≤ 1. Further, l(0) = 0, and in general, l(t) = 0
if and only if f(σ + it) = 0 for some σ ∈ R. In particular, the function l
does not vanish identically. Choose t0 such that l(t) �= 0 for 0 < t ≤ t0.
Take an approximation f̃ of f to within ε ≤ l(t0)/3. This means in par-
ticular that the real value D̃ for which f̃ vanishes is very close to D, and
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that D and D̃ are the unique zeros of f and f̃ , respectively, in the re-
gion −σ0 ≤ σ ≤ 1, |t| ≤ t0. By Rouché’s Theorem [Ahl, Corollary to Theo-
rem 18, p. 153], D and D̃ actually lie within the circle (really, Jordan
curve) {s ∈ C : |f̃(s)| = ε} in this region. Again by Rouché’s Theorem, the
translate of this circle by a period of f̃ also contains a zero of f , at least
for the first [2εCQ] (positive and negative) periods of f̃ . Now we can make
sure that this circle is arbitrarily small around D, by choosing ε small.
This shows that f has a sequence of simple zeros approaching Re s = D,
and this proves the theorem, since (by (3.5) and Corollary 2.5) zeros of f
are complex dimensions of L (with the same or a lower multiplicity).
To see that, at least for a subsequence, there will be no cancellations

from the zeros of the numerator of ζL (in Equation (3.20)), we note that∑K
k=1(gkL)D is positive. Hence if we also approximate the numbers gkL,

along with the scaling ratios rj , then
∑K

k=1(gkL)D+inp will be close to
a positive number. As such, it does not vanish, and it will not cancel a
pole.

Remark 3.24. Note that the plot of the complex dimensions of the golden
string L given in Figure 2.12 on page 52 is in agreement with Theorem 3.23.
As was mentioned earlier, further application of the method of proof of
Theorems 3.14 and 3.18 provides increasingly more accurate plots of D. It
yields, in particular, two sequences of complex dimensions of L (symmet-
ric with respect to the real axis) converging from the left to the vertical
line Re s = D. (See the rightmost part of Figure 2.11 on page 51 for the
beginning of that process.)

The last two theorems of this section are of a technical nature and verify
conditions that will be needed (in Sections 6.4 and 8.4.4) in order to apply
the explicit formulas of Chapter 5 to the case of self-similar strings.
The following theorem can be applied when one cannot choose a screen

passing between Re s = D and the complex dimensions to the left of this
line. (See especially Example 5.32 and Section 8.4.4.)

Theorem 3.25. Let L be a nonlattice self-similar string with scaling ratios
r1, . . . , rN and gaps g1, . . . , gK . Then there exists a screen S such that ζL
is bounded on S and all complex dimensions to the right of S are simple
with uniformly bounded residue.

Proof. Let L̃ be a lattice string with scaling ratios r̃1, . . . , r̃N , approxi-
mating L. Let D be the dimension of L, and assume5 that D is also the
dimension of L̃. Since the complex dimensions of L̃ lie on finitely many
vertical lines, there exists δ > 0 such that L̃ has no complex dimensions

5If this is not the case, then
∑N

j=1 r̃D̃
j = 1 for an approximation D̃ of D. We then

replace each r̃j by its D̃/D-th power. The lattice string with these new scaling ratios
approximates L and has the same Minkowski dimension as L.
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with D − 2δ < Reω < D. Let ω = α + iγ be a complex dimension of L,
with D − δ < α < D. Then rα+iγ

1 + · · · + rα+iγ
N = 1. Hence, by Rouché’s

Theorem, riγ
1 r̃s

1 + · · ·+ riγ
N r̃s

N = 1 for s close to α. But this means that the
coefficients riγ

1 , . . . , riγ
N are close to 1. Again by Rouché’s Theorem, the or-

der of ω is the same as the order of D, which is 1. Since the derivatives are
also approximated, it follows that the residue of ζL at ω is close to that
of ζL̃ at D, say |res (ζL(s);ω)| ≤ 2 res

(
ζL̃(s);ω

)
.

We now construct a screen S as follows: Initially, we choose S(t) =
D − δ/2. But each time that S(t) + it comes within a distance of δ/4 of a
complex dimension of L, we go around this complex dimension along the
shortest arc of radius δ/4 to the left or to the right. Since the residue of ζL
at ω is bounded, it follows that ζL is bounded along this screen.

Theorem 3.26. Let L be a self-similar string as in Theorem 3.25. Then
there exists a sequence of positive numbers T1, T2, . . . , tending to infinity,
such that |ζL(s)| is uniformly bounded from above on each horizontal line
Im s = Tn and Im s = −Tn, for n = 1, 2, . . . .

Proof. If L is a lattice string, then the existence of such a sequence {Tn}∞n=1

follows easily from the fact that the denominator of ζL is periodic (with
period ip, where p is the oscillatory period).
If L is a nonlattice string, we proceed as follows. Let the function l

be given by Equation (3.21). Choose some t0 such that l(t0) �= 0, and
let ε < 1

3 l(t0). Construct a positive integer q and a function f̃ approximat-
ing f , as was explained before the statement of Theorem 3.23. Then on the
line s = σ + it0, the function f̃ is bounded away from 0 by at least 2

3 l(t0).
By periodicity, we have |f̃(s)| ≥ 2

3 l(t0) on 2εCQ different horizontal lines
of the form

s = σ + it0 + inp (for − εCQ ≤ n ≤ εCQ).

It follows that |f(σ+ it0 + inp)| is bounded from below by 1
3 l(t0) on these

lines. By choosing ε smaller, and consequently q larger, we find infinitely
many lines s = σ + iTn on which |f(s)| is uniformly bounded from below.
Since ζL(s) = Ls

∑K
k=1 gs

k/f(s), by Equations (3.20) and (3.5), this implies
that ζL(s) is uniformly bounded from above on these lines.

Remark 3.27. For future reference, we note that the conclusion of Theo-
rem 3.26 clearly applies to the generalized Cantor strings studied in Chap-
ter 10 and used in Chapter 11. In fact, these generalized fractal strings
are lattice strings and hence their geometric zeta function is periodic (see
Equation (10.2)). In conjunction with Section 6.4 below, this justifies the
application of our explicit formulas to these generalized Cantor strings (or
to the associated generalized Cantor sprays) in Chapters 10 and 11.
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3.5 Complex Roots of a
Nonlattice Dirichlet Polynomial

In this section, we carry out a detailed study of the complex dimensions
close to the line Re s = D of a nonlattice string. The main results are
formula (3.33) (for M = 2) and formula (3.41) (for M > 2). This is applied
in Section 3.6 to obtain dimension-free regions for nonlattice strings, which
in turn allows us to obtain good error terms in the explicit formulas for
nonlattice strings. Analogous results can be obtained for any vertical line
Re s = Reω through a complex dimension ω. In Section 3.7, we formulate
some of the expected results that such an analysis may yield.

A nonlattice Dirichlet polynomial has weights w1 < · · · < wM , where at
least one ratio wj/w1 is irrational. Let

f(s) = 1−
M∑

j=1

mje
−wjs. (3.22)

Assume that all multiplicitiesmj are positive. Recall from Theorem 3.6 that
in this case D = Dr is the unique real solution of the equation f(s) = 0.
Moreover, the derivative

f ′(s) =
M∑

j=1

mjwje
−wjs (3.23)

does not vanish at D since D is simple. We first consider the case M = 2.

3.5.1 Continued Fractions

Let α > 1 be an irrational number with continued fraction expansion

α = [[a0, a1, a2, . . . ]] := a0 +
1

a1 +
1

a2 + · · ·

.

Here, the integers aj (also called partial quotients in [HardW]) are deter-
mined recursively by

α0 := α, aj = [αj ], αj+1 =
1

αj − aj
, for j = 0, 1, 2, . . . .

The convergents pn/qn of α are defined by

pn

qn
= [[a0, a1, . . . , an]]. (3.24)
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Recall that these rational numbers are given by the recursion relations

p−2 = 0, p−1 = 1, pn+1 = an+1pn + pn−1,

q−2 = 1, q−1 = 0, qn+1 = an+1qn + qn−1.
(3.25)

We also define q′n = α1 · α2 · · · · · αn, and note that q′n+1 = αn+1qn + qn−1.
Then

qnα− pn =
(−1)n
q′n+1

. (3.26)

For all n ≥ 1, we have qn ≥ φn−1, where φ = (1 +
√
5)/2 is the golden ratio.

We refer the interested reader to [HardW, Chapter X] for an introduction
to the theory of continued fractions.
Let n ∈ N and choose l such that ql+1 > n. We can successively apply

division with remainder to compute (see [Os])

n = dlql + nl, nl = dl−1ql−1 + nl−1, . . . , n1 = d0q0,

where dν is the quotient and nν < qν is the remainder of the division of
nν+1 by qν . We set dl+1 = dl+2 = . . . = 0. Then

n =
∞∑

ν=0

dνqν . (3.27)

We call this the α-adic expansion of n. Note that 0 ≤ dν ≤ aν+1 and that
dν−1 = 0 if dν = aν+1. Also d0 < a1. It is not difficult to show that these
properties uniquely determine the sequence d0, d1, . . . of α-adic digits of n.

Lemma 3.28. Let n be given by formula (3.27). Suppose that the last k
digits of n vanish: k ≥ 0 is such that dk �= 0 and dk−1 = · · · = d0 = 0.
Put m =

∑∞
ν=k dνpν . Then nα−m lies strictly between

(−1)k
q′k+1

(
dk − 1 + α−1

k+2

)
and

(−1)k
q′k+1

(
dk + α−1

k+2

)
.

In particular, nα−m lies strictly between (−1)k/q′k+2 and (−1)k/q′k.

Proof. We have nα −m =
∑∞

ν=k dν(αqν − pν), which is close to the first
term dk(−1)k/q′k+1 by Equation (3.26). Again by this equation, the terms
in this sum are alternately positive and negative, and it follows that nα−m
lies between the sum of the odd numbered terms and the sum of the even
numbered terms. To bound these sums, we use the inequalities dν ≤ aν+1

for ν > k. Moreover, dk ≥ 1, hence dk+1 ≤ ak+2−1. It follows that nα−m
lies strictly between

dk(αqk − pk) + ak+3(αqk+2 − pk+2) + ak+5(αqk+4 − pk+4) + . . .
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and

dk(αqk − pk) + (ak+2 − 1)(αqk+1 − pk+1) + ak+4(αqk+3 − pk+3) + . . . .

Now aν+1(αqν − pν) = (αqν+1 − pν+1)− (αqν−1 − pν−1), so both sums are
telescopic. The first sum evaluates to

dk(αqk − pk)− (αqk+1 − pk+1) = (−1)k(dk + α−1
k+2)/q′k+1,

and the second sum to

dk(αqk − pk)− (αqk+1 − pk+1)− (αqk − pk) = (−1)k(dk − 1 + α−1
k+2)/q′k+1.

The cruder bounds follow on noting that 1 ≤ dk ≤ ak+1, and using the
relations q′k+2 = αk+2q

′
k+1 and ak+1 + α−1

k+2 = αk+1.

3.5.2 Two Generators

Assume that M = 2, and let f be defined as in (3.22) with positive mul-
tiplicities m1 and m2 and weights w1 and w2 = αw1, for some irrational
number α > 1.6 Since m1, m2 > 0, there exists a unique real number D
such that m1e

−w1D +m2e
−w2D = 1. We want to study the complex so-

lutions to the equation f(ω) = 0 that lie close to the line Re s = D.
First of all, such solutions must have e−w1ω close to e−w1D, so ω will
be close to D + 2πiq/w1, for an integer q. We write Δ for the differ-
ence ω −D − 2πiq/w1, so that

ω = D +
2πiq

w1
+Δ.

Then we write αq = p+ x
2πi , hence

x = 2πi(qα− p),

for an integer p, which we will specify below. With these substitutions, the
equation f(ω) = 0 becomes

1−m1e
−w1De−w1Δ −m2e

−w2De−xe−w2Δ = 0.

This equation defines Δ as a function of x.

Lemma 3.29. Let w1, w2 > 0 and α = w2/w1 > 1. Let Δ = Δ(x) be the
function of x, defined implicitly by

m1e
−w1De−w1Δ +m2e

−w2De−xe−w2Δ = 1, (3.28)

6In the terminology of dynamical systems of Chapter 7, this case corresponds to
Bernoulli flows.
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and Δ(0) = 0. Then Δ is analytic in x, in a disc of radius at least π around
x = 0, with power series

Δ(x) = −m2e
−w2D

f ′(D)
x+

m1m2w
2
1e

−w1De−w2D

2f ′(D)3
x2 +O(x3), as x→ 0.

(3.29)

All the coefficients in this power series are real. Further, the coefficient
of x2 is positive.

Proof. Write e−w1Δ = y(x), so that y is defined by

m1e
−w1Dy +m2e

−w2De−xyα = 1 and y(0) = 1.

Since y = 0 is not a solution of this equation, it follows that if y(x) is
analytic in a disc centered at x = 0, then Δ will be analytic in that same
disc. Moreover, y is real-valued and positive when x is real. Thus Δ is real-
valued as well when x is real. Further, y(x) is locally analytic in x, with
derivative

y′(x) =
m2e

−w2Dyαe−x

m1e−w1D + αm2e−w2Dyα−1e−x
.

Hence there is a singularity at those values of x at which the denominator
vanishes, which is at

y =
α

m1e−w1D(α− 1)
and

e−x = −α−α(α− 1)α−1 mα
1

m2
. (3.30)

Since this latter value is negative, the disc of convergence of the power
series for y(x) is

|x| < |−α logα+ (α− 1) log(α− 1) + α logm1 − logm2 + πi| .

This is a disc of radius at least π.
To compute the first two terms in the power series for Δ(x), we use the

formula for y′(x) above, to obtain y′(0) = w1m2e
−w2D/f ′(D), and also

y′′(0) = −w2
1m2e

−w2D

f ′(D)3
(
m2

1w1e
−2w1D −m2

2w2e
−2w2D

)
.

Since −w1Δ(x) = log y(x), we obtain

−w1Δ(x) = y′(0)x+
(
y′′(0)− y′(0)2

) x2

2
+O

(
x3

)
.

Simplifying, we now readily obtain the first two terms of the power series
for Δ(x) as given above.
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The proof of the following theorem is in the same spirit as the above
proof. Note that this theorem implies that the complex dimensions of a
nonlattice self-similar string with two scaling ratios are all simple. Recall
the assumption that the multiplicities m1 and m2 are positive.

Theorem 3.30. Let w2 = αw1, with α > 1 and irrational. Then the com-
plex roots of the Dirichlet polynomial equation

m1e
−w1s +m2e

−w2s = 1

are simple.

Proof. Writing A = m1e
−w1s and B = m2e

−w2s, the assumption that s is
a double root of this Dirichlet polynomial leads to the equations A+B = 1
and A + αB = 0. Thus A = α

α−1 and B = − 1
α−1 . It follows that e−w1s is

positive. Hence, the imaginary part of w1s is an integer multiple of 2π. On
the other hand, since B is negative, the imaginary part of w2s is an odd
integer multiple of π. But then α is rational, contrary to our assumption.

Remark 3.31. Lemma 3.29 and its proof remain valid if we replace D by
any root s = ω0 of the equation f(s) = 0, provided that f ′(ω0) �= 0. In
particular, the singularity of Δ(x) occurs at the same value of x satisfy-
ing (3.30), hence the power series for Δ(x) has radius of convergence at
least π. Replacing D by ω0 in (3.29) above, we obtain the first few terms
of this power series,

Δ(x) = −m2e
−w2ω0

f ′(ω0)
x+

m1m2w
2
1e

−w1ω0e−w2ω0

2f ′(ω0)
3 x2 +O

(
x3

)
, as x→ 0.

(3.31)

Since ω0 is not real if ω0 �= D, the coefficients of this power series are in
general not real-valued.
Finally, note that f ′(ω0) = 0 implies that m2 = −mα

1 α−α(α − 1)α−1.
Thus if m1, m2 > 0, then the roots of f(s) = 0 are all simple.

Substituting (3.29) in ω = D + 2πiq/w1 +Δ, we find

ω = D + 2πi
q

w1
− m2e

−w2D

f ′(D)
x+

m1m2w
2
1e

−w1De−w2D

2f ′(D)3
x2 +O

(
x3

)
,

(3.32)

as x = 2πi(qα− p)→ 0. We view this formula as expressing ω as an initial
approximation D + 2πiq/w1, which is corrected by each additional term
in the power series. The first corrective term is in the imaginary direction,
as are all the odd ones, and the second corrective term, along with all the
even ones, are in the real direction. The second term decreases the real part
of ω.
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Theorem 3.32. Let α be an irrational number with convergents pν/qν

defined by (3.24) and (3.25). Let q =
∑∞

ν=k dνqν be the α-adic expansion
of the positive integer q, as in Lemma 3.28. Assume k ≥ 2, or k = 1
and a1 ≥ 2, and put p =

∑∞
ν=k dνpν . Then there exists a complex root

of f at

ω = D + 2πi
q

w1
− 2πi

m2e
−w2D

f ′(D)
(qα− p)

− 2π2 m1m2w
2
1e

−w1De−w2D

f ′(D)3
(qα− p)2 +O

(
(qα− p)3

)
. (3.33)

The imaginary part of this complex root is approximately 2πiq/w1, and its
distance to the line Re s = D is at least C/q′2k+2, where

C = 2π2m1m2w
2
1e

−(w1+w2)D/f ′(D)3.

The number C depends only on w1 and w2 and the multiplicities m1

and m2.
Moreover, |f(s)| � q′−2

k+2 around s = D + 2πiq/w1 on the line Re s = D,
and |f(s)| reaches a minimum of size C′(qα− p)2, where C ′ depends only
on the weights w1 and w2 and on m1 and m2.

Proof. By Lemma 3.28, the quantity qα − p lies between (−1)k/q′k+2 and
(−1)k/q′k. Under the given conditions on k, q′k > qk ≥ 2. Hence x =
2πi(qα − p) is less than π in absolute value. Then (3.32) gives the value
of ω. The estimate for the distance of ω to the line Re s = D follows from
this formula.
Since the derivative of f is bounded on the line Re s = D, and f does

not vanish on this line except at s = D, this also implies that f(s) reaches
a minimum of order (qα − p)2 on an interval around s = D + 2πiq/w1 on
the line Re s = D.

Remark 3.33. By Remark 3.31 above, each root ω0 also gives rise to a
sequence of roots

ω = ω0 + 2πi
q

w1
+O(qα− p)

close to the sequence ω0 + 2πiq/w1. This is illustrated in Figures 3.9, 3.10
and 3.11 below for the repetitions of D and one other complex root.

We obtain more precise information when q comes from the continued
fraction of α; i.e., q = qk and ω is close to D + 2πiqk/w1.



96 3. Complex Dimensions of Nonlattice Self-Similar Strings

Theorem 3.34. For every integer k ≥ 0 (or k ≥ 1 if a1 = 1), there exists
a complex root ω of f of the form

ω = D + 2πi
qk

w1
− 2πi(−1)k m2e

−w2D

f ′(D)q′k+1

− 2π2m1m2w
2
1

e−(w1+w2)D

f ′(D)3q′2k+1

+O
(
q′−3
k+1

)
, (3.34)

as k →∞.
Moreover, |f(s)| � q′−2

k+1 around s = D+2πiqk/w1 on the line Re s = D,
and |f(s)| reaches a minimum of size C ′q′−2

k+1, where C ′ is as in the last
part of Theorem 3.32.

Proof. In this case, q = qk is the α-adic expansion of q. Put p = pk. Then
x = 2πi(−1)k/q′k+1, which is less than π in absolute value. The rest of the
proof is the same as the proof of Theorem 3.32.

Remark 3.35. Theorem 3.32 implies that the density of complex roots in a
small strip around Re s = D is w1/(2π). For Cantor-like lattice strings, with
M = 1 (i.e., such that there is only one nonzero weight, so that wM = w1),
there is only one line of complex roots, and this density coincides with
formula (3.10) of Theorem 3.6. However, it is unclear how wide the strip
around Re s = D should be. For example, in Figure 3.9, the strip extends
to the left of Re s = 0.

The following theorem was first published in [Lap-vF7, Theorem 4.7],
with an incorrect value of the limit. Below follows the corrected statement
and proof.

Theorem 3.36. Let

C =
f ′(D)3/2

πw2

√
2m1m2

e(w1+w2)D/2. (3.35)

The relative density of the real parts of the complex roots close to the
line Re s = D,

#{ω : ω ∈ D, 0 ≤ Imω ≤ T,Reω ≥ x}
#{ω : ω ∈ D, 0 ≤ Imω ≤ T} , (3.36)

has a limit as T →∞. This limit equals

2C
√

D − x, (3.37)

for values of x ≤ D close to D.

Proof. By Theorem 3.6, there are w2
2π T+O(1) complex roots with imaginary

part 0 ≤ Imω ≤ T . Assume that T is of the form 2πqm+1/w1 for some
integer m. Given x < D, we will count the number of these roots with
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Reω ≥ x. By Theorem 3.32, for every q with 0 ≤ q < w1
2π T = qm+1 (and p

the nearest integer to qα), we find a complex root with 0 ≤ Imω ≤ T and
lying slightly to the left of the line Re s = D with real part

Reω = D − C1(qα− p)2 +O
(
(qα− p)4

)
,

where

C1 = π2w2
1(2m1m2)e−(w1+w2)Df ′(D)−3 =

(
C−1w1/w2

)2
. (3.38)

If Reω ≥ x, then we find that q is restricted by

|qα− p| ≤
√
(D − x)/C1 (1 +O(D − x)) .

Determine n such that

1/q′n+1 ≤
√
(D − x)/C1 < 1/q′n.

Let q =
∑∞

ν=k dνqν be the α-adic expansion of q as in Equation (3.27).
Then

|qα− p| = dk/q′k+1 − dk+1/q′k+2 + . . . .

If k ≤ n − 2 then |qα − p| > 1/q′k+2 ≥ 1/q′n by Lemma 3.28. Hence
|qα − p| >

√
(D − x)/C1. Likewise, if k = n − 1 and dk ≥ 2, then, by the

finer estimate in Lemma 3.28, |qα − p| > (1 + α−1
n+1)/q′n. We find that the

expansion of q must be of the form q = dn−1qn−1 + dnqn + · · · + dmqm,
where dn−1 is either 0 or 1.
If dn−1 = 1, then |qα−p| = 1/q′n−dn/q′n+1+ . . . , which is approximately

equal to (αn+1 − dn)/q′n+1. We find that dn ≥ αn+1 − q′n+1

√
(D − x)/C1.

Since dn < αn+1, we find [
q′n+1

√
(D − x)/C1

]
possibilities for dn.
Also, if dn−1 = 0, we find dn < q′n+1

√
(D − x)/C1, and we find again

the same number of possibilities for dn.
We fix dn, and dn−1 = 0 or 1, and count the number of positive inte-

gers q satisfying these requirements. Let Nm+1 be the number of such q.
Since 0 ≤ dν ≤ aν+1, and dν−1 = 0 if dν = aν+1, we find that

Nm+1 = am+1Nm +Nm−1,

with initial conditionsNn+2 = an+2 if dn �= 0, orNn+2 = an+2+1 if dn = 0,
and Nn+1 = 1. Since Nm satisfies the same recursion as qm, but with dif-
ferent initial conditions, these two sequences grow at the same rate, and we
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Figure 3.8: The error in the prediction of Theorem 3.36, for the golden Dirichlet
polynomial equation 2−s + 2−φs = 1.

find the approximation Nm+1 = qm+1/q′n+1. Together with the total num-
ber of possibilities for dn, we find approximately 2qm+1

√
(D − x)/C1 possi-

bilities for q. Since the total number of roots is approximately qm+1w2/w1,
we obtain a relative density of

2(w1/w2)
√
(D − x)/C1,

which by (3.38) equals 2C
√

D − x, where C is given by (3.35).

Remark 3.37. This theorem is illustrated in the diagrams at the bottom
of Figures 3.9 and 3.10 (pages 103 and 105, repectively). These diagrams
show in one figure the graph of the accumulated density function (3.36)
and the graph of the function (3.37). The function (3.37) approximates the
accumulative density only in a small neighborhood of D. Figure 3.8 gives
a graph of the difference of the two graphs in Figure 3.9 (page 103) for the
complex roots with real parts between 1/2 and D.

3.5.3 More than Two Generators

When there are three or more generators, i.e., M ≥ 3, the construction
of approximations pj/q of wj , for j = 1, . . . , M , is much less explicit than
for M = 2 since there does not exist a continued fraction algorithm for
simultaneous Diophantine approximation. We use Lemma 3.16 as a sub-
stitute for this algorithm. The number Q then plays the role of q′k+1 in
Theorem 3.34 above. In particular, if q is often much smaller than Q,
then w1, . . . , wM is well approximable by rationals, and we find a small
root-free region.



3.5 Complex Roots of a Nonlattice Dirichlet Polynomial 99

Remark 3.38. The LLL-algorithm of [LeLeLo] allows one to find good
denominators. However, the problem of finding the best denominator is
NP-complete [Lag1, Theorem C]. See also [RösS] and the references therein,
in particular [HasJLS]. Further, it may be possible to adapt the algorithm
in [El] to solve Dirichlet polynomial equations.

Again, we are looking for a solution of f(ω) = 0 close to D + 2πiq/w1,
where f is defined by (3.22). We write ω = D + 2πiq/w1 +Δ and

wjq = w1pj +
w1

2πi
xj ,

for j = 1, . . . , M . For j = 1, we take p1 = q and consequently x1 = 0. In
general, for j = 2, . . . , M , we have

xj = 2πi(qwj/w1 − pj).

Then f(ω) = 0 is equivalent to
∑M

j=1 mje
−wjDe−xj−wjΔ = 1.

The following lemma is the several variables analogue of Lemma 3.29. In
the present case, however, we do not know the radius of convergence with
respect to the variables x2, . . . , xM .

Lemma 3.39. Let 0 < w1 < w2 < · · · < wM , let D be the real number
such that

∑M
j=1 mje

−wjD = 1, and let Δ = Δ(x2, . . . , xM ) be implicitly
defined by

M∑
j=1

mje
−wjDe−xj−wjΔ = 1, (3.39)

with x1 = 0 and Δ(0, . . . , 0) = 0. Then Δ is analytic in x2, . . . , xM , with
power series

Δ = −
M∑

j=2

mje
−wjD

f ′(D)
xj +

1
2

M∑
j=2

mje
−wjD

f ′(D)
x2

j

− 1
2

M∑
j,k=2

(
f ′′(D)
f ′(D)3

+
wj + wk

f ′(D)2

)
mjmke−(wj+wk)Dxjxk

+O

(
M∑

j=2

|xj |3
)

, (3.40)

where f ′′(D) = −∑M
j=1 mjw

2
j e−wjD and f ′(D) is given by formula (3.23)

for s = D. This power series has real coefficients. Moreover, the terms of
degree two yield a positive definite homogenous quadratic form.

Proof. The proof is analogous to that of Lemma 3.29. Taking the derivative
with respect to xk (k ≥ 2) gives

mke−wkD + f ′(D)
∂Δ
∂xk

(0, . . . , 0) = 0.
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We thus find the coefficients of the linear part of Δ.
The positive definiteness of the quadratic form follows from the fact that

the complex roots lie to the left of Re s = D, see Theorem 3.6. It can also
be verified directly.

We substitute formula (3.40) into ω = D + 2πiq/w1 +Δ to find

ω = D + 2πi
q

w1
−

M∑
j=2

mje
−wjD

f ′(D)
xj +

1
2

M∑
j=2

mje
−wjD

f ′(D)
x2

j

− 1
2

M∑
j,k=2

(
f ′′(D)
f ′(D)3

+
wj + wk

f ′(D)2

)
mjmke−(wj+wk)Dxjxk

+O

(
M∑

j=2

|xj |3
)

, (3.41)

where xj = 2πi(qwj/w1 − pj), for j = 2, . . . , M . Again, this formula ex-
presses ω as an initial approximation D + 2πiq/w1, which is corrected by
each term in the power series. The corrective terms of degree one are again
in the imaginary direction, as are all the odd degree ones, and the corrective
terms of degree two, along with all the even ones, are in the real direction.
The degree two terms decrease the real part of ω.

Remark 3.40. As in Remark 3.31, we have a formula analogous to (3.41)
corresponding to any complex root ω0. Thus every complex root ω0 gives
rise to a sequence of complex roots close to the points ω0 + 2πiq/w1. In
this case it may be possible that f has multiple roots, even if the multi-
plicities mj are positive for m = 1, . . . , M .

Theorem 3.41. Let M ≥ 2 and let w1, . . . , wM be weights of a nonlattice
equation. Let Q and q be as in Lemma 3.16. Then f has a complex root close
to D + 2πiq/w1 at a distance of at most O(Q−2) from the line Re s = D,
as Q →∞. The function |f | reaches a minimum of order Q−2 on the line
Re s = D around the point s = D + 2πiq/w1.

Proof. Again, for j = 2, . . . , M , the numbers xj are purely imaginary, so
the terms of degree 1 (and of every odd degree) give a correction in the
imaginary direction, and only the terms of even degree will give a correction
in the real direction. Since |xj | < 2π/Q, the theorem follows.

Remark 3.42. By analogy with Theorem 3.36, we find C(D − x)(M−1)/2

as an approximation of the density function of the complex roots close
to x = D, for some positive constant C. However, in this case we do not
know the value of C. It may depend on the properties of Diophantine
approximation of the weights w1, . . . , wM .
Figure 3.11 suggests the approximation C(D − x) for the accumulated

density function of the Two-Three-Five equation (for which M = 3, so
that (M − 1)/2 = 1), for some positive constant C.
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3.6 Dimension-Free Regions

We discuss an application of the above results to the theory of self-similar
fractal strings, as in Chapter 2. Thus, a Dirichlet polynomial corresponds
to the geometric zeta function of a self-similar string, while the complex
roots of such a polynomial correspond to the complex dimensions of this
self-similar string.

Definition 3.43. An open neighborhood of the line Re s = D in the com-
plex plane is called a dimension-free region for the string L if the only pole
of ζL in that region is s = D.

We assume that we are in the setting of Section 3.5.2; that is, we consider
fractal strings with scaling ratios r1 = r and r2 = rα. Recall the function
f(s) = 1−m1r

s −m2r
αs, so that

f ′(D) = m1w1r
D +m2w2r

αD > 0. (3.42)

From Theorem 3.34, and with the notation of Sections 3.5.1 and 3.5.2,
we deduce the following result, in case M = 2.

Corollary 3.44. Assume that the partial quotients a0, a1, . . . of the con-
tinued fraction of α are bounded by a constant b. Put

B =
1
2
π4e−(w1+w2)Df ′(D)−3

, (3.43)

so that B > 0 by (3.42). Then L has a dimension-free region of the form{
σ + it ∈ C : σ > D − B

b2t2

}
. (3.44)

Further, the function ζL satisfies hypotheses L1 and L2 (i.e., L is languid)
with κ = 2 on the screen Re s = D −B/(b Im s)2; see (5.19) and (5.20).

More generally, let b : R+ → [1,∞) be a function such that the partial
quotients {ak}∞k=0 of the continued fraction of α satisfy

ak+1 ≤ b(qk) for every k ≥ 0. (3.45)

Then L has a dimension-free region of the form{
σ + it ∈ C : σ > D − B

t2b2(tw1 / 2π)

}
. (3.46)

If b(q) grows at most polynomially, then ζL satisfies hypotheses L1 and L2
on the screen S : S(t) + it, S(t) = D − Bt−2b−2(tw1 / 2π), with κ such
that tκ ≥ t2b2(tw1 / 2π) for all t ∈ R.
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Proof. We have q′k+1 = αk+1q
′
k ≤ 2b(qk)q′k ≤ 4b(qk)qk. By Theorem 3.34,

the complex dimension close to D + it for t = 2πqk/w1, is located at

ω = D + i
(
t+O

(
q′−1
k+1

))
− (w2

1/π2)Bq′−2
k+1 +O

(
q′−4
k+1

)
,

where the big-O’s denote real-valued functions. The real part of this com-
plex dimension is less than D −Bt−2b−2(tw1 / 2π).

Remark 3.45. By Khintchine’s theory of continued fractions (see [HardW,
Theorem 197, p. 168]), if

∑∞
k=1 1/bk is convergent, then almost all num-

bers have a continued fraction for which ak ≤ bk eventually. Since qk grows
at least exponentially (qk ≥ φk−1; see Section 3.5.1), condition (3.45) is
satisfied already for a function that grows very slowly, such as, for ex-
ample, b(x) = (log log x)2. The set of numbers for which this condition is
violated for infinitely many integers k and every function b of polynomial
growth has measure zero.

Example 3.46. One of the simplest nonlattice strings is the golden string,
introduced in Section 2.3.5. It is the nonlattice string with M = 2 and
α = φ, w1 = log 2. The continued fraction of the golden ratio is

φ =
1 +

√
5

2
= [[1, 1, 1, . . . ]].

Hence q0, q1, . . . is the sequence of Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 34, 55, . . . , (3.47)

and q′k = φk for all k ≥ 0.
Numerically, we find D ≈ .7792119034 and the following approximation

to the power series Δ(x):

− .47862x+ .08812x2 + .00450x3 − .00205x4 − .00039x5 + . . . .

For every k ≥ 0, we find a complex dimension close to D+2πiqk/ log 2. For
example, q9 = 55, and we find a complex dimension at D−.00023+498.58i.
More generally, for numbers that can be written as a sum of Fibonacci num-
bers of relatively high index, like q = 55+5 or q = 55−5, we find a complex
dimension close to D + 2πiq/ log 2. The distance to the line Re s = D is
then determined by the smallest Fibonacci number in the sum (or differ-
ence), the number 5 in these two examples. For these two values for q,
we find respectively a complex dimension at D − .023561 + 543.63i and
at D − .033919 + 453.53i. In both cases, the distance of these complex di-
mensions to the line Re s = D is comparable to the distance of the complex
dimension close to D + 2πi · (5/ log 2) (for q = 5) to this line, which is lo-
cated at D − .028499 + 45.05i. See Figure 3.9, where the markers indicate
the Fibonacci numbers (3.47).
The pattern persists for other complex dimensions as well. Indeed, by

Remark 3.33, every complex dimension repeats itself according to the pat-
tern of the Fibonacci numbers. This is illustrated for one other complex
dimension.
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Figure 3.9: The complex dimensions of the golden string; the accumulative density
of the real parts, compared with the theoretical prediction of Theorem 3.36. The
dotted lines and the associated markers are explained in Example 3.46.
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The second graph, at the bottom of Figure 3.9, shows the accumulative
density of the real parts of the complex dimensions, compared with the
predicted density (graphed for Dl ≤ x ≤ D) of Theorem 3.36.
Figure 3.9 was obtained by approximating φ by 4181/2584. Thus, the

figure shows the complex dimensions of the lattice string with generator
w = (log 2)/2584, k1 = 2584, k2 = 4181. The oscillatory period of this
string is 2π/w ≈ 23423.23721. Figure 3.6 gives intermediate stages of this
approximation.

Example 3.47. Figure 3.10 gives the complex dimensions and the density
of their real parts of the generic nonlattice string with weights w1 = log 2
and w2 = α log 2, where α is the positive real number with continued
fraction [[1, 2, 3, 4, . . . ]]. One can compute that

α =

∑∞
n=0

1
(n!)2∑∞

n=0
1

n!(n+1)!

=
I0(2)
I1(2)

, (3.48)

where Ik(z) =
∑∞

n=0
(z/2)2n+k

n!(n+k)! is the modified Bessel function. Indeed, by
[WhW, pp. 359, 373], we have the recursion relation

In−1(z)
In(z)

=
2n
z
+

1
In(z)

In+1(z)

,

for n = 1, 2, . . . . Thus I0(z)/I1(z) = [[2/z, 4/z, 6/z, . . . ]] and so α is given
by Equation (3.48), as claimed.7 (See also [BorCP, p. 499] and [Wats].) For
this reason, we propose to call this string the Bessel string. Even though α
is better approximable by rationals than numbers with bounded partial
quotients, qualitatively there does not seem to be a significant difference
with the golden string.
Figure 3.10 is obtained by approximating α by 1393/972. The markers

illustrate again the different periodic patterns. The repetitions occur at de-
nominators of convergents of α, which are the numbers 1, 2, 7, 30, 157, . . . ,
and combinations of these (in the sense of the α-adic expansion of Equa-
tion (3.27)).

Example 3.48. The Two-Three-Five string is an example of a generic
nonlattice string with M > 2. It has one gap and M = N = 3 scaling
ratios r1 = 1/2, r2 = 1/3, and r3 = 1/5. See Figure 3.11 for a diagram of
the complex dimensions and of the density of their real parts. Figure 3.11 is
obtained using the approximation log2 3 ≈ 2826/1783, log2 5 ≈ 4140/1783.
Note that now the markers are not related to the continued fractions of
these numbers. Instead, they are the denominators of the rational numbers
that simultaneously approximate these numbers. The same is true for the
markers in Figures 3.12 and 3.13.

7The second author learned this argument from Ronald Kortram (personal commu-
nication, 1985).
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Figure 3.10: The complex dimensions of the Bessel string; the accumulative den-
sity of the real parts, compared with the theoretical prediction of Theorem 3.36.
The dotted lines and the associated markers are explained in Example 3.47.
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Figure 3.11: The quasiperiodic behavior of the complex dimensions of the Two-
Three-Five string of Example 3.48; the accumulative density of the real parts
of the complex dimensions. The dotted lines and the associated markers are
explained in Examples 3.46 and 3.48.
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In the following corollary, given M ≥ 2, we say that w1, . . . , wM is b-ap-
proximable if b : [1,∞)→ R+ is an increasing function such that for every
q ≥ 1, j ∈ {1, . . . , M} and integers pj ,

|qwj − pjw1| ≥
w1

b(q)
q−1/(M−1).

Since this means that Q � q−1/(M−1) in Lemma 3.16, we deduce the
following result from Theorem 3.41:

Corollary 3.49. Let M ≥ 2. The best dimension-free region that L can
have is of size {

σ + it ∈ C : σ ≥ D −O
(
t−2/(M−1)

)}
, (3.49)

where the implied constant is positive and depends only on w1, . . . , wM .
If w1, . . . , wM is b-approximable, then the dimension-free region has the

form {
σ + it ∈ C : σ ≥ D −O

(
b−2(w1t/2π)t−2/(M−1)

)}
, (3.50)

where the O-term is a positive function, bounded as indicated.

Remark 3.50. The best dimension-free region is obtained when the sys-
tem w1, . . . , wM is badly approximable by rationals; i.e., when the weights
are only b-approximable for a constant function b = b(q). This corresponds
to the case of two generators when α has bounded partial quotients in its
continued fraction (Corollary 3.44). When w1, . . . , wM is better approx-
imable by rationals, the dimension-free region is smaller and there are
complex dimensions closer to the line Re s = D. Such nonlattice strings
behave more like lattice strings (compare Theorem 3.6).

Remark 3.51. Regarding the dependence on M , we see from compar-
ing Corollaries 3.44 and 3.49 that in general, depending of course on the
properties of simultaneous Diophantine approximation of the weights, non-
lattice strings with a larger number of scaling ratios have a wider (better)
dimension-free region.

Remark 3.52. By formulas (8.70) and (8.71), we deduce that for a nonlat-
tice self-similar string L, the volume V (ε) of the tubular neighborhood of L
is approximated by its leading term up to an error of order | log ε|−(M−1)/2,
or worse if the weights are well approximable. See the end of Section 8.4.4
for further discussion of this point. More generally, the usefulness of ob-
taining a dimension-free region is that when combined with the explicit
formulas of Chapter 5 (or Chapters 7 and 8), it enables us to obtain suit-
able error estimates in the corresponding asymptotic formulas. The better
(i.e., the wider) the dimension-free regions, the better the error estimate.
This principle will be illustrated in several places in Chapters 6–8.
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3.7 The Dimensions of Fractality
of a Nonlattice String

In this section, we obtain a rigorous result and make several conjectures
regarding the real parts of the complex dimensions of nonlattice strings.
It is noteworthy that both the theorem and the conjectures were them-
selves suggested by computer experimentation guided by the theoretical
investigations in this chapter.
Recall from Remark 3.40 that the analogue of formula (3.41) holds for

any complex dimension ω, besides D.

Theorem 3.53. The set of real parts of the complex dimensions of a non-
lattice string has no isolated points.

Proof. By Remark 3.40, every complex dimension gives rise to a sequence of
complex dimensions close to the points ω+2πiq/w1, for integers q. Since the
corrective terms are not all purely imaginary, we find complex dimensions
with real parts close to Reω. When q increases through a sequence of
integers such that for each j = 1, . . . , M , xj = 2πi(qwj/w1 − pj)→ 0 (see
Lemma 3.16), we find a sequence of complex dimensions whose real parts
approach Reω.

Remark 3.54. We call a string fractal in dimension α if it has a com-
plex dimension with real part α. Each complex dimension gives rise to
oscillations in the geometry of the fractal string. The frequencies of these
oscillations are determined by the imaginary part of the complex dimen-
sion, and the real part of the complex dimension determines the amplitude
of the oscillations. We define the set of dimensions of fractality of a fractal
string as the closure of the set of real parts of its complex dimensions. Thus,
Theorem 3.53 can be interpreted as saying that a nonlattice string is fractal
in a perfect set of fractal dimensions. (See also Chapter 12, Section 12.2.)

3.7.1 The Density of the Real Parts

The density of the real parts of the complex dimensions of six different
nonlattice strings are plotted in Figures 3.1–3.4 and 3.9–3.13. These figures
show the graph of the function given by formula (3.36) for some large value
of T . Since there are no horizontal pieces in these graphs, we conjecture
that the real parts are dense in [Dl, D]. More generally, we expect the same
to be true for the real parts of the complex dimensions of any nonlattice
string.
We summarize this discussion by stating the following conjecture:

Conjecture 3.55. The set of dimensions of fractality of a nonlattice string,
as defined in Remark 3.54 above, is a bounded connected interval [σl, D],
where D is the Minkowski dimension of the string ; in other words, the set
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of real parts of the complex dimensions is dense in [σl, D], for some real
number σl. In the generic nonlattice case, σl = Dl is defined by Equa-
tion (3.8b).

Sketch of a possible proof. By Remark 3.31 (for M = 2) and Remark 3.40
(for M > 2), there exist complex dimensions with real part arbitrarily close
to any complex dimension ω0. The main correction term, of order x, will
in general not be purely imaginary (as it is for ω0 = D), and for suitable
values of q, the real part of x will be negative. For ω0 = D, the second
corrective term is negative. Thus starting at ω0 = D, we find a sequence
of complex dimensions with decreasing real parts, which can be chosen to
be spaced arbitrarily densely. This would prove the density of real parts
in an interval. It remains to show that the real part of x can be chosen
negative until we reach the left boundary of the critical strip (which is
the vertical line Re s = Dl in the generic nonlattice case, see the end of
Theorem 3.6).

The graphs of the densities of the complex dimensions are qualitatively
different for M = 2 and M = 3 (i.e., for either two or three different scaling
factors). Indeed, compare Figures 3.4 and 3.11, where M = 3, with Fig-
ures 3.9 and 3.10, where M = 2. In the case of the Two-Three-Five string
of Example 3.48 (Figure 3.11), the density for negative real parts is ap-
proximately .77 (i.e., below average density), while for positive real parts
it is 1.08, slightly above average density. The density around vanishing real
part becomes as large as 2.1. Thus the complex dimensions of the Two-
Three-Five string show a phase transition between negative and positive
real part. It seems that for larger M , this phenomenon persists. Therefore,
we make the following conjecture:

Conjecture 3.56. As M → ∞, there exists a vertical line such that the
density of the complex dimensions off this line vanishes in the limit.

We close this chapter with two examples of nonlattice strings with four
scaling ratios. The first is a diagram of the complex dimensions and the
density of the real parts of the generic nonlattice string with r1 = 1/2,
r2 = 1/3, r3 = 1/5 and r4 = 1/7. See Figure 3.12. As was suggested
in Remark 3.51, the complex dimensions tend to be more concentrated
in the middle, away from Re s = D and Re s = Dl. We have used the
approximation log2 3 ≈ 699/441, log2 5 ≈ 1024/441 and log2 7 ≈ 1238/441.
Figure 3.13 gives a diagram of the complex dimensions of its nongeneric

counterpart, the self-similar string with scaling ratios r1 = 1/2, r2 = 1/3,
r3 = 1/4, and r4 = 1/6. Note that the group generated by these scaling
ratios, 2Z3Z, has rank 2.
Clearly, more mathematical experimentation—guided by our theoretical

investigations—is needed to determine the generality of this phenomenon
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Figure 3.12: The complex dimensions of the nonlattice string with M = 4 and
r1 = 1/2, r2 = 1/3, r3 = 1/5, r4 = 1/7; the accumulative density of the real
parts. The dotted lines and the associated markers are explained in Examples 3.46
and 3.48.
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Figure 3.13: The complex dimensions of the nongeneric nonlattice string with
M = 4 and r1 = 1/2, r2 = 1/3, r3 = 1/4, r4 = 1/6; the accumulative density
of the real parts. The dotted lines and the associated markers are explained in
Examples 3.46 and 3.48.
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and to formulate suitable additional conjectures regarding the fine structure
of the complex dimensions of nonlattice strings.

3.8 A Note on the Computations

The computations for the nonlattice examples were done using Maple.8

In each case, we approximated the nonlattice equation by a lattice one,
resulting in a polynomial equation of degree d between 400 and 5000. Solv-
ing the corresponding polynomial equation yields d complex numbers z in
an annulus, and the roots ω are given by ω = log z/ log r + 2kπi/ log r,
for k ∈ Z.

Remark 3.57. Note that Maple can also directly solve the nonlattice
equation numerically. However, Maple will just return one root, usually
D or a root in a specified rectangular region. To obtain all complex roots
in a given range, one would have to subdivide this range into many small
rectangles. This would have to be supplemented with an evaluation of f ′/f
around each rectangle to assure that all roots in that rectangle have been
found. On the other hand, when solving a polynomial equation numerically,
Maple returns a list of all roots, with their multiplicity. Also, on a more
theoretical level, there are advantages to solving a lattice equation corres-
ponding to a lattice approximation, as is done in this chapter. Indeed, this
technique allowed us to discover the quasiperiodic pattern of the roots.

In order to obtain Figure 2.10, we have approximated f(s) = 1−2−s−3−s

by
p(z) = 1− z306 − z485,

with z = 2−s/306 and r = 2−1/306. The corresponding lattice equation
with ratios r306 and r485 has a period of p = 2π · 306/ log 2 ≈ 2773.8. For
example, the real root

D ≈ .7878849110
of f is approximated by

D̃ ≈ D − .1287 · 10−5.

We have |f(D̃)| ≈ .11 · 10−5 and |f(D̃ + ip)| ≈ .39 · 10−2. As another ex-
ample, the root

ω̃ = .7675115443 + 45.55415979i
approximates a root ω of f , with an error

ω − ω̃ ≈ (−.12 + .75i) · 10−4.

Both |p(rω)| and |f(ω̃)| are approximately equal to .64·10−4, and |f(ω̃ + ip)|
approximately equals .40 · 10−2. Lemmas 3.29 and 3.39, along with Theo-
rems 3.32, 3.34 and 3.41 give theoretical information about the error of
approximation.

8The programs, and some documentation, are available on the webpage of the second
author at http://www.research.uvsc.edu/~machiel/programs.html.
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Since in the applications we consider only equations with real values for
the multiplicities mj , the roots come in complex conjugate pairs. Maple
normalizes log z so that the imaginary part lies between −πi and πi. For
the density graphs, we have taken the real parts of the roots log z/ log r for
those z with −πi ≤ Im z ≤ 0, and ordered these values. This way, we have
obtained a sequence of (d + 1)/2 or d/2 + 1 real parts v1 ≤ v2 ≤ . . . in
nondecreasing order. The density graph is a plot of the points (vj , j) for
1 ≤ j ≤ d/2 + 1.
Interestingly, if one takes the roots not in one full period, but up to some

bound for the imaginary part, the density graph is not smooth but seems
to exhibit a fractal pattern. For M = 2, this pattern can be predicted from
the α-adic expansion of T , see Section 3.5.1. This reflects the fact that roots
come in quasiperiodic arrays, each one slightly shifted from the previous
one, reaching completion only at a period.
The maximal degree 5000 is the limit of computation: It took several

hours with our software on a Sun workstation to compute the golden di-
agram, Figure 3.9, which involved solving a polynomial equation of de-
gree 4181. However, finding the roots of the polynomial is the most time-
consuming part of the computation. Since these polynomials contain only
a few monomials, there may exist ways to speed up this part of the com-
putation.



4
Generalized Fractal Strings
Viewed as Measures

In this chapter, we develop the notion of generalized fractal string, viewed
as a measure on the half-line. This is more general than the notion of fractal
string considered in Chapter 1 and in the earlier work on this subject (see
the notes to Chapter 1). We will use this notion in Chapter 5 to formulate
the explicit formulas which will be applied throughout the remaining chap-
ters. Besides ordinary fractal strings, generalized fractal strings enable us
to deal with strings whose lengths vary continuously or whose multiplicities
are nonintegral or even infinitesimal. In Section 4.2, we discuss the spec-
trum of a generalized fractal string, and in Section 4.3, we briefly discuss
the notion of generalized fractal spray, which will be used in Chapters 9
and 11.
The conceptual difficulties associated with the notion of frequency with

noninteger multiplicity led us to introduce the formalism of generalized
fractal strings presented in this chapter. The flexibility of the language of
measures allows us to deal in a natural way with nonintegral multiplicities,
in the case of discrete measures, as in Example 4.8 and Chapter 10, and
even to formalize the intuitive notion of infinitesimal multiplicity in the
case of continuous measures, as in Sections 9.2 and 10.3.
In Section 4.4, we study the properties of the measure associated with

a self-similar string (defined as in Chapter 2). Although Section 4.4 is of
interest in its own right, it may be omitted on a first reading since it will
not be used in the rest of this book.
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4.1 Generalized Fractal Strings

For a measure η, we denote by |η| the total variation measure associated
with η (see, e.g., [Coh, p. 126] or [Ru2, p. 116]),

|η|(A) = sup
{

m∑
k=1

|η(Ak)|
}

, (4.1)

where m ≥ 1 and {Ak}m
k=1 ranges over all finite partitions of A into disjoint

measurable subsets of (0,∞). Recall that |η| is a positive measure and
that |η| = η if η is positive. (See Remark 4.3 below and [Coh, Chapter 4]
or [Ru2, Chapter 6].)

Definition 4.1. (i) A generalized fractal string is either a local complex
or a local positive measure η on (0,∞), such that

|η|(0, x0) = 0

for some positive number x0. (See Remark 4.3 below.)

(ii) The counting function of the reciprocal lengths, or geometric counting
function of η, is defined asNη(x) =

∫ x

0
dη. If the measure η has atoms,

it is necessary to specify how the endpoint is counted. Throughout
the book, we adopt the convention that x is counted half; i.e.,

Nη(x) =
∫ x

0

dη := η(0, x) +
1
2
η({x}). (4.2)

(iii) The dimension of η, denoted D = Dη, is the abscissa of convergence
of the Dirichlet integral ζ|η|(σ) =

∫∞
0

x−σ |η|(dx). In other words, it is
the infimum of the real numbers σ such that the improper Riemann–
Lebesgue integral

∫∞
0

x−σ |η|(dx) converges and is finite:

D = Dη = inf
{
σ ∈ R :

∫∞
0

x−σ |η|(dx) <∞
}
. (4.3)

(iv) The geometric zeta function is defined as the Mellin transform of η,

ζη(s) =
∫ ∞

0

x−s η(dx), (4.4)

for Re s > Dη.

By convention, Dη =∞ means that x−σ is not |η|-integrable for any σ,
and Dη = −∞ means that x−σ is |η|-integrable for all σ in R. In this last
case, ζη is a holomorphic function, defined by its Dirichlet integral (4.4) on
the whole complex plane. (See, for example, [Pos, Sections 2–4] or [Wid].)
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Note that if η is a continuous measure (i.e., η({x}) = 0 for all x > 0),
then Nη(x) = η(0, x) = η(0, x]. On the other hand, if η is discrete, say

η =
∑

l

wlδ{l−1}

(see Section 1.1.1 for a discussion of the multiplicities wl), then

Nη(x) =
∑

l−1<x

wl +
1
2
w1/x,

with the convention that w1/x vanishes if x is not one of the reciprocal
lengths l−1.

Remark 4.2. In general, for example in a fractal spray, the lengths play
the role of scales.

Remark 4.3. There is a simple technical point that needs to be clarified
here. Indeed, since we have to use integrals of the type

∫∞
0

f(x) η(dx), for
suitable functions f (see, for example, Equations (4.2) and (4.4) above),
some caution is necessary in dealing with measures on (0,∞).
A local positive measure (or a locally bounded positive measure) is just

a standard positive Borel measure on (0,∞) which satisfies the following
local boundedness condition:

η(J) <∞, for all bounded subintervals J of (0,∞). (4.5)

In this case, we have η = |η| on every bounded Borel subset of (0,∞).
More generally, we will say, much as in [DolFr, Definition 6.1, p. 179],

that a (complex-valued or else [0,+∞]-valued) set function η on the half-
line (0,∞) is a local complex measure on (0,∞) if, for every compact subin-
terval [a, b] of (0,∞), the following conditions are satisfied: (i) η(A) is well
defined for any Borel subset A of [a, b], and (ii) the restriction of η to the
Borel subsets of [a, b] is a complex measure on [a, b] in the traditional sense.
(See, e.g., [Coh, Chapter 4] or [Ru2, Chapter 6]. It follows, by [Ru2, Theo-
rems 6.2 and 6.4, pp. 117 and 118], that η is of bounded total variation
on [a, b].) According to the aforementioned results, the measure |η| is finite
and positive on each bounded subinterval of (0,∞). Note that a local pos-
itive measure is simply a local complex measure which takes its values in
[0,+∞] (rather than in C).
In addition to [DolFr, §5.5 and §1.6], we refer to the later work [JohLap,

Chapters 15–19, esp. Sections 17.6, 15.2.F and 19.1] and the relevant ref-
erences therein, where similar issues had to be dealt with.
A reader unconcerned with such technicalities or else unfamiliar with the

notion of complex measure may assume throughout that a generalized frac-
tal string is a positive Borel measure on (0,∞) satisfying condition (4.5)
above (and which does not carry mass near 0). In Sections 9.3 and 11.4,
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however, we will use generalized fractal strings associated with local com-
plex measures.
For simplicity, we will drop from now on the adjective “local” when

referring to the measure associated with a general fractal string.

As in Chapter 1, we are interested in the meromorphic continuation of the
function ζη. We define the screen S and the window W as in Section 1.2.1.
Let S : R → [−∞, D] be a bounded continuous function. The screen, also
denoted by S, is the curve

S : S(t) + it (t ∈ R) (4.6)

(see Figure 1.6 of Section 1.2.1), and the window is the closed part of the
plane to the right of the screen S,

W = {s ∈ C : Re s ≥ S(Im s)}. (4.7)

We assume that ζη has a meromorphic continuation to an open neighbor-
hood of W . We also require that ζη does not have any pole on S. The
poles of ζη inside W will be called the visible complex dimensions and
the associated set is denoted by Dη(W ); namely, the set of visible complex
dimensions of η is

Dη = Dη(W ) = {ω ∈W : ζη has a pole at ω}. (4.8)

See Section 5.1.1 for an explanation of the role of the screen in the explicit
formulas.
As in the case of ordinary fractal strings, Dη(W ) is a discrete subset of C.

Hence, its intersection with any compact subset of C is finite. Moreover,
since, by definition, ζη is holomorphic for Re s > D, where D is the dimen-
sion of η, it follows that Dη is contained in the closed half-plane Re s ≤ D.
Also, if η is a positive measure, then the exact counterpart of Remark 1.14
holds. That is, D is a singularity of ζη.
In applying our explicit formulas, obtained in the next chapter, it will

sometimes be useful to change the location of the screen S, even for a fixed
choice of η. See Section 5.5 for examples. However, when no ambiguity
arises regarding the choice of the string η and the location of the screen
(and hence of the associated window W ), we will simply write Dη instead
of Dη(W ).
If W = C, then Dη(C) is called the set of complex dimensions of η. In

this case, we set formally S(t) ≡ −∞ and do not define the screen.

Remark 4.4. Assume that W is symmetric with respect to the real axis
(i.e., the function S(t) defining the screen is even, so that W is equal to W ,
the complex conjugate of W ). If η is a real-valued measure, then ζη(s)
is real-valued for real s and hence the set of complex dimensions Dη(W )
is symmetric with respect to the real axis; that is, ω ∈ Dη(W ) if and
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only if ω ∈ Dη(W ). This was the case, of course, for all standard fractal
strings considered in Chapters 1, 2 and 3, since the measure associated with
the fractal string {lj}∞j=1 is η =

∑∞
j=1 δ{l−1

j }. Consequently, the explicit
formulas of the next chapter are real-valued when applied to a fractal string.
We call this the reality principle; see also Remark 1.6.

4.1.1 Examples of Generalized Fractal Strings

Our definition of a generalized fractal string includes our previous definition
of Section 1.1. With an ordinary fractal string L, composed of the sequence
of lengths {lj}∞j=1 (counted with multiplicity), we associate the positive
measure

μL =
∞∑

j=1

δ{l−1
j }. (4.9)

Here and in the following, we use the notation δ{x} for the point mass (or
Dirac measure) at x; i.e., for a set A ⊂ (0,∞), δ{x}(A) = 1 if x ∈ A and
δ{x}(A) = 0 otherwise.
In the geometric situation, as considered in the first three chapters, η is a

discrete measure with integer multiplicities because each length is repeated
an integer number of times. In the applications, however, we will often need
to consider discrete strings

η =
∑

l

wlδ{l−1}

with noninteger multiplicities wl. In fact, this was one of our initial mo-
tivations for introducing the notion of generalized fractal strings and for
viewing them as measures. Note also that the Dirichlet polynomials (see
Chapter 3) fit into this framework.
An example of such a discrete nongeometric string is provided by the

generalized Cantor string . For 1 < b < a, we define a string consisting of
lengths a−n with multiplicity bn. The associated measure is

∞∑
n=0

bnδ{an}. (4.10)

If b is integral, this is an ordinary fractal string. For arbitrary b, we study
the generalized Cantor string in Section 8.4.1 and Chapter 10, and use it
in Chapter 11.
In Chapter 10, we also study the so-called truncated Cantor strings,

defined for a positive integer Λ by the measure

1
Λ log a

xD−1

(
sinπΛt

sinπt

)2

dx, where x = at.
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Thus each length has a nonnegative but infinitesimal multiplicity, and close
to the length a−n, the multiplicities add up to almost bn, for n = 0, 1, 2, . . . .
See Section 10.3.
We note two additional examples. First, the harmonic string (introduced

in [Lap2, Example 5.4(ii), pp. 171–172] and further discussed in [Lap3,
pp. 144–145]) is given by the positive measure1

h =
∞∑

j=1

δ{j}. (4.11)

This string does not have finite total length. In fact, its lengths are 1, 1/2,
1/3, . . . , 1/n, . . . , each counted with multiplicity one, and hence the total
length of h is

∑∞
n=1 1/n = ∞. Its dimension is 1. Since, by definition,

ζh(s) =
∑∞

j=1 j−s (for Re s > 1), the associated geometric zeta function is
equal to the Riemann zeta function (as was noted in [Lap2, p. 171]),

ζh(s) = ζ(s). (4.12)

Secondly, the prime string is defined by the positive measure

P =
∑

m≥1, p

(log p) δ{pm}, (4.13)

where p runs over all prime numbers. Note that P is not an ordinary
fractal string because the reciprocal lengths pm (that is, the prime powers)
have noninteger multiplicity log p. Next, we use (and reinterpret) a well-
known identity (see, e.g., [In, Eq. (14), p. 17] or [Pat, p. 9]). By logarithmic
differentiation of the Euler product representation of ζ(s),

ζ(s) =
∏
p

1
1− p−s

, (4.14)

valid for Re s > 1, we obtain

−ζ ′(s)
ζ(s)

=
∑

m≥1, p

(log p) p−ms.

Therefore we see that the geometric zeta function of P is given by

ζP(s) = −
ζ ′(s)
ζ(s)

(s ∈ C). (4.15)

Thus this string is one-dimensional and its complex dimensions are the
zeros of the Riemann zeta function, counted without multiplicity, and the
simple pole at s = 1.

1The harmonic string could also be called the Riemann string, as was suggested to
the first author by Victor Kac.
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Recall that the zeros of ζ consist of the critical (or nontrivial) zeros,
located in the critical strip 0 ≤ Re s ≤ 1, and the trivial zeros, which are
simple and located at the even negative integers, −2,−4,−6, . . . . It is well
known that ζ does not have any zero on the vertical line Re s = 1 (see,
e.g., [In, Theorem 10, p. 28]), and hence it has no zeros on Re s = 0 either.
The Riemann hypothesis states that the critical zeros of ζ are all located
on the critical line Re s = 1/2. See, for example, Chapter 9, Section 11.1,
and [Ti], [Edw] or [Da].

4.2 The Frequencies of a
Generalized Fractal String

In general, there is no clear interpretation for the frequencies of a gener-
alized fractal string. (See, however, Section 11.1.1.) Therefore, we simply
adopt the following definition, motivated by the case of an ordinary fractal
string (see Section 1.3 and Remark 4.6 below).

Definition 4.5. For a generalized fractal string �, the spectral measure2 ν
of � is defined by

ν(A) = �(A) + �

(
A

2

)
+ �

(
A

3

)
+ . . . , (4.16)

for each bounded (Borel) set A ⊂ (0,∞).
The spectral zeta function of � is defined as the geometric zeta function

of the measure ν.

Note that the sum defining ν(A) is finite because A is bounded and |�|
is assumed to have no mass near 0. Indeed, choose k large enough so that
k−1A ⊂ (0, x0), where |�|(0, x0) = 0. Then �

(
k−1A

)
= 0.

For notational simplicity (see the comment following Definition 1.18),
we do not explicitly indicate the dependence of ν on �. In particular, ζν

and Nν , the associated spectral counting function, depend on �.
We will give an alternative expression for ν in Equation (4.20) below,

where we should set η = �. By abuse of language, we will also consider ν as
a generalized fractal string.3 This way, we can conveniently formulate the
explicit formulas for the geometric (η = �) as well as the spectral (η = ν)
situation.

2Caution: This should not be mistaken with the notion of spectral measure encoun-
tered in the spectral theory of self-adjoint operators (see, e.g., [ReSi1]), which will not
be used in this book.

3Indeed, one checks that |ν|(0, x0) = 0 if |�|(0, x0) = 0. Thus |ν| does not have mass
near 0 and ν is a local measure on (0,∞).
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Remark 4.6. When � =
∑∞

j=1 δ{l−1
j } is the measure associated with an

ordinary fractal string L = l1, l2, . . . as in Section 1.3, then by Equa-
tion (1.38) of Theorem 1.19, ζν coincides with the spectral zeta function
of L, as defined by Equation (1.35). Also, in view of (4.2), (4.16) and foot-
note 1 of Chapter 1, Nν coincides with the spectral counting function of L,
as defined by Equation (1.34).

Much as in the proof of Theorem 1.19, one shows that ζν(s), the spec-
tral zeta function, is obtained by multiplying ζL(s) by the Riemann zeta
function. In other words,

ζν(s) =
∫ ∞

0

x−s ν(dx) = ζ�(s) · ζ(s), (4.17)

where ζ(s) =
∑∞

n=1 n−s is the Riemann zeta function.

Definition 4.7. The convolution4 of two strings η and η′ is the measure
η ∗ η′ defined by ∫

f d(η ∗ η′) =
∫∫

f(xy) η(dx)η′(dy). (4.18)

One easily checks that

ζη∗η′(s) = ζη(s)ζη′(s). (4.19)

Thus the spectral zeta function of a string η is simply the zeta function
associated with the string η ∗ h. Indeed, in view of (4.16) and (4.18), one
can easily check that the spectral measure of η is given by

ν = η ∗ h, (4.20)

where h is the harmonic string defined by formula (4.11) above.
In particular, the spectral measure ν of an ordinary fractal string L =

{lj}∞j=1, viewed as the measure η =
∑∞

j=1 δ{l−1
j }, is given by

ν =
∑

f

w
(ν)
f δ{f}

= η ∗ h

=
∞∑

n,j=1

δ{n·l−1
j },

(4.21)

in agreement with (1.32). Here, f runs over the (distinct) frequencies of L
and w

(ν)
f denotes the multiplicity of f , as in (1.33). Note that in view

of (4.19), we recover Equation (1.35) (respectively, (1.38)) from the first
(respectively, second) equality of (4.21).

4This is a multiplicative (rather than an additive) convolution of measures on R∗
+. It

is called the tensor product in [JorLan2].
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Example 4.8 (The frequencies of the prime string). We compute in two
different ways the frequencies of the prime string P, defined by (4.13).
We will first do this by evaluating the spectral zeta function of P, the
function ζν(s) = ζν,P(s).
According to Equations (4.15) and (4.17), we have

ζν(s) = ζP(s) · ζ(s) = −
ζ ′(s)
ζ(s)

· ζ(s) = −ζ ′(s),

where ζ ′(s) is the derivative of the Riemann zeta function.
Next, since ζ(s) =

∑∞
n=1 n−s for Re s > 1, we obtain (for Re s > 1),

ζν(s) = −ζ ′(s) =
∞∑

n=1

(logn)n−s. (4.22)

In view of Equation (4.17), we deduce from (4.22) that

ν =
∞∑

n=1

(logn) δ{n}. (4.23)

Hence, the prime string P has for frequencies all the positive integers
1, 2, . . . , n, . . . , and the frequency n has a noninteger multiplicity logn.
In contrast, both the lengths and the frequencies of an ordinary fractal
string have integer multiplicities. By (4.13) and (4.23), this is not the case
for P.
It is also instructive to recover this result by determining directly the

spectral measure ν associated with P. Namely, in view of formula (4.18),
we have

δ{x} ∗ δ{y} = δ{xy}. (4.24)

Then, in view of formulas (4.11), (4.13) and (4.20), we have, successively

ν =
∑

m≥1, p

(log p) δ{pm} ∗
∑
k≥1

δ{k}

=
∑

m,k≥1, p

(log p) δ{pm·k}

=
∑
n≥1

δ{n}
∑

m≥1, p : pm |n
log p.

as was found in (4.23). Here, as before, p runs over all prime numbers.
Now, for a fixed prime number p, we have that

∑
m≥1, pm |n log p = log pm,

so that
∑

m≥1 p : pm |n log p = logn by unique factorization of integers into
prime powers. Thus we conclude that

ν =
∑
n≥1

(logn) δ{n}.
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4.2.1 Completion of the Harmonic String : Euler Product

It is noteworthy that the harmonic string itself is the infinite convolution
over all prime numbers of what one could call the elementary prime strings.
Define

hp =
∞∑

j=0

δ{pj}, (4.25)

for every prime number p. Then

h = ∗
p
hp, (4.26)

where p ranges over all prime numbers. (Here, as in (4.18), ∗ denotes
the multiplicative convolution of measures.) This corresponds to the Euler
product of the Riemann zeta function, recalled in formula (4.14) above.
Indeed,

ζhp(s) =
1

1− p−s
, (4.27)

the p-th Euler factor of ζ(s), and for Re s > 1,

ζ∗p hp(s) =
∏
p

1
1− p−s

= ζ(s). (4.28)

To obtain ζR(s) = Γ(s/2)π−s/2, the Euler factor at infinity of the completed
Riemann zeta function, where Γ denotes the classical gamma function (see
Appendix A, Section A.3), one has to convolve one more time with the
continuous measure

h∞(dx) = 2e−πx−2 dx

x
, (4.29)

which is not a string in our sense, because it has positive (albeit extremely
small) mass near 0.
In summary, we have the following adelic decomposition (in the sense of

Tate’s
thesis [Ta]) of the completed harmonic string hc := h∞ ∗ h:

hc = h∞ ∗
(
∗
p
hp

)
, (4.30)

where h∞ is the continuous measure defined by (4.29) and where the infinite
convolution product runs over all prime numbers p. One computes that this
is the measure

hc(dx) =
(
θ(x−1)− 1

) dx

x
,
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where the theta function5 is defined by

θ(x) =
∞∑

n=−∞
e−πn2x2

.

It is well known that θ(1/x) = xθ(x) (see, e.g., [Ta]). Hence

θ(x) = 1 + 2e−πx2
+O

(
e−4πx2

)
as x→∞

and

θ(x) =
1
x

(
1 +O

(
e−π/x2

))
as x→ 0.

Thus the measure hc has density about 2e−π/x2
near 0, and density 1 near

infinity, as does h. Note, however, that hc, like h∞, is not a measure that
fits in our framework since it does not vanish in a neighborhood of x = 0,
even though it is very small near 0.
Correspondingly, the completed Riemann zeta function (as in [Ta], but

defined slightly differently from either [Da, Chapter 12] or [Edw, §1.8]) is
given by

ξ(s) = ζhc(s) = π−s/2Γ (s/2) ζ(s). (4.31)

The function ξ is meromorphic in all of C, with simple poles at s = 0 and
at s = 1. Since the measure hc has nonzero mass near 0, this function grows
faster than exponentially as s →∞.
We leave it to the interested reader to investigate how the functional

equation for ξ, namely,

ξ(s) = ξ(1− s) (s ∈ C), (4.32)

translates in terms of the measure hc.
It is noteworthy that the partition function (or theta function) of h,

defined as the Laplace transform of h,

θh(t) :=
∫ ∞

0

e−tx h(dx), (4.33)

for t > 0, is given by the function

θh(t) =
1

et − 1 . (4.34)

We refer to Section 6.2.3 below for further discussion of the partition func-
tion of a fractal string.

5The classical theta function is defined by making the change of variable x2 = −iτ ,
where τ has positive imaginary part.
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4.3 Generalized Fractal Sprays

As in Section 1.4, we can consider basic shapes B other than the unit
interval, scaled (in a formal sense) by the generalized fractal string η. Thus
we define the spectral zeta function of the generalized fractal spray of η on
the basic shape B as

ζν(s) = ζη(s) · ζB(s). (4.35)

When η is an ordinary fractal string L, then we recover the notion of
ordinary fractal spray (of L on B) from [LapPo3] and Section 1.4. Further,
in view of (1.46), ζν coincides with the spectral zeta function of an ordinary
fractal spray, as defined by (1.43).
For later applications, we need to further extend the notion of general-

ized fractal spray by going beyond the geometric situation when the basic
shape B is an actual region in some space. That is, we sometimes define B
only virtually by its associated spectral zeta function, ζB(s), which can be
any given generalized Dirichlet series or Dirichlet integral. Then the spec-
tral zeta function of such a spray (of η on B) is still given by (4.35). More
precisely, if

ζB(s) =
∫ ∞

0

x−sρ(dx) (4.36)

for some measure ρ, then, by definition, the spectral measure of such a
virtual generalized fractal spray is given by

ν = η ∗ ρ, (4.37)

from which (by (4.19)) relation (4.35) follows.
This extension will allow us to investigate the properties of any zeta

function (or generalized Dirichlet series) ζB , as will become particularly
apparent in Sections 9.3 and 11.2.

4.4 The Measure of a Self-Similar String

In this section, we investigate some of the properties of the measure as-
sociated (as in Section 4.1) with a self-similar string (with a single gap),
introduced in Chapter 2. As was mentioned in the introduction to this chap-
ter, the present section—which is of independent interest—can be omitted
on a first reading.

Let L be a self-similar string with a single gap, as in Section 2.2.1, con-
structed with the scaling ratios r1, . . . , rN and normalized such that the
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first length is 1; i.e., the total length is L = g−1
1 , by Remark 2.6. By Equa-

tions (4.9) and (2.7), the measure μL associated with L is

μL =
∑

e1≥0,...,eN≥0

(
Σe
e

)
δ{r−e}, (4.38)

where the sum is over all N -tuples of nonnegative integers e = e1, . . . , eN .
Here and in the following, we use the multi-index notation

Σe =
N∑

j=1

ej , (4.39a)

(
Σe
e

)
=

(
Σe

e1 ldotseN

)
, (4.39b)

r−e =
N∏

j=1

r
−ej

j , (4.39c)

and we will use e ≥ 0 for e1 ≥ 0, . . . , eN ≥ 0. (See formula (2.6) for the
definition of the multinomial coefficient

(
Σe
e

)
.)

For a scaling factor t, we let tA be the set {tx : x ∈ A}. Further, for a
predicate P , we let δP be 1 if P is true, and 0 otherwise.

Theorem 4.9. The measure μL defined by (4.38) satisfies the following
scaling property, which we call its self-similarity property:

μL(A) = δ1∈A +
N∑

j=1

μL(rjA), (4.40)

for every subset A of (0,∞).
Moreover, μL is completely characterized by this property. In other words,

every generalized fractal string satisfying this property necessarily coincides
with μL.

Proof of Theorem 4.9. The measure of A is

μL(A) =
∑
e≥0

(
Σe
e

)
δr−e∈A, (4.41)

and that of rjA is

μL(rjA) =
∑
e≥0

(
Σe
e

)
δr−e∈rjA

=
∑
e≥0

(
Σe
e

)
δr−er−1

j ∈A

=
∑

e≥0, ej≥1

(
Σe− 1

e1, . . . , ej − 1, . . . , eN

)
δr−e∈A.
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We sum these expressions over j and use the following generalization for
multinomial coefficients of the usual property of binomial coefficients:

N∑
j=1

δej≥1

(
Σe− 1

e1, . . . , ej−1, ej − 1, ej+1, . . . , eN

)
=

(
Σe
e

)
,

where only ej has been decreased by one. We find

N∑
j=1

μL(rjA) =
N∑

j=1

∑
e≥0

(
Σe− 1

e1, . . . , ej − 1, . . . , eN

)
δej≥1δr−e∈A

=
∑
e≥0

δr−e∈A

N∑
j=1

δej≥1

(
Σe− 1

e1, . . . , ej − 1, . . . , eN

)

=
∑
e>0

(
Σe
e

)
δr−e∈A,

where the notation e > 0 indicates that e = (0, 0, . . . , 0) is excluded. We
recover formula (4.41) for μL(A), except for the first term, corresponding
to e = (0, . . . , 0). This term is δ1∈A. Thus μL satisfies relation (4.40), as
claimed.
Next, let η be a string that satisfies this same relation. Then η− μL is a

measure η′ that satisfies

η′(A) =
N∑

j=1

η′(rjA). (4.42)

We will show that this implies that η′ = 0. Since every measure is deter-
mined by its values on bounded sets, we can assume that A is bounded.
Since η′ is a generalized fractal string, there exists x0 such that η′ = 0
on (0, x0). So we are done ifA is contained in this interval. Suppose now that
we know that η′ = 0 on (0, x0r

−k
1 ). Then if A is contained in

(
0, x0r

−(k+1)
1

)
,

the sets rjA are contained in (0, x0r
−k
1 ), because rj ≤ r1, for j = 1, . . . , N .

Hence η′(A) = 0 by relation (4.42). It follows that η′(A) = 0 for all bounded
subsets A of (0,∞). Hence η′ = 0 and so η = μL. This completes the proof
of the theorem.

4.4.1 Measures with a Self-Similarity Property

It follows from the above proof that a measure η on (0,∞) vanishes if it
satisfies

η(A) =
N∑

j=1

η(rjA) (4.43)
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and is supported away from 0. It is interesting to study how η is deter-
mined when it has mass near 0. Assume that η is absolutely continuous
with respect to the measure dx/x, the Haar measure on the multiplicative
group R∗

+. Thus, there is a Borel measurable function f on (0,∞) such that
η(dx) = f(x) dx/x. Then f satisfies the relation

f(x) =
N∑

j=1

f(rjx), (4.44)

for all x > 0.
Choose some r ∈ (0, 1) and write rj = rkj for positive real numbers kj

with 0 < k1 ≤ . . . ≤ kN . Let g(t) = f (r−t), for t ∈ R. The function g has
the following periodicity property:

g(t) =
N∑

j=1

g (t− kj) , (4.45)

for all t ∈ R. We cannot deal with such functions in general (see Prob-
lem 4.11 below), but we can handle them when η is a lattice string in the
sense of Definition 2.14.
In the lattice case, we choose the multiplicative generator, r, of η, and

hence positive integers kN ≥ · · · ≥ k1, such that rj = rkj for j = 1, . . . , N .
(See Definition 2.14.) Then g is determined on Z, for example, if g(0), g(1),
. . . , g(kN − 1) are chosen, and in general, g is determined on R when g
is given on the interval [0, kN ). We can solve the associated recursion by
using the next proposition.

Proposition 4.10. The solution space of the recursion relation

an =
N∑

j=1

an−kj
(n ∈ Z)

has dimension kN . For each complex solution z of the polynomial equation

zkN =
N∑

j=1

zkN−kj , (4.46)

of multiplicity m(z), we obtain m(z) solutions

n �→ nqzn (n ∈ Z),

of the recursion relation, for each integer q between 0 and m(z)− 1.
Alternatively, for every t ∈ R, we obtain m(z) solutions

n �→ (n+ t)qzn+t (n ∈ Z).

These solutions (for fixed t, and all z and q, 0 ≤ q ≤ m(z) − 1) form a
basis of the solution space.
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Thus, if the values g(0), g(1), . . . , g(kN − 1) are known, then there exist
coefficients cz,q such that g(n) =

∑
z

∑m(z)−1
q=0 cz,qn

qzn for all natural num-
bers n ≥ 0, where z runs through the solutions of (4.46). More generally,
for each t ∈ [0, 1), if g(t), g(t+ 1), . . . , g(t+ kN − 1) are known, then there
exist coefficients cz,q(t) such that

g(n+ t) =
∑

z

m(z)−1∑
q=0

cz,q(t)(n+ t)qzn+t.

We extend the definition of cz,q(t) by periodicity: Thus cz,q(t) is defined
by cz,q({t}), where {t} = t − [t] is the fractional part of t. The func-
tions cz,q(t) have a Fourier series expansion: cz,q(t) =

∑
n∈Z cz,q,ne2πint.

We thus find the following expansion for the general function with period-
icity property (4.45):

g(t) =
∑

z

m(z)−1∑
q=0

∑
n∈Z

cz,q,ne2πinttqzt. (4.47)

This argument is justified if we impose some integrability condition on g.
A convenient condition is that g is locally L2; i.e., |g|2 has a finite integral
on every compact subset of the real line. Then the coefficients cz,q(t) are
locally L2, which is equivalent to the condition that for every z and q
the sequence of Fourier coefficients cz,q,n is square-summable: for every z
and q,

∑
n∈Z |cz,q,n|2 < ∞. Since there are only finitely many z and q, this

is equivalent to
∑

z

∑m(z)−1
q=0

∑
n∈Z |cz,q,n|2 < ∞.

In multiplicative terms, we obtain the following expansion for f :

f(x) =
∑

z

m(z)−1∑
q=0

∑
n∈Z

cz,q,nxinp(− logr x)qz− logr x, for x > 0,

with p = 2π/ log r−1, the oscillatory period of the given lattice string.
Recall from Theorem 2.17 that the complex dimensions ω of the lattice
string L are the solutions of the equation 1 =∑N

j=1 rkjω and that they lie
periodically with period p on finitely many lines. Thus, to every z there
corresponds an ω such that z = r−ω. Choose complex dimensions ωz, one
for each solution z. This means that we choose one ωz on every line of poles
of ζL. Observe that z− logr x = xωz and that ωz+ inp runs over all complex
dimensions. Thus we find that

f(x) =
∑
ω

m(ω)−1∑
q=0

cω,q(− logr x)qxω. (4.48a)

Here, ω runs over all complex dimensions of L, and q runs from 0 to the
multiplicity of ω minus one. The coefficients are determined by cω,q = cz,q,n
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for ω = ωz + inp, and they are square-summable. This expression is very
similar to the explicit formulas that we shall derive in the next chapter. In
case all complex dimensions of L are simple, we obtain

f(x) =
∑
ω

cωxω. (4.48b)

For a nonlattice string, there is no natural choice for r. We set r = 1/e
and we formulate the following open problem, which may be solvable using
the techniques of the next chapter.

Problem 4.11. Let L be a self-similar string, constructed with scaling
ratios r1, . . . , rN and a single gap g1, normalized as in Remark 2.6. Show
that every function f that is locally L2 on (0,∞) and satisfies the self-
similarity relation (4.44) has an expansion of the following form:

f(x) =
∑

ω∈DL(C)

m(ω)−1∑
q=0

cω,q(log x)qxω, for x > 0, (4.49)

where ω runs over the complex dimensions of the string L and m(ω) is
the multiplicity of ω. Further, show that the coefficients cω,q in (4.49) are
uniquely determined by f and that they are square-summable.

The reader may first try to solve the special case of simple complex
dimensions:

Problem 4.12. If all the complex dimensions of L are simple in the sit-
uation of Problem 4.11, then show that

f(x) =
∑

ω∈DL(C)

cωxω, for x > 0. (4.50)

4.5 Notes

Our point of view in this chapter is more general than that of [JorLan2] in
the sense that we allow for infinitesimal multiplicities, but less general in
the sense that they allow for complex ‘lengths’. Of course, the interpretation
in [JorLan2] is not in terms of lengths and complex dimensions of fractal
strings. Moreover, the notions of screen and window for the meromorphic
continuation of the Dirichlet integral ζη are not used in that work.
Section 4.4: the measure μL on (0,∞) is not a self-similar measure in

the sense encountered in the literature on fractal geometry; compare, e.g.,
[Hut; Fa1, §8.3] and [Str1–2, Lap5–6].



5
Explicit Formulas for
Generalized Fractal Strings

In this chapter, we obtain pointwise and distributional explicit formulas for
the lengths and the frequencies of a fractal string. These explicit formulas
express the counting function of the lengths or of the frequencies as a
sum over the visible complex dimensions ω of the fractal string. To unify
the exposition, and with a view toward later applications, we formulate
our results in the language of generalized fractal strings, introduced in
Chapter 4.
After having introduced some necessary notation and given a heuris-

tic proof of one of our formulas in Section 5.1, we discuss some technical
preliminaries in Section 5.2. Our pointwise explicit formulas are proved in
Section 5.3, while our distributional explicit formulas and various useful
extensions are established in Section 5.4. Finally, in Section 5.5, we close
the chapter by explaining how to apply our explicit formulas to reprove the
classical Prime Number Theorem (with error term). Many additional exam-
ples illustrating our theory will be discussed in Chapter 6 and throughout
the remainder of the book.

5.1 Introduction

Our explicit formulas will usually contain an error term. In most ap-
plications, this error term will be given by an integral over the vertical
line Re s = σ0, for some value of σ0. In general, it will be given by an in-
tegral over the screen S, introduced in Section 1.2.1. When applied to a
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nonlattice self-similar fractal string, the theory of dimension-free regions
developed in Chapter 3 (see especially Section 3.6) will allow us to maxi-
mally exploit a suitable choice of the screen.
We have defined Nη(x), the counting function of the reciprocal lengths,

in Definition 4.1(ii), formula (4.2). In our framework, it will be very useful
to also consider the integrated versions of the counting function. We will
denote by N

[k]
η the k-th primitive (or k-th antiderivative) of η, vanishing

at 0. Thus

N [k]
η (x) =

∫ x

0

(x− y)k−1

(k − 1)! η(dy), (5.1)

for x > 0 and k = 1, 2, . . . . In particular, Nη = N
[1]
η is the antiderivative

of η, vanishing at 0. Note thatN
[k]
η is a continuous function as soon as k ≥ 2.

In general, N
[k]
η is (k − 2) times continuously differentiable for k ≥ 2.

Formally, and this will be completely justified distributionally,

N [0]
η =

d

dx
Nη = η. (5.2)

The pointwise formulas give an expression for N
[k]
η (x), valid for all x > 0

(or all x > A for some A > 0) and all k ≥ 1 sufficiently large.
The distributional formulas describe η as a distribution: on a test func-

tion ϕ, the distribution η acts by

〈η, ϕ〉 =
∫ ∞

0

ϕ(x) η(dx). (5.3)

The k-th primitive of this distribution will be denoted by P [k]
η . More pre-

cisely, P [k]
η is the distribution given for all test functions ϕ by〈

P [k]
η , ϕ

〉
= (−1)k

〈
η,P [k]ϕ

〉
, (5.4)

where P [k]ϕ is the k-th primitive of ϕ that vanishes at infinity together
with its derivatives. Thus, for a test function ϕ,〈

P [k]
η , ϕ

〉
=

∫ ∞

0

∫ ∞

y

(x− y)k−1

(k − 1)! ϕ(x) dx η(dy), (5.5)

and P [0]
η = η.

For the general theory of distributions (or generalized functions, in the
sense of Laurent Schwartz), we refer, e.g., to [Schw1–2, Hö2,ReSi1–2]. We
recall from that theory that any locally integrable function f on (0,∞) de-
fines a distribution in the obvious manner. Specifically, for any measurable
function on (0,∞) such that

∫ b

a
|f(x)| dx is finite for every [a, b] ⊂ (0,∞),

〈f, ϕ〉 =
∫ ∞

0

f(x)ϕ(x) dx, (5.6)
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for all test functions ϕ with compact support contained in (0,∞). This
applies in particular, for each fixed k ≥ 1, to the k-th integrated counting
function, f(x) = N

[k]
η (x), associated with an arbitrary generalized fractal

string η.

5.1.1 Outline of the Proof

In this section, we discuss heuristically how the pointwise explicit formula is
established. We will derive a pointwise formula for η, even though, to make
the argument rigorous, this formula has to be interpreted distributionally.
Our starting point is an expression for the Dirac delta function at y as

a Mellin transform,

1
2πi

∫ c+i∞

c−i∞
xs−1y−s ds = δ{y}(x),

for c > 0. This is Lemma 5.1 below, applied formally for k = 0. For the
moment, we interpret δ{y} as a function, which is why the present argument
is not rigorous. Viewing the measure η as a superposition of delta functions,
we write

η(x) =
∫ ∞

0

δ{y}(x) η(dy) =
∫ ∞

0

1
2πi

∫ c+i∞

c−i∞
xs−1y−s ds η(dy).

For c > D, we interchange the order of integration and use the expression
for the geometric zeta function ζη(s) =

∫∞
0

y−s η(dy) to deduce that

η(x) =
1
2πi

∫ c+i∞

c−i∞
xs−1ζη(s) ds.

This expresses η(x) as the inverse Mellin transform of ζη(s). In order to
obtain information about η, we need to push the line of integration Re s = c
as far to the left as possible. When we push it to the screen S, we pick up
a residue at each complex dimension ω of η. Thus, we obtain the density
of lengths (or density of geometric states) formula:

η =
∑

ω∈Dη(W )

res
(
xs−1ζη(s);ω

)
+

1
2πi

∫
S

xs−1ζη(s) ds, (5.7a)

where we denote the residue of a meromorphic function g = g(s) at s = ω
by res (g(s);ω). If the complex dimensions are simple, this becomes the
formula

η =
∑

ω∈Dη(W )

res (ζη(s);ω)xω−1 +
1
2πi

∫
S

xs−1ζη(s) ds. (5.7b)

In order to turn this argument into a rigorous proof, we need, in partic-
ular, to assume suitable growth conditions on ζη, which will be stated at
the beginning of Section 5.3. We say that η is languid if ζη satisfies these
conditions.
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5.1.2 Examples

We shall give two versions of the explicit formula. The first is pointwise,
in Section 5.3, and the second is distributional, in Section 5.4. We have
in mind a number of examples to which we want to apply our explicit
formulas:

1. The counting function of the lengths of a self-similar string. Then, we
can choose W = C and therefore obtain an explicit formula involving
all the complex dimensions of the string; see Sections 6.4.1 and 6.4.2.

2. The counting function of the frequencies of a self-similar string. Here,
we shall obtain information up to a certain order (i.e., W �= C), due
to the growth of the Riemann zeta function to the left of the critical
strip 0 ≤ Re s ≤ 1; see Section 6.4.3.

3. More generally, the geometric and spectral counting functions (Sec-
tions 6.2.1, 6.2.2 and 6.3.1) and the geometric and spectral partition
functions (Section 6.2.3) of an ordinary fractal string.

4. The fractal string of [Lap1, Example 5.1], also called the a-string in
Section 6.5.1.

5. The ordinary fractal string of [LapMa2], with which M. L. Lapidus
and H. Maier gave a characterization of the Riemann hypothesis.
Again, we shall obtain information up to an error term since the geo-
metric and spectral zeta functions of this string may not have an
analytic continuation to all of C. We will, however, improve signifi-
cantly the error term obtained in [LapMa2]; see Chapter 9.

6. A continuous version of this string, discussed in Section 9.2.

7. The geometric and spectral counting functions of a generalized Cantor
string (Chapter 10 and Section 11.1), and of a generalized Cantor
spray (Section 11.2).

8. The geometry and the spectrum of generalized fractal sprays; see
Sections 6.6, 9.3 and 11.2.

9. The volume of the tubular neighborhoods of fractal strings, as dis-
cussed in Chapter 8; see especially Section 8.1 and in the case of
self-similar strings, Section 8.4.

10. The classical Prime Number Theorem and the Riemann–von Man-
goldt explicit formula for the zeros of the Riemann zeta function
(Section 5.5).

11. The Prime Number Theorem and the corresponding explicit formula
for the primitive periodic orbits of the dynamical system naturally
associated with a self-similar string (Section 7.4).
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As was alluded to above, our explicit formulas can be applied either to
the geometric zeta function of an ordinary fractal string L, yielding explicit
formulas for the counting functions of the lengths of L, or to the spectral
zeta function of L, yielding explicit formulas for the counting functions of
the frequencies of L; see, for example, Chapters 6 and 10. The resulting ex-
plicit formulas show clearly the relationship between the counting function
of the lengths and that of the frequencies. This relationship can be de-
scribed as follows. The counting function of the frequencies is obtained by
applying an operator, the spectral operator, to the explicit formula for the
counting function of the lengths; see Sections 6.1, 6.2, and especially 6.3.1.
This is already suggested by the results of [LapPo2] and [LapMa2], but it
can be precisely formalized in our framework.

A variant of Riemann’s explicit formula recalled in the introduction
(page 3) is

ψ(x) = x−
∑

ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log

(
1− 1/x2

)
, (5.8)

where ψ(x) =
∑

m≥1,pm≤x log p counts the prime powers with a weight
log p, and ρ runs over all zeros of the Riemann zeta function in order of in-
creasing absolute value. It can be used to give a proof of the Prime Number
Theorem with error term, using a zero-free region for ζ, first established
by de la Vallée Poussin. If one uses only Re ρ < 1, then one obtains, with
some effort since the sum is not absolutely convergent, that ψ(x) = x+o(x)
as x→∞, which implies the Prime Number Theorem.
Later, in 1952, André Weil established the distributional formula∑

p

Wp(F ) = Φ(0) + Φ(1)−
∑

ρ

Φ(ρ), (5.9)

where Φ is the Mellin transform of the test function F , andWp (for primes p
and for p = ∞) is the Weil-distribution (see [Wei4, p. 262]). This formula
reveals more clearly the underlying structure: on the left-hand side, we have
contributions from all valuations of the field of rational numbers, while the
right-hand side involves the pole and all zeros of the Riemann zeta function.
The duality between the concrete side of the prime counting functions

and the abstract side of the zeros and poles is also the main idea behind
the explicit formulas in this book. Thus we will show that the counting
function of the lengths of a fractal string,

NL(x) = #{j : l−1
j ≤ x}

has the following explicit formula (if the complex dimensions are simple):

NL(x) =
∑
ω

res(ζL(s);ω)
xω

ω
.
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If L is a lattice self-similar string, then there exist infinitely many complex
dimensions with real part D, and one obtains NL(x) = gL(x)xD + o(xD),
for some nonconstant multiplicatively periodic function gL(x). On the other
hand, for nonlattice strings, D is the only complex dimension with real
part D, and all other complex dimensions ω satisfy Reω < D. Thus one
obtains for nonlattice strings that NL(x) = gLxD + o(xD), for some con-
stant gL.

The pointwise and distributional explicit formulas that we will give (in
Sections 5.3 and 5.4 below) deviate in two ways from the usual explicit
formulas found in number theory. On the one hand, we consider the den-
sity of states formula to be more fundamental. This formula corresponds,
for instance, to the derivative of the usual explicit formula of the prime
number counting function, and exists only in a distributional sense (see
Section 5.5). The integrated versions of this formula always exist as dis-
tributional formulas, and also sometimes as pointwise formulas. On the
other hand, our explicit formulas will usually contain an error term (see
Theorems 5.10 and 5.18). In the number-theoretic formulas, this error term
is not present (or else is not considered as such), thanks to the use of the
functional equation satisfied by the Riemann or other number-theoretic
zeta functions.
Sometimes, as in the case of the counting function of the lengths of a

self-similar string, this error term can be analyzed by pushing the screen
arbitrarily far to the left, and the resulting formula is an explicit formula
in the classical sense. (See Theorems 5.14 and 5.22; see also Section 6.4
for the case of self-similar strings.) But already for the counting function
of the frequencies of a self-similar string—and also, for example, when the
geometric zeta function of a string does not have a meromorphic continu-
ation to the whole complex plane—there is no way to avoid the presence
of an error term, and our formulas are, in some sense, best possible. (See
Section 6.4 and, for example, Section 6.5.2.) The usefulness of our explicit
formulas depends very much on the possibility of giving a satisfactory anal-
ysis of this error term. We will provide such asymptotic estimates both for
the pointwise error term (see Theorem 5.10, Equations (5.36)–(5.38)) and,
in a suitable sense to be specified in Definition 5.29, for the distributional
error term (see Theorems 5.18 and 5.30).

5.2 Preliminaries: The Heaviside Function

We refine here the basic lemma of [In, pp. 31 and 75; Da, p. 105]. This ex-
tension will be needed in the proof of Lemma 5.9, the truncated pointwise
formula, which itself will be used to establish both the pointwise and the
distributional formulas (Theorems 5.10, 5.14 and 5.18, 5.22). We refer the
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interested reader to Figure 8.1 (page 246) for a diagram of the interdepen-
dence of the explicit formulas and other theorems in this book.
Define the k-th Heaviside function for k ≥ 1 by

H [k](x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk−1

(k − 1)! , for x > 0,

0, for x < 0 or x = 0, k ≥ 2,
1
2
, for x = 0, k = 1.

(5.10)

For k ≥ 2, H [k](x) is the (k − 1)-th antiderivative (vanishing at x = 0) of
the classical Heaviside function H [1](x), equal to 1 for x > 0, to 0 for x < 0,
and taking the value 1

2 at x = 0. Note that, in view of definition (5.1), we
have

N [k]
η (x) =

∫ ∞

0

H [k](x− t) η(dt). (5.11)

For k ≥ 1, we define the Pochhammer symbol (s)k by

(s)k = s(s+ 1) · · · (s+ k − 1). (5.12)

The usefulness of the following lemma will become apparent upon con-
sulting Definitions 5.2 and 5.3 and observing how the conditions L1 and L2
or L2′ therein are used to obtain the subsequent results.

Lemma 5.1. For c > 0, T− < 0 < T+, x, y > 0 and k = 1, 2, . . . , the k-th
Heaviside function is approximated as follows:

H [k](x− y) =
1
2πi

∫ c+iT+

c+iT−
xs+k−1y−s ds

(s)k
+ E. (5.13)

Putting Tmin = min{T+, |T−|} and Tmax = max{T+, |T−|}, the error E of
this approximation does not exceed in absolute value

xc+k−1y−cT−k
minmin

{
Tmax,

1
| log x− log y|

}
, if x �= y, (5.14a)

xk−1T−k
minTmax , if x = y, all k, (5.14b)(

(c+ k − 1)2k−1 + Tmax − Tmin

)
xk−1T−k

min , if x = y, k is odd. (5.14c)

Proof. Let x < y, so that H [k](x− y) = 0. We consider the integral

1
2πi

∫
xs+k−1y−s ds

(s)k

over the contour c + iT−, c + iT+, U + iT+, U + iT−, c + iT−, for a large
positive value of U . The integral over the left side equals −E, and we want
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to show that it is small. By the Theorem of Residues [Ahl, Theorem 17,
p. 150], the contour integral vanishes. Hence the integral over the left side
equals the value of the integral over the contour composed of the upper,
lower and right-hand sides. The integral over the right-hand side is bounded
as follows:∣∣∣∣∣ 12πi

∫ U+iT+

U+iT−
xs+k−1y−s ds

(s)k

∣∣∣∣∣ ≤ 1
2π

∫ T+

T−
xU+k−1y−U dt

|(U + it)k|

≤ T+ − T−
2π

xU+k−1y−UU−k.

Further, the integral over the upper side satisfies the inequality∣∣∣∣∣ 12πi

∫ U+iT+

c+iT+

xs+k−1y−s ds

(s)k

∣∣∣∣∣ ≤ 1
2π

xk−1

T k
+

∫ U

c

(x/y)σ dσ

≤ xc+k−1y−c

2π| log x− log y|T
−k
+ ,

and, similarly, that over the lower side is bounded by

xc+k−1y−c

2π| log x− log y| |T−|−k,

independent of U . On letting U go to infinity, the contribution of the right-
hand side becomes arbitrarily small. The contribution of the upper and
lower sides is now bounded by

xc+k−1y−c

| log x− log y|
T−k

+ + |T−|−k

2π
≤ xc+k−1y−c

π| log x− log y| T
−k
min.

This proves the second inequality of (5.14a). To prove the first inequality
of (5.14a), we integrate over the contour composed of the line segment
from c + iT− to c + iT+, a circular arc to the right with center the origin
of radius Tmin, and a line segment from c+ iT+ to c+ iTmin, if T+ = Tmax

(respectively, from c− iTmin to c+ iT−, if |T−| = Tmax). Again, the integral
over the line segment c + iT− to c + iT+ vanishes up to the value of the
integral over the circular part and the little line segment of the contour.
These two integrals are bounded by

1
2π
· 2πTmin · xc+k−1y−cT−k

min = xc+k−1y−cT 1−k
min ,

and
xc+k−1y−c(Tmax − Tmin)T−k

min.

Note that this estimate is also valid for x = y, proving (5.14b).
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The estimate of the error in the case x > y is derived similarly, with
respectively a rectangular and a circular contour going to the left. The value
of the contour integral requires some consideration now. The integrand has
simple poles at the points 0,−1,−2, . . . , 1− k. The residue at −j is

x−j+k−1yj

(−j) · (1− j) · · · · · (−1) · 1 · 2 · · · · · (k − 1− j)

=
1

(k − 1)!x
k−1−j(−y)j

(
k − 1

j

)
.

Hence the sum of the residues is (x− y)k−1/(k − 1)! = H [k](x− y).
It remains to derive the better order in T+ and |T−| when k is odd

and x = y (see inequality (5.14c)). Without loss of generality, we assume
that T+ = Tmax. By a direct computation,

1
2πi

∫ c+iT+

c+iT−
xk−1 ds

(s)k
=

xk−1

2π

∫ T+

T−

dt

(c+ it)k

=
xk−1

π

∫ Tmin

0

Re(c+ it)k
|(c+ it)k|2

dt+
xk−1

2π

∫ T+

Tmin

dt

(c+ it)k
,

where (c+ it)k is given by (5.12). For k = 1, the second term on the right
is bounded by (Tmax − Tmin)T−1

min. Further, the first term on the right is

1
π

∫ Tmin

0

c

c2 + t2
dt =

1
π

∫ Tmin/c

0

du

1 + u2

=
1
2
− 1

π

∫ ∞

Tmin/c

du

1 + u2
,

which differs from 1/2 by at most c/Tmin.
For k ≥ 3, the error is given by

xk−1

π

∫ ∞

Tmin

Re(c+ it)k
|(c+ it)k|2

dt+
xk−1

2π

∫ T+

Tmin

dt

(c+ it)k
. (5.15)

The last integral is bounded by (Tmax − Tmin)T−k
minxk−1. Next, we expand

(c+ it)k in powers of t:

(c+ it)k = (it)k +
k−1∑
j=0

aj(it)j ,

where aj is the sum of all products of k−j factors from c, c+1, . . . , c+k−1.
Hence for odd k, Re(c+ it)k =

∑k−1
j=0, j even aj(it)j . One checks that aj is

bounded by (c+ k − 1)k−j
(
k
j

)
≤ (c+ k − 1)k−j2k−1. Thus we find

|Re(c+ it)k| ≤
(k−1)/2∑

j=0

(c+ k − 1)k−2j2k−1t2j .
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On the other hand, |(c + it)k|2 ≥ t2k. Thus the integrand in (5.15) is
bounded by

∑(k−1)/2
j=0 (c+ k − 1)k−2j2k−1t2j−2k. Integrating this function,

we find the following upper bound for the error:
k−1
2∑

j=0

(c+ k − 1)k−2j2k−1 T 2j−2k+1
min

2k − 2j − 1 ≤ (c+ k − 1)T−k
min2

k−1, (5.16)

for T > c + k − 1. This establishes inequality (5.14c) and completes the
proof of the lemma.

5.3 Pointwise Explicit Formulas

In this section, we establish two different versions of our pointwise explicit
formulas: one with error term (Theorem 5.10), which will be the most useful
to us in this book, as well as one without error term (Theorem 5.14). The
latter requires more stringent assumptions.

Let η be a generalized fractal string as in Section 4.1, with associated
geometric zeta function denoted ζη; see Definition 4.1(iv).
Recall from Section 4.1 and Figure 1.6 of Section 1.2 that the screen S

is given as the graph of a bounded, real-valued continuous function S(t),
with the horizontal and vertical axes interchanged:

S = {S(t) + it : t ∈ R}.
We assume in addition that S(t) is a Lipschitz continuous function; i.e.,
there exists a nonnegative real number, denoted by ‖S‖Lip, such that

|S(x)− S(y)| ≤ ‖S‖Lip|x− y|, for all x, y ∈ R.

We associate with the screen the following finite quantities:

inf S := inf
t∈R

S(t), (5.17a)

and

supS := sup
t∈R

S(t). (5.17b)

We assume that supS ≤ D; that is, S(t) ≤ D for every t. Further, recall
from Section 4.1 that the window W is the part of the complex plane to
the right of S; see formula (4.7).

Definition 5.2 (Languid). The generalized fractal string η is said to be
languid1 if its geometric zeta function ζη satisfies the following growth

1We wish to thank Erin Pearse for having suggested the term “languid” to refer to
strings satisfying L1 and L2. In [Lap-vF5], the hypotheses L1 and L2 were denoted by
(H1) and (H2), and L2′ of Definition 5.3 below was denoted (H′

2).
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conditions: There exist real constants κ and C > 0 and a two-sided se-
quence {Tn}n∈Z of real numbers such that T−n < 0 < Tn for n ≥ 1, and

lim
n→∞

Tn =∞, lim
n→∞

T−n = −∞, lim
n→+∞

Tn

|T−n|
= 1, (5.18)

such that

L1 For all n ∈ Z and all σ ≥ S(Tn),

|ζη(σ + iTn)| ≤ C · (|Tn|+ 1)κ , (5.19)

L2 For all t ∈ R, |t| ≥ 1,

|ζη(S(t) + it)| ≤ C · |t|κ. (5.20)

Hypothesis L1 is a polynomial growth condition along horizontal lines
(necessarily avoiding the poles of ζη), while hypothesis L2 is a polynomial
growth condition along the vertical direction of the screen. We will need
to assume these hypotheses to establish our (pointwise and distributional)
explicit formulas with error term, Theorems 5.10 and 5.18 below.

Sometimes we can obtain an explicit formula without error term; see
Theorems 5.14 and 5.22. In that case, in addition to L1 (for every σ ∈ R),
we need to assume a stronger form of hypothesis L2.

Definition 5.3 (Strongly languid). We say that η is strongly languid if
its geometric zeta function ζη satisfies the following condition, in addition
to L1 (with S(t) ≡ −∞ in (5.19) above; i.e., for every σ ∈ R): There
exists a sequence of screens Sm : t �→ Sm(t) + it for m ≥ 1, t ∈ R,
with supSm → −∞ as m → ∞ and with a uniform Lipschitz bound
supm≥1 ‖Sm‖Lip < ∞, such that

L2′ There exist constants A, C > 0 such that for all t ∈ R and m ≥ 1,

|ζη(Sm(t) + it)| ≤ CA|Sm(t)|(|t|+ 1)κ. (5.21)

Clearly, condition L2′ is stronger than L2. Hence, if η is strongly languid,
it is also languid (for each screen Sm separately).
Sometimes, it will be convenient to say that ζη—rather than η—is languid

(or strongly languid), in the sense of Definition 5.2 (or 5.3).

Remark 5.4. In view of (5.19) and (5.20), if η is languid for some κ, then
it is also languid for every larger value of κ. In view of (5.21), the same
statement holds for strongly languid strings.
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Remark 5.5. The hypothesis that the generalized fractal string η is lan-
guid is needed to establish our pointwise or distributional explicit formulas
with error term (Theorems 5.10, 5.18, and 5.26), while the stronger hypo-
thesis that η is strongly languid is required to establish our pointwise or
distributional explicit formulas without error term (Theorems 5.14, 5.22,
and 5.27). (See also Theorems 8.1 and 8.7, for example.)

Remark 5.6. We could have formulated L1 and L2 with different values
of κ, or even with a sequence of real exponents {κm}∞m=1 in L2

′. One reason
not to do this is that if ζη has no poles, or finitely many poles, then, by
Lindelöf’s Theorem [Edw, p. 184], L1 is implied by L2 (or L2′), with the
same value of κ.

Remark 5.7. As is explained at the beginning of Section 6.4, self-similar
strings are always strongly languid. Thus, for a self-similar string we can
let W = C and obtain explicit formulas without error term, at least at the
geometric or dynamical (but not at the spectral) level. See for example,
Sections 1.1.1, 1.2.2, 6.4.1, 6.4.2, 7.4.2, 7.4.3 and 8.4, for concrete illustra-
tions of this statement. This is especially useful for lattice strings, where
closed formulas can be obtained. On the other hand, for nonlattice strings,
it is often convenient to use an appropriate screen along which the string is
languid, in order to obtain suitable remainder estimates. See, for example,
Sections 7.5 and 8.4.4.

The next definition will be used to formulate the truncated pointwise
formula (Lemma 5.9 below), which is the first step towards our explicit
formulas.

Definition 5.8. Given an integer n ≥ 1, the truncated screen S|n is the
part of the screen S restricted to the interval [T−n, Tn], and the truncated
window W|n is the window W intersected with {s ∈ C : T−n ≤ Im s ≤ Tn}.
(See Figure 5.1 on page 146.)
The set of truncated visible complex dimensions is

D(W|n) = Dη(W|n) := Dη(W ) ∩ {s ∈ C : T−n ≤ Im s ≤ Tn} . (5.22)

It is the set of visible complex dimensions of η with imaginary part be-
tween T−n and Tn.

We begin by proving a technical lemma that summarizes the estimates
that we will need in order to establish both the pointwise formulas in this
section and the distributional formulas in the next section.
Note that given α, β ∈ R, with α ≤ β, we have

max{xα, xβ} =
{

xα, if 0 < x < 1,
xβ , if x ≥ 1.

(5.23)
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In the following, it will also be useful to keep in mind that, in view of (5.17),
we have

inf S ≤ supS ≤ D (5.24)

and

S ⊂ {s ∈ C : inf S ≤ Re s ≤ supS} . (5.25)

Lemma 5.9 (Truncated pointwise formula). Let k ≥ 1 be an integer and
let η be a generalized fractal string. Then, for all x > 0 and n ≥ 1, the
function N

[k]
η (x) is approximated by

∑
ω∈Dη(W|n)

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j)

+
1
2πi

∫
S|n

xs+k−1ζη(s)
ds

(s)k
, (5.26)

where (s)k is given by (5.12) and where S|n and Dη(W|n) = D(W|n) are
given as in Definition 5.8, while Dη = Dη(W )(= D) is defined by (4.8).

More precisely, assume hypothesis L1 and let2

Tmax = max{Tn, |T−n|} and Tmin = min{Tn, |T−n|}.

Let c > D. Then, for all x > 0 and all integers n ≥ 1, the difference
between N

[k]
η (x) and the expression in (5.26) is bounded in absolute value

by
d(x, n) := 2xk−1T−k

min · [a sum of four terms], (5.27)

where the four terms are
xcζ|η|(c)T

1/2
min, (5.28a)

Tmax ·
(
|η|(x− xT

−1/2
min , x) + |η|(x, x+ xT

−1/2
min )

)
, (5.28b)

|η|({x}) ·
{

Tmax (for even k),
(c+ k − 1)2k−1 + Tmax − Tmin (for odd k),

(5.28c)

2For notational simplicity, we do not indicate explicitly the dependence of Tmax and
Tmin on the integer n. This convention should be kept in mind when reading the proof
of Theorems 5.10 and 5.14 below.



146 5. Explicit Formulas for Generalized Fractal Strings

Figure 5.1: The contour C.

and

CTκ
max(c− inf S)max{xc, xinf S}. (5.28d)

Further, for each point s = S(t)+it (|t| ≥ 1, t ∈ R) and for all x > 0, the
integrand in the integral over the truncated screen S|n occurring in (5.26)
(namely, xs+k−1ζη(s)/(s)k) is bounded in absolute value by

Cxk−1max{xsup S , xinf S}|t|κ−k, (5.29)

when hypothesis L2 holds, and by

CA− inf Sxk−1max{xsup S , xinf S}|t|κ−k, (5.29′)

when the stronger hypothesis L2′ holds. (See Equations (5.23) and (5.24)
above.)

Proof. The proof is given in two steps. The first step consists of deriving an
approximate expression for N

[k]
η (x). For this, we consider the line integral

J(x, n) =
1
2πi

∫ c+iTn

c+iT−n

xs+k−1ζη(s)
ds

(s)k
,
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for some c > D. (See the contour C in Figure 5.1.) We substitute the
expression of formula (4.4),

ζη(s) =
∫ ∞

0

y−sη(dy),

and interchange the order of integration. This interchange is justified since
the integral is bounded by3

xc+k−1 1
2π

∫ Tn

T−n

∫ ∞

0

y−c|η|(dy)
dt

ck
≤ Tn − T−n

2πck
xc+k−1ζ|η|(c).

We find that

J(x, n) =
∫ ∞

0

1
2πi

∫ c+iTn

c+iT−n

xs+k−1y−s ds

(s)k
η(dy). (5.30)

In view of (5.11) and (5.30), the difference N
[k]
η (x)− J(x, n) can now be

bounded via an application of Lemma 5.1 (with T− = T−n and T+ = Tn).
The absolute value of this difference is bounded by∫ ∞

0

∣∣∣∣H [k](x− y)− 1
2πi

∫ c+iTn

c+iT−n

xs+k−1y−s ds

(s)k

∣∣∣∣|η|(dy)

≤
∫

y �=x

xc+k−1y−cT−k
min ·min

{
Tmax,

1
| log x− log y|

}
|η|(dy) (5.31)

+ xk−1T−k
min|η|({x}) ·

{
Tmax (k even),
Tmax − Tmin + 2k−1(c+ k − 1) (k odd).

To obtain a good bound for the last integral in this inequality, we split it as
a sum of two integrals: one integral over y such that y ≤ x(1−T

−1/2
min ) or y ≥

x(1+ T
−1/2
min ), where | log x− log y| � T

−1/2
min , and another integral over the

two open intervals in between, namely, (x−xT
−1/2
min , x) and (x, x+xT

−1/2
min ).

The first integral is bounded by

xc+k−1ζ|η|(c)T−k
minT

1/2
min , (5.32a)

and the second by

2xc+k−1x−cT−k
minTmax

(
|η|(x− xT

−1/2
min , x) + |η|(x, x+ xT

−1/2
min )

)
. (5.32b)

3For simplicity, a reader unfamiliar with (local) complex-valued measures may wish
to assume throughout the proofs given in this chapter that η is a positive measure on
(0,∞) that is locally bounded; i.e., η is bounded for every bounded subinterval of (0,∞).
Then, one may set η = |η| in all the arguments presented here. See Remark 4.3.
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Thus, the difference |N [k]
η (x) − J(x, n)| is bounded by the sum of three

terms: (5.32a), (5.32b) and the term

xk−1T−k
min · |η|({x}) ·

{
Tmax (k even),
Tmax − Tmin + 2k−1(c+ k − 1) (k odd).

(5.32c)

Next we compute J(x, n) by replacing the right contour in Figure 5.1
(that is, the line segment from c+ iT−n to c+ iTn) by Clower+S|n+Cupper.
Here, S|n is the truncated screen; i.e., the part of the screen for t going from
T−n to Tn, and the upper and lower parts of the contour are the horizontal
lines s = σ + iT±n, for S(T±n) ≤ σ ≤ c. (See Figure 5.1.) By the Theorem
of Residues [Ahl, Theorem 17, p. 150], we obtain the following expression
for J(x, n),

∑
ω∈D(W|n)

res
(

xs+k−1ζη(s)
(s)k

;ω
)
+

k−1∑
j=0

−j∈W\D

res
(

xs+k−1ζη(s)
(s)k

;−j

)

+
1
2πi

∫
S|n

xs+k−1ζη(s)
ds

(s)k
+

1
2πi

∫
Clower+Cupper

xs+k−1ζη(s)
ds

(s)k
.

A computation similar to that performed in the proof of Lemma 5.1 above
shows that the residue at −j is equal to

1
(k − 1)!

(
k − 1

j

)
(−1)jxk−1−jζη(−j),

provided that −j is not a pole of ζη; i.e., provided that −j �∈ D. The integral
over the upper side Cupper is bounded by

∣∣∣∣ 12πi

∫ c

S(Tn)

xσ+iTn+k−1ζη(σ + iTn)
dσ

(σ + iTn)k

∣∣∣∣
≤ 1
2π

xk−1CTκ
n T−k

n

∫ c

S(Tn)

xσ dσ

≤ C

2π
Tκ−k

n xk−1 (c− inf S)max{xc, xinf S},
(5.32d)

by hypothesis L1. The integral over the lower side Clower is bounded simi-
larly.
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In summary, we have now obtained the desired estimate:∣∣∣∣N [k]
η (x)−

∑
ω∈D(W|n)

res
(

xs+k−1ζη(s)
(s)k

;ω
)

− 1
(k − 1)!

k−1∑
j=0

−j∈W\D

(
k − 1

j

)
(−1)jxk−1−jζη(−j)

− 1
2πi

∫
S|n

xs+k−1ζη(s)
ds

(s)k

∣∣∣∣ ≤ d(x, n), (5.33)

where d(x, n) is the sum of the four terms (5.32a)–(5.32d).
Finally, at s = S(t) + it, we have |(s)k| ≥ |t|k. Hence the integrand

in (5.33) at s = S(t) + it (|t| ≥ 1) is bounded by a constant times

xk−1+S(t)|t|κ−k ≤ xk−1max{xsup S , xinf S}|t|κ−k.

This constant is either C, when we assume L2, or C ·A−S(t) ≤ C ·A− inf S ,
when we assume L2′. This completes the proof of Lemma 5.9.

We can now state the main result of this section, which will be used
in most situations (in this and in the later chapters) to obtain pointwise
explicit formulas for geometric or spectral counting functions. In the next
section, we will obtain its distributional analogue, Theorem 5.18. (See also
Theorem 5.26 along with Theorem 5.30.)

Theorem 5.10 (The pointwise explicit formula, with error term). Let η be
a languid4 generalized fractal string, and let k be an integer such that
k > max{1, κ+ 1}, where κ is the exponent occurring in the statement of
L1 and L2. Then, for all x > 0, the pointwise explicit formula is given by
the following equality :5

N [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j) +R[k]

η (x).

(5.34)

4That is, it satisfies hypotheses L1 and L2 of Definition 5.2, Equations (5.19)
and (5.20) above.

5Recall that Dη = Dη(W )(= D) denotes the set of visible complex dimensions of η
(for the window W ), and that (s)k is defined by (5.12). The complement of Dη(W ) in W
is denoted by W\Dη .
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Here, for x > 0, R(x) = R
[k]
η (x) is the error term, given by the absolutely

convergent integral

R(x) = R[k]
η (x) =

1
2πi

∫
S

xs+k−1ζη(s)
ds

(s)k
. (5.35)

Further, for all x > 0, we have

R(x) = R[k]
η (x) ≤ C(1 + ‖S‖Lip)

xk−1

k − κ− 1 max{x
sup S , xinf S}+ C ′,

(5.36)

where C is the positive constant occurring in L1 and L2 and C ′ is some
suitable positive constant. The constants C(1 + ‖S‖Lip) and C ′ depend
only on η and the screen, but not on k. (Here, inf S and supS are given
by (5.17).)

In particular, we have the following pointwise error estimate:

R(x) = R[k]
η (x) = O

(
xsup S+k−1

)
, (5.37)

as x → ∞. Moreover, if S(t) < supS for all t ∈ R (i.e., if the screen
lies strictly to the left of the line Re s = supS), then R(x) is of order less
than xsup S+k−1 as x→∞ :

R(x) = R[k]
η (x) = o

(
xsup S+k−1

)
, (5.38)

as x→∞.

Remark 5.11. The proof of Theorem 5.10 does not give information about
the nature of the convergence of the sum over the complex dimensions ω
in (5.34). Therefore, we need to specify the meaning of

∑
ω∈Dη(W ) . . . as

the limit limn→+∞
∑

ω∈Dη(W|n) . . . , where W|n is the truncated window,
given by Definition 5.8. (The fact that this limit exists follows from the
proof of the theorem.) The same remark applies to the sum occurring in
formula (5.40) of Theorem 5.14 below.
Further, the precise form of the term corresponding to ω in this sum

will change depending on the multiplicity of the pole of ζη at s = ω. In
particular, a multiple pole will give rise to logarithmic terms. On the other
hand, if ω ∈ Dη(W ) is a simple pole, then the corresponding term becomes

res
(

xs+k−1ζη(s)
(s)k

;ω
)
= res (ζη(s);ω)

xω+k−1

(ω)k
. (5.39)

See Section 6.1 for a more elaborate discussion of the local term associated
with ω.

Remark 5.12. In most applications, we have a lot of freedom for choos-
ing the sequence {Tn}n∈Z satisfying hypothesis L1. If η is a real-valued
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(rather than a complex-valued) measure, we can always choose W to be
symmetric and set T−n = −Tn for all n ≥ 1. Then, in the sum over the
complex dimensions ω in (5.34), we can collect the terms in complex con-
jugate pairs ω, ω (as is done in classical number-theoretic explicit formulas
involving the Riemann zeta function [Da,Edw, In,Pat]).
Finally, we note that in practice we can often choose the screen S to

be a vertical line (with equation Re s = σ, say). Then S(t) ≡ σ is clearly
Lipschitz continuous and bounded, and we have supS = inf S = σ.
Similar remarks apply to all explicit formulas in this chapter.

Remark 5.13. Note that our hypotheses L1 and L2 imply, in particular,
that ζη has an analytic continuation to a neighborhood of [Re s ≥ D]. It
is in general hard to determine whether this condition is satisfied. Indeed,
this condition is essentially equivalent to the existence of a suitable explicit
formula for the counting function Nη. Establishing such a result would
entail developing a theory of almost periodic functions with amplitude of
polynomial growth (rather than with bounded amplitude as in [Bohr]). This
theory would be of independent interest. It would be naturally motivated
by our explicit formulas, in which the real parts of the underlying complex
dimensions give rise to generalized Fourier series with variable amplitudes.
See also Problem 4.11 at the end of the previous chapter.

Proof of Theorem 5.10. For a given n ≥ 1, we apply Lemma 5.9, the trun-
cated pointwise formula, with T+ = Tn, T− = T−n. Since k ≥ 2, the first
term (5.32c) of d(x, n) above tends to zero as n → ∞. Also the second
term (5.32a) and the middle term (5.32b) go to 0 as n → ∞. Finally,
since k > κ, the last term tends to zero. All these terms tend to zero at the
rate of some negative power of Tmin.6

Finally, the error term is absolutely convergent since k > κ + 1. Note
that S(t) is differentiable almost everywhere since it is assumed to be
Lipschitz. Furthermore, since for almost every t ∈ R, the derivative of
t �→ S(t) + it is bounded by 1+‖S‖Lip, where ‖S‖Lip denotes the Lipschitz
norm of S(t), and since ∫ ∞

1

tκ−k dt =
1

k − κ− 1

(because κ−k < −1, by assumption), the estimate (5.36) of the error term
follows from (5.29). The constant C ′ on the right-hand side of (5.36) comes
from a bound for the integral over the part of the screen for −1 ≤ t ≤ 1.
To obtain the better estimate (5.38) when the screen S approximates the

vertical line Re s = supS, but stays to the left of it, we use a well-known
method to estimate (5.35); see, e.g., [In, pp. 33–34]. Given ε > 0, we want

6Recall from Lemma 5.1 that Tmax = max{Tn, |T−n|} and Tmin = min{Tn, |T−n|}
both depend on the integer n.
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to show that (5.35) is bounded by ε · xsup S+k−1. Write this integral as the
sum of the integral over the part of S contained in −T ≤ Im s ≤ T , and the
part of S contained in | Im s| > T . Since the second integral is absolutely
convergent, it is bounded by 1

2ε · xsup S+k−1, provided we choose T suffi-
ciently large. Then, since S(t) has a maximum strictly less than supS on
the compact interval [−T, T ], we can find δ > 0 such that S(t) ≤ supS − δ
for |t| ≤ T . It follows that the integral over this part of the screen is
of order O(xsup S−δ+k−1) as x → ∞. Hence for large x, it is bounded
by 1

2ε · xsup S+k−1. This proves that R(x) = o
(
xsup S+k−1

)
as x→∞.

We assume in Theorem 5.10 that k ≥ 2. However, in certain situations—
namely, when ζη satisfies the stronger hypothesis L2′ rather than L2—
we can push the screen S to −∞ and thereby obtain a pointwise ex-
plicit formula without error term, valid for a lower level k > κ (rather
than k > κ+ 1, as in Theorem 5.10).
We will apply this result, in particular, to the geometric counting function

(at level 1) of a self-similar string, as defined in Section 2.2 (see Section 6.4).
We will see that we can set κ = 0, so that k = 1 will indeed be allowed in
applying formula (5.40) below.

Theorem 5.14 (The pointwise formula, without error term). Let η be a
generalized fractal string satisfying hypotheses L1 and L2′; i.e., η is
strongly languid (see Definition 5.3 and Equations (5.19) and (5.21) above).
Let k be a positive integer such that k > κ. Then, for all x > A, the point-
wise explicit formula is given by the following equality:

N [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j).

(5.40)

Here, A is the positive number given by hypothesis L2′ (cf. Equation (5.21))
and κ is the exponent occurring in the statement of hypotheses L1 and L2′.

Proof. For a fixed integer n ≥ 1, we apply Lemma 5.9 with the screen Sm

given by hypothesis L2′. We now assume that k > κ (instead of k > κ+ 1
as in the proof of Theorem 5.10). We first let m tend to∞, while keeping n
fixed. Since the functions Sm(t) have a uniform Lipschitz bound, the se-
quence of integrals over the screens tends to 0 as m →∞, provided x > A.
Then we let n → ∞. For k ≥ 2, in Equation (5.27), the first three

terms of d(x, n) tend to zero as n → ∞, as we have seen in the proof of
Theorem 5.10, and for k > κ, the last term also tends to zero.
Further, if k = 1, the first term (5.32c) of d(x, n) tends to 0, by our

assumption that Tmax/Tmin → 1 as n → ∞. Note that this assumption
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implies that (Tmax − Tmin)/Tmin → 0 as n → ∞. The situation is more
complicated for the middle term (5.32b), in case k = 1, since η can have a
large portion of its mass close to x. However, by writing the interval (x, 2x)
as a disjoint countable union

(x, 2x) =
∞⋃

j=1

[
x+

x

j + 1
, x+

x

j

)
,

and noting that |η|(x, 2x) is finite, we see that

|η|
(
x, x+

x

m

)
=

∞∑
j=m

|η|
[
x+

x

j + 1
, x+

x

j

)
goes to 0 when m →∞, at some rate depending on the positive measure |η|
(on the given interval (x, 2x)). Thus also |η|(x, x+ xT

−1/2
min )→ 0 as n →∞.

Similarly, we check that |η|(x− xT
−1/2
min , x)→ 0 as n →∞. This completes

the proof of Theorem 5.14.

Remark 5.15. As can be seen from the above proof, the full strength of
the asymptotic symmetry condition limn→+∞ Tn/|T−n| = 1 is needed only
when k = 1, which is only allowed in Theorem 5.14.

Remark 5.16. There is another situation in which we can push the screen
to −∞ and obtain an explicit formula without error term. Indeed, some-
times the geometric zeta function satisfies a functional equation (in the
sense of [JorLan3]). Then the theory of [JorLan3] (see also [JorLan1–2])
applies to yield an explicit formula without error term, but with a Weil
term [Wei4, 6], coming from the fudge factor involved in the statement of
the functional equation in [JorLan3].

5.3.1 The Order of the Sum over the Complex Dimensions

In the applications given in Chapters 7, 8, 9 and 11 below, we often want
to single out the sum over the complex dimensions on the line Re s = D,
and estimate the sum over those to the left of Re s = D. We also want
the resulting error term to be of lower order. If we can choose a screen
that makes all complex dimensions to the left of this line invisible, then we
apply the estimate (5.38). But as Examples 5.32 and 5.33 show, we cannot
always choose such a screen. In that case, we use the following argument.

Theorem 5.17. Let ∑
Re ω<D

aωxω(log x)mω (5.41)

be an absolutely convergent sum over the visible complex dimensions with
real part less than D, arising from Theorem 5.10 or 5.14 (hence aω ∈ C
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and mω ∈ N for each ω). Then this sum is of order o(xD), as x→∞, and
the corresponding sum ∑

Re ω=D

aωxω(log x)mω

converges.

Proof. The (conditional) convergence of the sum over the complex dimen-
sions with real part D follows from Theorem 5.10 or 5.14, and the assump-
tion that (5.41) converges absolutely.
It remains to estimate the sum in (5.41). This is done by adapting the

method of [In, pp. 82 and 33] as follows. Let ε > 0. Since (5.41) is abso-
lutely convergent, the sum over ω with | Imω| > T is less than εxD for T
large enough. Next, since there are only finitely many visible complex di-
mensions ω with | Imω| < T , their real parts attain a maximum M < D.
Then (5.41) is bounded by εxD + CxM < 2εxD for large enough x. This
shows that the expression in (5.41) is o

(
xD

)
, as x→∞.

5.4 Distributional Explicit Formulas

In this section, we give a distributional counterpart of the pointwise ex-
plicit formulas obtained in the previous section. We also obtain several
refinements of the distributional formula that will be needed in the rest of
this book; see Sections 5.4.1 and 5.4.2.
We view η as a distribution, acting on a test function ϕ by

∫∞
0

ϕ dη.
More generally, for k ≥ 1, the k-th primitive P [k]

η of η is the distribution
given by Equation (5.5) or, equivalently, (5.4). For k ≤ 0, we extend this
definition by differentiating |k| + 1 times the distribution P [1]

η . Thus, in
particular, P [0]

η = η.
In the following,

(s)k =
Γ(s+ k)
Γ(s)

, (5.42)

for k ∈ Z. This extends the definition of the Pochhammer symbol (5.12)
to k ≤ 0. Thus, (s)0 = 1 and, for k ≥ 1, (s)k = s(s+ 1) · · · (s+ k − 1).
We denote by ϕ̃ theMellin transform of a (suitable) function ϕ on (0,∞);

it is defined by

ϕ̃(s) =
∫ ∞

0

ϕ(x)xs−1 dx. (5.43)

As before, we denote by res(g(s);ω) the residue of a meromorphic func-
tion g = g(s) at ω. It vanishes unless ω is a pole of g. Since res(g(s);ω) is
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linear in g, we have that∫ ∞

0

ϕ(x) res
(
xs+k−1g(s);ω

)
dx = res (ϕ̃(s+ k)g(s);ω) , (5.44)

for ϕ in any of the classes of test functions considered in this chapter.

We first formulate our distributional explicit formulas, Theorems 5.18
and 5.22, with error term and without error term respectively, for (complex-
valued) test functions ϕ in the class C∞(0,∞) (or C∞(A,∞), respec-
tively),7 with ϕ(q)(t)tm → 0 for all m ∈ Z and q ∈ N, as t → 0+ (respec-
tively, as t → A+, for Theorem 5.22) or as t → ∞; see also Remark 5.21.
We then formulate the most general conditions under which our explicit
formula applies; see Theorems 5.26 and 5.27. In particular, we want to
weaken the decay condition on ϕ at 0 and ∞ and the differentiability as-
sumption on ϕ. (See especially Section 5.4.1 below, the results of which will
be applied, in particular, in Section 6.2.3 and in Chapter 8.)
The following result provides a distributional analogue of the pointwise

formula obtained in Theorem 5.10. This result will be complemented below
by Theorem 5.30, which will provide an estimate for the distributional error
term.

Theorem 5.18 (The distributional formula, with error term). Let η be a
languid generalized fractal string ; i.e., it satisfies hypotheses L1 and L2
(see Equations (5.19) and (5.20) above). Then, for every k ∈ Z, the dis-
tribution P [k]

η is given by

P [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j) +R[k]

η (x). (5.45a)

That is, the action of P [k]
η on a test function ϕ is given by

〈
P [k]

η , ϕ
〉
=

∑
ω∈Dη(W )

res
(

ζη(s)ϕ̃(s+ k)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j) +

〈
R[k]

η , ϕ
〉
. (5.45b)

7Given an open interval J , C∞(J) denotes the space of infinitely differentiable func-
tions on J .
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Here, the distribution R = R[k]
η is the error term, given by

〈R, ϕ〉 =
〈
R[k]

η , ϕ
〉
=

1
2πi

∫
S

ζη(s)ϕ̃(s+ k)
ds

(s)k
. (5.46)

Remark 5.19. In (5.45), the sum over j is interpreted as being equal
to 0 if k ≤ 0. The same comment applies to the corresponding sum in
Equation (5.48) of Theorem 5.22 below.

Proof of Theorem 5.18. First, given an integer n ≥ 1, we apply Lemma 5.9
for k > κ+ 1. Let ϕ be a test function. Then〈

P [k]
η , ϕ

〉
=

∫ ∞

0

N [k]
η (x)ϕ(x) dx,

which is approximated by∑
ω∈Dη(W|n)

res
(

ζη(s)ϕ̃(s+ k)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j)

+
1
2πi

∫
S|n

ζη(s)ϕ̃(s+ k)
ds

(s)k
.

(Here, we use the notation Dη(W|n) and S|n introduced in Definition 5.8.)
Since k > κ+ 1, the integral converges and the error of the approximation
vanishes as n →∞, by the same argument as in the proof of Theorem 5.10.
Then we derive formula (5.45a) for every k ∈ Z by differentiating, as a
distribution, the above formula sufficiently many times.

Remark 5.20. The method used above (which may be coined the descent
method) shows that from a pointwise formula applied at a high enough
level (so as to avoid any problem of convergence in the sum or in the
integrals involved), we can deduce a corresponding distributional formula
on every level. This is reminiscent of the method used to establish the
convergence of the Fourier series associated to a periodic distribution. (See,
for example, [Schw1, §VII, I, esp. p. 226] or [Schw2, Chapter IV].)
We now provide an alternate proof of this theorem. It is a direct proof,

in the sense that by contrast to that given above, it does not involve the
descent method of Remark 5.20.

Alternate proof of Theorem 5.18. Note that〈
P [k]

η , ϕ
〉
= (−1)q

〈
P [k+q]

η , ϕ(q)
〉

= (−1)q
∫ ∞

0

ϕ(q)(x)N [k+q]
η (x) dx,

(5.47)
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when k + q > κ + 1. We then apply the pointwise explicit formula, Theo-
rem 5.10. Using the fact that ϕ̃(s) = (−1)q

(s)q
ϕ̃(q)(s+ q) (see Equation (5.57)

below), we obtain the explicit formula of Theorem 5.18.

Remark 5.21. The (infinite) sum over the visible complex dimensions of η
appearing on the right-hand side of (5.45a) defines a distribution. Hence,
formula (5.45a) is not only an equality between distributions, but each term
on the right-hand side of (5.45a) also defines a distribution. Indeed, this is a
simple consequence of the following well-known fact about the convergence
of distributions. (See, for example, [Schw1–2] or [Hö2, Theorem 2.18, p. 39];
this property was also used in a related context in [DenSchr, p. 50].) For
definiteness, we will work with the space of test functions

D = D(0,∞),

consisting of all infinitely differentiable functions with compact support
contained in (0,∞), and the associated classical space of distributions

D′ = D′(0,∞),

the topological dual of D; see [Schw1, Hö2]. (Note that D is contained
in our space of admissible test functions.) Let {Tn}∞n=1 be a sequence of
distributions in D′ such that

〈T , ϕ〉 := lim
n→∞

〈Tn, ϕ〉

exists for every test function ϕ ∈ D. Then T is a distribution in D′. (This
follows from a well-known extension from Banach spaces to suitable topo-
logical vector spaces of the Uniform Boundedness Principle [Ru3, Theo-
rems 2.5 and 2.8, pp. 44 and 46], also called the Banach–Steinhauss Theo-
rem.)
In our present setting, we can apply this result to an appropriate sequence

of partial sums (the sequence of partial sums mentioned in Remark 5.11,
applied to ϕ) to deduce that the sum over Dη(W ) on the right-hand side
of (5.45a) is really a distribution in D′, as stated above, and hence that
each term taken separately on the right-hand side of (5.45a) defines a dis-
tribution in D′.8

An entirely analogous comment applies to Theorem 5.22 below, the dis-
tributional explicit formula without error term, provided that we work
instead with D = D(A,∞) and D′ = D′(A,∞).

8Note that, for every k ≥ 1, N
[k]
η (x) defines P [k]

η as a distribution in D′ because
N

[k]
η (x) is a locally integrable function. Also, since η is a (local) measure, P [0]

η = η is a
distribution in D′ having P [k]

η as its k-th primitive.
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Next, we obtain the distributional analogue of the pointwise formula
without error term stated in Theorem 5.14. This is an asymptotic distrib-
utional formula; i.e., it applies to test functions that are supported on the
right of x = A, where A > 0 is as in hypothesis L2′.

Theorem 5.22 (The distributional formula, without error term). Let η be
a generalized fractal string that is strongly languid; i.e., it satisfies hypothe-
ses L1 and L2′ (see Equations (5.19) and (5.21) above). Then, for ev-
ery k ∈ Z and for test functions with compact support contained in (A,∞),
the distribution P [k]

η in D′(A,∞) is given by

P [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j). (5.48a)

That is, the action of P [k]
η on a test function ϕ with compact support

contained in (A,∞) (i.e., on ϕ ∈ D(A,∞)) is given by

〈
P [k]

η , ϕ
〉
=

∑
ω∈Dη(W )

res
(

ζη(s)ϕ̃(s+ k)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j). (5.48b)

Proof. Again, given n ≥ 1, we apply Lemma 5.9, but now for k > κ (instead
of k > κ + 1 as in the proof of Theorem 5.18). Let ϕ be a test function
whose support is contained in [A + δ,∞), for some δ > 0. Then ϕ̃(s) is
bounded by

(A+ δ)σ
∫ ∞

0

|ϕ(x)| dx

x
.

It follows that the integral over the screen Sm tends to 0 as m →∞. The
rest of the argument is exactly the same as in the proof of Theorem 5.18
above.

By applying Theorem 5.18 (respectively, 5.22) at level k = 0, we obtain
the following result, which is central to our theory and will be used repeat-
edly in the rest of this book. (See Sections 6.3.1, 6.3.2 and 5.1.1 for further
discussion and interpretation of (5.49) and, for example, Section 5.5 as well
as Chapters 9 and 11 for applications of this result.)
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Corollary 5.23 (The density of states formula). Under the same hypothe-
ses as in Theorem 5.18 (respectively, Theorem 5.22 ), we have the following
distributional explicit formula for P [0]

η = η :

η =
∑

ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)
+R[0]

η , (5.49)

where R[0]
η is the distribution given by formula (5.46) with k = 0 (respec-

tively, if L2′ is satisfied, R[0]
η ≡ 0).

5.4.1 Extension to More General Test Functions

We extend our distributional explicit formulas (Theorems 5.18 and 5.22)
to a broader class of test functions ϕ, not necessarily C∞ and decaying
less rapidly near 0 and ∞ than considered previously. In particular, in
Theorem 5.26, we allow test functions that have a suitable asymptotic
expansion at x = 0. In the corresponding distributional explicit formula
without error term, Theorem 5.27, we only allow test functions having a
very special expansion on (0, A+ δ), for some δ > 0.
We will use this extension to obtain an explicit formula for the volume of

the tubular neighborhoods of the boundary of a fractal string; see especially
the proof of Theorem 8.1 in Section 8.1. Moreover, although this aspect
will not be stressed as much in this work, we mention that we can also use
this extension to obtain explicit formulas for other geometric or spectral
functions, such as the partition function (see Section 6.2.3).

Given v ∈ R, we will say that a function ϕ on (0,∞) has an asymptotic
expansion of order v at 0 if there are finitely many complex exponents α,
with Reα > −v, and complex coefficients aα such that

ϕ(x) =
∑
α

aαx−α +O(xv), as x→ 0+. (5.50)

Clearly, the coefficients are uniquely determined by ϕ. For each such α, we
write τα to denote the corresponding distribution,

〈τα, ϕ〉 = aα, (5.51)

where ϕ is given by (5.50).

Remark 5.24. Observe that τ0 is the Dirac delta distribution δ{0} at x = 0.
More generally, τ−n = δ

(n)
{0}/n! is related to the n-th derivative of this dis-

tribution.

Note that if ϕ(x) = O(xa) as x→ 0+ and ϕ(x) = O(xb) as x→∞, with
a > b, then ϕ̃(s) is defined and holomorphic in the strip −a < Re s < −b.
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Moreover, for any given integer k ≥ 1,

x−α = x−αe−x

(
1 + x+

x2

2!
+ · · ·+ xk

k!

)
+O

(
x−α+k+1

)
, as x→ 0+.

(5.52)

The Mellin transform of x−αe−x is Γ(s − α), with simple poles at the
points s = α, α − 1, . . . , and with residue (−1)k/k! at s = α − k. Con-
sequently, the Mellin transform of the first term on the right-hand side
of (5.52) is meromorphic in Re s > α−k−1, with a simple pole of residue 1
at s = α, the residues at the other possible poles adding up to 0. Provided
that ϕ(x) = O(xb) at ∞, it follows that the Mellin transform of the func-
tion ϕ in (5.50) is meromorphic in −v < Re s < −b, with a simple pole
at s = α of residue aα for each α.

We will need the following lemma.

Lemma 5.25. Let f(s) and g(s) be meromorphic in a disc around 0. Then
the function z �→ res (f(s− z)g(s); 0) + res (f(s− z)g(s); z) is holomorphic
in the same disc. Its value at z = 0 is res (f(s)g(s); 0) .

Proof. This follows since the function can be written as the integral over
a small circle around s = 0 and s = z of f(s− z)g(s), and this function is
analytic in z.

Theorem 5.26 (Extended distributional formula, with error term). Let η
be a languid generalized fractal string (see Definition 5.2 ). Let k ∈ Z and
let q ∈ N be such that k+q ≥ κ+1, where κ is given as in (5.19) and (5.20).
Further, let ϕ be a test function that is q-times continuously differentiable
on (0,∞), and assume that its j-th derivative satisfies, for each 0 ≤ j ≤ q
and some δ > 0,

ϕ(j)(x) = O(x−k−j−D−δ), as x→∞, (5.53a)

and9

ϕ(j)(x) =
∑
α

a(j)
α x−α−j +O(x−k−j−inf S+δ), as x→ 0+, (5.53b)

9Note that a
(j)
α = −α · · · (−α − j + 1)a

(0)
α and that ϕ has an asymptotic expansion

of order −k − inf S + δ at 0, where inf S is given by (5.17a).
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for a finite sequence of complex exponents α as above. We then have the
following distributional explicit formula with error term for P [k]

η :

P [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)
+

∑
α∈W\Dη

α�∈{1−k,...,0}

τα(x)
ζη(α)
(α)k

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−j−1ζη(−j) +R[k]

η (x), (5.54a)

where R[k]
η (x) and τα(x) are the distributions given by (5.46) and (5.51),

respectively. Note that the sum over α is finite by our assumption on the
space of test functions. Applied to the test function ϕ, the distribution P [k]

η

is given by

〈
P [k]

η , ϕ
〉
=

∑
ω∈Dη(W )

res
(

ζη(s)ϕ̃(s+ k)
(s)k

;ω
)
+

∑
α∈W\Dη

α�∈{1−k,...,0}

a(0)
α

ζη(α)
(α)k

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j) +

〈
R[k]

η , ϕ
〉
. (5.54b)

For the extended distributional formula without error term, we require
that the test function is a finite linear combination of terms x−βe−cβx in
a neighborhood of the entire interval (0, A]. Here, the constants cβ are
complex numbers with positive real part. Note that the β’s come from a
subset of

⋃
α{α, α− 1, . . . }.

Theorem 5.27 (Extended distributional formula, without error term).
Let η bea strongly languid generalized fractal string (see Definition 5.3 ).
Let k ∈ Z and let q ∈ N be such that k+q > max{1, κ}, where κ is given as
in (5.19) and (5.21). Further, let ϕ be a test function that is q-times con-
tinuously differentiable on (0,∞). Assume that as x→∞, the j-th deriva-
tive ϕ(j)(x) satisfies (5.53a) and (5.53b), and that there exists a num-
ber δ > 0 and constants b

(j)
β and cβ with Re cβ > 0, such that

ϕ(j)(x) =
∑

β

b
(j)
β x−βe−cβx, for x ∈ (0, A+ δ) and 0 ≤ j ≤ q. (5.55)

Then formula (5.54), with R[k]
η ≡ 0, gives the distributional explicit formula

without error term at level k for ϕ.

Remark 5.28. For k ≤ 0, the last sum over j in (5.54) equals 0 and the
condition α �∈ {1−k, . . . , 0} is vacuous, so that the explicit formula is given
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by a sum over the complex dimensions and an error term alone (or no error
term at all, in the case of Theorem 5.27). It will be useful to keep this in
mind when applying Theorem 5.26 or 5.27, especially in Chapter 8 in the
proof of Theorem 8.1.

Proof of Theorems 5.26 and 5.27. First of all, the condition at infinity on ϕ
implies that

〈
P [k+j]

η , ϕ(j)
〉
is well defined. Furthermore, since〈

P [k]
η , ϕ

〉
= (−1)q

〈
P [k+q]

η , ϕ(q)
〉
, (5.56)

and

ϕ̃(s) =
(−1)q
(s)q

ϕ̃(q)(s+ q) (5.57)

is meromorphic in k + inf S ≤ Re s ≤ k + D, it suffices to establish the
theorem when q = 0 and k > κ + 1 (respectively, k > max{1, κ} for
Theorem 5.27).
We first assume that ϕ(x) = O

(
x−k−inf S+δ

)
as x → 0+ (or ϕ(x) = 0

for all x ∈ (0, A + δ), in the case of Theorem 5.27). Using Lemma 5.9,
with c = D + δ/2, we obtain a truncated explicit formula,

〈
P [k]

η , ϕ
〉
≈

∑
ω∈Dη(W|n)

res
(

ζη(s)ϕ̃(s+ k)
(s)k

;ω
)
+

∑
α∈W|n\Dη

α�∈{1−k,...,0}

a(0)
α

ζη(α)
(α)k

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jζη(−j)ϕ̃(k − j)

+
1
2πi

∫
S|n

ζη(s)ϕ̃(s+ k)
ds

(s)k
, (5.58)

up to an error not exceeding a constant times∫ ∞

0

|ϕ(x)|xk−1T−k
(
TxD+δ/2 + Tκmax{xD+δ/2, xinf S}

)
dx. (5.59)

Here, we have used the fact that for fixed 0 < β1 < β2,

|η| (β1x, β2x) = O
(
xD+δ/2

)
, as x→∞,

since D is the abscissa of convergence of ζ|η|. Firstly, one checks that the
integral (5.59) converges, due to the conditions we imposed on ϕ at 0 and∞.
Then we see that it vanishes as T → ∞, provided k > 1 and k > κ. The
integral over the truncated screen converges as T → ∞ if k > κ + 1.
If L2′ is satisfied, we first let m → ∞; i.e., we derive a truncated formula
without an integral over the truncated screen. Then we do not need the
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assumption that k > κ + 1 to ensure convergence. This establishes the
formula when ϕ(x) = O

(
x−k−inf S+δ

)
as x→ 0+.

We now prove the theorem for the special test function ϕ(x) = x−αe−cx,
with α ∈ C. Then, in light of Equation (5.52), we obtain the formula for
general test functions by subtracting sufficiently many functions of this
type, depending on the asymptotic expansion at 0 of the test function.
Let ϕ(x) = x−αe−cx. For the formula with error term, varying c does

not give any extra generality, and we simply put c = 1, but when L2′ is
satisfied, we let c be any complex number with positive real part. Then

ϕ̃(s) = c−s+αΓ(s− α).

This function has poles at the points α, α − 1, . . . , and it has the right
decay as Im s→ ±∞, so that the integral defining the error term in (5.58),
namely,

1
2πi

∫
S|n

ζη(s)ϕ̃(s+ k)
ds

(s)k
,

converges as n →∞. Note in addition that by Stirling’s formula [In, p. 57],
we have

|Γ(s− α)| �a exp(aRe s)

for every a > 0, as Re s → −∞ away from the poles α, α− 1, . . . . Thus we
can first let m → ∞ to obtain a formula without error term. In this case,
as m → ∞, we pick up a residue ζη(α − l − k)cl(−1)l/ (l!(α− l − k)k) at
each point α− l− k where ϕ̃(s+ k) has a pole. Since the integral over the
screen converges and the expression for the error (5.59) vanishes as T →∞,
the sum of these residues converges.
For the formula with error term, we first apply the explicit formula

for Reα small enough, so that none of the points α, α−1, . . . lies inside W .
The left-hand side of the explicit formula is clearly an analytic function in α,
taking into account the fact that η is supported away from 0. The proof will
be complete when we have shown that the right-hand side is also analytic
in α. For this, we need to show that the right-hand side changes analyti-
cally when one of the points α, α− 1, . . . crosses the screen S or coincides
with a complex dimension or with one of the points −j, for j = 0, . . . , k−1.
Indeed, when one of the points α, α− 1, . . . crosses S, the integral over the
screen changes by minus the residue of the integrand at this point, and this
cancels the corresponding term in the last sum. Secondly, when one of the
points α, α− 1, . . . coincides with a complex dimension or with one of the
points −j, j = 0, . . . , k− 1, the analyticity follows from Lemma 5.25. This
completes the proof of Theorems 5.26 and 5.27.

5.4.2 The Order of the Distributional Error Term

We now provide a more quantitative version of our distributional explicit
formulas with error term (Theorem 5.18, or more generally, Theorem 5.26),
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which will play a key role in the remainder of this book. (See, for example,
Chapters 7–9 and 11.)
Given a > 0 and a test function ϕ, we set

ϕa(x) =
1
a

ϕ

(
x

a

)
. (5.60)

In light of Equation (5.43), the Mellin transform of ϕa(x) is given by

ϕ̃a(s) = as−1ϕ̃(s). (5.61)

Definition 5.29. We will say that a distribution R is of asymptotic order
at most xα (respectively, less than xα)—and we will write R(x) = O(xα)
(respectively, R(x) = o(xα)), as x → ∞—if applied to a test function ϕ,
we have that10

〈R, ϕa〉 = O (aα) (respectively, 〈R, ϕa〉 = o (aα)), as a→∞. (5.62)

When we apply Definition 5.29, we use an arbitrary test function ϕ of
the type considered in Theorem 5.18 (respectively, Theorem 5.26).
The following theorem completes Theorems 5.18 and 5.26 by specifying

the asymptotic order of the distributional error term R[k]
η obtained in our

distributional explicit formula (5.45). It shows that, in a suitable sense,
Theorem 5.18 and its extension, Theorem 5.26, are as flexible as and more
widely applicable than their pointwise counterpart, Theorem 5.10. As was
mentioned above, we will take advantage of this fact on many occasions in
the rest of this book.
Recall that the screen S is the parametrized curve S : t �→ S(t) + it, for

some bounded Lipschitz continuous function S(t), and that the least upper
bound of S is denoted supS; see Section 4.1 and formula (5.17b).

Theorem 5.30 (Order of the distributional error term). Fix k ∈ Z. As-
sume that the hypotheses of Theorem 5.18 (or more generally, of Theo-
rem 5.26, with k + q > κ + 1) are satisfied. Then the distribution R[k]

η ,
given by (5.46), is of asymptotic order at most xsup S+k−1 as x→∞ :

R[k]
η (x) = O

(
xsup S+k−1

)
, as x→∞, (5.63)

in the sense of Definition 5.29.
Moreover, if S(t) < supS for all t ∈ R (i.e., if the screen lies strictly

to the left of the line Re s = supS), then this distribution is of asymptotic
order less than xsup S+k−1 as x→∞ :

R[k]
η (x) = o

(
xsup S+k−1

)
, as x→∞. (5.64)

10In this formula, the implicit constants depend on the given test function ϕ.
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Proof. The integral (5.46) for
〈
R[k]

η , ϕ
〉
converges absolutely. Let ϕ be a

test function with compact support. When we replace ϕ by ϕa in (5.46), we
see, by formula (5.61), that the absolute value of the integrand is multiplied
by aRe s+k−1 ≤ asup S+k−1 for s = S(t) + it. Hence

∣∣〈R[k]
η , ϕa

〉∣∣ is bounded
by a constant times asup S+k−1.
To obtain the better estimate (5.64) when S approximates the line Re s =

supS, but stays strictly to the left of it, we use an argument similar to the
one used to derive estimate (5.38) of Theorem 5.10.

The analysis of the error term given in Theorem 5.30 also allows us to es-
timate the sum over the complex dimensions occurring in our distributional
explicit formulas.

Theorem 5.31. Let v ≤ D. Assume that the hypotheses of Theorem 5.18
(or of Theorem 5.26, with k + q > κ + 1) are satisfied, with a screen
contained in the open half-plane Re s < v. Assume, in addition, that there
exists a screen S0 contained in Re s < v, satisfying L2 and such that every
complex dimension to the right of S0 has real part ≥ v. Then

∑
ω∈Dη(W ), Re ω<v

res
(

xs+k−1ζη(s)
(s)k

;ω
)
= o

(
xv+k−1

)
, as x→∞, (5.65)

in the sense of Definition 5.29.

Proof. We write this distribution as R[k]
0,η(x) − R

[k]
η (x), where R[k]

0,η is the
error term associated with the screen S0. The result then follows from
Theorem 5.30 applied to R[k]

0,η and R
[k]
η .

We will apply Theorem 5.31 in Chapters 7–9 and 11 with v = D. How-
ever, the hypotheses of this theorem are not always satisfied: it is not always
possible to choose a screen S0 passing between Re s = D and the complex
dimensions to the left of this line. Nevertheless, in the case of self-similar
strings, we can still obtain information from the complex dimensions; see
Remark 6.15. In the following example, we construct a nonlattice string
that does not satisfy L2 for any such screen S0 (hence it is neither languid
nor a fortiori, strongly languid, along this screen).

Example 5.32. Recall the definition of the continued fraction of a real
number α > 1 given in Section 3.5.1. We construct a nonlattice self-similar
string L with two scaling ratios r1 = e−1, r2 = e−α, where α will be
specified below.11 Consider the function f(s) = 1 − e−s − e−αs. Let D be
the real zero of f ; i.e., the dimension of L. Let pn/qn be a convergent of α,
so that qnα − pn = (−1)n+1/q′n+1. Then f(D + 2πiqn) is very close to 0.

11Here, e = exp(1) is the base of the natural logarithm.
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Indeed, we have e−(D+2πiqn) = e−D and

e−(D+2πiqn)α = e−Dαe−2πiqnα+2πipn = e−Dαe2πi(−1)n/q′
n+1 .

Hence, by the same techniques as those used in Chapter 3, Section 3.5.2,

f(D + 2πiqn) = 1− e−D − e−Dα
(
1 +O

(
2π/q′n+1

))
= O

(
2π/q′n+1

)
, as n →∞.

The reason for this near vanishing is that there is a zero of f close to
s = D + 2πiqn, but slightly to the left. It follows that

|ζL (D + 2πiqn)| � q′n+1.

Note that
q′n+1 = αn+1qn + qn−1 > an+1qn.

We next choose the integers aj as follows: a0 = 1, and if a0, a1, . . . , an are
already constructed, then we compute qn and set an+1 = qn

n (thus a1 = 1,
a2 = 1, a3 = 4, a4 = 93, a5 ≈ 1.8 · 1015, . . . ). Then

|ζL (D + 2πiqn)| � qn+1
n ,

so that on the vertical line Re s = D, condition L2 is violated for every
value of κ—see Equation (5.20).
Naturally, the value of f(s) will be even smaller between s = D + 2πiqn

and the nearby zero of this function. Thus L2 will not be satisfied on any
screen passing between Re s = D and the poles of ζL.

The reader sees that the integers aj in this example, and hence the
numbers qn, grow extremely fast. Thus the set of points where ζL is large
is very sparse.
One could think of a way out by replacing hypothesis L2 in (5.20) by

the following integrability condition: The function

t �−→ |ζL(D + it)|(|t|+ 1)−κ−1 (5.66)

is integrable on R. Indeed, our theory easily goes through under this weaker
condition.
However, we can even choose α such that |ζL(D + it)|/g(|t|) is not in-

tegrable as a function of t ∈ R no matter how fast the positive function g
grows. Namely, we choose α such that log qn+1/g(qn) grows unboundedly.
This is the case, for example, if we choose the coefficients of α so as to
satisfy

an+1 ≥ eng(qn),

for n = 0, 1, 2, . . . .

We again give an example, now of a string that is not self-similar, showing
that condition (5.66) is not satisfied by every generalized fractal string.
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Example 5.33. Consider the measure μ on [1,∞) defined by

μ =
∑

n∈Z\{0}

xD−1−dn+in

n2
dx,

where the real numbers dn = d−n are small, and will be specified below.
The geometric zeta function of this generalized fractal string has poles
at D− dn ± in, with residue 1/n2, for n ∈ Z− {0}. Hence the value of the
integral of |ζμ(s)| over an interval from D + i

(
n− 1

2

)
to D + i

(
n+ 1

2

)
is

close to
1
n2

∫ 1/2

−1/2

dt

|t+ idn|
≈ − log dn

n2
,

as |n| → ∞. Therefore, we have∫ D+i(n+1/2)

D+i(n−1/2)

|ζμ(D + it)| t−κ dt ≈ − log dn

n2+κ
,

as n →∞.
We conclude that if dn = exp (−nn), then for every value of κ, the

function |ζμ(D + it)|(|t| + 1)−κ is not integrable along the vertical line
Re s = D—and hence along any screen passing between Re s = D and the
poles of ζμ. It follows that condition (5.66) (or its obvious analogue along
a suitable screen S) is never satisfied for this string μ.

The following example explains rather clearly why, in general, our explicit
formulas must have an error term. Indeed, in this extreme situation, there
is only an error term because the set Dη of visible complex dimensions is
empty and therefore the corresponding sum over Dη vanishes.

Example 5.34. The generalized fractal string

η =
∞∑

n=1

(−1)n−1δ{n} (5.67)

has no complex dimensions. Indeed, by [Ti, Eq. (2.2.1), p. 16], the assoc-
iated geometric zeta function is

ζη(s) =
∞∑

n=1

(−1)n−1n−s =
(
1− 21−s

)
ζ(s). (5.68)

Since the pole of ζ(s) at s = 1 is canceled by the corresponding zero
of

(
1− 21−s

)
in Equation (5.68), ζη(s) is holomorphic in all of C and

hence Dη is empty, as claimed above. Thus the explicit formula for Nη(x)
(and for N

[k]
η (x) at level k) has no sum over ω, only an error term and a

constant term.
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We now explain this in more detail in the case when k = 1. Choose
a screen to the left of Re s = 0. Since ζ(σ + it) grows like |t|1/2−σ (see
Equation (6.21) in Chapter 6 below), we have to interpret Nη(x) as a dis-
tribution. Also the more stringent assumptions of Theorem 5.22, needed to
obtain a distributional explicit formula without error term, are not satisfied
here. Theorem 5.18 yields

Nη(x) =
1
2
+R[1](x). (5.69)

By construction, we have

Nη(x) =

{
0, for 2n ≤ x < 2n+ 1, n = 0, 1, . . . ,
1, for 2n+ 1 ≤ x < 2n+ 2, n = 0, 1, . . . .

(5.70)

Observe that Nη(x) is an additively periodic function, with period 2. Its
Fourier series is

Nη(x) =
1
2
+
1
πi

∞∑
n=−∞

eπi(2n+1)x

2n+ 1
. (5.71)

We point out that the reason why our explicit formula gives only the con-
stant term 1/2 and an error term in (5.69) is that this function is not multi-
plicatively periodic. On the other hand, our explicit formula does yield the
Fourier series of a multiplicatively periodic counting function.

Remark 5.35. By (5.70), the average value of Nη(x) in the previous ex-
ample is equal to 1/2, as expressed by the first term of the right-hand side
of (5.69). Further, this function jumps by +1 at every odd integer, and
by −1 at every even integer. Hence, as x → ∞, Nη(x) = 1/2 + O(1) as a
function, and no better pointwise estimate holds as x → ∞. On the other
hand, as a distribution, R[1](x) = O (xσ) for every σ < 0, since we can
choose screens arbitrarily far to the left. Thus Nη(x) does not oscillate.
This seems to be a contradiction.
The resolution of this apparent paradox is important since in Chapters 9

and 11, we will make use of the fact that a certain type of oscillations,
multiplicative oscillations, are reflected in our explicit formulas. We discuss
this paradox here in the case of the harmonic string h, which will serve as
a paradigm for this phenomenon.
Since by (4.11), h =

∑∞
n=1 δ{n}, we have

Nh(x) = # {n ≥ 1 : n ≤ x} = [x]. (5.72)

Hence Nh(x) jumps at every positive integer. On the other hand, according
to Theorem 5.18 applied at level k = 1 and k = 0 respectively, we have

Nh(x) = x− 1
2
+R[1]

h (x), (5.73a)
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for the counting function of the lengths, and

h = 1 +R[0]
h (x), (5.73b)

for the density of states. In the sense of Definition 5.29, the error terms are
estimated by

R[1]
h (x) = O

(
xσ

)
, as x→∞, (5.74a)

and

R[0]
h (x) = O

(
xσ−1

)
, as x→∞, (5.74b)

for every σ < 0. As in Example 5.34, this seems to be in contradiction with
the jumps of Nh(x) and the point masses of h at the positive integers.
The meaning of the distributional equalities (5.73) and (5.74) becomes

clear when we do not apply them to a localized test function, but to a test
function having an asymptotic expansion near 0,

ϕ(x) =
∑

Re α<1

aαx−α, as x→ 0+,

as in (5.53b), with aα = 0 for Reα ≥ 1. Write

ϕt(x) =
1
t
ϕ (x/t)

and J =
∫∞
0

ϕ(x) dx. Then, by Theorem 5.26, applied at level k = 0,
∞∑

n=1

ϕt(n) = J +
∑

Re α≥−σ

aαζ(α)tα−1 +
〈
R[0]

h , ϕt

〉
,

and the error term is of order O
(
tσ−1

)
as t →∞, for every σ < 0.12

On a logarithmic scale, the points 1, 2, 3, . . . become dense on the real
line, which is why h is distributionally approximated by the density 1 up
to every order; see Figures 5.2 and 5.3. On the other hand, multiplicative
oscillations of η, like, for example, in the case of the Cantor string, do
give rise to oscillatory terms in the explicit formula for η, as we will see in
Section 8.4.2 and in Chapter 10.

Remark 5.36. A notation of the same type as the first part of Equa-
tion (5.62) of Definition 5.29, R(x) = O (xα), was introduced indepen-
dently (and probably a little earlier) by Yves Meyer in [Mey, Definitions 1.2
and 1.3, p. 10] for different classes of test functions, and with a closely re-
lated meaning. (See also, e.g., the memoir by Stéphane Jaffard and Yves
Meyer [JafMey].)13

12This very useful classical formula does not appear in the literature. It was explained
heuristically to the second author by Don Zagier (private communication, 1994).

13There are some obvious but confusing notational differences between [Mey] and Def-
inition 5.29, due to the fact that in our case, x > 0 and x → ∞, whereas in [Mey], x ∈ Rd

and x → 0 (or more generally, x → x0 for some x0 ∈ Rd).
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0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: The integers viewed additively.

1 2 3 4 5 6 7 8 10 12 15 20

Figure 5.3: The integers viewed multiplicatively.

In [Lap-vF1–4] and [Lap-vF5, Definition 4.22, p. 99], we were led natu-
rally to formulate Definition 5.29 in order to obtain suitable distributional
explicit formulas with error term. In our theory, the latter were needed orig-
inally to establish the extension to other zeta functions in Section 11.2 of the
results of Section 11.1. See especially Theorem 11.12 about the absence of
infinite vertical arithmetic progressions of zeros. See also the corresponding
result in [Lap-vF5, Theorem 9.5, pp. 184–185], announced in [Lap-vF2, 4].

5.5 Example: The Prime Number Theorem

In the next chapter, we will discuss a number of examples illustrating our
pointwise and distributional explicit formulas. In the present section, we
will concentrate on one particular application of these formulas, namely,
to the Prime Number Theorem and issues surrounding it, particularly the
Riemann–von Mangoldt formula. Our main purpose is to indicate by means
of this example the flexibility provided by our distributional formula and
by the introduction of a screen in the formulation of our explicit formulas.
This example is also included in order to clarify the relationships be-

tween our explicit formulas and the traditional ones from number theory.
Our proof of the Prime Number Theorem with error term obtained in this
manner is essentially the same as the usual one, except for the analysis of
the error term. We note, however, that in the present context, the system-
atic use of the screen S in our theory makes particularly transparent the
connection between a given zero-free region for ζ(s) and the corresponding
error term Rπ(x) in the asymptotic formula (5.77).
In Chapter 7, we shall use our explicit formulas to obtain an analogue

of the Prime Number Theorem (with error term) for the primitive peri-
odic orbits of a self-similar flow and other suspended flows. See especially
Section 7.4.

The reader familiar with the classical explicit formulas from number
theory—the first one of which was discovered by Riemann and described in
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his famous 1858 paper [Rie1]—may wonder why the theorems obtained
in this chapter are called explicit formulas. Indeed, Riemann’s explicit
formula—as interpreted and proved thirty-six years later by von Man-
goldt [vM1–2]—relates a suitable counting function associated with the
prime numbers to an infinite sum involving the zeros of the Riemann zeta
function (that is, the poles of its logarithmic derivative ζ ′/ζ); see, for ex-
ample, [Pat, esp. Chapters 1 and 3], [Da, Chapter 17], [In, Chapters II–
IV], [Edw, Chapters 1 and 3]. See also the discussion on pages 3–4 of the
introduction and the one surrounding Equation (5.8) in Section 5.1. (A
similar statement holds for the various types of number-theoretic explicit
formulas found in the literature; see, for instance, the references given in
Section 5.6.)
However, we show in this section that we can easily recover the Riemann–

von Mangoldt formula from our own explicit formulas. Actually, we can
obtain different versions of it, either pointwise or distributional, at vari-
ous levels k, the most basic of which is the distributional formula obtained
when k = 0, corresponding to the density of prime powers viewed as the
generalized fractal string P =

∑
m≥1, p(log p) δ{pm}, the prime string, in-

troduced in (4.13); see Equation (5.82) in Section 5.5.1 below.
In turn, now standard arguments (see, e.g., [Da, Chapter 18], [Edw,

Chapter 4], [Pat, Chapter 3] or [In, p. 5 and Chapter II])—first used in
slightly different forms by Hadamard [Had2] and de la Vallée Poussin [dV1–
2]14—enable us to deduce from this explicit formula the Prime Number
Theorem with error term; namely, if

π(x) = # {p ≤ x : p is a prime number} (5.76)

denotes the prime number counting function, then

π(x) = Li(x) +Rπ(x), as x→∞, (5.77)

14Their results, obtained independently and published almost simultaneously in 1896,
relied on von Mangoldt’s work [vM1–2], as well as on Hadamard’s product formula
for entire functions [Had1]. In their proof, both Hadamard [Had2] and de la Vallée
Poussin [dV1] showed (also independently) that ζ(s) 	= 0 for all s on the vertical
line Re s = 1. Hadamard’s classical proof of the Prime Number Theorem is the sim-
plest of the two, but in his second paper [dV2], de la Vallée Poussin established the
existence of a zero-free region to the left of Re s = 1 and thus went further in his in-
vestigation of the approximation of π(x), in the form of the error estimate (5.77). (See,
e.g., [In, p. 5], [Edw, Chapter 5], [Ti, Chapter III] and [Pat, Chapter 3].) We note that
the original form of the Prime Number Theorem obtained in [Had2,dV1] was as follows:

π(x) = Li(x) (1 + o(1)) =
x

log x
(1 + o(1)) , as x → ∞. (5.75)
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where Li denotes the logarithmic integral

Li(x) = lim
ε→0+

(∫ 1−ε

0

+
∫ x

1+ε

)
1
log t

dt, for x > 1, (5.78)

and estimates for the error term Rπ(x) depend on our current knowledge of
the zero-free region for the Riemann zeta function. For example, in (5.77),
we have

Rπ(x) = O
(
xe−c

√
log x

)
, as x→∞, (5.79)

for some explicit positive constant c. Better error estimates—following from
a refined analysis of the zero-free regions of ζ—can be found, for instance,
in Ivić’s book [Ivi] (see also, e.g., [In, pp. xi–xii] and the references therein)
and can also be deduced from our explicit formula, simply by choosing a
different screen S and thus a different window W suitably adapted to the
zero-free region.

5.5.1 The Riemann–von Mangoldt Formula

We now briefly explain how to interpret and derive from our explicit for-
mula the Riemann–von Mangoldt formula. (Compare, for example, with
the discussion in [Edw, Chapter 3, esp. §3.5] or else in [In, Pat].) As was
seen in Section 4.1.1, the geometric zeta function of the prime string

P =
∑

m≥1, p

(log p)δ{pm} (5.80)

is the function

ζP(s) = −
ζ ′(s)
ζ(s)

. (5.81)

(In (5.80) above and in (5.83) below, p runs over the prime numbers.) This
function satisfies L1 and L2′ for every κ > 0 and with W = C. Recall that
the poles of ζP coincide precisely with the zeros and the pole at 1 of ζ,
except that they occur with multiplicity one.
By Theorem 5.22, applied at level k = 0, and with A = 1, the density

of lengths formula without error term for the prime string reads as follows
(see also Corollary 5.23 above and Section 6.3.1 below):

P = 1−
∑

ρ

xρ−1 −
∞∑

n=1

x−1−2n, for x > 1, (5.82)

where ρ runs through the sequence of critical zeros of ζ. (See the last
comment at the end of Section 4.1.1.) This formula should be interpreted



5.6 Notes 173

distributionally on the open interval (1,∞), as in Theorem 5.22. Further,
note that the last sum on the right-hand side of (5.82) converges to 1

x(x2−1)

and corresponds to the trivial zeros of ζ, located at −2,−4,−6, . . . .
The corresponding formula for the measure

η =
∑

m≥1, p

1
m

δ{pm}, (5.83)

with geometric zeta function

ζη(s) = log ζ(s) =
∑

p

∞∑
m=1

1
m

p−ms,

can be derived by means of the following artefact. One first establishes that
the string dx

log x has a geometric zeta function with a logarithmic singularity
at 1 that cancels that of log ζ(s). Hence, our explicit formula applies to the
string η− dx

log x , with a screen to the left of Re s = 1, but to the right of all
zeros of ζ. We thus find (with supS ≤ 1 given as in formula (5.17b)):

η =
(

1
log x

+ o
(
xsup S−1

))
dx =

1
log x

(1 + o(1))dx, as x→∞. (5.84)

This provides a distributional interpretation of (part of) Riemann’s original
explicit formula [Rie1].15

Remark 5.37. Using the explicit formula (5.82), together with a deep
analysis of the location of the critical zeros ρ of the Riemann zeta function,
one can prove the Prime Number Theorem with error term, stating that

π(x) = Li(x) +O
(
xe−c

√
log x

)
, as x→∞, (5.85)

for some constant c > 0. This result does not seem to be attainable by a
Tauberian argument.

5.6 Notes

A proof of the Prime Number Theorem can be found in any of the books [Da,
Edw, In,Pat,Ti].
For information on pointwise and distributional explicit formulas in an-

alytic number theory see, for example, [Da,Edw,In,Pat,Wei4–6]. Distribu-
tional-type explicit formulas (in a sense somewhat different from this book)
can be found in [Wei4–6, Bar,Haran1,Den1–3, DenSchr].

15The latter is difficult to establish pointwise (see, e.g., [Edw, §1.18, p. 36]) and was
not properly justified in Riemann’s original paper [Rie1].
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The first number-theoretic explicit formula is due to Riemann in his
classic work [Rie1]. It was later extended and rigorously established by
von Mangoldt in [vM1] and especially [vM2] (using, in particular, Ha-
damard’s factorization for entire functions [Had1] and the Euler prod-
uct representation (4.14) of the Riemann zeta function). A sample of ad-
ditional references dealing with explicit formulas in number theory in-
cludes the works by Cramér [Cram], Guinand [Gui1–2], Delsarte [Del],
Weil [Wei4–6], Barner [Bar], Haran [Haran1], Burnol [Bu1–3], Schröter
and Soulé [SchrSo], Jorgenson and Lang [JorLan1, 3], Deninger [Den1–3],
Deninger and Schröter [DenSchr], as well as Rudnick and Sarnak [RudSar].
Further, an excellent introduction to the classical number-theoretic for-

mulas (with varying degrees of sophistication) can be found in the books
by Ingham [In, esp. Chapter IV], Edwards [Edw, esp. Chapter 3] (and the
Appendix [Rie1]), Lang [Lan], Davenport [Da], Patterson [Pat, esp. Chap-
ter 3], as well as that written by Manin and Panchishkin (and edited by
Parshin and Shafarevich) [ParSh1, esp. §2.5].
We refer to [Pos, Section 27, pp. 109–112] and [Shu, Theorem 14.1, p. 115]

for a discussion of the Wiener–Ikehara Tauberian Theorem. See also [Va]
for a concise exposition of the logic of the proof of the Prime Number
Theorem by means of the Wiener–Ikehara Tauberian Theorem. We also
recommend the exposition of J. Korevaar [Kor] on Tauberian theory.



6
The Geometry and the Spectrum
of Fractal Strings

In this chapter, we give various examples of explicit formulas for the count-
ing function of the lengths and frequencies of (generalized) fractal strings
and sprays.
In Section 6.1, we give a detailed discussion of the oscillatory term assoc-

iated with a single complex dimension of the (generalized) fractal string η.
In Section 6.2, we then derive the explicit formulas for the geometric and
spectral counting functions of η, and in Section 6.2.3, for the geometric and
spectral partition functions, which are sometimes a useful substitute for the
corresponding counting functions. In Section 6.3.1, we obtain the explicit
formulas for the geometric and spectral density of states of η, and use them
in Section 6.3.2 to define the spectral operator, which formalizes the direct
spectral problem. We also obtain an Euler product representation for the
spectral operator in that section, and an Euler sum representation for its
additive counterpart.
In Section 6.4, we explore the important special case of self-similar strings

studied in Chapters 2 and 3. We discuss, in particular, the geometry and the
spectrum of both lattice and nonlattice strings. As an application, we shall
prove a Prime Orbit Theorem for self-similar flows in Chapter 7. We study
two examples of non-selfsimilar strings in Section 6.5. We close this chapter
in Section 6.6 by explaining how our explicit formulas apply to the study
of the geometry and the spectrum of fractal sprays, a higher-dimensional
analogue of fractal strings.
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6.1 The Local Terms in the Explicit Formulas

Our explicit formulas1 give expansions of various functions associated with
a fractal string as a sum over the complex dimensions of this string. The
term corresponding to the complex dimension ω of multiplicity one is of
the form

Cxω, where C is a constant depending on ω. If ω is real, the function xω

simply has a certain asymptotic behavior as x→∞. If, on the other hand,
ω = σ + it has a nonzero imaginary part t, then xω = xσ · xit is of order
O(xσ) as x → ∞, with a multiplicatively periodic behavior: The function
xit = exp(it log x) takes the same value at the points e2πn/tx (n ∈ Z).
Thus, the term corresponding to ω will be called an oscillatory term. If
there are complex dimensions with higher multiplicity, there will also be
terms of the form Cxω(log x)m, m ∈ N∗, which have a similar oscillatory
behavior.

6.1.1 The Geometric Local Terms

Let η be a generalized fractal string and let ω be a complex dimension of η;
i.e., s = ω is a pole of ζη(s). The term corresponding to ω in the explicit
formula of Theorems 5.10, 5.14, 5.18, 5.22, 5.26 and 5.27 is

res
(

xs+k−1ζη(s)
(s)k

;ω
)

. (6.1)

The nature of this term depends on the multiplicity of ζη at ω and on the
expansion of ζη around ω. Let m = m(ω) be the multiplicity of ω, and let

am

(s− ω)m
+

am−1

(s− ω)m−1
+

am−2

(s− ω)m−2
+ · · ·+ a1

s− ω
(6.2)

be the principal part of the Laurent series of ζη(s) at s = ω. In particular,

a1 = res (ζη(s);ω) . (6.3)

The expansion of xs−1 around s = ω is given by

xs−1 = xω−1

(
1 + (s− ω) log x+

(s− ω)2

2!
(log x)2 + . . .

)
. (6.4)

In general, for k ≥ 1, the expansion of xs+k−1/(s)k around s = ω is given
by

xω+k−1
∞∑

n=0

(s− ω)n
n∑

μ=0

(log x)μ

μ!

k−1∑
ι=0

(−1)n+ι−μ

ι!(k − 1− ι)!
1

(ω + ι)n+1−μ
. (6.5)

1Throughout this discussion, we assume that ζη satisfies the appropriate growth
conditions; namely, hypotheses L1 and L2 (respectively, L1 and L2′) if the explicit
formula of Theorem 5.10 or 5.18 (respectively, 5.14 or 5.22) is applied.
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To derive this formula, we first compute the partial fraction expansion
of 1/(s)k (see formula (5.12) for the Pochhammer symbol (s)k). The residue
at s = −ι is determined by a computation similar to that in the proof of
Lemma 5.1, and equals (−1)ι/(ι!(k − ι− 1)!). Hence, for k ≥ 1,

1
(s)k

=
k−1∑
ι=0

(−1)ι
ι!(k − 1− ι)!(s+ ι)

. (6.6)

Next, we substitute the power series

1
s+ ι

=
∞∑

n=0

(−1)n (s− ω)n

(ω + ι)n+1

and multiply by the power series of xs+k−1 to obtain formula (6.5).
In the pointwise explicit formulas (Theorems 5.10 and 5.14), k is always

positive. On the other hand, we can choose k to be negative in the dis-
tributional explicit formulas of Theorems 5.18, 5.22, 5.26 and 5.27. In that
case, (s)k is defined by (5.42). Thus 1/(s)k is a polynomial,

1
(s)k

= (s− 1)(s− 2) . . . (s+ k).

For negative values of k, it is much harder to compute the expansion
of xs+k−1/(s)k around s = ω. In the next theorem, we only discuss k = −1
and arbitrary negative values of k if ω is a simple pole of ζη.

Theorem 6.1. Let ω be a complex dimension of multiplicity m and let the
principal part of ζη(s) at s = ω be given by formula (6.2). Then the local
term (6.1) in the explicit formula at ω is given by

xω−1
m∑

j=1

aj
(log x)j−1

(j − 1)! , (6.7)

for k = 0, and by

xω+k−1
m∑

j=1

aj

k−1∑
ι=0

j−1∑
μ=0

(log x)μ

μ!
(−1)j−1+ι−μ

ι!(k − 1− ι)!
1

(ω + ι)j−μ
, (6.8)

for k ≥ 1. For k = −1, this local term is given by

xω−2
m∑

j=1

aj
(log x)j−2

(j − 1)! (j − 1 + (ω − 1) log x). (6.9)

In particular, by (6.3), if ω is a simple pole of ζη, then the local term is
given by these formulas for m = 1:

xω−1 res (ζη(s);ω) , (6.10)
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if k = 0, and by

res (ζη(s);ω)
xω+k−1

(ω)k
= res (ζη(s);ω)xω+k−1

k−1∑
ι=0

(−1)ι
ι!(k − 1− ι)!

1
ω + ι

,

(6.11)

if k ≥ 1. For k < 0, the local term is given by

res (ζη(s);ω)xω+k−1(ω − 1)(ω − 2) . . . (ω + k). (6.12)

6.1.2 The Spectral Local Terms

Let ν be the spectral measure of the generalized fractal string η, as in
Section 4.2, and let ω be a spectral complex dimension of η (i.e., ω is a
pole of the spectral zeta function ζν , and therefore, a complex dimension
of ν). Since, by formula (4.17), ζν(s) = ζη(s)ζ(s), either ω = 1, the pole
of the Riemann zeta function ζ(s), or ω is a pole of the geometric zeta
function ζη(s) (i.e., ω is a geometric complex dimension of η) that is not
canceled by a zero of ζ(s) at ω. See the end of this subsection and also
Chapter 9 for a discussion of the possibility of cancellation of complex
dimensions.
The spectral dimension ω = 1 gives the Weyl term and is discussed in

the next section.
In order to study the corresponding local terms, we need to compute

the principal part of the Laurent series of ζν(s) = ζη(s)ζ(s) at s = ω.
For ω �= 1, let this principal part be

bm

(s− ω)m
+

bm−1

(s− ω)m−1
+

bm−2

(s− ω)m−2
+ · · ·+ b1

s− ω
. (6.13)

The coefficients bj can be expressed in terms of the aj ’s of formula (6.2):

bj =
j∑

q=1

aq
ζ(j−q)(ω)
(j − q)!

, (6.14)

where ζ(n)(ω) denotes the n-th derivative of the Riemann zeta function
at s = ω. In particular, note that we have bm = amζ(ω). (Indeed, since
in our applications, Reω < 1, ω is not a pole of the Riemann zeta func-
tion.) But if ζ(s) vanishes at s = ω, then the multiplicity of the complex
dimension ω diminishes in the spectrum. The complex dimension ω could
even disappear altogether, as was mentioned above. This is the subject of
Chapter 9.
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6.1.3 The Weyl Term

There is one special complex dimension associated with the spectrum,
namely s = 1. We call it the spectral complex dimension of the Bernoulli
string.2 It is never a pole of ζη, so that we can easily compute the corres-
ponding term in the explicit formulas.

Definition 6.2. The Weyl term associated with the Bernoulli string is the
term at s = 1 in the explicit formula for the spectrum. It is given by

W [k](x) = ζη(1)
xk

k!
, (6.15)

for k ≥ 0.
Remark 6.3. Recall that if η is associated to an ordinary fractal string L,
then ζη(1) = vol1(L) is the total length of the string. Note that for a
smooth, compact and connected manifold, the leading term of the spectral
asymptotics of the Laplacian is often referred to as the Weyl term in the
literature. According to Weyl’s asymptotic formula (see Equations (B.2)
and (B.3) in Section B.1 of Appendix B), the Weyl term is proportional to
the volume of the manifold.

6.1.4 The Distribution xω logm x

The local terms are finite sums of terms proportional to xω+k−1 (log x)m. In
Theorems 5.18 and 5.22, these terms have to be interpreted as distributions,
which act on a test function ϕ in the following way:〈

xω+k−1 (log x)m , ϕ
〉
=

∫ ∞

0

xω+k−1 (log x)m ϕ(x) dx. (6.16)

Now, ϕ̃(s) =
∫∞
0

xs−1ϕ(x) dx is an analytic function (it is meromorphic
in a strip with finitely many poles under the more general assumptions of
Theorems 5.26 and 5.27). Since this integral is absolutely convergent, we
can differentiate under the integral sign. The m-th derivative with respect
to s is

ϕ̃(m)(s) =
∫ ∞

0

xs−1 (log x)m ϕ(x) dx. (6.17)

Combining (6.16) and (6.17), putting s = ω + k, we find that〈
xω+k−1 (log x)m , ϕ

〉
= ϕ̃(m)(ω + k), (6.18)

where ϕ̃(m) is the m-th derivative of the holomorphic function ϕ̃.

2The Bernoulli string B (called the Sturm–Liouville string in [Lap2, Remark 2.5,
p. 144]) is defined as Ω = (0, 1), a single open interval of length 1. Its spectral zeta
function is the Riemann zeta function, ζν,B(s) = ζ(s).
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6.2 Explicit Formulas for Lengths and Frequencies

In this section, we give the explicit formulas for the geometric and spectral
counting functions Nη(x) and Nν(x). We also give these formulas on the
k-th level, for k ≥ 2.

6.2.1 The Geometric Counting Function of a Fractal String

Choose a screen S such that L1 and L2 are satisfied for some κ, so that η
is languid in the corresponding window W . When k > max{1, κ + 1},
the pointwise explicit formula (Theorem 5.10) for the counting function
is valid. Otherwise (that is, if k ≤ κ + 1 or k ≤ 1, k ∈ Z), we have
to interpret N

[k]
η (x) as a distribution. Note that for the usual counting

function Nη(x) = N
[1]
η (x), we do not have a pointwise formula with error

term. But as a distribution, according to Theorem 5.18, it is given by

Nη(x) =
∑

ω∈Dη(W )

res
(

xsζη(s)
s

;ω
)
+ {ζη(0)}+R[1]

η (x), (6.19a)

and, if the poles are simple, by

Nη(x) =
∑

ω∈Dη(W )

xω

ω
res (ζη(s);ω) + {ζη(0)}+R[1]

η (x), (6.19b)

where the term in braces is included only if 0 ∈W\Dη.
These are special cases of the following more general formulas, for k ≥ 1:

N [k]
η (x) =

∑
ω∈Dη(W )

res
(

xs+k−1ζη(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j) +R[k]

η (x),

(6.20a)

and, if the complex dimensions are simple,

N [k]
η (x) =

∑
ω∈Dη(W )

xω+k−1

(ω)k
res (ζη(s);ω)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζη(−j) +R[k]

η (x).

(6.20b)

We note that the distributional error term occurring in formulas (6.19a)–
(6.20b) can be estimated by means of Theorem 5.30.
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Remark 6.4. From now on, for notational simplicity, we will no longer
distinguish between the distributional error terms at level k (previously
denoted by R[k]

η (x)) and their pointwise counterparts, R
[k]
η (x). In other

words, both a pointwise and distributional error term at level k will be
denoted by R

[k]
η (x), as we have done in formulas (6.19a)–(6.20b) above. As

usual, the case k ≤ 0 is allowed in the distributional formula.

6.2.2 The Spectral Counting Function of a Fractal String

For the spectral zeta function ζν(s), hypothesis L2′ is never satisfied. Hence
only Theorems 5.10 and 5.18 apply; i.e., our explicit formulas for the spec-
trum will always contain an error term. Indeed, by [Edw, §9.2, p. 185], the
Riemann zeta function satisfies

|ζ(σ + it)| ≤ Cσ (|t|+ 1)
1
2−σ (6.21)

for σ < 0, and it does not satisfy a better estimate in this half-plane. (The
constant Cσ decreases like (2πe)σ−1/2 as σ → −∞.) Moreover, inside the
critical strip 0 ≤ σ ≤ 1, one has the estimate

|ζ(σ + it)| ≤ K · (|t|+ 1)(1−σ)/2 log |t| (6.22)

for some constant K. It follows from these estimates that if L is a fractal
string satisfying hypotheses L1 and L2 for some value of κ, then, by Equa-
tion (1.38), its spectral zeta function ζν(s) = ζL(s)ζ(s) satisfies the same
assumptions for the same screen, except with κ replaced by κ+ 1

2 − inf S
if inf S ≤ 0, or by κ+ 1

2 if inf S > 0.
Given σ0 ≤ 0, we apply Theorem 5.10 to find the following pointwise

explicit formula, valid for all positive integers k > 3
2 − σ0 + κ:

N [k]
ν (x) = W [k]

η (x) +
∑

ω∈Dη(W )

res
(

xs+k−1ζν(s)
(s)k

;ω
)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζν(−j) +R[k]

ν (x),

(6.23a)

where W
[k]
η (x) = ζη(1)xk/k! is the Weyl term (at level k), introduced in

Section 6.1.3. If the poles are simple, this becomes

N [k]
ν (x) = W [k]

η (x) +
∑

ω∈Dη(W )

xω+k−1

(ω)k
ζ(ω) res (ζη(s);ω)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1

j

)
(−1)jxk−1−jζν(−j) +R[k]

ν (x).

(6.23b)
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Alternatively, if we apply Theorem 5.18, we obtain a distributional ex-
plicit formula (with error term) valid for all k ∈ Z (and in particular
for k = 1), which is still given by Equation (6.23), but which is now inter-
preted distributionally (see Remark 6.4 above). This distributional formula
will be very useful later in the book; see, in particular, Chapter 9 and es-
pecially Section 11.2.

Remark 6.5. If we set k = 1 in (6.23a) and (6.23b) (which is only pos-
sible provided these formulas are interpreted distributionally), then Equa-
tion (6.23a) becomes, using that ζ(0) = −1/2,

Nν(x) = ζη(1)x+
∑

ω∈Dη(W )

res
(

xsζν(s)
s

;ω
)
− {ζη(0)/2}+Rν(x).

(6.24a)

Moreover, if all the complex dimensions of the fractal string L are simple,
then Equation (6.23b) becomes

Nν(x) = ζη(1)x+
∑

ω∈Dη(W )

xω

ω
ζ(ω) res (ζη(s);ω)− {ζη(0)/2}+Rν(x).

(6.24b)

In both formulas, the term in braces is included only if 0 ∈W\Dη.

6.2.3 The Geometric and Spectral Partition Functions

The geometric partition function of an ordinary fractal string L = (lj)
∞
j=1

is given by

θL(t) =
∞∑

j=1

e−tl−1
j , for t > 0. (6.25)

More generally, for a generalized fractal string η, it is given by

θη(t) =
∫ ∞

0

e−xtη(dx) =
〈
P [0]

η , ϕt

〉
, (6.26)

where ϕt(x) = e−xt for t > 0. Hence, if η satisfies L1 and L2 (that is, η is
languid, in the sense of Definition 5.2), the explicit formula of Theorem 5.26
applies, and we obtain the following result (note that by (5.43), we have
ϕ̃t(s) = Γ(s)t−s, where Γ is the gamma function):

θη(t) =
∑

ω∈Dη(W )

res
(
ζη(s)Γ(s)t−s;ω

)
+

∞∑
m=0

−m∈W\Dη

(−1)m
m!

tmζη(−m) +
〈
R[0]

η , ϕt

〉
.

(6.27a)
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If the complex dimensions of η are simple and do not overlap with the poles
0,−1,−2, . . . of the gamma function, this yields

θη(t) =
∑

ω∈Dη(W )

res (ζη(s);ω) Γ(ω)t−ω

+
∞∑

m=0
−m∈W\Dη

(−1)m
m!

tmζη(−m) +
〈
R[0]

η , ϕt

〉
.

(6.27b)

Note that by Theorem 5.27, if η satisfies the stronger hypothesis L2′ instead
of L2, so that η is strongly languid, in the sense of Definition 5.3, we can
choose W = C and set

〈
R

[0]
η , ϕt

〉
= 0 in both (6.27a) and (6.27b).

Recall from (4.21) that the spectral measure of the ordinary fractal
string L is given by

ν =
∑

f

w
(ν)
f δ{f} =

∞∑
n,j=1

δ{nl−1
j }, (6.28)

where f runs over the sequence of (distinct) frequencies of L and w
(ν)
f

denotes the multiplicity of f , as in (1.33). Therefore, according to defin-
ition (6.26), the spectral partition function of L is given by

θν(t) =
∑

f

w
(ν)
f e−ft =

∞∑
n,j=1

e−nl−1
j t, for t > 0. (6.29)

In general, the spectral measure ν associated with a generalized fractal
string η (that is, the measure ν representing the frequency spectrum of η)
is defined by (4.16) or (4.20). Then, the spectral partition function of η is
given by (6.26), with η replaced by ν. When we apply formula (6.27a) to ν,
we thus obtain the following formula for the spectral partition function,
provided 1 is not a complex dimension of η :

θν(t) = ζη(1)
1
t
+

∑
ω∈Dη(W )

res
(
ζη(s)ζ(s)Γ(s)t−s;ω

)
+

∞∑
m=0

−m∈W\Dη

(−1)m
m!

tmζη(−m)ζ(−m) +
〈
R[0]

ν , ϕt

〉
.

(6.30a)

If the complex dimensions of η are simple and do not overlap with the poles
of Γ, this yields

θν(t) = ζη(1)
1
t
+

∑
ω∈Dη(W )

res (ζη(s);ω) ζ(ω)Γ(ω)t−ω

+
∞∑

m=0
−m∈W\Dη

(−1)m
m!

tmζη(−m)ζ(−m) +
〈
R[0]

ν , ϕt

〉
.

(6.30b)
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Remark 6.6. In the literature on spectral geometry or on mathematical
physics (see, for example, [Gi] or [BaltHi,Sim]), the spectral partition func-
tion θν(t) is frequently used as a substitute for the spectral counting func-
tion Nν(x). It usually has a clear physical interpretation. For example, in
quantum statistical mechanics, the eigenvalues correspond to the possible
energy levels En of the underlying quantum system (with possible inter-
actions). Further, the variable t is replaced by β = 1/kBT , where kB is
the Boltzmann constant and T stands for the absolute temperature. (Note
that physically, β� has the dimension of a time, where � is the Planck con-
stant divided by 2π.) In this notation, the (quantum) partition function,
defined as the trace of the Schrödinger semigroup,3 equals

∑∞
j=1 e−βEj .

For each n ≥ 1, e−βEn/
∑

j e−βEj is then interpreted as the probability
(or statistical weight) attached to the n-th state of the system (counting
multiplicities in the spectrum). See [BaltHi, Sim] along with [Fey], and in
a broader context, [JohLap, Section 20.2].
The interested reader can find in Section B.2 of Appendix B (and the

relevant references therein) some information about the short time asymp-
totics of θν(t) in the classical case of a smooth manifold, along with their
relationship with the spectral zeta function ζν(s). We note that for the
spectral problems of this kind, one usually needs information about the
asymptotic behavior of θν(t) as t → 0+, which corresponds to the asymp-
totic behavior of Nν(x) as x→∞.

6.3 The Direct Spectral Problem
for Fractal Strings

6.3.1 The Density of Geometric and Spectral States

Of special interest are the explicit formulas at level k = 0, the density of
states formulas. They only have a distributional interpretation and they ex-
press the measure of the generalized fractal string, or the spectral measure,
as a sum over the complex dimensions.
We apply our distributional explicit formula with error term (Theo-

rem 5.18) to η = P [0]
η , where η is a generalized fractal string satisfying

hypotheses L1 and L2. We then obtain that, as a distribution, the mea-
sure η is given by the following density of geometric states (or density of
lengths) formula:

η =
∑

ω∈Dη(W )

res
(
ζη(s)xs−1;ω

)
+R[0]

η (x). (6.31a)

3It is often given and calculated via a path integral.
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If the complex dimensions of η are simple, this becomes

η =
∑

ω∈Dη(W )

res (ζη(s);ω)xω−1 +R[0]
η (x). (6.31b)

The error term is given by the integral over the screen,

R[0]
η (x) =

1
2πi

∫
S

ζη(s)xs−1 ds. (6.32)

Further, by Theorem 5.22, R
[0]
η (x) vanishes identically if condition L2′,

rather than L2, is satisfied and W = C.
Next, let ν be the generalized fractal string representing the frequencies

of η. Note that we can use the same window W for ν, since ζ grows poly-
nomially in vertical strips (see Equation (6.21) above or [In]). If 1 is not a
complex dimension of η, we obtain the following density of spectral states
(or density of frequencies) formula, by Theorem 5.18 applied to ν = P [0]

ν :

ν = ζη(1) +
∑

ω∈Dη(W )

res
(
ζη(s)ζ(s)xs−1;ω

)
+R[0]

ν (x). (6.33a)

If, in addition, the complex dimensions of η are simple, we find by evaluating
the residues in the sum that

ν = ζη(1) +
∑

ω∈Dη(W )

res (ζη(s);ω) ζ(ω)xω−1 +R[0]
ν (x). (6.33b)

The error term is given by the integral over the screen:

R[0]
ν (x) =

1
2πi

∫
S

ζη(s)ζ(s)xs−1 ds. (6.34)

Note that in this case, L2′ is never satisfied, as is explained at the beginning
of Section 6.2.2.
Heuristically, this distributional formula describes what physicists call

the density of states of the string η (or, quantum-mechanically, the density
of energy levels of η); see, e.g., [Berr3,BogKe,Ke] and the relevant references
therein.4

4The authors of these physical references study the spectrum of suitable Hamiltonians
and not that of (generalized) fractal strings. Moreover, from the mathematical point of
view, it is clear that their formal treatment of the density of spectral states should be
interpreted distributionally (as could be done using, for example, our explicit formulas).
We do not claim, however, to be able to recover from our explicit formulas all the results
contained in those papers. See Section 12.5.3 for a related discussion.
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6.3.2 The Spectral Operator and its Euler Product

Our explicit formulas for the density of geometric and spectral states ob-
tained in the previous section—along with previous work on related sub-
jects (especially [LapPo1–2], [LapMa1–2] and Part II of [Lap3])—suggest
introducing the following definition, which fits naturally within the present
framework of generalized fractal strings. In turn, it helps conceptualize
aspects of the aforementioned work and will become useful in our own in-
vestigations (see Chapters 9 and 11). In particular, it formalizes the direct
spectral problem which consists of deducing spectral information from the
geometry.

Definition 6.7. The spectral operatormaps the density of geometric states
onto the density of spectral states. Specifically, it adds the Weyl term ζη(1)
to the explicit formula for η, and locally, if the complex dimensions are
simple, it multiplies each xω−1-term by ζ(ω). Further, the integrand of the
error term is multiplied by ζ(s).

Remark 6.8. We could use the geometric and spectral partition function
of Section 6.2.3, instead of the density of geometric and spectral states, to
formulate the definition of the spectral operator.

Remark 6.9. The inverse spectral operator maps ν back onto η. Since it
involves dividing by ζ(ω) at the complex dimensions and by ζ(s) in the
error term, the extent to which it exists depends on the location of the
critical zeros of ζ. This sheds new light on the work of the first author with
H. Maier [LapMa1–2], to be revisited and extended in Chapter 9.
It follows from our results in Section 10.2 below that in some sense the

inverse spectral operator is well defined on the class of generalized Can-
tor strings studied in Chapter 10 (see Remark 10.11). This is the guiding
principle underlying our proof in Chapter 11 that many number-theoretic
zeta functions and other Dirichlet series do not have an infinite vertical
sequence of critical zeros forming
an arithmetic progression.

The Euler Product for the Spectral Operator

Let N(x) = Nη(x) be the counting function of a (generalized) fractal
string η. We define the spectral operator as the counting function of η ∗ h
(see Section 4.2, along with Theorem 1.19 of Section 1.3),

ν(N)(x) =
∞∑

k=1

N(x/k).

Note that this sum is finite, since N(x) = 0 for x close to 0. To fix ideas,
let us suppose that N(x) = 0 for 0 ≤ x ≤ 1. Then k runs up to [x] in the



6.3 The Direct Spectral Problem for Fractal Strings 187

sum. Define also the p-factor of ν, for every prime p, by

νp(N)(x) =
∞∑

k=0

N(xp−k),

where the terms in the sum vanish when pk ≥ x. This is the counting
function of η ∗ hp.5 The operators νp commute with each other, and their
composition gives the Euler product for ν :

ν(N) =
(∏

p
νp

)
(N).

Making a change of variables x = et, and writing f(t) = N(x), we define
the additive spectral operator

a(f)(t) =
∞∑

k=1

f(t− log k),

and the p-factors

ap(f)(t) =
∞∑

k=0

f(t− k log p).

Both these sums have finitely many terms for each t provided f is supported
on a right half-line [b,∞), for some real number b. These operators are again
related by an Euler product,

a(f) =

(∏
p

ap

)
(f),

where the product means composition of operators.
To study the continuity (boundedness) of these operators, we work in

the Hilbert space of functions f on [0,∞) such that the norm

‖f‖2c =
∫ ∞

0

|f(t)|2e−2ctdt

is finite. The Hilbert space depends on a positive parameter c which needs
to be suitably chosen. Note that if N(x) = O(xD) then f(t) = O(eDt)
and f has finite norm for c > D. In particular, the spectral operator is
bounded for c > 1, and unbounded for c ≤ 1. For c = 1, the p-factors
are bounded on the space of functions f for which there exists a D < 1
(depending on f) such that f(t) = O(eDt), which corresponds to the space
of counting functions of fractal strings of dimension D. Such strings have

5Here, hp =
∑∞

j=0 δ{pj} denotes the p-th elementary prime string, as in Equa-
tion (4.25) of Section 4.2.1.
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complex dimensions ω with Reω ≤ D. In this sense, for c = 1, the spectral
operator converges inside the critical strip 0 < Re s < 1.
Let ∂ = d

dt be the differentiation operator. The Taylor series for a smooth
function f can be written as

f(t+ h) = f(t) +
f ′(t)
1!

h+
f ′′(t)
2!

h2 +
f ′′′(t)
3!

h3 + · · · = eh∂(f)(t).

That is, the derivative is the infinitesimal generator of the group of shifts
on the real line. Using this operator, we see the analogy with the usual
Euler product for ζ(s) (see Equations (4.14) and (4.27)):

ap(f) =
∞∑

k=0

e−k(log p)∂(f) =
(
1− p−∂

)−1
(f) = ζhp

(∂)(f)

and

a(f) =
∞∑

k=1

e−(log k)∂(f) = ζ(∂)(f).

To justify this formalism, we need to verify that the spectral operator
and its factors are normal; i.e., aa∗ = a∗a and apa

∗
p = a∗

pap. The adjoint of
a shift is the shift in the opposite direction. Since here, our Hilbert space
depends on a parameter c, we obtain

a∗
p(f)(t) =

∞∑
k=0

f(t+ k log p)p−2kc,

and

a∗(f)(t) =
∞∑

k=1

f(t+ log k)k−2c.

We compute that these operators are indeed normal:

apa
∗
p (f) (t) = a∗

pap (f) (t) =
1

1− p−2c

∞∑
k=−∞

f(t− k log p)p2c min{0,k},

and
aa∗ (f) (t) = a∗a (f) (t) = ζ(2c)

∑
(m,n)=1

f
(
t− log m

n

)
n−2c,

where the last sum is taken over all pairs of integers m, n ≥ 1 without
common factor.
Note that

a−1
p (f)(t) = f(t)− f(t− log p).

To compute the spectrum of ap, we solve ap(f)−λf = g for f , and consider
for which complex numbers λ this does not define a bounded operator.
Applying a−1

p first, we obtain

(1− λ)f(t) + λf(t− log p) = g(t)− g(t− log p).
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From this we readily deduce that

f(t) =
1

1− λ
g(t)−

∞∑
k=1

g(t− k log p)
λk−1

(λ− 1)k+1
.

Taking g = 0, we see first of all that ap has no eigenfunctions. The func-
tion f has bounded norm exactly when | λ

λ−1 | < pc. Hence, the spec-
trum σ(ap) of the operator ap consists of those values for which | λ

λ−1 | ≥ pc.
We find

σ(ap) =
{

z ∈ C :
∣∣∣z − 1

1−p−2c

∣∣∣ ≤ p−c

1−p−2c

}
.

We invite the reader to further explore the material contained in this
section. In particular, we suggest the following problem, which may be
related to the Riemann hypothesis:

Problem 6.10. Determine the spectrum of the operator a.

6.4 Self-Similar Strings

We now consider the case of self-similar strings studied in Chapter 2. The
reader may first wish to briefly review some of the main results and def-
initions of Sections 2.2–2.5, particularly Theorems 2.4 and 2.17, as well as
Definition 2.14.
According to Theorem 2.4, the geometric zeta function of a self-similar

string L of length L with scaling ratios r1, r2, . . . , rN and gaps scaled
by g1, . . . , gK is given by

ζL(s) = Ls gs
1 + · · ·+ gs

K

1− rs
1 − · · · − rs

N

. (6.35)

We deduce that (recall from Section 2.1 that gK is the smallest gap),

|ζL(s)| �
(
LgKr−1

N

)−|σ|
as σ = Re s → −∞. (6.36)

It follows that we can let W = C and that ζL(s) satisfies L1 and L2′

with κ = 0 and A = L−1g−1
K rN , as will be further explained just below.

Furthermore, Theorem 3.26 enables us to find a suitable sequence {Tn}n∈Z,
with Tn → ±∞ as n → ±∞, such that ζL(s) is uniformly bounded on the
horizontal lines Im s = Tn (for every n ∈ Z), and hence such that hy-
pothesis L1 given by (5.19) is satisfied with κ = 0. Secondly, in view of
estimate (6.36) above, we can simply choose the screen Sm to be the verti-
cal line Re s = −m for m ≥ 1 to verify that hypothesis L2′ given by (5.21)
holds with κ = 0 and A = L−1g−1

K rN . It follows that geometrically, a self-
similar string is always strongly languid, for κ = 0 (and hence, by Re-
mark 5.4, for every κ ≥ 0). Thus Theorems 5.14 and 5.22 apply to obtain
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asymptotic pointwise and distributional formulas without error term, valid
for all x > L−1g−1

K rN . See also Theorem 3.25, along with its application
given in Section 8.4.4 below.

Remark 6.11. In what follows, it will be useful to recall from Theo-
rem 2.17 that for a self-similar string, D is always simple, where D denotes
the dimension of L.6 Moreover, all the other complex dimensions of L are
located to the left of the vertical line Re s = D. According to the basic di-
chotomy of Theorem 2.17, for a nonlattice string, they all lie strictly to the
left of this line, and a subsequence of complex dimensions lies arbitrarily
close to it, whereas if L is a lattice string, there is an infinite sequence of
complex dimensions ω on the line Re s = D, namely ω = D+ inp (n ∈ Z),
where p denotes the oscillatory period of L.

6.4.1 Lattice Strings

The explicit formulas for lattice self-similar strings are particularly simple,
since by Theorem 2.17, the complex dimensions of L are located on finitely
many vertical lines. Moreover, if the gaps are integral powers of r as well, as
in Equation (2.40), then the residues of ζL at the complex dimensions on a
given line are all equal. We assume this in this section and the lattice part of
Section 6.4.3, leaving the more general case to the reader (see, for example,
Remark 2.19). This assumption is satisfied in all our lattice examples, since
they all have a single gap, normalized as in Remark 2.6. We do not make
(and indeed, cannot make) this assumption in Section 6.4.2 or the part of
Section 6.4.3 dealing with nonlattice strings.
If the complex dimensions ω+inp (n ∈ Z) on the vertical line Re s = Reω

are simple (i.e., if ω is a simple pole of ζL), then the corresponding sum in
the pointwise formula for NL(x) gives the multiplicatively periodic function

res (ζL(s);ω)
∞∑

n=−∞

xω+inp

ω + inp
. (6.37)

Using the Fourier series (1.13), with log b = 2πω/p and u = p log x/2π, we
see that this sum is equal to

res (ζL(s);ω)
∞∑

n=−∞

xω+inp

ω + inp
= res (ζL(s);ω)

b

b− 1b−{u}xω 2π
p

. (6.38)

In particular, since D is simple (see Remark 6.11 above), the local term
corresponding to D in the explicit formula for NL(x) is given by (6.37)
(with the infinite sum expressed as in (6.38)) with ω = D.

6The number D is the Minkowski dimension (or the only real dimension) of L, also
called the similarity dimension of L. See Remark 2.22.
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Likewise, these complex dimensions contribute the quantity

res (ζL(s);ω)
∞∑

n=−∞
Γ (ω + inp) t−ω−inp (6.39)

to the asymptotic expansion of the geometric partition function θL(t), as
defined by Equation (6.25).
For example, for the Cantor string defined in Section 2.3.1, we have

ω = D = log3 2 and p = 2π/ log 3. Hence we can set b = 2 in the Fourier
expansion (1.13), and we recover formula (1.31) stated at the end of Sec-
tion 1.2.2:7

NCS(x) = 21−{log3 x}xD − 1 = 1
log 3

∞∑
n=−∞

xD+inp

D + inp
− 1. (6.40)

In the same way, the geometric partition function of the Cantor string,

θCS(t) =
∞∑

n=0

2ne−3nt,

is given by, in view of formula (6.27b) and the comment following it,

1
log 3

∞∑
n=−∞

Γ (D + inp) t−D−inp +
∞∑

m=0

(−1)m
m!

tm
1

1− 2 · 3m

= t−DGCS

(
log3 t−1

)
+

∞∑
m=0

(−1)m
m!

tm
1

1− 2 · 3m
, (6.41)

where GCS is the nonconstant periodic function (of period 1) given by

GCS(u) =
1

log 3

∞∑
n=−∞

Γ (D + inp) e2πinu. (6.42)

Remark 6.12. The periodic function GCS, defined by (6.42) and occur-
ring in the explicit formula (6.41) for θCS(t), is smooth on (−∞,+∞). (In
light of a well-known theorem about Fourier series, this follows from the
fast decay of Γ(D + inp) as |n| → ∞; see, e.g., [Schw1, §VII.1] along with
Stirling’s formula [In, p. 57].) In contrast, the corresponding periodic func-
tion occurring in the explicit formula (6.40) (or (1.31)) for the geometric
counting function NCS(x) has infinitely many discontinuities.
An analogous comment applies to the Fibonacci string studied below—

and, more generally, to every lattice string.

7Recall that our definition of the Cantor string in Chapter 1 was slightly different
from the present one in that the first length was equal to 1/3 instead of 1.
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Remark 6.13. It is instructive to see to what extent formula (6.41) could
have been derived by a direct computation (even formally). Indeed, writing

1
1− 2 · 3m

= −
∞∑

l=1

2−l3−ml,

we find that the sum overm in (6.41) is equal to −∑−1
n=−∞ 2ne−3nt. Hence,

it remains to establish the formula
−∞∑

n=−∞
2ne−3nt = t−DGCS

(
log3 t−1

)
.

Now, since the left-hand side changes by a factor of 2 when t is divided
by 3, it is immediate that GCS is periodic with period 1. But to compute
the Fourier series of GCS, as is done in (6.41) and (6.42), is not an easy
task.

For the Fibonacci string, introduced in Section 2.3.2, there are two lines
of complex dimensions, see Figure 2.5. Also, we have p = 2π/log 2. For the
sum corresponding to the line of complex dimensions above D = log2 φ, we
have b = φ, and for the other line, above −D + 1

2 ip, we have b = −φ−1 in
formula (1.13). Thus we find that

NFib(x) =
3 + 4φ
5

φ−{log2 x}xD − 1 + 7− 4φ
5

(−φ){log2 x}x−D+ 1
2 ip

=
3 + 4φ
5

φ−{log2 x}xD − 1 + 7− 4φ
5

φ{log2 x}x−D(−1)[log2 x].

(6.43)

In view of formula (6.27b) and the comment following it, the geometric
partition function of the Fibonacci string,

θFib(t) =
∞∑

n=0

Fn+1e
−2nt

(where the Fibonacci numbers Fn+1 are defined by the recursive equa-
tion (2.19)), has an asymptotic expansion given by

θFib(t) =
φ+ 2
5 log 2

∞∑
n=−∞

Γ(D+ inp)t−D−inp+
∞∑

m=0

(−1)m
m!

tm
1

1− 2m − 4m

+
3− φ

5 log 2

∞∑
n=−∞

Γ(−D + inp)tD−inp. (6.44)

If the complex dimensions of the lattice string L on a line are not simple,
then formula (6.37) has to be changed. Moreover, the resulting function is
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no longer multiplicatively periodic in that case. For example, if the complex
dimensions on the (discrete) line ω + inp are double poles of ζL, and the
Laurent series of ζL around the pole at ω is given by

ζL(s) = α−2(s− ω)−2 + α−1(s− ω)−1 + . . . ,

then the sum over these complex dimensions in the explicit formula for
NL(x) is the function

α−2
2π
p

b

b− 1b−{u}xω log x+ α−1
2π
p

b

b− 1b−{u}xω, (6.45)

where, as above, we write u = (p/2π) log x and b = exp (2πω/p).
In particular, for the lattice string L with multiple poles introduced in

Section 2.3.4, we find

NL(x) =
4
9
21−{u}xD + (−1)[log3 x] 3 log3 x+ 5

18
− 1
4
. (6.46)

The asymptotic expansion of the geometric partition function of that
string is given by

θL(t) =
4

9 log 3

∞∑
n=−∞

Γ (D + inp) t−D−inp (6.47)

+
∞∑

m=0

(−1)m
m!

tm
1

1− 3 · 9m − 2 · 27m
+

1
9 log 3

∞∑
n=−∞

t−
1
2 ip−inp

·
(
(5− 3 log3 t) Γ

(
1
2 ip+ inp

)
+

3
log 3

Γ′ ( 1
2 ip+ inp

))
,

where Γ′(s) denotes the derivative of the gamma function.

6.4.2 Nonlattice Strings

As was recalled in Remark 6.11, according to the nonlattice case of Theo-
rem 2.17, there is only one complex dimension with real part≥ D, namelyD
itself. Further, D is always simple. Consequently, by estimate (5.64) of
Theorem 5.30, if there exists a screen passing between Re s = D and the
complex dimensions to the left of this line (for the general case, see Re-
mark 6.15 below), we have for k ≥ 1,

N
[k]
L (x) = res (ζL(s);D)

xD+k−1

(D)k
+ o

(
xD+k−1

)
, as x→∞. (6.48)

In particular, for k = 1, we have, again provided a suitable screen exists,

NL(x) = res (ζL(s);D)
xD

D
+ o

(
xD

)
, as x→∞. (6.49)
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With the same restriction, we find for the partition function that

θL(t) = res (ζL(s);D) Γ (D) t−D + o
(
t−D

)
, as t → 0+. (6.50)

Similarly, nonlattice strings are Minkowski measurable, since (as will follow
from Theorem 8.36 below),

V (ε) = res (ζL(s);D)
(2ε)1−D

D(1−D)
+ o

(
ε1−D

)
, as ε → 0+. (6.51)

Remark 6.14. We point out that the exponents of ε in the estimates
in (6.48)–(6.51) are the best possible, since by the nonlattice case of Theo-
rem 2.17, there always exist complex dimensions of L arbitrarily close to,
but strictly to the left of, the vertical line Re s = D. However, the results
of Section 3.6 allow us to improve these estimates with a factor of lower
order, depending on the size of the dimension-free region for L.

Remark 6.15. Recall that we cannot always choose a screen passing be-
tween the line Re s = D and all complex dimensions strictly to the left of
this line; see Example 5.32. Hence the above analysis is valid only for non-
lattice strings that allow the choice of such a screen. However, if L does not
allow such a screen, we apply Theorem 3.25 to write, for all small positive
numbers δ,

N
[k]
L (x) = res (ζL(s);D)

xD+k−1

(D)k
+

∑
D−δ/2<Re ω<D

res (ζL(s);ω)
xω+k−1

(ω)k

+ o
(
xD−δ/4+k−1

)
, as x→∞, (6.52)

and

V (ε) = res (ζL(s);D)
(2ε)1−D

D(1−D)
+

∑
D−δ/2<Re ω<D

res (ζL(s);ω)
(2ε)1−ω

ω(1− ω)

+ o
(
ε1−D+δ/4

)
, as ε → 0+. (6.53)

The sum in (6.53) converges absolutely, since the residues are bounded, by
Theorem 3.25. For the same reason, the sum in (6.52) converges absolutely
provided that k ≥ 2. Then we apply the estimate of Theorem 5.17 to
deduce (6.48) and (6.51) above. In Section 8.4.4, we give more details of
this analysis. The same argument also applies to the geometric partition
function.

Remark 6.16. The estimate for the volume of the tubular neighborhood
V (ε) will be shown in Section 8.4.4 to hold pointwise. Further, the estimates
for N

[k]
L (x) can be understood pointwise for k ≥ 1, except when we are

in the situation of the previous remark, in which case one needs k ≥ 2.
In the latter situation, the estimate for N

[1]
L (x) can still be interpreted

distributionally.
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6.4.3 The Spectrum of a Self-Similar String

We now study the spectral asymptotics of lattice and nonlattice self-similar
strings.

Lattice Case

Let L be a lattice self-similar string with oscillatory period p and multi-
plicative generator r. Suppose that ω is a simple complex dimension and
that the gaps are integral powers of r, as in Equation (2.40).8 In the ex-
plicit formula for the spectral counting function, the sum over the complex
dimensions on the line ω + inp gives the periodic distribution

res (ζL(s);ω)
∞∑

n=−∞

xω+inp

ω + inp
ζ(ω + inp). (6.54)

In contrast to the geometric formula (6.37), there is no nice closed formula
for this expression, because 0 < Reω < 1 and hence

∑∞
j=1 j−ω does not

converge.
Again, in view of Remark 6.11 above, we can apply (6.54) to ω = D

itself. We find that the spectrum of a lattice self-similar string is, as a
distribution, given by its counting function,

Nν(x) = vol1(L) · x+ res (ζL(s);D)
∞∑

n=−∞
ζ(D + inp)

xD+inp

D + inp

+ O
(
xΘ(log x)m−1

)
+O(1), (6.55)

as x → ∞, where Re s = Θ is the first line of complex dimensions to the
left of D, and m is the maximal multiplicity of the complex dimensions
of L on this line.9 Note that vol1(L) = ζL(1) is the one-dimensional total
length of L, and res (ζL(s);D) is related to the D-dimensional volume of
the boundary of the string; see Chapter 8, Theorem 8.15. Further note that
the error term O(1) in (6.55) (or in (6.56) below) is needed if Θ < 0, as is
the case, for example, for the Fibonacci string.
Similarly, the spectral partition function has an asymptotic expansion

θν(t) = vol1(L)·t−1+res (ζL(s);D)
∞∑

n=−∞
Γ (D + inp) ζ(D+inp)t−D−inp

+ O
(
t−Θ

(
log t−1

)m−1
)
+O(1), (6.56)

as t → 0+, where Θ and m are as above.

8As in Section 6.4.1, we leave the general case to the reader; see Remark 2.19.
9Observe that in the notation of Theorem 2.17, different ωu’s can have the same real

part.
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Remark 6.17. We note that ζ(D + inp) does not vanish for infinitely
many values of n, by Theorem 11.1 of Chapter 11. Hence the sum over
the line of complex dimensions D + inp contains infinitely many oscilla-
tory terms. In other words, the spectral counting function and the spectral
partition function of every lattice string have oscillations of order D. This
additional information cannot be obtained by means of the Renewal Theo-
rem or by means of a Tauberian-type argument.

For the Cantor string of Section 2.3.1 we obtain

Nν(x) = 3x+
1

log 3

∞∑
n=−∞

ζ(D + inp)
xD+inp

D + inp
+O(1) (6.57)

as x→∞, where D = log3 2 and p = 2π/ log 3, and

θν(t) = 3t−1 +
1

log 3

∞∑
n=−∞

Γ(D + inp)ζ(D + inp)t−D−inp + O(1),

(6.58)

as t → 0+. In light of Remark 6.17, the (multiplicatively) periodic func-
tions represented by the series in (6.57) and (6.58) are both nonconstant.
The same comment would hold for arbitrary lattice strings not necessarily
satisfying Equation (2.40).
A detailed analysis of the spectral counting function Nν(x) of the Cantor

string (and of other integral Cantor strings) is provided in Section 10.2.1
below. (Set a = 3 and b = 2 in Theorem 10.7 and Corollary 10.8; see
also [LapPo2, Theorem 4.6, p. 65] for an earlier, although less precise,
study of this particular case.)

As was pointed out above, each line of complex dimensions of a lattice
string yields a corresponding sum in our explicit formulas. For example,
for the Fibonacci string of Section 2.3.2, we obtain the following expression
(with D = log2 φ and p = 2π/ log 2, where φ = (1 +

√
5)/2 is the golden

ratio):

Nν(x) = 4x+
φ+ 2
5 log 2

∞∑
n=−∞

ζ(D + inp)
xD+inp

D + inp
+
1
2

+
3− φ

5 log 2

∞∑
n=−∞

ζ(−D + i(n+ 1/2)p)
x−D+i(n+1/2)p

−D + i(n+ 1/2)p
+O

(
xρ

)
(6.59)
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as x→∞, and

θν(t) = 4t−1 +
φ+ 2
5 log 2

∞∑
n=−∞

Γ (D + inp) ζ(D + inp)t−D−inp +
1
2

+
3− φ

5 log 2

∞∑
n=−∞

Γ (−D + i(n+ 1/2)p) ζ(−D + i(n+ 1/2)p)tD−i(n+1/2)p

+O
(
t−ρ

)
, (6.60)

as t → 0+, for every ρ < −D.

Remark 6.18. We leave it as an exercise for the interested reader to write
down, possibly with the help of a symbolic computation package, the ex-
plicit formulas for the spectral counting and partition functions of the lat-
tice string with multiple poles introduced in Section 2.3.4.

Nonlattice Case

Next, let L be a nonlattice self-similar string. After separating the term
corresponding to the dimension of the string, we find

Nν(x) = vol1(L) · x− res (ζL(s);D) (−ζ(D))
xD

D
+ o

(
xD

)
, as x→∞,

(6.61)

interpreted distributionally. Note that by formula (8.25) and since ζ(D) < 0,
the coefficient of xD is negative. Again, when there is no screen passing be-
tween Re s = D and the complex dimensions to the left of this line, one
has to apply the technique of Remark 6.15 to derive this formula, still
interpreted distributionally.
For the spectral partition function, one obtains, as t → 0+,

θν(t) = vol1(L) · t−1 − res (ζL(s);D) (−ζ(D)) Γ(D)t−D + o
(
t−D

)
. (6.62)

We leave it as an exercise for the interested reader to apply the formulas
obtained for the geometric and spectral density of states in Section 6.3.1.

Remark 6.19. As in Remark 6.14, we point out that in (6.61) and (6.62),
the exponent in the error term is the best possible. Indeed, by [Ti, Theo-
rem 9.19(C), p. 204], the density of the zeros off the critical line Re s = 1/2
of the Riemann zeta function is less than linear. On the other hand, by
Theorem 2.17, every nonlattice string has complex dimensions with real
part arbitrary close to D (from the left) with linear density. Hence these
complex dimensions cannot all be canceled by zeros of ζ(s). A moment’s
reflection shows that this argument is valid for any D in (0, 1), includ-
ing D = 1/2. However, using the dimension-free regions obtained in Sec-
tion 3.6, we can improve the error term by a factor of lower order.
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6.5 Examples of Non-Self-Similar Strings

Let η be a generalized fractal string with geometric zeta function ζη. In
general, ζη(s) does not need to have a continuation as a meromorphic func-
tion beyond the line Re s = D (see Example 1.17), or the meromorphic
continuation does not need to satisfy L1 and L2 beyond a certain screen.
Thus, the analysis of ζη and the choice of a good screen become the key to
understanding the geometry and the spectrum of a fractal string. We give
here an example of such an analysis.

6.5.1 The a-String

Given a > 0, an arbitrary positive real number, we consider the ordinary
fractal string L with lengths

lj = j−a − (j + 1)−a, j = 1, 2, . . . . (6.63)

This string (which we call the a-string) has already been discussed in a
related context in [Lap1, Example 5.1, pp. 512–513] and was later on revis-
ited in [LapPo2, pp. 64–65]. However, thanks to Theorem 6.20 below and
our explicit formulas, we will be able to obtain much more precise results
than in these earlier papers.
Recall from [Lap1, Example 5.1] that L can be realized as the open

set Ω ⊂ R obtained by removing the points j−a (j = 1, 2, . . . ) from the
interval (0, 1); namely,

Ω =
∞⋃

j=1

(
(j + 1)−a, j−a

)
. (6.64)

Hence, its boundary is the countable compact subset of R given by

∂Ω =
{
j−a : j = 1, 2, . . .

}
∪ {0}. (6.65)

We begin by determining the possible complex dimensions of L, that is,
the poles of ζL.10

Theorem 6.20. Let a > 0 and let L be the ordinary fractal string with
lengths lj given by (6.63). Then ζL(s) =

∑∞
j=1 lsj has a meromorphic con-

tinuation to all of C. The poles of ζL are located at 1
a+1 and at (a subset

of ) the points − 1
a+1 ,− 2

a+1 ,− 3
a+1 , . . . , and they are all simple. In particu-

lar, the dimension of L is D = 1
a+1 , and this is the only pole of ζL with

positive real part. The residue of ζL at this pole is equal to aD.

10We are grateful to Driss Essouabri [Es1–2] for providing us with the main idea of
the proof of Theorem 6.20.
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Further, for any screen S not passing through a pole, ζL satisfies L1
and L2 (i.e., L is languid) with κ = 1

2 − (a + 1) inf S if inf S ≤ 0 and
κ = 1

2 if inf S ≥ 0. (Here, inf S is defined as in (5.17a).)

Proof. We compute the first term of an asymptotic expansion of lj :

lj = j−a − (j + 1)−a = a

∫ j+1

j

x−a−1 dx = aj−a−1 +H(j),

where H(j) = a
∫ j+1

j

(
x−a−1 − j−a−1

)
dx. It follows that

hj := a−1ja+1H(j) = j

∫ 1/j

0

(
(1 + t)−a−1 − 1

)
dt. (6.66)

Note that hj = O(1/j), as j →∞. Choose an integer M ≥ 0. Then
lsj =

(
aj−a−1 (1 + hj)

)s

= asj−s(a+1)

(
M∑

n=0

(
s

n

)
hn

j +O

(
(|s|+ 1)M+1

jM+1

))
,

where we have set(
s

n

)
=

s(s− 1) . . . (s− n+ 1)
n!

, for s ∈ C. (6.67)

We thus obtain

ζL(s) =
M∑

n=0

as

(
s

n

) ∞∑
j=1

hn
j j−s(a+1) + f(s), (6.68)

where f(s) is defined and holomorphic for Re s > − M
a+1 . The first term of

this sum, for n = 0, is asζ((a+1)s). Thus we find the first pole at s = 1
a+1 .

Note that the first term grows as (|t|+ 1) 1
2−σ(a+1) on vertical lines Re s = σ

with σ < 0.
It remains to analyze the functions

∞∑
j=1

hn
j j−s(a+1), (6.69)

for n ≥ 1. We will show that these functions are meromorphic with simple
poles at the points 0,− 1

a+1 ,− 2
a+1 , . . . .

Using the asymptotic expansion (1 + t)−a−1 =
M∑

m=0

(−a−1
m

)
tm +O

(
tM+1

)
as t → 0, we obtain in view of (6.66) that

hj = j

∫ 1/j

0

M∑
m=1

(−a− 1
m

)
tm dt+O

(
j−M−1

)
= −1

a

M∑
m=1

( −a

m+ 1

)
j−m +O

(
j−M−1

)
, as j →∞.
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By taking the n-th power of this expansion, we find an asymptotic ex-
pansion for hn

j . Substituting this expansion, we write each of the functions
in (6.69) as a sum of constant multiples of ζ(m+(a+1)s) (which has a pole
at s = 1−m

a+1 ), for n ≤ m ≤ M . In view of Equation (6.68), we thus deduce
that ζL has a meromorphic continuation to Re s > − M

a+1 , with simple poles
at s = 1−m

a+1 , m = 0, 2, 3, 4, . . . , M (note that 0 is not a pole of ζL, due to
the factor

(
s
1

)
= s on the right-hand side of (6.68)). Since M is arbitrary,

it follows that ζL has a meromorphic continuation to all of C. A direct
computation shows that the residue of ζL at D = 1/(a+1) is equal to aD.
Finally, for m ≥ 1, the growth of ζ(m + (a + 1)s) is superseded by the

growth of the first term asζ((a + 1)s). Thus for any screen Re s = inf S
with inf S < 0, we can choose κ = 1

2 − (a+ 1) inf S.

It follows from Theorem 6.20 (as well as from Theorems 5.18 and 5.30)
that the geometric counting function of L satisfies

NL(x) = aDxD + ζL(0) +O
(
x−D

)
, as x→∞, (6.70)

while its spectral counting function satisfies

Nν(x) = x+ ζ(D)aDxD − 1
2
ζL(0) +O

(
x−D

)
, as x→∞. (6.71)

Recall from [Ti] that ζ(D) < 0 since D = 1
a+1 ∈ (0, 1). Also note that

ζL(0) = −1/2 because the first term in (6.68) is asζ((a+1)s), ζ(0) = −1/2,
and all other terms vanish at s = 0 since

(
0
n

)
= 0 for n ≥ 1.

We note that in [LapPo2, Example 4.3], the error term is only o(xD)
in the counterpart of (6.71) (or of (6.70)). See, in particular, [LapPo2,
Equation (4.25), p. 65].
Actually, since the poles of ζL are all simple, it follows from Theorem 6.20

and our explicit formulas that Equations (6.70) and (6.71) can be replaced
respectively by the much more precise expressions

NL(x) = aDxD + ζL(0) +
M∑

m=1

res (ζL(s);−mD)x−mD

+O
(
x−(M+1)D

)
, as x→∞, (6.70′)

and

Nν(x) = x+ ζ(D)aDxD− 1
2
ζL(0)+

M∑
m=1

res (ζL(s);−mD) ζ(−mD)x−mD

+O
(
x−(M+1)D

)
, as x→∞, (6.71′)

valid for every M = 0, 1, 2, . . . .
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Remark 6.21. Depending on the arithmetic properties of the parame-
ter a, the residue of ζL at s = −mD may vanish for some values of m ∈ N∗.
This is why one cannot in general specify the exact set of complex dimen-
sions of the a-string L in the statement of Theorem 6.20.

6.5.2 The Spectrum of the Harmonic String

An interesting example of a non-self-similar fractal string is provided by
the harmonic string, introduced and studied in [Lap2, Example 5.4(ii),
pp. 171–172] or [Lap3, Remark 2.5, pp. 144–145]. Recall from Equation
(4.11) above that it is given by the measure h =

∑∞
j=1 δ{j} and hence has

lengths lj = 1
j for j = 1, 2, . . . (note that this string has infinite total length∑∞

j=1
1
j =∞). Thus

ζh(s) = ζ(s) (6.72)

and

ζν(s) = ζh(s) · ζ(s) = (ζ(s))2 . (6.73)

It follows from (6.73) that at the geometric level, s = 1 is the only pole
of ζh(s), and that it is simple, while at the spectral level, s = 1 is the only
pole of ζν(s) and has multiplicity two.
Since we have, as was noted in [Lap2, p. 171] or [Lap3, p. 144],11

Nν(x) =
∑

1≤k≤x

τ(k), (6.74)

where τ(k) denotes the number of divisors of the integer k, it follows from
Equation (6.73) above (and our error estimates) that

Nν(x) =
∑

1≤k≤x

τ(k) = x log x+ (2γ − 1)x+ o(x), (6.75)

as x → ∞, where γ denotes Euler’s constant. This well-known formula
was recovered in a similar manner in [Lap2–3] and is often referred to
as the Dirichlet divisor formula. A long standing open problem—called the
Dirichlet divisor problem in the literature [Ti, §12.1, pp. 312–314]—consists
of obtaining a much sharper form for the error term on the right-hand side
of (6.75).

11Indeed, as is observed in [Lap2–3], the frequencies of the harmonic string consist
of the sequence of positive integers 1, 2, 3, . . . , with multiplicity respectively equal to
τ(1), τ(2), τ(3), . . . . With our notation from Section 4.1 and in view of formulas (4.11)
and (4.20), this can be seen as follows: ν = h ∗ h =

∑∞
m,n=1 δ{mn} =

∑∞
k=1 τ(k)δ{k}.
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6.6 Fractal Sprays

We consider fractal sprays, defined in Section 1.4 (following [LapPo3]) and,
more generally, in Section 4.3. For simplicity, we assume that

ζB(s) =
∑

f

wff−s,

the spectral zeta function of the basic shape B, has at most finitely many
(visible) poles, called the spectral complex dimensions of B.12 Moreover,
we restrict our attention to those fractal sprays of a (possibly generalized)
fractal string η on B for which no complex dimension of η coincides with
a spectral complex dimension of B.
The Weyl term at level k associated with the fractal spray of η on B is

W
[k]
B,η(x) =

∑
u: pole of ζB

res
(

ζB(s)ζη(s)
(s)k

xs+k−1;u
)

. (6.76)

The terms in this sum can be analyzed in the same way as in Section 6.1.1.
The result depends on the multiplicity of the spectral complex dimensions.
In particular, if these complex dimensions are simple and avoid the zeros
0,−1,−2, . . . , 1− k of (u)k, we obtain the formula

W
[k]
B,η(x) =

∑
u: pole of ζB

res (ζB(s);u) ζη(u)
xu+k−1

(u)k
. (6.77)

Recall from Equation (4.35) that the spectral zeta function of this fractal
spray is given by

ζν(s) = ζη(s) · ζB(s). (6.78)

Therefore, much as was done for fractal strings in Section 6.3.2, we state
the following definition:

Definition 6.22. The spectral operator (for fractal sprays) is the operator
that adds the Weyl term and multiplies each term corresponding to a com-
plex dimension of η (assumed to be simple) by ζB(ω), and also multiplies
the integrand in the error term by ζB(s).

We will focus here on examples of self-similar sprays. However, it should
be clear to the reader that non-self-similar fractal sprays—such as those
studied, for example, in [LapPo3]—can be treated as well, once their com-
plex dimensions have been analyzed.

12For example, 1 is the only spectral complex dimension of the Bernoulli string, as
discussed in Section 6.1.3.
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Before considering general self-similar sprays in Section 6.6.2, we il-
lustrate by the following example our methods applied to fractal sprays.
See also Section 11.5, formulas (11.57), (11.58) and (11.60) for a further
example of a fractal spray and of the corresponding Weyl term (in a
case where ζB(s) has infinitely many poles). Further, see formulas (11.12)
and (11.13) for the simpler Cantor sprays considered in Section 11.2.

6.6.1 The Sierpinski Drum

The Dirichlet Laplacian on the equilateral triangle T with sides 1 has for
eigenvalue spectrum (see [Pin, Note on p. 820 and footnote 1] or [Bér]),

λm,n =
16π2

9
(
m2 +mn+ n2

)
, m, n = 1, 2, 3, . . . ,

and (in view of our convention defining the frequencies as
√

λm,n/π) the
corresponding spectral zeta function is equal to13

ζT (s) =
(
3
4

)s ∞∑
m,n=1

(
m2 +mn+ n2

)−s/2
. (6.79)

We find the poles and the corresponding residues of this function as follows.
The zeta function of the cyclotomic field Q[ρ], obtained by adjoining a cubic
root of unity to the rationals, is given by

ζQ[ρ](s) =
∞∑

m=0

∞∑
n=1

(
m2 +mn+ n2

)−s
. (6.80)

It has a simple pole at s = 1 with residue π/(3
√
3); see Appendix A,

Equation (A.4). Further, it is related to ζT (s) by the equation

ζT (s) =
(
3
4

)s

ζQ[ρ](s/2)−
(
3
4

)s

ζ(s). (6.81)

Thus ζT (s) has a simple pole at s = 2, with residue π
√
3/8, and one

at s = 1, with residue −3/4.
Consider the spray of L on T obtained by scaling the middle triangle in

Figure 6.1 by the normalized14 lattice string L with one gap and scaling
ratios r1 = r2 = r3 = 1

2 . The boundary of this spray is the classical
Sierpinski gasket; see Figure 6.1. We will call this spray the Sierpinski drum.
Hence, it corresponds to the Dirichlet Laplacian on the infinitely connected
bounded open subset of R2 with boundary the Sierpinski gasket.
In light of Equation (6.78), the spectral zeta function of the Sierpinski

drum is given by

ζν(s) = ζL(s)ζT (s) =
∞∑

n=0

3n2−nsζT (s) =
1

1− 3 · 2−s
ζT (s), (6.82)

13Note that the quadratic form m2+mn+n2 = (m+n/2)2+3n2/4 is positive definite.
14Meaning that ζL(s) = 1

1−3·2−s .
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Figure 6.1: The Sierpinski gasket, the boundary of the Sierpinski drum.

and its Weyl term is, by (6.77) along with the comment following (6.81),

W
[1]
T ,L(x) =

π
√
3
4

x2 +
3
2
x. (6.83)

From the explicit formula for the geometric counting function of L (see
Section 6.4.1),

NL(x) =
1

log 2

∞∑
n=−∞

xD+inp

D + inp
− 1
2
, (6.84)

where D = log2 3 and p = 2π/ log 2, we deduce the explicit formula for the
counting function of the frequencies of the Sierpinski drum,

NT ,L(x) =
π
√
3
4

x2 + xDG(log x) +
3
2
x− 1

2
ζT (0) + o(1), (6.85)

as x → ∞. Here, G is the periodic function, of period 2π/p = log 2, given
by the Fourier series

G(u) =
1

log 2

∞∑
n=−∞

einpu

D + inp
ζT (D + inp), (6.86)

where ζT (s) is given by (6.79) or (6.81).
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Remark 6.23. Note that L has dimension log2 3, which lies between 1
and 2. Hence, strictly speaking, it is not a string in the sense of Section 1.1.
Thus, the triangles constituting the Sierpinski gasket would not fit on a line
of finite length if they were all aligned, but they do fit inside a bounded
region in the plane. Note that in Chapter 3, we did not make any restric-
tive assumptions on the dimension of the generalized self-similar strings
involved, so that our theory can be applied without any problem.

Remark 6.24. It is noteworthy that the spectral zeta function ζν(s) of
the Sierpinski drum has poles at nonreal values of s. Specifically, according
to (6.82) and the comment following (6.81), the spectral complex dimen-
sions of this fractal spray are located at s = 2 and at s = D + inp, n ∈ Z,
with D and p as above. This is in contrast to the spectral zeta function
of a smooth manifold, which has only real poles; see Theorem B.4 and
Remark B.5 of Appendix B.

Theorem 6.25. The Sierpinski drum has oscillations of order D in its
spectrum, where D = log2 3 is the Minkowski dimension of the Sierpinski
gasket.

More precisely, the asymptotic behavior as x→∞ of the spectral counting
function of the Sierpinski drum is given by the formula (6.85), with G given
by (6.86). Further, G is a nonconstant periodic function, with period log 2.

Proof. The fact that G is nonconstant follows from Theorem 11.12 below,
according to which the Dirichlet series ζT (s) does not have an infinite
vertical sequence of zeros in arithmetic progression. It follows that the
expansion (6.86), interpreted distributionally (as, for example, in [Schw1,
Section VII.1]), has infinitely many nonzero terms.

Remark 6.26. In view of [Pin], an entirely analogous result can be ob-
tained for Neumann rather than for Dirichlet boundary conditions. More-
over, in light of [Bér], fractal sprays with more general basic shapes assoc-
iated with crystallographic groups can be analyzed in the same manner.
The necessary computations, however, will be significantly more compli-
cated.

Remark 6.27. One can also obtain the counterpart of Theorem 6.25 for
the drum with fractal boundary the Sierpinski carpet, or its higher-dimen-
sional analogue, the Menger sponge. See, for instance, [Man1, Plate 145,
pp. 144–145] for a picture of these classical fractals. In particular, the basic
shape of this fractal spray is the unit square or the unit cube, respectively. It
is also interesting to study similarly the main example of Brossard and Car-
mona [BroCa], revisited and extended by Fleckinger and Vassiliev in [FlVa].
Finally, as an exercise, the reader may wish to consider the Cantor spray
introduced in Section 1.4; see Figure 1.7. We note that more general Cantor
sprays will be studied in Section 11.2 below.
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The Sierpinski drum, as well as the examples mentioned in Remark 6.27,
is an example of a lattice self-similar spray, in the sense of Theorem 6.28
below (its oscillatory period is p = 2π/ log 2). Such a self-similar drum has
been studied, in particular, by the first author in [Lap2; Lap3, Section 4.4.1]
and, in more detail, by Gerling [Ger] and Gerling and Schmidt [GerSc1–2].
We note that the fact that the periodic function G in (6.86) is nonconstant
(and thus that the Sierpinski drum has oscillations of order D in its spec-
trum, as stated in Theorem 6.25 above) was not established in these refer-
ences. Within our framework, it is a direct consequence of Theorem 11.12,
which establishes the nonexistence of infinite arithmetic progressions of
zeros for a suitable class of Dirichlet series (including the spectral zeta
function ζT ) and provides us with a very useful tool for proving such re-
sults. See Remark 6.30 below for further references and extensions, which
can also be dealt with by our methods.

6.6.2 The Spectrum of a Self-Similar Spray

By entirely analogous methods—based on our explicit formulas and on
Theorem 11.12 in Section 11.2 below—we can establish the analogue for
self-similar sprays of the results obtained in Section 6.4 for self-similar
strings.

Theorem 6.28. The exact counterpart of the results of Section 6.4 holds
for self-similar sprays (see Remark 6.29 below for more precision). In par-
ticular, a self-similar spray S with basic shape B, a connected manifold with
piecewise smooth boundary (much as in Section 6.6.1), has oscillations of
order D, the dimension of the self-similar string used to define the spray, if
and only if S is a lattice spray. In that case, the oscillations are necessarily
multiplicatively periodic.

On the other hand, if B has a fractal boundary, then it can have oscil-
lations of order D in its spectrum, and hence the corresponding spray may
have such oscillations, even if S is a nonlattice spray.

This is in agreement with [Lap3, Conjecture 3, p. 163] stated for more
general self-similar drums.

Remark 6.29. By definition, a self-similar spray is a fractal spray with
basic shapeB scaled by a self-similar string L.15 Moreover, in Theorem 6.28,
we assume that ζB(s), the spectral zeta function of B, is languid (i.e., sat-
isfies the growth conditions L1 and L2 along some screen). We further
suppose that no complex dimension of L coincides with any of the poles
of ζB(s). These growth conditions will be satisfied, for instance, when ζB(s)
is the spectral zeta function of the Dirichlet (or Neumann) Laplacian on

15which is allowed to have dimension greater than 1, as was the case for the Sierpinski
drum (see Remark 6.23).
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a piecewise smooth bounded domain of Rd (and the window W is not all
of C), provided that the dimension of L is less than d (in that case, D is
also the dimension of the boundary of the spray). In particular, it is so for
all the examples mentioned in Section 6.6.1 and in the next remark.

Remark 6.30. Theorem 6.28 extends and specifies the corresponding re-
sults obtained earlier in [Ger, GerSc1–2, Lap3, Section 4.4.1b; LeVa, vB-Le].
In particular, the statement about the presence of oscillations of order D in
the spectrum of lattice sprays seems to be new and cannot be established
by means of the Renewal Theorem [Fel, Theorem 2, p. 39], which is used
in [Lap3,LeVa]. As was noted earlier, to obtain this result, we make use of
Theorem 11.12 about the nonexistence of infinite arithmetic progressions
of zeros for certain zeta functions. See Remark 8.40 for a similar comment
in a related situation. It has been verified, however, in special cases, such
as for the main example of [FlVa], extended in [vB-Le].



7
Periodic Orbits of Self-Similar Flows

In this chapter, we apply our explicit formulas to obtain an asymptotic
expansion for the prime orbit counting function of suspended flows. The
resulting formula involves a sum of oscillatory terms associated with the
dynamical complex dimensions of the flow. We then focus in Section 7.3 on
the special case of self-similar flows and deduce from our explicit formulas
a Prime Orbit Theorem with error term. For a self-similar flow, we define
the lattice and the nonlattice case in Definition 7.27. In the lattice case, the
counting function of the prime orbits has oscillatory leading asymptotics.
The explicit formula for this counting function enables us to give a very
precise expression for this function in terms of multiplicatively periodic
functions. In the nonlattice case (which is the generic case), the leading
term does not have oscillations, and we provide a detailed analysis of the
error term. The precise order of the error term depends on the dimension-
free region of the dynamical zeta function, as in the classical Prime Number
Theorem. Applying the results of Chapter 3, we find that this region, and
hence the error term, depends on properties of Diophantine approximation
of the weights of the flow.
The dynamical complex dimensions of a suspended flow are defined as the

poles of the logarithmic derivative of the dynamical zeta function. On the
other hand, the geometric complex dimensions of a fractal string have been
defined in Section 1.2.1 as the poles of the geometric zeta function itself,
which coincides with the dynamical zeta function when the string and the
flow are both self-similar (see Theorem 7.15). Thus the geometric complex
dimensions of a self-similar flow only depend on the poles of the corres-
ponding zeta function, and they are counted with a multiplicity, whereas
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the dynamical complex dimensions of a flow depend on the zeros and the
poles of the dynamical zeta function, and they have no multiplicity. Due
to the fact that the dynamical zeta function of a self-similar flow has no
zeros, since a self-similar flow always corresponds to a self-similar set with
a single gap, the two sets of complex dimensions coincide (as sets of points
without multiplicity) in the case of self-similar flows.

7.1 Suspended Flows

Let N ≥ 0 be an integer and let Σ = {0, . . . , N − 1}N be the space of
infinite sequences over the alphabet {0, . . . , N − 1}, called the space of
infinite words. Let w : Σ → (0,∞] be a function, called the weight. On Σ,
we have the left shift σ, given on a word (an) by (σa)n = an+1. We define
the suspended flow Fw on the space [0,∞)×Σ as the following dynamical
system (or time evolution, see [PaPol2, Chapter 6]):

Fw(t, a) =

{
(t, a) if 0 ≤ t < w(a),
Fw(t−w(a), σa) if t ≥ w(a).

(7.1)

We think of it as the path of a particle, starting at the word a = (an). On
each word b ∈ Σ, an interval of length w(b) is suspended, along which the
particle moves up, with unit velocity. When it reaches the end of the interval
suspended at a (at time t = w(a)), it jumps to σa. Thus the position at
time t, starting at a, is the value Fw(t, a). If the series

w(a) +w(σa) +w(σ2a) + . . .

converges, then this position is not defined for t larger than its sum. How-
ever, Fw(t, a) is always defined on periodic words.
Note that the number of words in Σ is uncountable if N ≥ 2. See Fig-

ure 7.1 for an example where the length of the interval suspended on a
word depends only on the first element of the word.

Remark 7.1. This formalism is seemingly less general than the one in-
troduced in [PaPol2, Chapter 1]. However, defining w(a) = ∞ when the
word a contains a prohibited word of length 2, and e−s∞ = 0, allows us to
deal with the general case.

Remark 7.2. In the literature on symbolic dynamics (see, e.g., [PaPol2]
and the references therein), Σ is also referred to as the code space. See
the notes to the present chapter (Section 7.6) for references on a variety of
dynamical systems that can be viewed as (possibly more general) suspended
flows. These include subshifts of finite type and interval maps.
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7.1.1 The Zeta Function of a Dynamical System

Given a finite word x = a1, a2, . . . , al of length l = l(x), we let

a = a1, a2, . . . , al, a1, a2, . . . , al, . . .

be the corresponding periodic word, and we define σx = a2, . . . , al, a1. The
total weight of the orbit of σ on x is

wtot(x) = w(a) +w(σa) + · · ·+w(σl−1a). (7.2)

Definition 7.3 ([Bow1–2,Rue2] and [PaPol2, Chapter 5]). The dynamical
zeta function of Fw is defined by

ζw(s) = exp

(∑
x

1
l(x)

e−swtot(x)

)
, (7.3)

for Re s sufficiently large, where the sum extends over all finite words x of
positive length.

In (7.4) below, we introduce the logarithmic derivative of ζw. The ab-
scissa of convergence of this function will be denoted D, which is also the
abscissa of convergence of the sum in (7.3).

Remark 7.4. For N = 0, the alphabet is empty, and we interpret Fw as
the static flow on a point, and ζw(s) = 1. For N = 1, there is only one
periodic orbit (0, 0, 0, . . . ), and we have the dynamical system of a point
moving around a circle of length wtot(0) = w(0, 0, . . . ). Then

ζw(s) =
1

1− e−swtot(0)
.

The logarithmic derivative of the dynamical zeta function is

−ζ ′w
ζw
(s) =

∑
x

wtot(x)
l(x)

e−swtot(x). (7.4)

For N ≥ 1, this series does not converge at s = 0. We assume that (7.4)
converges for some value of s > 0, and the abscissa of convergence of this
series will be denoted by D, the dimension of Fw. Clearly, D ≥ 0. Then the
series on the right-hand side of (7.4) is absolutely convergent for Re s > D.
Moreover, we assume that there exists a screen

S : t �→ S(t) + it,

satisfying S(t) < D for every t ∈ R, such that −ζ ′w/ζw has a meromorphic
continuation to an open neighborhood of the corresponding window (see
Section 1.2.1, Equations (1.22) and (1.23), along with the beginning of
Section 5.3),

W = {s = σ + it : σ ≥ S(t)} .
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In Section 7.4, we will also assume that −ζ ′w/ζw satisfies the growth con-
ditions L1 and L2, as introduced in Section 5.3. We will then say that Fw

is languid, as in Definition 5.2.

Remark 7.5. The dimension of a suspended flow often coincides with the
topological entropy of the flow; see [PaPol2, Chapter 5] and the references
therein. It would be interesting to be able to interpret the poles of −ζ ′w/ζw

as “complex entropies” in a way that is meaningful for these dynamical
systems.

Definition 7.6. The poles of −ζ ′w/ζw in W are called the complex di-
mensions (or dynamical complex dimensions) of the flow Fw. The set of
complex dimensions of Fw in W is denoted by Dw(W ) or Dw for short.

The nonreal complex dimensions of a flow come in complex conjugate
pairs ω, ω (provided that W is symmetric about the real axis). If ζw has
a meromorphic continuation to an open neighborhood of W as well, then
the complex dimensions of Fw are simple and they are located at the zeros
and poles of ζw,

Dw(W ) = {ω ∈W : ζw(ω) = 0 or ∞}.

The residue at a complex dimension ω is then equal to − ord(ζw;ω), where
ord(ζw;ω) is the order of ζw at ω:

ζw(s) = C(s− ω)n +O((s− ω)n+1), C �= 0, n = ord(ζw;ω).

In general, the complex dimensions of Fw in W are not simple, and the
residues are not necessarily integers. We extend the notation, so that we
write ord(ζw;ω) = res(ζ ′w/ζw;ω) if ζ ′w/ζw has a meromorphic continuation
with a simple pole at ω, even if the residue is not an integer. In that case, ζw

is not analytic at ω but has a logarithmic singularity.

7.2 Periodic Orbits, Euler Product

A periodic word a in Σ with period l, a = a1, . . . , al, a1, . . . , al, . . . , gives rise
to the finite orbit {a, σa, . . . , σl−1a} of the shift σ. Clearly, l is a multiple
of the cardinality #{a, σa, . . . , σl−1a} of this orbit.
Definition 7.7. A finite word x is primitive if its length l(x) coincides with
the length of the corresponding periodic orbit of σ.

We denote by σ\Σ the space of primitive periodic orbits of σ. Thus

σ\Σ =
{
{σkx : k ∈ N} : x is a finite word

}
. (7.5)

We reserve the letter p for elements of σ\Σ. Thus p denotes the set of
points in a primitive periodic orbit of σ, and we write #p for its length.
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The total weight of a primitive orbit p is

wtot(p) =
∑
a∈p

w(a). (7.6)

Theorem 7.8 (Euler sum). For Re s > D, we have the following expres-
sion for the logarithmic derivative of ζw :

−ζ ′w
ζw
(s) =

∑
p∈σ\Σ

∞∑
k=1

wtot(p)e−skwtot(p), (7.7)

where p runs through all primitive periodic orbits of Fw (i.e., through all
elements of σ\Σ).

Proof. We write the sum in (7.4) over the finite words x as a sum over the
primitive words and repetitions of these. An orbit p contains #p different
primitive words of length #p, hence we obtain

∑
x

wtot(x)
l(x)

e−swtot(x) =
∑

x:primitive

∞∑
k=1

kwtot(x)
kl(x)

e−kswtot(x)

=
∑

p∈σ\Σ
#p

∞∑
k=1

kwtot(p)
k#p

e−kswtot(p).

The theorem follows after cancelling k and #p.

Corollary 7.9 (Euler product). The function ζw(s) has the following ex-
pansion as a product over all primitive periodic orbits p of Fw :

ζw(s) =
∏

p∈σ\Σ

1
1− e−swtot(p)

. (7.8)

The product converges for Re s > D.

Proof. In (7.7), we sum over k to obtain

ζ ′w
ζw
(s) = −

∑
p∈σ\Σ

wtot(p)e−swtot(p)

1− e−swtot(p)
= −

∑
p∈σ\Σ

d

ds
log

(
1− e−swtot(p)

)
.

(7.9)

The theorem then follows upon integrating and taking exponentials. The
constant of integration is determined by lims→∞ ζw(s) = 1.

Since the Euler product converges for Re s > D, we also obtain the
following corollary:
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Corollary 7.10. The dynamical zeta function ζw(s) is holomorphic and
does not have any zeros for Re s > D.

On the other hand, the meromorphic continuation of ζw (to an open
neighborhood of W ) may have zeros or poles for Re s ≤ D, s ∈W .

Definition 7.11. The following function counts the primitive periodic or-
bits and their multiples by their total weight:

ψw(x) =
∑

kwtot(p)≤log x

wtot(p), (7.10)

where k ranges through all positive integers and p through all primitive
periodic orbits of Fw (i.e., p ∈ σ\Σ).

The function ψw(x) is the counterpart of ψ(x) =
∑

pk≤x log p, which
counts prime powers pk with a weight log p. See also Section 5.5.1.
In Section 7.4 below, we combine the above Euler sum representation

of −ζ ′w/ζw with our explicit formulas of Chapter 5 to derive a Prime Orbit
Theorem for primitive periodic orbits, using the next corollary.

Corollary 7.12. We have the following relation between ζ ′w/ζw and ψw :

−ζ ′w
ζw
(s) =

∫ ∞

0

x−sdψw(x), (7.11)

for Re s > D.

The integral on the right-hand side of (7.11) is a Riemann–Stieltjes in-
tegral associated with the monotonic function ψw.

Remark 7.13. We use ψw instead of the more direct counting function

πw(x) =
∑

wtot(p)≤log x

1,

where p ∈ σ\Σ. However, setting θw(x) =
∑

wtot(p)≤log x wtot(p), so that

ψw(x) = θw(x) + θw(x1/2) + θw(x1/3) + . . .

and θw(x) = ψw(x)−O
(√

ψw(x)
)
, as x→∞, we find that

πw(x) =
∫ x

0

1
log t

dθw(t) =
θw(x)
log x

+
∫ x

0

θw(t)
log2 t

dt

t
,

from which it is easy to derive the corresponding theorems for πw from
those obtained for ψw in Sections 7.4 and 7.5 below.
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7.3 Self-Similar Flows

If w(a) depends only on the first element of the word, then the flow is self-
similar in the following sense. We count the periodic orbits with a weight
wtot(p). Thus, for example, the empty orbit is not counted. If we append
the element j in front of an orbit (j = 0, . . . , N − 1), the total weight of
this orbit becomes larger by w(j), and the exponential weight (7.14) below
is scaled by the factor rj+1. The total collection of periodic orbits is the
union of these copies with a scaled weight function. Hence, we recover the
intuitive notion of a self-similar object—in this case, a self-similar flow—as
the union of N scaled copies of itself.

Definition 7.14. A flow Fw is self-similar if N ≥ 2 and the weight func-
tion w depends only on the first digit of the word on which it is evaluated.
We then put

wj = w(j − 1, j − 1, j − 1, . . . ) (7.12)

and

rj = e−wj = r(j − 1, j − 1, j − 1, . . . ), (7.13)

for j = 1, . . . , N , and define

r(x) = e−wtot(x), (7.14)

where wtot(x) is given by (7.2) for a finite word x.
The numbers rj and wj (for j = 1, . . . , N) are called respectively the

scaling ratios and weights of the self-similar flow Fw.

Note that 0 < rj < 1 for j = 1, . . . , N . We will assume that the weights
wj = log r−1

j are ordered in nondecreasing order,

0 < w1 ≤ w2 ≤ · · · ≤ wN ,

so that 1 > r1 ≥ r2 ≥ · · · ≥ rN > 0.
When N = 2, the flow is called a Bernoulli flow. Such flows play an

important role in ergodic theory (see [BedKS, Chapters 2, 6 and 8]).

A self-similar flow is best viewed as the following dynamics on the region
of Figure 7.1. A point x = x1N

−1 + x2N
−2 + · · · = .x1x2 . . . on the unit

interval moves vertically upward with unit speed until it reaches the graph,
at which moment it jumps to {Nx} = Nx−[Nx] = .x2x3 . . . , the fractional
part of Nx, and continues from there. In Figure 7.1, N = 5, and the
expansions of A, B and C in base 5 are A = 17/124 = .032, B = 85/124 =
.320, C = 53/124 = .203.

Theorem 7.15. The dynamical zeta function associated with a self-similar
flow has a meromorphic continuation to the whole complex plane, given by

ζw(s) =
1

1−∑N
j=1 rs

j

. (7.15)
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Figure 7.1: A self-similar flow, N = 5, with the orbit of 17/124.

Its logarithmic derivative is given by

−ζ ′w
ζw
(s) =

∑N
j=1 wjr

s
j

1−∑N
j=1 rs

j

. (7.16)

The dimension D > 0 of the flow is the unique real solution of the equation
N∑

j=1

rs
j = 1. (7.17)

Proof. The sum over periodic words of fixed length l can be computed as
follows: ∑

x: l(x)=l

r(x)s =
N∑

a1=1

N∑
a2=1

· · ·
N∑

al=1

rs
a1

. . . rs
al

= (rs
1 + · · ·+ rs

N )
l
.

Hence, for Re s > D, the sum over all periodic words is equal to
∞∑

l=1

1
l

∑
x: l(x)=l

r(x)s =
∞∑

l=1

1
l
(rs

1 + · · ·+ rs
N )

l = − log
(
1−

∑N

j=1
rs
j

)
.
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The theorem follows upon exponentiation and analytic continuation. Since
the function 1−∑N

j=1 rs
j is holomorphic, ζw is meromorphic.

Remark 7.16. Thanks to Theorem 7.15, for a self-similar flow we can take
the full complex plane for the window: W = C. In that case, there is no
screen. However, in applying our explicit formulas, we sometimes choose a
screen to obtain information about the error of an approximation; see, e.g.,
Section 7.5 and the discussion above Remark 6.11.

Remark 7.17. A self-similar flow corresponds to a self-similar string with
one gap g1, and with a total length L normalized by g1L = 1, or equiv-
alently, such that the first length of L is 1. To make the connection, we
must assume that g1 = 1 −∑N

j=1 rj > 0, which corresponds to a lower
bound on the weights wj = − log rj . Note that a general suspended flow
does not always satisfy this condition.
On the other hand, the logarithmic derivative of ζw for the self-similar

flow Fw is

ζ ′w
ζw
(s) =

∑N
j=1 wje

−wjs

1−∑N
j=1 e−wjs

.

This corresponds to a self-similar string with gaps e−wj , with (in general,
noninteger) multiplicity wj , as in Chapter 3.

Remark 7.18. By the previous remark and Corollary 7.9, the geometric
zeta function of any self-similar string with a single gap has an Euler prod-
uct. This Euler product does not seem to have a clear geometric interpreta-
tion in the language of fractal strings. Also, the connection with self-similar
fractal strings with multiple gaps remains to be clarified.
Note that this Euler product is different from that for the spectral op-

erator, discussed in the previous chapter (within Section 6.3.2), which is
related to the Euler product for the Riemann zeta function.

The following result is a counterpart for self-similar flows of Corollary 2.5
for self-similar strings. It is an immediate consequence of Equation (7.16)
of Theorem 7.15.

Corollary 7.19. The set of (dynamical) complex dimensions Dw = Dw(C)
of the self-similar flow Fw is the set of solutions of the equation

N∑
j=1

rω
j = 1, ω ∈ C. (7.18)

Moreover, the complex dimensions are simple (that is, the pole of −ζ ′w/ζw

at ω is simple). The residue at ω equals − ord(ζw;ω).

Remark 7.20 (Geometric and dynamical complex dimensions). In Chap-
ter 1, the geometric complex dimensions of a fractal string are defined as
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the poles of its geometric zeta function. Thus the complex dimensions are
counted with a multiplicity, and the zeros of the geometric zeta function
are unimportant. On the other hand, the dynamical complex dimensions
are defined as the poles of the logarithmic derivative of the dynamical zeta
function. Thus the complex dimensions are simple, and both the zeros and
the poles of the dynamical zeta function are counted. For self-similar flows,
the dynamical zeta function and the geometric zeta function of the corres-
ponding string coincide (up to normalization), and this zeta function has no
zeros. Hence, as sets (without multiplicity), the geometric and dynamical
complex dimensions coincide for self-similar flows and self-similar fractal
strings with a single gap.

Remark 7.21. It would be interesting to extend the formalism presented
in this chapter to include self-similar flows corresponding to self-similar
strings with multiple gaps (rather than with a single gap), as defined in
Section 2.1. Even in the present deterministic (as opposed to random) set-
ting, this may possibly be done within the broader context of random
fractal trees and recursive constructions studied by Ben Hambly and the
first author in [HamLap]. The latter work is discussed in Section 12.4.1.

Remark 7.22 (Higher-dimensional case). It is clear that our results can
be applied to higher-dimensional self-similar fractals [Fa3,Man1] as well.
This allows us to obtain information about the symbolic dynamics of self-
similar fractals. On the other hand, it does not give information about the
actual geometry of such fractals.

Remark 7.23. Let L = l1, l2, . . . be a fractal string. There is a natural
suspended flow on L, namely, the flow

FL(t, j, x) =

{
(0, j, xet) if xet < lj ,

FL(t− log lj , j, 1) otherwise.
(7.19)

The lengths lj correspond to the periodic words x of the flow Fw via the
formula

lj =
l(x)−1∏
k=0

r(σkx). (7.20)

This construction can be carried out for any fractal string. The resulting
flow is self-similar in the present sense if and only if the associated fractal
string is self-similar.

7.3.1 Examples of Self-Similar Flows

Example 7.24 (The Cantor flow). This is the self-similar flow on the al-
phabet {0, 1}, with two equal weights w1 = w2 = log 3. It has 2n periodic



7.3 Self-Similar Flows 219

words1 of weight n log 3, for n = 1, 2, . . . . The dynamical zeta function of
this flow is given by

ζCF(s) =
1

1− 2 · 3−s
. (7.21)

The logarithmic derivative equals

−ζ ′CF

ζCF
(s) = 2 log 3 · 3−s

1− 2 · 3−s
. (7.22)

Example 7.25 (The Fibonacci flow). Next we consider a self-similar flow
with two lines of complex dimensions. The Fibonacci flow is the flow Fib
on the alphabet {0, 1} with weights w1 = log 2, w2 = 2 log 2. Its periodic
words have weight log 2, 2 log 2, . . . , n log 2, . . . , with multiplicity respec-
tively 1, 2, . . . , Fn+1, . . . , the Fibonacci numbers defined by (2.19). The
dynamical zeta function of the Fibonacci flow is

ζFib(s) =
1

1− 2−s − 4−s
, (7.23)

with logarithmic derivative

−ζ ′Fib

ζFib
(s) = log 2 · 2

−s + 2 · 4−s

1− 2−s − 4−s
. (7.24)

Example 7.26 (The golden flow). We consider the nonlattice flow GF with
weights w1 = log 2 and w2 = φ log 2, where φ = (1 +

√
5)/2 is the golden

ratio. We call it the golden flow . Its dynamical zeta function is

ζGF(s) =
1

1− 2−s − 2−φs
, (7.25)

and its complex dimensions are the solutions of the transcendental equation

2−ω + 2−φω = 1, ω ∈ C. (7.26)

A diagram of the dynamical complex dimensions of the golden flow is given
in Figures 2.12 and 3.9. By Theorem 3.30 and the comment preceding
it, we even know that the complex dimensions of the corresponding self-
similar string are all simple, hence the dynamical and geometric complex
dimensions correspond exactly.

1The number of primitive periodic words of weight n log 3 is much harder to deter-
mine.
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7.3.2 The Lattice and Nonlattice Case

Let Fw be a self-similar flow. Recall that w depends only on the first
symbol and wj = w(j, j, . . . ) for j = 1, . . . , N . Consider the subgroup A
of R generated by these weights,

A =
N∑

j=1

Zwj .

As in Chapter 3, we define the lattice and the (generic and nongeneric)
nonlattice case.

Definition 7.27. We say that Fw is a nonlattice flow if A is dense in R.
This is the case when the rank of A is at least 2. The generic nonlattice
case is when the rank of A equals #{wj : j = 1, . . . , N}, the number of
different weights of the flow.
We call Fw a lattice flow if the group A is not dense (and hence discrete)

in R. In this situation there exists a unique positive real real number w,
called the generator of the flow, and positive integers k1, . . . , kN without
common divisor, such that 1 ≤ k1 ≤ · · · ≤ kN and

wj = kjw, (7.27)

for j = 1, . . . , N .

The generator of a lattice flow generates the flow in the sense that the
weight of every periodic orbit is an integer multiple of w.

To determine the number Dl as introduced in Section 3.3 (see Equa-
tion (3.8b)), we need to count the multiplicity of rN . Let m be the number
of integers j in {1, . . . , N} such that rj = rN . Then Dl is given as the
unique real solution of 2

1 +
N−m∑
j=1

rDl
j = mrDl

N . (7.28)

We then have the counterpart of Theorems 2.17 and 3.6, of which we recall
the main features in the present context.

Theorem 7.28. Let Fw be a self-similar flow of dimension D and with
scaling ratios 1 > r1 ≥ · · · ≥ rN > 0. Then s = D is the only complex
dimension of Fw on the real line. All complex dimensions are simple, and
the residue at a complex dimension (i.e., res(−ζ ′w/ζw;ω)) is a positive in-
teger. The set of complex dimensions in C (see Remark 7.16) of Fw is

2This definition coincides with the one given by formula (3.8b) for Dl, since in that
formula, the numbers rj (j = 1, . . . , M − 1) are all distinct and counted with multipli-
city mj = |mj |, and rM corresponds to rN in (7.28).
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contained in the bounded strip Dl ≤ Re s ≤ D, where Dl is given in (7.28)
above:

Dw = Dw(C) ⊂ {s ∈ C : Dl ≤ Re s ≤ D} . (7.29)

It is symmetric with respect to the real axis and infinite, with density

#(Dw ∩ {ω ∈ C : | Imω| ≤ T}) ≤ wN

π
T +O(1), (7.30)

as T →∞.
In the lattice case, ζw(s) is a rational function of e−ws, where w is the

generator of Fw. So, as a function of s, it is periodic with period 2πi/w.
The complex dimensions ω are obtained as the complex solutions z of the
polynomial equation (of degree kN )

N∑
j=1

zkj = 1, with e−wω = z. (7.31)

The solutions of this equation are described in Theorem 2.17, following
Equation (2.38).

In the nonlattice case, D is the unique pole of ζw on the line Re s = D.
Further, there is an infinite sequence of complex dimensions of Fw coming
arbitrarily close (from the left) to the line Re s = D. There exists a screen S
to the left of the line Re s = D, such that −ζ ′w/ζw satisfies L1 and L2
with κ = 0 (see Equations (5.19) and (5.20)), and the residue of −ζ ′w/ζw

at the pole ω in the associated window W is equal to 1. Finally, the com-
plex dimensions of Fw can be approximated (via an explicit procedure, as
described in Chapter 3 ) by the complex dimensions of a sequence of lattice
flows, with smaller and smaller generators. Hence the complex dimensions
of a nonlattice flow have a quasiperiodic structure.

Corollary 7.29. Every self-similar flow has infinitely many complex di-
mensions with positive real part.

Proof of Theorem 7.28. For a proof of most these facts, see Theorems 2.17
and 3.6. The density estimate (7.30) follows from the fact that, according to
Theorem 3.6, the right-hand side of (7.30) gives the asymptotic density of
the number of poles of ζw, counted with multiplicity, whereas the dynamical
complex dimensions have multiplicity one (i.e., they are simple).

7.4 The Prime Orbit Theorem
for Suspended Flows

Let Fw be a suspended flow as in Section 7.1. In Corollary 7.12, we have
written the logarithmic derivative of ζw(s) as the Mellin transform of
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the counting function ψw of the weighted periodic orbits of σ, as defined
in (7.10). Put η = dψw, so that ζη = −ζ ′w/ζw. The poles of −ζ ′w/ζw are
the complex dimensions of Fw and the residue at ω is − ord(ζw;ω). By
Theorems 5.18 and 5.30, applied to the generalized fractal string η with
window W , we obtain the following distributional explicit formula for the
counting function of the weighted periodic orbits of σ.

Theorem 7.30 (The Prime Orbit Theorem with Error Term). Let Fw be
a languid suspended flow (i.e., ζ ′w/ζw satisfies conditions L1 and L2 of
Definition 5.2). Then we have the following equality between distributions:

ψw(x) =
xD

D
+

∑
ω∈Dw\{D,0}

− ord (ζw;ω)
xω

ω
+ res

(
−xsζ ′w(s)

sζw(s)
; 0

)
+R(x),

(7.32)

where ord (ζw;ω) < 0 denotes the order of ζw at ω,3 and

R(x) = −
∫

S

ζ ′w
ζw
(s)xs ds

s
= O

(
xsup S

)
, (7.33)

as x→∞.
If 0 is not a complex dimension of the flow, then the third term on the

right-hand side of (7.32) simplifies to −ζ ′w(0)/ζw(0). In general, this term
is of the form α+ β log x, for some constants α and β.

If D is the only complex dimension on the line Re s = D, then the error
term,

∑
ω∈Dw\{D,0}

− ord (ζw;ω)
xω

ω
+ res

(
−xsζ ′w(s)

sζw(s)
; 0

)
+R(x), (7.34)

is estimated by o(xD), as x → ∞. If this is the case, then we obtain a
Prime Orbit Theorem for Fw as follows:

ψw(x) =
xD

D
+ o

(
xD

)
, (7.35)

as x→∞.

Proof. The first part of the theorem follows from the distributional ex-
plicit formula with error term (Theorem 5.18) and from the first part of
Theorem 5.30, while the second part follows from the second part of Theo-
rem 5.30. See also Theorem 5.17, in case there is no screen such that only D
is visible.

3See the paragraph following Definition 7.6—or, for more details, the text surrounding
Equation (3.19)—for the precise definition of the order, ord(ζw; ω).
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Remark 7.31. In exactly the same way, one deduces from Theorem 5.22,
the distributional explicit formula without error term, that if ζ ′w/ζw satisfies
hypotheses L1 and L2′ (i.e., if Fw is strongly languid, in the sense of
Definition 5.3), then we may put R(x) ≡ 0 in Equations (7.32) and (7.34).

Remark 7.32. Lalley considers in [Lal2–3] the (approximately) self-similar
case. Using a nonlinear extension of the Renewal Theorem, he shows that
in the nonlattice case, the leading asymptotics are nonoscillatory. In the
lattice case, the leading asymptotics are periodic, and it becomes a natural
question whether they are constant or nontrivially periodic. For self-similar
flows, this problem is resolved in Section 7.4.2 below.

Remark 7.33. We can apply our results to obtain explicit formulas for
the more general dynamical systems considered, for example, in [PaPol2]
or [Lal2–3] and the relevant references therein. (See also the notes to this
chapter.) The precise form of the resulting expressions and error terms,
however, still remains to be fully worked out; see Remark 7.34. Even in the
situation of self-similar flows studied in Sections 7.4.1–7.4.3 and 7.5 below,
our results are significantly more precise than those previously available in
the literature because the explicit formula (7.32)—combined with our Dio-
phantine approximation techniques of Chapter 3—not only yields a Prime
Orbit Theorem with error term (as, e.g., in Section 7.5), but also a full
expansion of the prime powers counting function in terms of the com-
plex dimensions of the flow (that is, the poles of the associated dynamical
zeta function); see, e.g., Equations (7.32), (7.34), and for self-similar flows,
Equations (7.39)–(7.40) and (7.43).

7.4.1 The Prime Orbit Theorem for Self-Similar Flows

For self-similar flows, the function ζw does not have any zeros (see (7.15));
i.e., such a flow corresponds to a self-similar string with a single gap. Hence
every contribution to (7.32) comes from a pole of ζw, and each coeffi-
cient − ord(ζw;ω) is positive. Furthermore, 0 is never a complex dimension,
so the third term on the right-hand side of (7.32) in the explicit formula is

−ζ ′w(0)
ζw(0)

=
1

N − 1

N∑
j=1

wj . (7.36)

We can obtain information about ψw by choosing a suitable screen. Note
that the hypotheses L1 and L2 (or L2′ for a distributional formula without
error term) are satisfied in view of Section 6.4, in particular estimate (6.36),
and the second part of Remark 7.17.
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7.4.2 Lattice Flows

In the lattice case, we obtain the Prime Orbit Theorem for lattice self-
similar flows:

ψw(x) = G1(log x)xD +
1

N − 1

N∑
j=1

wj +O
(
xD−α

)
, (7.37)

as x → ∞. Here, D − α (with α > 0) is the abscissa of the first vertical
line of complex dimensions next to D, and the periodic function G1, of
period w, is given by

G1(y) =
∞∑

n=−∞

e2πiny/w

D + 2πin/w
=

w

1− e−wD
e−wD{y/w}. (7.38)

By the pointwise explicit formula without error term (Theorem 5.14), we
can even obtain more precise information about ψw,

ψw(x) =
q∑

u=1

− ord (ζw;ωu)
∑
n∈Z

xωu+2πin/w

ωu + 2πin/w
+

1
N − 1

N∑
j=1

wj

=
q∑

u=1

− ord (ζw;ωu)Gu(log x)xωu +
1

N − 1

N∑
j=1

wj ,

(7.39)

where for each u = 1, . . . , q, the function Gu is periodic of period w and is
given by

Gu(y) =
∑
n∈Z

e2πiny/w

ωu + 2πin/w
=

w

1− e−wωu
e−wωu{y/w}. (7.40)

Here, ω1(= D), ω2, . . . , ωq are given as in the lattice case of Theorem 2.17
(just after Equation (2.38)), and ord(ζw;ω1) = −1.
For instance, for the Cantor flow of Example 7.24 (with D = log3 2

and w1 = w2 = w = log 3), we have

ψCF(x) = G1(log x)xD + 2 log 3, (7.41)

with G1(y) = w21−{y/w}. As another example, for the Fibonacci flow4 of
Example 7.25 (with D = log2 φ and w1 = w = log 2, w2 = 2w), we have

ψFib(x) = G1(log x)xD +G2(log x)xπi/wx−D − 3 log 2, (7.42)

4Also called the golden mean flow in the literature (see, e.g., [BedKS, p. 59]), but not
to be confused with the golden flow in this book, which is a nonlattice self-similar flow.
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where G1(y) = wφ2−{y/w} and

G2(y) =
∑
n∈Z

e2πiny/w

−D + 2πi(n+ 1/2)/w
= wφ{y/w}−2e−πi{y/w}.

In the second term of Equation (7.42), the product

e−πi{(log x)/w}xπi/w

combines to give the sign (−1)[(log x)/w].

7.4.3 Nonlattice Flows

In the nonlattice case, we use Theorem 3.25 according to which there ex-
ists δ > 0 and a screen S lying to the left of the vertical line Re s = D − δ
such that −ζ ′w/ζw is bounded on S and all the complex dimensions ω to
the right of S have residue res(−ζ ′w/ζw;ω) = 1. Then R(x) = O(xD−δ),
as x →∞. There are no complex dimensions with Reω = D except for D
itself. Hence, the assumptions of Theorem 7.30 are satisfied. Therefore, in
view of Theorem 7.30, we deduce by a classical argument (see the proof
of Theorems 7.37 and 7.41) the Prime Orbit Theorem for nonlattice sus-
pended flows:

ψw(x) =
xD

D
+

∑
ω∈Dw\{D}

xω

ω
+O

(
xD−δ

)
=

xD

D
+ o

(
xD

)
, (7.43)

as x → ∞ (see also Theorem 7.41, and when N = 2, Theorem 7.37 below
for a better estimate of the error). We note that the exponent of x in this
estimate is best possible, since by the nonlattice case of Theorem 2.17,
there always exist complex dimensions of w arbitrarily close to the vertical
line Re s = D. However, the dimension-free regions obtained in Section 3.6
allow us to improve the error term by a factor of lower order than a power
of x. See Section 7.5 below.

Remark 7.34. It would be interesting to apply Theorem 7.30 to sus-
pended flows that are more general than self-similar flows: For example,
(i) the hyperbolic flows associated with subshifts of finite type studied by
Parry and Pollicott in [PaPol2]; and (ii) the suspended flows considered by
Lalley in [Lal2–3], such as the approximately self-similar flows naturally
associated with limit sets of suitable Kleinian groups. This would require a
more detailed study of the dynamical zeta function of each of these flows.
(In case (i), some of the required information is already available in [PaPol2]
and the relevant references therein.) We note that, in case (ii), the lattice–
nonlattice dichotomy applies in a suitable extended sense, via the nonlinear
renewal theory developed in [Lal2–3].
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7.5 The Error Term in the Nonlattice Case

In this section, we provide a detailed analysis of the error term in the
counting function for the periodic orbits in the nonlattice case, using the
information on the dimension-free region for a nonlattice string obtained
in Chapter 3, Section 3.6.

7.5.1 Two Generators

Definition 7.35. A domain in the complex plane containing the vertical
line Re s = D is a dimension-free region for the flow Fw if the only pole
of −ζ ′w/ζw in that region is s = D.

The following result is the direct analogue of Corollary 3.44, which is a
corollary of Theorem 3.34. Recall from (7.15) and Sections 3.5.1 and 3.5.2
that

ζw(s) =
1

f(s)
,

where f(s) = 1−m1e
−w1s−m2e

−w2s and m1 and m2 are the multiplicities
(necessarily positive and integral) of the weights w1 and w2, respectively. In
the nonlattice case, we have that w2/w1 = α > 1 is irrational, with contin-
ued fraction α = [a0, a1, a2, . . . ]. Further recall form Section 3.5.1 that we
denote by qk the denominators of the convergents of α; see Equations (3.24)
and (3.25). These numbers qk grow roughly like (a1+1)(a2+1) . . . (ak+1),
and hence exponentially if the partial quotients of α are bounded, and oth-
erwise faster than exponentially. The dimension of Fw satisfies f(D) = 0,
and clearly,

f ′(D) = m1w1e
−w1D +m2w2e

−w2D

is a positive number.

Corollary 7.36. Assume that the partial quotients a0, a1, . . . of α are
bounded by b. Put B = π4e−(w1+w2)D/(2f ′(D)3) (see also Equation (3.43)
of Section 3.6). Then Fw has a dimension-free region of the form{

σ + it ∈ C : σ > D − B

b2t2

}
. (7.44)

Further, the function −ζ ′w/ζw satisfies hypotheses L1 and L2 (i.e., the
flow Fw is languid) with κ = 2 on the screen Re s = D −Bb−2/(Im s)2.

More generally, let b : R+ → [1,∞) be a function such that the partial
quotients {ak}∞k=0 of the continued fraction of α satisfy ak+1 ≤ b(qk) for
every k ≥ 0. Then Fw has a dimension-free region of the form{

σ + it ∈ C : σ > D − B

t2b2(tw1 / 2π)

}
. (7.45)
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If b grows at most polynomially, then −ζ ′w/ζw satisfies hypotheses L1
and L2 with κ such that tκ ≥ t2b2(tw1 / 2π).

Proof. This follows from Theorem 3.34, if we note that for t = 2πqk/w1,
we have q′k+1 = αk+1q

′
k ≤ 2b(qk)q′k ≤ 4b(qk)qk. So the complex dimension

close to D+ it is located at D+ i(t+O(q′−1
k+1))− (w2

1/π2)Bq′−2
k+1+O(q′−4

k+1),
where the big-O terms denote real-valued functions. The real part of this
complex dimension is less than D −Bt−2b−2(tw1/(2π)).

This has the following consequence for the Prime Orbit Theorem.

Theorem 7.37 (Prime Orbit Theorem with Error Term, for Bernoulli Flows).
Let α = w2/w1 have bounded partial quotients in its continued fraction.
Then

ψw(x) =
xD

D
+O

(
xD

(
log log x

log x

)1/4
)

, (7.46)

as x→∞.
If α is polynomially approximable, with partial quotients in its continued

fraction satisfying ak+1 ≤ b(qk), for some increasing function b such that
b(x) = O(xl), as x→∞, then

ψw(x) =
xD

D
+O

(
xD

(
log log x

log x

) 1
4l+4

)
, (7.47)

as x→∞.

The proof of Theorem 7.37 will be given in the next section, following
the statement of Theorem 7.41.

Remark 7.38. The estimates for the error terms in (7.46), (7.47), (7.50)
and (7.51) are not best possible. Indeed, as is clear from the proof, these
bounds are obtained by using a Tauberian argument, which makes the
exponents worse by a factor of two. See also Remark 7.42.

7.5.2 More Than Two Generators

We formulate the following counterpart of Theorem 3.41. The proof is the
same as that of Theorem 3.41.
Recall that M denotes the number of different weights w1 < · · · < wM ,

where wj is counted with the positive integral multiplicity mj . The total
number of weights is N = m1 + · · ·+mM .

Theorem 7.39. Let M ≥ 2 and let w1, . . . , wM be weights. Let Q and q be
as in Lemma 3.16. Then Fw has a complex dimension close to D+2πiq/w1

at a distance of at most O(Q−2) from the line Re s = D, as Q → ∞. On
the line Re s = D, the function |ζ ′w/ζw| reaches a maximum of order Q2

around the point s = D + 2πiq/w1.
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Corollary 7.40. The best dimension-free region that Fw can have is of
size {

σ + it : σ ≥ D −O
(
t−2/(M−1)

)}
. (7.48)

The implied constant is positive and depends only on w1, . . . , wM .
Let w1, . . . , wM be b-approximable, where b : [1,∞)→ R+ is an increas-

ing function such that for every integer q ≥ 1,

|qwj − pjw1| ≥
w1

b(q)
q−1/(M−1)

for j = 1, . . . , M . Then the dimension-free region has the form{
σ + it : σ ≥ D −O

(
b−2(w1t / 2π)t−2/(M−1)

)}
. (7.49)

The O-terms in (7.48) and (7.49) are positive functions, bounded as
indicated.

This has the following consequence for the Prime Orbit Theorem.

Theorem 7.41 (Prime Orbit Theorem with Error Term). Suppose the
weights w1, . . . , wM are badly approximable, in the sense that

|qwj − pjw1| � q−1/(M−1)

for j = 1, . . . , M and every q ≥ 1. Then

ψw(x) =
xD

D
+O

(
xD

(
log log x

log x

)M−1
4

)
, (7.50)

as x→∞.
If w1, . . . , wM is polynomially approximable, in the sense that

|qwj − pjw1| ≥
w1

b(q)
q−1/(M−1)

for j = 1, . . . , M and every q ≥ 1, for some increasing function b on [1,∞)
such that b(x) = O(xl) as x→∞, then

ψw(x) =
xD

D
+O

(
xD

(
log log x

log x

) M−1
4l(M−1)+4

)
, (7.51)

as x→∞.

Proof of Theorems 7.37 and 7.41. We apply the pointwise explicit formula
at level k = 2 (see Theorem 5.10) to obtain

ψ
[2]
w (x) =

xD+1

D(D + 1)
+

∑
ω∈Dw\{D}

xω+1

ω(ω + 1)
+R[2](x).
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The error term is estimated by R[2](x) = O(xD+1−c) for some positive c. We
will estimate the sum by using an argument which is classical in the theory
of the Riemann zeta function and the Prime Number Theorem, under the
assumptions that the complex dimensions ω have a linear density, and that
every ω = σ + it satisfies

σ ≤ D − Ct−ρ (7.52)

for some positive number ρ. Taking ρ = 2/(M − 1) + 2l, we obtain Theo-
rem 7.41, and Theorem 7.37 corresponds to the case when M = 2.
The sum

∑
ω

xω+1

ω(ω+1) is absolutely convergent. We split this sum into the
parts with | Imω| > T and with | Imω| ≤ T . Put

U =
∑
ω

1
|ω(ω + 1)| .

From the fact that the complex dimensions have a linear density (see Theo-
rem 3.6), it follows that there exists a positive constant V such that∑

| Im ω|≥T

1
|ω(ω + 1)| ≤

V

T

for every T > 0. Then∣∣∣∣∣∑
ω

xω+1

ω(ω + 1)

∣∣∣∣∣ ≤ UxD+1−CT−ρ

+ V
xD+1

T
,

where ρ is the constant introduced in (7.52) above. We now choose T so that
the two terms on the right-hand side have the same order of magnitude,
namely, T = (ρC log x/ log log x)1/ρ. Thus we find∣∣∣∣∣∑

ω

xω+1

ω(ω + 1)

∣∣∣∣∣ = O

(
xD+1

(
log log x

log x

)1/ρ
)

.

We now apply a Tauberian argument to deduce a similar error estimate
for ψw(x); see [In, p. 64]. Let h = x(log log x/ log x)1/(2ρ). Thus

ψw(x) ≤
1
h

∫ x+h

x

ψw(t) dt =
ψ

[2]
w (x+ h)− ψ

[2]
w (x)

h
.

Observe that

(x+ h)D+1 − xD+1

hD(D + 1)
=

xD

D
+O

(
xD−1h

)
=

xD

D
+ xDO

(
(log log x/ log x)1/(2ρ)

)
.
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Further,

O
(
xD+1(log log x/ log x)1/ρ/h

)
= xDO

(
(log log x/ log x)1/(2ρ)

)
,

from which the desired estimate follows.

A nice exposition of Diophantine approximation in a related context and,
in particular, of the notion of well approximable and badly approximable
irrational numbers, can be found in the article [DodKr].

Remark 7.42. Note that by using the Tauberian argument, we lose a
factor two in the exponent. Indeed, the estimate

∑
ω∈Dw\{D}

xω

ω
+R(x) = O

(
xD

(
log log x

log x

) M−1
2l(M−1)+2

)

holds distributionally (instead of pointwise).

Remark 7.43. If b(q) grows faster than polynomially, we obtain a bound
of the form xD/binv(log x) for the error in the Prime Orbit Theorem,
where binv is the inverse function of b.

Remark 7.44. If l > 0 in the exponent (M − 1)/(4l(M − 1) + 4) of log x
in the error term of Theorems 7.37 and 7.41, then the error term does not
depend much on M , and is essentially of order xD(log x)−1/4l (ignoring the
factor log log x). Thus, if the weights are well approximable, the error term
is never better than xD divided by a fixed power of the logarithm of x. On
the other hand, when l = 0—that is, roughly speaking, when the weights
are never close to rational numbers—the error term is essentially of order
xD(log x)−(M−1)/4. Hence, the larger M , the smaller the error term in that
case.
We may compare this—somewhat superficially in view of the Riemann

hypothesis—with the situation of the Riemann zeta function. In view of
Section 5.5.1, the weights are wp = wtot(p) = log p, for each prime num-
ber p, and there are infinitely many of them. Since it is expected that the
infinite sequence {log p}p: prime is badly approximable, one expects an error
term of order “xD(log x)−∞”. Indeed, in (5.85), e−c

√
log x = O ((log x)−n)

for every n > 0. The corresponding pole-free region has width of or-
der O(1/ log t) at height t (see [In, Theorem 19]), which is “t−1/∞”. This
lends credibility to the conjecture that {log p}p:prime is badly approximable
by rational numbers.

7.6 Notes

Definition 7.3: the dynamical zeta function (with weight) is often called in
the literature the Ruelle (or Bowen–Ruelle) zeta function of the suspended
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flow. In the present form, it was introduced by Ruelle in [Rue1, 2]. Motiva-
tions for the study of such objects included number theory [ArMazu], dy-
namical systems [Sma, Bow1–2] and statistical physics [Rue3]. (See [Lag2]
for a much more detailed discussion.) We refer the interested reader to the
monographs by Parry and Pollicott [PaPol2] and by Ruelle [Rue4], as well as
to the research expository articles by Baladi [Bal1–2] and Lagarias [Lag2],
for a number of references on this subject and a detailed account of the
theory of such zeta functions from several different points of view. See also,
for example, [Bal3,BalKel,BedKS,Gou, Lal2–3] and the relevant references
therein.
Theorem 7.30 was first published in [Lap-vF6]. In [PaPol1], Parry and

Pollicott obtain a Prime Orbit Theorem (without error term) for suspended
flows (see also [PaPol2, Chapter 6]). The first results of this kind were ob-
tained in special cases by Huber [Hub], Sinai [Sin], and Margulis [Marg],
among others (see [PaPol1, 2] and the relevant references therein, as well as
the historical note in [BedKS, p. 154]). Parry and Pollicott derive the first
term in the asymptotic expansion of the counting function of prime orbits,
by applying the Wiener–Ikehara Tauberian Theorem to the logarithmic
derivative of the dynamical zeta function. An alternate approach, based on
a suitable nonlinear extension of the Renewal Theorem obtained in [Lal3],
is taken by Lalley in [Lal2–3] for a class of approximately self-similar flows.
See also Remarks 7.32–7.34. In our setting, thanks to the explicit formulas
developed in Chapter 5, we obtain a full expansion over the complex di-
mensions of the flow, and using the Diophantine approximation techniques
of Chapter 3, a Prime Orbit Theorem with error term.



8
Tubular Neighborhoods and
Minkowski Measurability

In this chapter, we obtain (in Section 8.1) a distributional formula for the
volume of the tubular neighborhoods of the boundary of a fractal string,
called a tube formula. In Section 8.1.1, under more restrictive assumptions,
we also derive a tube formula that holds pointwise. In Section 8.3, we then
deduce from these formulas a new criterion for the Minkowski measurabil-
ity of a fractal string, in terms of its complex dimensions. Namely, under
suitable assumptions, we show that a fractal string is Minkowski measur-
able if and only if it does not have any nonreal complex dimensions of real
part D, its Minkowski dimension. This completes and extends the earlier
criterion obtained in [LapPo1–2].
In Section 8.4, we illustrate our results by extensively discussing the class

of self-similar strings. In particular, we obtain specific tube formulas in the
lattice case and carefully study the error term in the nonlattice case.
The results obtained in this chapter provide further insight into the geo-

metric meaning of the notion of complex dimension and suggest new analo-
gies between aspects of fractal and Riemannian geometry. See, in particular,
Section 8.2.
This chapter makes use of the notions of Minkowski dimension and mea-

surability, which are introduced at the beginning of Chapter 1 in Sec-
tion 1.1. Also, in Sections 1.1.2 and 2.3.2 we directly computed the vol-
ume of the tubular neighborhood of the Cantor string and the Fibonacci
string. We recover the resulting tube formulas from our general results in
Sections 8.4.1 and 8.4.2.
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8.1 Explicit Formulas for the Volume
of Tubular Neighborhoods

Let L be a standard fractal string given by the sequence of lengths (lj)∞j=1
and of Minkowski dimension D ∈ (0, 1). Let η =

∑∞
j=1 δ{l−1

j } be the assoc-
iated measure, as explained in Chapter 4.
Given ε > 0, let V (ε) denote the volume of the ε-neighborhood of the

boundary of L, as defined by (1.3). By formula (1.9), the volume is given
by

V (ε) =
∑

j : lj≥2ε

2ε+
∑

j : lj<2ε

lj (8.1)

(see also [LapPo1], [LapPo2, Eq. (3.2)]). This formula defines the volume
in a very straightforward manner, and can be directly used to obtain a
closed form for V (ε) in such simple examples as the Cantor string and
the Fibonacci string, as we did in Sections 1.1.2 and 2.3.2, respectively. In
general, however, this formula does not reveal oscillations in the tubular
neighborhoods of a fractal string as ε varies. Such oscillations are revealed
by the explicit formulas for V (ε) to be obtained in this chapter. Therefore,
we rewrite (8.1) as

V (ε) =
∫ 1

2ε

0

2ε η(dx) +
∫ ∞

1
2ε

1
x

η(dx)

=
〈
P [0]

η , vε

〉
,

(8.2)

where vε(x) is the function defined on (0,∞) by

vε(x) =

{
2ε for x ≤ (2ε)−1,

1/x for x > (2ε)−1.
(8.3)

We assume that ζL has a meromorphic continuation to some neighbor-
hood of the closed half-plane {s : Re s ≥ D} and that the resulting function
satisfies L1 and L2 for some real exponent κ; i.e., the fractal string L is
languid, in the sense of Definition 5.2. Our extended distributional formula
(Theorem 5.26) does not directly apply to the present situation since the
test function vε is not sufficiently differentiable. Indeed, in view of (8.3),
the function vε is clearly continuous but not differentiable. Therefore we
interpret V (ε) itself as a distribution. However, a more careful analysis in
Section 8.1.1 allows us to derive an explicit formula for V (ε) that holds
pointwise (under somewhat stronger hypotheses, see Theorem 8.7).
Recall that a fractal string is languid if its geometric zeta function satis-

fies certain growth conditions along a screen S. Thus a screen will not pass
through any of the complex dimensions of the string. To be useful, S has
to lie to the left of the line Re s = D. For the next theorem, it must also
avoid the point s = 0.
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Theorem 8.1 (The distributional tube formula). Let L be languid for some
real exponent κ and a screen that does not pass through 0. Then the volume
of the (one-sided) tubular neighborhood of radius ε of the boundary of L is
given by the following distributional explicit formula, on test functions in
D(0,∞):1

V (ε) =
∑

ω∈DL(W )

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ {2εζL(0)}+R(ε), (8.4)

where the term in braces is only included if 0 ∈ W\DL(W ), and R(ε) is
the distributional error term, given by

R(ε) = 1
2πi

∫
S

(2ε)1−sζL(s)
ds

s(1− s)
. (8.5)

It is estimated, in the sense of Definition 5.29 of Section 5.4.2, by

R(ε) = O
(
ε1−sup S

)
, (8.6)

as ε → 0+ (here, supS is given by Equation (5.17b)).
Moreover, if L is strongly languid2 then we may choose W = C and then

we have no error term (i.e., R(ε) ≡ 0), provided we apply this formula to
a test function supported on a compact subset of [0, 1/(2A)). Again, the
term 2εζL(0) is included if 0 belongs to W and is not a complex dimension
of L.

Proof. Let ϕ(ε) be a smooth, compactly supported test function on (0,∞);
i.e., ϕ ∈ D(0,∞). Then, by (8.3),∫ ∞

0

ϕ(ε)vε(x) dε =
∫ 1

2x

0

2εϕ(ε) dε+
1
x

∫ ∞

1
2x

ϕ(ε) dε

= ϕ1(x) + ϕ2(x),

(8.7)

where ϕ1 and ϕ2 are smooth (but not compactly supported) test functions,
given by

ϕ1(x) :=
∫ 1

2x

0

2εϕ(ε) dε (8.8a)

and

ϕ2(x) :=
1
x

∫ ∞

1
2x

ϕ(ε) dε. (8.8b)

1D(0,∞) is the space of C∞ functions with compact support contained in (0,∞);
see also Remark 5.21.

2i.e., it satisfies (for some real exponent κ) the stronger hypotheses L1 and L2′ of
Definition 5.3 with W = C and some constant A > 0 in Equation (5.21), rather than L1
and L2.
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Thus, in light of (8.2) and (8.7),

〈V (ε), ϕ〉 =
∫ ∞

0

ϕ(ε)
∫ ∞

0

vε(x) η(dx) dε

=
〈
P [0]

η , ϕ1 + ϕ2

〉
.

Since ϕ is compactly supported, the function ϕ1 is constant near 0 (with
value

∫∞
0
2εϕ(ε) dε), and it vanishes for x � 0. Similarly, the function ϕ2

vanishes near 0 and is equal to 1
x

∫∞
0

ϕ(ε) dε for x � 0.3 Therefore, the
asymptotic expansions (5.53a) and (5.53b) are satisfied, with k = 0 and for
any fixed integer q > κ+1 (e.g., q = [κ+2]). Hence the explicit formula of
Theorem 5.26, the extended distributional formula with error term, applies
to ϕ1 and ϕ2, with k = 0 and q > κ+ 1.
Using Definition (5.43) of the Mellin transform, we find, for Re s > 0,

that

ϕ̃1(s) =
21−s

s
ϕ̃(2− s) (8.9a)

and, for Re s < 1,

ϕ̃2(s) =
21−s

1− s
ϕ̃(2− s). (8.9b)

Thus we obtain a priori for 0 < Re s < 1,

˜(ϕ1 + ϕ2)(s) = ϕ̃1(s) + ϕ̃2(s) =
21−s

s(1− s)
ϕ̃(2− s). (8.10)

After analytic continuation, formulas (8.9) and (8.10) are valid for all s ∈ C.
Since the function ϕ̃(z) is entire (because ϕ is compactly supported), the
Mellin transform of ϕ1 + ϕ2 is meromorphic on C with simple poles at 0
and 1. Also ϕ̃1 and ϕ̃2 are meromorphic on C, with simple poles at 0 and 1,
respectively.
In particular, by formula (8.9a), ϕ̃1(s) has a pole at s = 0, and no other

poles. If 0 is not a complex dimension, this pole gives the term 2εζL(0),
to be included if 0 ∈ W . Applying the distribution P [0]

η = η to ϕ1 + ϕ2 in
Equation (5.54a), we deduce from Theorem 5.26 (applied at level k = 0,

3Indeed, if the support of ϕ is contained in the compact interval [a, b], with a > 0,
then ϕ1(x) = 0 and ϕ2(x) = 1

x

∫∞
0 ϕ(ε) dε for x ≥ 1/ 2a, and ϕ1(x) =

∫∞
0 2εϕ(ε) dε

and ϕ2(x) = 0 for x ∈ (0, 1/ 2b).
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see Remark 5.28),

〈V (ε), ϕ〉 =
∑

ω∈DL(W )\{0}
res

(
ζL(s) ˜(ϕ1 + ϕ2)(s);ω

)
+

{
res

(
ζL(s) ˜(ϕ1 + ϕ2)(s); 0

)}
+R[0]

η (ϕ1 + ϕ2)

=
∫ ∞

0

∑
ω∈DL(W )\{0}

res
(

ζ§tring(s)
(2ε)1−s

s(1− s)
;ω

)
ϕ(ε)dε (8.11)

+
{∫ ∞

0

res
(

ζL(s)
(2ε)1−s

s(1− s)
; 0
)

ϕ(ε)dε

}
+

∫ ∞

0

R(ε)ϕ(ε)dε,

where the second equality follows from (8.10) and the linearity of the
residue. Finally, observe that (in view of (8.3) and (5.43))

ṽε(s) =
1

s(1− s)
(2ε)1−s, (8.12)

a priori for 0 < Re s < 1, but after meromorphic continuation for all s ∈ C.
Comparing (5.45a) and (5.45b) of Theorem 5.18, using formula (5.44), we
see that Equation (8.11) is equivalent to the equality of distributions (8.4),
as desired. This completes the proof of the distributional tube formula, with
the error termR(ε) given by (8.5). The error estimate (8.6) follows from the
first part of Theorem 5.30 (applied with k = 0 and the variable x = 1/ε).
Finally, the fact that R(ε) vanishes identically when L is strongly lan-

guid (i.e., L satisfies the stronger hypothesis L2′) follows in an entirely
analogous fashion from the corresponding extended distributional explicit
formula without error term given in Theorem 5.27 (and applied with k = 0
and q > max{1, κ}). This concludes the proof of Theorem 8.1.

Remark 8.2. Theorem 8.1 is valid without change for a generalized fractal
string η (rather than just an ordinary fractal string L), in which case V (ε)
is defined by formula (8.2),4 which was the starting point of the proof of the
theorem. In formulating the counterpart of Theorem 8.1 and Corollary 8.3,
one must then take into account the fact that 1 may also be a complex
dimension.

If the complex dimension ω (and hence also ω) is simple and different
from 0,5 then the associated local term in formula (8.4) is equal to

res (ζL(s);ω)
(2ε)1−ω

ω(1− ω)
. (8.13)

We thus obtain the following corollary of Theorem 8.1.

4This is used, in particular, to study the truncated Cantor string in Section 10.3.
5Note that ω 	= 1 since Re ω ≤ D < 1 for an ordinary fractal string.
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Corollary 8.3. If in Theorem 8.1, we assume in addition that all the vis-
ible complex dimensions of L are simple, then the distributional tube for-
mula (8.4) becomes

V (ε) =
∑

ω∈DL(W )\{0}
res (ζL(s);ω)

(2ε)1−ω

ω(1− ω)

+ {2ε(1− log(2ε)) res (ζL(s); 0) + 2εζL(0)}0∈W +R(ε), (8.14)

where the distributional error term R(ε), in case L is languid, is given
by formula (8.5) and estimated by (8.6). Here, in case ζL has a (simple)
pole at s = 0, the notation ζL(0) means the constant term in the Laurent
expansion of ζL around s = 0, and if ζL does not have a pole at s = 0,
then res(ζL(s); 0) = 0. The braces indicate that these terms are only in-
cluded if 0 is visible (i.e., if 0 ∈W ). (See Remark 8.11 for further discus-
sion.)

Moreover if L is assumed to be strongly languid rather than languid, then
we may take W = C, and the error term R(ε) vanishes identically. As in
the statement of the second part of Theorem 8.1, this formula applies to
test functions supported on a compact subset of [0, 1/ 2A).

For example, this corollary applies to (lattice and nonlattice) self-similar
strings, choosing a suitable screen close enough to the line Re s = D, since
by Theorem 2.17, all complex dimensions on or sufficiently close to this line
are simple. In view of Theorem 3.30, it also applies to all nonlattice self-
similar strings with exactly two distinct scaling ratios (with multiplicities).
Indeed, in that case, all the complex dimensions of the string are simple.

Remark 8.4. Note that the sum over the complex dimensions in (8.14)
can be written as∑

ω∈DL(W )\{0}
res (ζL(s);ω)

(2ε)1−ω

ω
+

∑
ω∈DL(W )\{0}

res (ζL(s);ω)
(2ε)1−ω

1− ω
.

Both these sums must be interpreted distributionally because they are usu-
ally pointwise divergent.

Remark 8.5. In view of (5.17b) and (5.24), we have supS ≤ D, and so es-
timate (8.6) implies that R(ε) = O

(
ε1−D

)
, as ε → 0+, both in Theorem 8.1

and Corollary 8.3. We point out that under the stronger assumptions of
Theorem 8.15 below, we actually have the better estimate R(ε) = o

(
ε1−D

)
,

as ε → 0+. This follows from Theorem 5.31 and from the second part of
Theorem 5.30.

Remark 8.6. Since a self-similar string satisfies hypothesis L2′, we can
let W = C, as was seen at the beginning of Section 6.4. We refer to Sec-
tions 8.4.2 and 8.4.4 below for the precise form of the corresponding tube
formula (8.4) in the lattice and nonlattice cases.
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8.1.1 The Pointwise Tube Formula

In this section, we obtain a formula for the volume of the tubular neighbor-
hood of a fractal string that holds pointwise. This pointwise formula holds
under somewhat more restrictive assumptions than those for Theorem 8.1,
the distributional formula for the volume of the tubular neighborhood.
Our starting point is Lemma 5.1 with k = 1, i.e., the identity

H [1] (x− y) = lim
T→∞

∫ c+iT

c−iT

xsy−s ds

2πis
, (8.15)

for c > 0. Recall from the defining formula (5.10) that the Heaviside func-
tion is given by

H [1](x− y) =

⎧⎪⎨⎪⎩
0 if x < y,

1/2 if x = y,

1 if x > y.

(8.16)

The pointwise counterpart of Theorem 8.1 above is the following result
(again, the screen cannot pass through 0):

Theorem 8.7 (The pointwise tube formula). Let L be a languid fractal
string of dimension D < 1 and with exponent κ < 1 in hypotheses L1
and L2, for a screen that does not pass through 0. Then, for every ε > 0,
the volume of the (one-sided) tubular neighborhood of radius ε of the bound-
ary of L is given by the pointwise explicit formula with error term

V (ε) =
∑

ω∈DL(W )

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ {2εζL(0)}+R(ε), (8.17)

where the term in braces is only included if 0 ∈W\DL(W ). The pointwise
error term, R(ε), is given by the following absolutely convergent contour
integral :

R(ε) =
1
2πi

∫
S

(2ε)1−sζL(s)
ds

s(1− s)
. (8.18)

It is estimated pointwise by

R(ε) = O
(
ε1−sup S

)
, (8.19)

as ε → 0+ (here, supS is given by Equation (5.17b)).
Moreover, if L is strongly languid6 with κ < 2, then we can take W = C

and the explicit formula (8.17) holds for all positive ε < 1/ 2A, and it is
exact (i.e., R(ε) ≡ 0). Further, the term 2εζL(0) is included if 0 is not a
complex dimension of L.

6i.e., ζL satisfies L1 of Definition 5.2 and L2′ of Definition 5.3, for some con-
stant A > 0 and real exponent κ.
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Proof. Let the fractal string L be given by L = {lj}∞j=1. Then, by (8.16),
we have that H [1](lj − 2ε) equals 1 for lj > 2ε and 1/2 for lj = 2ε. Like-
wise, H [1](2ε− lj) equals 1 for lj < 2ε and 1/2 for lj = 2ε. By formula (8.1)
and Equation (8.15), we obtain for 0 < c < 1 that

V (ε) =
∞∑

j=1

(
2εH [1] (lj − 2ε) + ljH

[1] (2ε− lj)
)

=
∞∑

j=1

lim
T→∞

(∫ c+iT

c−iT

lsj(2ε)
1−s ds

2πis
+

∫ 1−c+iT

1−c−iT

l1−t
j (2ε)t

dt

2πit

)
.

In the second integral, we substitute t = 1 − s and then combine the two
integrals into one that converges absolutely to obtain

V (ε) =
∞∑

j=1

∫ c+i∞

c−i∞
lsj(2ε)

1−s ds

2πis(1− s)
.

For c > D, the integrand is bounded by a constant multiple of

∞∑
j=1

∫ ∞

−∞
lcj(2ε)

1−c dt

1 + t2
= πζL(c)(2ε)1−c.

Therefore, we can interchange the sum and the integral. For D < c < 1, we
thus obtain the following expression for V (ε) as an absolutely convergent
integral,

V (ε) =
∫ c+i∞

c−i∞
ζL(s)(2ε)1−s ds

2πis(1− s)
.

Using the sequence {Tn}n∈Z of (5.18) and of hypothesis L1 in (5.19), we
truncate this integral to obtain

V (ε) = lim
n→∞

∫ c+iTn

c−iT−n

ζL(s)(2ε)1−s ds

2πis(1− s)
.

By the Residue Theorem, with the notation of Lemma 5.9 (the truncated
pointwise formula), we obtain, after moving the line of integration to the
truncated screen S|n, that the integral equals∑

ω∈DL(W|n)

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ {2εζL(0)}+R|n(ε) + Un + Ln,

where R|n(ε) is given by the integral over the truncated screen S|n, and Un

and Ln are given by integrals over the upper and lower parts of S|n (see
Figure 5.1). Note that as in formula (8.17), the term between braces is
included only if 0 ∈W\DL(W ).
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If L2 is satisfied with κ < 1, then R|n(ε) converges as n → ∞ to R(ε),
the integral over the screen. Moreover, since κ < 2, the upper and lower
terms Un and Ln vanish as n →∞.
Finally, if L2′ is satisfied with κ < 2, then we first take the limit

asm →∞ over the truncated screens Sm|n, keeping n fixed. Here, {Sm}∞m=1

is the sequence of screens occurring in the statement of hypothesis L2′ (see
Definition 5.3), and Sm|n is the screen Sm, truncated between T−n and Tn,
as in Lemma 5.9. Provided that ε < 1/(2A), the limit as m →∞ of the in-
tegrals over Sm|n vanishes. Then the limit as n →∞ of Un and Ln vanishes
since κ < 2.

Remark 8.8. Recall from Remark 5.4 that if L is strongly languid for
some value of κ, then it is strongly languid for every larger value of κ,
but not necessarily for any smaller value. Consequently, the assumptions of
the second part of Theorem 8.7 (the pointwise tube formula without error
term) do not imply those of the first part (i.e., its counterpart with error
term).
This is related to the fact that for the geometric counting functionN [1](x)

or for V (ε) itself, we cannot apply the pointwise explicit formula with error
term to the Cantor string (since the Cantor string is languid with κ = 0,
the conditions of Theorem 5.10 are not satisfied for k = 1), but we do
have a pointwise formula without error term (because the conditions of
Theorem 5.14 are satisfied for k = 1 and κ = 0; see Sections 1.1–1.2, 6.4.1
and 8.4.1). Indeed, to prove the second part of Theorem 8.7, we first take
the limit for m →∞; i.e., we push the truncated screens away to the left,
which works provided κ < 2, and we then take the limit for n → ∞; that
is, we remove the truncation. Since the truncation at this stage of the proof
only applies to the complex dimensions and not to the screen, the condition
that the integral over the screen converges, κ < 1, is not needed.

Remark 8.9. Theorem 8.1 holds without any condition on κ. Therefore,
the conditions of (the first or second part of) Theorem 8.7 imply the re-
spective conditions of Theorem 8.1.

In view of (8.13) and the sentence preceding it, we can deduce from
Theorem 8.7 the following exact pointwise counterpart of Corollary 8.3
(which is itself a consequence of Theorem 8.1).

Corollary 8.10. If in Theorem 8.7, we assume in addition that all the
visible complex dimensions of L are simple, then the sum over the complex
dimensions in the pointwise tube formula (8.17) becomes

V (ε) =
∑

ω∈DL(W )\{0}
res(ζL(s);ω)

(2ε)1−ω

ω(1− ω)

+ {2ε(1− log(2ε)) res(ζL(s); 0) + 2εζL(0)}0∈W +R(ε), (8.20)
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where the pointwise error term R(ε), in case L is languid, is given by for-
mula (8.18) and is estimated by (8.19). As in Corollary 8.3, the term in
braces is included only if 0 is visible. Here, if ζL has a pole at s = 0,
the notation ζL(0) denotes the constant term in the Laurent expansion
around s = 0.

Moreover, if L is assumed to be strongly languid with κ < 2 rather than
languid, as in the second part of Theorem 8.7, then we may take W = C,
and the error term R(ε) vanishes identically in formula (8.20).

Remark 8.11. Note that in Corollaries 8.3 and 8.10, the condition for the
inclusion of the term in braces is different from the one in Theorems 8.1
and 8.7: it is included if 0 is visible (that is, if 0 ∈ W ). The reason is
that by assumption, the pole of ζL(s)/s at s = 0 is at most of the second
order, and the expression between the braces {. . . }0∈W gives an explicit
determination of the contribution of this pole to the explicit formula, if 0
is visible. On the other hand, in the formulas (8.4) and (8.17), the pole
of ζL(s)/s at s = 0 could be of any order, and we only include the explicit
determination of this term in the explicit formula in case this pole is simple;
i.e., in case 0 is visible but not a complex dimension.

8.1.2 Example: The a-String

Let L be the a-string studied in Section 6.5.1. Recall from Theorem 6.20
that L has Minkowski dimension D = 1

a+1 and that its complex dimensions
are all simple, real, and located at D and possibly at −D,−2D, . . . . Also,
the residue of ζL at D is equal to aD. Hence, by Corollary 8.3, we have the
distributional formula, for every fixed integer J ≥ 0,

V (ε) =
(2ε)1−D

D(1−D)
aD −

J∑
j=1

(2ε)1+jD

jD(1 + jD)
res(ζL;−jD) +O

(
ε1+(J+1)D

)
,

(8.21)

as ε → 0+. (For J = 0, the sum is interpreted as 0.) Using Corollary 8.10,
but only for J = 0, we derive the same formula interpreted pointwise, and
with an error term O

(
ε1+D/2−δ

)
for every δ > 0, since κ < 1 is satisfied

only for screens to the right of the line Re s = −D
2 = − 1

2(a+1) .
In particular, it follows that L is Minkowski measurable (this will be

shown in Section 8.3 below) with Minkowski content

M =
21−D

D(1−D)
aD. (8.22)

Since D is simple and is the only pole of ζL above D, this is in agreement
with Theorem 8.15 below. We stress, however, that our tube formula (8.21)
gives much more precise information about V (ε).
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8.2 Analogy with Riemannian Geometry

There is an interesting analogy between formula (8.4) (or (8.17)) and
H. Weyl’s formula [Wey3] for the volume of the tubular ε-neighborhood of
a compact, n-dimensional Riemannian submanifold of Euclidean space Rd.
Indeed, by [BergGo, Theorem 6.9.9, p. 235], this volume is given by the
formula

VM (ε) = a0ε
d−n + a1ε

d−n+1 + · · ·+ anεd. (8.23)

When VM (ε) is the volume of the two-sided ε-neighborhood, the odd-num-
bered coefficients a1, a3, . . . all vanish, and for j = 0, 1, 2, . . . , the even
numbered coefficient a2j is given by

a2j =
1

d− n+ 2j

∫
M

K2jδ, (8.24)

where K2j is a universal j-th degree polynomial in the curvature tensor
of M , and δ is the canonical density on M (see [BergGo, Proposition 6.6.1,
p. 214]). Thus, formula (8.23) is a polynomial in ε whose coefficients (8.24)
are expressed in terms of the Weyl curvatures in different (integer) dimen-
sions.
If VM (ε) is the volume of the one-sided ε-neighborhood (which cor-

responds more closely to our definition of V (ε)), then the counterpart
of (8.23) still holds. In that case, the odd coefficients do not necessarily
vanish. We refer to [BergGo], Sections 6.6–6.9, and especially Section 6.9.8
and Theorem 6.9.9, and also to [Gra], for a much more detailed discus-
sion and various helpful examples. For additional references, see also the
endnotes in Section 8.5.
In the explicit formula (8.4) (or (8.17)), the volume V (ε) is expressed

as a sum of terms ε1−ω, where ω ranges over the visible complex dimen-
sions. This suggests that the complex dimensions of fractal strings and
the associated residues7 could have a direct geometric interpretation. The
work in progress [Pe] and [LapPe2–4], developed while this book was al-
most completed, indicates a close relationship to some aspects of geometric
measure theory [Fed1, 2] and a possible new notion of fractal curvature mea-
sures indexed by the underlying complex dimensions, both in the present
one-dimensional context of fractal strings and in higher dimensions. See
Section 12.3.2 for a brief discussion of [Pe] and [LapPe2–4].

Remark 8.12. The Weyl curvatures occurring in Weyl’s tube formula
were shown in [Wey3] to be intrinsic to the submanifold. One of them
is closely tied to the notion of Euler characteristic and hence to the Gauss–
Bonnet formula (or its higher-dimensional counterpart, due to Chern).

7Or, more generally, the Laurent expansions at these poles, when they have higher
multiplicities.
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8.3 Minkowski Measurability
and Complex Dimensions

In Theorem 8.15 of this section, we obtain a new criterion for the Minkow-
ski measurability of the boundary of a fractal string L, expressed in terms
of the complex dimensions of L. This completes and extends (under our
present assumptions) the earlier criterion obtained by the first author and
C. Pomerance in [LapPo1–2]. In Remarks 8.19 and 8.20, we will also com-
ment on the relationship between our new criterion and the one obtained
previously in [LapPo1–2].

Before stating and proving our main result, Theorem 8.15, we need to
establish a technical lemma, which is an extension of Theorem 1.16 of
Chapter 1.

Lemma 8.13. Let L be a generalized fractal string, given by a (local)
positive measure η. If the pole of ζL at D is of order m ≥ 1, then any pole
at D + it (with t ∈ R) is of order at most m.

Proof. Let Re s = σ > D. Since |ζL(s)| ≤ ζL(σ), we deduce that the
function (σ −D)m ζL(s) is bounded as σ → D+.

Remark 8.14. It follows from the m = 1 case of Lemma 8.13 that if D
is a simple complex dimension of L, then every other complex dimension
of L on the vertical line Re s = D is also simple. For example, this is
consistent with the fact—established in Theorem 2.17—that for a lattice
self-similar string L, its dimension D, together with all the complex dimen-
sions above D—namely, D + inp, with n ∈ Z, where p is the oscillatory
period of L—are simple.
The next result—which follows in particular from the tube formula given

in Theorem 8.1 (in conjunction with Theorem 5.31)—extends and puts in
a more conceptual framework the criterion for Minkowski measurability of
fractal strings obtained by M. L. Lapidus and C. Pomerance in [LapPo1]
and [LapPo2, Theorem 2.2, p. 46]. Note that statement (i) of Theorem 8.15
does not appear in [LapPo2].8 We refer to Remarks 8.18–8.21 below for
further comments about our Minkowski measurability criterion and about
its relationship with earlier work, in particular [LapPo1–2].
Recall from Section 1.1 that L is Minkowski measurable if the limit

lim
ε→0+

V (ε)εD−1

exists and lies in (0,∞). Then, necessarily, D coincides with the Minkowski
dimension of L.

8On the other hand, the hypotheses about ζL made here are not assumed in [LapPo2].
See Remark 8.19.
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Theorem 8.15 (Criterion for Minkowski measurability). Let L be an or-
dinary fractal string that is languid for a screen passing between the vertical
line Re s = D and all the complex dimensions of L with real part strictly
less than D, and not passing through 0. Then the following statements are
equivalent :

(i) D is the only complex dimension with real part D, and it is simple.

(ii) NL(x) = E · xD + o(xD) for some positive constant E.

(iii) The boundary of L is Minkowski measurable.

Moreover, if any of these conditions is satisfied, then

M = 21−D E

1−D
= 21−D res (ζL(s);D)

D(1−D)
(8.25)

is the Minkowski content of the boundary of L.

Proof. Assume (i) and choose a screen such that only D is visible. By
Theorem 5.18, the distributional explicit formula with error term, applied
to L, and using Theorems 5.30 and 5.31, we obtain for P [1]

η (x) = NL(x),

P [1]
η (x) = res

(
ζL(s)

xs

s
;D

)
+R[1]

η (x) =
xD

D
res(ζL(s);D) + o

(
xD

)
,

as x → ∞. Hence, (ii) holds with E = D−1 res (ζL(s);D). Since D is
assumed to be a simple pole of ζL(s) (by (i)) and ζL(σ) is positive for σ > D,
the number E, given by D−1 limσ→D+(σ −D)ζL(σ), is positive. Similarly,
we deduce (iii) using Theorem 8.1.
Assume (ii). Then ζL has only simple poles on the line Re s = D, by

Theorem 1.16 and Lemma 8.13. Let {D + iγn} be the (finite or infinite)
sequence of these poles. By Theorem 5.18, we have that

NL(x) =
∑

n

anxD+iγn + o
(
xD

)
, as x→∞,

where an = res
(
s−1ζL(s);D + iγn

)
. Hence∑

n

anxD+iγn − E · xD → 0, as x→∞.

By the Uniqueness Theorem for almost periodic functions (see [Schw1, Sec-
tion VI.9.6, p. 208]), we conclude that an = 0 for γn �= 0. This implies (i).
To deduce (i) from (iii), we reason similarly, using V (ε) instead of NL(x),

and letting an = res
(
(s(1− s))−1ζL(s);D + iγn

)
. This concludes the proof

of the Minkowski measurability criterion, Theorem 8.15.
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Figure 8.1: The structure of the proof of Theorem 8.15.

We refer the reader to Figure 8.1 for a diagrammatic illustration9 of
both the structure of the proof of Theorem 8.15 and the interdependence
of many results obtained in Chapter 5 (on explicit formulas) and so far in
this chapter on tube formulas.

In the following comment, we discuss a subtle point in the proof of Theo-
rem 8.15. It explains, in particular, how the preliminary results of this
section are used to circumvent an apparent difficulty (for example, in de-
riving (ii) from (i)).

Remark 8.16. Proposition 1.1, Theorem 1.16 and Lemma 8.13 above are
needed to ensure (under the hypotheses of Theorem 8.15) that

NL(x) = xD ·G(x) + o
(
xD

)
, as x→∞,

or
V (ε) = ε1−DG1(ε) + o

(
ε1−D

)
, as ε → 0+,

where G and G1 are multiplicatively almost periodic functions. The proof
would be simpler if we could split the sum∑

Re ω=D

res
(

ζL(s)xs+k−1

(s)k
;ω

)
(8.26)

9We thank Erin Pearse for providing us with this figure relating to the corresponding
theorem in [Lap-vF5].
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into the different subsums of the type

(log x)n
∑

Re ω=D

aω,nxω+k−1,

for fixed n, which would arise when L has multiple complex dimensions.
Then we would simply apply the Uniqueness Theorem for almost periodic
functions to each of these sums. Even though we think that such a decom-
position of the sum in the explicit formula is possible, we have not been
able to prove this, since the series (8.26) is only conditionally convergent.

Remark 8.17. As was pointed out in Example 5.32 (see also Remark 6.15),
for certain fractal strings, and in particular, for certain nonlattice strings,
we cannot choose a screen as in Theorem 8.15, and the above proof of
our criterion for Minkowski measurability does not apply to such strings.
However, by the work of M. L. Lapidus and K. J. Falconer ([Lap3, Sec-
tion 4.4.1b] and [Fa4]), nonlattice strings are always Minkowski measurable
(see Remark 8.40 below). We show in Section 8.4.4 how we can also recover
this result within our framework. Actually, the results of that section imply
significantly more. It follows, in particular, from Theorems 8.23 and 8.36
that a self-similar string is Minkowski measurable if and only if it is nonlat-
tice and that, in view of Theorem 2.17 or 3.6, for any (lattice or nonlattice
string), the main conclusion of Theorem 8.15 (namely, the equivalence of
conditions (i)–(iii)) still holds. Moreover, we will show in Section 8.4.3,
Theorem 8.30, that even in the lattice case, formula (8.25) remains valid
providedM is replaced by the average Minkowski contentMav, as defined
by (8.55). See formula (8.56).

Remark 8.18. Let {lj}∞j=1 denote the sequence of lengths of the fractal
string L. Condition (ii) of Theorem 8.15 is then equivalent to the following
condition:

(ii′) lj ∼ M · j−1/D (i.e., j1/Dlj → M) as j → ∞, for some positive
constant M > 0.

Further, the constants E in (ii) and M in (ii′) are connected by E = MD.

Our next remark explains the connections and the differences between
our present Minkowski measurability criterion (Theorem 8.15) and the cri-
terion previously obtained in [LapPo2].

Remark 8.19. The criterion for Minkowski measurability that was ob-
tained in [LapPo2, Theorem 2.2, p. 46] is the following:

Let L = {lj}∞j=1 be an (arbitrary) ordinary fractal string of Min-
kowski dimension D ∈ (0, 1). Then the boundary of L is Min-
kowski measurable if and only if (ii) above holds for some E > 0
(or, equivalently, if and only if condition (ii′) from Remark 8.18
holds for some M > 0).
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Further, in that case, the Minkowski content of L is given by

M = 21−D E

1−D
= 21−D MD

1−D
. (8.27)

Note that in [LapPo1–2], ζL is not required to admit a meromorphic exten-
sion to a neighborhood of Re s = D or to satisfy suitable growth conditions.
On the other hand, under the hypotheses of Theorem 8.15, our present
theory enables us to introduce the new criterion (i), expressed in terms of
the notion of complex dimension. The latter criterion gives a rather clear
and intuitive geometric meaning to the notion of Minkowski measurability
in the present context of fractal strings. It also provides one more geometric
interpretation of the notion of complex dimension.

The following comment may help the reader, as it did the authors, to
develop further intuition for the notion of complex dimension and the as-
sociated oscillatory phenomena (in the geometry). It will also be very useful
in Chapter 9, when we reformulate and extend the inverse spectral problem
for fractal strings studied in [LapMa1–2].

Remark 8.20 (Dimensions above D and geometric oscillations). The Min-
kowski measurability of L, condition (iii) in Theorem 8.15, means heuris-
tically that the leading term of the volume of small tubular neighborhoods
does not oscillate. Similarly, condition (ii) (or, equivalently, (ii′), by Re-
mark 8.18) says that the sequence of lengths of L does not oscillate (asymp-
totically) either. That is, (ii) and (iii) can be interpreted as corresponding
to the absence of oscillations of order D in the geometry of L. Therefore,
in some sense (provided that D is simple), Theorem 8.15 says that the ab-
sence of geometric oscillations of order D in L is equivalent to the absence
of nonreal complex dimensions of L above D. Note that L could still have
oscillations of lower order.
As will be discussed in more detail in Sections 8.4.2 and 8.4.4 below, for

a self-similar string L, this fact is illustrated rather clearly by the lattice
vs. nonlattice dichotomy which corresponds precisely to the existence vs.
the absence of (nonreal) complex dimensions above D and hence, by Theo-
rems 8.23 and 8.36, to the non-Minkowski measurability vs. the Minkowski
measurability of L.
Remark 8.21. Our present approach enables us to analyze in more detail
the effect on the geometry (or the spectrum) of fractal strings due to certain
of the gauge functions (other than the usual power functions) involved in
the definition of the generalized Minkowski content studied by C. Q. He and
the first author in [HeLap1–2]. It also enables us to deal with, for example,
gauge functions of the form of a power function times a multiplicatively
periodic function, as for lattice self-similar strings, which are not within the
scope of the theory developed in [HeLap2], where all the gauge functions
were assumed to be monotonic. This is worked out in Section 8.4.2. (See
also the notes to this chapter for further discussion.)
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8.4 Tube Formulas for Self-Similar Strings

In this section, we discuss three classes of examples of self-similar strings,
namely, the generalized Cantor strings and lattice strings (in Sections 8.4.1
and 8.4.2–8.4.3), and the nonlattice strings (in Section 8.4.4), in order to
illustrate and complete our results of Sections 8.1 and 8.3.

8.4.1 Generalized Cantor Strings

A generalized Cantor string is a generalized fractal string (i.e., a measure)
with a single line of complex dimensions, of the form {D+ inp}n∈Z. Such a
string has lengths 1, a−1, a−2, . . . , with multiplicities given by 1, b, b2, . . . ,
where b = aD and a = e2π/p is the reciprocal of the multiplicative genera-
tor r. We assume p > 0 so that a > 1. Such a string is lattice, except that
we allow D to be an arbitrary complex number. Thus, a = r−1 is real and
positive, and b is a complex number. The parameters a and b are related
to D and p by

a = r−1 = e2π/p, p =
2π
log a

,

b = aD, D = loga b.

(8.28)

Thus, for example, we allow D = 0 and D = 1, corresponding to b = 1 and
b = a, respectively.
The geometric zeta function of the generalized Cantor string of dimen-

sion D and oscillatory period p is given by

ζD,p(s) =
1

1− b · a−s
,

with residue 1/ log a at s = D. We denote this string by LD,p (see also
Definition 10.1). Clearly, LD,p has a single line of complex dimensions,

D = {D + inp : n ∈ Z} ,

with the oscillatory period p = 2π/ log a as in (8.28), and the residue at
each complex dimension is equal to 1/ log a.
If a > b > 1 and b is an integer, then this string is an ordinary fractal

string, and V (ε) = VD,p(ε) has its standard geometric meaning. However,
our computation is formally valid without these hypotheses, and it fits both
in the framework of generalized fractal strings of Chapter 4 and of Dirichlet
polynomials of Chapter 3. See also Chapter 10 for an extensive study of
generalized Cantor strings.

We next compute the volume of the tubular neighborhood of LD,p. In
view of the second part of Corollary 8.10, we have that (provided D �= 0,
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i.e., b �= 1),

VD,p(ε) =
1

log a

∑
n∈Z

(2ε)1−D−inp

(D + inp)(1−D − inp)
− 2ε

b− 1 , (8.29)

as a pointwise equality between functions, for 0 < ε < a/2. In case D = 0,
this formula needs to be replaced by

V0,p(ε) =
1

log a

∑
n�=0

(2ε)1−inp

inp(1− inp)
− 2ε

(
1
2
+ loga(2ε)

)
, (8.30)

since then, 0 is a visible pole of ζ0,p.
We can also obtain these formulas by a direct computation, starting with

formula (1.9) and taking Definition 10.1 into account,

VD,p(ε) =
[loga

1
2ε ]∑

k=0

2ε · bk +
∞∑

k=1+[loga
1
2ε ]

bka−k. (8.31)

The second sum only converges if ReD < 1, which we assume in the fol-
lowing. Using formula (1.13), we obtain (for D �= 0)

VD,p(ε) = (2ε)1−DG
(
loga(2ε)

−1
)
− 2ε

b− 1 , (8.32)

for 0 < ε < a/2, where G is the periodic function (of period 1) given for
all x > −1 by

G(x) =
1

log a

∑
n∈Z

e2πinx

(D + inp)(1−D − inp)

=
rD{x}

1− rD
+

r(D−1){x}

rD−1 − 1 ,

(8.33)

thus recovering (8.29). (Formula (8.30) is recovered in a similar manner, us-
ing in addition the Fourier series for {u}.) Clearly, forD �= 0, the functionG
is nonconstant since all its Fourier coefficients are nonzero. Further, G is a
positive function that is bounded away from zero and infinity. In fact, G(x)
attains its maximum

rD−1 − rD

(1− rD)(rD−1 − 1) (8.34a)

at the endpoints x = 0 and x = 1, and its minimum

(1−D)D−1(1− rD)D−1

DD(rD−1 − 1)D (8.34b)
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at the point x > 0 such that

rx =
1−D

D

1− rD

rD−1 − 1 .

In view of (8.32) and Definitions (1.6a) and (1.6b), it follows from (8.34a)
and (8.34b) that the upper and lower Minkowski contents of LD,p are given
by

M∗ = 21−D rD−1 − rD

(1− rD)(rD−1 − 1) = 2
1−D b(a− 1)

(a− b)(b− 1) (8.35a)

and

M∗ = 21−D (1−D)D−1(1− rD)D−1

DD(rD−1 − 1)D

= 21−DD−D(1−D)−(1−D) b(b− 1)D−1

(a− b)D
,

(8.35b)

respectively, where r = 1/a and D = loga b (so that rD = 1/b and
hence rD−1 = a/b). Note that 0 < M∗ < M∗ < ∞ since G is noncon-
stant and bounded away from zero and infinity. It follows that L is not
Minkowski measurable. By contrast, in case D = 0, both the upper and
lower Minkowski dimension of L0,p are infinite.

Example 8.22 (The Cantor string). The Cantor string is a special case
of the generalized Cantor string, with parameters a = 3 and b = 2. This
lattice string was studied in Chapter 1 and in Section 2.3.1. Note that
the first length of the Cantor string equals 1

3 in Chapter 1 (so that the
Cantor string fits in the unit interval), whereas in Section 2.3.1 and in this
example, we adopt the usual convention that the first length is normalized
to be unity, so that the total length of the Cantor string equals three. Thus
formula (1.12) and the infinite sum in formula (1.14) of Chapter 1 need to
be multiplied by 3D = 2 to obtain respectively (8.37) and (8.36) below.
In view of (8.32) and the discussion in Section 1.1.2, we have

V (ε) =
1

log 3
(2ε)1−DG

(
log3(2ε)

−1
)
− 2ε, (8.36)

where D = log3 2, r = 1/3, and G is the (nonconstant) periodic function
given by (8.33), with p = 2π/ log 3. Further, G is bounded away from zero
and infinity, as explained in (8.34a) and (8.34b). Moreover, by specializ-
ing (8.35) to a = 3 and b = 2, we have

M∗ = 23−D and M∗ = 22−DD−D(1−D)−(1−D), (8.37)

in agreement with the result of [LapPo2, Theorem 4.6, p. 65], recalled in
Section 1.1.2. In particular, we recover the fact that the Cantor string is
not Minkowski measurable.
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8.4.2 Lattice Self-Similar Strings

Let L be a self-similar string, with boundary ∂L of Minkowski dimensionD,
as studied in Chapter 2. Thus, L has scaling ratios r1, . . . , rN (with N ≥ 2)
and gaps scaled by g1, . . . , gK (with K ≥ 1). Furthermore, recall from
Section 2.1 that 0 < rN ≤ · · · ≤ r1 < 1, 0 < gK ≤ · · · ≤ g1 < 1, and that
Equation (2.4) holds:

N∑
j=1

rj +
K∑

k=1

gk = 1. (8.38)

In addition,

L = ζL(1) = vol1(L) (8.39)

denotes the total length of L.
Recall that the geometric zeta function of L is given by Equation (2.10)

of Theorem 2.4. In particular, 0 is not a pole of ζL. Also, L is called a
lattice string if there exist a multiplicative generator r ∈ (0, 1) and posi-
tive integers k1, . . . , kN without common factor such that rj = rkj for ev-
ery j = 1, . . . , N . Otherwise, L is said to be a nonlattice string.
If L is a lattice string, then the complex dimensions located on the ver-

tical line Re s = D are all simple and of the form D + inp (for n ∈ Z),
where p = 2π/ log r−1 is the oscillatory period of L and r = e−2π/p is its
multiplicative generator. (See Theorem 2.17 and Definition 2.14.) The gen-
eralized Cantor string is an example of a lattice self-similar string with a
single line of complex dimensions.
In this section, we will prove the following theorem, along with additional

more precise results (see Theorem 8.25 and Corollary 8.27).

Theorem 8.23. A lattice string is never Minkowski measurable and al-
ways has multiplicatively periodic oscillations of order D, its dimension, in
its geometry.

Proof (in the case of a single gap). Let L be a self-similar lattice string
with a single gap, normalized as in Remark 2.6.10 Choose a number Θ
with 0 ≤ Θ < D such that the first line of complex dimensions to the left
of D lies to the left of the line Re s = Θ (if there is no such line, then we
take Θ = 0). Then, by the computation for the generalized Cantor string

10The general case of a lattice string with multiple gaps will be treated in Theorem 8.25
and Corollary 8.27.
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in Section 8.4.1,

V (ε) = res(ζL(s);D)
∑
n∈Z

(2ε)1−D−inp

(D + inp)(1−D − inp)

+
∑

Re ω<D

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ 2εζL(0)

= (2ε)1−DG
(
logr−1(2ε)−1

)
+O

(
ε1−Θ

)
, as ε → 0+,

(8.40)

where

G(x) = res (ζL(s);D)
∑
n∈Z

e2πinx

(D + inp)(1−D − inp)
, (8.41)

and res (ζL(s);D) is given by (2.43) (with K = 1 and g1L = 1):11

res (ζL(s);D) =
1∑N

j=1 rD
j log r−1

j

=
1

log r−1
∑N

j=1 kjrkjD
. (8.42)

Recall that as in Chapter 2, the positive integers k1, . . . , kN are defined
by rj = rkj for j = 1, . . . , N . Since the periodic function G is nonconstant
(because it has nonzero Fourier coefficients for n �= 0), it follows that L
is not Minkowski measurable, in agreement with Theorems 8.15 and 2.17.
Moreover, the geometric oscillations are multiplicatively periodic since G
is periodic.

Note that formula (8.40) converges pointwise since there are only finitely
many lines of complex dimensions, the complex dimensions have bounded
residues, and the denominators of the terms are quadratic in ω.

Given the special structure of the complex dimensions of a lattice string
(see Theorem 2.17), we can rewrite the first equality of Equation (8.40)
in a much more explicit manner. Indeed, continue to assume for simplic-
ity that L has a single gap and is normalized as in Remark 2.6, so that
it has first length 1, and the last statement of the lattice case of Theo-
rem 2.17 applies (see Remark 8.24 below for the general case). Then, in
the notation of Theorem 2.17 and in the case where the complex dimen-
sions ωu are all simple (as in Examples 8.22 above and 8.32 below), we
have for 0 < ε < 1/(2rN ) (see Theorem 8.25 below)

V (ε) =
q∑

u=1

(2ε)1−ωuGu

(
logr−1(2ε)−1

)
+ 2εζL(0), (8.43)

11Note that for the generalized Cantor string of Section 8.4.1, we have

res (ζL(s); D) =
1

log a
=

1

log r−1
,

so that formula (8.41) reduces to (8.33) in that case.
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where ω1 = D, G1 = G, as defined in (8.41), and for u = 1, . . . , q, the
function Gu is periodic (of period 1) given by12

Gu(x) = res (ζL(s);ωu)
∑
n∈Z

e2πinx

(ωu + inp)(1− ωu − inp)
. (8.44)

Clearly, Gu is nonconstant and, as above, it is bounded away from zero and
from infinity. Further, according to Remark 2.19, res (ζL(s);ωu) is given
by (2.50) with n = 0.

Remark 8.24. If the lattice string L has one gap but is not normalized,
then an additional phase factor is introduced. More precisely, V (ε) is still
given by (8.43), with Gu as in (8.44) (and, in particular, G = G1 as
in (8.41)), except with res(ζL(s);ωu) multiplied by (g1L)inp (inside the
sum), where g1L is the first length of L. Therefore, res (ζL(s);ωu) is given
by (2.50) with K = 1 and n = 0, for u = 1, . . . , q. (Recall that ω1 = D.) See
the comment following Equation (2.49), along with Remark 2.19. (Also, see
Theorem 8.25 below according to which the counterpart of (8.43) is valid
for all 0 < ε < 1

2Lg1r
−1
N .)

The following result—which completes Theorem 8.23 in the case of mul-
tiple gaps—is really a corollary of the method of proof of that theorem. See
also Corollary 8.27 below for the case when Lmay have complex dimensions
of higher multiplicity.

Theorem 8.25 (Lattice strings with multiple gaps). Let L be a lattice self-
similar string with multiplicative generator r. Assume that the complex di-
mensions of L are all simple. Then for all ε with 0 < ε < 1

2LgKr−1
N , the

volume V (ε) is given by the following pointwise tube formula:

V (ε) =
q∑

u=1

(2ε)1−ωuGu

(
logr−1(2ε)−1

)
+

2K
1−N

ε, (8.45)

where for each u = 1, . . . , q, the function Gu is the nonconstant, real-valued
periodic function of period 1 on R corresponding to the line of complex
dimensions through ωu (ω1 = D > Reω2 ≥ · · · ≥ Reωq), and given by the
absolutely convergent Fourier series

Gu(x) =
∑
n∈Z

res(ζL(s);ωu + inp)
(ωu + inp)(1− ωu − inp)

e2πinx, (8.46)

12Recall from formula (2.39) that D = {ωu + inp : n ∈ Z, u = 1, . . . , q} and from the
last statement of the lattice case of Theorem 2.17 that for each fixed u = 1, . . . , q, we
have res (ζL(s); ωu + inp) = res (ζL(s); ωu), for all n ∈ Z. Since L is normalized, this
common value is given in Equation (2.50), with the numerator on the right-hand side of
this equation set equal to one.
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where

res(ζL(s);ωu + inp) =

∑K
μ=1 (gμL)ωu+inp

log r−1
∑N

j=1 kjrkjωu

. (8.47)

In particular, since ω1 := D, we have that G1 = G is given by (8.52) of
Corollary 8.27 below.

Furthermore, if L has a single gap and is normalized (i.e., K = 1
and g1L = 1), then (8.45) reduces to, and specifies, formula (8.43) (which
is therefore valid pointwise for all 0 < ε < 1/ 2rN ), while (8.46) and (8.47)
together yield (8.44).

Proof. The theorem follows from the second part of Theorem 8.7 (the point-
wise tube formula with error term). In light of the comment at the be-
ginning of Section 6.4 (just above Remark 6.11), according to which L is
strongly languid with A = L−1g−1

K rN and κ = 0 (thus also with any κ ≥ 0),
and since 0 is not a complex dimension of L, the latter theorem can be ap-
plied to yield for all positive ε < 1

2LgKr−1
N :

V (ε) =
∑

ω∈DL(C)

res
(
(2ε)1−s

s(1− s)
ζL(s);ω

)
+ 2εζL(0)

=
q∑

u=1

∑
n∈Z

res
(
(2ε)1−s

s(1− s)
ζL(s);ωu + inp

)
+ 2ε

K

1−N
. (8.48)

Here, the second equality results from the periodic structure of the complex
dimensions in the lattice case (see Theorem 2.17).
If ωu (and hence, ωu + inp, for all n ∈ Z) is simple, then

res
(
(2ε)1−s

s(1− s)
ζL(s);ωu + inp

)
= (2ε)1−ωu−inp res(ζL(s);ωu + inp)

(ωu + inp)(1− ωu − inp)
,

and according to formula (2.50) of Remark 2.19,

res(ζL;ωu + inp) =

∑K
μ=1(gμL)ωu+inp

log r−1
∑N

j=1 kjrkjωu

. (8.49)

Remark 8.26. Assume, in addition, that the gap sizes gμL are also in-
tegral powers of the multiplicative generator r of L; i.e., gμL = rk′

μ for
certain integers k′

μ, μ = 1, . . . , K (as in (2.40) of Theorem 2.17). Then for
each u = 1, . . . , q, the residue res (ζL(s);ωu + inp) is independent of n ∈ Z,
as was observed in Remark 2.19. More precisely, since then (gμL)inp = 1,
formula (8.49) simplifies to (as in Equation (2.50’))

res (ζL;ωu + inp) =

∑K
μ=1 rk′

μωu

log r−1
∑N

j=1 kjrkjωu

, for n ∈ Z. (8.50)
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A similar comment applies to formula (8.53) in Corollary 8.27 below.

The next corollary (of the proof of the foregoing theorem) applies to an
arbitrary lattice string and establishes in particular Theorem 8.23 in full
generality. It also completes the proof of Theorems 2.17 and 3.6 in the
lattice case.

Corollary 8.27. Let L be a lattice self-similar string, with scaling ra-
tios r1, . . . , rN (N ≥ 2) and gaps g1, . . . , gK (K ≥ 1), as in Section 2.1.
Let Re s = Θ be the rightmost vertical line to the left of Re s = D contain-
ing complex dimensions of L,13 and let m ≥ 1 be the maximal multiplicity
of a complex dimension on this line. Then

V (ε) = (2ε)1−DG
(
logr−1(2ε)−1

)
+ E(ε), (8.51)

where G = G1 is the nonconstant, real-valued periodic function of period 1
on R given by the absolutely convergent Fourier expansion

G(x) =
∑
n∈Z

res(ζL(s);D + inp)
(D + inp)(1−D − inp)

e2πinx, (8.52)

where the residues of the geometric zeta function of L are given by

res(ζL(s);D + inp) =

∑K
μ=1(gμL)D+inp

log r−1
∑N

j=1 kjrkjD
, (8.53)

infinitely many of which are nonvanishing.
In formula (8.51), the error E(ε) is estimated as follows, as ε → 0+ :
(i) If Θ > 0 (i.e., there are complex dimensions with real part strictly

between 0 and D) or if Θ = 0 and 0 is a complex dimension of L of
multiplicity at most m− 1, then

E(ε) = O
(
ε1−Θ |log ε|m−1)

. (8.54a)

(ii) If Θ < 0, then

E(ε) = O(ε). (8.54b)

(iii) If Θ = 0 and 0 is a complex dimension of L of multiplicity m, then

E(ε) = O
(
ε |log ε|m

)
. (8.54c)

It follows that L is not Minkowski measurable. In other words, a lattice
string does not have a Minkowski content.

13Note that the meaning of Θ is slightly different from that in the proof of Theo-
rem 8.23, where Θ ≥ 0.
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Proof. We deduce formula (8.51)—with G = G1 and the coefficients of G
given by (8.52) and (8.53)—from the first part of the pointwise formula for
the volume of the tubular neighborhoods, Theorem 8.7. To obtain the error
estimate as given, we choose for the screen a vertical line Re s = σ < Θ
if Θ ≥ 0, or a vertical line Re s = σ, where Θ < σ < 0, if Θ < 0. With
this choice of screen, the poles of ζ(s)/s that contribute to the explicit
formula for V (ε) lie only on the two lines Re s = D and either on Re s = 0
or on Re s = Θ, whichever of these lines lies furthest to the right. By the
choice of screen, ζL is bounded on the screen, hence L1 and L2 are satisfied
with κ = 0. Therefore, we can apply the pointwise tube formula (8.17) of
the first part of Theorem 8.7.
From the computation of the local terms in Section 6.1.1, we deduce that

the resulting terms in the explicit formula are of the given order. Note that
the resulting periodic function G1(x) is nonconstant because as was noted
in the course of the proof of Theorem 2.17, above Equation (2.49), not
all14 of the (genuinely complex) dimensions D + inp (n ∈ Z, n �= 0) are
canceled by the zeros of the numerator of ζL in formula (2.10). It follows
that L always has multiplicatively periodic oscillations of leading order D
and hence is not Minkowski measurable.

Remark 8.28. In the above corollary, we only used the sum over the com-
plex dimensions on the line Re s = D in the explicit formula for V (ε),
choosing a screen that shields all the other complex dimensions. This way
we avoided having to determine the terms in the explicit formula corres-
ponding to complex dimensions of higher multiplicity. We leave it as an
exercise for the interested reader to work out the general explicit formula
for V (ε), with a complete determination of all the terms, corresponding to
complex dimensions of any multiplicity. (As a guide, see the computation
of the local terms in Section 6.1, along with Example 8.34 below.)

8.4.3 The Average Minkowski Content

We supplement our study of lattice self-similar strings (Section 8.4.2, where
it was established that lattice strings do not have a Minkowski content) by
considering the notion of average Minkowski content.

Definition 8.29. Let L be a fractal string of dimension D. The average
Minkowski content, Mav, is defined by the logarithmic Cesaro average

Mav = lim
T→∞

1
log T

∫ 1

1/T

ε−(1−D)V (ε)
dε

ε
, (8.55)

provided this limit exists and is a finite positive real number.

14Indeed, infinitely many of these complex dimensions are not canceled.
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Theorem 8.30. Let L be a lattice self-similar string of total length L,
with scaling ratios r1 = rk1 , . . . , rN = rkN and gaps g1, . . . , gK . Then the
average Minkowski content of L exists and is given by the finite positive
number

Mav =
21−D

∑K
μ=1 (gμL)D

D(1−D) log r−1
∑N

j=1 kjrkjD
=

21−D

D(1−D)
res

(
ζL(s);D

)
. (8.56)

Proof. The existence and the computation of the average Minkowski con-
tent results from an application of Corollary 8.27. More precisely, according
to (8.51) and (8.54), we have for all 0 ≤ ε ≤ 1 and some Θ < D,

ε−(1−D)V (ε) = 21−DG
(
logr−1(2ε)−1

)
+O

(
εD−Θ

)
,

where G is the (nonconstant) real-valued periodic function of period 1 given
by (8.52) and (8.53).
After making the change of variable x = logr−1(2ε)−1, we obtain

1
log T

∫ 1

1/T

ε−(1−D)V (ε)
dε

ε
= 21−D 1

logr−1 T

∫ logr−1 T

0

G(x) dx+ o(1)

→ 21−D

∫ 1

0

G(x) dx

as T →∞. Hence, in view of (8.55),Mav exists and we have

Mav = 21−D

∫ 1

0

G(x) dx = 21−D res (ζL(s);D)
D(1−D)

> 0.

By formula (8.53) in Corollary 8.27 (applied with n = 0), this yields the
(finite and positive) expression (8.56) forMav, as desired.

Remark 8.31. Both the non-Minkowski measurability and the existence
as well as the value (8.56) of the average Minkowski content hold for
arbitrary lattice self-similar strings with multiple gaps. Indeed, the non-
Minkowski measurability follows from Theorem 8.15, since we know from
Theorem 2.17 that D is simple and that there are always nonreal complex
dimensions with real part equal to D. It can also be verified directly by
working with our general pointwise tube formula without error term (the
second part of Theorem 8.7) which also yields the existence of Mav. In-
deed, the main point is that the term in our tube formula corresponding
to the pole at sn := D+ inp (with n ∈ Z, n �= 0) is an oscillatory function
with (logarithmic Cesaro) average zero (since sn is a simple pole of ζL). On
the other hand, for n = 0 (i.e., for s = s0 = D), the resulting function is
constant, and hence its average is equal to res (ζL(s);D), which (by Theo-
rem 2.17, Equation (2.43)) is equal to the right-hand side of (8.56), up to
a positive multiplicative factor.
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Example 8.32 (The Fibonacci string). Recall from Section 2.3.2 that this
is a lattice string with two lines of complex dimensions (see Figure 2.5
on page 43). Since all these complex dimensions are simple, the tube for-
mula (8.40) gives

V (ε) =
2 + φ

5 log 2

∑
n∈Z

(2ε)1−D−inp

(D + inp)(1−D − inp)
− 2ε

+
3− φ

5 log 2

∑
n∈Z

(2ε)1+D−i(n+ 1
2 )p

(−D + i(n+ 1
2 )p)(1 +D − i(n+ 1

2 )p)
,

(8.57)

where D = log2 φ, p = 2π/ log 2 and 0 < ε < 1. In particular, we deduce
from Theorem 8.30 that the average Minkowski content of the Fibonacci
string is given by

Mav =
21−D(2 + φ)
5(1−D) log φ

. (8.58)

Note that formula (8.57) is in agreement with the result (2.25) of the
direct computation of V (ε) carried out in Section 2.3.2. Indeed, the two
formulas are equivalent, since the golden ratio satisfies (2 + φ)/5 = φ/

√
5

and (3− φ)/5 = (φ− 1)/
√
5.

Remark 8.33. The volume of the tubular neighborhood of the modified
Cantor and Fibonacci strings, introduced in Section 2.3.3, is given by the
same explicit formulas as in Examples 8.22 of Section 8.4.1 and Exam-
ple 8.32 above, since their geometric zeta functions are the same as those
of their nonmodified counterparts.

Example 8.34 (A lattice string with multiple poles). An example of a
lattice string L with multiple poles was considered in Section 2.3.4.
Recall that L has one (discrete) line of complex dimensions above D,
namely, ω = D + inp (with n ∈ Z, D = log3 2 and p = 2π/ log 3), and
another line of double poles, namely, ω = 1

2 ip+ inp (with n ∈ Z); see Fig-
ure 2.9 on page 48. Thus, the tube formula (8.40) becomes

V (ε) =
4

9 log 3

∑
n∈Z

(2ε)1−D−inp

(D + inp)(1−D − inp)
− ε

2

+
1

9(log 3)2
∑
n∈Z

(2ε)1−i(n+ 1
2 )p

i(n+ 1
2 )p(1− i(n+ 1

2 )p)

·
(
5 log 3 +

3i(2n+ 1)p− 1
i(n+ 1

2 )p(1− i(n+ 1
2 )p)

)
+

1
3 log 3

∑
n∈Z

(2ε)1−i(n+ 1
2 )p log3(2ε)−1

i(n+ 1
2 )p(1− i(n+ 1

2 )p)
,

(8.59)
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as ε → 0+. In view of Equation (8.56) of Theorem 8.30, its average Min-
kowski content is given by

Mav =
8

27(1−D) log 2
. (8.60)

Remark 8.35. It also follows from Theorem 8.30 that the average Min-
kowski content of the Cantor string (as defined in Section 2.3.1 and Exam-
ple 8.22) is given by

Mav =
21−D

(1−D) log 2
, (8.61)

where D = log3 2.

8.4.4 Nonlattice Self-Similar Strings

A self-similar string, lattice or nonlattice, is always strongly languid. More
precisely, as is explained at the beginning of Section 6.4, ζL(s) satisfies L1
and L2′ with κ = 0 and A = L−1g−1

K rN . Hence, by the second part of
Theorem 8.7, V (ε) is given by a pointwise formula without error term,

V (ε) =
∑

ω∈DL(C)

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ 2εζL(0), (8.62)

for 0 ≤ ε < 1
2LgKr−1

N . Note that neither 0 nor 1 is a complex dimension of
a self-similar string. Also, if ω is a simple complex dimension of L, then

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
= res(ζL(s);ω)

(2ε)1−ω

ω(1− ω)
.

This is the case, for example, of all the complex dimensions of a nonlat-
tice string with two scaling ratios and positive multiplicities. (See Theo-
rem 3.30.)
For a nonlattice string we sometimes need an explicit formula with error

term to obtain information about V (ε). We then use a suitable screen
and the resulting formula only involves the corresponding visible complex
dimensions. By Theorem 2.17, D is the only complex dimension located on
the line Re s = D and it is simple. Therefore, by Corollary 8.10, we have

V (ε) =
(2ε)1−D

D(1−D)
res (ζL(s);D) +

∑
Re ω<D

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
(8.63)

+ {2εζL(0)}+R(ε)
=M · ε1−D + o

(
ε1−D

)
, (8.64)
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as ε → 0+, where ω ranges in DL(W ) and, as usual, the term in braces is
included if 0 ∈W . It follows that L is Minkowski measurable (in agreement
with Theorem 8.15), with Minkowski contentM given by (8.25):

M = res (ζL(s);D)
21−D

D(1−D)
. (8.65)

For instance, if L is the golden string defined in Section 2.3.5, then (8.65)
holds with D ≈ .77921.
By Remark 6.15, this analysis is not valid if, as in Example 5.32, there is

no screen passing between Re s = D and the complex dimensions strictly
to the left of this line for which the nonlattice string L is languid. In that
case, we apply formula (6.53) of Section 6.4.2, along with Theorem 3.25. It
remains to estimate ∑

D−δ/2<Re ω<D

res (ζL(s);ω)
(2ε)1−ω

ω(1− ω)
, (8.66)

for small positive δ, and this is done in Theorem 5.17. The latter result im-
plies that this sum is o

(
xD

)
, as x→ +∞, from which we deduce that (8.63)

holds pointwise for an arbitrary nonlattice string.
Note that the hypotheses of Theorem 5.17 are satisfied because the

sum (8.66) is absolutely convergent. Indeed, by Theorem 3.25, res (ζL(s);ω)
is uniformly bounded for all visible complex dimensions ω, so that (8.66)
can be compared to ∑

D−δ/2<Re ω<D

1
ω2

,

which converges by the density estimate (2.37).

We summarize this discussion in the following theorem:

Theorem 8.36. Every nonlattice string is Minkowski measurable. Fur-
ther, the volume V (ε) of the tubular neighborhoods of L is given by the
formulas in (8.63) (which hold pointwise for every ε > 0), where the Min-
kowski content M of L is given by (8.65)—or, more precisely, by (8.69)
below.

Using the dimension-free regions of Section 3.6, we also obtain the fol-
lowing estimate of the error of the approximation to V (ε).

Theorem 8.37. The volume V (ε) of the tubular neighborhoods of the non-
lattice string L is estimated by

V (ε) =Mε1−D +O

(
ε1−D

(
log log ε−1

log ε−1

)1/ρ
)

, as ε → 0+, (8.67)

where ρ = 2
M−1 + 2l and M and l are as in Theorems 7.37 and 7.41.
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Proof. The proof is similar to that of Theorems 7.37 and 7.41 on page 228.
Note that for Theorem 8.37, the Tauberian argument of the last step of that
proof is not needed, because Theorem 8.7 already gives V (ε) as a pointwise
formula. Consequently, the exponent in the error term is best possible in
case M = 2, and may be best possible in case M ≥ 3.

Remark 8.38. The residue of ζL at D can be computed explicitly. If L
is a nonlattice self-similar string with scaling ratios r1, . . . , rN and gaps
g1, . . . , gK , we have (see Equation (2.43)),

res (ζL(s);D) =
LD

∑K
μ=1 gD

μ∑N
j=1 rD

j log r−1
j

(8.68)

(as was shown in the proof of Theorem 2.17). Hence, in light of (8.65), the
nonlattice string L has for Minkowski content

M =
21−DLD

∑K
μ=1 gD

μ

D(1−D)
∑N

j=1 rD
j log r−1

j

, (8.69)

in agreement with Equation (2.44) of Theorem 2.17, for which we have now
completed the proof.

Remark 8.39. Theorem 8.36 above and Theorem 8.23 of Section 8.4.2
establish completely the geometric part of [Lap3, Conjecture 3, p. 163] in
the one-dimensional case (that is, for self-similar strings rather than for
self-similar drums). When specialized to one dimension (d = 1), the lat-
ter stated, in particular, that nonlattice self-similar strings are Minkowski
measurable whereas lattice strings are not (because they have oscillations
of order D in their geometry). See especially the Minkowski measurability
criterion in [LapPo1–2], recalled in Remark 8.19 above, and the example
of the Cantor set studied in [LapPo2, Example 4.5]. See also the main ex-
ample of [BroCa], revisited in [FlVa]. We note, however, that our results
significantly supplement the geometric aspects of [Lap3, Conjecture 3], as
is explained in the next remark.

Remark 8.40. The fact that nonlattice strings are Minkowski measurable,
as stated in Theorem 8.36, was already known in the literature (at least
in the case of a single gap). See the notes to this chapter. As was alluded
to at the end of the previous remark, our present results go further (than
in either [Lap3] or [Fa4]) in several directions (besides the extension to
multiple gaps):
(i) We provide an explicit formula for the volume of the tubular neigh-

borhoods, V (ε), valid pointwise and expressed in terms of the complex
dimensions of L. In the lattice case, this formula shows particularly well
the role of the finitely many lines of complex dimensions. (For the case of
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a single gap, see formula (8.40) and, when L has simple complex dimen-
sions, formula (8.43). For more general lattice strings, see Corollary 8.27
and Theorem 8.25, along with Remark 8.28.)
(ii) In the lattice case, we show that the periodic function G is non-

constant and hence that a lattice string is never Minkowski measurable.
We also obtain the Fourier series expansion of G. (See formula (8.41) for
a single gap, and formula (8.52) for multiple gaps.) More generally, un-
der suitable hypotheses, we obtain one periodic function for each line of
complex dimensions (see Theorem 8.25).
(iii) Our results provide a new intuitive understanding of the dichotomy

lattice vs. nonlattice and of its consequence for the Minkowski measurabil-
ity of self-similar strings. Namely, the presence of nonreal complex dimen-
sions of real part D characterizes lattice strings and explains the fact that
such strings are not Minkowski measurable (since they have oscillations of
order D in their geometry). Analogously, nonlattice strings are Minkowski
measurable because they do not have nonreal complex dimensions aboveD.
See Theorems 2.17, 8.1 and 8.15 above, along with the related discussion
in Section 12.3 below.

The Error Term in the Volume of the Tubular Neighborhoods

The results of Chapter 3 allow us to obtain a considerable strengthening of
formula (8.63) above. Recall from Section 3.6 that a dimension-free region
is a subset of the complex plane such that its intersection with the set of
complex dimensions is only D. If there exist positive numbers C and p such
that {

ω ∈ C : Reω ≥ D − C(1 + | Imω|)−p
}

(8.70)

is a dimension-free region, then the pointwise explicit formula (8.20) allows
us to deduce that for every δ > 0,

V (ε) =Mε1−D
(
1 +O

(
| log ε|δ−(1/p)

))
, (8.71)

as ε → 0+. Here,M = 21−D

D(1−D) res (ζL;D) is the Minkowski content of the
boundary of L, as in formulas (8.65) and (8.69).
From the results of Sections 3.6 and 3.5, we know that a nonlattice string

has a dimension-free region, which is of the form (8.70) if the nonlattice
string is badly approximable by lattice strings. In general, the dimension-
free region is much thinner, with a corresponding weaker form of (8.71).

Remark 8.41. For nonlattice strings with two scaling ratios, where the
(irrational) ratio of the weights w2/w1 = α > 1, the continued fraction
expansion of α enables us to carry this analysis further. In particular, the
error term depends on a function b(q) with the property that an+1 ≤ b(qn),
where α = [[a0, a1, a2, . . . ]] is the continued fraction of α, and qn is the
denominator of the n-th convergent of α.
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The case when α is badly approximable by rationals corresponds to in-
creasing functions b of polynomial growth. If b(q) grows faster than poly-
nomially, we obtain a bound of the form ε1−D/binv(− log ε) for the error in
the explicit formula for V (ε). Here, binv is the inverse function of b, which
in this case grows slower than any positive power function.

8.5 Notes

Section 8.1.1: Theorem 8.7, the pointwise tube formula, is entirely new. In
particular, it was not contained in [Lap-vF5].
Section 8.1.2: the fact that the a-string is Minkowski measurable and its

Minkowski content is given by formula (8.22) was first established in [Lap1].
See [Lap1, Example 5.1, pp. 512–513], along with [Lap1, Appendix C,
pp. 523–524], where it is proved by a direct computation. It was later
reproved more conceptually in [LapPo2, Example 4.3, pp. 64–65] and then
in [HeLap2].
Section 8.2: it is pointed out in [BergGo, 6.9.8, p. 235] that Chern’s clas-

sical work on a higher-dimensional analogue of the Gauss–Bonnet formula
and on characteristic classes, [Chern1–2], was influenced by the geometric
interpretation of Weyl’s tube formula given in [Wey3].15 Additional refer-
ences can be found in [CheeMüS1,Kow].
Further references closely related to or extending in various directions

Weyl’s tube formula (or the earlier Steiner’s formula [Stein] for convex
bodies in Euclidean space [Fed2, Theorem 3.2.35]) include [Mink,Bl,Fed1–
2, Ban, CheeMüS2, Gra, Fu1–2, Mil, Schn], where a more detailed history
and description of this formula can be found. We point out, in particular,
the book by Gray [Gra], as well as the extension in the context of geo-
metric measure theory [Fed2] of the notion of Weyl’s curvatures obtained
by Federer in his paper on curvature measures [Fed1]. The more recent pa-
per [Fu2], and the relevant references therein, gives a further generalization
and interpretation of [Fed1].
Section 8.3: a different proof of the Minkowski measurability criterion

of [LapPo1–2] (recalled in Remark 8.19 above) was later obtained by Fal-
coner in [Fa4]. Rather than being of a purely analytical nature, this proof
is partly based on dynamical systems. Moreover, as is discussed in Re-
mark 8.21 in relationship with our present work, the Minkowski measurabil-
ity criterion of [LapPo1–2] (together with the notion of Minkowski measur-

15The fact that Weyl’s tube formula influenced this aspect of his work in [Chern1–2]
was confirmed by S.-S. Chern during a conversation with the first author on the occasion
of the symposium given in his honor at the University of California, Berkeley (and at the
Mathematical Sciences Research Institute (MSRI), September 2000). See also [Chern3].
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ability) was extended to a large class of gauge functions (going beyond the
traditional power functions) in [HeLap1; HeLap2, Theorem 2.5 and §4.1].
The idea that lattice strings are not Minkowski measurable and nonlat-

tice strings are was motivated in part by the work of Lalley in [Lal1–3] on
various geometric counting functions associated with self-similar sets and
by works of the first author in [Lap1–2] as well as of Lapidus and Pomerance
in [LapPo1–2]. It was formulated as a conjecture in [Lap3, Conjecture 3] in
the more general context of self-similar drums, as is discussed elsewhere in
these notes and this book.
Section 8.4.3: we refer to the interesting papers by Tim Bedford and

Albert Fisher [BedFi], as well as of Richard Stone [Sto-r], for more infor-
mation on Cesaro averaging in various contexts.
In [Fra1, 2]—following [BedFi,Man2,Gat] and motivated in part by [Lap-

Po2,Lap3,Fa4] and the results in [Lap-vF5] for self-similar strings (with one
gap)—the elusive notion of lacunarity (briefly discussed in Section 12.2.3;
see also [Man1]) is defined as the reciprocal of the average Minkowski con-
tent. Hence, the lacunarity of any lattice self-similar string (with gaps) is
well defined and is given by the reciprocal of formula (8.56),16 in agreement
with [Fra2, Theorem 2.1]. According to Remark 8.38, this is also true for
nonlattice self-similar strings, in which case the average Minkowski content
coincides with the Minkowski content, given by (8.69)—or, equivalently, by
the last expression in (8.56). Motivated in part by [BedFi, KiLap1, Con],
a similar type of averaging was used in [Lap5, 6] to study (in the lattice
case) the average spectral volume in the counterpart of Weyl’s asymptotic
formula for drums with self-similar fractal membrane. See also the later
paper [KiLap2] where this spectral volume is further studied.
Section 8.4.4: it was first observed by Lapidus in [Lap3, Section 4.4.1b]

and later recovered independently by Falconer in [Fa4] that nonlattice
strings are Minkowski measurable. The main goal of [Fa4] was to ob-
tain an alternative proof of the Minkowski measurability criterion of [Lap-
Po2, Theorem 2.1] for fractal strings. The method used in both [Lap3]
and [Fa4] relies on a suitable use of the Renewal Theorem from probability
theory17 [Fel, Theorem 2, p. 39], much as was done earlier by Lalley [Lal1]
in a related context. Shortly after the preliminary version of [Lap3] was
written, a similar method—based on the Renewal Theorem—was used by
Kigami and the first author in [KiLap1] to obtain a Weyl-type formula for
the eigenvalue distribution of Laplacians on finitely ramified self-similar
fractals, thereby proving (and specifying) for this class of fractals Conjec-

16In [Fra2], the expression involving the residue of ζL(s) is not given since the approach
used there is along the lines of [Lap3] and [Fa4] rather than of [Lap-vF5] or the present
book.

17A more general version of the Renewal Theorem that is well suited for this or
related situations was later obtained in [LeVa]. Other references concerning the Renewal
Theorem include [Sto-c], [Ki2, Appendix B, §B.4], and [HamLap, §3].
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ture 5 of [Lap3, p. 190] for self-similar drums with fractal membrane—
rather than with fractal boundary, as in [Lap3, Conjecture 3]. (None of
these references considered the case of multiple gaps.) In the lattice case,
the results of [Lap3] and of [Fa4]—also based on the Renewal Theorem—
yield the existence of a multiplicatively periodic function G in the lead-
ing term of ε−(1−D)V (ε) as ε → 0+. However, as was noted in [Lap3],
one cannot expect to deduce from the Renewal Theorem alone (or from
a Tauberian-type argument) that G is nonconstant (as was conjectured
in [Lap3]) and hence that a lattice string is not Minkowski measurable.
Several results of this chapter can be extended to fractal sprays, in the

sense of [LapPo3] and Section 1.4. The main difficulty consists in finding a
formula for the volume of the (inner) tubular neighborhood of the underly-
ing basic shape B ⊂ Rd and in suitably adapting the techniques of the proof
of Theorem 8.1. (See [LapPe2–4] where a corresponding tube formula is ob-
tained, applicable to self-similar systems and the associated tilings. In that
work, briefly discussed in Section 12.3.2 below, finitely many basic shapes
or generators are allowed.) We refer to formulas (8.23) and (8.24) for the
case of smooth manifolds B, and to (12.2) and (12.3) for two examples of
a fractal basic shape.
In the important special case of self-similar fractal sprays (in the sense

of Section 6.6), under suitable assumptions a counterpart of Theorems 8.36
and 8.23 can also be obtained in the nonlattice and lattice case, respec-
tively. For example, as was stated in [Lap2–3], the Sierpinski gasket (see
Figure 6.1 on page 204) is not Minkowski measurable because it is a lattice
spray, whereas (suitable) nonlattice self-similar sprays are always Minkow-
ski measurable, as was shown in [Lap3] by means of the Renewal Theorem
(see also [LeVa] and, in a significantly more general context, [LapPe2, 3]).



9
The Riemann Hypothesis and
Inverse Spectral Problems

In this chapter, we provide an alternative formulation of the Riemann hy-
pothesis in terms of a natural inverse spectral problem for fractal strings.
After stating this inverse problem in Section 9.1, we show in Section 9.2
that its solution is equivalent to the nonexistence of critical zeros of the
Riemann zeta function on a given vertical line. This modifies and extends
the earlier work of [LapMa1–2], but now we use the point of view of complex
dimensions and the explicit formulas of Chapter 5. In Section 9.3, we then
extend this characterization to a large class of zeta functions, including
all the number-theoretic zeta functions for which the extended Riemann
hypothesis is expected to hold.

The reformulation of the Riemann hypothesis as an inverse spectral prob-
lem was obtained when the first author (and his collaborators, particularly
Helmut Maier) considered the question of whether one can deduce geo-
metric information about a fractal string from information about its spec-
trum. In other words, they considered the question

Can one hear the shape of a fractal drum?

In Section 6.3.2, we introduced the spectral operator, which allows us to
formalize questions of this type as the question of the invertibility of this
operator.
We give here two examples of such inverse spectral problems. Namely,

Can one hear the dimension of a fractal string?

and
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Can one hear if a fractal string is Minkowski measurable?

In [LapPo2, Theorem 2.4, p. 47], the first question is answered in the
affirmative, and in [LapMa2] (announced in [LapMa1]) it is shown that
a positive answer to the second inverse problem is equivalent to the fact
that ζ(s) has no zeros on the line Re s = D. Thus, Lapidus and Maier
obtained a reformulation of the Riemann hypothesis in terms of a natural
inverse spectral problem for (standard) fractal strings. See Figure 9.1 on
the opposite page.

9.1 The Inverse Spectral Problem

The inverse spectral problem studied in [LapMa2] is the following:

(S)

Let a standard fractal string with Minkowski dimension
D ∈ (0, 1) be given. If this string has no oscillations of or-
der D in its spectrum, does it follow that it is Minkowski
measurable?

See [LapMa2] and below for a precise formulation. In [LapMa2], condi-
tion (ii) of Theorem 8.15 was used to characterize the Minkowski measur-
ability of a fractal string. In our present situation, we use the equivalent
condition (i) of Theorem 8.15 involving the complex dimensions above D.

Remark 9.1. Intuitively, the inverse spectral problem (S) can be inter-
preted as follows (see Remark 8.20): If an ordinary fractal string L of
Minkowski dimension D has no oscillations of order D in its frequency
spectrum, does it follow that it has no oscillations of order D in its geo-
metry (i.e., by Theorem 8.15, that D is simple and L has no other complex
dimensions on the vertical line Re s = D)? By contraposition, we obtain
the equivalent formulation: If L has oscillations of order D in its geometry,
does it follow that it has oscillations of order D in its spectrum?

The inverse spectral problem is in the spirit of questions raised in the
spectral theory of smooth manifolds; see Appendix B. Let Ω be a bounded
open subset of R, with boundary ∂Ω of Minkowski dimension D ∈ [0, 1].
That is, Ω is an ordinary fractal string L = (lj)

∞
j=1. Then a counterpart

of estimate (B.12) was obtained in [LapPo1–2], where the first connections
between the vibrations of fractal strings and the Riemann zeta function ζ(s)
were established. This provided, in particular, a resolution of the (modified)
Weyl–Berry Conjecture for fractal strings (as formulated in [Lap1]). More
precisely, [LapPo2, Corollary 2.3, p. 46] states that if ∂Ω is Minkowski
measurable in dimension D ∈ (0, 1) with Minkowski content M(D; ∂Ω),
then an analogue of (B.12) holds for the Dirichlet Laplacian on Ω, with
d = 1 and d − 1 replaced by D. Namely, we have the following pointwise
asymptotic formula:

Nν(x) = W (x)− cDM(D; ∂Ω)xD + o
(
xD

)
, (9.1)

as x→∞, where
W (x) = vol1(Ω)x
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Figure 9.1: The critical strip for ζ(s): 0 ≤ Re s ≤ 1.
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is the Weyl term and

cD = 2−(1−D)(1−D) (−ζ(D))

(since ζ(D) < 0 for D in the critical interval (0, 1), we have cD > 0).
Note that (9.1) implies that Nν(x) admits a monotonic asymptotic second
term.1 The converse of this result (namely, the corresponding inverse spec-
tral problem for fractal strings), was shown in [LapMa1–2] to be closely con-
nected with the Riemann hypothesis. More precisely, Theorems 2.3 and 2.4
in [LapMa2, p. 20] show, in particular, that for a fixed D ∈ (0, 1), the exis-
tence of a monotonic asymptotic second term for Nν(x) (with the pointwise
error term o

(
xD

)
replaced by O

(
xD log−(1+ε) x

)
, for some ε > 0) always

implies that ∂Ω is Minkowski measurable if and only if the Riemann zeta
function does not vanish on the vertical line Re s = D.

Remark 9.2. For fractal strings, the following conditions were shown to
be equivalent in [LapPo2, Theorem 2.4, p. 47]:

(i) 0 <M∗(D; ∂Ω) ≤M∗(D; ∂Ω) <∞;

(ii) 0 < lim infj→∞ ljj
1/D ≤ lim supj→∞ ljj

1/D <∞;

(iii) 0 < δ∗ ≤ δ∗ < ∞,

where δ∗ (respectively, δ∗) denotes the lower (respectively, upper) limit
of x−D (W (x)−Nν(x)) as x → ∞.2 In conjunction with the aforemen-
tioned results [LapPo2, Theorems 2.1 and 2.2], this shows that the exis-
tence of an oscillatory second term of order D for Nν(x) (i.e., by defin-
ition, 0 < δ∗ < δ∗ < ∞) implies that (i) and (ii) hold with strict inequali-
ties, and hence that ∂Ω is not Minkowski measurable.3 On the other hand,

1The characterization of Minkowski measurability obtained in [LapPo2, Theorem 2.2,
p. 46] played a key role in deriving this result. Recall that the criterion of [LapPo1–2]
(namely, lj ∼ Lj−1/D, for some L > 0) was extended in Chapter 8 and interpreted in
terms of the notion of complex dimension; see especially Theorem 8.15 and Remark 8.19
above.

2Observe that by the Minkowski measurability criterion of [LapPo2, Theorem 2.2],
condition (i) holds with strict inequalities if and only if (ii) does. Further observe that
condition (i) (or, equivalently, (ii)) holds with strict inequalities exactly when the geo-
metry of the boundary ∂Ω (i.e., of the fractal string L) has oscillations of order D.

3For the easier part of the equivalence of (i) and (ii), namely,

M∗(D; ∂Ω) < ∞ ⇐⇒ lim sup
j→∞

lj · j1/D < ∞,

compare also Proposition 1.1 and Theorem 1.16 of Chapter 1. On the other hand,
by [LapPo2, Theorem 3.11, p. 55], only the implication

lim inf
j→∞

lj · j1/D > 0 =⇒ M∗(D; ∂Ω) > 0

holds, whereas the converse is not true, by [LapPo2, Example 3.13, p. 56]
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the results of [LapMa1–2] (specifically, [LapMa2, Theorem 3.16, p. 28])
show that the converse is not true; namely, ∂Ω may not be Minkowski
measurable (with strict inequalities in (i) and (ii)) whereas Nν(x) admits
a monotonic asymptotic second term of order D (i.e., 0 < δ∗ = δ∗ < ∞).
The fact that for Cantor-type sets (or strings), the spectral operator is in-
vertible (in the terminology of Section 6.3.2) and hence this phenomenon
cannot occur, is established in Chapter 10 and is used in Chapter 11 below.
In turn, the results of Chapter 11 can be used to show that a lattice string
always has oscillations of order D in its spectrum, and hence satisfies (iii)
as well as conditions (i) and (ii) with strict inequalities; see Remark 6.17
in Section 6.4.3. Further, by using the results of Section 11.2, an entirely
analogous statement can be shown to hold for a large class of (generalized)
lattice self-similar sprays (as in Section 6.6).

9.2 Complex Dimensions of Fractal Strings
and the Riemann Hypothesis

Our explicit formulas shed new light on the results and methods of
M. L. Lapidus and H. Maier in [LapMa2]. We will use condition (i) of Theo-
rem 8.15 to characterize the Minkowski measurability of a fractal string in
order to recover (and extend) the results of [LapMa2] by focusing on the
fractal string η introduced below and in [LapMa2, §3.3], as well as on its
continuous analogue μ.

Consider the generalized fractal string

μ(dx) =
(
xD−1 + βxD−1+iγ + βxD−1−iγ

)
1(1,∞)(x) dx, (9.2)

where γ ∈ R, D ∈ (0, 1) and β ∈ C, |β| ≤ 1/2, so that μ is a positive
measure (here, 1(1,∞) denotes the indicator function of the interval (1,∞)).
The geometric zeta function of μ is

ζμ(s) =
1

s−D
+

β

s−D − iγ
+

β

s−D + iγ
, (9.3)

and the complex dimensions of μ are D, D + iγ and D − iγ. By Theo-
rem 8.15, this string is not Minkowski measurable.4 By Theorem 5.14,
applied for k = 1, we have the following pointwise equality, for all x ≥ 1:

Nμ(x) =
xD

D
+ β

xD+iγ

D + iγ
+ β

xD−iγ

D − iγ
+ ζμ(0). (9.4)

4Theorem 8.15 is formulated for ordinary fractal strings, but it clearly applies to this
situation as well.
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This formula can also be obtained by a direct computation.
For the frequency counting function, we cannot apply Theorem 5.14 to

obtain a pointwise formula at level 1, hence we have to interpret Nν(x) as a
distribution. Thus, by Theorems 5.18 and 5.30, we have, in a distributional
sense,

Nν(x) = ζμ(1)x+ ζ(D)
xD

D

+ βζ(D + iγ)
xD+iγ

D + iγ
+ βζ(D − iγ)

xD−iγ

D − iγ
+O(1), (9.5)

as x→∞.
Now, if ζ(D + iγ), and hence also ζ(D − iγ), vanishes, then

Nν(x) = ζμ(1)x+ ζ(D)
xD

D
+O(1). (9.6)

We conclude that Nν(x) has no oscillatory terms. Therefore, μ provides a
counterexample to problem (S).

Remark 9.3. Instead of using the distributional explicit formula, we could
apply the pointwise formula, Theorem 5.10, at level k = 2. Then we obtain
an integrated version of Nν(x) (with (s)2 = s(s+1), as in Equation (5.12)):

N [2]
ν (x) = ζμ(1)

x2

2
+ ζ(D)

xD+1

(D)2
+ βζ(D + iγ)

xD+1+iγ

(D + iγ)2

+ βζ(D − iγ)
xD+1−iγ

(D − iγ)2
+O

(
x1+ε

)
, (9.7)

as x →∞, for all ε > 0. In this formula, O
(
x1+ε

)
has the usual pointwise

meaning, as opposed to O(1) in formulas (9.5) and (9.6), which must be in-
terpreted distributionally as in Section 6.3.1. Consequently, if ζ(s) vanishes
at s = D ± iγ, the spectrum has no oscillations of order D + 1 at level 2.

Since the function (9.4) is strictly increasing, we can define an ordinary
fractal string η by the property

Nη(x) = [Nμ(x)] , for every x > 0. (9.8)

Thus η is the ordinary fractal string η =
∑∞

j=1 δ{l−1
j }, with lj > 0 defined

uniquely by Nμ

(
l−1
j

)
= j, for each j = 1, 2, . . . . Then we have

ζη(s) = ζμ(s) + ζη−μ(s).

The function ζη−μ(s) is holomorphic for Re s > 0. Hence, η and μ have
the same complex dimensions, namely D, D + iγ and D − iγ, each of
which is simple. Since η has nonreal complex dimensions above D, it follows
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from the above Minkowski measurability criterion (Theorem 8.15) that η
is not Minkowski measurable: it has oscillations of order D in its geometry.
Thus we recover the counterexample of [LapMa2] to the inverse spectral
problem (S).

We now consider the converse of the above question. That is, we want
to show that if the Riemann zeta function does not vanish on the verti-
cal line Re s = D, then the inverse spectral problem (S) in dimension D
always has an affirmative answer for a suitable class of generalized fractal
strings. Indeed, if η is an arbitrary languid5 generalized fractal string of
dimension D ∈ (0, 1), its oscillations in dimension D are described by its
complex dimensions with real part D. We choose a screen S to the left
of Re s = D so that only the complex dimensions with real part D are visi-
ble. Hence we need to assume that η allows such a screen (see Examples 5.32
and 5.33). Then, by Theorems 5.18 and 5.30,

Nη(x) =
∑

Re ω=D

res
(

ζη(s)xs

s
;ω

)
+ o

(
xD

)
(9.9)

and

Nν(x) = ζη(1)x+
∑

Re ω=D

res
(

ζη(s)ζ(s)xs

s
;ω

)
+ o

(
xD

)
, (9.10)

as x → ∞ (these formulas have to be interpreted distributionally). If ζ
has no zeros on the line Re s = D, all terms in the second series (which
represents an almost periodic function, in an extended sense) remain, and
we obtain a positive answer to the inverse spectral problem considered
in [LapMa2].

Remark 9.4. In [LapMa1–2], the converse was established by using the
Wiener–Ikehara(–Landau) Tauberian Theorem [Pos, Section 27, pp. 109–
112] rather than an explicit formula. Accordingly, the argument is based
on the assumption of a suitable error term beyond the asymptotic second
term in the spectral counting function Nν(x), rather than on the existence
of a suitable screen. See [LapMa2, Theorem 2.3 and 3.2, pp. 20 and 23] and
the discussion in Section 9.1.

We summarize the above discussion in the following theorem:

Theorem 9.5. For a given D in the critical interval (0, 1), the inverse
spectral problem (S) in dimension D—suitably interpreted as above—has a
positive answer if and only if ζ(s) does not have any zero on the vertical
line Re s = D.

Since ζ(s) has zeros on the critical line Re s = 1/2, we also obtain the
following corollary.

5That is, η satisfies L1 and L2.
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Corollary 9.6. The inverse spectral problem (S) is not true in the mid-
fractal case (i.e., when D = 1/2, see Figure 9.1 ).

On the other hand, it is true for every D ∈ (0, 1), D �= 1/2, if and only
if the Riemann hypothesis holds. In the terminology of Section 6.3.2, the
spectral operator is invertible for all fractal strings of dimension D �= 1/2 if
and only if the Riemann hypothesis holds. In that case, the inverse spectral
operator is given as in Section 6.3.2, Remark 6.9.

Remark 9.7. The first part of the above corollary, stating that (S) is not
true in the midfractal case, does not necessarily have a counterpart for the
general zeta functions ζB(s) considered in Section 9.3 below.

Remark 9.8. The reformulation of the Riemann hypothesis in Theorem 9.5
raises the question of determining what is different about fractal strings of
dimension 1/2. The authors have introduced the notion of the dual of a
fractal string to be able to take into account the functional equation of the
Riemann zeta function. The only strings that can be self-dual are those of
dimension 1/2.
One could also ask to characterize the basic shapes B for which the

associated zeta function has an Euler product and satisfies a functional
equation. The authors do not know such a characterization other than in
terms of ζB .

9.3 Fractal Sprays and the
Generalized Riemann Hypothesis

Instead of considering fractal strings, we consider other fractal sprays on
the basic shape B, as defined in Section 1.4. The spectral zeta function of
the fractal spray of L on B is

ζν(s) = ζL(s) · ζB(s), (9.11)

where

ζB(s) =
∑

λ

λ−s/2. (9.12)

Here, λ runs over the normalized eigenvalues of the positive Laplacian on B,
with Dirichlet boundary conditions (and hence, the frequencies of B are the
numbers f =

√
λ).

Example 9.9. The frequencies of the fundamental domain of the lat-
tice Zm in Rm (m ∈ N∗), with identification of opposite sides, are described
by the classical Epstein zeta functions

ζm(s) =
∑

v∈Zm\{0}
‖v‖−s,
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where ‖v‖ is the Euclidean norm. These functions satisfy a functional equa-
tion, relating ζm(s) and ζm(m−s); see [Ter, Theorem 1, p. 59] or Section A.4
of Appendix A. Note that ζ1(s) = 2ζ(s).

In general, we do not need to assume the existence of B as a subset
of Rm. In other words, we consider virtual basic shapes and the associated
generalized fractal sprays. Indeed, for our theory to apply, we only need to
assume that ζB(s) =

∑
f wff−s is a zeta function that satisfies L1 and L2

for some suitable screen S, as in Section 9.2. If the coefficients wf—to
be thought of as the (complex) multiplicities of f—are real, we use the
above generalized fractal string μ (with complex dimensions D, D + iγ
andD−iγ) to test whether ζB has zeros atD±iγ, by applying the analogue
of formula (9.5). If the coefficients wf are not real—such as for a Dirichlet
L-series associated with a complex, nonreal character (see, e.g., [Lan] or
Appendix A.2 below)—we cannot assume that the zeros come in complex
conjugate pairs. However, if the window of ζB is symmetric with respect to
the real axis (and ω is not a zero when ω is a pole of ζB), we replace ζB(s)
by the symmetrized Dirichlet series ζB(s)ζB (s), the zeros of which come
in complex conjugate pairs. We can then go through exactly the same
reasoning as above to characterize the absence of zeros of ζB(s) on the
line Re s = D in terms of an inverse spectral problem for fractal sprays.

We summarize the above discussion in the following theorem:

Theorem 9.10. Let ζB(s) be a languid6 Dirichlet series (or Dirichlet in-
tegral) with associated window W . Let D ∈W ∩R. Then, if ζB(s) has real
coefficients (or is associated with a real measure), the exact counterpart of
the inverse spectral problem (S) for the corresponding generalized fractal
spray is true for this value of D if and only if ζB(s) does not have any
zero on the vertical line Re s = D.

Furthermore, in the general case when ζB(s) is not real-valued on the
real axis, then, provided that W is symmetric with respect to the real axis,
and ω is not a zero when ω is a pole of ζB(s), the same criterion as above
holds.

Remark 9.11. We note that, in the above theorem, ζB(s) need not satisfy
a functional equation or an Euler product.

We thus obtain a criterion for the absence of zeros on vertical lines
within the critical strip for all Epstein zeta functions [Ter], and for all
the number-theoretic zeta functions for which the generalized Riemann hy-
pothesis is expected to hold: for example, for the Dedekind zeta functions
and, more generally, for the Hecke L-series associated with an algebraic
number field [Lan, ParSh1–2], and also for the zeta functions of algebraic
varieties over a finite field [ParSh1, Chapter 4, §1]. In all these cases, we

6That is, ζB(s) satisfies hypotheses L1 and L2 for a suitable screen S.
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may choose the window W to be all of C. (We refer to Appendix A for a
brief introduction to the aforementioned zeta functions.)

Remark 9.12. In the case of the zeta function of a variety over a finite
field, the Weyl term takes a special form. Consequently, the inverse spectral
problem must be suitably interpreted. We refer to Section 11.5 below for a
detailed discussion of the one-dimensional case of a curve over a finite field.

9.4 Notes

Figure 9.1: for related comments, see the figures in [Lap2, Figure 3.1, p. 165]
and [Lap3, Figure 2.1, p. 143], along with the text surrounding them.
On the basis of [LapPo2, Theorem 2.1] and its proof, the authors of that

paper have raised the question of finding a suitable notion of complex di-
mension that would extend, in particular, the usual notion of real fractal
(i.e., Minkowski) dimension and would provide (when d = 1) a new inter-
pretation for the critical strip 0 ≤ Re s ≤ 1 of the Riemann zeta function.
See [LapPo1, p. 347] and [LapPo2, Section 4.4.b, p. 67], along with, for
example, [Lap2, Remark 2.2 and Figure 3.1, pp. 142–143] and Figure 9.1.
The later work in [LapMa1–2] used this intuition and also began to corrob-
orate it (see, e.g., [LapMa2, Section 3.3 and Remark 3.21(c), (d), p. 32]),
while [Lap-vF5] and the present work provides a rigorous theory for the
notion of complex dimension.
A natural question raised in [LapPo2] (and further motivated by the

results of [LapMa2]) consists in interpreting in terms of fractal strings and
their (then hypothetical) complex dimensions the key symmetry of the
Riemann zeta function with respect to the critical line Re s = 1/2, which
comes from the functional equation for ζ. (See also Remark 9.8 above.)
Various aspects of this intriguing problem are discussed at some length
in [Lap10], both from a physical and a mathematical point of view, for
fractal strings and their quantization (fractal membranes, see Section 12.4.2
below). It is fair to say, however, that on a rigorous level, the question
remains largely open at this point.
Remark 9.8: the authors’ initial hope and expectation is that the coupling

of a suitable (noncritical, i.e., of dimension D �= 1/2) fractal string and of
its dual string would help make the spectral oscillations of the resulting
string manifest, by a phenomenon akin to the resonance phenomenon in
the standard theory of vibrations, thereby showing (in view of Theorem 9.5
or 9.10 and the construction of Section 9.2, modified as suggested here)
that ζ(s) cannot have any critical zeros such that Re s �= 1/2. Of course, if
a fractal string is self-dual (i.e., critical or, equivalently, of dimension 1/2),
then such a resonance phenomenon cannot occur, so that this idea would
not preclude the existence of zeros on the line Re s = 1/2. Although, intui-
tively, these expectations are very natural, they have proved so far to be



9.4 Notes 277

very difficult to establish rigorously. A deeper understanding of the open
problem mentioned in the previous paragraph seems to be necessary before
any significant progress can be made in this direction. We note that in view
of the methods and results of Chapter 11 (especially, in Section 11.1), a
closely related comment can be made about a possible way to approach the
main conjectures discussed in Section 12.1.
Section 9.3: we refer to [Ter, §1.4] for information about Epstein zeta

functions, and to [ParSh1] for Hecke L-series associated with an algebraic
number field. Information on zeta functions associated with algebraic vari-
eties over a finite field can be found in [ParSh1, Chapter 4, §1].



10
Generalized Cantor Strings
and their Oscillations

In this chapter, we analyze the oscillations in the geometry and the spec-
trum of the simplest type of generalized self-similar fractal strings. The
complex dimensions of these generalized Cantor strings form a vertical
arithmetic sequence D + inp (n ∈ Z). We construct such a generalized
Cantor string for any real-valued choice of D and positive p. We also con-
struct for each positive integer Λ the so-called truncated Cantor strings,
which have a finite arithmetic progression D+ inp of complex dimensions,
where n is restricted by −Λ < n < Λ.
In Chapter 11, we shall apply the results of the present chapter and

our explicit formulas from Chapter 5 to prove that suitable Dirichlet series
with positive coefficients have no infinite vertical sequence of critical zeros
in arithmetic progression. Using the truncated Cantor strings, we shall
also obtain an upper bound for the possible length of such a progression of
critical zeros.

10.1 The Geometry of a
Generalized Cantor String

We begin by recalling the definition of the generalized Cantor string intro-
duced in Section 8.4.1:
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Definition 10.1. For real numbers a > 1 and b > 0, the generalized Can-
tor string (with parameters a and b) is the string

LD,p =
∞∑

n=0

bn δ{a−n}. (10.1)

That is, it is the string with lengths 1, a−1, a−2, . . . , repeated with (possibly
noninteger) multiplicity 1, b, b2, . . . .

In Section 8.4.1, we allowed b to be an arbitrary complex number, but in
this chapter, we assume that b is real. This corresponds to the requirement
that the Minkowski dimension D of LD,p is real. Moreover, 0 < D < 1
corresponds to 1 < b < a.
The geometric zeta function of this string is

ζD,p(s) =
1

1− b · a−s
. (10.2)

Its dimension is D = loga b and p = 2π/ log a is its oscillatory period.
One deduces from (10.2) that the complex dimensions are located at

the points ω = D + inp, with n ∈ Z. Hence, they lie on a single verti-
cal line, Re s = D, and their imaginary parts form a doubly infinite arith-
metic progression (see Figure 10.1). Further, the poles are simple, with
residue 1/ log a.
Remark also that the pairs (D,p) and (a, b) determine each other: D

and p are given above in terms of a and b, and conversely, a = e2π/p

and b = aD. (See also Section 8.4.1, Equation (8.28).) Note that if a > b > 1,
then D ∈ (0, 1) as in our usual framework. However, we need to consider
here for later use in Chapter 11 the more general case when D is an arbi-
trary positive or negative real number.
The geometric counting function is easy to compute. There are

1 + b+ b2 + · · ·+ bn

lengths less than x, with n = [loga x]. Thus

ND,p(x) =
bn+1 − 1

b− 1 =
b

b− 1b[loga x] − 1
b− 1 . (10.3)

Much as in Section 6.4.1, and using the Fourier series of the periodic func-
tion u �→ b−{u} (see formula (1.13)), we obtain

ND,p(x) =
xD

log a

∑
n∈Z

xinp

D + inp
− 1

b− 1 . (10.4)

Indeed, this coincides with the expression given by the explicit formula of
Theorem 5.14.
More generally, for the k-th integrated counting function, the pointwise

explicit formula without error term, Theorem 5.14, yields for every k ≥ 1
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0 1D
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◦

◦
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◦
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◦

◦

Figure 10.1: The complex dimensions of the generalized Cantor string with pa-
rameters a and b. Here, D = loga b and p = 2π/ log a.

(with (s)k given by Equation (5.12)):

N
[k]
D,p(x) =

xD+k−1

log a

∑
n∈Z

xinp

(D + inp)k

+
1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
(−1)j xk−1−j

1− b · aj
. (10.5)

This formula could also be derived from (10.4) by repeated integration,
keeping in mind that the constants of integration are fixed by the condition
that N

[k]
D,p(0) = 0 for k ≥ 1. It is not an easy matter, however, to compute

the second sum over j in this way.
In view of formula (10.3), and since aD = b, we clearly have the following

result:
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Theorem 10.2. The counting function of the lengths of a generalized Can-
tor string is monotonic, locally constant, with jumps of bn = xD at the
points x = an (n ∈ N).

10.2 The Spectrum of a Generalized Cantor String

Theorem 5.10, the pointwise explicit formula with error term, gives us the
following expansion for the spectral counting function:

N
[k]
ν,D,p(x) =

a

(a− b)
xk

k!
+

xD+k−1

log a

∑
n∈Z

ζ(D + inp)
(D + inp)k

xinp

+
1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
(−1)jζ(−j)

xk−1−j

1− b · aj
+Rν(x), (10.6)

for k ≥ 2. For k = 1, P [1]
ν is given by the same formula, as a distribution.

This follows from Theorem 5.18, the distributional formula with error term.
(See Remark 3.27, in conjunction with Section 6.4, which explains why our
explicit formulas can be applied in this situation to obtain (10.6).)

In case k = 1, using the explicit formula (10.4) for ND,p(x), we can even
derive a closed formula for the error term Rν(x), by a device similar to the
one used in the papers [LapPo2, LapMa2]. For reasons that will become
clear below, we write the explicit formula for ND,p, formula (10.4), as a
limit,

ND,p(x) =
b

b− 1b[loga x] − 1
b− 1 = lim

N→∞

1
log a

∑
|n|≤N

xD+inp

D + inp
− 1

b− 1 .

At x = 1, the value of the sum is the average of the limits at 1+ and 1−,
hence we obtain

1
log a

∞∑
n=−∞

1
D + inp

=
1

b− 1 +
1
2
.

Similarly, the total length of the generalized Cantor string is obtained as

1
1− b/a

=
1

log a

∞∑
n=−∞

1
1−D − inp

+
1
2
.

Since ND,p(x) vanishes for 0 ≤ x < 1, we have

Nν,D,p(x) =
[x]∑

k=1

ND,p(x/k).
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We substitute the explicit formula for ND,p(x/k) to obtain

Nν,D,p(x) = −
[x]

b− 1 + lim
N→∞

1
log a

∑
|n|≤N

[x]∑
k=1

(x/k)D+inp

D + inp
. (10.7)

We need the following expression for the truncated sum xs

s

∑[x]
k=1 k−s,

1
s

[x]∑
k=1

(x

k

)s

=
x

1− s
+
[x]
s
+

xs

s
ζ(s) + log a

∫ ∞

0

{
xat

}
a−stdt, (10.8)

where, as before, {x} denotes the fractional part of x. Collecting the terms
of order x, we deduce from (10.7) and (10.8) that

Nν,D,p(x) =
x

1− b/a
+ lim

N→∞

1
log a

∑
|n|≤N

xD+inp

D + inp
ζ(D + inp)− {x}

2

+ lim
N→∞

∫ ∞

0

{
xat

}
b−t

∑
|n|≤N

e−2πintdt.

Both limits exist, and it is well known that the second limit,
∑

n∈Z e−2πint,
is a sum of unit point masses at each integer. Since the integral starts at 0,
this point is counted with mass 1/2, which cancels the term − 1

2{x}. Thus
we obtain

Nν,D,p(x) =
x

1− b/a
+

1
log a

∞∑
n=−∞

xD+inp

D + inp
ζ(D + inp) +

∞∑
n=1

{xan} b−n.

(10.9)

In particular, the error term Rν(x) in Equation (10.6) with k = 1 satisfies

ζ(0)
1− b

+Rν(x) =
∞∑

n=1

{xan} b−n.

Using the fact that ζ(0) = −1/2, we deduce that

− 1
2(b− 1) ≤ Rν(x) ≤

1
2(b− 1) . (10.10)

Remark 10.3. There is an interesting alternative way to derive the above
explicit formula for the spectral counting function. Note that in general

Nν(x) =
∞∑

μ=1

∑
lj≤x/μ

1 =
∑
lj≤x

[ljx].
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Since [x] = x− {x}, and [ljx] = 0 for lj < 1/x, we obtain, as in the proof
of Theorem 1.20, that

Nν(x) = vol1(L)x−
∞∑

j=1

{ljx}.

We apply this to the Cantor string, with lengths an of multiplicity bn,
to obtain

Nν,D,p(x) =
x

1− b/a
−

∞∑
n=0

bn
{
xa−n

}
.

The function f(t) =
∑∞

n=−∞ bn−t {at−n} is clearly periodic with pe-
riod 1. Hence it has a Fourier series f(x) =

∑∞
m=−∞ cme2πimt, where

cm =
∫ 1

0

f(t)e−2πimtdt =
∫ ∞

−∞
{at}b−te−2πimtdt.

Using Equation (10.8) for x = 1, we can compute this integral to obtain

cm = −ζ(D + imp)
D + imp

, for all m ∈ Z.

Thus we deduce formula (10.9). See also the proof of Theorem 10.16, where
this method is applied.

10.2.1 Integral Cantor Strings: a-adic Analysis
of the Geometric and Spectral Oscillations

There is an important difference in the spectrum between integral and
nonintegral values of a. In this section, we study the first case, when a is
integral, and in Section 10.2.2, we study the case when a is nonintegral.

Definition 10.4. The generalized Cantor string constructed with the pa-
rameters a and b, is called integral if a ∈ N, a ≥ 2, and otherwise it is said
to be nonintegral .

Remark 10.5. When b is integral (i.e., when the multiplicities are positive
integers, b ∈ N∗), and 2 ≤ b < a (so that D = loga b lies in (0, 1)), then
the Cantor string is an ordinary fractal string, and we call it geometrically
realizable, or simply geometric, if no confusion can arise with our usage of
“geometric” in opposition to “spectral”.
For example, the (ternary) Cantor string is a generalized Cantor string

with parameters a = 3 and b = 2. Hence, it is both an integral Cantor
string (since a = 3 is an integer) and a geometric fractal string (since b = 2
is an integer).
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Remark 10.6. It may be helpful to the reader to see the connection be-
tween our present setting and that of Chapters 2 and 3. First, in Chapter 3,
we considered Dirichlet polynomials, and generalized Cantor strings corre-
spond exactly to the linear case of polynomials 1−m1r

s
1.

In the language of Chapter 2, where we considered arbitrary (geometric)
self-similar strings, assume that b is an integer greater than 1, and a > b
is real. Then η =

∑∞
n=0 bn δ{a−n} is geometrically realizable, and it is an

(ordinary, lattice) self-similar string with b scaling ratios that are all equal
to a−1: r1 = r2 = · · · = rb = a−1. Thus, in particular, its multiplicative
generator equals r = a−1 and k1 = · · · = kb = 1, in the notation of
Definition 2.14. The associated polynomial equation (2.38) is of degree 1,
and takes the form bz = 1, z = a−ω. Therefore, we recover the fact that
the complex dimensions of η lie on a single vertical line. Indeed, they are
the points ω = D + inp, with n ∈ Z, D = loga b and p = 2π/ log a.

The following result will enable us to determine very precisely the nature
of the jumps of the spectral counting function of an integral Cantor string
(see Corollary 10.8 below, along with its proof).
Recall from Theorem 1.19 that

Nν,D,p(x) = ND,p(x) +ND,p(x/2) +ND,p(x/3) + . . . . (10.11)

Thus, by a direct computation, we derive the spectral counterpart of for-
mula (10.3) for ND,p(x).

Theorem 10.7. Let x be a positive real number and let

x =
∑
k∈Z

xkak

be the expansion of x in base a. Then the spectral counting function, Nν(x),
of the integral Cantor string with parameters a and b is given by the fol-
lowing formula:

Nν(x) =
a

a− b
x− 1

a− b

(
a

−1∑
k=−∞

xkak + b

∞∑
k=0

xkbk

)
. (10.12)

Proof. Observe that the digits of x form a finite sequence to the left in the
sense that xk = 0 for k � 0. The expansion of x in base a allows us to
obtain an expression for the integer part of a−nx :

[
a−nx

]
=

[∑
k∈Z

xkak−n

]
=

∞∑
k=n

xkak−n.

Thus we can compute the counting function of the frequencies as follows:

Nν(x) =
∞∑

n=0

[
a−nx

]
bn =

∞∑
n=0

∞∑
k=n

xkak−nbn.
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Now we interchange the order of summation. The inner sum becomes the
finite sum

∑k
n=0 ak−nbn = (ak+1 − bk+1)/(a− b). Thus

Nν(x) =
∞∑

k=0

xk

k∑
n=0

ak−nbn =
∞∑

k=0

xk
ak+1 − bk+1

a− b
.

Next observe that
∑

k≥0 xkak = x−∑
k<0 xkak. Thus we obtain

Nν(x) =
a

a− b
x− 1

a− b

(
a

−1∑
k=−∞

xkak + b

∞∑
k=0

xkbk

)
.

This is the desired formula.

Corollary 10.8. The counting function of the frequencies, Nν(x), of an
integral Cantor string jumps by

bn+1 − 1
b− 1

at integral values of x that are divisible by an and not by an+1 (n ∈ N).

Proof. Let x be exactly divisible by an. Then, there are two ways to rep-
resent x in base a:

x+ =
∞∑

k=n

xkak and x− =
∞∑

k=n+1

xkak + (xn − 1)an +
n−1∑

k=−∞
(a− 1)ak.

Note that the n-th digit, xn, does not vanish. By the above formula (10.11)
for Nν , we find the two values

Nν(x+) =
a

a− b
x− 1

a− b

(
bxnbn + b

∞∑
k=n+1

xkbk

)
and

Nν(x−) =
a

a− b
x− 1

a− b

(
a

−1∑
k=−∞

(a− 1)ak + b
n−1∑
k=0

(a− 1)bk

+ b(xn − 1)bn + b

∞∑
k=n+1

xkbk

)
.

These values are the limit of Nν(t) when t approaches x from above and
from below, respectively. Hence we conclude that, at the point x, Nν jumps
by

a

a− b

−1∑
k=−∞

(a− 1)ak +
b

a− b

n−1∑
k=0

(a− 1)bk − b

a− b
bn =

bn+1 − 1
b− 1 ,

as was to be proved.
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10.2.2 Nonintegral Cantor Strings: Analysis of the Jumps in
the Spectral Counting Function

In this section, we study the oscillations in the spectrum of nonintegral
Cantor strings. This is the most important case for us, as will be seen in
Chapter 11. In applications, we need to choose the oscillatory period p to
be large. Since a = e2π/p, this means that a is a nonintegral real number,
slightly greater than 1.

Theorem 10.9. At x = an (n ∈ N), the spectral counting function Nν(x)
jumps by at least bn = xD. Hence Nν(x) has jumps of order D at such
points.

More precisely, let m be the smallest positive integer such that am is an
integer, or let m =∞ if am is never an integer for m ≥ 1. Let q = [n/m] ,
the integer part of n/m, or q = 0 if m =∞. Then Nν jumps by

bn + bn−m + bn−2m + · · ·+ bn−qm, (10.13)

at x = an. In other words, the value of the limit

lim
h→0+

Nν(an + h)−Nν(an − h)

is given by (10.13).

Remark 10.10. The case m = 1 corresponds to integral Cantor strings
and has been treated in more detail in the previous section. When m =∞,
the sum (10.13) only contains the term bn.

Proof of Theorem 10.9. The frequencies are the numbers k ·aj , with multi-
plicity bj (with k ∈ N∗, j ∈ N). Thus the frequency an is found for all possi-
ble choices of k and j such that kaj = an. We find j = n, n−m, . . . , n−qm
as possible choices, and the corresponding multiplicities add up to a positive
jump of

bn + bn−m + · · ·+ bn−qm.

Since for x = an, we have bn = xD, the jump is of order xD.

Remark 10.11. We see that when passing from the geometry to the spec-
trum of a generalized Cantor string, the oscillations remain of the same
order. Thus, in a sense, the spectral operator (defined in Section 6.3.2) is
invertible when restricted to the class of generalized Cantor strings. This
observation will play an important role in Chapter 11.

10.3 The Truncated Cantor String

In this section, we study the geometry and the spectrum of truncated Can-
tor strings. This will enable us in Section 11.1.1 to obtain an upper bound
for the length of finite arithmetic progressions of critical zeros of ζ(s).
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First, we begin with some technical preliminaries. As before, let δn denote
the distribution

δn(f) =
∫ ∞

−∞
δn(x)f(x) dx = f(n).

The following function, called the Fejer kernel, approximates the sum∑
n∈Z

δn

of delta functions at the integers.

Definition 10.12. For an integer Λ > 0 and x ∈ R,

KΛ(x) =
∑
|n|<Λ

(
1− |n|

Λ

)
e2πinx =

∑
|n|<Λ

cne2πinx.

We write cn = 1− |n|/Λ for the coefficients of KΛ, Λ being fixed.

Proposition 10.13. The function KΛ has most of its mass concentrated
around the integers:

(i) KΛ(x) ≥ 0 for all x ∈ R,

(ii) the total mass
∫ 1

0
KΛ(x) dx equals 1,

(iii)
∫ 1/Λ

0
KΛ(x) dx >

∫ 1

0

(
sin πt

πt

)2
dt =: C1 > 9/20.

Proof. It is well known that

KΛ(x) =
1
Λ

(
sinπΛx

sinπx

)2

;

see, e.g., [Fol, Section 8.5 and Exercise 33, p. 269]. This proves (i).
Property (ii) is clear since the constant coefficient of the Fourier series

of KΛ equals 1.
For (iii), we use sin2(πx) < (πx)2 to obtain∫ 1/Λ

0

KΛ(x) dx >
1
Λ

∫ 1/Λ

0

(
sinπΛx

πx

)2

dx =
∫ 1

0

(
sinπt

πt

)2

dt

by the substitution Λx = t. Using Maple, we find that the last integral is
slightly larger than 0.45.

Let, as usual, a = e2π/p, so that log a = 2π/p. We define the trun-
cated generalized Cantor string T via the explicit formula for its geometric
counting function,

NT (x) =
1

log a

∑
|n|<Λ

(
1− |n|

Λ

)
xD+inp − 1
D + inp

, (10.14)
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for x ≥ 1, and NT (x) = 0 for x ≤ 1.
The function NT (x) is differentiable with nonnegative derivative given

by N ′
T (x) =

1
log a xD−1KΛ(loga x). Thus the corresponding measure van-

ishes on x ≤ 1 and is positive for x > 1. We obtain the direct formula for
the geometric counting function as the integral of this function,

NT (x) =
1

log a

∫ x

1

tDKΛ(loga t)
dt

t
=

∫ loga x

0

aDtKΛ(t) dt. (10.15)

Thus NT (x) is increasing, with slope am(D−1)Λ/ log a at integral powers
x = am of a.
The ‘volume’ of the truncated Cantor string is given by (see Remark 8.2)

vol1(T ) =
1

log a

∑
|n|<Λ

(
1− |n|

Λ

)
1

1−D − inp
=

∫ ∞

0

a(D−1)tKΛ(t) dt.

(10.16)

Using the following lemma, we can estimate vol1(T ).

Lemma 10.14. For d ∈ (0, 1) we have the estimate∑
|n|<Λ

(
1− |n|

Λ

)
1

d+ inp
<
1
d

e2ζ(2)/p2
.

Proof. We combine the terms for positive and negative n to estimate(
1− |n|

Λ

)(
1

d− inp
+

1
d+ inp

)
<

2d
d2 + n2p2

<
2

n2p2
.

Hence their sum is bounded by

1
d
+

∞∑
n=1

2
n2p2

<
1
d

(
1 +

2ζ(2)
p2

)
<
1
d

e2ζ(2)/p2
,

as claimed.

Let C2 := e2ζ(2). We then deduce from Lemma 10.14 applied to d = 1−D
that

1
1−D

< vol1(T ) log a < C
1/p2

2

1
1−D

. (10.17)

Remark 10.15. Note that C2 ≈ 26.84. In the applications in Chapter 11,
we will usually assume that p is large, so that C

1/p2

2 is only slightly larger
than 1. Since log a = 2π/p, this implies that

vol1(T ) ≈
p

2π(1−D)

for large values of the oscillatory period.
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10.3.1 The Spectrum of the Truncated Cantor String

The counting function of the spectrum of T is given by

Nν(x) =
[x]∑

μ=1

NT (x/μ).

Using the direct formula (10.15), we obtain

Nν(x) =
∫ ∞

0

[
xa−t

]
aDtKΛ(t) dt = vol1(T )x−

∫ ∞

0

{
xa−t

}
aDtKΛ(t) dt.

(10.18)

Recall the notation cn = 1− |n|/Λ and formula (10.16) for vol1(T ).
Theorem 10.16. The function Nν(x) = Nν,T (x) is given by the following
explicit formula:

Nν(x) = vol1(T )x+
1

log a

∑
|n|<Λ

cn
xD+inp

D + inp
ζ(D + inp)

+
∫ ∞

0

{
xat

}
a−DtKΛ(t) dt. (10.19)

Proof. By Equation (10.18) above,

Nν(x) = vol1(T )x− f(x) +
∫ ∞

0

{
xat

}
a−DtKΛ(t) dt,

where f(x) =
∫∞
−∞{xat}a−DtKΛ(t) dt. Observe that f(ax) = aDf(x) so

that the function x−Df(x) is multiplicatively periodic. Its Fourier series is
of the form

x−Df(x) =
∞∑

m=−∞
amximp,

where p = 2π/ log a. The coefficients are given by

am =
∫ 1

0

e−2πimxa−Dxf(ax) dx.

Thus

am =
∫ 1

0

e−2πimxa−Dx

∫ ∞

−∞

{
ax+t

}
a−DtKΛ(t) dt dx

=
∑
|n|<Λ

cn

∫ 1

0

e−2πimxa−Dx

∫ ∞

−∞

{
ax+t

}
a−Dte2πint dt dx.
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We substitute t = u− x to obtain

am =
∑
|n|<Λ

cn

∫ 1

0

e−2πi(m+n)x

∫ ∞

−∞
{au}a−Due2πinu du dx.

Since the inner integral does not depend on x, there is only a contribution
for n = −m, and we obtain

am = cm

∫ ∞

−∞
{at}a−Dte−2πimt dt = cm

∫ ∞

−∞
{at}a−(D+imp)t dt.

By formula (10.8) above for x = 1 we obtain that

f(x) = − 1
log a

∑
|n|<Λ

cn
xD+inp

D + inp
ζ(D + inp),

thus proving (10.19).

Remark 10.17. As in Remark 10.3, we could also derive this explicit for-
mula in a way analogous to Section 10.2. That approach was taken in the
paper [vF3].

10.4 Notes

Section 10.2.1 greatly improves some of the results of [LapPo2, Example 4.5,
pp. 65–67], dealing with the (ternary) Cantor string. The Cantor string was
studied, in particular, in the papers [LapPo1; LapPo2, Example 4.5; Lap2–
3], as well as in Chapter 1 and Sections 2.3.1, 6.4.1 and 8.4.1 of this book.



11
The Critical Zeros of Zeta Functions

As we saw in Chapter 10, the complex dimensions of a generalized Can-
tor string form an arithmetic progression {D + inp}n∈Z, with 0 < D < 1
and p > 0. In this chapter, we use this fact to study arithmetic progressions
of critical zeros of zeta functions.
By combining our explicit formulas with the analysis of the oscillations

in the geometry and spectrum of generalized Cantor strings carried out in
Chapter 10, we show, in Theorems 11.1, 11.12 and 11.16, that the Riemann
zeta function—and other zeta functions from a large class of Dirichlet series
not necessarily satisfying a functional equation or an Euler product—does
not have an infinite sequence of critical zeros forming an (almost) arithmetic
progression. C. R. Putnam [Pu1–2] was the first to obtain such a result in
the special case of the Riemann zeta function. We have found this result
independently, first for the Riemann and Epstein zeta functions [Lap-vF2],
and then in the generality presented here (see [Lap-vF4] and [Lap-vF5,
Chapter 9]), which is natural in our framework and for which Putnam’s
method does not work.
In Section 11.1, we first present our proof for ζ(s), the Riemann zeta

function, and then indicate in Sections 11.2 and 11.3 the changes necessary
to obtain the general theorem, as well as to extend it to almost arithmetic
progressions. In Section 11.4, we combine a special case of Theorem 11.16
with results from algebraic number theory to extend some of our results to
Hecke L-series. Finally, in Section 11.5, we discuss a situation where our
argument does not apply, and where the conclusion of Theorem 11.16 does
not hold, the case of the zeta function of a curve over a finite field.
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These results give rise to the problem of determining how long an arith-
metic progression of zeros can be. This question is partially answered in
Sections 11.1.1 and 11.4.1, where we derive an upper bound for the length of
such a progression of zeros, for the Riemann zeta function (Theorem 11.5)
and for Dirichlet L-series (Theorem 11.23). These latter results were first
obtained in [vF3] and [Watk,vFWatk], respectively.
As will be clear to the reader, the tools developed in Chapter 5—namely,

our distributional explicit formula (Theorem 5.18) along with the corres-
ponding distributional error estimate (Theorem 5.30)—once again play an
essential role in our proof of the main results of this chapter, Theorems 11.1,
11.12 and 11.16.

11.1 The Riemann Zeta Function:
No Critical Zeros in Arithmetic Progression

Let LD,p be the generalized Cantor string of Sections 8.4.1 and 10.1, with
lengths a−n repeated with multiplicity bn (1 < b < a, n = 0, 1, 2, . . . ). As
before, we denote the geometric and spectral counting function by ND,p(x)
and Nν(x) = Nν,D,p(x), respectively. In the previous chapter, we computed
ND,p(x) and Nν(x) by a direct calculation. In this chapter, we compute
them again, but this time by using our explicit formulas in order to obtain
the desired connection with the zeros of the Riemann zeta function.
Theorem 5.14, applied to ND,p(x), yields

ND,p(x) =
1

log a

∞∑
n=−∞

xD+inp

D + inp
− 1

b− 1 , (11.1)

where p = 2π
log a and D = loga b is determined by aD = b.

We have to interpret Nν(x) as a distribution.1 We choose a screen to the
left of Re s = 0. Theorem 5.18 in conjunction with Theorem 5.30 yields

Nν(x) =
a

a− b
x+

1
log a

∞∑
n=−∞

ζ(D + inp)
xD+inp

D + inp
+O (1) , (11.2)

as x→∞ (see Remark 3.27 and Section 6.4.3).

Theorem 11.1. Let 0 < D < 1 and p > 0 be given. Then there exists an
integer n �= 0 such that ζ(D+inp) �= 0. That is, the Riemann zeta function
does not have an infinite sequence of critical zeros forming an arithmetic
progression.

1Throughout this section, for simplicity, we use the symbol Nν(x), instead of the
more precise notation Nν,D,p(x) used in Chapter 10, to refer to the spectral counting
function of LD,p.
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Remark 11.2. Note that the theorem implies that ζ(D+ inp) �= 0 for in-
finitely many integers n. Indeed, if ζ(D + inp) were to be nonzero for
only finitely many n ∈ Z, say for |n| < M , then we would obtain a
contradiction by applying the theorem to D and Mp instead of to D
and p. In Section 11.3, we also obtain information about the density of
the set {n ∈ Z : ζ(D + inp) �= 0} in the set of integers. The same remark
applies to Theorem 11.12 below.

Remark 11.3. A priori, our result implies that ζ does not have a vertical
doubly infinite sequence of critical zeros in arithmetic progression. However,
since the Riemann zeta function satisfies a functional equation relating ζ(s)
and ζ(1− s), and ζ(s) does not vanish for Re s ≥ 1 by the Euler product,
it follows immediately that every doubly infinite sequence of zeros on one
line must be vertical, say on the line Re s = D, with D ∈ (0, 1). On the
other hand, since ζ(s) vanishes at s = −2, −4, −6, . . . , the Riemann zeta
function does have a horizontal arithmetic sequence of zeros that is infinite
to the left.
The analogue of this remark applies to all the natural arithmetic zeta

functions since they also satisfy a functional equation and have a convergent
Euler product to the right of the critical strip. This is the case, for exam-
ple, of the Hecke L-series of number fields, as well as of the more general
L-series, to which the results of Section 11.2 or 11.4 can be applied.

Proof of Theorem 11.1. Assume that ζ(D + inp) = 0 for all n �= 0. Let
a = e2π/p and b = aD. The generalized Cantor string LD,p with these
parameters has complex dimensions at all the points D + inp (n ∈ Z); see
Section 10.1 above. Equation (11.2), the explicit formula for the frequencies,
then becomes very simple. Indeed, all the terms corresponding to xD+inp,
with n �= 0, disappear since ζ(D+inp) = 0. The resulting formula therefore
reads

Nν(x) =
a

a− b
x+ ζ(D)

xD

D log a
+ o

(
xD

)
, as x→∞, (11.3)

as a distribution on (0,∞). We see that the frequencies of this Cantor
string do not have oscillations of order D. On the other hand, we have seen
in Theorem 10.9 that Nν(x) jumps by at least bq at aq, for each q ∈ N.
Since b = aD, we see that Nν(x) jumps by at least xD at x = aq. But this
means that Nν has oscillations of order D. Since this is a contradiction, we
conclude that ζ(D + inp) �= 0 for some integer n �= 0.

Second proof of Theorem 11.1. It suffices to prove the theorem for D ≥ 1
2

because of the functional equation satisfied by ζ (see, for example, [Ti,
Chapter II]). Now, let D > 1/4 and p > 0 be such that ζ(D + inp) �= 0 for
at most finitely many values of n. Put a = e2π/p and b = aD and consider
the same generalized Cantor string LD,p as above. Instead of applying the
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distributional explicit formula at level 1 to obtain a formula for Nν(x), we
can apply the pointwise explicit formula at level 2, as we now explain.
We choose some value σ0 strictly between − 1

2 and 0. Then hypotheses L1
and L2 are satisfied—meaning that LD,p is languid—with κ = 1

2 − σ0 for
the screen S : σ0 + it, t ∈ R (see Section 6.2.2). By Theorem 5.10, applied
for k = 2, the integrated counting function of the frequencies of LD,p is
given by

N [2]
ν (x) =

a

(a− b)
x2

2
+

xD+1

log a

∑
n∈Z

ζ(D + inp)
(D + inp)2

xinp

+
x

1− b
ζ(0) +O

(
xσ0+1

)
, (11.4)

as x → ∞. Here, (ω)2 = ω(ω + 1), as in Equation (5.12). Note that by
assumption, the sum over n in formula (11.4) has finitely many nonzero
terms.
Much as in [In, Theorem C, p. 35], we deduce from Equation (11.4) by

a Tauberian argument that

Nν(x) = N [1]
ν (x) =

a

a− b
x+

∑
n∈Z

xD+inp

log a

ζ(D + inp)
D + inp

+O
(
x

σ0+1
2

)
,

(11.5)

as x → ∞. Again, the sum over n in formula (11.5) has finitely many
nonzero terms, and hence defines a continuous function of x. Since we
assumed that D > 1/4, we can choose σ0 > − 1

2 such that (σ0 + 1)/2 < D.
We deduce that the counting function of the frequencies of this Cantor
string does not have jumps of order D. But this contradicts Theorem 10.9.

One remaining problem is to estimate the number of zeros of the Riemann
zeta function that possibly lie in a vertical arithmetic progression. This
question is the subject of the next section, where we consider the spectrum
of truncated generalized Cantor strings. The argument in Section 11.1.1
depends on a closed expression for the error term in the explicit formula
for Nν(x). It was first published in [vF3]. We present yet another proof of
Theorem 11.1 to illustrate the advantage of having such a closed expression
for the error term.

Third proof of Theorem 11.1. Using formula (10.9), we can even determine
an explicit value of x for which we obtain a contradiction. If ζ(D+inp) = 0
for all integers n �= 0, it then follows from (10.9) that

Nν(x) =
x

1− b/a
− 1
log a

xD

D
(−ζ(D)) +

∞∑
n=1

{xan} b−n.
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The last sum is estimated by

0 ≤
∞∑

n=1

{xan} b−n ≤
∞∑

n=1

b−n =
1

b− 1 .

Thus the jump Nν(x+)−Nν(x−) is at most 1
b−1 . Since b = e2πD/p, we have

that 1
b−1 < p

2πD . On the other hand, we have seen that the jump at an is
at least bn. Hence, we obtain a contradiction when bn ≥ p

2πD . For

n =
[ p
2πD

log
p
2πD

]
+ 1

we have bn > p
2πD . For this integer, x = an is slightly larger than

(
p

2πD

)1/D.

In order to obtain the analogue of this result for a broader class of zeta
functions, we have to use our distributional explicit formula (Theorems 5.18
and 5.30) in Section 11.2 below, as in the first proof of Theorem 11.1 pre-
sented above, rather than our pointwise formula (Theorem 5.10) as in the
second proof of this theorem. This was one of our main original motivations
for developing the distributional theory of explicit formulas, as completed
in Section 5.4.2 and Theorem 5.30.

As was alluded to in Remark 10.11, the following corollary captures the
essence of our method of proof in this context (compare Corollary 9.6 above
and review Section 6.3.2, where we have defined the spectral and inverse
spectral operators for fractal strings):

Corollary 11.4. The spectral operator is invertible when restricted to the
class of generalized Cantor strings.

11.1.1 Finite Arithmetic Progressions of Zeros

One generally conjectures that the Riemann zeta function has no zeros off
the line Re s = 1/2 inside the critical strip, and that the zeros on this line
are never in an arithmetic progression (i.e., 1/2 + ip and 1/2 + 2ip are
never both zeros of ζ(s)).2 This can be verified numerically using a table
of zeros from Odlyzko [Od3], which lists the first three million zeros, the
last one of which has an imaginary part of 1.13 · 106. Thus Theorem 11.5
below has been verified numerically for all p < 5.6 · 105.
For the 924,280th zero in this table,

1
2 + it = 1

2 + 558,652.035 125 523 i,

2A much more general conjecture will be discussed in Section 12.1; see Conjec-
ture 12.1.
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the number 1
2 + 2it is very close to the 1,971,817th zero,

1
2 + 1,117,304.070 251 415 i,

but there are still three significant digits to distinguish these points from
each other. This is the closest approximation to an arithmetic progression
of zeros found in this table.
We present here the argument of [vF3] giving an upper bound for the

length of an arithmetic progression of zeros of ζ(s).

Theorem 11.5. Let p > 0 and D ∈ (0, 1) be real numbers and let Λ ≥ 2.
Suppose that ζ(D+inp) = 0 for all integers n such that 0 < |n| < Λ. Then

Λ < 60 logp
(
p
2π

) 1
D −1

.

Moreover, Λ < 13p if D = 1/2 and Λ < 80(p/2π)1/D−1 if D < 0.96.

In light of the functional equation satisfied by ζ(s), we can assume with-
out loss of generality that D ≥ 1/2. Thus the length of an arithmetic
progression is bounded by O(p) for D = 1/2, and by o(p) for D > 1/2.

To establish the theorem, we use the truncated Cantor string (of dimen-
sion D) defined by the geometric counting function (10.14) in Section 10.3,
and with spectral counting function Nν(x) (as studied in Section 10.3.1).
Note that like the generalized Cantor strings used earlier in this section
(i.e., in Section 11.1), truncated Cantor strings are “virtual fractal strings”
in the sense that they do not have a geometric realization as an open subset
of the real line.

We obtain a bound for Λ by showing in the next lemma using a direct
computation that the function Nν(x) increases by a large amount as x
increases from am to am+ε, and then, using the explicit formula, that Nν(x)
does not increase by much if ζ(s) vanishes for many values of s in an
arithmetic progession (Lemma 11.7).

Lemma 11.6. Let m ∈ N and ε = 1/Λ. Then

Nν

(
am+ε

)
−Nν (am) > C1a

mD,

where C1 =
∫ 1

0

(
sin πt

πt

)2
dt > 9/20 is the absolute constant of Proposi-

tion 10.13(iii).

Proof. As in Section 10.3, letNT (x) denote the geometric counting function
of the truncated Cantor string, given by formula (10.14), or equivalently,
by (10.15). Since Nν(x) =

∑∞
μ=1 NT (x/μ), and NT (x) is nondecreasing

for x ≥ 1, we have for y > x that

Nν(y)−Nν(x) ≥ NT (y)−NT (x) =
∫ loga y

loga x

atDKΛ(t) dt,
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by formula (10.15). For x = am, y = am+ε and ε = 1/Λ, we obtain an
increase of at least amD

∫ ε

0
KΛ(t) dt > C1a

mD, by Proposition 10.13(iii).

Next we assume that ζ(D+ inp) = 0 for all n, 0 < |n| ≤ Λ−1, and show
that Nν(x) does not increase by much.

Lemma 11.7. Assume that ζ(D + inp) = 0 for 0 < |n| ≤ Λ − 1. Then,
with ε = 1/Λ and for all integers m ≥ 0, we have

Nν (am+ε)−Nν (am)
ε

< C
1/p2

2

am+ε

1−D
+ amDζ(D) + C

1/p2

2

Λ
D log a

,

where C2 = e2ζ(2) is the absolute constant occurring in Equation (10.17).

Proof. By Theorem 10.16 we have

Nν

(
am+ε

)
−Nν (am) = am (aε − 1) vol1(T ) +

amD

log a

aεD − 1
D

ζ(D)

+
∫ ∞

0

({
am+ε+t

}
−

{
am+t

})
a−tDKΛ(t) dt, (11.6)

where vol1(T ) denotes the ‘volume’ of the truncated Cantor string, as given
in formula (10.16).
Next, we use that {x} ≤ 1 and KΛ(t) ≥ 0 (by Proposition 10.13(i)) to

estimate the integral on the right-hand side of (11.6),∣∣∣∣∫ ∞

0

({
am+ε+t

}
−

{
am+t

})
a−tDKΛ(t) dt

∣∣∣∣ ≤ ∫ ∞

0

a−tDKΛ(t) dt.

This last integral evaluates to

1
log a

∑
|n|<Λ

cn

D + inp
< C

1/p2

2

1
D log a

,

by Lemma 10.14 (recall that cn = 1−|n|/Λ and C2 is given in Lemma 11.7).
We also estimate vol1(T ) by (10.17). Then we multiply by Λ = 1/ε and

estimate (aε− 1)/ε < aε log a and (aεD− 1)/εD > log a by using the Mean
Value Theorem and the fact that ζ(D) < 0. This completes the proof of
Lemma 11.7.

To complete the proof of Theorem 11.5, we combine the lower bound of
Lemma 11.6 for the jump ofNν at am with the upper bound of Lemma 11.7.
Write

A = C1Λ(1−D)− ζ(D)(1−D) (11.7)



300 11. The Critical Zeros of Zeta Functions

and
B = aεC

1/p2

2 .

Combining Lemmas 11.6 and 11.7, we obtain, since ζ(D) < 0 and using
that log a = 2π/p, that

AamD −Bam < C
1/p2

2

Λ(1−D)
D log a

< C
1/p2

2

pA

2πC1D
. (11.8)

The function AxD − Bx attains its maximum at the value x = at such
that DAxD = Bx, i.e.,

at = x = D1/(1−D)A1/(1−D)B−1/(1−D), (11.9)

or equivalently,

t =
1

1−D
loga(DA/B).

Note that aε ≤ eπ/p since Λ ≥ 2. Therefore, B < e4/p. If DA ≤ B, we
obtain

C1Λ <
e4/p

1−D
+ ζ(D) =

1
D
+

(
ζ(D)− 1

D − 1

)
+

e4/p − 1
D(1−D)

.

We now use the following zero-free region of the Riemann zeta function
(see [vF3, Theorem 2.4]):

Lemma 11.8. If ζ(D + ip) = 0, then 1
1−D < 18 logp.

We obtain that

C1Λ <
1
D
+

(
ζ(D)− 1

D − 1

)
+
18(e4/p − 1) logp

D
.

Now ζ(D) − 1
D−1 is a bounded function for 1/2 ≤ D < 1. In fact, the

function on the right is decreasing for 1/2 ≤ D < 1. Since the theorem has
been verified for all p < 5.6 · 105, we obtain Λ ≤ 5.
If, on the other hand, DA > B, then t > 0, and we choose m = �t�.

Then

AamD −Bam > AatD −Ba · at = AatD(1− aD). (11.10)

Lemma 11.9. For p > 10,000, we have 1− aD > (1−D)e−120(log p)/p.

Proof. Use a = e2π/p and ex − 1 < x
1−x to estimate

1− aD

1−D
= 1− (a− 1) D

1−D
> 1− 2πD

(p− 2π)(1−D)
.
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Figure 11.1: (a) The function f(D) = (1 − D)1−1/D(C1D)−1/D.
(b) The function 1

1−D
f(D).

Estimating D by 1 and 1/(1−D) by Lemma 11.8, we obtain

1− aD

1−D
> 1− 36π logp

p− 2π .

Using Maple, one can verify that for p > 10, 000, the function on the right
is bounded from below by e−120 log p/p.

Combining (11.8), (11.10) and Lemma 11.9, we obtain a bound for atD.
Using (11.9), this yields the following bound for A, and hence for Λ,

Λ <
A

C1(1−D)
<

1
1−D

(
p
2π

) 1
D −1

(1−D)1−1/D(C1D)−1/De160 log p/p.

(11.11)

For D = 1/2 and p > 44,000, we thus obtain

Λ < 13p.

The function (1−D)1−1/D(C1D)−1/D is bounded away from 0 and de-
creasing (see Figure 11.1(a)), whereas (1 −D)−1 increases without bound
as D ↑ 1. The product of these two functions (see Figure 11.1(b)) decreases
for 1/2 ≤ D < 0.78, and then increases. For D < 0.96, the value of this
product is less than the value at D = 1/2. Thus for 1/2 ≤ D < 0.96 and
large enough p, we obtain

Λ < 80
(
p
2π

) 1
D −1

.



302 11. The Critical Zeros of Zeta Functions

Close to the minimum at D = 0.78, for 0.69 < D < 0.86, we even obtain

Λ < 30
(
p
2π

) 1
D −1

.

And for D ≥ 0.96, we use again the zero-free region of Lemma 11.8 to
obtain

Λ < 60 logp
(
p
2π

) 1
D −1

.

This completes the proof of Theorem 11.5.

Remark 11.10. Lemma 11.7 is quite weak. The integrand in (11.6) is
highly oscillatory, but we only estimate the difference of the fractional parts
by 1, and therefore the integral by O(p). It may be the case, however, that
this integral has a fixed bound, and this would imply a uniform bound
for Λ, independent of p. This would be a highly significant result, as we
now explain.
In (11.11), we estimated C1Λ(1−D) < A by formula (11.7), ignoring the

term ζ(D)(1−D). If Λ could be uniformly bounded, then taking this term
into account would reduce the bound for Λ even more, especially for D close
to 1. This could yield a zero-free region for the Riemann zeta function of
the form “if ζ(D + ip) = 0 then D ≤ σ” for some fixed σ < 1.
Note that a bound Λ ≤ 2 would exclude any arithmetic progression,

and Λ ≤ 1 (which means a contradiction) for D �= 1/2 would imply the
Riemann hypothesis. This last bound is unattainable by these methods
for D close to 1/2, because it cannot be attained at D = 1/2. However,
if Lemma 11.7 can be improved to yield a uniform bound for Λ, then the
present methods may be applied to the doubled truncated Cantor string,
defined by

NTT (x) = αNΛ,D,p(x) +NΛ,1−D,p(x),

where NΛ,D,p(x) = NT (x) is as in (10.14), and α is a positive parameter.
Since the nature of this string is different for D = 1/2 than for D �= 1/2,
it might yield a result valid for all D > 1/2.3

Clearly, for D = 1/2, the string TT is a trivial multiple of T , whereas
for D > 1/2, the increase of NT at x = am is reinforced in NTT by the extra
complex dimensions at 1−D + inp. Thus the counterpart of Lemma 11.6
would be a stronger result. On the other hand, since ζ(D + inp) = 0
implies ζ(1−D + inp) = 0, the explicit formula for the spectral counting
function Nν(x) for the generalized fractal string TT still simplifies, and
the counterpart of Lemma 11.7 remains essentially the same, with an extra

3For closely related reasons, such a “doubling” of suitable fractal strings was used
by the authors in an unpublished work aimed at improving the results and methods
of [LapMa1, 2] and of [Lap-vF5, Chapter 7] (corresponding to Chapter 9 in the present
book).
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term containing ζ(1 − D). This term then even improves the subsequent
counterpart of inequality (11.8).

Remark 11.11. We refer to Section 12.1 for a discussion of the irrational-
ity conjecture for the critical zeros of the Riemann and other zeta functions,
as well as for conjectures regarding the relationship between the number of
poles of a Dirichlet series and the maximal possible length of an arithmetic
progression of zeros.

11.2 Extension to Other Zeta Functions

The first (distributional) proof of Theorem 11.1 generalizes naturally to
a large subclass of the class of zeta functions introduced at the end of
Chapter 9. As was mentioned in the introduction, this subclass includes all
Epstein zeta functions and all Dedekind zeta functions of algebraic number
fields (see [Ter] and [Lan], along with Appendix A). By a refinement of
the argument, we also obtain an estimate for the density of nonzeros in
arithmetic progressions, in Section 11.3 below.
We now precisely state the assumptions on the zeta functions ζB for

which our results apply:

(P)

Given a sequence wf of positive coefficients associated with a
sequence of positive real numbers f , let ζB(s) =

∑
f wff−s be

the corresponding (generalized) Dirichlet series. Assume that
for some screen S, this function is languid and has only finitely
many poles contained in the associated window W .

Recall that ζB is said to be languid if it satisfies the growth hypothe-
ses L1 and L2 of Definition 5.2. Loosely speaking, this means that the
meromorphic continuation of ζB grows polynomially along horizontal lines
and along the vertical direction of the screen. Under these assumptions, we
prove

Theorem 11.12. Let ζB be a zeta function satisfying hypothesis (P) above.
Let p > 0 be arbitrary and let D ∈ W ∩ R be such that the vertical line
Re s = D lies entirely within W . Then there exists an integer n �= 0 such
that ζB(D + inp) �= 0. That is, ζB(s) does not have an infinite vertical
sequence of zeros forming an arithmetic progression within the window W .

Before proving Theorem 11.12, we indicate how to associate a generalized
fractal spray to ζB . First, we view the Dirichlet series ζB as the spectral
zeta function of a virtual basic shape B. By definition, the ‘frequency’ f has
multiplicity wf ; see Section 4.3. Then, given D and p as in Theorem 11.12,
let L = LD,p be the generalized Cantor string of dimension D and oscil-
latory period p, as defined in Sections 8.4.1 and 10.1. Note that here, in
contrast to Section 11.1, we do not restrict D to be between 0 and 1. Next,
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consider the generalized Cantor spray of L with virtual basic shape B. Re-
call from Section 4.3, Equation (4.35), that the spectral zeta function of
this spray is given by

ζν(s) = ζB(s) · ζL(s).

We have to interpret the corresponding spectral counting function Nν(x)
as a distribution. Theorem 5.18 in conjunction with Theorem 5.30 yields
the following explicit formula for the frequencies of this spray:

Nν(x) = W
[1]
B,L(x) +

1
log a

∞∑
n=−∞

ζB(D + inp)
xD+inp

D + inp
+O

(
xsup S

)
,

(11.12)

as x→∞, where supS is given by (5.17b) and

W
[1]
B,L(x) =

∑
u: pole of ζB

res
(

ζB(s)ζL(s)
s

xs;u
)

(11.13)

is the Weyl term (see Section 6.6, formula (6.76), along with Remark 3.27
and Section 6.4). By the assumption in hypothesis (P), the sum over the
poles of ζB in (11.13) has only finitely many nonzero terms.

Proof of Theorem 11.12. Assume that ζB(D + inp) = 0 for all n �= 0. As
above, let L = LD,p be the generalized Cantor string with a = e2π/p

and b = aD. Then the generalized Cantor spray of L on B has complex
dimensions at all the points D + inp (n ∈ Z), but since ζB(D + inp) = 0
for all n ∈ Z\{0}, Equation (11.12) simplifies, just as in the proof of Theo-
rem 11.1:

Nν(x) = W
[1]
B,L(x) + ζB(D)

xD

D log a
+ o

(
xD

)
, as x→∞, (11.14)

as a distribution on (0,∞). It follows that the frequencies of this Cantor
spray have no oscillations of order D.
On the other hand, the counting function of the frequencies of the spray

is related to the geometric counting function NL(x) = ND,p(x) of the
generalized Cantor string by

Nν(x) =
∑

f

wfNL

(
x

f

)
. (11.15)

Since NL has jumps (by Theorem 10.2), the positivity of wf guarantees
that Nν has jumps as well, at the points x = f · an, where f runs through
the frequencies of B and n = 0, 1, . . . . Thus we obtain the analogue of
Theorem 10.9: Nν has jumps of order D. But this means that Nν has
oscillations of order D. Since this is in contradiction with formula (11.14),
we conclude that ζB(D + inp) �= 0 for some integer n �= 0.
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Note that the counterpart of Remark 11.2 applies, so that we deduce
from Theorem 11.12 that there are infinitely many integers n such that
ζB(D + inp) �= 0.
The following corollary is the exact analogue of Corollary 11.4 in the

present more general setting. See Definition 6.22 in Section 6.6 for the
definition of the spectral operator for fractal sprays.

Corollary 11.13. The spectral operator is invertible when restricted to the
class of all generalized Cantor sprays, with virtual basic shape B defined by
a zeta function ζB satisfying hypothesis (P).

11.3 Density of Nonzeros on Vertical Lines

Using a refinement of the argument of Section 11.2, we can obtain a lower
bound for the density of points where ζB(D + inp) is nonzero.
Let ζB be a zeta function satisfying the above hypothesis (P). Let ρ ≥ 0

be such that

ζB(D + it) = O
(
tρ
)
, as |t| → ∞. (11.16)

Theorem 11.14. Let δ > 0 and assume that ρ < 1, where ρ is the expo-
nent of Equation (11.16). Then, for infinitely many values of T, tending
to infinity, the set

{n ∈ Z : |n| ≤ T, |ζB(D + inp)| �= 0} (11.17)

contains more than T 1−ρ−δ elements.

Proof. Suppose that the set defined by (11.17) contains fewer than T 1−ρ−δ

elements, for all sufficiently large T . Let 0 < n1 < n2 < n3 < . . . be the
sequence of positive elements of the set (11.17) for T = ∞. Then we have
that nj ≥ j1/(1−ρ−δ), except possibly for the first few integers nj . Moreover,
if n is not in the sequence, then ζB(D + inp) = 0. Thus, by (11.12),

Nν(x) = W
[1]
B,L(x) +

xD

D log a
ζB(D)

+
1

log a

∞∑
j=1

xD±injp

D ± injp
ζB(D ± injp) + o

(
xD

)
, (11.18)

as x→∞. The j-th term in this series is bounded by a constant times nρ−1
j ,

hence the series is absolutely convergent. Therefore its sum is a continuous
function of x. By (11.18), so is Nν(x). But this is a contradiction, since, by
the analogue of Theorem 10.9 established in the proof of Theorem 11.12,
the function Nν has jumps of order D, and hence is discontinuous.
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For the Riemann zeta function ζ(s), we thus obtain, choosing D = 1/2
and ρ = 1/6 (see [Ti, Theorems 5.5 and 5.12]),4 the following corollary.

Corollary 11.15. For every p > 0 and δ > 0,

#
{
n ∈ Z : |n| ≤ T, ζ

(
1
2 + inp

)
�= 0

}
≥ T 5/6−δ,

for infinitely many values of T, tending to infinity.

11.3.1 Almost Arithmetic Progressions of Zeros

By a classical result from Fourier theory, a Fourier series
∑

n∈Z aneinx

does not have jump discontinuities if an = o(n−1) as |n| → ∞, see [Zyg,
Theorem 9.6, p. 108] or [Ru1, §5.6.9, p. 118]. Since this result is formulated
in terms of the derivative of this Fourier series (i.e., for measures), we
formulate the following argument on level k = 0.

Theorem 11.16. Let ζB satisfy hypothesis (P) above. Then there do not
exist D ∈W ∩ R and p > 0 such that ζB(D + inp)→ 0 as |n| → ∞.5

Proof. By Theorems 5.18 and 5.30 applied at level k = 0, we obtain the
analogue of formula (11.12):

ν = W
[0]
B,L(x) dx+

1
log a

∑
n∈Z

xD−1+inpζB(D + inp) dx+ o
(
xD−1 dx

)
,

(11.19)

as x→∞. Here, W [0]
B,L(x) is the distributional derivative of the Weyl term,

given by

W
[0]
B,L(x) =

∑
u: pole of ζB

res
(
ζB(s)ζη(s)xs−1;u

)
. (11.20)

If ζB(D + inp)→ 0 as |n| → ∞, then, by the classical result from Fourier
analysis cited just above, this measure is continuous. That is, it does not
have any atoms.
On the other hand, by Equation (11.15) and the argument following

it, Nν has jumps of order D. Since Nν(x) =
∫ x

0
ν(dx), this shows that ν

has atoms. This contradiction shows that ζB(D + inp) does not converge
to 0 as |n| → ∞.

4By [Ti, Theorem 5.18, p. 99], one could even take ρ = 27/164. Further, if the Lindelöf
hypothesis holds, then one can take ρ = 0.

5We assume as in Theorem 11.12 that the line Re s = D lies within the window W .
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11.4 Extension to L-Series

Using some well-known results from algebraic number theory [Lan, ParSh1–
2], we can also obtain information about the zeros of certain Dirichlet se-
ries with complex (rather than positive) coefficients. For example, we can
deduce that given any Hecke L-series (see Appendix A, Section A.2) assoc-
iated with an algebraic number field (and with a complex-valued character),
its critical zeros do not form an arithmetic progression. In particular, this
is true of any Dirichlet L-series.6 This statement is a simple consequence
of the special case of our results for Dedekind zeta functions (which, by
definition, have positive coefficients) and of class field theory.
We now precisely state the resulting theorem. Further extensions of Theo-

rem 11.1 are possible using higher-dimensional representations (as, for ex-
ample, in [Lan,ParSh1–2, RudSar]) rather than one-dimensional represen-
tations (i.e., characters), but we omit this discussion here for simplicity of
exposition.

Theorem 11.17. Let K be a number field and χ0 a character of a gener-
alized ideal class group of K. Then the associated Hecke L-series, L(s, χ0),
has no infinite sequence of critical zeros forming an arithmetic progression.

Proof. Let L be the class field associated with this ideal class group, and
let ζL be the Dedekind zeta function of L. This is the Hecke L-series as-
sociated with the trivial character. Let χ run over the characters of the
ideal class group. According to a well-known result from class field theory
(see Equation (A.10) in Appendix A or, for example, [Lan, Chapter XII,
Theorem 1, p. 230] and [ParSh2, Chapter 2, Theorem 2.24, p. 106]), we
have

ζL(s) =
∏
χ

L(s, χ). (11.21)

We deduce from (11.21) that if the factor L (s, χ0) has an infinite sequence
of zeros in an arithmetic progression, then so does ζL(s). But this Dirichlet
series has positive coefficients. Hence, by Theorem 11.12, it does not have
such a sequence of zeros. It follows that L (s, χ0) does not have such a
sequence of zeros either.

Remark 11.18. The reader unfamiliar with the terminology used in the
proof of Theorem 11.17 may assume that K = Q, the field of rational
numbers. Then L(s, χ0) is an ordinary Dirichlet L-series (see [Da,Lan; Ser,
§VI.3] or Example A.2 in Appendix A). We note that the corresponding
special case of formula (11.21) is established in [Da, Chapter 6] or [Ser,
§VI.3.4].

6We are grateful to Ofer Gabber for suggesting to us this extension of our re-
sults [Gab].
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11.4.1 Finite Arithmetic Progressions of Zeros of L-Series

After learning about our work in [Lap-vF1–4], Mark Watkins obtained
an extension of these results to Dirichlet L-series for arithmetic progres-
sions of zeros of finite length that do not necessarily start on the real line
(see [Watk,vFWatk]).
In this section, we present Watkins’ proof of the following theorem:7

Theorem 11.19. Let

L(s, χ) =
∞∑

μ=1

χ(μ)μ−s

be a Dirichlet L-series with character χ. Let ω be a complex number with
real part d ≥ 1/2, and let p > 0. Then8 L(ω + 2πikp, χ) �= 0 for some
integer k such that

0 < |k| ≤ exp
(

2+o(1)
d2(d+1) p log2 p

)
.

The argument is based on the idea of studying the frequencies of the
“shifted” generalized Cantor spray with lengths a−n of (possibly non-
real) multiplicity bn = aωn, on the virtual basic shape B with frequencies
χ(k)−1k (k = 1, 2, 3, . . . ), and hence with spectral zeta function L(s, χ).
Using the pointwise explicit formula, we estimate the jump of the counting
function of the frequencies. Since for finite progressions, the jumps are not
localized, we consider the jump around an over an interval of width about
an/3.
The argument consists of two steps. First, we show by a direct computa-

tion that the frequency counting function has large jumps. Then we show,
using the explicit formula of Theorem 5.10, that this function does not have
large jumps if L(s, χ) has an arithmetic progression of zeros of sufficient
length. From this we derive the contradiction.

Lemmas

We use log x for the natural logarithm, and loga x for the logarithm with
base a. Also, [x] denotes the integer part of x, {x} denotes its fractional
part, and ‖x‖ = min({x}, 1− {x}) is the distance to the nearest integer.
Lemma 11.20. Let N,M ≥ 0, 0 < r < 1 and a > 1. Then there exists an
integer ñ satisfying

N < ñ < N + (1− loga r)M + 1, (11.22)

such that if ‖aμ‖ ≤ aμ−ñ then ‖aμ‖ ≤ raμ−ñ for every μ, 0 ≤ μ ≤ M.

7This result will be restated in more detail in Theorem 11.23 below.
8We write p = 2πp for the oscillatory period of the corresponding generalized Cantor

string.
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Proof. Order the numbers μ− loga ‖aμ‖ that are greater than N in increas-
ing order, together with N , to obtain a sequence of values

N = v0 < v1 < v2 < · · · < ∞.

For μ = 0, and in general if aμ is an integer, we set μ− loga ‖aμ‖ =∞.
Let vj be the smallest value such that vj+1 ≥ vj − loga r + 1 (since ∞ is
the greatest value, such a value exists). Put

ñ = [vj ] + 1.

Then μ− loga ‖aμ‖ ≥ ñ implies μ− loga ‖aμ‖ ≥ vj+1 ≥ ñ− loga r. In other
words, if ‖aμ‖ ≤ aμ−ñ then ‖aμ‖ ≤ raμ−ñ. Moreover, j ≤ M , hence vj <
vj−1− loga r+1 < · · · < v0+j(1− loga r). It follows that ñ satisfies (11.22).

Lemma 11.21. Let the numbers N,M ≥ 0, 0 < r < 1 and a > 1 be such
that

a
(
1− ra−N

)
≥ 1

and
aM2

((
1 + ra−N

)M −
(
1− ra−N

)M
)
≤ 1.

Let ñ be as in Lemma 11.20. If there do not exist integers μ, 1 ≤ μ ≤ M,
such that ‖aμ‖ ≤ aμ−ñ, then we put m = ∞ and α = ∞. Otherwise, we
let m be the smallest such μ,

m = min
{
μ : 1 ≤ μ ≤ M : ‖aμ‖ ≤ aμ−ñ

}
,

and let α be the integer nearest to am. Then

α ≥ 2, (11.23)

and for every μ ≤ M such that ‖aμ‖ ≤ aμ−ñ, we have that μ is an integer
multiple of m, and αμ/m is the integer closest to aμ.

Proof. By Lemma 11.20, α = am(1 + θa−ñ) for some real number θ such
that |θ| ≤ r. If α = 1, then am(1− ra−ñ) ≤ 1 and hence a(1− ra−N ) < 1.
But this contradicts the first assumption, hence α ≥ 2. Further, for μ ≤M
such that ‖aμ‖ ≤ aμ−ñ, we have, again by Lemma 11.20,

β = aμ(1 + θ′a−ñ),

where β is the integer closest to aμ and |θ′| ≤ r. Then

|αμ − βm| = aμm
∣∣∣(1 + θa−ñ

)μ −
(
1 + θ′a−ñ

)m
∣∣∣ .

Since μ, m ≤ M and ñ > N , the second assumption implies αμ = βm. It
follows that αμ/m is the integer closest to aμ.
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Let g = gcd(μ, m) be the greatest common divisor of μ and m, and
choose integers λ and l such that g = λμ+ lm. Then αg/m = αlβλ is an
integer, and

‖ag‖ ≤ |ag − αg/m| = ag
∣∣∣1− (1 + θa−ñ)g/m

∣∣∣ .
Since the graph y = (1 + x)g/m is concave downward, we obtain

‖ag‖ ≤ ag
(
1− (1− ra−ñ)g/m

)
≤ rag−ñ.

By minimality of m, we conclude that g = m and m|μ.

By the Mean Value Theorem,

aM2 (
(1 + ra−N )M − (1− ra−N )M

)
≤ aM2−N2rM(1 + ra−N )M−1.

(11.24)

The right-hand side of (11.24) is bounded by 1 if

(M2 −N) + loga(2rM) + (M − 1) loga(1 + ra−N ) ≤ 0.

Moreover, log(1+x) ≤ x, hence (M − 1) log(1+ ra−N ) < rMa−N . We will
choose

N ≥ M2 + loga(4rM). (11.25)

Then we have, since a > 1,

aN ≥ 4rMaM2
> 4rM, (11.26)

so that (M − 1) log(1 + ra−N ) < 1/4 < log 2 and

log(2rM) + (M − 1) log(1 + ra−N ) < log(4rM).

Together with (11.25) and (11.24), this yields the second assumption of
Lemma 11.21. Further, a(1− ra−N ) ≥ 1 is equivalent to aN ≥ a

a−1r. Since
log a < a − 1, this is implied by (11.26) provided that 4M ≥ 1/ log a and
M ≥ 1. Hence we will choose

M ≥ max
{
1,

1
4 log a

}
. (11.27)

Then (11.25) and (11.27) imply the two conditions of Lemma 11.21.

Lemma 11.22. Let the numbers a, N, M, r and the integers ñ,m, α be as
in Lemmas 11.20 and 11.21. Assume that

aN log a ≥ 1, (11.28)
N −M ≥ loga(3/2), (11.29)

r ≤ 1/2. (11.30)
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Let w ∈ N and put n = ñ+ w.
If the integers l ≥ n−M and k ≥ 1 are such that |kal − an| ≤ aw, then

l = n− λm for some integer λ with 0 ≤ λ ≤ M/m, and the integer nearest
to an−l equals k = αλ. It then follows further that |kal − an| ≤ 1

2aw.
This conclusion remains valid if there are no integers μ, 1 ≤ μ ≤ M,

such that ‖aμ‖ ≤ aμ−ñ (the case m = ∞ in Lemma 11.21). Then l = n,
k = 1 is the only pair of values for which |kal − an| ≤ aw.

Proof. If l ≥ n+ 1, then

kal − an ≥ añ+w(a− 1) > awaN (a− 1) > awaN log a.

Hence by (11.28), if |kal − an| ≤ aw, then l ≤ n. Write μ = n − l, so
that 0 ≤ μ ≤ M . Then ‖aμ‖ ≤ |k−an−l| ≤ aw−l = aμ−ñ. By Lemma 11.21,
we have ‖aμ‖ ≤ raμ−ñ and μ = λm. Further,

|k − αλ| ≤ |k − aμ|+ ‖aμ‖ ≤ aμ−ñ(1 + r) <
3
2
aM−N

by (11.30). Hence by (11.29), k = αλ. Finally,

|kal − an| = ‖aμ‖al ≤ raμ−ñal = raw ≤ 1
2
aw.

This completes the proof of Lemma 11.22.

The Direct Computation

Let χ be a Dirichlet character, 1/2 ≤ d < 1 and ω be a complex number
with real part d. Put b = aω, so that |b| = ad. Assume that

a ≤ 4. (11.31)

Define Nν(x) =
∑

kal≤x χ(k)bl. Fix an integer w ≥ 0, which will para-
metrize the width of the jump. Then for 1

2aw ≤ η ≤ aw and n > w, the
antiderivative N

[2]
ν (x) of Nν(x) satisfies

N [2]
ν (an + η)−N [2]

ν (an − aw)− (aw + η)Nν (an − aw)

=
∑

−aw<kal−an<η, l≥n−M
(an − kal + η)χ(k)bl + (aw + η)A, (11.32a)

where A is estimated by

|A| ≤ 4
(1− d) log a

aw +
2

log a
a−dMadn. (11.32b)

Proof of (11.32). The left-hand side of (11.32a) is equal to the integral∫ an+η

an−aw

(Nν(t)−Nν (an − aw)) dt =
∑

−aw<kal−an<η

(
an − kal + η

)
χ(k)bl.
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Since k lies between (−aw + an)a−l and (aw + an)a−l, there are at most
2awa−l + 1 possible values for k for each given value of l. Hence the sum
for l < n−M is bounded by

(aw + η)
n−M−1∑

l=0

adl(2awa−l + 1)

= (aw + η)
(
2aw 1− a(d−1)(n−M)

1− ad−1
+

ad(n−M) − 1
ad − 1

)
.

Using log ay < ay − 1 for y = d and 1− d, we obtain a bound of

(aw + η)
(
2aw a1−d

(1− d) log a
+

ad(n−M)

d log a

)
.

Now d ≥ 1
2 implies that a1−d ≤ 2, by (11.31). Hence we find the desired

bound (11.32b) for |A|.

The Explicit Formula

The following information about L-series follows from the functional equa-
tion (see [Lan, Corollary 3, p. 300]). In the left half-plane Re s < −σ, we
have

L(−σ + it, χ) = O
(
t1/2+σ

)
for σ > 0, (11.33)

and in the critical strip 0 < Re s < 1, we have for every ε > 0 that

L(σ + it, χ) = O
(
t(1−σ)/2+ε

)
for 0 < σ < 1. (11.34)

Let p > 0 and assume that L(ω + 2πikp, χ) = 0 for all 0 < |k| ≤ K.
Let a = e1/p and let 0 < σ < 1

2 be such that w = (1− σ)n/2 is an integer.
Then

N [2]
ν (an + η)−N [2]

ν (an − aw)

= (aw + η)
res(L(s, χ); 1)
1− b/a

an + (aw + η)
L(ω, χ)
ω log a

anω +B, (11.35a)

where B is bounded by

|B| ≤ C3pa2w + C4a
dn+n(Kp)−(d+1)/2+ε. (11.35b)

Both constants C3 and C4 are positive and depend on χ. Further, C3 also
depends on σ, and may become unbounded as σ → 1/2.

Proof of (11.35). We apply the pointwise explicit formula with error term,
Theorem 5.10, to N

[2]
ν (x), with screen the vertical line Re s = −σ. Let
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b = aω. The spectral zeta function of the shifted Cantor spray on the basic
shape B (see the introduction of this section, along with Equations (4.35)
and (10.2)) is given by

L(s, χ)
1− ba−s

. (11.36)

The pole at s = 1 (if χ is the trivial character) gives the Weyl term.
There are also poles at ω and at ω + 2πik, for |k| > K, but the poles
for 0 < |k| ≤ K are canceled by the zeros of L(s, χ). The contribution of
ω + 2πikp to the explicit formula for N

[2]
ν (x) equals

xω+1+2πikpL(ω + 2πikp, χ)
(ω + 2πikp)(ω + 1 + 2πikp) log a

= O
(
xd+1(kp)(1−d)/2+εk−2p−1

)
.

The implied constant depends on the values of L(s, χ) on the line Re s = d.
Summing over |k| > K, these contributions add up to

O
(
xd+1(Kp)−(1+d)/2+ε

)
.

Further, hypothesis L2 (see (5.20)) is satisfied for the spectral zeta func-
tion (11.36) with κ = 1/2+σ < 1 and the constant C of L2 estimated by a
constant multiple of (1− |b|aσ)−1 = O(p), by (11.33) and using ay−1 > y/p
for y = σ+d to estimate 1−|b|aσ. By inequality (5.36), applied with k = 2,
the error term in Theorem 5.10, the pointwise explicit formula with error
term, is estimated by Oχ

(
x1−σp

)
. By this explicit formula, we find that9

N [2]
ν (x) =

res(L(s, χ); 1)
1− b/a

x2

2
+

xω+1L(ω, χ)
ω(ω + 1) log a

+
xL(0, χ)
1− b

+B′,

where

B′ = O
(
x1−σp+ xd+1(Kp)−(1+d)/2+ε

)
. (11.37)

We substitute x = an+η and x = an−aw and substract. Using Taylor’s
Theorem (or the binomial formula if e is an integer), we obtain

(y + ξ)e = ye + eξye−1 + ξ2ye−2
∞∑

m=2

(
e

m

)
y2−mξm−2. (11.38)

In particular, applying (11.38) for y = an, ξ = η and ξ = −aw, we obtain
the following identity for e = 2 :

(an + η)2 − (an − aw)2 = 2(η + aw)an + (η2 − a2w).

9Here, res(L(s, χ); 1) = 0 if χ is not the trivial character, since in that case L(s, χ) is
an entire function.
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The second term on the right-hand side is of order a2w = an(1−σ) = x1−σ,
which gives a term of the same order as the first error term in Equa-
tion (11.37). For e = ω + 1, we obtain

(an + η)ω+1 − (an − aw)ω+1 = (ω + 1)(η + aw)aωn +O
(
an(d−1)+2w

)
,

since the sum for m ≥ 2 in the Taylor expansion (11.38) is bounded. Since
d− 1 < 0, the error term is of lesser order than the first term of B′ above.
Also for e = 1, we obtain a contribution of lesser order than the first term
in B′. Thus we obtain (11.35a). Further, B′ is bounded as in (11.37), with
x = an. Since n(1−σ) = 2w, the resulting upper bound for |B| is as stated
in (11.35b).

Zeros in Arithmetic Progression

By the functional equation, we may restrict our attention to zeros with real
part at least 1/2. Moreover, it is well known that there are no zeros on the
line Re s = 1 (see, e.g., [Ti, Chapter III]).

We now state Watkin’s theorem [Watk,vFWatk]:

Theorem 11.23. Let L(s, χ) be a Dirichlet L-series, let

p ≥ 1
log 4

,

and let ω have real part d ≥ 1/2. Then there exists an integer k �= 0 such
that

log |k| ≤
(

2
(d+ 1)d2

+ o(1)
)

p log2 p

and L(ω + 2πikp, χ) �= 0. Here, o(1) denotes a function that tends to 0
as p →∞.

Proof. LetK be such that L(ω+2πikp, χ) = 0 for every k, 0 < |k| ≤ K. Let
N, M, ñ, r,m, α be as in Lemmas 11.20 and 11.21. Choose w to be between
ñ/3 and ñ and put n = ñ+w, so that 0 < σ = 1−2w/n < 1/2. By (11.32a)
and (11.35a), dividing by aw + η, we find that

res(L(s, χ); 1)
1− b/a

an +
L(ω, χ)
ω log a

anω −Nν (an − aw)

=
1

aw + η

∑
−aw<kal−an<η

l≥n−M

(an − kal + η)χ(k)bl +A− B

aw + η
.

By Lemma 11.22, in this sum, l = n − λm, 0 ≤ λ ≤ M/m, k = αλ and
the range of the sum does not depend on η. The left-hand side does not
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depend on η either. We take η = aw and η = aw/2 and substract, to find,
after multiplying by 6aw,∣∣∣∣∑[M/m]

λ=0
(aw − an + αλan−λm)χ(α)λbn−λm

∣∣∣∣ ≤ 12|A|aw + 7|B|

≤
(

48
1−d + 7C3

)
pa2w +

(
24pa−dM + 7C4a

ñ(Kp)−(d+1)/2+ε
)
adn+w.

(11.39)

We split the sum into the difference of two sums

bn

(
aw

[M/m]∑
λ=0

χ(α)λb−λm −
[M/m]∑
λ=0

(an − αλan−λm)χ(α)λb−λm

)
.

By (11.23), (11.29) and (11.30),

am ≥ α− ram−n ≥ 2− 2
3 r ≥ 5

3 >
(
9
7

)2
,

and hence we have adm > 9
7 . The first sum is smallest if it is alternating

(i.e., if χ(α)b−m < 0), so its value is at least∣∣∣∣[M/m]∑
λ=0

χ(α)λb−λm

∣∣∣∣ ≥ 1− a−dM

1 + a−dm
>
9
16

(
1− a−dM

)
.

The first term (for λ = 0) in the second sum vanishes. Using

|an − αλan−λm| = an−λm‖aλm‖ ≤ raw

by Lemma 11.20, the second sum is bounded by

raw

[M/m]∑
λ=1

a−λdm <
raw

adm − 1 <
7
2

raw.

Hence we obtain∣∣∣∣[M/m]∑
λ=0

(aw − an + αλan−λm)χ(α)λbn−λm

∣∣∣∣
>

(
9
16
− 9
16

a−dM − 7
2

r

)
adn+w. (11.40)

We choose r = 1/56. Combining (11.39) and (11.40), we obtain after di-
viding by adn+w that

4
8 − 9

16 a−dM <
(

48
1−d + 7C3

)
paw−dn + 24pa−dM + 7C4a

ñ(Kp)−(d+1−2ε)/2.

(11.41)
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Since p ≥ 1/ log 4 ≥ 9
16 by hypothesis, we have 24p+

9
16 ≤ 25p. Choose

M =
p

d
log(8 · 25p), (11.42)

so that (
24p+ 9

16

)
a−dM ≤ 1

8 .

Also, we estimate the exponent w − dn < −(2d− 1 + σ)N/(1 + σ) in the
first term on the right of (11.41), using w = ñ 1−σ

1+σ , n = ñ 2
1+σ and ñ > N .

We then choose

N ≥ p(1 + σ)
2d− 1 + σ

log
(
8p

(
48

1−d + 7C3

))
, (11.43)

so this term is < 1/8. We now obtain a contradiction for

Kp = (28C4)2/(d+1−2ε)a2(N+(1−loga r)M+1)/(d+1−2ε).

Note that by our choice of M and r, (11.27) and (11.30) are satisfied.
Further, by (11.25) and (11.42),

N ≥ p2

d2
log2(200p) + p log

(
p log(200p)

14d

)
, (11.44)

and this implies (11.28) and (11.29). Unless d is close to 1 and p is small,10

this is more restrictive than the bound (11.43). Hence the choice of w is
immaterial, and we choose w to be about n/3, so that σ ≈ 1

3 . We thus
obtain a contradiction for

logK =
2 + o(1)
d2(d+ 1)

p log2 p

as p →∞. This completes the proof of Theorems 11.19 and 11.23.

11.5 Zeta Functions of Curves Over Finite Fields

The zeta function of a curve over a finite field is periodic with a purely
imaginary period. If the curve is not the projective line, then the zeta func-
tion has zeros, and by periodicity, each zero gives rise to a shifted arithmetic
progression of zeros. Moreover, depending on the curve, the zeta function
can have a real zero, and then it has a vertical arithmetic progression of
zeros starting on the real axis. So the conclusion of Theorem 11.12 does

10Roughly, when 1 − a−M2
< d < 1.
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not hold in this case. However, this situation is very similar to the one con-
sidered in Section 11.2. Indeed, the associated measure is positive, and the
zeta function has an Euler product and satisfies a functional equation. The
main goal of this section is to explain why our proof does not go through
in this situation. The key reason for this is that the Weyl term itself has
large jumps, see the comment following Equation (11.60).
The interested reader can find additional examples and further informa-

tion about the theory of curves over a finite field in [vF1,vL-vdG,Wei2], as
well as, for instance, in [ParSh1, Chapter 4, §1]. In Appendix A, we define
a two-variable zeta function of which the zeta functions in this section are
a special case.

Let Fq be the finite field with q elements, where q is a power of a prime
number. Let C be a curve defined over Fq. We denote the function field of C
by Fq(C). Thus, Fq(C) is the field of algebraic functions from C to P1

(
Fq

)
,

the projective line over the algebraic closure of Fq. We view C as embedded
in projective space, with homogeneous coordinates (x0 : . . . : xn). The affine
part of C is then given as the subset where x0 �= 0, and this gives rise to
the affine coordinate ring R = Fq[C], the ring of functions that have no
poles in the affine part of C. Note that the field of fractions of R is Fq(C).
The ring R has ideals. For an ideal a of R, the ring R/a is a finite-

dimensional vector space over Fq, and we denote its dimension by deg a,
the degree of a. Ideals have a unique factorization into prime ideals, and
this fact is expressed by the equality∑

a

q−s deg a =
∏
p

1
1− q−s deg p

, (11.45)

where a runs over all ideals and p over all prime ideals of R. This func-
tion of the complex variable s is the incomplete zeta function associated
with C. We complete it with the factors corresponding to the points of C
with x0 = 0. Also, C may have singularities, and the factors corresponding
to the singular points may have to be modified.

Example 11.24 (The projective line). If C = P1, that is, if the curve has
genus g = 0, then R = Fq[X], the ring of polynomials over Fq. In this case,
every ideal of R is generated by a single polynomial. The number of ideals
of degree n is equal to the number of monic polynomials of degree n, which
is qn. Hence ∑

a

q−s deg a =
∞∑

n=0

qnq−ns =
1

1− q1−s
.

There is only one point at infinity, and the corresponding factor in the
Euler product is

1
1− q−s

.
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Thus, the zeta function of P1 over Fq is

ζP1/Fq
(s) = q−s 1

(1− q−s)(1− q1−s)
, (11.46)

where the factor q−s has been inserted so that this function satisfies the
functional equation

ζP1/Fq
(1− s) = ζP1/Fq

(s). (11.47)

Finally, we note that the logarithmic derivative of this zeta function is the
generating function of the number of points of P1 with values in algebraic
extensions Fqn of Fq, for n = 1, 2, . . . . Indeed, P1(Fqn) contains qn + 1
points, and

−
ζ ′

P1/Fq

ζP1/Fq

(s) = log q
(
1 +

q−s

1− q−s
+

q1−s

1− q1−s

)
= log q

(
1 +

∞∑
n=1

(qn + 1)q−ns
)
.

(11.48)

This result holds for the logarithmic derivative of the zeta function of an
arbitrary curve over a finite field, as the reader may check after the sub-
sequent discussion. We do not need this fact here, but it was the original
motivation for introducing these functions. (See [Wei1–3].)

Now let C be a curve over Fq of arbitrary genus g. We describe a way to
obtain the completed zeta function of C without first having to choose an
affine part of C, as we did in Example 11.24 for genus 0. The field Fq(C)
has valuations. Associated with a valuation v, we have a residue class
field Fv, which is a finite extension of Fq. The degree of this extension
is denoted deg v, the degree of v. A formal sum of valuations

D =
∑

v

mvv, with mv ∈ Z, (11.49)

with only finitely many nonzero coefficients mv, is called a divisor of C. A
valuation will also be called a prime divisor. Thus, divisors form a group,
the free group generated by the prime divisors. The degree of a divisor
is degD =

∑
v mv deg v. A divisor is positive, D ≥ 0, if mv ≥ 0 for all v.

Recall that g is the genus of C. The zeta function of C is defined by

ζC(s) = q−s(1−g)
∑
D≥0

q−s deg D. (11.50)

Since, by definition, the factorization of a divisor into prime divisors is
unique, we have the Euler product

ζC(s) = q−s(1−g)
∏
v

1
1− q−s deg v

. (11.51)
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It is known that ζC(s) is a rational function of q−s, of the form

ζC(s) = x1−g P (x)
(1− x)(1− qx)

, x = q−s, (11.52)

where

P (x) = p0 + p1x+ p2x
2 + · · ·+ p2gx

2g

has degree 2g, integer coefficients, and p0 = 1. It can be shown that

P (1) = p0 + p1 + p2 + · · ·+ p2g

is the class number of C; i.e., the number of divisor classes up to linear
equivalence. Note that

P (1) = − res(ζC ; 0)(q − 1) log q,

and that res(ζC ; 0) = − res(ζC ; 1).
The function ζC(s) satisfies the functional equation

ζC(s) = ζC(1− s), (11.53)

which, in terms of P , means that

P

(
1
x

)
= qgx−2gP

(
x

q

)
.

In other words, p2g−j = qg−jpj for 0 ≤ j ≤ 2g.
By (11.52), ζC is periodic with period 2πi/ log q. The poles of ζC are

simple and located at 1+2kπi/ log q and 2kπi/ log q (k ∈ Z). It is also known
that the zeros of ζC have real part 1/2. In other words, the zeros of P (x)
have absolute value q−1/2. This is the Riemann hypothesis for curves over a
finite field, established by André Weil in [Wei1–3]. See Remark A.6 and also,
for example, [Roq,Step,Bom] or [ParSh1, Chapter 4, §1] and the relevant
references therein. We do not use the Riemann hypothesis in the sequel.
Using the Dirichlet series for ζP1 over Fq,

x

(1− x)(1− qx)
=

∞∑
k=0

qk − 1
q − 1 xk,

we find that

ζC(s) =
g∑

j=−g

pj+gx
j

∞∑
k=0

qk − 1
q − 1 xk,
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where x = q−s, and

ζC(s) =
∞∑

n=1−g

xn

g∑
j=−g
j≤n

pj+g
qn−j − 1

q − 1

=
g−1∑

n=1−g

xn
n∑

j=−g

pj+g
qn−j − 1

q − 1 +
∞∑

n=g

xn

g∑
j=−g

pj+g
qn−j − 1

q − 1

=
g−1∑

n=1−g

xn
n∑

j=−g

pj+g
qn−j − 1

q − 1 + P (1)
∞∑

n=g

xn qn − 1
q − 1 , (11.54)

where in the last equality we have used that
∑g

j=−g pj+g = P (1) and∑g
j=−g pj+gq

−j = qgP (1/q) = P (1). Note that for g = 0, the first sum is
to be interpreted as 0.

We interpret this zeta function as the spectral zeta function of a (virtual)
basic shape B. Thus, the frequencies of B are

qn, with multiplicity P (1)
qn − 1
q − 1 , when n ≥ g, (11.55)

and the small frequencies are

qn, with multiplicity
n∑

j=−g

pj+g
qn−j − 1

q − 1 , when 1− g ≤ n ≤ g − 1.

(11.56)

Now, let η be a (generalized) fractal string, and consider the fractal spray
of η on B. (See Sections 1.4, 4.3, and 6.6.) Its frequencies are counted by

Nν(x) =
g−1∑

n=1−g

Nη

(
x

qn

) n∑
j=−g

pj+g
qn−j − 1

q − 1 + P (1)
∞∑

n=g

Nη

(
x

qn

)
qn − 1
q − 1 .

(11.57)

The first term in the asymptotic expansion of Nν(x) is the ‘Weyl term’
(in the sense of Section 6.6). If η = L is an ordinary fractal string of
dimension D with lengths lj , we can find the corresponding Weyl term as
follows: First, we compute

∞∑
n=0

NL

(
x

qn

)
qn − 1
q − 1 =

∞∑
n=0

∑
j: l−1

j ≤xq−n

qn − 1
q − 1 =

∑
j: l−1

j ≤x

[logq xlj ]∑
n=0

qn − 1
q − 1 ,
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from which we deduce
∞∑

n=0

NL

(
x

qn

)
qn − 1
q − 1 =

∑
j: l−1

j ≤x

q[logq xlj ]+1 − 1
(q − 1)2 −

[logq xlj ] + 1
q − 1

= x
∞∑

j=1

lj
q1−{logq xlj} − 1

(q − 1)2 +O
(
xD log x

)
,

as x → ∞. The first sum is multiplicatively periodic with period q. The
other terms in formula (11.57), namely

g−1∑
n=1−g

NL

(
x

qn

) n∑
j=−g

pj+g
qn−j − 1

q − 1 − P (1)
g−1∑
n=0

Nη

(
x

qn

)
qn − 1
q − 1 ,

add up to O
(
xD log x

)
. Thus, the Weyl term is given by

W (x) = x · P (1)
∞∑

j=1

q1−{logq xlj}

(q − 1)2 lj = x ·G
(
logq x

)
, (11.58)

where G is the periodic function (of period 1) defined by

G(u) = P (1)
∞∑

j=1

q1−{u+logq lj}

(q − 1)2 lj . (11.59)

Since 1 ≤ q1−{t} ≤ q for any value of t, we deduce from (11.59) that G is
bounded in terms of the total length L of L :

L
P (1)
(q − 1)2 ≤ G(u) ≤ L

qP (1)
(q − 1)2 .

Moreover, we also see that G is discontinuous, so that the Weyl term has
jumps of order x at the points x = qml−1

1 , for m = 0, 1, 2, . . . . By our
explicit formulas, we also immediately find the Fourier expansion of the
Weyl term, by applying formula (6.77) for k = 1:

W (x) = res (ζC ; 1)
∑
n∈Z

ζL
(
1 + n

2πi

log q

) x1+2nπi/ log q

1 + 2nπi/ log q
. (11.60)

We apply this to the generalized Cantor string η =
∑∞

m=0 bmδ{qm} with
parameters a = q and b > 0, so that the oscillatory period is p = 2π/ log q.
(See Figures 11.2 and 11.3 for a graph of the Weyl term associated with the
spray of the ordinary Cantor string on the basic shape P1(F3).) We deduce
that at x = qm, m = 0, 1, 2, . . . , the counting function Nν(x) jumps by

m∑
n=0

bm−n qn − 1
q − 1 =

1
q − 1

(
qm+1 − bm+1

q − b
− bm+1 − 1

b− 1

)
,

up to jumps of order bm, caused by the terms with n ≤ g− 1. These latter
jumps are smaller since b < q. We see that the jump is of order x, and
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Figure 11.2: The Weyl term of the ordinary Cantor spray on P1(F3), viewed
additively.
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Figure 11.3: The Weyl term of the ordinary Cantor spray on P1(F3), viewed
multiplicatively.
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not of order xD. Since these jumps could be caused by the Weyl term and
not by the second asymptotic term, we cannot conclude that there must be
oscillatory terms of order D in the explicit formula for Nν(x). Moreover,
in contrast to the situation in Sections 11.1 and 11.2, we see that the jump
of Nν(x) is caused by the terms for large values of n, and not by the first
terms in the sum for Nν(x).
We illustrate this discussion in two examples (see [vF1]).

Example 11.25. The curve given by y2 = x3− x over F3 has genus 1. Its
zeta function is

1 + 31−2s

(1− 3−s)(1− 31−s)
= 1 + 4

∞∑
n=1

3−ns 3
n − 1
2

,

and the Weyl term associated with a string L = {lj}∞j=1 is

W (x) = x
∞∑

j=1

31−{log3 xlj} lj .

Example 11.26. The Klein curve is given by the equation

x3y + y3z + z3x = 0.

Over F2 it has genus 3, with zeta function given by

22s 1 + 5 · 2−3s + 8 · 2−6s

(1− 2−s)(1− 21−s)

= 22s + 3 · 2s + 7 + 20 · 2−s + 46 · 2−2s + 14
∞∑

n=3

2−ns (2n − 1) ,

and the Weyl term associated with a string L = {lj}∞j=1 is

W (x) = 14x
∞∑

j=1

21−{log2 xlj} lj .

We close this section with an example of a Dirichlet series that is a
rational function of q−s, has a functional equation and an Euler product,
but does not satisfy the analogue of the Riemann hypothesis.

Example 11.27. Consider the zeta function

ζX(s) =
1− 5x+ 5x2

(1− x)(1− 5x) , x = 5−s.

As a Dirichlet series,

ζX(s) = 1 +
∞∑

n=1

5n − 1
4

xn, x = 5−s.
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One checks that this function satisfies the functional equation (11.53).
Moreover, the numerator factors as 1−5x+5x2 = (1−(3−φ)x)(1−(2+φ)x),
where φ is the golden ratio. Since 3− φ <

√
5 < 2 + φ, the zeros of ζX(s)

do not have real part 1/2. The logarithmic derivative of ζX(s) is given by

−ζ ′X(s)
ζX(s)

= (log 5)
∞∑

n=1

xn (1 + 5n − (3− φ)n − (2 + φ)n) .

Let an = (3 − φ)n + (2 + φ)n, for n = 0, 1, 2, . . . . One checks that these
numbers satisfy the relation an+2 = 5 (an+1 − an) and a0 = 2, a1 = 5.
Thus a2 = 15, a3 = 50, a4 = 175, . . . . If we want to write ζX(s) as an Euler
product of the form

ζX(s) =
∞∏

n=1

(1− xn)−vn ,

where vn stands for the number of valuations of degree n, then we find the
following formula for vn :∑

d |n
dvd = 1 + 5n − (3− φ)n − (2 + φ)n = 1 + 5n − an.

From this, vn can be successively computed: v1 = 1, v2 = 5, v3 = 25,
v4 = 110, v5 = 500, . . . . In particular, vn > 0 for all n ≥ 1.
The Weyl term associated with an arbitrary string L = {lj}∞j=1 is

W (x) = x

∞∑
j=1

51−{log5 xlj}

16
lj ,

just as in the case of a curve C. However, ζX is not the zeta function of
a curve, since otherwise it would satisfy the counterpart of the Riemann
hypothesis.



12
Concluding Comments,
Open Problems, and Perspectives

In this chapter, we make several suggestions for the direction of future
research related to, and naturally extending in various ways, the theory
developed in this book. In several places, we also provide some additional
background material that may be helpful to the reader.
In Section 12.1, we formulate general conjectures about the zeros of

Dirichlet series, going beyond our results in Chapter 11, concerning ze-
ros in infinite arithmetic progressions. We also give examples showing the
necessity of the assumptions which we are led to make in the resulting
“irrationality conjectures”.
In Section 12.2, we propose a new definition of fractality, involving the

notion of complex dimension. Namely, we propose to call a given set fractal
if it has at least one nonreal complex dimension (with positive real part).
We illustrate this definition by means of two examples, and compare it
with other definitions of fractality that have previously been suggested in
the literature. This enables us, in particular, to resolve several paradoxes
concerning the fractality of certain geometric objects, such as the a-string
and the Devil’s staircase (i.e., the graph of the Cantor function).
In Section 12.3, we explore some of the relationships between fractality

(as defined in Section 12.2) and self-similarity. In particular, we discuss the
geometric aspects of this relationship for self-similar fractal drums, and pro-
pose a natural interpretation (expressed in terms of complex dimensions)
of the lattice–nonlattice dichotomy for higher-dimensional self-similar sets.
We illustrate our conjecture by discussing the example of the (von Koch)
snowflake curve, a lattice fractal of which we determine the complex dimen-
sions. (See Section 12.3.1.) We had already done so in [Lap-vF5], where we
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had given an approximate tube formula for the Koch snowflake (see [Lap-
vF5, Section 10.3, esp. pp. 209–211]). Here, however, we discuss the joint
work of the first author with E. Pearse [LapPe1], who obtain a formula for
the area of the inner tubular neighborhoods of the Koch snowflake curve,
from which the possible complex dimensions of the snowflake are deduced.
One important problem left open by that work is to define a suitable geo-
metric zeta function whose poles coincide with the underlying complex
dimensions (see [LapPe2–4]).
We also point out in Section 12.3, as well as in Section 12.5, some of the

challenges associated with the extension of our theory of complex dimen-
sions to higher-dimensional objects, such as self-similar fractal drums. In
Section 12.3.2, we briefly comment on the recent work ([Pe] and [LapPe2–
4]) in which, in the geometric setting, a higher-dimensional theory of the
complex dimensions of self-similar fractals is developed via associated self-
similar tilings and corresponding tube formulas.
In Section 12.4, we discuss two different types of extensions of the theory

of fractal strings. In Section 12.4.1, we provide an overview of the recent
joint work of B. Hambly and the first author [HamLap] on random fractal
strings and their associated random zeta functions and complex dimensions.
Two main classes of random strings are considered: random self-similar
strings and their natural generalizations, and random stable strings, such
as, for example, one defined in terms of the zero set of Brownian motion.
This leads us to refine the definition of fractality proposed in Section 12.2,
by allowing the possibility of a natural boundary for the underlying geo-
metric zeta function. In Section 12.4.2, we briefly discuss the new notion
of fractal membrane (or quantized fractal string), introduced by the first
author in the forthcoming book [Lap10] and further studied by the first
author and R. Nest in the papers in preparation [LapNes1–3]. Two related
aspects of fractal membranes are directly relevant to potential extensions
of the theory in this book: First, their zeta function (or partition function)
has an Euler product representation (in which the reciprocal lengths of the
underlying fractal string play the role of the primes). And second, because
of this Euler product, the corresponding zeros and poles are on an equal
footing, and can be viewed as natural invariants of the fractal membrane.
In Section 12.5.1, we discuss the problem of describing the spectrum of

a fractal drum, as initially formulated in the Weyl–Berry Conjecture. In
Section 12.5.2, we consider this problem for the important special case of
self-similar drums, including the snowflake drum and its natural generaliza-
tions. In Section 12.5.3, we briefly examine the question of understanding
the spectrum of a fractal drum in terms of the periodic orbits of a dynam-
ical system naturally associated to it. In general, and for example, for the
snowflake drum, this is a very difficult problem, the formulation of which
is only in a preliminary phase. We focus here on the case of a self-similar
string for which more can be said at this point.
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We close this chapter with a very speculative section, Section 12.7, in
which we raise the question of whether a suitable homological interpretation
can be found for the complex dimensions of a fractal. In Section 12.6, we
make a preliminary suggestion for a possible way to construct such a theory
of complex homology (also called fractal cohomology).

12.1 Conjectures about Zeros of Dirichlet Series

We state and briefly discuss several conjectures that could be tackled, or
at least receive geometric meaning, within our framework.
We begin by formulating a natural conjecture regarding the vertical dis-

tribution of the zeros of the Riemann zeta function ζ = ζ(s):

Conjecture 12.1 (Irrationality Conjecture). The imaginary parts of the
critical zeros of ζ on one vertical line in the upper half-plane are rationally
independent. In particular, the critical zeros of ζ are all simple.

We refer, for example, to the paper by Odlyzko and te Riele [Od-tR] and
the relevant references therein for numerical and theoretical evidence in
support of this conjecture. (Concerning the numerical evidence in support
of the simplicity of the zeros, see also, e.g., [Od1–2] and [vL-tR-W], where
additional relevant information can be found.) To the knowledge of the
authors, since then there have not been significant new developments in
this direction.

Remark 12.2. (i) Since ζ(s) =
∑∞

n=1 n−s is defined by a Dirichlet series
with real coefficients, its zeros come in complex conjugate pairs. Thus, in
the statement of Conjecture 12.1, only the zeros of ζ(s) with positive imag-
inary part are considered, say, those on a given vertical half-line Re s = D,
Im s > 0. A similar convention is assumed, most often implicitly, in the
statement of all the conjectures discussed in the present section. Indeed,
the more general zeta functions considered below also have complex con-
jugate pairs of zeros because they are defined by Dirichlet series with real
coefficients.
(ii) We have formulated Conjecture 12.1 in such a way that it is inde-

pendent of the truth of the Riemann hypothesis. This will enable us, in
particular, to extend this conjecture to more general zeta functions, with-
out undue restrictions from the perspective of our present theory. On the
other hand, in the literature on this subject, the Riemann hypothesis is
often assumed. That is, the critical zeros of ζ(s) are assumed to be of the
form 1/2 ± iγn, n = 1, 2, . . . , with γn real and positive. Conjecture 12.1
then asserts that the sequence {γn}∞n=1 is linearly independent over the
rationals, or, equivalently, over the ring of rational integers.
(iii) In the statement of Conjecture 12.1, one could even replace “rational

independence” by “algebraic independence”. We prefer not to do so here,
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however, because it is less clear how to interpret the resulting statement
in the framework of fractal strings. We also point out that Conjecture 12.1
could be recast in the language of fractal strings as the question of invert-
ibility of the spectral operator when restricted to a certain class of fractal
strings (much as was done in Corollary 11.4 in a related context).
(iv) Conjecture 12.1 implies, in particular, that ζ(s) does not have an

infinite vertical sequence of critical zeros in arithmetic progression, as was
first shown by Putnam in [Pu1–2] and was reproved by a different method in
Theorem 11.1 above. It also implies that (nontrivial) finite vertical arithme-
tic progressions of zeros of ζ(s) do not exist. We note that even though it is
much less general than Conjecture 12.1, the latter statement would provide
a significant step towards that conjecture. In Sections 11.1.1 and 11.4.1 we
presented partial solutions to this problem. However, to obtain a bound on
the length of an arithmetic progression of zeros that is independent of the
period of the sequence, significant additional technical difficulties still need
to be overcome in order to be able to analyze the nature of the oscillations
in the frequency spectrum of the resulting fractal strings.

We have used above the important example of the Riemann zeta function
as a motivation for stating and exploring further conjectures regarding a
broader class of Dirichlet series. The reader will remember that in Chap-
ter 11 we were able to show that many zeta functions do not have an infinite
vertical arithmetic progression of critical zeros by considering generalized
Cantor sprays instead of Cantor strings. However, both the zeros and the
poles of the zeta function of a curve over a finite field are periodically dis-
tributed along vertical lines. (See Section 11.5 above.) Hence, it seems that
some restrictions on the multiplicity or the number of the poles or zeros
are necessary in order to avoid obvious counterexamples, such as Exam-
ples 12.7 and 12.9 below. We therefore make the following assumptions.
(In the following, all the poles and zeros are counted according to their
multiplicity.)

We will formulate our next conjectures for a general Dirichlet series ζB

associated with a measure. But first we show by means of an example that
we need to assume positivity and discreteness of the underlying measure.

Example 12.3. Let ζ be the Riemann zeta function, and let L1, . . . , L2n

be L-series associated with 2n independent nontrivial real characters (see
Appendix A, Section A.2).1 Then, for any choice of real numbers c1, . . . , c2n,
the function

ζ(s) + c1L1(s) + · · ·+ c2nL2n(s)

has a simple pole at s = 1. By suitably choosing the coefficients, one can
arrange for this function to have a sequence of zeros in an arithmetic pro-

1Note that by assumption, only ζ(s) has a pole (at s = 1).
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gression of length n. Indeed, choosing any sequence D+ ikp, k = 1, . . . , n,
with p > 0, this amounts to solving n linear equations with complex coef-
ficients in 2n real variables. Note that D− ikp, k = 1, . . . , n, will automat-
ically be an arithmetic progression of zeros as well. However, according to
the following conjectures, the resulting Dirichlet series will not have real
positive coefficients.
If one chooses ζ, L1, . . . , L2n to be completed zeta functions (see Sec-

tion A.3 of Appendix A), associated with real-valued characters, we can
choose the coefficients c1, . . . , c2n to be real and small, so that the resulting
Dirichlet integral is associated with a positive measure and has a sequence
of zeros in an arithmetic progression of length n. However, in that case, it
is no longer a Dirichlet series, associated with a discrete measure.

Let ζB(s) be a Dirichlet series with positive coefficients satisfying hypo-
thesis (P), formulated on page 303 of Section 11.2. At this point, we invite
the reader to review the statement of this hypothesis, which involves the
existence of a window W for ζB(s). Note that according to hypothesis (P),
ζB(s) is required neither to satisfy a functional equation nor to have an
Euler product. Moreover, we recall that we use throughout this section the
convention described in comment (i) above. Thus, according to this conven-
tion, only the zeros of ζB(s) with positive imaginary part should be taken
into account in the statement of Conjectures 12.4–12.6 and 12.10 below.
By analogy with the Riemann zeta function, we formulate the following

conjectures for ζB(s) :

Conjecture 12.4. If ζB has at most one pole in a window, then it does
not have a vertical arithmetic progression of zeros of length two in this
window.

More generally, if ζB has one pole, then it does not have two zeros with
positive imaginary part on one vertical line in this window, the imaginary
parts of which are rationally dependent.

Conjecture 12.5. If ζB has n poles in a window, then it can have a
vertical arithmetic progression of zeros of length at most n in this window.

More generally, if ζB has n poles in a window, then it can have at most n
zeros with positive imaginary part on one vertical line in this window, the
imaginary parts of which are rationally dependent.

The next conjecture is the exact counterpart in this context of Conjec-
ture 12.1 concerning the Riemann zeta function.

Conjecture 12.6 (General Irrationality Conjecture). If ζB has one pole
in a window, then the imaginary parts of the zeros of ζB in the upper half-
plane on a given vertical line in this window are rationally independent. In
particular, the zeros of ζB are all simple in this window.

Note that since ζ(s) is a particular instance of the zeta functions which
we consider, this conjecture implies Conjecture 12.1.
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Before stating our last conjecture, we provide three examples showing
that there are some further restrictions on what may be expected to hold.

Example 12.7. The function
n∏

k=1

ζ

(
1
2
+

s

k

)
shows that a function with n poles can have n zeros in arithmetic progres-
sion. Indeed, let 1/2 + iγ be a critical zero of ζ(s), with γ > 0. Then the
values s = kiγ, for k = 1, . . . , n, are zeros of the above function in the
upper half-plane.

The following example shows that it is necessary to assume hypothe-
sis (P) in our conjectures.

Example 12.8. In the previous example, if instead of the Riemann zeta
function, we use a Dirichlet L-series L(s, χ) associated with a character χ,
we obtain a function without poles,

n∏
k=1

L

(
1
2
+

s

k
, χ

)
,

with a vertical arithmetic progression of zeros of length n, since it is known
that at least some of the zeros of L(s, χ) lie on the critical line Re s = 1/2.
Indeed, as for ζ(s), it is conjectured that all nontrivial zeros lie on this line.

Example 12.9. Let ζK(s) be the zeta function of an algebraic number
field K. As is well known, this function has zeros with real part 1/2. Then
the function

ζ
(1
2
+ s

)
+ c1ζK

(1
2
+ c2s

)
,

with a suitable choice of the real constant c1 and the positive constant c2,
shows that a Dirichlet series with two poles can have a double zero. Indeed,
if ζK does not have a double zero itself, then one can first choose c2 so that
both functions have a common zero at a point s = iγ (here, γ is as in
the previous example). One can then adjust c1 so that the derivative also
vanishes at that point.

Conjecture 12.10. If ζB has at most n poles in a window, then its zeros
have multiplicity at most n in this window.

12.2 A New Definition of Fractality

Our work shows that the complex dimensions of a fractal string con-
tain important geometric information; see especially Section 8.2 and Theo-
rems 2.17, 8.1 and 8.15, along with Section 8.4 and Chapters 6 and 7.
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Motivated by the fact that the complex dimensions of a fractal string de-
scribe very precisely the oscillations of the fractal, and also, for example, by
the fact that self-similar strings always have nonreal complex dimensions,
whereas the dimensions of the a-string are all real,

we propose to define “fractality” as the presence of at least one
nonreal complex dimension with positive real part.2

Loosely speaking, we propose to define a geometric object as being “fractal”
if its geometry has oscillations. We could refine this by defining a set to be
fractal in dimension d if there exists a nonreal complex dimension ω of the
set such that Reω = d. (See Sections 12.3 and 3.7.)
Note that nonreal complex dimensions come in conjugate pairs ω, ω̄,

since ζL(s) is real-valued for s ∈ R. Hence a fractal set, in this definition,
has at least two nonreal complex dimensions.

12.2.1 Fractal Geometers’ Intuition of Fractality

We now explain how our proposed definition agrees with the intuition of
fractal geometers, even in the cases where other definitions of fractality
disagree with generally accepted intuition.
We first consider the a-string,3 viewed as the complement in (0, 1) of the

sequence j−a (j = 1, 2, 3, . . . ). Thus, the boundary of the a-string is

F =
{
1, 2−a, 3−a, . . . , 0

}
.

We quote from [Fa3, p. 45],

No one would regard this set, with all but one of its points iso-
lated, as a fractal, yet it has fractional box dimension.4

We agree with Falconer that the a-string is not fractal. However, as ex-
plained in Remark 12.12, we disagree with his stated reason.
Secondly, all fractal geometers agree that self-similar (or, more generally,

self-affine or self-alike) objects are fractal, because they have fine structure
at all scales. For example, Mandelbrot writes in [Man1, p. 82] of the Devil’s
staircase (i.e., the graph of the Cantor function, see Figure 12.1 or [Man1,
Plate 83, p. 83], along with Remark 12.11 below):

One would love to call the present curve a fractal, but to achieve
this goal we would have to define fractals less stringently, on the
basis of notions other than D alone.5

We agree that the Devil’s staircase, which is self-affine, is a fractal. In
Section 12.2.2, we explain how this intuition fits exactly with our proposed
definition.

2In view of recent results on random fractal strings obtained in [HamLap], this def-
inition will be completed at the end of Section 12.4.1.

3Already known to Bouligand [Bou] in a different terminology.
4That is, noninteger Minkowski dimension.
5In the notation of Mandelbrot, D denotes the Hausdorff dimension.
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Figure 12.1: The Devil’s staircase.

Remark 12.11. Recall that the Devil’s staircase is defined as the graph
of the Cantor function C. The latter is a nondecreasing continuous function
on [0, 1] such that C(0) = 0 and C(1) = 1. Further, C is constant on each
interval in the complement of the ternary Cantor set in [0, 1]. In fact, C is
nothing but the primitive of the natural (Θ-dimensional) Hausdorff measure
on the Cantor set, where Θ = log3 2. (See, for example, [Coh, p. 55 and
pp. 22–24] or [ReSi1, pp. 20–23].)

Remark 12.12. In our theory, at least in the one-dimensional case, frac-
tality is independent of the geometric realization of a fractal. For ex-
ample, one could realize the Cantor string as a sequence of intervals of
lengths 1, 1/3, 1/3, 1/9, . . . , in such a way that the endpoints of these in-
tervals form an infinite, decreasing sequence with a single limit point at
the origin. According to Falconer’s quote above, this set would not be frac-
tal since it has only one nonisolated point. In our setting, however, the
fractality of the Cantor string is independent of its geometric realization.
Nevertheless, see also Remark 12.15 at the end of Section 12.2.2.

The intuition of fractal geometers has been guided by the following defin-
ing properties of fractality: self-similarity, or, more generally, approximate
self-alikeness; usually fractional box (i.e., Minkowski), packing, or Haus-
dorff dimension; fine geometric structure at all scales; a simple recursive
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construction; singularity of an associated measure (e.g., Hausdorff mea-
sure) with respect to Lebesgue measure; and other properties. However,
a clear definition of fractality is still missing. Indeed, we quote from the
introduction of Falconer’s book [Fa3, p. xx]:

My personal feeling is that the definition of a ‘fractal’ should be
regarded in the same way as the biologist regards the definition
of ‘life’. There is no hard and fast definition, but just a list of
properties characteristic of a living thing, such as the ability to
reproduce or to move or to exist to some extent independently
of the environment. Most living things have most of the char-
acteristics on the list, though there are living objects that are
exceptions to each of them.

The classical definition of fractality, as stated by Mandelbrot in [Man1,
p. 15], is the following:

A fractal is by definition a set for which the Hausdorff–Besicovitch
dimension strictly exceeds the topological dimension.6

In other words, ifH denotes the Hausdorff dimension of a set F ⊂ Rd and T
denotes its topological dimension, then F is fractal, according to Mandel-
brot, if and only if H > T .7 Mandelbrot discusses in detail in [Man1, Chap-
ter 3] and elsewhere in his book the implications as well as the limitations
of his definition. (See also the introduction of [Man3].)
In the case of the Devil’s staircase C, one has H(= D) = T = 1 because C

is rectifiable; see, for example, [Man1, p. 82] and [Fed2, Theorem 3.2.39,
p. 275]. Thus the Devil’s staircase is not fractal according to this definition.
For certain applications, one could prefer to use the Minkowski dimension

over the Hausdorff dimension in order to define fractality. But a definition
such as “the Minkowski dimension strictly exceeds the topological dimen-
sion” would classify the a-string as fractal. And also, if the lengths of the
a-string are rearranged so that the Hausdorff and the Minkowski dimen-
sions of this set coincide, as is clearly possible, then the above definition,
unmodified, already classifies the a-string as fractal.
Other possible definitions of fractality have been introduced in the lit-

erature, involving various notions of (real) fractal dimensions, such as the
packing dimension P [Tr2] (which is in some sense dual to the Hausdorff di-
mension) and, as discussed just above, the Minkowski(–Bouligand) (or box)
dimension D. All these definitions run into similar problems. For example,

6A dichotomy fractal vs. nonfractal—based on D rather than H—was used in [Lap1]
(and in later papers, such as [Lap2–3, LapPo2, LapMa2]) for pragmatic reasons in the
context of drums with fractal boundary; it was not intended to provide a definition of
fractality.

7Recall that T is a nonnegative integer and that we always have H ≥ T ; see, e.g.,
[HurWa] and [Rog].
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the packing dimension fails to classify the Devil’s staircase as fractal, since
we also have P = 1 (because H ≤ P ≤ D, by Remark 1.5).

12.2.2 Our Definition of Fractality

We already mentioned that the a-string is not fractal in our proposed
new sense, since ζL has a meromorphic continuation to Re s ≥ 0, with
only one pole at D = 1/(1 + a). (See Theorem 6.20 in Section 6.5.1 for a
complete analysis of the complex dimensions of this string and compare
this with [Lap1, Example 5.1 and Appendix C].) By definition, the same
statement applies to the boundary of L, which is equal to the compact
set {1, 2−a, 3−a, . . . , 0}.
On the other hand, by Corollary 2.21, a self-similar string (and thus a

self-similar set in R other than a single interval) is always fractal since it
has infinitely many complex dimensions with positive real part. According
to Conjecture 12.18 in Section 12.3 below, any (nontrivial) self-similar set
in Rd would be fractal in our new sense. We point out that when d = 1,
Conjecture 12.18 has been proved in Theorems 2.17 and 3.6 above, and
for d ≥ 2, it has been proved in [LapPe2, 3] for a suitable class of self-
similar sets (or tilings).8 (See Section 12.3.2.)
We now analyze our proposed definition for the Devil’s staircase. This

will clearly expose the problem of defining and determining the complex
dimensions of a set. We will regard the exponents of ε in the asymptotic ex-
pansion of the volume of the (inner) tubular neighborhoods as the complex
codimensions. This is motivated by our tube formula for fractal strings, as
stated in the introduction (Equation (∗∗)) or, e.g., in Theorem 8.1 (Equa-
tion (8.4)). (See also Sections 12.3.1 and 12.3.2, along with [LapPe1–3].)
The volume V (ε) of the inner tubular neighborhoods of the Devil’s stair-

case (Figure 12.2) is approximated by

2ε− ε2−Θ
(
1− π

4

)((
1
2

){x}
+

(
3
2

){x})
, (12.1)

where x = log3 ε−1 and Θ = log3 2. By formula (1.13) on page 15, writ-
ing p = 2π/ log 3, we obtain the expression

2ε2−1 +
4− π

8 log 3

∞∑
n=−∞

ε2−Θ−inp

(Θ + inp)(Θ− 1 + inp)
(12.2)

for this approximate volume (see also Remark 12.14 below). Thus the com-
plex dimensions of the Devil’s staircase are 1 and Θ + inp, n ∈ Z, and they
are all simple. (See Figure 12.3.) Hence the Devil’s staircase is fractal in
our new sense, and more precisely, it is fractal in dimension Θ.

8When d = 1, this class coincides with that of all self-similar sets in R considered in
this book; see Section 2.1.1.
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Figure 12.2: The inner ε-neighborhood of the Devil’s staircase.

Remark 12.13. Observe that Θ = log3 2 is the dimension of the Cantor
set, which is the set where C is increasing (by infinitesimal amounts), while 1
is the dimension of the complement of the Cantor set in [0, 1], the open set
which is composed of the open intervals on which C is constant. Further note
that in formula (12.1) (or (12.2)), the leading term 2ε can be interpreted
as follows: The Devil’s staircase is rectifiable with finite length equal to 2.
This well-known fact (see, e.g., [Man1, p. 82]) can be understood intuitively
by adding up the infinitesimal steps of the Devil’s staircase. This amounts
to projecting the Devil’s staircase onto the horizontal and vertical axes in
Figure 12.1 and adding up the resulting lengths.

Remark 12.14. We caution the reader that even though the complex di-
mensions with positive real part of the Devil’s staircase are determined
by the approximate formula (12.2), which was obtained in [Lap-vF5, Sec-
tion 10.2, p. 202], the residues corresponding to the poles other than 1
in (12.2) are not accurate. (Compare this comment with [LapPe1] and Sec-
tion 12.3.1, especially Theorem 12.21 and Remark 12.23.)

Thus our definition using the complex dimensions of a fractal classifies
each of the above examples correctly, including the “borderline examples”.
Indeed, we are not aware of a single example where our definition classifies
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Figure 12.3: The complex dimensions of the Devil’s staircase. Θ = log3 2 and
p = 2π/ log 3.

a set incorrectly. Thus with our definition, there would be no borderline
cases where the definition would disagree with intuition. An exception could
be the zero set of Brownian motion and related stable random strings, for
which the determination of the complex dimensions (or the natural bound-
ary of analyticity) is an open problem; see Problem 12.35 and the discussion
surrounding it at the end of Section 12.4.1. Thus our present knowledge is
still rather limited, since it is clearly a difficult task, both conceptually and
practically to determine the complex dimensions of a higher-dimensional
geometric object. Indeed, the definition that we adopted for the Devil’s
staircase, via the asymptotic expansion of V (ε), is only provisional. We
plan to address the question of defining the complex dimensions of higher-
dimensional fractal sets in a subsequent work.
In most cases of interest in the applications—such as multifractals, Julia

sets, the Mandelbrot set, and strange attractors in the theory of dynamical
systems—this definition of fractality remains to be tested and the theory
to be further developed along the following lines. (i) First, define a suitable
geometric, spectral, or dynamical zeta function associated with the object.
(ii) Second, investigate the resulting complex dimensions, defined as the
poles of the meromorphic continuation of the appropriate zeta function.
In particular, establish the existence of nonreal complex dimensions with
positive real part (or, in view of the discussion surrounding Problem 12.35
at the end of Section 12.4.1, the existence of a natural boundary along
a suitable screen, part of which is contained in the half-plane Re s > 0).
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(iii) Finally, show the relevance of these definitions and results (in con-
junction with the theory developed in this monograph) to the study of
the geometric, spectral, or dynamical object under investigation. This can
be achieved, for example, by using the explicit formulas of Chapter 5 and
considerations specific to the problem at hand in order to obtain appropri-
ate tube formulas, spectral asymptotics, or analogues of the Prime Orbit
Theorem and the associated explicit formula.
In practice, steps (i) and (iii) will often have to be interchanged. Hence,

for example, one might first obtain a suitable tube formula, and then de-
duce from it the possible complex dimensions of the object, or even better,
a suitable definition of the (geometric) zeta function of which these are
the poles. We refer to Section 12.2 above and Section 12.3 below, based
in part on [Lap-vF5], [LapPe1–3] and [Pe], for various examples illustrat-
ing this approach, from the Cantor staircase to the Koch snowflake curve
(Sections 12.2 and 12.3.1, respectively) and self-similar sets (or tilings)
in higher-dimensional Euclidean spaces (Section 12.3.2). Furthermore, we
mention that in several works in progress, a related method is used to
study the complex dimensions of certain multifractals [JafLap,LapLevRo]
and quasicrystals.

We note that more refined information about fractal geometries can be
obtained by taking into account the structure of the complex dimensions
(and the associated residues). In particular, we believe that the (conjec-
tured) quasiperiodicity of the complex dimensions—along with the presence
of geometric oscillations of order D or of order arbitrarily close to but less
than D—is an important feature of self-similar geometries. This quasiperi-
odicity was established in the case of self-similar strings in Chapter 3. In
view of Remark 12.20 below, an analogous statement should hold for ap-
proximately self-similar fractals as well. In the next subsection, we discuss
such an application of complex dimensions, namely to understanding the
notion of lacunarity.

Remark 12.15. In higher dimensions, one needs significantly more than
just a counterpart of the lengths of a string in order to obtain a suitable
notion of geometric zeta function and, therefore, of the complex dimen-
sions. See [LapPe1–4] along with Section 12.3.2 below. Thus, in general,
our proposed notion of fractality will truly depend on the geometry of the
object.
Furthermore, even in the one-dimensional case (i.e., for fractal strings),

it is possible to extend some aspects of the theory developed in this book in
order to distinguish, for example, a Cantor string Ω1 realized as having for
boundary the classic ternary Cantor set from another such string Ω2 having
for boundary a sequence of points with a single limit point, say at the origin.
This is done in [LapLevRo] where a one-parameter family of multifractal
zeta functions ζΩ(α, s) (with −∞ < α ≤ +∞) is introduced for a given
fractal string Ω (viewed as a bounded open subset of R, or more generally,
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for a suitable Borel measure on R). For α = 1, under mild assumptions,
ζΩ(1, s) coincides with ζΩ(s), the standard geometric zeta function of the
fractal string Ω. Hence, it does not depend on the realization of the length
sequence {lj}∞j=1 of Ω. For other values of α, however, this is no longer
the case in general, and ζΩ(α, ·) usually depends on finer topological and
geometric information than just the lengths of the string. This is the case,
in particular, for the aforementioned two realizations Ω1 and Ω2 of the
Cantor string.
It follows that our proposed definition of fractality extended in the obvi-

ous way to each value of α (fractality for the regularity parameter α) can be
used to provide finer information than is done in this book.9 In particular,
there are many interesting examples which have a nontrivial multifractal
spectrum of zeta functions and hence, in general, of complex dimensions.
On the other hand, even in this more flexible setting, the a-string is still
nonfractal for every value of α.
We refer to [LapLevRo] for further information about this intriguing

subject, in which many important problems remain wide open, especially
in the standard multifractal case, for more general singular measures, and
in higher dimension.

12.2.3 Possible Connections with the Notion of Lacunarity

In his book [Man1, Chapter X], Mandelbrot suggests complementing the
notion of (real) fractal dimension with that of lacunarity, which is aimed at
better taking into account the texture of a fractal. (See [Man1, Section X.34]
and, for a more quantitative approach, [Man2], along with the relevant
references therein, including [BedFi].)
We quote from the introduction of [Man2, pp. 16–17]:

Fractal lacunarity is an aspect of “texture” that is dominated
by the sizes of the largest open components of the complement,
which are perceived as “holes” or “lacunas”. . . .

Lacunarity is very small when a fractal is nearly translation
invariant, being made of “diffuse” clumps separated by “very
small” empty lacunas, and lacunarity is high when this set is
made of “tight” clumps separated by “large” empty gaps or la-
cunas.

Our present theory of complex dimensions may help shed some new
light on this somewhat elusive notion of lacunarity, especially in the one-
dimensional situation. In particular, we hope to explain in more detail
elsewhere how one of the main examples discussed in [Man1, Section X.34]
and [Man2]—namely, in our notation, the sequence of Cantor sets (or “Can-

9Note that the explicit formulas and other results obtained in our theory can be
applied to each multifractal zeta function ζ(α, ·).
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Figure 12.4: A lacunary Cantor string, with a = 4, b = 2 (D = 1/2, p = π/ log 2
and k = 1).
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Figure 12.5: A less lacunary Cantor string, with a = 64, b = 8 (D = 1/2,
p = π/(3 log 2) and k = 3).

tor dusts”) ηk =
∑∞

j=0 2
jkδ{4jk} (k ≥ 1)10 represented in [Man2, Figure 1,

pp. 18–19] and discussed in [Man2, Section 2.2, p. 21]—can be understood
in terms of the complex dimensions of the associated Cantor strings. More
specifically, for each fixed k ≥ 1, the complex dimensions of the Cantor
set ηk are 1/2 + inπ/(k log 2) (n ∈ Z) and the corresponding residues are
independent of n and equal to 1/(2k log 2). (See Figure 10.1 in Chapter 10
above, with the choice of parameters a = 4k and b = 2k =

√
a.) Therefore,

even though these Cantor strings have the same real dimension D = 1/2,
they have very different sets of complex dimensions (and residues), which
accounts for their different lacunarities (in the language of [Man1–2]).
In particular, as k ↑ ∞, the oscillatory period pk = π/(k log 2) decreases

to 0, so the complex dimensions become denser and denser on the vertical
line Re s = 1/2, with smaller and smaller residues. Since the imaginary
parts of the complex dimensions vanish in the limit, the nonreal complex
dimensions eventually disappear, as might be expected intuitively for the
homogeneous limiting set, which has zero lacunarity according to [Man2];
see Figure 12.5. Note that as k ↑ ∞, the gaps (also called holes or lacunas
in [Man1–2]) in the complement of the Cantor set defined by ηk become
smaller and smaller, while the Cantor sets themselves appear to be more
and more translation invariant or homogeneous and therefore “less and
less fractal” or “lacunary”. (See the discussion in Section 2.1, page 21,
of [Man2].)
In contrast, as k ↓ 0 (a limiting case that is not considered in [Man1–

2] because it does not correspond to a geometric Cantor set but that
is compatible with our notion of generalized Cantor strings, see Chap-
ter 10), pk = π/(k log 2) increases to infinity and so do the associated
residues 1/(2k log 2). Therefore, the complex dimensions become sparser
and sparser on the vertical line Re s = 1/2, but with larger and larger

10In ordinary language, in the j-th stage of its construction, the complement in (0, 1)
of the Cantor set ηk consists of bj open intervals of length a−j , with a = 4k and
b = 2k =

√
a.
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residues. This is in agreement with the intuition that the (generalized)
Cantor string ηk is more and more lacunary (i.e., has larger and larger
gaps or holes, see Figure 12.4) as the real number k decreases to 0.

Remark 12.16. Recall that in Chapter 8, we have obtained precise tube
formulas for the volume of the ε-neighborhoods of a fractal string L, ex-
pressed in terms of the complex codimensions of L and of the associated
residues (or principal parts) of ζL. This is of interest in the present con-
text because in [Man1] and especially in [Man2], lacunarity has also been
linked heuristically to the (possibly oscillatory) prefactor occurring in the
definition of the upper or lower Minkowski content (prior to taking the
corresponding limit as ε → 0+). See formula (1.6) on page 11, Section 8.4.3
and the notes to Chapter 8.
We leave it as an exercise for the interested reader to specialize to the

above example the tube formulas obtained for generalized Cantor strings
in Section 8.4.1, and to interpret the resulting expressions as k ↑ ∞ and
as k ↓ 0.

Remark 12.17. We note that the notion of fractal lacunarity may also
help connect aspects of our work with earlier physical work of which we
have recently become aware and that was aimed in part at understand-
ing the relationship between lacunarity and turbulence, crack propaga-
tion or fractal growth, among other physical applications. (See, for ex-
ample, [BadPo,BallBlu1–3, BessGM,FouTuVa,ShlW,SmiFoSp] along with
the semi-expository articles [SalS,Sor] and the relevant references therein.)

12.3 Fractality and Self-Similarity

We refine our definition of fractality as follows. The roughness of a fractal
set is first of all characterized by its Minkowski dimension D. Then, either
it has nonreal complex dimensions with real part D, or it only has nonreal
complex dimensions with smaller real part. These two cases correspond to,
respectively, a fractal set that is not Minkowski measurable, and one that
is. (See Chapter 8, especially Sections 8.3, 8.4.2 and 8.4.4.) In the first case,
we say that the set is maximally fractal, whereas in the second case, the
set is fractal only in its less-than-D-dimensional features.
From our analysis of self-similar strings in Chapter 2 (Theorem 2.17),

it follows that lattice strings are maximally fractal in this sense, whereas
nonlattice strings are not fractal in dimensionD, but are fractal in infinitely
many dimensions less than and arbitrarily close to D.
Conjecturally, the dichotomy lattice vs. nonlattice and the correspond-

ing characterization of the nature of fractality applies to a wide variety of
situations, including drums with self-similar fractal boundary, drums with
self-similar fractal membrane, random fractals as well as “approximately
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self-similar sets”, such as limit sets of Fuchsian and Kleinian groups or hy-
perbolic Julia sets [Su,BedKS,Lal2]. This conjecture was first formulated
in [Lap3, Conjectures 2–6, pp. 159, 163, 169, 175, 190, 198], to which we
refer for a more detailed description of these situations. One obtains, con-
jecturally, a corresponding lattice–nonlattice dichotomy in the description
of the shape and the sound of a self-similar drum, in the nature of random
walks and Brownian motion on a self-similar fractal, and in the nature of
several function spaces associated with a self-similar fractal.

The following conjecture is very natural in our framework and signifi-
cantly supplements the geometric aspects of [Lap3, Conjecture 3, p. 163] for
self-similar drums. It is the higher-dimensional analogue of Theorems 2.17
and 3.6, which corresponds to self-similar sets in R.

Conjecture 12.18. The exact analogues of Theorems 2.17 and 3.6 hold
for every (strictly) self-similar set11 in Rd (and thus for any drum with
self-similar fractal boundary), satisfying the open set condition.12

In particular, the geometric zeta function has a meromorphic continua-
tion to all of C, with a single (simple) pole at s = D, where D ∈ (d− 1, d)
is the Minkowski dimension of the set.13 All the other complex dimensions
lie in the closed half-plane Re s ≤ D. Furthermore, the complex dimensions
of a lattice self-similar set are periodically distributed on finitely many ver-
tical lines, with period equal to the oscillatory period of the set, defined
exactly as in Equation (2.35) and Definition 2.14. On the other hand, a
nonlattice self-similar set does not have any nonreal complex dimension on
the line Re s = D, but it has infinitely many complex dimensions arbitrary
close (from the left) to this line. Moreover, its complex dimensions exhibit
a quasiperiodic structure.

Remark 12.19 (Tube formulas for self-similar sets). We further conjec-
ture that a tube formula holds for self-similar fractal sets in Rd, with d ≥ 1,
naturally extending the tube formula for self-similar fractal strings in R ob-
tained in Section 8.4.2, Theorem 8.23 and Section 8.4.4, Theorem 8.36. (In
particular, for self-similar fractal sprays—studied in Section 6.6.2 and in
Section 6.6.1 for the example of the Sierpinski drum—this clearly follows
from our explicit formulas exactly as in the case of self-similar strings.)
Much as in the proof of Theorems 8.36 and 8.23, it would then follow that
a nonlattice self-similar set in Rd is Minkowski measurable, whereas a lat-
tice self-similar set, such as the Sierpinski gasket or the von Koch snowflake
curve (viewed as self-similar fractal boundaries), is not. This statement is

11As in [Lap3, Conjecture 3], here and in Section 12.5, we also allow for the set (viewed
as the boundary of a self-similar drum) to be composed of a finite union of congruent
copies of such a self-similar set, just as for the snowflake drum.

12See Section 2.1.1 and Remark 2.22.
13The Devil’s staircase is self-affine but not self-similar. Thus Figure 12.3 does not

contradict this conjecture.



342 12. Concluding Comments, Open Problems, and Perspectives

exactly the geometric content of [Lap3, Conjecture 3, p. 163] (and, in par-
ticular, of [Lap3, Conjecture 2, p. 159] for the special case of snowflake-type
curves); see Remark 8.39 above. After [Lap-vF4] and [Lap-vF5] were com-
pleted, the statement concerning the Minkowski measurability of nonlattice
self-similar sets was proved by Gatzouras [Gat] by means of the Renewal
Theorem (much as was done in [Lap3, Section 4.4.1b] and in [Fa4] for
the d = 1 case, and earlier in [Lal1] in a related situation, see Remark 8.40
above). Because of the use of the Renewal Theorem, however, the statement
concerning the non-Minkowski measurability of lattice self-similar sets does
not follow from the result of [Gat], although our methods from Section 8.4.2
yield it directly.
Recently, a tube formula for the example of the von Koch snowflake

curve was obtained in [LapPe1], as will be briefly discussed in Section 12.3.1
below. This tube formula is of a form compatible with that expected for
drums with self-similar boundaries and also yields a set of possible com-
plex dimensions compatible with Conjecture 12.18. See also Section 12.3.2
for related but different work on tube formulas for self-similar tilings and
systems, rather than sets.

Remark 12.20 (Approximately self-similar sets). In light of [Lap3, Con-
jecture 4, p. 175] (motivated in part by work of Lalley in [Lal1–3]), Conjec-
ture 12.18 has a natural counterpart for approximately self-similar fractals
(in the sense of [Lap3, §4.5] alluded to above). In that case, the dichotomy
lattice vs. nonlattice must be defined by means of Lalley’s nonlinear ana-
logue of the Renewal Theorem [Lal2–3].

12.3.1 Complex Dimensions and Tube Formula
for the Koch Snowflake Curve

Consider the snowflake drum Ω, whose boundary ∂Ω, the snowflake curve,
consists of three congruent von Koch curves fitted together (see Figures 12.6
and 12.7, along with [Fa3, Figure 0.2, p. xv]). The construction of the
von Koch curve is illustrated in Figure 12.7. Note that this curve is an
example of a lattice self-similar fractal in R2 and a nowhere differentiable
plane curve (with infinite length).
By decomposing an ε-neighborhood of the von Koch curve K as in Fig-

ure 12.8, Erin Pearse and the first author derived in [LapPe1] the following
formula for the volume (i.e., area) of the ε-neighborhood:

Theorem 12.21 (Tube Formula). The volume of the inner ε-neighborhood
of the von Koch snowflake curve ∂Ω is given by the following pointwise for-
mula:

V (ε) = G1(ε)ε2−D +G2(ε)ε2, (12.3)
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Ω

∂Ω

Figure 12.6: The snowflake drum Ω. Its boundary is the von Koch snowflake
curve ∂Ω.

where G1 and G2 are periodic functions (of multiplicative period 3) given
by

G1(ε) =
1

log 3

∞∑
n=−∞

(
an +

∞∑
ν=−∞

fn−νbν

)
(−1)nε−inp (12.4)

and

G2(ε) =
1

log 3

∞∑
n=−∞

(
σn +

∞∑
ν=−∞

fn−ντν

)
(−1)nε−inp, (12.5)
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...

K

Figure 12.7: The von Koch curve K.
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Figure 12.8: The inner ε-neighborhood of the Koch curve.

where the coefficients fn−ν are explained below (see (12.8)), and, for n ∈ Z,

an = −
2−535/2

D − 2 + inp
+

2−333/2

D − 1 + inp
+
2−3(π − 33/2)

D + inp
+

bn

2
, (12.6a)

bn =
∞∑

m=1

32m+1 − 4
32m+1 − 2

(
2m
m

)
2−2−4m

(4m2 − 1)(D − 2m− 1 + inp)
, (12.6b)

σn = − log 3
(π

3
+ 2
√
3
)

δn0 − τn, (12.6c)

τn =
∞∑

m=1

32m+1 − 1
32m+1 − 2

(
2m
m

)
22−4m

(4m2 − 1)(−2m− 1 + inp)
, (12.6d)

where the Kronecker-delta δn0 = 1 for n = 0 and 0 for n �= 0.14 Here,
D = log3 4 is the Minkowski dimension of the von Koch snowflake curve ∂Ω
and p = 2π/ log 3 is its oscillatory period (following the terminology of Sec-
tion 2.4 ). The numbers fν are the Fourier coefficients of the periodic func-
tion h(ε), a suitable nonlinear analogue of the Cantor–Lebesgue function,
which is discussed in Remark 12.22 below and reflects the self-similarity of
the von Koch curve.

Now, by analogy with the tube formula (∗∗) in the introduction (or more
precisely, by analogy with (8.14) in Corollary 8.3), we interpret the expo-
nents of ε (in the expansion (12.3) of V (ε)) as the complex codimensions
of ∂Ω. Hence, we can simply read off the possible complex dimensions
from (12.3). Since some of the Fourier coefficients of G1 and G2 in (12.4)
and (12.5) may vanish, the corresponding exponent of ε may not be a
complex codimension. As depicted in Figure 12.9, upon collecting these
exponents from each series we obtain the following set of possible complex

14Since
(2m

m

)
< 22m, the series for bn and τn converge as fast as the geometric series∑∞

m=1 4−m.
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D

p

2p

Figure 12.9: The possible complex dimensions of the snowflake curve ∂Ω. D =
log3 4 and p = 2π/ log 3.

dimensions of the von Koch snowflake curve:

D∂Ω = {D + inp : n ∈ Z} ∪ {inp : n ∈ Z}. (12.7)

These dimensions are simple. We note that it follows from [LapPe1] that
the set DK of possible complex dimensions of the Koch curve is also given
by (12.7).

The following comment (in conjunction with Figures 12.8 and 12.10)
may help the reader gain an intuitive idea of why the periodic function h(ε)
enters into the statement of Theorem 12.21 and its geometric interpretation.

Remark 12.22. The factors fν appearing in (12.4) and (12.5) are the
coefficients of a function which may be written variously as

h(ε) =
∑
ν∈Z

fν(−1)νε−iνp =
∑
ν∈Z

fνe2πiνx = f(x), (12.8)

with x = − log3(ε
√
3) and p = 2π/ log 3 as in Theorem 12.21. While we

do not know h(ε) analytically, or its Fourier coefficients fν explicitly, we
know that it is a nonlinear and multiplicatively periodic counterpart of
Cantor’s classical staircase singular function.15 Specifically, h = h(ε) has
multiplicative period 3; i.e., h(ε) = h(ε/3). Alternatively, it can be thought
of as an additively periodic function f = f(x) with period 1 and with
Fourier expansion given by (12.8) (here, x = − log3(ε

√
3) as above). These

15Recall from Section 12.2 above that the graph of the classical Cantor–Lebesgue
function is also coined the Devil’s staircase in [Man1, Plate 83].
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A

B

Figure 12.10: (a) The function h. (b) The number μ = vol2(A)/ vol2(B), given
as a ratio of areas.

properties, among others, are directly induced by the (lattice) self-similarity
of the von Koch curve K.
The function h = h(ε) is continuous and even monotonic decreasing

when restricted to one of its periods
(
3−(n+1)−1/2, 3−n−1/2

]
. Further, it

has a finite jump discontinuity at the left-hand point of this interval, and
its jump at that point is shown in [LapPe1, Section 3.4] to be equal to μ
(as given geometrically in Figure 12.10(b)). (The function h itself is defined
geometrically in [LapPe1, Section 3.2] as the proportion of certain “error
blocks” formed as ε crosses one of its period intervals. In particular, we
have 0 ≤ h(ε) ≤ μ < 1, for all ε > 0.) Since f is monotonic, and hence of
bounded variation, it follows from [Zyg, Theorem II.8.1]16 that the Fourier
series expansion (12.8) of f (or of h = h(ε)) converges pointwise (clearly,
the convergence is conditional). Moreover, by [Zyg, Theorem II.4.12], the
Fourier coefficients of f (and h) satisfy fν = O(1/ν) as |ν| → ∞.
A sketch of the graph of h is given in Figure 12.10(a). To see the ternary

nature of this function, consider that each connected component of the
graph is similar to a skewed version of the black figure depicted at top
right in Figure 12.10(b). We refer the interested reader to [LapPe1] for
further information.

In the next remark, we briefly compare the main result of [LapPe1] dis-
cussed in this section with the earlier result obtained in [Lap-vF5, Sec-
tion 10.3].

Remark 12.23 (Exact versus approximate tube formula). In [Lap-vF5,
formulas (10.3) and (10.4)], we had provided without proof a provisional
approximate formula for the volume of the tubular neighborhood of the

16Namely, the Fourier series of a periodic function of bounded variation converges
pointwise at every point x to the mean value (f(x+) + f(x−))/2, where

f(x+) = lim
t→x+

f(t) and f(x−) = lim
t→x−

f(t).

In particular, it converges to f(x) wherever f is continuous. (See, e.g., [Zyg, Theo-
rem II.8.1] or [Fol, Theorem 8.43, p. 266] for this extension of Dirichlet’s Theorem, due
to Camille Jordan.)
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von Koch snowflake curve, of the form

V (ε) ≈
∞∑

n=−∞
enε2−D−inp, (12.9)

where en �= 0 for each n ∈ Z; specifically,

en = −
3
√
3 log 3 (4 log 4 + log 3)

8(− log(9/4) + 2πin)(log(4/3) + 2πin)(log 4 + 2πin)
. (12.10)

(See [Lap-vF5, Eq. (10.4), p. 210].) We then stated in [Lap-vF5, Sec-
tion 10.3] that the set of complex dimensions of the von Koch snowflake
curve should be {D + inp : n ∈ Z} with D and p as in Theorem 12.21.
By contrast, V (ε) is precisely equal to the right-hand side of (12.3), except
for the fact that the Fourier coefficients of the function h are not explicitly
known. It is compatible with the approximate formula (12.9), although it
also points out the possibility of having one line of complex dimensions
above zero.
We note that both the exact formula (12.3) and the earlier approximate

formula (12.9) are in agreement with Conjecture 12.18 above,17 because the
von Koch curve is a lattice self-similar set with Minkowski dimensionD and
oscillatory period p = 2π/ log 3 (since, in the notation of Theorem 2.17, we
have N = 4, K = 1, and r1 = r2 = r3 = r4 = 1/3).

Remark 12.24 (Reality principle). As is the case for the complex dimen-
sions of self-similar strings (see Chapter 2), the possible complex dimensions
of ∂Ω come in complex conjugate pairs, with attached complex conjugate
coefficients. Indeed, f̄n = f−n (because f is real-valued), and a simple
inspection of the formulas in (12.6) shows that for every n ∈ Z,

ān = a−n, b̄n = b−n, σ̄n = σ−n and τ̄n = τ−n. (12.11)

It follows that a0, b0, σ0 and τ0 are real numbers and that each infinite sum
on the right-hand side of (12.3) is real, in agreement with the fact that V (ε)
represents an area. For the same reason, the periodic functions G1 and G2

in (12.4) and (12.5) of Theorem 12.21 are real-valued.
The reader can easily check that the tube formula (12.3) can be rewritten

in the following form:

V (ε) =
∑
n∈Z

cnε2−D−inp +
∑
n∈Z

dnε2−inp, (12.12)

for suitable complex numbers cn and dn such that c̄n = c−n and d̄n = d−n

for all n ∈ Z. One caveat should be mentioned here: of course, it is al-
ways possible that one of the coefficients cn (or dn) vanishes, in which
case D + inp (or inp) is not a complex dimension of Ω.

17Possibly with appropriate adjustments above 0, in view of (12.3).
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12.3.2 Towards a Higher-Dimensional Theory
of Complex Dimensions

Theorem 12.21 may be viewed as providing a first step towards the begin-
ning of a higher-dimensional theory of complex dimensions of self-similar
fractals. Therefore, in the long term, it may help to extend to two or more
dimensions some of the results obtained in this book, especially in parts of
Chapters 2, 3 and 8, as well as of Section 6.4. A main challenge associated
with Theorem 12.21 (apart from extending it to other interesting higher-
dimensional examples), however, consists in defining in this situation an
appropriate analogue ζΩ of the geometric zeta function, and showing that
it admits a meromorphic continuation to some half-plane Re s > δ, with
−∞ ≤ δ < D. In light of (12.3) (and by analogy with Corollary 8.3), one
would then expect all the poles of ζΩ to be simple and given by (12.7) or
a suitable subset thereof.
In [LapPe2–4], the beginning of a higher-dimensional theory of complex

dimensions is developed for a suitable class of self-similar systems in Rd,
via tube formulas and geometric zeta functions for certain tilings naturally
associated with these systems.
More precisely, the self-similar tilings introduced in [Pe] are used in the

papers [LapPe2–3] to define an appropriate geometric (or scaling) zeta func-
tion, whose poles yield the complex dimensions of the self-similar system
(i.e., the system of similarity transformations {Φj : j = 1, . . . , N} defining
the given self-similar set, see Section 2.1.1).18 The resulting zeta function is
then used in conjunction with our extended distributional explicit formula
of Chapter 5 (see Theorem 5.26 in Section 5.4.1) to obtain a (distributional)
explicit inner tube formula for the self-similar system or tiling in Rd. In the
one-dimensional case (i.e., for self-similar fractal strings in R), this tube
formula coincides with the one obtained in Chapter 8 (Theorem 8.1 and
Section 8.4). In higher dimension, however, the geometry of the underly-
ing basic shapes—called generators in [Pe] and [LapPe2–4] because they
generate the self-similar tiling via the action of the semigroup defined by
the iterates of the maps Φj (for j = 1, . . . , N)—plays a key role in the
expression of the tube formula. (For fractal strings, there is essentially only
one kind of generator, the unit interval.)
In fact, in the papers [LapPe2–4], several new connections between as-

pects of geometric measure theory [Fed1–2, Schn] and fractal geometry
are also developed in the process. These connections involve the notion of
mixed volumes (of the generators) encountered in Steiner’s classic formula
for the volume of tubes of convex bodies [Stein,Fed2,Schn] and that of cur-
vature measure (à la Weyl [Wey3,Gra] and Federer [Fed1], but in a more

18The canonical self-similar tiling in question is a tiling of the complement of the self-
similar set in its convex hull. For example, for the Koch tiling, depicted in Figure 12.11,
the convex hull of the Koch curve is an isosceles triangle.
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general context; see [LapPe2–4] along with Section 8.2). In the long term,
one expects to be able to interpret the coefficients of the tube formulas
obtained in [LapPe2–3] in terms of suitably defined fractal curvature mea-
sures associated with the complex dimensions of the underlying self-similar
system (and its corresponding tiling). A step in this direction is carried out
in the work [LapPe4], building upon [LapPe2–3] and partially motivated
by some of the questions raised in Section 8.2 above and in Section 12.7
below (or in [Lap-vF5, Sections 6.1.1 and 10.5]).

Remark 12.25. We point out that although the methods and main result
(Theorem 12.21 above) of [LapPe1] were useful to develop the theory of [Pe]
and [LapPe2–4], they are different and do not follow from the latter more
recent work. Indeed, the Koch tube formula (12.3) from [LapPe1] is assoc-
iated with the self-similar set K whereas the tube formulas in [LapPe2–4]
are expressed in terms of the tiles of the self-similar tiling, or equivalently,
in terms of the cells of the underlying self-similar system corresponding to
the self-similar set.

We close this subsection by giving a more precise and quantitative discus-
sion of the main results of [LapPe2], which extend both the classic Steiner
tube formula for convex bodies [Stein] and the tube formula for fractal
strings (Theorem 8.1 above).
For a fractal spray in Rd (d ≥ 1), viewed as a tiling with possibly mul-

tiple generators (or, in our present terminology, basic shapes), it is shown
in [LapPe2] that, under mild hypotheses,19 the following (distributional)
inner tube formula holds:

Vtil(ε) =
∑

ω∈Ds(W )∪{0,...,d−1}
cømegaεd−ω +R(ε), (12.13)

where ω ranges not only over the integral dimensions {0, . . . , d− 1}, as
would be the case in the classic Steiner–Weyl–Federer tube formula for
compact convex sets and smooth submanifolds of Rd, but also over the
(typically infinite) set of complex dimensions Ds(W ) of the spray (i.e., the
poles of the associated scaling zeta function), and the coefficients cω,j are
expressed as the residues of an inner product involving a vector-valued
zeta function (defined in terms of the inner radii of the scaled generators)
and the curvature matrix of the generators. Further, the error term can be
estimated as follows:

R(ε) = O
(
εd−sup S

)
, as ε → 0+. (12.14)

19Namely, the generators of the spray are assumed to be “Steiner-like” (i.e., the cor-
responding inner tube formula is a suitable polynomial in ε, as defined in [LapPe2] and
further investigated in [LapPe3]) and the underlying scaling measure (or generalized
fractal string) is assumed to be languid along the screen. Further, the screen may not
pass through 0, 1, . . . , d.
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Moreover, when the fractal string associated with the spray is strongly
languid (which is the case for self-similar tilings), we may take W = C
and R(ε) ≡ 0 in the tube formula (12.13).
Remark 12.26. The usual Steiner formula refers to the full (not just in-
ner) ε-neighborhoods of the set in question. Under somewhat different as-
sumptions, there is a corresponding version of the tube formula (12.13) for
the volume of such ε-neighborhoods. We prefer, however, to focus on the
aforementioned inner tube formula because in the key special case of self-
similar tilings (as discussed in (ii) below), this has an intrinsic geometric
meaning. This also fits precisely the type of tube formula for fractal strings
obtained in this book (see (i) just below).

The following two special cases of the tube formula (12.13) are of par-
ticular interest:
(i) When d = 1, that is, for a (possibly generalized) fractal string, one re-

covers our (distributional) tube formula for fractal strings, Equation (8.4),
under exactly the same hypotheses as in Theorem 8.1.
(ii) For a self-similar tiling (as defined in [Pe]), associated with a self-

similar system of N contractive similarity transformations of Rd (d ≥ 1)
and corresponding attractor the self-similar set F , the inner tube for-
mula (12.13) holds with W = C and R(ε) ≡ 0 (i.e., without error term).20
In that case, the scaling zeta function of the self-similar tiling is strongly
languid and equals the geometric zeta function of a (normalized) self-similar
string with a single gap and with the same scaling ratios {rj}N

j=1. Namely,

ζs(s) =
1

1−∑N
j=1 rs

j

, for s ∈ C, (12.15)

as in Equation (2.15) following Theorem 2.9. Hence, the set of complex
dimensions Ds(C) of the tiling consists of the complex solutions of the
equation

N∑
j=1

rs
j = 1, (12.16)

exactly as in Section 2.2.1. These can also be viewed as the complex di-
mensions of the self-similar set F , or, more accurately, of the self-similar
system defining it.
We note that in higher dimensions, the true complexity of the geometry

of the self-similar tiling is hidden in the curvature coefficients cω of the tube

20This is under the hypothesis that the generators of the tiling are Steiner-like, which
is satisfied, for example, for the self-similar tiling naturally associated with the Koch
curve, the Sierpinski gasket, the Sierpinski carpet and its higher-dimensional analogue,
the Menger sponge, as well as with a broader class of self-similar systems [LapPe3].
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formula (12.13). In particular, the geometric zeta function of the self-similar
tiling (or tiling zeta function) is defined in [LapPe2] to be the meromorphic
distribution-valued function

ζtil(ε, s) := ζs(s)
〈
g(s), E(ε, s)

〉
κ(ε)

. (12.17)

In (12.17), ζs is the complex valued scaling zeta function given in (12.15)
and the bilinear map 〈·, ·〉κ induced by κ is defined as the matrix product〈

g, E
〉

κ
:= gT κ E , (12.18)

where g(s)T denotes the transpose of the vector-valued function

g(s) :=
[
gs
1, . . . , g

s
K

]
. (12.19)

In (12.19), g1, . . . , gK are the inner radii of the K generators of the tiling.21

Further, in (12.17), E(ε, s) is the vector-valued function

E(ε, s) =
[1
s
,
1

s− 1 , . . . ,
1

s− d

]
εd−s. (12.20)

Several comments are required before we can explain the curvature ma-
trix κ. We assume that each of the finitely many generators is Steiner-like,
that is, for each k = 1, . . . , K, the generator Gk satisfies a generator tube
formula of the form (with 0 < ε < gk)22

VGk
(ε) =

d−1∑
j=0

κj(Gk; ε)εd−j , (12.21)

for certain real-valued curvature coefficients κj(Gk; ε) for j = 0, . . . , d− 1,
which we assume to be measurable and bounded on (0,∞) as functions of ε.
These coefficients are rigid motion invariant and homogenous of degree j,
in the sense that for all x > 0, κj(xGk; ε) = xjκj(Gk; ε), where xGk is the
homothetic image of Gk. We define the curvature matrix κ of the generators
as the K × (d+ 1) matrix

κ = {κj(Gk; ε)}1≤k≤K,0≤j≤d . (12.22)

Here, for k = 1, . . . , K, we define κd(Gk; ε) by κd(Gk; ε) = − vold(Gk)
for ε ≥ gk. In all known examples, the coefficients κj(Gk; ε), and hence the
entries of the matrix κ, depend on ε in a piecewise constant manner.
We can now state the main result of [LapPe2] in the special case of

self-similar tilings.

21The inner radius of G ⊂ Rd is the radius of the largest ball contained in G.
22Clearly, VGk

(ε) = vold(Gk) for all ε ≥ gk.
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Figure 12.11: The Koch tiling.

Theorem 12.27. The tube formula of a self-similar tiling is given by

Vtil(ε) =
∑

ω∈Dtil

res
(
ζtil(ε, s);ω

)
, (12.23)

where Dtil := Ds(C) ∪ {0, . . . , d − 1} is the set of poles of ζtil, and Ds is
the set of solutions of (12.16).

In the special case when all the poles of ζtil are simple and the curvature
matrix κ is constant for ε < min{g1, . . . , gK}, the tube formula is of the
form (12.13), with W = C and R(ε) ≡ 0:

Vtil(ε) =
∑

ω∈Dtil

cωεd−ω, (12.24)

where for ω ∈ Ds, the coefficients cω are given by

cω = res(ζs(s);ω)
d∑

j=0

K∑
k=1

gω
k

ω − j
κj(Gk), (12.25)

and for ω ∈ {0, . . . , d− 1}, the coefficients cω are given by

cω = ζs(ω)
K∑

k=1

gω
k κω(Gk). (12.26)

In light of (12.15), (12.17), (12.20) and (12.22), the function defined
by s �→ ζs(s)〈g(s), E(·, s)〉κ is distribution-valued and meromorphic in all
of C. It follows that on the right-hand side of (12.23), each summand is
well defined as the residue of ζtil at ω ∈ Dtil and is itself a distribution on
the open interval (0,∞). These facts are verified in [LapPe2, Appendix B].
The tube formula (12.24) is illustrated in [LapPe2] in a variety of exam-

ples, including the Cantor, Koch, Sierpinski, and pentagasket tilings, which
are all lattice self-similar tilings with a single line of simple complex dimen-
sions. All of those tilings have a single generator, except the pentagasket
tiling, which has six generators (one regular pentagon and five isosceles
triangles).
We now conclude this subsection by the following example of the Koch

tiling, depicted in Figure 12.11 and discussed in more detail in [LapPe2].
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Example 12.28 (The Koch Tiling). The tube formula for the Koch tiling
KT is of the form

VKT(ε) =
g

log 3

∑
n∈Z

cn

(
ε

g

)2−D−inp

+ 33/2ε2 +
1

1− 2 · 3−1/2
ε, (12.27)

where g =
√

3
18 is the inner radius of the single generator of the tiling (an

equilateral triangle), D := log3 4 and p := 4π/ log 3, and for n ∈ Z,

cn := −
1

D + inp
+

2
D − 1 + inp

− 1
D − 2 + inp

.

From (12.27), we clearly read off that

Ds = {D + inp : n ∈ Z} and DKT = Ds ∪ {0, 1}. (12.28)

Indeed, the elements of Ds are precisely the poles of the scaling zeta func-
tion ζs(s) = 1

1−2·3−s/2 (since d = 2, N = 2 and r1 = r2 = 3−1/2 in this
case). Hence, Ds is the set of complex dimensions of the Koch tiling.

12.4 Random and Quantized Fractal Strings

In this section, we present some extensions of the framework of this book,
that of fractal strings. In Section 12.4.1, we discuss random fractal strings,
as studied in [HamLap], and in Section 12.4.2, we briefly discuss the no-
tion of fractal membrane (or quantized fractal string) introduced in the
forthcoming book [Lap10] and further studied in the work in prepara-
tion [LapNes1–3].

12.4.1 Random Fractal Strings and their Zeta Functions

In this section, we discuss recent work of Ben Hambly and the first au-
thor in the paper [HamLap]. In that paper, the authors develop a random
counterpart of the theory of fractal strings and their associated complex di-
mensions. Typical examples of random fractal strings studied in [HamLap]
include random Cantor-type sets, random self-similar sets or random re-
cursive constructions (defined via random trees and branching processes),
as well as the zero set of Brownian motion (and its analogue for a one-
parameter family of stable strings). An interesting aspect of this work is
that random fractal strings and their associated complex dimensions and
zeta functions exhibit a broader variety of behaviors than their determin-
istic counterparts.
More specifically, the authors obtain tube formulas, as well as explicit for-

mulas for the geometric and spectral counting functions of random fractal



12.4 Random and Quantized Fractal Strings 355

strings, expressed (as in the deterministic case) in terms of the underly-
ing complex dimensions. The latter complex dimensions are defined as the
poles of a suitable random zeta function (defined almost surely and denoted
henceforth ζL(s) or ζη(s)) associated with the random fractal string.
It is useful in this context to consider the random measure (or random

generalized fractal string) η representing the random string, much as in
the deterministic theory developed in this book (see especially Chapters 4
and 5) and in [Lap-vF5].23 The random geometric zeta function of L (or
of η) is defined as the Mellin transform of the random measure η,

ζη(s) = ζL(s) =
∫ ∞

0

x−sη(dx), for Re s � 1, (12.29)

and then meromorphically continued (wherever possible). As such, ζη is a
random zeta function (i.e., a zeta function-valued random variable) and is
therefore only defined almost surely (i.e., for almost every realization of η).
Then, as could be expected in a probabilistic setting, most of the statements
in [HamLap] hold almost surely; that is, for almost every realization of the
random fractal string. These statements include, for example, the existence
of the analytic continuation of the random zeta function, the tube formulas,
and the spectral and geometric asymptotic expansions, but exclude those
concerning the mean zeta function to be discussed below.
A main new difficulty in this probabilistic context is to show that under

suitable conditions the (pointwise) random zeta function ζL(s) admits al-
most surely a meromorphic continuation to a nontrivial region (i.e., beyond
the abscissa of convergence, which coincides with the dimension of L) and
is languid there. (The latter is significantly easier to verify than the former
for the type of random strings studied in that work.) It follows that the
explicit formulas of Chapter 5 (or of [Lap-vF5, Chapter 4]) can be applied
to almost every sample path (i.e., to almost every realization of the random
string) to yield the desired tube formula or eigenvalue asymptotics.
Typically, in [HamLap], one first studies the mean zeta function, E(ζL),

defined as the average (or expected value) of the (pointwise) random zeta
function ζL over all possible realizations of the random string L. Then,
after having established the existence of the meromorphic continuation
of E(ζL) to a suitable domain, one uses an argument based on a variant of
the Central Limit Theorem to control the fluctuations of the random zeta
function around its mean and deduce the existence almost surely of the de-
sired analytic continuation of ζL to some half-plane of the form Re s > α,
with −∞ ≤ α < D and where D is almost surely the dimension of L.

23As usual, we have η =
∑

�∈L δ�−1 , where the sum is extended over the lengths
of the random fractal string L. However, the lengths � of a random fractal string are
themselves random variables and hence η is a random measure (i.e., a measure-valued
random variable).
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This method works well for random self-similar strings (obtained via
random recursive constructions), as well as for stable strings (including
the random fractal string having for boundary the zero set of Brownian
motion), as will be further discussed below. On the other hand, in [Ham-
Lap, Section 6], one exhibits a spatially homogeneous random string arising
from a random Cantor set C for which these techniques break down. In-
deed, the random Cantor set C is chosen in such a way as to have violent
random irregularities at all scales. (Random fractals of this type were also
studied earlier from a different point of view in [BarHam].) This has the
effect of introducing much stronger fluctuations in the scale geometry of
the string and prevents one from controlling the error term (beyond the
mean) in the Euler–Maclaurin approach to analytic continuation. It is pos-
sible (and is raised as an open problem in [HamLap]) that for such random
strings, almost surely, the random zeta function ζL(s) admits the verti-
cal line Re s = D as a natural boundary (i.e., cannot be meromorphically
continued beyond the region where it is holomorphic); see the end of Prob-
lem 12.35.
We now briefly comment on one of the main classes of random strings

studied in [HamLap]. One type of randomness considered in [HamLap] is ex-
pressed in terms of the theory of branching processes [Harr], with (roughly
speaking) each sample path corresponding to a suitable choice of random
tree and associated functions (such as the reproduction process describing
the offspring being produced, and the life-span function, a random char-
acteristic that assigns a score or weight to each individual). We refer, for
example, to Section 3 of [HamLap] for a description of the general notion
of branching process and of the hypotheses made in that work, as well as
to Section 4 of [HamLap] for the way in which this general construction is
applied to random recursive strings (also called random self-similar strings,
but allowing for a random and possibly infinite number of scaling ratios).

Remark 12.29. In short, branching processes—also called Galton–Watson
processes—arose from Galton’s 19th century study of the extinction of fam-
ily names and provide useful mathematical models for understanding the
time evolution of populations whose members reproduce and die according
to suitable probabilistic laws. In their simplest form, they can be described
as follows (see, e.g., [Harr]). The initial ancestor (represented by the root of
the associated random tree) has a random number of children (or offspring);
in turn, these children have offspring (or families), etc. Each successive gen-
eration corresponds to a different level of the tree. It is important to note
that all the offspring are assumed to reproduce independently of one an-
other. Furthermore, each additional offspring is an independent copy of the
initial one. In the case of random self-similar strings modeled by random
trees, this property enables one to obtain a suitable functional equation sat-
isfied by the mean zeta function E(ζ(s)), and to deduce from it an explicit
expression for this function. (See [HamLap, Section 4].)
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Random Self-Similar Strings

We now discuss in more detail some of the results obtained in [HamLap],
first in the case of random self-similar strings, and then for random stable
strings. The random recursive constructions considered in [HamLap] enable
one to have a different number of scaling ratios {rj}N

j=1 and gaps {gk}K
k=1

for each generation (i.e., at each level of the random tree). Moreover, these
numbers can be infinite; i.e., N =∞ or K =∞ is allowed. In the simplest
cases, the potential complex dimensions of the resulting random self-similar
string are contained among the complex solutions of an expectation Moran
equation

E

(
N∑

j=1

rs
j

)
= 1. (12.30)

(Cancellations may occur with the solutions of E
(∑K

k=1 gs
k

)
= 0, much as

was shown in the deterministic case in Section 2.3.3 above.) Indeed, it is
shown in [HamLap, Lemma 4.4] that

E(ζL)(s) =
E
(∑K

k=1 gs
k

)
1− E

(∑N
j=1 rs

j

) . (12.31)

In other situations when the underlying randomness is of a more intri-
cate nature, one may obtain more complicated expressions for E(ζL(s))
(and hence for the ensuing expectation equation), involving certain contin-
uous integrals, for example. Note that the expectation symbol E (with re-
spect to the underlying probability measure) is needed in Equations (12.30)
and (12.31) because both the scaling ratios rj and the gaps gk are random
variables. If the family size is finite (see Remark 12.29 above), then E(ζL)
can be meromorphically continued to all of C. Otherwise, under suitable as-
sumptions, it can be analytically continued up to the vertical line Re s = 0.
In either case, (12.31) (and hence (12.30)) holds for s in C or {s : Re s > 0},
respectively.
The main result in [HamLap, Section 4] asserts the existence of a suitable

analytic continuation for the pointwise or random (and not just the mean)
zeta function, for almost every realization of the random fractal string L.
Theorem 12.30 ([HamLap, Theorem 4.5]). Almost surely, the random
zeta function ζL(s) of the random self-similar string admits a meromorphic
continuation to a nontrivial open half-plane Re s > D − τ, where D is the
Minkowski dimension of L and the positive constant τ is estimated in terms
of the parameters specifying the underlying branching process. Further, L
is languid in the corresponding window. It follows that the set DL of visible
complex dimensions of L (i.e., the poles of the random zeta function) is con-
tained in the set of complex solutions s to the expectation equation (12.30)
such that Re s > D − τ .
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One deduces from the above result (and our earlier work on explicit
formulas, see Chapters 5 and 8) an inner tube formula for random self-
similar strings (see Theorem 7.6 in [HamLap]). In particular, for almost
every realization of L, the volume of the inner tubular neighborhoods is
given, for ε → 0+, by

V (ε) =
∑

ω∈DL

res
(

ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ {2εζL(0)}+ o

(
ε1−D+τ−δ

)
(12.32)

for every fixed δ > 0, where the term between braces is included only if 0
is not a complex dimension of L. We refer to part (1) of Theorem 7.8
of [HamLap] for the resulting estimate in the nonlattice case.

Stable Random Strings

We now discuss the family of stable random strings {Lα}α∈(0,1), induced
by the one-parameter family {Cα}α∈(0,1) of random Cantor sets defined by
the excursions of stable subordinators, as studied in [HamLap, Section 5]
(see [PitY] for an extensive survey of such random sets).24 Hence, for exam-
ple for α = 1/2, the boundary of L1/2 coincides with C1/2, the set of zeros
of one-dimensional Brownian motion. If, for each 0 < α < 1, we write the
lengths of the α-stable string in the form Lα = {�j,α}∞j=1, then it follows
from a result obtained in [PitY] that almost surely

lj,αj1/α −→Mα as j →∞, (12.33)

for some positive and finite constant Mα. Hence, according to the Minkow-
ski measurability criterion obtained in [LapPo2] (see Remark 8.19 above),
almost surely, Lα is Minkowski measurable with Minkowski dimension α
and Minkowski content

Mα =
21−α

1− α
(Mα)α. (12.34)

In particular, almost surely, the zero set of a Brownian path is Minkowski
measurable and has dimension 1/2.
Moreover, it is shown in [HamLap, Lemma 5.3] that the mean zeta func-

tion E(ζLα) can be meromorphically continued to the whole complex plane
and is given by

E(ζLα)(s) =
Γ(s− α)

Γ(1− α)Γ(s)
, for s ∈ C. (12.35)

Recall that the gamma function Γ(s) is meromorphic in all of C. Fur-
ther, it has no zeros and has only simple poles, which lie on the real axis

24We note that the focus in [PitY] was not on the fractality of the resulting random
set.



12.4 Random and Quantized Fractal Strings 359

at s = 0,−1,−2,−3, . . . . Therefore, in view of (12.35), the poles of E(ζLα
)

are all simple and lie on the real axis at the values α, α− 1, α− 2, α− 3, . . . .
Recall that α = D is the Minkowski dimension of almost every realization
of the random fractal string Lα. It follows, in particular, that almost surely,
the random (or pointwise) zeta function is holomorphic for Re s > α.

Remark 12.31. To avoid any possible confusion, we note that unlike ran-
dom self-similar strings, random stable strings are not defined in terms
of random trees and branching processes. Instead, they are derived from
stable subordinators (increasing functions).

Remark 12.32. The aforementioned results concerning the Minkowski
content and the poles of the mean zeta function of a random stable string
(with parameter α) are reminiscent of those obtained earlier for the a-
string defined in Section 6.5.1 and for which all the complex dimensions
were also located on the real axis. Compare, for example, the present results
and those stated in Theorem 6.20 and Section 8.1.2. (Note, however, that
even if we set α = 1

a+1 or, equivalently, a = 1−α
α , so that the Minkowski

dimensions of the strings coincide, the other poles on the real axis do not
coincide.)

The next result provides information about the analytic continuation of
the random zeta function ζLα

.

Theorem 12.33 ([HamLap, Theorem 5.7]). Almost surely, the geometric
zeta function ζLα

of the random stable string Lα admits a meromorphic
continuation to the open half-plane Re s > α/2 and has a simple pole
at s = α but no other visible poles (in that window). Moreover, the value of
the residue at s = α is α(Mα)α, where Mα is given by Equation (12.33).

One deduces that for every fixed δ > 0, the volume V (ε) of the tubular
neighborhoods of Lα is almost surely given by

V (ε) =
Mα(2ε)1−α

1− α
+ o

(
ε1−α/2−δ

)
, as ε → 0+, (12.36)

and that for every fixed δ > 0, the spectral counting function Nν(x) of Lα

is almost surely given by

Nν(x) = x+Mαζ(α)xα + o
(
xα/2+δ

)
, as x→∞ (12.37)

(see [HamLap, Theorems 7.8 and 7.9]). For the expert reader, we mention
that the α-th power of the (positive and finite) constant Mα occurring in
Equations (12.33), (12.34), as well as in (12.36) and (12.37), has an inter-
esting probabilistic interpretation. In particular, the square root of M1/2

is equal to the (Lévy) local time at 0 of Brownian motion run for a unit
length of time.

The following comment may help to clarify one aspect of Theorem 12.33
that is not immediately obvious. This will be helpful in the following dis-
cussion.
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Remark 12.34. According to Theorem 12.33, D = α is the only pole in
the window W = {s : Re s > α/2}, which is the window for which ζL
has been shown in [HamLap] to be both languid and meromorphic, almost
surely. (Indeed, α − 1 < α/2, since 0 < α < 1.) However, by (12.35), even
if ζL were shown to have, almost surely, a meromorphic continuation that is
languid in a regionW ′, larger thanW , the only poles of ζL inW ′ would still
be located on the real axis. Indeed, according to (12.35) and the discussion
following it, the only poles of L in W ′ are the same as those of the mean
zeta function (12.35) and hence are all simple and located at α − n, for
all n such that α− n ∈W ′.

A Refinement of the Notion of Fractality

In light of the above discussion, it is natural to wonder whether the random
zeta function ζL of a random fractal string may have a natural boundary
(i.e., cannot be meromorphically continued beyond a certain vertical line,
or more generally curve, then called a natural boundary for ζL or for L,
in short). The following open problem—stated (in somewhat more concise
form) at the very end of [HamLap]—addresses this question.

Problem 12.35. Find natural classes of random fractal strings L for which,
almost surely, the random zeta function ζL admits a natural boundary. Con-
sider, especially, the case of random self-similar strings and that of stable
random strings (studied in [HamLap, Sections 4 and 5]).
In particular, because of their strong scale-irregularity, the random Can-

tor strings (or homogeneous random strings) considered in [HamLap, Sec-
tion 6] are potential candidates for having the vertical line Re s = D itself
as a natural boundary. Is that really the case?

We close this section by recalling that by Theorem 12.33 above, the vis-
ible complex dimensions of a stable random string L (i.e., the visible poles
of ζL) must all lie on the real axis; see Remark 12.34 above. In light of the
definition of fractality proposed at the beginning of Section 12.2, this would
seem to go against our intuition that the zero set of Brownian motion, for
example, is a (random) fractal.25 However, if ζL does have a natural bound-
ary L (say, along some vertical line Re s = σ, with σ ≤ D/2)—as may be
expected according to Problem 12.35 above—then, in some intuitive sense,
it implies that ζL has a dense subset of singularities accumulating along L.
Hence, almost surely, ζL would have infinitely many nonreal singularities
accumulating along L. An analogous comment would apply to the strongly
scale-irregular random Cantor sets considered in [HamLap, Section 6], ex-
cept that the natural boundary might be along the line Re s = D, in which

25Another possibility would be to draw on the analogy with the a-string (as discussed
in Remark 12.32 above) and recall from Section 12.2.2 that the latter string is not fractal
in our sense.
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case the object would be strongly fractal. This leads us naturally to supple-
ment the definition of fractality given at the very beginning of Section 12.2:

A geometric object is fractal if it has at least one nonreal com-
plex dimension (with positive real part) or if the associated zeta
function has a natural boundary along a screen26 (located in the
open half-plane Re s > 0).

Clearly, such a definition can be easily adapted at the spectral or dynamical
level, as well as to the random case.

12.4.2 Fractal Membranes : Quantized Fractal Strings

In the book [Lap10] (announced in [Lap9]), the first author has proposed
the notion of quantized fractal string, called fractal membrane, and has de-
veloped an analogy between self-similar geometries and arithmetic geome-
tries. In particular, lattice strings (or membranes) correspond to varieties
over finite fields whereas nonlattice strings (or membranes) are viewed as
a counterpart of algebraic number fields.27 Moreover, the scaling ratios of
self-similar geometries (or of self-similar membranes [Lap10]) play the role
of the generalized primes attached to fractal membranes, while expressions
like (2.10) for the geometric zeta function of a self-similar string (with
possibly infinitely many scaling ratios and gaps) correspond to the Euler
product representation (of the same nature as that for the classical Rie-
mann zeta function, see [In,Pat,Ti]) of the partition function of a fractal
membrane (as obtained in [Lap10]). Finally, in joint work of the first author
with Ryszard Nest [LapNes1], it was recently shown that the fractal mem-
branes (respectively, self-similar membranes) introduced in [Lap10] can be
rigorously constructed as the second quantization of fractal strings by us-
ing bosonic (respectively, Gibbs–Boltzmann or free) statistics, along with
aspects of the theory of operator algebras and of Connes’ noncommutative
geometry [Con]. (See also [LapNes2, 3].)
We next provide some additional information about fractal membranes

and their associated zeta functions (or partition functions).

Fractal Membranes as Noncommutative, Infinite Dimensional Tori

We first discuss the basic intuition behind the notion of fractal mem-
brane. Heuristically, a fractal membrane (or quantized fractal string) can
be thought of as a noncommutative, adelic, infinite dimensional torus.
(See [Lap10, Chapters 3 and 4].) In particular, it can roughly be con-
sidered as an infinite dimensional restricted product of circles,

∐∞
j=1 Sj

26In the sense of this book, see Sections 1.2.1 and 5.3.
27Finite extensions of the field of rational numbers; see, e.g., [ParSh1, I& II].
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(or a restricted Hilbert cube, with opposite faces identified). Hence, in-
stead of vibrating independently of one another, as is the case for a stan-
dard fractal string, all the intervals Ij (or circles Sj , for j = 1, 2, . . . ) of
the quantized fractal string28 are now vibrating in mutually perpendicu-
lar directions within a potentially infinite dimensional space. One adds the
physically natural constraint that for each given mode of vibration of the
membrane (i.e., for each eigenfunction of the underlying Dirac operator D,
to be discussed in Remark 12.36 below), only finitely many circles (or pairs
of opposite faces of the corresponding Hilbert cube) are actually vibrating.
Of course, different modes of vibration usually involve different finite sub-
sets of circles. The above constraint explains the use of the term “adelic”
as a qualification of the infinite dimensional torus associated with a fractal
membrane.29 Furthermore, its mathematical counterpart in this context is
the notion of restricted tensor product of Hilbert spaces, as discussed in
the following remark.

Remark 12.36. The adjective “noncommutative” also used above to qual-
ify the infinite dimensional torus associated with a fractal membrane T
indicates that as a mathematical object, T is not truly a set of points.
Instead, it is viewed as a noncommutative geometric object (in the sense
of Alain Connes [Con]) and is given by a spectral triple

T = (A,H,D) , (12.38)

where A is a suitable algebra of operators (the noncommutative algebra of
coordinates on the membrane) represented on a separable, infinite dimen-
sional Hilbert space H, and D is an appropriate analogue in this context of
the Dirac operator. Namely, D is a suitable unbounded self-adjoint operator
acting on the Hilbert space H, with compact resolvent (and hence, discrete
spectrum), and such that the commutators [D, a] are compact operators
for all a in some dense subalgebra A0 of A.
According to a well-known analogy in the theory of operator algebras,

the C∗-algebra A can be thought of as the space of continuous functions on
the underlying noncommutative space. Similarly, the dense subalgebra A0

plays the role of the space of Lipschitz continuous functions30 on this same
noncommutative space. Indeed, intuitively, [D, a] is the (quantized) differ-
ential of a. The boundedness of this differential means heuristically that
the gradient of a is bounded and hence that a is ‘Lipschitz’ for a ∈ A0. We
note, in addition, that the Dirac operator D (or rather, the inverse of its
restriction to the orthogonal complement of the kernel of D) enables one
to define an analogue of the infinitesimal length element or, more precisely,

28that is, all the strings of the fractal harp, see Chapter 1, Figure 1.1.
29Another image used in [Lap10] is that of a noncommutative, adelic, Riemann surface

of infinite genus.
30Sometimes simply referred to as the space of smooth functions.
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the noncommutative counterpart of a Riemannian metric in this context.
(See, e.g., [Con, Chapters IV–VI].)
A spectral triple like (12.38) provides a way to completely describe the

fractal membrane T . In the rigorous construction given in [LapNes1], H is
obtained as a restricted tensor product of the Hilbert spaces Hj associated
with each circle Sj (or interval Ij , see below) composing the membrane,
relative to a suitable vacuum vector (here, the zero energy mode of the
Dirac operator D). Furthermore, A, the algebra of quantum observables,
is defined in terms of a tensor product of Toeplitz algebras, one for each
circle. Each of these Toeplitz algebras (see, e.g., [BotSil]) is an algebra of
bounded linear operators acting on a Hilbert space of holomorphic functions
on the unit disc (one unit disc for each circle Sj , or one for each endpoint
of the j-th interval Ij).
An outline of the formal construction will be provided in the second to

next unnumbered subsection. In addition, we refer to [LapNes1] for the pre-
cise and complete construction of a fractal membrane and for the relevant
definitions. See also [Lap10, Chapter 3] for a heuristic definition, and Chap-
ter 4, in conjunction with Chapter 2 of [Lap10], for the physical motivations
(coming from conformal field theory and string theory) leading to the rep-
resentation of a fractal membrane as a noncommutative geometric object;
namely, as the stringy spacetime describing the propagation of strings in
an adelic, infinite dimensional torus.
Finally, we note that one of the new heuristic and mathematical insights

provided by the construction given in [LapNes1] is that once fractal strings
have been quantized, their endpoints are no longer fixed on the real axis
but are allowed to move freely within a suitable copy of the unit disc in
the complex plane. This seems to be analogous to the notion of D-brane
in nonperturbative string theory, in the spirit of (but somewhat different
from) [Lap10, Chapter 2]. Hence, a fractal membrane may be viewed as
some kind of fractal D-brane.

Fractal Membranes and their Zeta Functions

In order to describe the zeta function (or partition function) of a fractal
membrane, we need to introduce some additional notation. Let

Ω =
∞⋃

j=1

(
a−

j , a+
j

)
(12.39)

be a fractal string, viewed as an open subset of R, or equivalently, a disjoint
union of bounded open intervals Ij =

(
a−

j , a+
j

)
, each of length lj := a+

j − a−
j

and thought of heuristically as being attached to a circle of radius

Rj :=
2π

log l−1
j

, (12.40)
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for j = 1, 2, . . . . (This value of Rj is dictated by spectral considerations.)
Moreover, let L = {lj}∞j=1 denote the associated sequence of lengths, as-
sumed to be written in nonincreasing order according to their multiplicities
as follows:

1 > l1 ≥ l2 ≥ · · · ≥ lj ≥ . . . , (12.41)

with lj → 0 as j →∞.
Then the resulting fractal membrane T , obtained after second (or Dirac)

quantization of the fractal string L, has a discrete eigenvalue (or energy)
spectrum σ(T ) = {λn}∞n=1 and its spectral (or quantum) partition func-
tion ZT (s), defined by

ZT (s) :=
∞∑

n=1

e−sλn , for Re s � 1, (12.42)

is shown in [Lap10, Chapter 3] to be given by the Euler product

ZT (s) =
∞∏

j=1

(
1− lsj

)−1
, for Re s > D, (12.43)

where D = DL is the Minkowski dimension of L.31 In other words, the
reciprocal lengths pj := l−1

j are the generalized primes (also called g-primes
or Beurling primes) of the fractal membrane T and the (spectral) partition
function ZT (s) is the associated Beurling zeta function.
Equivalently, the Euler product representation given by Equation (12.43)

means that if the spectrum σ(T ) = {λn}∞n=1 is written in nondecreas-
ing order according to multiplicity, with λn → ∞ as n → ∞, it then
consists of the logarithms of the corresponding generalized integers (also
called g-integers or Beurling integers in the literature), obtained by tak-
ing all the finite products of (nonnegative integer) powers of the general-
ized primes pj = l−1

j , and counted according to their natural multiplicity—
exactly like the positive integers are obtained from the standard rational
primes.

Remark 12.37. Such zeta functions were considered by Arne Beurling
in [Beu] for purely analytical reasons, in order to extend the classic Prime
Number Theorem to a suitable sequence {pj}∞j=1 of g-primes, with

1 < p1 ≤ p2 ≤ · · · ≤ pj ≤ . . . (12.44)

31In fact, it can be proved that D is also equal to the abscissa of convergence of the
Dirichlet series in (12.42), as in Equation (1.20) of Definition 1.9. It follows that ZT (s)
is given by both (12.42) and (12.43) for Re s > D, much like the Riemann zeta function
is given by both the Dirichlet series

∑∞
n=1 n−s and the Euler product

∏
p

(
1 − p−s

)−1

for Re s > 1.
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and pj →∞ as j →∞. See, for example, [Lap10, Appendix D] and [HilLap],
along with the relevant references therein, for an exposition of some of their
main properties.

Remark 12.38. In the rigorous construction of the fractal membrane given
in [LapNes1], the spectrum σ(T ) of the fractal membrane T is nothing but
the spectrum of the Dirac operator D discussed in Remark 12.36 above:
σ(T ) = σ(D). Note that σ(D) is shown in [LapNes1] to be discrete and
hence consists of the sequence of eigenvalues of D.

Remark 12.39. As was mentioned earlier, in [Lap10, Section 3.3], the first
author has also introduced the parallel notion of self-similar membrane.
Formally, it corresponds to allowing the above g-integers (i.e., the loga-
rithms of the eigenvalues of the given self-similar membrane) to appear with
the exact same multiplicities as the lengths of a self-similar string expressed
as monomials in the scaling ratios (see Section 2.1 above and [Lap10, Sec-
tion 3.3]).32 Note that in this analogy, the lengths lj now play the role of
the scaling ratios rj , allowed here to be in infinite number. Furthermore,
as was shown in [LapNes1], this new choice of multiplicities corresponds
to a different type of quantum statistics in the mathematical construc-
tion of the membrane; namely, free (or Gibbs–Boltzmann) statistics for
self-similar membranes instead of bosonic (or Bose–Einstein) statistics for
ordinary fractal membranes.
Let L = {lj}∞j=1 be a fractal string, constructed with the sequence of

lengths lj . The (spectral) partition function ZS(s) of the self-similar mem-
brane S is then given by

ZS(s) =
1

1−∑∞
j=1 lsj

, for Re s > D, (12.45)

where D = DL is the Minkowski dimension of the fractal string L.33 Hence,
formally, ZS(s) coincides with the geometric zeta function of a normalized
self-similar string with a single gap (as in Section 2.2.1) and with infinitely
many scaling ratios rj = lj , for j = 1, 2, . . . . (Compare formula (12.45)
above with Equation (2.15) following Theorem 2.9.) This is the starting
point of the aforementioned analogy between self-similar and arithmetic
geometries developed in [Lap10].

32For simplicity, we only consider here the case of a single gap, as in Section 2.2.1.
33Caution: As is explained in [Lap10, Section 3.3], a self-similar membrane is not a

special case of fractal membrane, even though the constructions of both types of mem-
branes turn out to be very analogous (see [LapNes1]). Hence (12.45) is not incompatible
with (12.43), since each of these formulas applies to a different type of mathematical
object. See also the end of the next unnumbered subsection.
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Construction of Fractal Membranes

We next outline the mathematical construction of fractal membranes (and
of their self-similar counterparts) given in [LapNes1]. As was mentioned
earlier, it builds on the heuristic notion of fractal membrane introduced
in [Lap10] but also brings new insights into its properties. The present
overview complements Remark 12.36 in which we gave a nontechnical de-
scription of the spectral triple T = (A,H,D) associated with a fractal
membrane, viewed as a noncommutative space. (See also the exposition
in [Lap10, Section 4.2], on which our description is based. Further, see [Lap-
Nes1] for more details, references, and definitions.) This spectral triple can
be described as follows. (Recall from Remark 12.36 that A is a C∗-algebra
represented on the complex Hilbert space H, and that D is a Dirac-like
operator, thought of as a first-order differential operator and acting on H
as an unbounded, self-adjoint operator.)
Let

D = {z ∈ C : |z| ≤ 1} (12.46)

denote the closed unit disc of C and let Ω =
⋃∞

j=1

(
a−

j , a+
j

)
denote the frac-

tal string to be quantized (as in formula (12.39) above), with boundary ∂Ω.
Consider the space F of functions f = f(x, z) : ∂Ω × D → C such that
|f | = 1 and the map x �→ f(x, ·) is a continuous map from ∂Ω to L∞(D).
Denote by F0 the subset of F consisting of functions f = f(x, z) such
that both the map x �→ f(x, ·) and its derivative, given by x �→ g(x, ·) with
g(x, z) := z∂f/∂z(x, z), are Lipschitz functions from ∂Ω to L∞(D).34 Here,
L∞(D) denotes the space of essentially bounded functions on D, equipped
with the supremum norm. Clearly, F is a commutative algebra, for the
standard algebraic operations, and F0 is a subalgebra of F .
For each fixed j ≥ 1, let Hj be a copy of the Hilbert space L2-Hol(D) of

square-integrable holomorphic functions on D. We then let

H =
∞⊗

j=1

Hj (12.47)

be the (restricted) tensor product of the Hilbert spaces Hj , relative to the
vacuum vector V :=

⊗∞
j=1 1j , where 1j is the constant function equal to 1

on D (viewed as an element of Hj).

34Some mild modification is required in order to take into account fractal strings of infi-
nite length (such as the fractal string of lengths {1/p : p a rational prime}) or, more gen-
erally, arbitrary fractal strings L = {lj}∞j=1 such that

∑∞
j=1(lj)

α < ∞, for some α > 0.
Indeed, we must then replace “Lipschitz” by “uniformly continuous”, with respect to
a suitable modulus of continuity. (The above Lipschitz condition corresponds to fractal
strings of finite length.) The resulting fractal membranes—including the prime mem-
branes [Lap10, Chapter 3]—play an important role throughout [Lap10].
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Given ϕ ∈ L∞(D), an essentially bounded function on D, we denote by Tϕ

the Toeplitz operator with symbol ϕ, viewed as a bounded linear operator
on L2-Hol(D) (or, equivalently, on any of the Hilbert spaces Hj). Thus Tϕ

is defined as the compression to L2-Hol(D) of the multiplication operator
by ϕ acting on L2(D). (See, e.g., [BotSil, Chapters 1 and 2].) Given f ∈ F ,
set

Q(f) =
∞⊗

j=1

Tj(f), (12.48)

viewed as a bounded linear operator on the Hilbert space H, where for each
j ≥ 1, Tj(f) := Tϕj

is the Toeplitz operator (acting on Hj) with symbol

ϕj :=
f(a+

j , ·)
f(a−

j , ·) . (12.49)

(The operator Q(f) can be thought of as the quantization of the clas-
sical observable f .) The C∗-algebra A is then defined as the C∗-algebra
generated (in B(H), the space of bounded linear operators on H) by the
set {Q(f) : f ∈ F}. Further, using the notation of Remark 12.36, the dense
subalgebra A0 ⊂ A is defined as the algebra generated (in B(H)) by the
set {Q(f) : f ∈ F0}, where F0 ⊂ F is the space of smooth classical ob-
servables defined earlier. Intuitively, A is the space of quantum observables
associated with the space of classical observables F , while A0 is the space
of admissible quantum observables associated with the space of smooth
classical observables F0.35

Finally, for each j ≥ 1, with Rj = 2π/ log l−1
j as in formula (12.40) above,

let

Dj =
1

iRj

d

dθ
(12.50)

denote the scaled Dirac operator on the unit circle S = ∂D,36 restricted to
its positive energy subspace—so that its eigenvalues are simple, nonnegative
and consist of the numbers 2πn/Rj = n log l−1

j , for n = 0, 1, 2, . . . . (Note
that viewed as acting on the isomorphic copy L2-Hol(D), 1

i
d
dθ becomes z d

dz ,
and that z d

dz

(
zn

)
= nzn for every n = 0, 1, 2, . . . .) It then suffices to let

D =
∞⊗

j=1

Dj , (12.51)

35It can be checked that A =
⊗∞

j=1 Aj , where for each j ≥ 1, Aj is the Toeplitz
algebra generated by the operators Tj(f), with f ∈ F .

36Here, θ is the angular variable along the circle. Further, Dj acts as an unbounded,
self-adjoint operator on Hj .
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viewed as an unbounded, self-adjoint operator on H. It follows that the
spectrum of D consists of the logarithms of m, where m ranges through all
the generalized integers based on the generalized primes pj := l−1

j (j ≥ 1)
(see Remark 12.38 and [Lap10, Chapter 3 and Appendix D]), and hence
that the spectral partition function of the fractal membrane,

ZT (s) := Trace
(
e−sD)

,

is given by the Euler product (12.43), for Re s > DL, as stated in [Lap10,
Section 3.2].
We close this brief overview by noting that if in the above construc-

tion, we replace the bosonic Fock space H by its free counterpart (in the
sense of noncommutative probability theory [Voi], and thus with a free ten-
sor product instead of a bosonic one in formula (12.47) above), and make
analogous changes elsewhere, we then obtain a spectral triple defining a
self-similar membrane S (in the sense of [Lap10, Section 3.3]), viewed as
a noncommutative space. As discussed in Remark 12.39 above, the corres-
ponding spectral partition function ZS(s) is then given by formula (12.45),
and therefore coincides with the geometric zeta function of a self-similar
string with infinitely many scaling ratios rj := lj , for j ≥ 1. Indeed, the
spectrum of the associated Dirac operator now consists of the logarithms
of the self-similar integers m′ based on the primes pj = l−1

j . We note that
the only difference between those integers m′ and the g-integers m dis-
cussed just above consists in their multiplicities, which are defined exactly
as the multiplicities of the lengths of a self-similar string with a single gap;
see [Lap10, Section 3.3].

Flows on the Moduli Space of Fractal Membranes

In [Lap10, Chapter 5], a moduli space of fractal strings is introduced,
Mfs, and also its quantum counterpart, the moduli space of fractal mem-
branes, denoted byMfm. These moduli spaces can be thought of as moduli
spaces of zeta functions. Further, they are noncommutative spaces, ini-
tially defined as singular quotient spaces (of equivalence classes of fractal
strings or of fractal membranes, respectively). For example,Mfs is viewed
in [Lap10, Section 5.1] as a generalization of the noncommutative space
of Penrose tilings ([Con] or [Lap10, Appendix F]); namely, two fractal
strings L = {lj}∞j=1 and L′ = {l′j}

∞
j=1 (written in nonincreasing order) are

considered to be equivalent if there exist j0, q0 ∈ N such that l′j = lq0+j

for all j ≥ j0 (so that ζL′(s)− ζL(s) is an analytic function without poles).
The moduli spaceMfm is defined similarly as a quotient space (but then,
for L and L′ in the same equivalence class, ZL′(s)/ZL(s) is a holomorphic
function without zeros).
The advantage of Mfm over Mfs is that each equivalence class in Mfm

is associated to a multiplicative class of zeta functions (i.e., partition func-
tions) having the same poles and zeros, whereas only the poles are invari-
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ants of a given equivalence class in Mfs (i.e., of the associated additive
class of zeta functions). This key difference betweenMfm andMfs is due
to the fact that according to formula (12.43) above, the zeta function (i.e.,
spectral partition function) of a fractal membrane has an Euler product,
whereas by Equation (12.45) above, this is not the case in general for the
(geometric) zeta function of a fractal string, at least not in the standard
sense of number theory.
Still in [Lap10, Chapter 5], the first author then proposes to consider a

suitable noncommutative one-parameter flow on Mfm, the modular flow.
The latter induces continuous flows of zeta functions and their zeros (or
poles), as well as corresponding continuous deformations of the g-primes.
By considering the fixed points of these flows (or rather, their noncommu-
tative analogue), the first author then gives a new dynamical interpretation
of the Riemann hypothesis and of the class of zeta functions (or L-series)
expected to satisfy its natural generalization. In particular, it is conjectured
in [Lap10, Section 5.5] that a suitable section of zeta functions obeying a
generalized functional equation (GFE)37 can be chosen over the effective
part of the moduli spaceMfm, and hence that the fixed points (or ω-limit
sets) of the flow correspond to the zeta functions satisfying a self-dual
functional equation,38 i.e., to all the arithmetic zeta functions (such as the
Riemann zeta function and other L-series).
Needless to say, these flows of fractal membranes, as well as of zeta

functions and their associated zeros, still need to be rigorously constructed
and their conjectured properties to be verified in order for the research
program outlined at the end of [Lap10] to be fully realized.

12.5 The Spectrum of a Fractal Drum

In this section, we consider a bounded open set Ω ⊂ Rd, with a fractal
boundary ∂Ω, and equipped with a Laplace operator Δ. The counting func-
tion of the frequencies of Δ is denoted by Nν(x). We refer to Appendix B
for information and references about the case when Ω is a manifold with
smooth boundary.

12.5.1 The Weyl–Berry Conjecture

Hermann Weyl’s conjecture (about manifolds with smooth boundary, see
Section B.4.1 in Appendix B), has been extended by Michael V. Berry

37In short, a GFE for Z(s) is (after suitable completion by appropriate gamma-like
factors) of the form ZT (s) = ZT ∗ (1 − s), where T ∗ is interpreted as a dual fractal
membrane. See [LapNes2, 3] and [HilLap], along with the relevant references therein, for
results along these lines in this and a related context.

38In [Lap10], a GFE is said to be self-dual if T = T ∗; i.e., ZT (s) = ZT (1 − s).
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in [Berr1–2]. Berry’s intriguing and stimulating conjecture was formulated
in terms of the Hausdorff dimension H of ∂Ω. In [BroCa], Brossard and
Carmona have disproved this conjecture and suggested that the Hausdorff
dimension H should be replaced by the Minkowski dimension D of ∂Ω.
Using probabilistic techniques, they have also obtained an analogue of es-
timate (B.2) (expressed in terms of D) for the spectral partition func-
tion θν(t) (rather than for Nν(x)) in the case of the Dirichlet Laplacian.
Later on, using analytical techniques (extending, in particular, those

of [Wey1–2], [CouHi] and [Met]), Lapidus [Lap1] has shown that the coun-
terpart of estimate (B.2) holds for the spectral counting function Nν(x)
itself. More precisely, provided that D ∈ (d − 1, d) and M∗(D; ∂Ω) < ∞,
the following Weyl asymptotic formula with sharp error term holds point-
wise:

Nν(x) = cd vol(M)xd +O
(
xD

)
, (12.52)

as x→∞.39 (Here, the positive constant cd depends only on d and is given
just after formula (B.2) in Appendix B; see also Remark 12.40 below.)
Analogous results were obtained in [Lap1] for the Neumann Laplacian (un-
der a suitable assumption on ∂Ω) and, more generally, for positive elliptic
differential operators (with Dirichlet, Neumann, or mixed boundary con-
ditions); see [Lap1, Theorem 2.1 and Corollaries 2.1–2.2, pp. 479–480]. We
mention that the snowflake drum is a natural example of a (self-similar)
fractal drum for which estimate (12.52) holds pointwise, either for Dirich-
let or Neumann boundary conditions; see [Lap1, Example 5.4, pp. 518–519]
along with Section 12.5.2 below.
We note that the a-string—introduced in [Lap1] and studied in Sec-

tion 6.5.1 above (see also [LapPo1–2])—provides a simple example showing
that the Hausdorff dimension (or its companion, the packing dimension)
cannot be used in this context to measure the roughness of the boundary ∂Ω
of a fractal drum. Indeed, a simple variant of that example enables one to
exhibit a one-parameter family of open sets {Ωa}a>0 such that (with the
notation of Remark 12.40) D(∂Ωa) = n− 1 + 1

a+1 and H(∂Ωa) = n − 1,
0 < M∗(D; ∂Ωa) < ∞,40 while the estimate in (12.52) is sharp with
D = D(∂Ωa) for every value of a > 0. Observe that D takes every possible
value in the admissible interval (n−1, n) as the parameter a varies in (0,∞).
See [Lap1, Examples 5.1 and 5.1′, pp. 512–515], along with Remark 1.5 in
Chapter 1.

39If D = d − 1 (the nonfractal case in the terminology of [Lap1], see also Figure 9.1
on page 269), the result of [Lap1] yields instead the error term O

(
xD log x

)
obtained

previously by G. Métivier in [Met] in that situation and, in the special case of piecewise
smooth boundaries, in [CouHi].

40Actually, ∂Ωa is Minkowski measurable, as shown in [Lap1, Appendix C].
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Remark 12.40. Note that since ∂Ω is the boundary of a bounded open
set, we always have n− 1 ≤ H ≤ D ≤ n, where D denotes the Minkowski
dimension of ∂Ω and H denotes its Hausdorff dimension. Further, if ∂Ω is
piecewise smooth, or more generally, Lipschitz, we have D = H = n − 1.
(See, e.g., [Lap1, Section 3] and the references therein.)

12.5.2 The Spectrum of a Self-Similar Drum

It is conjectured in [Lap3] that the (frequency) spectrum of a drum with
self-similar fractal boundary does not have oscillations of order D in the
nonlattice case, whereas it has (multiplicatively) periodic oscillations of
order D in the lattice case. Here, as before, D denotes the Minkowski
dimension of the boundary of the drum. More specifically, as x → ∞,
it is conjectured in [Lap3] that in the nonlattice case (respectively, lat-
tice case), the spectral counting function Nν(x) has a monotonic (respec-
tively, oscillatory) asymptotic second term of the form a constant times xD

(respectively, f(log x)xD, for a nonconstant periodic function f of pe-
riod 2π/p, the additive generator of the boundary). By a standard Abelian
argument ([Sim, Theorem 10.2, p. 107] or [Lap1, Appendix A, pp. 521–
522]), the same statement would also hold for the spectral partition func-
tion θν(t) as t → 0+, with x replaced by t−1. (For strictly self-similar drums,
see [Lap3, Conjecture 3, p. 163] along with the important special case of
snowflake-type drums discussed in [Lap3, Conjecture 2, p. 159], including
the usual snowflake drum. See also [Lap3, Conjecture 4, p. 175] and Re-
mark 12.20, for the broader class of approximately self-similar drums, in
the sense of Section 12.3 above.)
In the special case of self-similar sprays (as defined in Section 6.6.2 and

corresponding to the Dirichlet or Neumann Laplacian on a disconnected
open set), the results of Section 6.6 above, Theorem 6.25 (for the Sierpinski
drum), and especially Theorem 6.28, agree exactly with this conjecture.
(See also the earlier references given in Section 6.6, including [FlVa,Ger,
GerSc1–2, Lap2–3, LeVa, vB-Le].)
Moreover, in the case of the Dirichlet Laplacian on a connected domain,

the interesting example of the snowflake drum (see Figure 12.6), a lattice
self-similar drum, has been studied in [FlLeVa] from the point of view of
the spectral partition function θν(t) (or of the closely related notion of heat
content). See also the recent extension in [vB-Gi] to a one-parameter family
of snowflake-type drums (much as in [Lap3, Conjecture 2, p. 159]). Again,
these results agree with [Lap3, Conjectures 2 and 3]. However, we point
out two open problems in this situation:
(i) As far as we know, in the lattice case, the counterpart for θν(t) of the

periodic function f has not been proved to be nonconstant, even for the
example of the snowflake drum. We note that for the latter example, the
counterpart of f was verified numerically to be nontrivial in [FlLeVa].
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(ii) To our knowledge, no such (pointwise) results have been obtained
for the spectral counting function Nν(x) rather than for θν(t). We note
that technically, the conjectured pointwise result for Nν(x) is significantly
harder to establish than for θν(t).

Remark 12.41. We refer the interested reader to [LapNeuRnGri] and [Gri-
Lap] for a computer graphics-aided study of the frequency spectrum and
of the normal modes of vibration of the snowflake drum (coined snowflake
harmonics). Mathematically, the latter are the eigenfunctions of the Di-
richlet Laplacian on the snowflake domain; that is, on the bounded domain
having the snowflake curve for fractal boundary (see Figure 12.6). We also
refer to the earlier paper [LapPan] for a mathematical study of the point-
wise behavior of these eigenfunctions (and of their gradient) near the fractal
boundary, for a class of simply connected domains including the snowflake
domain. The work of [LapNeuRnGri] and [LapPan] was motivated in part
by intriguing physical work and experiments in [SapGoM] on the vibrations
of fractal drums, and was aimed in the long term at understanding how
(and why) fractal shapes—such as coastlines, blood vessels and trees—arise
in nature. We note that the numerical data in [LapNeuRnGri] (along with
those in [SapGoM], [FlLeVa] and [GriLap]) should be useful to investigate
the open problems and conjectures stated in the present subsection and in
Section 12.5.3 below.

Given the theory developed in this book, in particular Theorems 2.17
and 3.6, it is natural to complement the spectral aspects of [Lap3, Con-
jecture 3, p. 163] by the following conjecture, which is a partial analogue
of Conjecture 12.18 in Section 12.3 for the spectral41 (rather than for the
geometric) complex dimensions of a self-similar drum.

Conjecture 12.42. Assume, for simplicity, that d− 1 < D < d, where D
is the Minkowski dimension of the boundary of a (strictly) self-similar
drum Ω ⊂ Rd (satisfying the open set condition, see Section 2.1.1 and
Remark 2.22 ). Then D is the only real spectral complex dimension of
the drum, other than d itself, and it is simple. (See also the end of Re-
mark 12.43 below.)

Moreover, on the vertical line Re s = D, a nonlattice drum does not have
any nonreal spectral complex dimensions, whereas a lattice drum has an in-
finite sequence of spectral complex dimensions, contained in the arithmetic
progression {D + inp : n ∈ Z}, where p is the (spectral) oscillatory period
of the drum.

41By definition, the (visible) spectral dimensions of a fractal drum are the poles (within
a given window W ) of a meromorphic extension of ζν(s), the spectral zeta function
of this drum. Henceforth, we omit the adjective “visible” when referring to spectral
complex dimensions and it is implicitly understood that W is a suitable neighborhood
of {s : Re s ≥ D}.
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In addition, a nonlattice drum has spectral complex dimensions arbitrar-
ily close (from the left) to the line Re s = D, whereas this is not the case
for a lattice drum.

Finally, the spectral complex dimensions of a nonlattice drum are quasi-
periodically distributed (in the sense of Theorems 2.17 and 3.6 ); that is,
they can be approximated by those of a suitable sequence of lattice drums.

We point out that it follows from Conjecture 12.42 and from our explicit
formulas (namely, from Theorem 5.26) that the conclusion of [Lap3, Con-
jectures 2 and 3] holds pointwise for the spectral partition function θν(t)
and distributionally for the eigenvalue counting function Nν(x).

Remark 12.43. As was noted in [Lap2–3], it follows easily from Weyl’s
asymptotic formula with error term ([Lap1, Theorem 2.1], estimate (12.52)
above) that for any fractal drum such thatM∗(D; ∂Ω) <∞ andD < d, the
spectral zeta function ζν(s) has a meromorphic extension to the open half-
plane Re s > D, with a single (simple) pole at s = d, either for Dirichlet
or Neumann boundary conditions.42 Therefore, all the spectral complex
dimensions of the fractal drum other than d itself lie in the closed half-
plane Re s ≤ D. This is the case, in particular, for the self-similar drums
considered in Conjecture 12.42 (under the hypothesis of footnote 42).

Remark 12.44. In view of [Lap3, Conjecture 4, p. 175] and Remark 12.20
above, an entirely analogous conjecture can be made about the spectrum
of approximately self-similar fractal drums. (For a discussion of the case
of drums with self-similar fractal membrane, see [Lap6, Section 8] which
would complete the rigorous results of [KiLap1] regarding an analogue of
Weyl’s formula for Laplacians on self-similar fractals.)

Remark 12.45. A conjecture more precise than Conjecture 12.42 could
be made for the spectrum of self-similar drums. It would be much closer to
the statement of Conjecture 12.18 for the geometry of self-similar drums.
At this point, however, we prefer to refrain from formulating it until a bet-
ter understanding of a suitable counterpart of the spectral operator has
been obtained in the context of self-similar fractal drums. (Recall that the
spectral operator discussed in this book relates the geometric and the spec-
tral complex dimensions of a fractal string or, more generally, of a fractal
spray; see Section 6.3.2 and Definition 6.22 in Section 6.6.) Further insight
into this difficult problem may be gained by examining the question raised
in the next remark and subsection, regarding the relationship between the
spectrum and the dynamics of a fractal drum.

42Here and in Conjecture 12.42 above, only for the Neumann Laplacian, we assume as
in [Lap1] or [Lap3, Conjecture 3] that Ω is a quasidisc, which is the case, for instance,
for the snowflake domain or its natural generalizations; see [Lap1, Section 4.2.B and
Example 5.4] along with [LapPan].
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Remark 12.46. In a recent work [Tep1, 2]—motivated in part by some of
the results in [RamTo, BessGM, Lap2–3, LapPo2, LapMa2, Ki1, FukSh,
KiLap1] and in Chapter 2 of [Lap-vF5]—Alexander Teplyaev has obtained
an interesting expression for the spectral zeta function43 ζν(s) of certain
drums with self-similar fractal membrane, that is, for Laplacians on a self-
similar fractal as in, e.g., [Ki1–2, KiLap1–2]. It extends to the present
situation the factorization formula (1.38) of Theorem 1.19.44 Indeed, it is
of the form

ζν(s) = ζL(s)ζP(s), (12.53)

where ζL(s) is the geometric zeta function of a (virtual) self-similar string L
(as in Chapters 2 and 3, see, e.g., Equation (2.10) of Theorem 2.4) and ζP(s)
is defined in terms of an underlying complex dynamical system (i.e., of the
inverse iterates of a suitable polynomial of one complex variable).45 Also
compare (12.53) with the factorization formula for the spectral zeta func-
tion of a fractal spray (see Equation (1.46) in Section 1.4 above, along
with [LapPo3] and [Lap-vF5, Equation (1.41), p. 22]). In particular, ζP(s)
reduces to the Riemann zeta function ζ(s) (and hence formula (12.53)
to (1.38)) in the case corresponding to a self-similar string (with possi-
bly multiple gaps), viewed as a unit interval with a (self-similar) fractal
structure. So far, the type of (self-similar) drum with fractal membrane
for which formula (12.53) is known to be true is rather limited (besides
the one-dimensional self-similar case, it includes the interesting case of the
Sierpinski gasket), but it is natural to conjecture [Lap7] that appropriate
(and certainly significant) modifications should enable one to considerably
broaden its domain of validity. In view of the recent work in [Sab1, 2] ex-
tending the decimation method [RamTo, FukSh], the underlying complex
dynamics should involve, in general, rational functions of several complex
variables. (See [Lap7].)
We note that for the Laplacian on the Sierpinski gasket F , an interesting

feature of formula (12.53) is that the zeros of the numerator of ζL(s) cancel
the poles of ζP(s), a phenomenon in some sense dual to that encountered
in [LapMa1, 2], where, for a suitable fractal string L, the poles of ζL(s) (i.e.,
the geometric complex dimensions of L) are canceled by the corresponding
(critical) zeros of the Riemann zeta function ζ(s) = ζP(s), resulting in fewer
poles of the spectral zeta function ζν(s) = ζL(s)ζ(s), by formula (1.38).46

It follows [Tep1, 2] that the spectral complex dimensions of F (i.e., the

43See Section B.3 of Appendix B for a definition of the spectral zeta function.
44Formula (1.38) was observed in [Lap2] and used extensively in later work on fractal

strings, including the present book. (See, e.g., [Lap3, LapPo2–3, LapMa2, HeLap2, Lap-
vF4–5]).

45More precisely, ζν(s) may be a suitable finite linear combination of expressions as
in (12.53). For simplicity, this fact will be ignored in the rest of this discussion.

46Recall that this was the main idea in Chapters 9 and 11.
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poles of ζν(s)) lie on a single vertical line and are of the form Dν + inp
(for n ∈ Z), where Dν = log 9/ log 5 is the spectral dimension of F (as
defined in [KiLap1] and the relevant references therein, including [FukSh])
and with oscillatory period p = 2π/ log 5, as conjectured in [Lap6, §8] (see
especially [Lap6, Conjecture 8.2, p. 236, and Example 8.9, p. 239]).
In closing this remark, we mention the recent paper [DerGrVo] on the

spectrum of the Laplacian for a class of decimable self-similar fractals in-
cluding the Sierpinski gasket.47 In that work, the factorization formula
(12.53) is not investigated but results supplementing those of [FukSh,Ki-
Lap1,Lap-vF5,Tep1–2] (among other references) are obtained. In particu-
lar, the spectral zeta function of the Laplacian is shown to have a meromor-
phic continuation to all of C (rather than in a half-plane, as in [Tep1–2]) and
the eigenvalue counting function is shown to have oscillations (of leading
order), as conjectured in [KiLap1, p. 105] and further discussed in [Lap5]
and [Lap6, Section 8].

12.5.3 Spectrum and Periodic Orbits

In [Gut2, Section 16.5 and Chapter 17], it is explained how the spectrum
of the Laplacian on a Riemannian manifold is related to the periodic orbits
of a particle moving in the manifold. By a trace formula, reminiscent of
the Selberg Trace Formula, the spectral partition function—or rather, its
quantum-mechanical analogue, a suitable distributional trace of the unitary
group

{
eitΔ

}
t∈R
, where Δ is the Laplacian on the manifold—is expressed as

a sum over the periodic orbits. This relationship—which is rather surprising
at first and is usually known in the physics literature as the Gutzwiller Trace
Formula [Gut1–2]—follows from a heuristic application of the method of
stationary phase to a Feynman path integral.48

As an example, we consider fractal strings. In this case, all the quantities
involved can be worked out explicitly. As in Gutzwiller [Gut2, Section 16.5,
formula (16.13)], we show how counting frequencies can be transformed
into counting periodic orbits,49 using the Poisson Summation Formula (see,
e.g., [Ser, Section 6.1] or [Lap10, Appendix C]).
Given t > 0, let

zν,B(t) =
∑

k∈Z\{0}
e−πk2t = 2

∞∑
k=1

e−πk2t

47These are necessarily lattice self-similar fractals, in the spectral sense of [KiLap1].
48We wish to thank Michael V. Berry for a conversation about this subject. Also

see [Berr4].
49Note that here we view the Bernoulli string as the unit circle, instead of as the unit

interval (0, 1). The periodic orbits of a particle are the orbits of this particle around the
circle. Hence we have the basic periodic orbit corresponding to going around once, and
repetitions thereof.
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be the spectral partition function for the (normalized) squared frequencies
(i.e., eigenvalues) of the Bernoulli string. (See footnote 4 on page 401 of
Appendix B.) The squared frequencies of the fractal string L = {lj}∞j=1 are
then counted by50

zν,L(t) = 2
∞∑

j=1

∞∑
k=1

e−πk2l−2
j t.

Since, by formula (A.22), we have

zν,B(t) + 1 =
1√
t

∑
k∈Z

e−πk2t−1
, (12.54)

we find that

zν,L(t) =
∞∑

j=1

(
lj√
t
− 1 + lj√

t

∑
k∈Z; k �=0

e−πk2l2j t−1
)

=
L√
t
+

∞∑
j=1

(
−1 + lj√

t

∑
k∈Z; k �=0

e−πk2l2j t−1
)

, (12.55)

where L =
∑∞

j=1 lj is the total length of the string. We recognize the ana-
logue of the Weyl term, L/

√
t, and the double sum in (12.55) extends over

the periodic orbits (of lengths k · lj , k = 1, 2, . . . ) of a particle on the string.
The convergence of this series is subtle, and can be checked by noting that

lj√
t

∑
k∈Z; k �=0

e−πk2l2j t−1
=

∫ ∞

−∞
e−πx2

dx+O(lj) = 1 +O(lj),

as j →∞.
For the frequency counting function itself, we obtain a similar result.

Note that the Fourier transform of the characteristic function of (0, x) is

1− e−2πixy

2πiy
.

Thus we find, again by means of the Poisson Summation Formula,

∑
1≤k≤x

1 = x− 1
2
+

∞∑
k=1

sin 2πxk

πk
.

50Recall that the (normalized, nonzero) frequencies of the Laplacian on a circle of
length lj are k · l−1

j , with k ∈ Z\{0}. Here, we use a normalization such that the square
of these frequencies is equal to πk2l−2

j (instead of k2l−2
j ), in order to obtain elegant

formulas. Further, following the convention used, in particular, in Chapter 1 and in
Appendix B, we exclude here the zero frequency.
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Hence

Nν(x) =
∞∑

j=1

∑
1≤k≤xlj

1 = Lx−
∞∑

j=1

(
1
2
−

∞∑
k=1

sin 2πxljk

πk

)
. (12.56)

We recover the Weyl term, Lx, and a sum over all the periodic orbits. That
this series converges is again a subtle matter.

For higher-dimensional fractal sets, a similar method could possibly be
applied, although this is still a remote prospect, as we briefly discuss below.
Note that when the boundary of a bounded open set is fractal, as is the case
for the snowflake drum, the determination of the periodic orbits becomes
problematic, since a particle bounces off the boundary in unpredictable
directions. The bouncing of a point-particle is not even well defined.

Remark 12.47 (Self-similar fractal drums and fractal billiards). Moti-
vated in part by results or comments from [Berr1–3, Lal2–3, PaPol2; BedKS,
esp. Sections 6 and 8] and the relevant references therein, including several
of those mentioned at the beginning of this section, the first author has for-
mulated in [Lap3, Conjecture 6, p. 198] a metaconjecture underlying many
of the conjectures from Part II of [Lap3] briefly discussed in Sections 12.3
and 12.5.2, both for (approximately) self-similar drums with fractal mem-
brane and with fractal boundary (as in the present situation). Roughly
speaking, it suggests that there should exist a suitable dynamical system
associated with a given self-similar drum (viewed, say, as a billiard table)
such that an analogue of the Selberg (or, more generally, the Gutzwiller)
Trace Formula holds in this context. Accordingly, the lattice–nonlattice
dichotomy in the spectrum of self-similar drums could be understood as
follows: In the nonlattice case, there would exist an invariant ergodic mea-
sure with respect to which the periodic orbits of the fractal billiard are
equidistributed, whereas in the lattice case, the periodic orbits would be
concentrated and their oscillatory behavior (of orderD) would be described
by their distribution with respect to a suitable measure. Therefore, conjec-
turally, this would explain dynamically the absence or the presence of os-
cillations of order D in the spectrum of self-similar drums, in the nonlattice
or lattice case, respectively.
As is clear from the discussion in this section, in the present case of

drums with fractal boundary, we are still far from being able to formulate
such a conjecture precisely, let alone to prove or disprove it, even for the
snowflake drum. Nevertheless, this is a challenging problem that appears
to be worth investigating further in the future.
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12.6 The Complex Dimensions
as the Spectrum of Shifts

In the simplest case of the Cantor string, discussed in Section 1.1.2, it is
easy to see that a shifted copy, CS + x, overlaps the Cantor string only
for shifts over 2 · 3−n, n = 0, 1, . . . , or suitable combinations of such
shifts: x =

∑∞
n=0 an3−n, an = ±2. For all other values of the real num-

ber x, there is no overlap: CS ∩ (CS + x) = ∅. Moreover, the Minkowski
dimension (or Hausdorff dimension) of the intersection is always D = log3 2
and its Minkowski content (or Hausdorff measure) is 2k times smaller than
that of the Cantor set itself, where k is the number of nonzero digits of x
in the above representation. This information suffices to reconstruct the
Cantor set and its complex dimensions.
In general, let F be a self-similar fractal subset of the real line. Let Iε

denote the interval (−ε, ε). To measure the overlap of F with a shifted copy
of it, we consider the function, for x ∈ R,

f(ε, x) = vol1(F + Iε) ∩ (F + Iε + x),

where for two subsets of R, A + B denotes the set {a + b : a ∈ A, b ∈ B},
so that A + Iε is the open ε-neighborhood of A. We then construct the
dimension-like function

D(x) = inf{d ≥ 0: f(ε, x) = O
(
ε1−d

)
as ε → 0+}

and the upper Minkowski content-like function

M∗(x) = lim sup
ε→0+

f(ε, x)εD(x)−1.

We expect that these functions exhibit the following behavior. In the lattice
case, D(x) > 0 for a bounded discrete set of values. The functionM∗(x) is
discontinuous at each of these values, and continuous and vanishing on the
complement. In the nonlattice case, D(x) > 0 for every x in a countable
dense subset of a compact connected interval and M∗(x) is continuous.
The complex dimensions of F can be recovered from the functions D(x)
andM∗(x).

12.7 The Complex Dimensions
as Geometric Invariants

We close this chapter with a section of a very speculative nature, regard-
ing a possible cohomological interpretation of the complex dimensions of
a fractal. In Section 8.2, we pointed out an analogy between the explicit
formula for the volume of the tubular neighborhoods of a fractal string
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Table 12.1: Homological properties compared with properties of the zeta function.

homology zeta function
Poincaré duality functional equation
grading by integers 0, 1, . . . , d lines of poles at

Re s = 0, 1/2, . . . , d/2
eigenvalues of Frobenius in qω, where ω is a complex
dimension j on a variety dimension with
over the finite field Fq Reω = j/2

eigenvalues of the infinitesimal ω, the complex dimensions
generator of a dynamical
system on a manifold

Lefschetz fixed point formula coefficients of the zeta
function

functoriality the zeta function divides
another one

and formula (8.23) for the volume of the tubular neighborhoods of a sub-
manifold M of Euclidean space. Similarly, in Appendix B, Remark B.3 and
Theorem B.4, it is explained that the principal parts of the spectral zeta
function associated with the Laplacian on a Riemannian manifold M have
a geometric interpretation and can be expressed in terms of invariants of
the cotangent bundle on M ; see the formulas (B.7) and (B.8).
Thus both the poles and the principal parts of the spectral zeta function

of a manifold have a geometric interpretation in terms of the de Rham
complex of the manifold. In part because of this analogy, we want to raise
the question of whether a theory of complex cohomology of fractal strings,
and, more generally, of fractal drums, could exist. This theory would be
based on the geometric and spectral zeta functions of the fractal.
We propose the dictionary in Table 12.1 for translating homological prop-

erties in terms of zeta functions. This is motivated in part by analogy with
the two situations mentioned above, i.e., the similarity in Chapter 8 be-
tween the explicit formula for the volume of the tubular neighborhoods
of a fractal string and formula (8.23) for manifolds, as well as the formu-
las for the spectral zeta function and the spectral partition function of a
manifold in Appendix B. It is also suggested by the situation of algebraic
varieties over a finite field, along with the associated zeta functions (see
Section 11.5) and étale cohomology theory (in particular, the Weil Conjec-
tures [Wei3, 7], [ParSh1, Chapter 4, Sections 1.1–1.3]). This situation bears
some similarity with Cantor strings and other lattice strings, especially in
the case of curves over a finite field. (See also [Lap10, Chapters 3 and 4].)
Sometimes a stratification into different dimensions will be possible, such

as for manifolds, and also for lattice strings. But for nonlattice strings, a
stratification will be impossible. It is therefore a problem to know how such
a theory would be set up algebraically, since there will not be a chain com-
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plex equipped with the usual boundary maps. Instead, the cycles in such a
theory could be represented by Dirichlet series with analytic continuation
up to a certain line Re s = Θ, whereas the boundaries would be represented
by Dirichlet series that converge at s = Θ (i.e., with abscissa of convergence
less than Θ). As a consequence, a homology class would be represented by
a Dirichlet series with analytic continuation up to Re s = Θ, modulo Di-
richlet series that converge there. Thus, only the information contained in
the poles with their principal parts remains. In particular, only the asymp-
totic behavior of the coefficients of the Dirichlet series will be important in
representing a complex cohomology class.

Remark 12.48. Recently, a different approach to fractal cohomology—
as proposed conjecturally in our earlier book [Lap-vF5, Section 10.5] and
further refined in parts of [Lap10] and [Lap-vF9]—was taken by R. Nest and
the first author in the work in progress [LapNes4]. For now, it only applies to
self-similar geometries. In addition to the theory of complex dimensions of
fractal strings developed in [Lap-vF5] and in the present book, it makes use
of and significantly extends, in particular, aspects of the higher-dimensional
theory, developed in [Pe] and [LapPe1–4]. Perhaps not surprisingly, a large
number of zeta functions plays a key role in [LapNes4].

12.7.1 Connection with Varieties over Finite Fields

The analogy between the geometric zeta function of self-similar fractal
strings and the zeta function of a variety over a finite field becomes apparent
in the following simplest example. The zeta function of the affine line51

over Fp is defined as ζA1/Fp
(s) = (1− p · p−s)−1. We compare this with the

geometric zeta function of the Cantor string of Example 1.1.2,

ζCS(s) =
1

1− 2 · 3−s
.

Writing D = log3 2 = log 2/ log 3 for the Minkowski dimension of the Can-
tor string, and setting p = 3, we find

ζA1/F3(s) = ζCS(s+D − 1).

Setting p = 2, we find
ζA1/F2(s) = ζCS(sD).

The poles of these zeta functions form a vertical arithmetic progression on
one line, namely, ω = 1+ikp with k ∈ Z and p = 2π/ log 3 or p = 2π/ log 2,
respectively.

51Here, and henceforth, p is a prime number and Fp denotes the finite field with p
elements.
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In general, one defines the zeta function of a variety over a finite field as
the generating function (or Mellin transform) of the counting measure of
the positive divisors on the variety. As such, it is immediately clear that
the zeta function can be obtained as an Euler product of factors that are
defined in terms of the prime divisors of the variety. A variety over a finite
field comes equipped with an action of the Frobenius endomorphism.52

This defines a discrete-time flow on the variety, the orbits of which are
conjugacy classes of points on the variety, which (for curves) are the prime
divisors of the variety. The logarithmic derivative of the Euler product is
the generating function of the counting measure of the orbits of Frobenius.
One of the most important developments in the theory of algebraic va-

rieties was the definition and subsequent development of a cohomology
theory. Indeed, the étale cohomology, which captures the combinatorics
of families of étale covers of the variety, provides a theory that can be
compared to the classical singular homology and cohomology theories of
manifolds. Since the étale theory is defined purely algebraically, it allows
application to varieties defined over a finite field. In particular, one re-
covers the zeta function of the variety as the alternating product of the
characteristic polynomials of the induced action of Frobenius on the étale
cohomology groups. The poles of this zeta function are located on integer
vertical lines Re s = 0, 1, . . . , n, where n is the dimension of the variety, and
the zeros are located on half-integer vertical lines Re s = 1

2 , 3
2 , . . . , n − 1

2 .
(See, e.g., [Kat, FreKie,Den3,Wei1–2, ??, ParSh1] or [Lap10, Appendix B]
for further information about this beautiful subject.)
This theory was first modeled on the theory of the Riemann zeta function,

which is the first example of the zeta function of an arithmetic geometry,
namely, the spectrum of Z. There exist only one-dimensional53 arithme-
tic geometries. The (completed) Riemann zeta function has simple poles
at s = 1 and s = 0, hence one could say (by analogy with the case of
a curve over a finite field) that the cohomology groups H0 and H2 are
one-dimensional; i.e., the spectrum of Z (completed at the archimedean
place) is connected and one-dimensional. On the other hand, if the Riemann
hypothesis holds, then the middle cohomology group H1 could possibly
be defined, and should be infinite dimensional. Moreover, the logarithmic
derivative of the Riemann zeta function is the generating function of the
prime-power counting function. It is not known how the prime numbers p
can be viewed as the (primitive) periodic orbits (of length log p) of a flow,
but there is some indication that such a flow, if it exists, should take into
account the smooth (archimedean) structure [Den3,Haran2]. The simplest
such flow is the shift on the real line.

52Which is induced on the variety by the automorphism x �→ xp of Fp.
53Indeed, the product of the spectrum of Z with itself has coordinate ring Z ⊗ Z = Z,

hence the product reduces to the diagonal [Haran1].



382 12. Concluding Comments, Open Problems, and Perspectives

Table 12.2: Self-similar fractal geometries vs. varieties over finite fields: Analogies
between the zeta functions.

self-similar geometries finite geometries
lattice string variety V over the field Fq

nonlattice string L infinite dimensional variety
Cantor string affine rational variety
geometric zeta function ζL zeta function ζV

counts lengths counts divisors
lattice case is periodic the zeta function is periodic
period p is typically large period is typically small
nonlattice: p→∞ period of ζV → 0 if #Fq →∞
(i.e., characteristic → 1)

residue at D (Minkowski residue at n (dimension)
dimension) givesM(D;L) gives the class number

12.7.2 Complex Cohomology of Self-Similar Strings

We propose constructing a cohomology theory, which to each (dynamical)
complex dimension ω of such a geometry, would associate a nontrivial co-
homology group Hω (with coefficients in the field of complex numbers). In
general, Hω would be expected to be an infinite dimensional Hilbert space.
This should be the case, for example, for the cohomology spaces associated
with a nonlattice string (or, more generally, with a nonlattice self-similar
geometry). Such a theory might be coined complex cohomology or fractal
cohomology .

Fractal Geometries and Finite Geometries

The geometric zeta function of a fractal string can have complex dimensions
of higher multiplicity, as in Example 2.3.4. Hence ζL(s) should be compared
to the zeta function of a variety over a finite field, and not for example to
its logarithmic derivative. This is confirmed by the fact that the residue
at a complex dimension is quite arbitrary, and not an integer in general.
Another confirmation is that the logarithmic derivative of the geometric
zeta function is the logarithmic derivative of the dynamical zeta function
(see Section 7.1 and 7.2 in Chapter 7), which is the generating function of
the counting function of the periodic orbits of a dynamical system. This
corresponds to the logarithmic derivative of the zeta function of a variety,
which is the generating function of the counting function of the periodic
orbits of the Frobenius automorphism, as explained in Section 12.7.1. On
the other hand, for the simplest self-similar strings (i.e., those with a single
gap, as in Section 2.2.1), the geometric zeta function has only poles and no
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zeros. This would mean that there is only ‘even dimensional cohomology’
in that case, but the correct interpretation is as yet unclear.

This is explained in the following three tables. Table 12.2 summarizes
the analogies between the corresponding zeta functions. We explain the
sense in which p → ∞ for nonlattice strings, and the connection with the
characteristic. Recall that the oscillatory period of a lattice string with
scaling ratios rj = rkj , j = 1, . . . , N (for positive integers k1, . . . , kN with-
out common factor and r ∈ (0, 1)) is p = 2π/ log r−1. It is the period of
its geometric zeta function: ζL(s) = ζL(s + ip), for s ∈ C. On the other
hand, if L is a nonlattice string, and rj ≈ rkj gives a lattice approximation,
then ζL(s) and ζL(s+ inp) are close, for n not too large. The next (better)
lattice approximation to L has larger values for the integers k1, . . . , kN and
a value of r that is closer to 1. Hence, its oscillatory period is larger (see
Section 3.4 for more details). In that sense, p → ∞ for nonlattice strings,
as p runs through the values of the oscillatory periods of lattice approxi-
mations. For a variety (of dimension n) over the finite field Fq, on the other
hand, the zeta function is periodic with period p = 2π/ log q. Again, the
zeta function of V is periodic: ζV (s) = ζV (s+ ip), for s ∈ C. Here, q is a
power of a prime number, the characteristic of the finite field. Hence the
period is small typically. However, the limit as q ↓ 1 (i.e., if the character-
istic of Fq tended to 1, if this were possible), corresponds to the limit r ↑ 1
that we observe for nonlattice strings.

Table 12.3: Self-similar fractal geometries vs. varieties over finite fields: Cohomo-
logical aspects.

self-similar geometries finite geometries
poles from the scaling ratios poles from even cohomology
zeros from the gaps zeros from odd cohomology
lattice case is periodic zeta function is periodic
nonlattice cohomology is the cohomology collapses to
infinite dimensional a finite-dimensional one

Table 12.3 summarizes the expected properties of a cohomology theory
for self-similar fractal strings (and sets), and Table 12.4 presents the dy-
namical analogies between self-similar flows and the Frobenius flow of a
variety.
The ideas in this last section are expanded from those in [Lap-vF5, Sec-

tion 10.5]. They were first presented in the present form in [Lap-vF9]. We
invite the reader to develop them further.
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Table 12.4: Self-similar fractal geometries vs. varieties over finite fields: Dynamical
aspects.

self-similar geometries finite geometries
dynamical flow Frobenius flow
dynamical zeta function −ζ ′L/ζL −ζ ′V /ζV counts the Frobenius
counts the closed orbits or Galois orbits of points

Euler-type product connects Euler product connects
orbits with lengths orbits with divisors

rω (poles) are solutions qω (zeros and poles) are
to (2.11) eigenvalues of Frobenius

number of lines is kN = degree number of lines is 2n+ 1,
of (2.11) n = dimV

12.8 Notes

Various extensions of the present theory of complex dimensions are con-
sidered in [HamLap] and in several works in preparation. In short, they
deal with the following situations: (i) Random (for example, statistically
self-similar) fractals [HamLap]; see Section 12.4.1. (ii) Multifractals (non-
homogeneous fractals which typically have a continuum of real fractal di-
mensions [Fa3, Chapter 17; Man3; Lap-vF10, Part 2]); see [JafLap] and
[LapLevRo]. (iii) Self-similar fractals (or systems) in higher dimension,
along with related scaling fractals and tilings; see [Pe] and [LapPe2–4],
building upon [LapPe1] and the present work, briefly discussed in Sec-
tion 12.3.2. (iv) Also, along a somewhat different direction, fractal graphs;
see [GuIsLap2].
Section 12.3.1: the snowflake curve was introduced by Helge von Koch

in [vK1, 2] and has since been used as a prototypical example of self-similar
fractal. We refer, for instance, to [Man1, Section II.6] and [Fa3, Introduction
and Chapter 9] for a more detailed discussion of the von Koch and snowflake
curves. See also, e.g., [Ed] and [Lap8] for additional historical background
and references.
As is noted in [LapPe1], a result entirely analogous to Theorem 12.21 can

be obtained by the same method for the square (instead of triangular) snow-
flake curve. Further, the same method as that leading to Theorem 12.21 is
expected to eventually yield an inner tube formula for all lattice self-similar
fractals and possibly, by the density arguments of Chapters 2 and 3 (see es-
pecially Section 3.4), to provide information about the complex dimensions
of nonlattice fractals.
Section 12.4.1: random fractals of various types (and not necessarily in R)

have been studied earlier from several points of view in a number of pa-
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pers, including [Fa2,MauWi, PitY, Ham1–2, Gat] and the relevant refer-
ences therein. Among those papers, [MauWi] and [Ham1–2] also consider
certain random recursive constructions. Moreover, we point out that as is
well known (see, e.g., [Man1]), random fractals have been used in the appli-
cations to obtain more realistic models of natural phenomena (in physics,
chemistry, geology and biology) and of certain problems motivated by com-
puter science and electrical engineering. See also [Que] and the references
therein for interesting earlier work on random Dirichlet series, with rather
different motivations and goals.
A suitable form of the Renewal Theorem, adapted to branching processes,

plays an important role in the theory of Section 12.4.1. See [HamLap, Sec-
tion 3] for details and for the relevant terminology.
Section 12.4.2: in [LapNes2, 3], the authors introduce a model of (general-

ized) fractal membrane and of the associated moduli space—based on quasi-
crystals ([Sen,Moo; Lap10, Appendix F])—and a corresponding continuous
flow of zeta functions having some of the properties expected in [Lap10].
Section 12.5.1: we note that the analogue of Weyl’s formula (without

error term) for nonsmooth domains was first obtained in [BiSo].
The one-dimensional case of the Weyl–Berry conjecture was studied in

great detail in [LapPo1–2] and [LapMa1–2]. Most of the results in [Lap1,
LapPo1–2, LapMa1–2] and [Ca1] are extended in [HeLap1–2] by using a
notion of generalized Minkowski content which is defined by means of some
suitable gauge functions other than the traditional power functions in mea-
suring the irregularities of the fractal boundary. It may appear at first sight
that, even in the one-dimensional case, the work in [HeLap1–2] does not lie
within our framework of complex dimensions because it allows, for instance,
for logarithmic singularities in the corresponding zeta functions. However,
under mild hypotheses, an appropriate use of the functional calculus for
self-adjoint operators enables one to reduce this more general situation to
the present one and to apply the theory of complex dimensions developed
in this book in order to deduce, after a suitable change of variables, the
explicit formulas corresponding to the framework of [HeLap2]. This is done
in a joint work in preparation by Daniele Guido, Tommaso Isola and the
first author [GuIsLap1].
Various extensions of the results of Section 12.5.1 and partial results to-

ward a suitable substitute for the Weyl–Berry Conjecture for drums with
fractal boundary have now been obtained in a number of papers, includ-
ing [Lap2–3, LapPo1–2, LapMa1–2, FlVa, Ger, GerSc1–2, Ca1–2, vB, vB-
Le, HuaSl, FlLeVa, LeVa,MolVa, vB-Gi, HeLap1–2]. The interested reader
will find in those papers, in particular, several examples of monotonic or
oscillatory behavior in the asymptotics of Nν(x) or of θν(t). The theory
presented in this book—once suitably extended to higher dimensions (see,
in particular, Sections 12.2, 12.3, 12.5.2 and 12.5.3)—should help shed new
light on these examples. We note that many of these examples can be
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viewed as fractal sprays (as in [LapPo3]) and hence already lie within the
scope of the present theory; see, for example, Section 6.6 above.
Section 12.5.3: a sample of physical and mathematical works related to

the Gutzwiller Trace Formula includes [Gut1–2, BallanBlo,BalaVor,Berr3,
Vor,BerrHow,BraBh] and [Col,Chaz,DuGu].



Appendix A
Zeta Functions in Number Theory

In this appendix we collect some basic facts about zeta functions in number
theory to which our theory of explicit formulas can be applied. We refer
to [Lan, Chapters VIII and XII–XV], [ParSh1, Chapter 4] and [ParSh2,
Chapter 1, §6, Chapter 2, §1.13] for more complete information and proofs.

A.1 The Dedekind Zeta Function

Let K be an algebraic number field of degree d over Q, and let O be the
ring of integers of K. The norm of an ideal a of O is defined as the number
of elements of the ring O/a :

Na = #O/a. (A.1)

The norm is multiplicative: N(ab) = Na ·Nb. Furthermore, an ideal has a
unique factorization into prime ideals,

a = pa1
1 . . . pak

k , (A.2)

where p1, . . . , pk are prime ideals.
We denote by r1 the number of real embeddings K → R and by r2

the number of pairs of complex conjugate embeddings K → C. Thus we
have that r1 + 2r2 = d. Further, w stands for the number of roots of unity
contained in K. Associated with K, we need the discriminant disc(K), the
class number h, and the regulator R. We refer to [Lan, p. 64 and p. 109]
for the definition of these notions.
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The Dedekind zeta function of K is defined for Re s > 1 by

ζK(s) =
∑

a

(Na)−s =
∞∑

n=1

Ann−s. (A.3)

Here, a runs over the ideals of O, and, in the second expression, An denotes
the number of ideals of O of norm n. This function has a meromorphic con-
tinuation to the whole complex plane, with a unique (simple) pole at s = 1,
with residue

2r1(2π)r2hR

w
√
disc(K)

. (A.4)

(See [Lan, Theorem 5 and Corollary, p. 161].)

From unique factorization and the multiplicativity of the norm, we de-
duce the Euler product for ζK(s): for Re s > 1,

ζK(s) =
∏
p

1
1− (Np)−s , (A.5)

where p runs over the prime ideals of O.
Example A.1 (The case K = Q). Ideals of Z are generated by positive
integers, and the norm of the ideal nZ is n, for n ≥ 1. Hence,

ζQ(s) =
∞∑

n=1

n−s = ζ(s), (A.6)

so that the Dedekind zeta function of Q is the Riemann zeta function. The
Euler product for ζQ(s) is given by

ζQ(s) =
∏
p

1
1− p−s

, (A.7)

where p runs over the rational prime numbers.

A.2 Characters and Hecke L-series

Let χ be an ideal-character of O, belonging to the cycle c (see [Lan, Chap-
ter VIII, §3 and Chapter VI, §1] for a complete explanation of the terms).
The L-series associated with χ is defined by

Lc(s, χ) =
∑

(a,c)=1

χ(a) (Na)−s
. (A.8)
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By the multiplicativity of the norm, this function has an Euler product

Lc(s, χ) =
∏
p � | c

1
1− χ(p) (Np)−s . (A.9)

This zeta function can be completed with factors corresponding to the
divisors of c, to obtain a function L(s, χ), called the Hecke L-series assoc-
iated with χ. It is related to the Dedekind zeta function as follows: Let L
be the class field associated with an ideal class group of O, and let ζL be
the Dedekind zeta function of L. Let χ run over the characters of the ideal
class group. Then,

ζL(s) =
∏
χ

L(s, χ). (A.10)

Example A.2 (The case K = Q). A multiplicative function χ on the pos-
itive integers gives rise to a Dirichlet L-series

L(s, χ) =
∞∑

n=1

χ(n)n−s. (A.11)

The value χ(n) only depends on the class of n modulo a certain positive
integer c. The minimal such c is called the conductor of χ.

A.3 Completion of L-Series, Functional Equation

The fundamental property of the Dedekind zeta function and of the L-series
is that it can be completed to a function that is symmetric about s = 1

2 .
Let Γ(s) be the gamma function. Let

ζR(s) = π−s/2Γ (s/2) and ζC(s) = (2π)−sΓ (s) .

Denote by disc(K) the discriminant of K. Then the function

ξK(s) = disc(K)s/2
(
ζR(s)

)r1
(
ζC(s)

)r2
ζK(s) (A.12)

has a meromorphic continuation to the whole complex plane, with simple
poles located only at s = 1 and s = 0, and it satisfies the functional
equation

ξK(1− s) = ξK(s). (A.13)

We deduce from this key fact that the function

ψK(σ) := lim sup
t→∞

log |ζK (σ + it)|
log t

, (A.14)
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defined for σ ∈ R, is given by the following simple formula for σ /∈ (0, 1):

ψK(σ) =

⎧⎨⎩0, for σ ≥ 1,
d

2
(1− 2σ) , for σ ≤ 0.

It is known that ψK is convex on the real line. (The Lindelöf hypothesis
says that ψK(1/2) = 0.) We deduce the following property (see [Lan, Chap-
ter XIII, §5]): For every real number σ and ε > 0, there exists a constant C,
depending on σ and ε, such that for all real numbers t with |t| > 1,

|ζK (σ + it)| ≤ C|t|ψK(σ)+ε. (A.15)

Thus ζK(s) satisfies the hypotheses L1 and L2 of Chapter 5. (See also
Remark A.5 below.)
The formalism required to prove for general L-series the functional equa-

tion (A.13) and the estimate (A.15) about the growth along vertical lines
was developed in Tate’s thesis [Ta]. We refer to [Lan, Chapter XIV] for the
corresponding results.

Remark A.3. Our theory also applies to the more general L-series as-
sociated with nonabelian representations of Q, such as those considered
in [RudSar]. (The abelian case corresponds to the Hecke L-series discussed
above.) These L-series can also be completed at infinity, and they sat-
isfy a functional equation, relating the zeta function associated to a given
representation with the zeta function associated to the contragredient rep-
resentation. Moreover, they have an Euler product representation, much
like that of L(s, χ), except that the p-th Euler factor may be a polynomial
in p−s of degree larger than one.
We note that these zeta functions are called primitive L-series in [Rud-

Sar]. According to the Langlands Conjectures, they are the building blocks
of the most general L-series occurring in number theory. See, for exam-
ple, [Gel,KatSar,RudSar].

A.4 Epstein Zeta Functions

A natural generalization of the Riemann zeta function is provided by the
Epstein zeta functions [Ep].1 Let q = q(x) be a positive definite quadratic
form of x ∈ Rd, with d ≥ 1. Then the associated Epstein zeta function is

1See, for example, [Ter, Section 1.4] for detailed information about these functions.
However, we use the convention of [Lap2, §4], which is different from the traditional one
used in [Ter].



A.5 Two-Variable Zeta Functions 391

defined by

ζq(s) =
∑

n∈Zd\{0}
q(n)−s/2. (A.16)

It can be shown that ζq(s) has a meromorphic continuation to all of C,
with a simple pole at s = d having residue πd/2(det q)−1/2Γ (d/2)−1 . Fur-
ther, ζq(s) satisfies a functional equation analogous to that satisfied by ζ(s);
namely, for the completed zeta function

ξq(s) = π−s/2Γ (s/2) ζq(s),

we have

ξq(s) = (det q)−1/2ξq−1(d− s), (A.17)

where q−1 is the positive definite quadratic form associated with the inverse
of the matrix of q. (See [Ter, Theorem 1, p. 59].)
In the important special case when q(x) = x2

1+· · ·+x2
d, the corresponding

Epstein zeta function is denoted ζd(s) in Section 1.4, Equation (1.47), and
can be viewed as a natural higher-dimensional analogue of the Riemann
zeta function ζ(s). Indeed, we have ζ1(s) = 2ζ(s). (See, for example, [Lap2,
§4] and the end of Section 1.4 above.) Since in this case, q is associated
with the d-dimensional identity matrix, we have q−1 = q and det q = 1,
so that (A.17) takes the form of a true functional equation relating ζd(s)
and ζd(d− s). Moreover, ζd(s) has an Euler product like that of ζ(s) if and
only if d = 1, 2, 4 or 8, corresponding to the real numbers, the complex
numbers, the quaternions and the octaves, respectively. (See, e.g., [Bae].)

Remark A.4. More generally, one can also consider the Epstein-like zeta
functions considered in [Es1]. Such Dirichlet series are associated with suit-
able homogeneous polynomials of degree greater than or equal to one.

Remark A.5. For all the zeta functions in Sections A.1–A.4, hypothe-
ses L1 and L2′ (Equations (5.19) and (5.21), page 143) are satisfied with
a window W equal to all of C. Moreover, for the example from Section A.6
below, one can take W to be a right half-plane of the form Re s ≥ σ0, for
a suitable σ0 > 0.

A.5 Two-Variable Zeta Functions

Let C be an algebraic curve over a finite field, as in Section 11.5. In that
section, we introduced the zeta function of C, ζC(s). In the paper [Pel],
Pellikaan introduced a zeta function ζC(s, t) that specializes to ζC(s) for
t = 1. Later, Schoof and van der Geer introduced the analogue for the
integers, inspired by their work on positivity for Arakelov divisors [SchoG].
We present here a brief summary of their results.
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A.5.1 The Zeta Function of Pellikaan

We consider a complete nonsingular curve C over the finite field with q
elements Fq. A divisor of C is a formal sum of valuations of k = Fq(C), the
field of functions on C. In particular, the divisor of a function f is

(f) =
∑

v

ord(f, v)v,

where the sum is over all valuations of k. The degree of a divisor

D =
∑

v

Dvv

is given by
degD =

∑
v

Dv deg v,

where deg v is the dimension of the residue class field at v over Fq. Two
divisors are said to be (linearly) equivalent if their difference is the divisor of
a function. Let Cl = Cl(C) be the group of divisor classes of C. This group
has a grading by the degree, since deg(f) = 0 for any nonzero function f
on C, and we write Cln for the subset2 of classes of degree n. A divisor
is said to be positive if Dv ≥ 0 for all v. Let l(D) denote the dimension
over Fq of the vector space of functions f such that D + (f) ≥ 0. We will
need the theorem of Riemann–Roch,

l(D) = degD+ 1− g + l(K−D),

where K is the canonical divisor of C, and g = l(K) is the genus of C.
It follows that l(D) = 0 for degD < 0, and l(D) = degD + 1 − g
for degD > degK = 2g − 2.
Define, for Re t < Re s < 0, the function of two complex variables

ζC(s, t) =
1

qt − 1
∑

D∈Cl

qtl(D)q−s(deg D+1−g). (A.18)

We first derive an expression for this function that converges for all s and t.
Note that for g = 0, that is, when C = P1 is the projective line, as dis-
cussed in Example 11.24 for the case of the one-variable zeta functions, we
have l(D) = 0 for degD < 0 and l(D) = degD + 1 for degD ≥ 0. Also,
there is only one divisor class of degree 0; i.e., h = 1. Hence the sum over
the divisor classes in (A.18) becomes, for Re t < Re s < 0,

−1∑
n=−∞

q−s(n+1) +
∞∑

n=0

qt(n+1)q−s(n+1).

2Thus Cl is isomorphic to the product Cl0 ×Z. It is known that Cl0 is a finite group.
We denote its order by h.
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Thus we find
ζP1(s, t) =

1
(1− qt−s)(qs − 1) .

In general, we write h = #Cl0 = #Cln for the class number of C (see
also Section 11.5). Then

ζC(s, t) =
∞∑

n=−∞

∑
D∈Cln

qtl(D) − qt max{0,n+1−g}

qt − 1 q−s(n+1−g)

+
h

qt − 1

∞∑
n=−∞

qt max{0,n+1−g}q−s(n+1−g).

The first sum is finite, and the second sum equals hζP1(s, t). Hence we find

ζC(s, t) =
∞∑

n=−∞

∑
D∈Cln

qtl(D) − qt max{0,n+1−g}

qt − 1 q−s(n+1−g) + hζP1(s, t).

(A.19)

We see that ζC(s, t) has poles at qs = 1 and at qs = qt. Using the Riemann–
Roch formula, we can continue to verify that ζC(s, t) = ζC(t− s, t). More-
over, we see from (A.19) that q−sgζC/ζP1 is a polynomial in q−s and qt of
degree 2g in q−s.

Remark A.6. In [Na], Naumann proves that this polynomial is irreducible.
Thus the zeros of ζC(s, t) lie in an irreducible family. It is well known that
for t = 1, ζC(s, t) satisfies the Riemann hypothesis; i.e., all zeros in s
of ζC(s, 1) have real part 1/2.

To relate this function to the divisors of C (and not to the classes of
divisors), and hence derive the Euler product for ζC(s, 1), we use that

ql(D) − 1
q − 1 (A.20)

equals the number of positive divisors in the divisor class D. Note that

∞∑
n=0

qt max{0,n+1−g} − 1
qt − 1 q−s(n+1−g) = ζP1(s, t).

Hence we find for Re s > max{0,Re t} that

ζC(s, t) =
∞∑

n=0

∑
D∈Cln

qtl(D) − 1
qt − 1 q−s(n+1−g). (A.21)
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Hence by (A.20), for t = 1, we find the Euler product

ζC(s, 1) = qs(g−1)
∏
v

1
1− q−s deg v

.

The value t = 0 is also interesting. Taking the limit as t → 0 in Equa-
tion (A.21), we find that

ζC(s, 0) =
∞∑

n=0

∑
D∈Cln

l(D)q−s(n+1−g).

A.5.2 The Zeta Function of Schoof and van der Geer

An Arakelov divisor is a formal linear combination of valuations of Q, where
the archimedean valuation has a real coefficient and the p-adic valuations
have an integer coefficient. For example, the divisor of a number f is

(f) = −(log |f |)v∞ +
∑

p

ord(f, p)vp,

where the sum is over all prime numbers. The degree of a divisor

D =
∑

v

Dvv

is given by
degD = D∞ +

∑
p

Dp log p,

which is a real number, not necessarily an integer. Clearly, the group of
divisor classes of Q is isomorphic to R. Thus, there is only the grading by
the degree, and h = 1. Let

θ(u) =
∞∑

n=−∞
e−πn2u2

.

We use this function to measure positivity of a divisor at the archimedean
valuation. A divisor is said to be positive if Dp ≥ 0 for all p-adic valuations,
and log θ

(
e−2D∞

)
is large.3 We have the theorem of Riemann–Roch,

log θ(1/u) = log u+ log θ(u), (A.22)

for u > 0. This is proved using the Poisson Summation Formula; see [Ti,
Section 2.3], [Pat, Theorem 2.2] or [Schw1, Eq. (VII.7.5)]. It follows that

θ(u) = 1 +O
(
e−πu2

)
for u →∞,

3Positivity is not a definite notion: the larger log θ
(
e−2D∞

)
, the more positive the

divisor is said to be.
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and
θ(u) = u−1 +O

(
u−1e−π/u2

)
for u → 0.

Define, for Re t < Re s < 0,

ζZ(s, t) =
1
t

∫ ∞

0

θ(u)tus du

u
. (A.23)

We first derive an expression that converges for all s and t:

ζZ(s, t) =
1
t

∫ ∞

0

(
θ(u)t −max{1/u, 1}t

)
us du

u

+
1
t

(∫ 1

0

us−t du

u
+

∫ ∞

1

us du

u

)
.

The first term converges for every s and t, and the second is defined
for Re t < Re s < 0, but we can easily compute it to find

ζZ(s, t) =
1
t

∫ ∞

0

(
θ(u)t −max{1/u, 1}t

)
us du

u
+

1
s(s− t)

, (A.24)

for every s, t ∈ C. We see that ζZ(s, t) has poles at s = 0 and at s = t.
Using the Riemann–Roch formula, we can continue to verify the functional
equation ζZ(s, t) = ζZ(t− s, t).

Remark A.7. In analogy with the geometric case, we might conjecture
that the zeros of the Riemann zeta function lie in an irreducible family.

To relate this function to the divisors of Q, and hence derive the Euler
product for ζZ(s, 1), we use that θ(u) − 1 ‘equals’ the number of positive
divisors in the same divisor class as u. Note that∫ ∞

0

max{1/u, 1}t − 1
t

us du

u
=

1
s(s− t)

.

Hence we find for Re s > max{0,Re t} that

ζZ(s, t) =
∫ ∞

0

θ(u)t − 1
t

us du

u
.

For t = 1, we find the Euler product to be

ζZ(s, 1) = π−s/2Γ
(s

2

)∏
p

1
1− p−s

.

There is also an Euler product for t = 2, 4 and 8, corresponding to the
Gaussian integers, the quaternions and the octonions, respectively. Sur-
prisingly, there is also an Euler product for t = 0, as we verify directly.
Taking the limit as t → 0, we find that

ζZ(s, 0) =
∫ ∞

0

(log θ(u))us du

u
,
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for Re s > 0. Using the Jacobi triple product identity [HardW, Theo-
rem 352, p. 282],

∞∑
n=−∞

qn2
=

∞∏
n=1

(1 + q2n−1)2(1− q2n),

we can compute

log

( ∞∑
n=−∞

qn2

)
= 2

∞∑
n=1

(−1)n−1qnσ−1(n|n|2),

where |n|2 = 2− ord(n,2) denotes the 2-adic valuation, so that n|n|2 is the
largest odd factor of n, and σ−1(n) =

∑
d |n

1
d . We thus obtain

ζZ(s, 0) = π−s/2Γ(s/2)ζ(s/2)ζ(1 + s/2)(1− 21−s/2)(1− 2−1−s/2),

where ζ(s) is the Riemann zeta function. Substituting the Euler product
for the Riemann zeta function, we obtain the Euler product for ζZ(s, 0),
valid for Re s > 2. Using the functional equation for the Riemann zeta
function,

Γ(s)Γ(−s) =
π

−s sinπs
,

the doubling formula

22s−1Γ(s)Γ(s+ 1/2) = Γ(2s)Γ(1/2),

and the fact that Γ(1/2) =
√

π, we obtain the alternative expression

ζZ(s, 0) = ζ(s/2)ζ(−s/2)(1− 2−1−s/2)(1− 2−1+s/2)
4π

s sin(πs/4)
,

which shows clearly that ζZ(−s, 0) = ζZ(s, 0).

Remark A.8. It would be interesting to consider two-variable dynamical
zeta functions in the context of Chapter 7, in the spirit of [Lag2]. We hope
to do so in some future work.

A.6 Other Zeta Functions in Number Theory

The flexibility of our theory of explicit formulas with an error term allows
us to apply it to other zeta functions that do not necessarily satisfy a
functional equation.
As an example, we mention the zeta function

P(s) =
∑

p

(log p) p−s,
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which was studied by M. van Frankenhuijsen in [vF2, §3.9] in connection
with the ABC conjecture. To obtain information about this function, we
consider the logarithmic derivative of the Euler product of the Riemann
zeta function,

−ζ ′(s)
ζ(s)

=
∑
p,m

(log p) p−ms,

where p ranges over the rational primes (as above), and m over the positive
integers. This function has simple poles at s = 1 and at each zero of ζ(s).
By Möbius inversion,

P(s) = −ζ ′(s)
ζ(s)

+
ζ ′(2s)
ζ(2s)

+
ζ ′(3s)
ζ(3s)

+
ζ ′(5s)
ζ(5s)

− ζ ′(6s)
ζ(6s)

+ . . .

=
∞∑

n=1

μ(n)
(
−ζ ′(ns)

ζ(ns)

)
,

where μ(n) is the Möbius function, defined on the positive integers by

μ(n) =

{
0, if n is not square-free,
(−1)k, if n = p1 . . . pk is square-free.

Thus the poles of P(s) are contained in the set

{s/n : s is a zero of ζ, n = 1, 2, . . . }.

If the Riemann hypothesis holds, then each of these points is a pole of P,
and in general, the number of possible cancelations is small. It follows
that the poles of P(s) accumulate on the line Re s = 0. Hence this line
is a natural boundary for the analytic continuation of P(s). But on a line
Re s = σ > 0 that does not meet any of the poles of P(s), this function is
bounded by a constant times log |t|, for t = Im s > 2. Hence this function
satisfies hypotheses L1 and L2 (Equations (5.19) and (5.20), page 143)
with W = {s : Re s ≥ σ0}, where σ0 > 0 is suitably chosen. For example,
if the Riemann hypothesis is true, one can take any positive value for σ0

other than 1/n, for n = 1, 2, . . . .



Appendix B
Zeta Functions of Laplacians
and Spectral Asymptotics

In this appendix, we provide a brief overview of some of the results from
spectral geometry that are relevant to the study of the spectral zeta func-
tion associated with a Laplacian Δ on a smooth compact Riemannian mani-
fold M . For the simplicity of exposition, we focus on the case when M
is a closed manifold (i.e., without boundary). However, as is briefly ex-
plained at the end of the appendix, all the results stated for closed mani-
folds are known to have a suitable counterpart for the case of a compact
manifold with boundary. An important special case of the latter situation
is that when M is a smooth bounded open set in Euclidean space Rd

and Δ = −∑d
k=1 ∂2/∂x2

k is the associated Dirichlet or Neumann Laplac-
ian.
By necessity of concision, our presentation is somewhat sketchy and

imprecise. For a much more detailed treatment of these matters, we re-
fer the interested reader to some of the articles and books cited below,
including [Min1–2, MinPl, Kac,McKSin, Se1, BergGM,AtPSin, Gi, Hö1–3,
Gru,AndLap1–2], along with the relevant references therein.

B.1 Weyl’s Asymptotic Formula

Let M be a closed, d-dimensional, smooth, compact and connected Rie-
mannian manifold. We assume throughout that the closed manifold M is
equipped with a fixed Riemannian metric g. Let Δ be the (positive) La-
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placian (or Laplace–Beltrami operator) on M associated with g.1 It is well
known that Δ has a discrete (frequency) spectrum, written in increasing
order according to multiplicity:

0 < f1 ≤ f2 ≤ · · · ≤ fj ≤ . . . ,

where fj → +∞ as j → ∞. Here, by convention, the frequencies of Δ are
defined as the square root of its eigenvalues λj .2,3

Next, let Nν(x) = Nν,M (x) be the associated spectral counting function
(or counting function of the frequencies):

Nν(x) = # {j ≥ 1: fj ≤ x} , for x > 0. (B.1)

Then Weyl’s classical asymptotic formula [Wey1–2] states that

Nν(x) = cd vol(M)xd + o
(
xd

)
, (B.2)

as x → ∞, where cd = (2π)−dBd and Bd denotes the volume of the unit
ball in Rd. Recall that Bd = πd/2/Γ(d/2 + 1), where Γ = Γ(s) is the usual
gamma function. Further, vol(M) denotes the Riemannian volume of M .
The leading term in (B.2),

W (x) = WM (x) = (2π)−dBd vol(M)xd, (B.3)

is often referred to as the Weyl term in the literature.

Remark B.1. Weyl’s original result has been improved in various ways.
One extension consists in giving a (sharp) remainder estimate for Weyl’s
asymptotic law, of the form

Nν(x) = cd vol(M)xd +O
(
xd−1

)
, (B.4)

as x → ∞. This result is due to Hörmander [Hö1] in the case of closed
manifolds, and to Seeley [Se4–5] (for d ≤ 3) or to Pham The Lai [Ph]
(for d ≥ 4) in the case of manifolds with boundary (for example, for the
Dirichlet or Neumann Laplacian on a smooth bounded open set in Rd).
We refer the interested reader to [Hö2–3] for a detailed exposition of these
results.

1Using Einstein’s summation convention, Δ is given in local coordinates by

Δ = − 1√
det g

∂

∂xα
gαβ

√
det g

∂

∂xβ
,

where g =
(
gαβ

)d

α,β=1
and g−1 =

(
gαβ

)d

α,β=1
.

2We have used a slightly different normalization in the rest of this book; see, for
example, Section 1.3 and footnote 1 of the introduction.

3Throughout this discussion, we ignore the zero eigenvalue of the Neumann Laplacian.
Alternatively, we can replace Δ by Δ + α, for some positive constant α.
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B.2 Heat Asymptotic Expansion

We denote by zν(t) = zν,M (t) the trace of the heat semigroup
{
e−tΔ : t ≥ 0

}
generated by Δ.4 Thus, zν(t) is given by

zν(t) = Trace
(
etΔ

)
=

∞∑
j=1

e−tλj , (B.5)

for every t > 0.
A well-known Tauberian argument shows that Weyl’s formula (B.2) is

equivalent to the following asymptotic formula for zν(t) (see, for exam-
ple, [Kac] or [Sim]):

zν(t) = ed vol(M)t−d/2 + o
(
t−d/2

)
, (B.6)

as t → 0+, where ed = Γ(d/2 + 1)cd. Using the above expression for cd

and Bd, one finds ed = (4π)−d/2.

Remark B.2. The fact that (B.2) implies (B.6) is immediate and follows
from a simple Abelian argument; see, e.g., [Sim, Theorem 10.2, p. 107]
or [Lap1, Appendix A, pp. 521–522]. However, the converse relies on Kara-
mata’s Tauberian Theorem [Sim, Theorem 10.3, p. 108] (which is closely re-
lated to the Wiener–Ikehara Tauberian Theorem [Pos, Section 27, pp. 109–
112; Shu, Theorem 14.1, p. 115]). In addition, even the existence of an error
term in (B.6) does not imply the corresponding Weyl formula with error
term in (B.2).5

More generally, a key result due in its original form to Minakshisundaram
and Pleijel [MinPl] (building, in particular, on work of the first of these
authors [Min1–2] in a closely related context) states that zν(t) has the
following asymptotic expansion (in the sense of Poincaré):6

zν(t) ∼
∑
k≥0

αkt−(d−k)/2, (B.7)

4For convenience, we use here for zν(t) the standard convention encountered in the
literature on spectral geometry; that is, we work with the trace of e−tΔ rather than

of e−t
√

Δ. The latter choice would correspond to the spectral partition function

θν(t) = Trace
(
e−t

√
Δ
)

=

∞∑
j=1

e−tfj =

∫ ∞

0
e−txdNν(x),

as we defined it in Section 6.2.3 above; see, for example, Equation (6.29).
5We stress that in contrast to much of the rest of this book, all the asymptotic

formulas in this appendix are interpreted pointwise.
6This asymptotic formula can be interpreted as follows: For each fixed integer k0 ≥ 0,

zν(t) =
∑

k≤k0

αkt−(d−k)/2 + O
(
t(k0+1−d)/2

)
,

as t → 0+.
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as t → 0+, where the coefficients αk = αk(M) are integrals with respect to
the Riemannian volume measure ofM of suitable local geometric invariants
of M . Namely, for each k = 0, 1, 2, . . . ,

αk(M) =
∫

M

αk(y, M) d volM (y), (B.8)

where the function αk(·, M) can be expressed as a (locally invariant) poly-
nomial of (suitable contractions of) the Riemann curvature tensor of M
and of its covariant derivatives. In this sense, it is a local invariant of M .
Moreover, in the present situation, one can show that

αk(M) = 0, if k is odd. (B.9)

Remark B.3. For example, α0 is equal to ed vol(M), while α2 is propor-
tional to the integral over M of the scalar curvature of M .7 In general, the
explicit computation of the coefficients αk is difficult but a large amount
of information is now available, particularly in the present case of closed
manifolds. We refer to Gilkey’s book [Gi, Sections 1.7, 1.10, 4.8, and 4.9]
for a detailed treatment of this matter.

B.3 The Spectral Zeta Function and its Poles

Let us next introduce the spectral zeta function of the Laplacian on M (or
simply, the zeta function of Δ) ζν(s) = ζν,M (s):8

ζν(s) = Trace
(
Δ−s/2

)
=

∞∑
j=1

f−s
j . (B.10)

Note that in view of (B.5), we have the following relation between ζν(s)
and zν(t):

ζν(2s) =
1
Γ(s)

∫ ∞

0

zν(t)ts−1 dt. (B.11)

Hence, byWeyl’s asymptotic formula (B.2) (or equivalently, by (B.6)), ζν(s)
extends holomorphically to the open right half-plane Re s > d. Further,

7By application of the Gauss–Bonnet formula (as extended by S.-S. Chern [Chern1–2]
to every dimension d), it follows from the latter statement that the Euler characteristic
of M is audible (i.e., can be recovered from the spectrum of M); see, e.g., [McKSin,
pp. 44–45]. (Recall that the Euler characteristic of M vanishes when d is odd.)

8In the usual terminology, ζν(s) is the zeta function of
√

Δ, because, according to
our present conventions, the frequencies fj of Δ are given by fj =

√
λj , where the λj ’s

are the eigenvalues of Δ, written in nondecreasing order. The reader should keep this in
mind when comparing our formulas with those in [Gi], for example.
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according to (B.7), ζν(s) has a simple pole at s = d. It follows that the
abscissa of convergence of the Dirichlet series ζν(s) =

∑∞
j=1 fs

j is equal
to d, the dimension of the manifold M .
More generally, the asymptotic expansion (B.7) combined with rela-

tion (B.11) above yields the following key theorem (see [MinPl] and, for
instance, [Gi, Section 1.10, especially Lemma 1.10.1, p. 79]):

Theorem B.4. The spectral zeta function ζν(s) of a closed Riemannian
manifold M has a meromorphic extension to the whole complex plane, with
simple poles located at d and at a (subset of ) the points d− 2, d− 4, . . . .
Further, for k = 0, 1, 2, . . . , the residue at s = d− k is equal to

2αk(M)
Γ((d− k)/2)

,

where αk = αk(M) is the k-th coefficient in the heat asymptotic expan-
sion (B.7).

More precisely, ζν(s) is holomorphic except for simple poles located at{
s = d− 2q, q = 0, 1, 2, . . . , if d is odd,
s = d, d− 2, d− 4, . . . , 4, 2, if d is even.

Remark B.5. From our present point of view, the first part of Theo-
rem B.4 is the most important one. It implies that all the poles of the
spectral zeta function of a smooth manifold are located on the real axis, in
contrast to what happens for fractal manifolds, as illustrated in the main
body of this book.

Remark B.6. Strictly speaking, although s = d is always a (simple) pole
of ζν(s), as was explained above, the other points mentioned in Theo-
rem B.4 may not be poles of ζν(s), because the associated residue may
happen to vanish. For example, if M = Td = Rd/Zd is the standard flat
d-dimensional torus (i.e., the unit cube [0, 1]d with its faces identified, as at
the end of Section 1.4), then ζν(s) = ζν,M (s) is the normalized Epstein zeta
function associated with the standard quadratic form qd(x) = x2

1+ · · ·+x2
d

for x = (x1, . . . , xd) ∈ Rd; namely,

ζν(s) = ζd(s) =
∑

(n1,...,nd)∈Zd\{0}

(
n2

1 + · · ·+ n2
d

)−s/2

as in Equation (1.47) above.9 Therefore, for any d ≥ 1, s = d is the only
pole of ζν(s) = ζd(s), and it is simple. (See Appendix A, Section A.4,
or [Ter, Section 1.4].) In order to reconcile this fact with the statement of

9For convenience, we are using here the normalized eigenvalues of Δ on Td.
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Theorem B.4, it suffices to note that M = Td has zero Euler characteris-
tic and vanishing curvature. An entirely analogous comment can be made
about a general Epstein zeta function ζq(s) considered in Section A.4 of
Appendix A (or in [Ter, Section 1.4]), which can be viewed as the spectral
zeta function of the Laplacian on a flat torus M = Rd/Λ, where Λ is a
lattice of Rd with associated positive definite quadratic form q = q(x). (See
Equation (A.16).)

B.4 Extensions

Various extensions of the above results are known in spectral geometry. We
mention only a few, which are most relevant to our situation or that may
help clarify certain issues:

(i) Formulas (B.2), (B.7) and Theorem B.4 apply to the more general
situation of a (positive) elliptic differential operator P (instead of the La-
placian Δ). If P is of order m > 0, then we define the j-th frequency of P
by fj = λ

1/m
j , where λj is the j-th eigenvalue of P, written in nondecreas-

ing order according to multiplicity. With this convention, the exponent of x
in (B.2) remains equal to d, while the exponent of t−1 in (B.6) and (B.7) is
now equal to d/m and (d− k)/m, respectively. Further, the poles of ζν(s)
also remain the same as in Theorem B.4. On the other hand, in (B.2) and
in (B.3), the constant (2π)−dBd will be replaced by (2π)−d times a vol-
ume in phase space (i.e., in the cotangent bundle of M) determined by
the principal symbol of P. Moreover, with the obvious change in notation,
in the analogue of (B.7) and (B.8), the local invariants αk(·,P) are now
expressed as (locally invariant) polynomials of the total symbol of P and
of its covariant derivatives.

(ii) Let us now assume that M is a (smooth, compact) manifold with
boundary. For elliptic boundary value problems on M (and, in particular,
for the prototypical cases of the Dirichlet and Neumann Laplacians on a
smooth bounded open set of d-dimensional Euclidean space Rd), the ana-
logue of Weyl’s asymptotic formula (B.2) and of the Minakshisundaram–
Pleijel heat asymptotic expansion (B.7) still holds. It takes the same form
as above, except that in the counterpart of (B.7), the coefficients αk (or
the corresponding local invariants) are more complicated to compute.10 In
addition, a suitable counterpart of Theorem B.4 also holds; see [MinPl]
and [McKSin]. In particular, the poles of ζν are all simple and located on
the real axis. Perhaps the most complete treatment of these questions in the
case of manifolds with boundary can be found in Grubb’s book [Gru], which

10In fact, to our knowledge, no explicit algorithm is known to calculate every αk in
this case, although a great deal of information is available.
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also deals with the more general case of elliptic pseudodifferential boundary
value problems on M .11 Besides the earlier papers [Min1–2, MinPl] (which
study slightly different notions of spectral zeta functions of Laplacians,
motivated by the work of Carleman [Car]), other useful references in this
setting include the aforementioned paper by McKean and Singer [McKSin],
along with the classical paper by Mark Kac [Kac] entitled Can one hear
the shape of a drum?, which gives some related results on certain planar
domains.
In a seminal paper, entitled Complex powers of elliptic operators, See-

ley [Se1] has used modern analytical tools to study spectral zeta functions.
In turn, Seeley’s paper (along with its sequel for boundary value prob-
lems [Se2–3]) has stimulated a number of further developments related to
the zeta functions of elliptic pseudodifferential operators. (See, for exam-
ple, [Shu, Chapter II] and [Gru].)

B.4.1 Monotonic Second Term

Under the assumptions of Remark B.1 for a manifold with smooth bound-
ary, it need not be the case that Nν(x) admits (pointwise) an asymptotic
second term as x → ∞. (Contrast this statement with the fact that zν(t)
has an asymptotic expansion of every order as t → 0+; see formula (B.7).)
Knowing when Nν(x) admits a monotonic asymptotic second term (i.e., of
the form a nonzero constant times xd−1) is the object of Hermann Weyl’s
conjecture [Wey1–2]. In a beautiful work, Ivrii [Ivr1–2] has partially solved
this conjecture. More specifically, for example for the Dirichlet or Neumann
Laplacian, respectively, he shows that on a manifoldM with boundary ∂M ,
we have (with the obvious notation for the volume of M and ∂M),

Nν(x) = cd vold(M)xd ∓ gd−1 vold−1(∂M)xd−1 + o
(
xd−1

)
, (B.12)

as x → ∞, provided a suitable condition is satisfied.12 (Here, the positive
constant gd−1 is explicitly known in terms of d − 1, the dimension of the
smooth boundary ∂M .) Positive results toward Weyl’s Conjecture were
also obtained by Melrose [Mel1–2] for manifolds with concave boundary.
We refer the interested reader to volumes III and IV of Hörmander’s trea-
tise [Hö3] as well as to Ivrii’s recent book [Ivr3] for further information
about this subject.

11For a general pseudodifferential operator P on M , the heat asymptotic expansion
may contain logarithmic terms, corresponding to the singularities of the symbol of P.
This is not the case, however, for an elliptic differential operator, and hence for a La-
placian on M . (See Corollary 4.27, page 388 and the comment on page 390 in [Gru].)

12Roughly speaking, this condition says that the set of multiply reflected periodic
geodesics of M forms a set of measure zero, with respect to Liouville measure in phase
space (i.e., in the cotangent bundle of M). This condition (which is sufficient but not
necessary) is known to be generic among smooth Euclidean domains, but is very difficult
to verify in any concrete example.
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Finally, we note that situations where Nν(x) has an oscillatory behavior
(beyond the Weyl term) have been analyzed, in particular, by Duistermaat
and Guillemin [DuGu] in terms of the concentration of periodic geodesics
(or, more generally, of bicharacteristics). See also the beginning of Sec-
tion 12.5.3 for a sample of related mathematical and physical works, in-
cluding the papers by Colin de Verdière [Col] and Chazarain [Chaz].

B.5 Notes

We note that Weyl’s formula plays an important role in mathematical
physics and can be given interesting physical interpretations; see, for ex-
ample, [CouHi,Kac,ReSi3,Sim], along with [BaltHi].
Further information about heat asymptotic expansions and related issues

can be found in the papers by McKean and Singer [McKSin] or Atiyah,
Patodi and Singer [AtPSin], and in [AndLap1–2] or in the first unnumbered
subsection of [JohLap, Section 20.2.B], along with the relevant references
therein. See also [BergGM] for many interesting examples of spectra of
Laplacians on Riemannian manifolds.
Additional information regarding spectral zeta functions and some of

their connections with dynamical or with arithmetic zeta functions can be
found in the book [Lap-vF8].



Appendix C
An Application of Nevanlinna Theory

In this appendix, we briefly discuss aspects of Nevanlinna theory and give
in Section C.2, Theorem C.1, an application of that theory to the com-
plex zeros of Dirichlet polynomials, as defined and studied in Chapter 3.
This theorem is used in the proof of Equation (2.37) of Theorem 2.17 (see
Sections 2.5 and 2.6). Note however, that in Chapter 3 we obtain a bet-
ter asymptotic density estimate (with the O(

√
� ) of Equation (C.8) below

replaced by O(1) in Theorem 3.6, Equation (3.10)).

Nevanlinna theory was developed in the 1930s to study the value distrib-
ution of meromorphic functions; that is, the distribution of solutions in z
of the equation f(z) = a (so-called a-points). Recall that a meromorphic
function is an analytic function

f : C → C ∪ {∞},

where f(x) is defined to be ∞ if f has a pole at x. In this case, the func-
tion g(z) = 1/f(z) is defined in a neighborhood of x and g is holomorphic
at z = x if we set g(x) = 0. In other words, we can view f as a holomorphic
function to the Riemann sphere

P1(C) = C ∪ {∞}.

The starting point of Nevanlinna theory is the Poisson–Jensen formula. It
was Nevanlinna’s insight that this formula can be interpreted as saying that
the number of a-points of f in a disc plus the average closeness of f to a on
the boundary of this disc (measured in a suitable way) equals the number
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of poles of f plus the average size of f on this boundary. We exploit this
fact for a holomorphic function, by counting the number of a-points of f
in a disc by computing the average size of f on the boundary of this disc,
provided one can bound the average closeness of f to a on the boundary.
We refer the reader to the monographs [Hay] and [LanCh] for an expo-

sition of Nevanlinna theory.

C.1 The Nevanlinna Height

Recall that P1(C) denotes the complex projective line; i.e., the complex
line C, completed by a point at infinity, denoted ∞. Alternatively, P1(C)
could be realized as the Riemann sphere. The distance between two points a
and a′ in P1(C) is defined as

‖a, a′‖ = |a− a′|√
1 + |a|2

√
1 + |a′|2

, if a, a′ �=∞, (C.1a)

and the distance of a point to the point at infinity is given by

‖a,∞‖ = 1√
1 + |a|2

, if a �=∞. (C.1b)

Here, |z| denotes the ordinary absolute value of the complex number z. (See,
e.g., [Bea, §2.1].) When one views P1(C) as a sphere of diameter 1 in three-
dimensional Euclidean space, the distance is simply the chordal distance
between the inverse images of a and a′ under stereographic projection.
Let f be a nonconstant meromorphic function and let a ∈ P1(C). The

mean proximity function of f is the function of the positive real variable �
given by

mf (a, �) =
∫
|z|=�

− log ‖f(z), a‖ dz

2πiz
. (C.2)

The counting function of f is defined as1

nf (a, �) = # {z ∈ C : |z| ≤ �, f(z) = a} , (C.3)

and, for a �= f(0), we set

Nf (a, �) =
∫ �

0

nf (a, t)
dt

t
. (C.4)

1This function takes finite values since the zeros of a nonconstant meromorphic func-
tion form a discrete subset of C.



C.2 Complex Zeros of Dirichlet Polynomials 409

Finally, the Nevanlinna height of f is defined, for a �= f(0), by

Tf (�) = Nf (a, �) +mf (a, �) + log ‖f(0), a‖, (C.5)

which is independent of a (cf. [LanCh, Theorem 1.6, p. 19]). It is this
independence that we will exploit, for a =∞ and for a = 0.

C.2 Complex Zeros of Dirichlet Polynomials

We investigate the distribution of the roots of the equation

M∑
j=0

mjr
s
j =

M∑
j=0

mje
−wjs = 0,

where r0 = 1 > r1 > r2 > . . . > rM > 0. The weights wj are defined
by rj = e−wj , so that w0 = 0 < w1 < w2 < · · · < wM .
Our analysis is partly similar to that of Jorgenson and Lang [JorLan3].

In particular, the result that the zeros of a Dirichlet polynomial lie in a
bounded strip can be found in [JorLan3, p. 58]. On the other hand, in the
present situation, we obtain more precise results than in [JorLan3]. Similar
results were also obtained by B. Jessen. (See [Bohr, Appendix II].)
Let σl and σr be defined by the equations

e(wM−wM−1)σl

M∑
j=0

|mj | =
1
2
|mM | , (C.6a)

and

e−w1σr

M∑
j=0

|mj | =
1
2
|m0| . (C.6b)

In other words, writing
∑ |mj | =

∑M
j=0 |mj |, we have

σl = −
log

(
2
∑ |mj |/|mM |

)
wM − wM−1

and σr =
log

(
2
∑ |mj |/|m0|

)
w1

. (C.7)

Theorem C.1. Let w0 = 0 < w1 < . . . < wM and let m0, . . . , mM be
arbitrary nonzero complex numbers. Define

f(s) =
M∑

j=0

mje
−wjs
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and assume that f(0) =
∑M

j=0 mj �= 0. Then the number of complex zeros
of f(s), counted according to multiplicity in the closed disc of radius �,
equals2

log r−1
M

π
�+O(

√
� ), as � →∞. (C.8)

Moreover, the zeros lie in the horizontally bounded strip σl ≤ Re s ≤ σr,
where σl and σr are given respectively by Equations (C.6a) and (C.6b) and
formula (C.7) above.

Proof. To obtain information about the zeros of f(s), we estimate the
counting function nf (0, �). To accomplish this, we first compute the height

Tf (�) = mf (∞, �) + log ‖f(0),∞‖

and then combine the relation

Tf (�) = Nf (0, �) +mf (0, �) + log ‖f(0), 0‖

with estimates for mf (0, �) to obtain an estimate for Nf (0, �). Finally, we
use Lemma C.2 below to deduce the estimate for nf (0, �).
The height of f is

mf (∞, �) =
∫
|s|=�

log
√
1 + |f(s)|2 ds

2πis
+ log ‖f(0),∞‖.

We need to estimate |f(s)| in the above integral. For σ = Re s ≥ σl,
the function |f(s)| is bounded by a constant depending on wj and mj

(j = 0, . . . , M). On the other hand, for σ ≤ σl, we have

|f(s)| =
∣∣∣∣∑M

j=0
mjr

s
j

∣∣∣∣ ≥ |mM |rσ
M −

∑M−1

j=0
|mj |rσ

j

≥ rσ
M

(
|mM | −

∑M−1

j=0
|mj |e(wM−wj)σ

)
≥ rσ

M

(
|mM | − e(wM−wM−1)σl

∑M

j=0
|mj |

)
=
|mM |
2

rσ
M . (C.9)

Putting these estimates together, we find that

log
√
1 + |f(s)|2 =

{
wM |σ|+O(1) (σ ≤ σl),
O(1) (σ ≥ σl),

2In Theorem 3.6, Equation (3.10), the density is given as
log r−1

M
2π

� + O(1), as � → ∞;
i.e., half of the density as given here. The reason is that in Theorem 3.6, we count zeros
in the upper half of a vertical strip, {s : 0 ≤ Im s ≤ �}.
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as |s| = � → ∞. On the circle with radius �, the real part of s = �eiθ

equals � cos θ. For the height, we thus find that

Tf (�) = −wM

∫ 3π/2

π/2

� cos θ
dθ

2π
+O(1) =

wM

π
�+O(1),

as |s| = � → ∞, where the implied constant depends only on M and the
numbers rj and mj .
Now, clearly,mf (0, �) is positive. HenceNf (0, �) ≤ wM

π �+O(1). To show
that this is the correct asymptotic order for Nf (0, �), we have to bound
the function mf (0, �) from above. In view of (C.1), inequality (C.9) shows
that

‖f(s), 0‖−1 =

√
1 + |f(s)|2
|f(s)| =

√
1 + |f(s)|−2

is uniformly bounded for σ ≤ σl. For σ ≥ σr, on the other hand, we have

|f(s)| ≥ |m0| −
M∑

j=1

|mj |rσ
j ≥ |m0| − rσ

1

M∑
j=0

|mj | ≥
|m0|
2

.

Thus log ‖f(s), 0‖−1 is uniformly bounded for Re s ≥ σr and Re s ≤ σl.
Observe that this shows that the complex zeros of f lie in the horizontally
bounded strip σl ≤ Re s ≤ σr. The integral formf (0, �) over the parts of the
circle |s| = � between Re s = σl and Re s = σr is bounded since x �→ log |x|
is an integrable function around x = 0.
This shows that

Nf (0, �) =
wM

π
�+O(1),

as � → ∞. Finally, in view of (C.3) and (C.4), the statement for nf (0, �)
is a consequence of the following general calculus lemma, applied to the
functions n(t) := nf (0, t) and N(�) := Nf (0, �).

Lemma C.2. Let n(t) be a nondecreasing, nonnegative function on [0,∞)
for which there exists t0 > 0 such that n(t) = 0 for t ≤ t0. Let

N(�) =
∫ �

0

n(t)
dt

t

and suppose that there exist positive constants c and C such that

|N(�)− c�| ≤ C for all � > 0.

Then
|n(�)− c�| ≤

√
8Cc�

for all sufficiently large positive values of �.
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Proof. Consider a value of � for which n(�) > c�. For this value, we have

n(�) + C ≥ N(n(�)/c)

= N(�) +
∫ n(�)/c

�

n(t)
dt

t
≥ c�− C + n(�) log

n(�)
c�

.

Hence, writing x = n(�)
c� , we deduce that

2C ≥ c�− n(�) + n(�) log
n(�)
c�

= c� (1− x+ x log x) .

Consider now a value of � for which n(�) < c�. In the same way as above,
we find

c�− C ≤ N(�) = N(n(�)/c) +
∫ �

n(�)/c

n(t)
dt

t
≤ n(�) + C + n(�) log

c�

n(�)
.

Again, we deduce that c� (1− x+ x log x) ≤ 2C, with x = n(�)
c� .

The function

1− x+ x log x =
(x− 1)2

2
+O

(
(x− 1)3

)
(as x→ 1)

is nonnegative and vanishes at x = 1. It follows that for � sufficiently
large, x is close to 1. Around x = 1, this function takes values larger
than (x− 1)2/4. Hence for large positive �, (x−1)2 ≤ 8C

c� . This is equivalent
to |n(�)− c�| ≤ √8Cc�, as was to be proved.

Remark C.3. In Chapter 3, we define numbers dl and dr such that the
Dirichlet polynomial f(s) does not vanish for Re s < dl and Re s > dr (see
formula (3.17)). The numbers σl and σr defined above give weaker bounds,
because they are defined to satisfy the stronger property that |f(s)| (respec-
tively, |f(s)|r−s

M ) is bounded away from 0 by a fixed distance for Re s ≥ σr

(respectively, Re s ≤ σl).
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[Bré] H. Brézis, Analyse Fonctionnelle: Théorie et Applications,
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analytique des nombres, Ann. Inst. Fourier (Grenoble) 47
(1996), 429–484.

[Es2] D. Essouabri, Private communication, June 1996.



Bibliography 419

[EvPeVo] C. J. G. Evertsz, H.-O. Peitgen and R. F. Voss (eds.), Fractal
Geometry and Analysis: The Mandelbrot Festschrift, World
Scientific, Singapore, 1996.

[Fa1] K. J. Falconer, The Geometry of Fractal Sets, Cambridge
Univ. Press, Cambridge, 1985.

[Fa2] K. J. Falconer, Random fractals, Math. Proc. Cambridge Phi-
los. Soc. 100 (1986), 559–582.

[Fa3] K. J. Falconer, Fractal Geometry : Mathematical Foundations
and Applications, John Wiley & Sons, Chichester, 1990.

[Fa4] K. J. Falconer, On the Minkowski measurability of fractals,
Proc. Amer. Math. Soc. 123 (1995), 1115–1124.

[Fed1] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93
(1959), 418–491.

[Fed2] H. Federer, Geometric Measure Theory, Springer-Verlag, New
York, 1969.

[Fel] W. Feller, An Introduction to Probability Theory and its Ap-
plications, vol. II, John Wiley & Sons, New York, 1966.

[Fey] R. P. Feynman, Statistical Mechanics: A Set of Lectures, W.
A. Benjamin, New York, 1962.

[FlLeVa] J. Fleckinger, M. Levitin and D. Vassiliev, Heat equation on
the triadic von Koch snowflake, Proc. London Math. Soc. (3)
71 (1995), 372–396.

[FlVa] J. Fleckinger and D. Vassiliev, An example of a two-term
asymptotics for the “counting function” of a fractal drum,
Trans. Amer. Math. Soc. 337 (1993), 99–116.

[Fol] G. B. Folland, Real Analysis: Modern Techniques and Their
Applications, 2nd. ed., John Wiley & Sons, Boston, 1999.

[FouTuVa] J.-D. Fournier, G. Turchetti and S. Vaienti, Singularity spec-
trum of generalized energy integrals, Phys. Lett. A 140 (1989),
331–335.

[Fra1] M. Frantz, Minkowski measurability and lacunarity of self-
similar sets in R, preprint, December 2001.

[Fra2] M. Frantz, Lacunarity, Minkowski content, and self-similar
sets in R, in [Lap-vF10, Part 1, pp. 77–91].

[FreKie] E. Freitag and R. Kiehl, Etale Cohomology and the Weil Con-
jectures, Springer-Verlag, Berlin, 1988.

[Fu1] J. H. G. Fu, Tubular neighborhoods in Euclidean spaces, Duke
Math. J. 52 (1985), 1025–1046.

[Fu2] J. H. G. Fu, Curvature measures of subanalytic sets, Amer.
J. Math. 116 (1994), 819–880.



420 Bibliography

[FukSh] M. Fukushima and T. Shima, On a spectral analysis for the
Sierpinski gasket, Potential Analysis 1 (1992), 1–35.

[Gab] O. Gabber, Private communication, June 1997.

[Gat] D. Gatzouras, Lacunarity of self-similar and stochastically
self-similar sets, Trans. Amer. Math. Soc. 352 (2000), 1953–
1983.

[Gel] S. Gelbart, An elementary introduction to the Langlands pro-
gram, Bull. Amer. Math. Soc. (N. S.) 10 (1984), 177–219.

[Ger] J. Gerling, Untersuchungen zur Theorie von Weyl–Berry–
Lapidus, Graduate Thesis (Diplomarbeit), Dept. of Physics,
Universität Osnabrück, Germany, May 1992.

[GerSc1] J. Gerling and H.-J. Schmidt, Self-similar drums and gener-
alized Weierstrass functions, Physica A 191 (1992), 536–539.

[GerSc2] J. Gerling and H.-J. Schmidt, Three-term asymptotics of the
spectrum of self-similar fractal drums, J. Math. Sci. Univ.
Tokyo 6 (1999), 101–126.

[Gi] P. B. Gilkey, Invariance Theory, the Heat Equation, and the
Atiyah–Singer Index Theorem, 2nd ed., Publish or Perish,
Wilmington, 1984. (New rev. and enl. ed. in Studies in Ad-
vanced Mathematics, CRC Press, Boca Raton, 1995.)
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vol. 221, Birkhäuser, Boston, 2004.

[GriLap] C. A. Griffith and M. L. Lapidus, Computer graphics and the
eigenfunctions for the Koch snowflake drum, in [AndLap1,
pp. 95–109].
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fractales vibrantes et conjecture de Weyl–Berry modifiée, C.
R. Acad. Sci. Paris Sér. I Math. 313 (1991), 19–24.

[LapMa2] M. L. Lapidus and H. Maier, The Riemann hypothesis and
inverse spectral problems for fractal strings, J. London Math.
Soc. (2) 52 (1995), 15–34.

[LapNes1] M. L. Lapidus and R. Nest, Fractal membranes as the second
quantization of fractal strings, in preparation, 2006.

[LapNes2] M. L. Lapidus and R. Nest, Functional equations for zeta func-
tions associated with quasicrystals and fractal membranes, in
preparation, 2006.

[LapNes3] M. L. Lapidus and R. Nest, Quasicrystals, zeta functions, and
noncommutative geometry, in preparation, 2006.

[LapNes4] M. L. Lapidus and R. Nest, Towards a fractal cohomology
theory (tentative title), work in progress, 2006.

[LapNeuRnGri] M. L. Lapidus, J. W. Neuberger, R. J. Renka and C. A.
Griffith, Snowflake harmonics and computer graphics: Numer-
ical computation of spectra on fractal domains, Internat. J.
Bifurcation & Chaos 6 (1996), 1185–1210.

[LapPan] M. L. Lapidus and M. M. H. Pang, Eigenfunctions of the Koch
snowflake drum, Commun. Math. Phys. 172 (1995), 359–376.

[LapPe1] M. L. Lapidus and E. P. J. Pearse, A tube formula for the
Koch snowflake curve, with applications to complex dimen-
sions, J. London Math. Soc., in press. (Also: e-print, arXiv:
math-ph/0412029, 2005.)

[LapPe2] M. L. Lapidus and E. P. J. Pearse, Tube formulas and complex
dimensions of self-similar tilings, e-print, arXiv:math.DS/
0605527, 2006.

[LapPe3] M. L. Lapidus and E. P. J. Pearse, Tube formulas for the
generators of a self-similar tiling, preprint, 2006.

[LapPe4] M. L. Lapidus and E. P. J. Pearse, Fractal curvature measures
and local tube formulas (tentative title), in preparation.

[LapPo1] M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann
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bres, Izv. Mat. Nauk (Ser. Mat.) 36 (1972), 3–18; English
translation in: Math. USSR, Izv. 6 (1973), 1–17. (Reprinted
in [Wei7, vol. III, pp. 249–264].)
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