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PREFACE

teaching discrete mathematics. For the student, my purpose was fo present ma-

terial in a precise, readable manner, with the concepts and techniques of discrete
mathematics clearly presented and demonstrated, My goal was to show the relevance
and practicality of discrete mathematics to students, who are often skeptical. I wanted 1o
give students studying computer science al! the mathematical foundations they need for
their future studies; I wanted to give mathematics students an understanding of impor-
tant mathematical concepts together with a sense of why these concepts are important
for apphications. And 1 wanted to accomplish these goals without watering down the
material.

Far the instructor, my purpese was to design a flexible, comprehensive teaching tool
using proven pedagogical techniques in mathematics. I wanted to provide instructors
with a package of materials that they could use to teach discrete mathematics effectively
and efficiently in the most appropriate manner for their particular set of students. I hope
that I have achieved these goals,

I have been extremely gratified by the tremendous success of this text. The many im-
provements in the fourth edition have been made possible by the feedback and sugges-
tions of a large number of instructors and students at many of the more than 400 schools
where this book has been successfully used. There are many enhancements in this edi-
tion. The ancillary package has been enriched, and a companion Web site provides help-
ful material, making it easier for students and instructors to achieve their goals.

This text is designed for a one- or two-term introductory discrete mathematics
course 10 be taken by students in a wide variety of majors, including mathematics,
computer science, and engineering. College algebra is the only explicit prerequisite.

In writing this book, I was guided by my long-standing experience and interest in

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should leam a par-
ticular set of mathematical facts and how to apply them: more importantly, such a course
should teach students how to think mathematically. To achieve these goals. this text
stresses mathematical reasoning and the different ways problems are solved. Five impor-
tant themes are interwoven in this text: mathematical reasoning. combinatorial analysis,
discrete structures, algorithmic thinking, and applications and modeling. A successful
discrete mathematics course should carefully blend and balance al! five themes.

L. Mathematical Reasoning: Students must understand mathematical reasoning in
order to read, comprehend, and construct mathematical arguments. This text starts
with & discussion of mathematical logic, which serves as the foundation for the
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subsequent discussions of metheds of proof. The technique of mathematical in-
duction is stressed through many different types of examples of such proofs and a
careful explanation of why mathematical induction is a valid proof technique.

2. Combinatorial Analysis: An important problem-solving skill is the ability to count
or enumerate abjects. The discussion of enumeration in this book begins with the
basic techniques of counting, The stress is on performing combinatorial analysis
to solve counting problems, not on applying formulae,

3. Discrete Structures: A course in discrete mathematics should teach students how
to work with discrete structures, which are the abstract mathematical structeres
used to represent discrete objects and relationships between these objects. These
discrete structures include sets, permutations, relations, graphs, trees, and finite-
state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification
of an algorithm. After an algerithm has been described, a computer program can
be constructed implementing it. The mathematical portions of this activity, which
include the specification of the algorithm, the verification that it works properly,
and the analysis of the computer memory and time required to perform it, are all
covered in this text. Algorithms are described using botht English and an eastly
understood form of pseudocode.

3. Applicarions and Modeling: Discrete mathematics has applications to almost ev-
ery conceivable area of study. There are many applications to computer science
and data networking in this text, as well as applications to such diverse areas
as chemistry, botany. zoology, linguistics, geography, business, and the Internet.
These applications are matural and important uses of discrete mathematics and
are not contrived. Modeling with discrete mathematics is an extremely important
problem-solving skill, which students have the opportunity to develop by con-
structing their own models in some of the exercises in the book.

Why a Fourth Edition?

The third edition of this book has been used successfully at over 400 schools in the
United States, at dozens of Canadian universities, and at universities in Europe, Asia,
and Oceania. Many students and professors like the third edition as it is. Why then, do
we need a fourth edition? This is a valid question deserving a careful answer.

First, although the third edition has been extremely effective, many instructors have
asked for specific improvements. Many have wanted changes to the text, additional or
clarified examples, more exercises of a certain type, ot new topics covered. In this new
edition I have improved the book by taking into account the numerous suggestions I
have received. The changes I have made at the request of users make this a better text.

Second, discrete mathematics is an active subject. There are many new discoveries
made every year, and some of these can be reflected in a text. So, I have included dis-
coveries made aiter the publication of the third edition. (Subsequent discoveries will be
included in later printings of this edition whenever possible and noted on the companion
Weh site.}

Third, since the publication of the third edition, the Internet has become extraordi-
narily imporiant and useful. In this edition you will find examples and exercises relating
applications of discrete mathematics 10 the structure of the Internet itself. And with this
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edition there is an extensive Web site that supplements the text in meaningful ways,
offering additional material for students and instructors and providing a gateway for
learning miore about discrete mathematics by providing links to relevant sites on the
Web. However, since many people will choose not to use the Web in conjunction with
this course, the text includes icons indicating the inclusion of Web links in the annotated
Web Guide on the Web site for this book.

The following list highlights some of the changes in this edition that make the book

more effective.

NEW TOPIC COVERAGE

w Big-Omega and big-Theta notation are mow covered, in addition to big-O
rotation.

w New topics in probability theery include the variance of a randem variable and
Chebyshev’s inequality. Also, the Monty Hall three-door problem is now dis-
cussed in the text.

w The halting problem is now treated, incluthng a proof that it is unsolvable.

» The traveling salesman problem is discussed.

EXPANDED TOPIC COVERAGE

» Adilitional material on mathematical logic and mathematical reasoning has been
added. New examples show how to translate between quantified statements and
English. The discussion of rules of inference has been enhanced. In particular,
rules of inference for quantified statements are now explicitly covered, and ex-
amples illustrating how rules of inference are used have been added.

a Coverage of the floor and ceiling functions has been enhanced.

m Generating functions are now treated in a separate section in the main body of
the text, expanding the coverage previously found in the appendix. The focus of
diis section is to show how generating functions can be used to solve counting
problems, solve recarrence relations, and prove combinatorial identities.

» Nonhomogeneous linear recurrence relations with constant coefficients are now
discussed in the text, rather than in an exercise set.

» The topic of integer sequences has extended coverage; examples and exercises
involving idenafying possible formulas for the terms of a sequence from its initial
terms have been added.

s New biographies have been added, including those for Peirce, Chebyshey,
Knuth, Hardy, Ramanujan, Tukey, Sloane, and Mersenne,

UP-TO-DATE, MODERN EXAMPLES

» Examples have been added at some key potnts in the text to help explain im-
portant concepts that have proved troublesome to students and to make the book
more interesting.

» Examples and exercises illustrating the application of discrete mathematics to
the protocols and network architecture of the Internet have been added. These
additions include counting problems involving Internet addresses and Internet
Protocol packets; the topic of Boolean searching, used by Internet search engines;
and an example about how spanning trees are used in IP multicasting have been
added,
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» Material has been added 1o the text which demeonstrates that discreté mathematics
is an active subject with many open questions and with new discoveries. For
example, Mersenae primes are now covered, including the discoveries of new
primes in 1997 and 1998; the range for which the Goldbach conjecture has been
verified is discussed: and the variation of the Tower of Hanoi puzzle with four
pegs is described,

EXPANDED EXERCISE SETS

= More than 50 new exercises have been added, including both routine and chat-
lenging ones, as requested by instructors who used the third edition, as well as
exercises based on logical and mathematical puzzles. New blocks of exercises
develop key concepts in a series of steps. New exercises ensure that there are
both odd- and even-numbered exercises of important exercise types. There are
also more exercises that depend on the previous study of calculus; these are ex-
plicitly noted as vsval and can be easily avoided if so desired.

WEB SUPPORT

® A Web site has been developed to supplement the text for both students and
instructors. This Web site contatns a wide range of features (see page xix), in-
cluding an annotated Web Guide to relevant sites on the Internet, that is keyed
to the 1exi. This guide will be kept current and updated regularly during the life
of this edition.

wel " Ar icon has been placed at points in the text whenever the Web Guide includes
annotated links to Web sites pertinent to the matertal under discussion. (More
than 200 different links are in the guide.) These sites include additional in-
formation about concepts and applications, biographies, the latest discoveries,
downloadable source code, interactive applets, animated algorithms, and other
Interesting material,

Special Features

ACCESSIBILITY  This text has proven to be easily read and understood by be-
ginning students. There are no mathematical prerequisites beyond college algebra for
almest all of this text. The few places in the baok where calculus is referred 1o are ex-
plicitly noted. Most students should easily understand the pseudocode used in the text
to express algorithms, regardless of whether they have formally studied programming
languages. There is no formal computer science prerequisite,

Each chapter begins at an easily understood and accessible level. Once basic math-
ematical concepts have been carefully developed, more difficult material and applica-
tions 1o other areas of study are presented,

FLEXIBILITY This text has been carefully designed for flexible use. The depen-
dence of chapters on previous material has been minimized. Each chapter is divided
into sections of approximately the same length, and each section is divided into subsec-
tions that form natral blocks of material for teaching. Instructors can easily pace their
lectures using these blocks.
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WRITING STYLE The writing style in this book is direct and pragmatic. Precise
mathematical language is used without excessive formalism and abstraction. Notation
is introduced and used when appropriate. Care has been taken to balance the mix of
notation and words in mathernatical statements.

EXTENSIYE CLASSROOM USE  This book has been used at over 400 schools,
and more than 325 have used it more than once. The feedback from Instructors and stu-
dents at marty of the schools has helped make the fourth edition an even more successful

teaching tool than previous editions.

MATHEMATICAL RIGOR AND PRECISION  All definitions and theorems in
this text are stated extremely carefully so that students will appreciate the precision of
language and rigor needed in mathematics. Proofs are motivated and developed slowly;
their steps are all carefully justified. Recursive definitions are explained and used

extensively.

FIGURES AND TABLES  This text contains more than 550 figures. The figures are
designed to illustrate key concepts and steps of proofs. Color has been carefully used
in figures to illustrate important points, Whenever possible, tables have been used to
summarize key points and illuminate quantitative relationships.

WORKED EXAMPLES  Over 650 cxamples are used to illustrate concepts, relate
different topics, and introduce applications. In the examples, a question is first posed,
then its sclution is presented with the appropriate amount of detail.

APPLICATIONS  The applications included in this text demonstrate the utility of
discrete mathematics in the solution of real-world problems. This text includes appli-
cations 1o a wide variety of areas, including computer science, data networking, psy-
chotogy, chemistry, engineering, linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of
algorithms; hence, key algorithms are introduced in each chapter of the book. These
algorithms are expressed in words and in an easily understood form of structured pseu-
docode, which is described and specified in Appendix A.2. The computational com-
plexity of the algorithms in the text is also analyzed at an elementary level.

HISTORICAL INFORMATION  The background of many topics is succinctly de-
scribed in the text. Brief biographies of more than 55 mathematicians and computer
scientists are included as footnotes. These biographies include information about the
lives, careers, and accomplishments of these important contributors to discrete rath-
ematics. In addition, numerous historical footnotes are included that supplement the
historical information in the main body of the text.

KEY TERMS AND RESULTS A list of key Lerms and results follows each chapter.
The key terms include only the most impontant that students should learn, not every
term defined in the chapter.

EXERCISES  There are over 3000 cxercises in the text. There are many different
types of questions posed. There is an ample supply of straightforward exercises that
develop basic skills, a large number of intermediate exercises, and many challenging
exercises. Exercises are stated clearly and unambiguously, and all are carefully graded
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for level of difficulty. Exercise sets contain special discussions, with exercises, that
develop new concepis not covered in the text, permitting students to discover new ideas

through their own work.
Exercises that are somewhat more difficult than average are marked with a single

star; those that are much more challenging are marked with two stars. Exercises whose
solutions require calculus are explicitly noted. Exercises that develop results used in tha
text are clearly identified with the symbol ewr. Answers or outlined solutions to all odd-
numbered exercises are provided at the back of the text. The solutions include proofs
in which most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each
chapter. These questions are designed 1o help students focus their study on the most
important concepts and techniques of that chapter. To answer these questions students
need to write long answers, rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and
varied set of supplementary exercises. These exercises are generally more difficult than
those in the exercise sets following the sectiens, The supplementary exercises reinforce
the concepts of the chapter and integrate different topics more effectively.

COMPUTER PROJECTS  Each chapter is followed by a set of computer projects.
The approximately 150 computer projects tie together what students may have leamed
in computing and in discrete mathematics. Computer projects that are more difficult
than average, from both a mathematical and a programming point of view, are marked
with a star, and those that are extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of compututions and explo-
rations is included at the conclusion of each chapter. These exercises (approximately
100 in total) are designed to be completed using existing software tools, such as pro-
grams that students or instructors have written or mathematical computation packages
such as MAPLE or Mathematica. Many of these exercises give students the opportu-
nity to uncover new facts and ideas through computation. (Some of these exercises are
discussed in the companion volume, Exploring Discrete Mathematics with MAPLE.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To
do these projects students need te consult the mathematical literature. Some of these
projects are historical in nature and may involve looking up original sources. Others
are designed to serve as gateways to new topics and ideas. All are designed to expose
students to ideas not covered in depth in the text. These projects tie together mathe-
matical concepts and the writing process and help expose students to possible areas
for future study. (Suggested references for these projects can be found in the Student
Solutions Guide,)

APPENDIXES There are two appendixes 1o the text. The first covers exponential
and logarithmic functions, reviewing some basic material used heavily in the conrse;
the second specifies the psendocode used to describe algorithms in this text.

SUGGESTED READING A list of suggested readings for each chapter is provided
in a section at the end of the text. These suggested readings include books at or below
the level of this text, more difficult books, expository articles, and articles in which
discoveries in discrete mathematics were originally published.
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How To Use This Book

This text has been carefully written and constructed to support discrete mathematics
courses at several levels and with differing foci. The following table identifies the core
and optional sections. An introductory one-term course in discrete mathematics at the
sophomore level can be based on the core sections of the text, with other sections cov-
ered at the discretion of the instructor, A two-term introductory course could include
all the optional mathematics sections in addition to the cote sections. A course with a
strung computer science emphasis can be taught by covering some or all of the optional
computer science sections.

Optional Computer Oplioral Mathematics

Chapter Core Sections Science Sections Sections

1 1.1-1.8 (as needed)

2 2.1-2.3, 2.6 (as needed) 2.4 2.5

3 3133 34,35

4 4,1-44 47 45,46

5 51,55 5.3 3.2,54,56

6 6.1,6.3, 65 6.2 64,66

7 71-7.5 7.6-78

3 3.1 8.2-84 g5 8.6

9 9.1-94
10 16.1-10.5

Instructors using this book can adjust the level of difficulty of their course by either
choostrig (o cover or to omit the more challenging examples at the end of sections, as
well as the more challenging exercises. The dependence of chapters on earlier chapters
is shown in the following chart.

Chapter |

|

Chapter 2

|

Chapter 3

|

Chapter 4

e | T

Chapter 5 Chapter 6 Chapter 7 Chapter 9 Chapter 10

Chapter 8
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Ancillaries

STUDENT SOLUTIONS GUIDE This student manual, available separately, con-
tains fiefl solutions to alk the odd-numbered problems in the exercise sets. These solu-
tions explain why a particular method is used and why it works. For some exercises, one
o1 two other possible approaches are described to show that a problem can be solved in
several different ways. Suggested references for the writing projects found at the end
of each chapter are also included in this volume. The guide contains a guide to writing
proofs and a list of common mistakes students make in discrete mathematics. It also
includes sample tests and a sample crib shieet for each chapter, both designed to help
students prepare for exams. Students find this guide extremely useful.

INSTRUCTOR’S RESOURCE GUIDE This manual centains full solutions to
even-numbered exercises in the text. It also provides suggestions on how to teach the
material in each chapter of the book, including the points to stress in each section and
how to put the material into perspective. Furthermore, the manual contains a test bank
of sample examination questions for each chapter, including some sample tests as well
as the solutions 1o the sample questions. Finally, sample syllabi are presented.

APPLICATIONS OF DISCRETE MATHEMATICS This ancillary is a separate
text that can be used either in conjunction with the text or independently, It contains
mere than 20 chapters (each with its own set of exercises) written by instructors who
have used the text. Follewing a common format similar te that of the text, the chapters
in this book can be used as a text for a separate course, for a student seminar, or for
a student doing independent study. Subsequent editions of this ancillary are planned
that will broaden the range of applications covered. Instructors are invited to submit
additional applications for possible inclusion in later versions.

TEST BANK  An extensive test bank of more than 1300 questions is available for use
oneither Windows or Macintosh systems. Instructors can use this software to create their
own tests by selechng questions of their choice or by random selection. Instructors can
add their own headings and instructions, print scrambled versions of the same test, and
edit the existing questions or add their own. A printed version of this test bank, including
the questions and their answers, is included in the Instructor’s Resource Guide.

EXPLORING DISCRETE MATHEMATICS AND IS APPLICATIONS WITH
MAPLE This ancillary is a separate book designed to help students use the MAPLE
computer algebra system to do a wide range of computations in discrete mathematics.
For each chapter of this text, this new ancillary includes the following: a description
of relevant MAPLE functions and how they are used, MAPLE programs that carry out
relevant computations, suggestions and examples showing how MAPLE can be used
for the computaitons and explorations at the end of each chapter, and exercises that can
be worked using MAPLE.
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THE COMPANION
WEB SITE

n extensive companion Web site has been developed and will be main-
tained and improved on a continuing basis. The URL for this site is
htip:/fwww.mhhe.com/rosen. Fellowing this URL takes you to a page that

provides access to five different sections of the Web site:

n About the Book

» [ostructor Resources

o Student Resources

= Web Guide for Discrete Mathemancs
= Supplementary Resources

Each section will be in place with the publication of this new edition, although addi-
tional material will be added lazer.

The About the Book section includes basic information about the textbook and its
ancillaries. 1t also contains an errata list and an e-mail address for the submission of
errata and suggestions.

The Instructor Resources section is a secure portion of the Web site. It contains
valuable toots and resources to supplement beth the text and the discrete mathematics
teaching experience.

The Student Resowrces section contains helpful reference and supplemental mate-
rial to enhance students’ learning experience.

The Web Guide for Discrete Mathematics section includes annotated links to rel-
evant Web sites anchored to the Web icons in the text. {Links are included wherever
the icon is found.} The links in this guide can be used to access sites that provide bi-
ographies, additional material on topics covered in the text, information on the Jatest
discoveries. animated algorithms. downloadable source code, and so on.

The Supplementary Resources section, intended for use by both students and 1n-
structors, includes supplementary educational material. orgunized by chapter. This ma-
terial is designed to clarify and expand on material in the text.

XIX



TO THE STUDENT

hat is discrete mathematics? Discrete mathematics is the part of mathemat-
ics devoted to the study of discrete objects. (Here discrefe means consisting
of distinct or unconnected elements.) The kind of problems solved using

discrete mathematics include:
= How many ways are there to choose a valid password on a computer system?
= What is the probability of winning a lottery?
w [s there a link between two computers in 2 network?
» What s the shortest path between twe cities using a transportation system?
= How can a list of integers be sorted so that the integers are in increasing order?
» How many steps are required to do such a sorting?
w How can a circuit that adds two integers be designed?
= How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as
these.

More generally, discrete mathematics is used whenever objects are counted, when
relationships between finite (or countable) sets are studied, and when processes involv-
ing a finite number of steps are analyzed. A key reason for the growth in the importance
of discrete mathematics is that information is stored and manipulated by computing ma-
chings in a discrete fashion.

There are several important reasons for studying discrete mathematics. First,
through this course you can develop your mathematical maturity, that is, your ability
1o understand and create mathematical arguments. You will not get very far in your
studies in the mathematical sciences without these skiils.

Second, discrete mathematics is the gateway to more advanced courses in all
parts of the mathematical sciences. Discrete mathematics provides the mathematical
foundations for many computer science courses, including data structures, algorithms,
database theory, automata theory, formal languages, compiler theory, computer secu-
rity, and operating systems. Students find these courses much more difficult when they
have not had the appropriate mathematical foundatiens from discrete math. One student
has sent me an electronic mail message to tell me that she used the contents of this
hook in every computer science course she took!

Math courses hased on the material studied in discrete mathematics inctude logic,
set theory, number theory, linear algebra, abstract algebra, combinatorics, graph theory,
and probability theory (the discrete part of the subject).

Also, discrete mathematics contains the mecessary mathematical background
for solving problems in operations research (including many discrete optimization
techniques), chemistry, engineering, biology, and so on. In the text, we will study

applications to some of these areas.
XXi
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T(O THE STUDENT

1would like to offer some helpful advice to students about how best to fearn discrete
mathematics. You will learn the most by working exercises. I suggest you do as many as
you possibly can, including both the exercises at the end of each section of the text and
the supplementary exercises at the end of each chapter. Always wy exercises yourself
before consalting the answers at the end of the book or in the Studeni Solutions Guide.
Only after you have put together a solution, or you find yourself at an impasse, shouid
you lock up the suggested solution. At that point you will find the discussions in the
Student Solurions Guide most helpful. When doing exercises, remember that the more
difficult ones are marked as described in the following table.

Key to the Exercises

No marking A routine exercise

* A difficult exercise

% An extremely challenging exercisc
" An exercise confaining a result used

in the book

{Calculus required) | An exercise whose solution requires
the use of limits or concepts from
differential or integral calculus

Finally, I encourage you to explore discrete mathematics beyond what you see in
the book. An excellent starting place is the Web Guide for Discrete Mathematics that
can be found on the Web site for this book. The URL is http://www.mhhe.com/rosen.

Kenneth H. Rosen
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The Foundations: Logic,

e

[Logic

Sets, and Functions

his chapter reviews the foundations of discrete mathematics. Three important

topics are covered: logic. sets, and functions. The rules of logic specify the

precise meaning of mathematical statements. For instance, the rules give us the
meaning of such statements as, “There exists an integer that is greater than 100 that is
apower of 2,” and, “For every integer  the sum of the positive integers not exceeding
nisale + 1)/27 Logic is the basis of all mathernatical reasoning. and it has practical
applications to the design of compunng machines, 1o artificial intelligence, to computer
prograinuairg. (o programming languages, and to pther areas of compuler science

Much of discrete mathematics is devoted to the ~tudy of discrete structures, which
are used to represent discrete objects. All discrete structures are built up from sets,
which are collections of objects. Examples of discrete structiires built up from sets
inciude combinations. which are unordered collections of objects used extensively in
counting; relations. which are sets of ordered pairs that represent relationships between
objects: graphs. which are sets of vertices and edges that connect vertices; and tinite
state machines. which are used to model computing machines.

The concept of a function s extremely important in discrete mathematics. A func-
tion assigns ta each element of a set precisely one element of & set. Such useful struc-
tures us sequences and strings are special types of functions. Functions are used to
represent the number of steps a procedure uses to solve a problem. The analysis of al-
porithms uses terminology ang concepts related to the growth of functions. Recursive
lunctions, defined by specifying their values at positive integers in terms of their values
at smaller positive integers, are used (o solve many counting problems.

INTRODUCTION

The rules of logic give precise meaning to mathematical statements. These rules are
used to distinguish between valid and invalid mathematical arguments. Since a major
goal of this book is to teach the reader how to understand and how to construct correct
mathematical arpuments, we begin our study of discrete mathematics with an introduc-
fwon 1o logic.

in addition to its importance in understanding mathematical reasoming, logic has
numerous applications in computer science. These rules are used in the design of com-
puter circuits. the construction of computer programs, the verification of the correctness
of programs, and in many other ways. We will discuss each of these applications in the
following chapters.
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EAAMPLE 1

EXAMPLE 2

webd

PROPOSITIONS

Our discussion begins with an introduction to the basic building blocks of logic—
propositions. A proposition is a statfement that is either true or false, but not both,

All the foliowing statements are propositions.

1. Washington, D.C., is the capital of the United States of America.
. Toronto 1s the capital of Canada,

31-1=2,

4 2+2 =13,

[R]

Propositions 1 and 3 are true. witereas 2 and 4 are falsc. 5

Sote sentences that are not propositions are given in the next example.

Consider the following sentences,

{. What time is it?
2. Read this carctully.
I x+1 =2

4 x+y =1z

Sentences | and 2 4re not propositions beczuse they are not statements. Sentences 3
and 4 are not propositions because they are neither true nor false, since the variables in
these sentences have not been assigned values. Various ways to form propositions from
sentences of this type will be discussed in Section 1.3, |

Letters are used fo denote propositions, just as letters are used 1o denote variables.
The conventional letters used for this purpose are p, g, r.s,. ... The truth value of a
proposition is true, denoted by T, if it is a true proposition and false, denoted by F, if it
15 a false proposition.

We now m our attention to methods for producing new propositions from those
that we already have. These methods were discussed by the English mathematician
(reorge Boole in 1854 in his book The Laws of Thought. Many mathematical statements
are constructed by combining one of more propositions. New propositions, called com-
pound propesitions, are formed from existing propositions vsing logical operators.

DEFINITIOR 1. Let p be a proposition. The statement
“It 15 not the case that p.”

is another proposttion, called the negation of p. The negation of p is denoted by - p.
The proposition -1 p is read “not p.”
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Find the negation of the propositiun
“Today is Friday™

and express this in simple English.

Solution: The negation is
“It is not the case that today is Friday.”
This negation can be more simply expressed by

*Today is not Friday.” |

Remark: Strictly speaking, sentences involving variable times such as those in Exam-
ple 3 are not propositions unless a fixed time is assumed. The same holds for vanable
places unless a fixed place is assumed and for pronouns unless a particular person is

assumed.

A truth table displays the relationships between the truth values of propositions.
Truth tables are especially valuable in the determination of the truth values of proposi-
tions constructed from simpler propositions. Table 1 displays all possible truth values
of a propesition and the corresponding truth values of its negation.

The negation of a proposition can aiso be considered the result of the operation of
the negation operator on a proposition. The negation operator constructs a new propo-
sition from a single existing proposition. We will now introduce the logical operators
that are used 10 form new propositions from two ot more existing propositions. These
logical operators are also calied connectives,

TABIE 1 The Truth Table
for the Negation of 3 Proposition.

P | -p
T F
F ' : .

Greorge Boole (181518641, George Boele. the son of a cobbler, was born m Lincoeln. England, in Novem-
ber 1815 Because of his Farnily's difficult financial stuanon, Boole had to struggle to educate himself while
supporting his family. Nevertheless, he buecame one of the nost impartant mathematicians of the 18005 Al-
though he considered a career as a clerpyman, he decided mstead to go into teaching and soon afterward
opened a school of his own. [t his preparation for teachimg mathematics, Boole---unsatisfied with textbooks
ot hus day—decided to read the works of the great mathematicians. While reading papers of the great French
mathematician Lagrange, Boole made discoveries in the calculus of variations, the branch of anaiysis deal-
ing with finding curves and surfaces optimising certain parameters.

In 1848 Boole published The Markemarical Anafvsis of Logic, the first of his contribunons [ symbohe
logic In 1849 he was appointed professor of mathematics ar Queen’s College in Cork, Irefand. In 1854 he
published The Lawy of Thoughe, his most famous work, In this book Boole ntroduced what is now called
Boolean algebre in his hunor. Boole wote textbooks on differential equations and on difference equations
that were used in Great Britain unlil the end of the mneteenth century, Boole married 1n 1835 his wife
was the niece of the professor of Greek at Queen’s College Tn 1864 Roole died from pneumania, which he
contracted as a result of keepng a lecture engagenent even though he was soaking wet from a rainstorm
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EXAMPLE 4

DEFINITION 2.  Let p and g be propositions. The ropoxition “p andyy” démioted
by p Mg, is the proposition that is oue when both pand g are troe'aid is false
otherwise. The proposition p /\ g is called the conjunction of p and g.

The truth table for p A ¢ is shown m Table 2. Note that there are four cows in this
truth table. one vow for each possible combinatuon of trath values for the propositions p
and 4.

Find the comjunction of the propesittons p and g where p is the proposttion “Today s
Friday™ and ¢ is the proposttion "It is rainimg today.”

Solutior: The conjunction of these propositions. p / g. is the proposition “Today i
Friday and 1t is raining today.” This proposition is true on rainy Fridavs and is Talse on
any day thai s not a Friday and on Fridas = when 1t docs not rain. |

DEFINTTION 3. Letp and g be propositions. The propesition “p or ¢,” denoted
by p\/q, is the proposition thet is false when p and ¢'are both false and true otherwise,
The propasition p\/ ¢ is called the disjunction of p and g.

The truth tabie for p/ ¢ is shown iu Table 3,

The use of the conncctive or in a disjunction cotresponds to vne of the two wavs the
word or 1s used in English. namely. in an inclusive way. A disjunction is true when either
of the two propositions in it is true or when both arc irue. Fur instance. the inclusive or
15 bemng used i the staternent

“Students who have taken calculus or compuier science can take this class ™
tlere, we mean that students who have taken both caleulus and computer science can

tuke the ciass, as well as the students who have taken just one of the two subjects. On
the other hand, we are using the exclusive or when we say

“Students wha have laken cakeulus or computer science, but not both, can enroll
in this class.”

Here, we mean that students who have tahen hoth calenlus and a computer science
course cannol take the class. Only those who have taken exactly one of the two courses
can take the class.

TABLE 2 The Truth TABLLE3 The Truth
Table for the Conjusction Table for the Disjunction
af Two Propositions. of Two Propositions.

P phg P g Py g

: |

T T | T T r !

T F F T F ¢ T

F 1T | F F T T

FOT I F FE | F
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Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,”
the restaurant aimost always means that customers can have either soup or salad, but
not both. Hence. this i an cxclusive, rather than an inclusive, or.

What is the disjunction of the propositions p and g where p and ¢ are the same prope-
sttiens as in Example 47

Sodution: The disjunction of pand ¢, p , g, is the proposition
“Hoday 1s Friday or it is raining today.”

This proposition 1s true on any day that is exther a Friday or a rainy day (including rainy
Fridays). It is only talse on days that are not Fridays when it also does not rain. n

As was previously remarked. the use of the connective or in a disjunclion corre-
sponds to one of the two ways the word or is used in English, namely, in an inclusive
way. Thus, a disjunction is true when either of the two propositions in it is true or when
both are true. Sometimes. we use or In an exciusive sense. When the exclusive or is
used to connect the proposittons p and ¢. the proposition “p or g (but not bothi™ is ob-
lained. This proposilion is true when p 1s tre and g 1s false, or vice versa, and itis false
when both p and g arc talse and when both are true.

DEFINITION4, Let p and g be propositions. The exclusive or of p and g, denoted
by p € g, 15 the proposition that is true when exactly one of p and g is true and is
false otherwise.

The truth table for the exclusive or of two propositions is displaved in Table 4.

We will discuss several other important ways that propositions may be combined.

DEFINITIONS,  Let p and ¢ be propositions. The implication p — gis the propo-
sition that is false when p is true and ¢ is false and true otherwise, In this implication
p is called the kypothesis (or antecedent ot premise) and g is called the conclusion
(or consequence).

The truth table for the implication p — g is shown in "Table 5.

YABLE 4  The Truth Table TARLE 5 The Truth
for the Exclusive Or of Two Table for the Impli-
Propositions. cation p — g.

roq r&y 7oq P4

|

| |
- |

|

Mo
S
= 4T
T =™

1
F
T
T

v
T = =

|
|
|
|
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EXAMPLE 6

Because implications arise in many places tn mathematical reasoning, 2 wide va-
ricty of terminelogy is used to express p — g. Some of the more common ways of
expressing this implication are:

® “if p, then ¢” = “pis sufficient for ¢
s “pimplies¢” W “gif p”

® i p, g7 ® “g whenever p"

® “poniy if ¢” ® “gis necessary for p.”

Note that p — ¢ is false only in the case that p is true but ¢ is false, so that it is
true when both p and g are true, and when p is false (no matter what truth value ¢ has).

A ugeful way to remember that an implication is true when its hypothesis is false
18 1o think of a contract or an obligation. If the condition specified by such a statement
is false, no obligation is in force. For example, the statement “If you make more than
$25,000. then you must file a tax return” says nothing about someone tmaking less than
$25,000. You violate the obligation only if you make more than $25,000 and do not file
areturn. Simifarly, the statement “If a player hits more than 60 home runs, then a bonus
of $10 million is awarded™ in the contract of a baseball player is violated only when the
player hits more than 60 home runs, but the bonus is not awarded. This says nothing if
the player hits fewer than 60 home mns.

The way we have defined implications is more general than the meaning attached
to implications in the English language. For instance, the implication

“If it is sunny today, then we will go 1o the beach.”

is an implication used in normal laniguage, since there is 2 relationship between the
hypothesis and the conclusion. Further, this implication is considered valid unless it is
tndeed sunny today, but we do not go to the beach. On the other hand, the implication

“If today is Fnday, then2 + 3 = 5.7

1 true from the definition of implication, since its corclusion is true. (The truth value
of the hypothesis does not mateer then.) The implication

“Uf today is Friday, then 2 + 3 = 8.7

is truc every day except Friday, even though 2 + 3 = 6is false.

We would not use these fast two implications in natura! language. since there (s no
relationship between the hypothesis and the cenrclusion in either implication. In math-
ernatical reasoning we consider implications of a more general sort than we use in En-
glish. The mathematical concept of an implication is independent of a cause-and-effect
relationship between hypothesis and conclusion. Our definition of an implication spec-
ifies its truth values; it is not based on English usage.

The if-then construction used in many programining languages is different from
that used in logic. Most programming lunguages contain statements such as if p then
S. where p 1s a proposition and § is a program segment (one or more statements 1o he
cxecuted), When execution of a program encounters such a statement, S is cxecuted if
P 18 true, but S is not executed if p is false, as illustrated in the following example

Whut is the value of the variable x aflter the statement
f2+2 =4d4thenx:= v+ |

if x = 0 before this siatement is encountered? (The symbol . = stands for assi gnment.
The statement x := x + | means the assignment of the value of x + { to x)
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Solution: Since 2 + 2 = 4 is true, the assignment statement x ;= x + | is executed.
Hence, x has the value 0 + 1 = 1 after this statement is encountered. | |

We can build up compound propositions using the negation operator and the differ-
ent connectives defined so far. Parentheses are used to speeify the order in which the
various logical operators in a compound proposition are applied. In particular, the logi-
cal operators in the innermost parentheses are applied first. For instance, (p\/g) /" (—r)
is the conjuncticn of p/ g and —r. To cut down on the number of parentheses needed,
we specify that the negation operator is applied before all other logical operators. This
means that - p /A g is the conjunction of — p and g, namely (- p) /\ . not the negation
of the conjunction of p and g, namely -(p /A g).

There are some related implications that can be formed frem p — g. The propo-
sition ¢ — p is called the converse of p — ¢. The contrapesitive of p - g 1s the
proposition g — —p.

Find the converse and the contrapositive of the implication

“If today 1s Thursday, then [ have a test today.”

Solution: The converse is
“If 1 have a test today, then today is Thursday.”
And the contrapositive of this implication is
“If 1 do not have a test today, then today is not Thursday.” [ ]

We now introduce another way te combine propositions.

DEFINITION 6. Let p and g be propositions. The biconditional p <> g is the
propesition that is true when p and 4 have the same truth values and is false other-
wise.

The truth table for p < g is shown in Table 6. Note that the bicenditional p — ¢ ix
true preciseiy when both the implications p =~ g and ¢ — p are true. Because of this,
the terminojogy

“pif and only if 7

15 used for this biconditional. Other common ways of expressing the proposition p « ¢
are: "7 is necessary and sufficient for ¢ and “if p then g, and conversely.”

TABLE 6 The Truth Table for
the Biconditional p < g.

P g Pg
T T T
T F F
F T F
F F LT
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TRANSLATING ENGLISH SENTENCES

Miere are many casons e translawe English sentences mito capressions mvolvizyg propo-
stional vaniables and logical cornectives. In particular, English {ang every other human
language} is often ambiguous. Translating sentences into logical expressions removes
the ambiguity. Note that this may invo[ve making a set of reasonable a.sumptions based
on the intended meaning of the senlence. Moreover. once we have translaied sentences
from English inte logical expressions we can analyze these logical expressions te de
rermine their truth valves, we can manipuiate them, and we can use ioles of inference
twhich are discussed in Chapter 3) to reason abour them.

To Hlustrate the process of translaning an Eaglish sentence into a togical expression.
copsider the following examples

How cun the following Enghish sentence be translated into @ fogical expression”

“Yui can access the Internet from carspus only I you dre o computer scice
najur or you are pot a freshinan,”

Sedagion: There are roany ways w translate this sentence inte a logical expressiva,
Although 1f is pussible to represent the sentence by a single propositional variable. such
as o tins would not be useful when analvzing its meaning or reasoning with it lnstead,
we wHl use propesitional vanables 1o represent cach semenee part and determing she
appropriate logical conpectives between them. In partivuiar v e leta, ¢, and § represent

You can aceess the Internet from campus.” " You are a compuier scicnce major. and
“You are # freshman,” respectively. Notng that “only ¢ s one way an implicatien can
be gxpressed. this sentence can be epresented as

e A 1

How can the foilowing English sentence be translated inio a fogical eapression”?

“You cannot nde the roller coaster it you are under 4 fesi tall unless you are
vlder thar 16 yeurs old.”

Sedunon; There ate many ways W wansiate this sentence into a logical expression. The
simiplest but least useful way is simply to represent the sentence by a single propoesi-
tindni variable, sav. po Although this is not wrong. doing this would not assist us wheg
we Ly 1o dnalyze ihe senlence or Teason using it More appropriately. what we van de
Iv Ly e propositional vanables 1 represent cach of the seatence parts and to decide
nn the appropuiate Ingical connectives butween them. In particular, we et ¢, 7. 4nd
represent “You can ride the roller coaster,” *You are under 4 feet tall,” ang “You me
older than 16 years old,” respectively, Then the sentence can be ranslated to

(P =4 — =y

OF cuurse. there are other ways lo represent the original sentence as a Jogical ex-
pression, but the one we have wsed should meet our needs. [ ]

BOOLEAN SEARCHES

Logical connectives are used extensively in searches of large coliections of inforni-
tom, such as indexex of Web pages. Because these searches employ technigues from
propasitional jogic. they are called Beolean searches.



EXAMPLE 10

web

L1 Logic @

[n Boolean searches, the conaective AN} is nsed o match records that contarn
both of two search terms, the connective OR 15 used o match coe or both of twe search
terms, and the connective NOT |sometimes written as AN NOT) s used to exclude a
particuiar search term. Careful planning of how logical connectives are used is often
required when Boolean searches are used to locate information of potential interest. The
following example ilustrates how Boolean scarches are curmied out,

Web Page Searching Most Web search engines supporl Boolean searchmg tech-
rigues. which usually can help find Web pages about particular subjects. For instance.
using Boolean searching to fing Web pages about aniversities 1n New Mexico, we can
took tor pages matching NEW AND MEXICO AND UNIVERSITIES. The resalts of
thiy search will include those pages that contain the three wards NEW, MEXIC{, and
UNIVERSITIES. This will include all of the pages of inferest, together with others
such as a page about new universities tn Mexico. Next, o find pages that deal with
universities i New Mexico or Aricona, we can search for pages mutching (NEW AND
MEXICO OR ARIZONA)Y AND UNIVERSITIES. {Note: Rere the AND operator takes
precedence over the OR operator) The resubis of this search will include ali pages
that contain the word UNIVERS!ITIES and either hoth the words NEW and MEXIUOG
or the word ARIZONA. Again, pages besides these of interest will be listed. Finallv,
to find Web pages that deal with umiversities m Mexico (and not New Mexieo, we
might first jook for pages matching MEXICO AND UNIVERSITIES. but since the
results of this search will include pages about universiries in New Mexico. as well as
universities in Mexico. it might be bauter o search for pages matching (MEXICQ AAD
UNIVERSITIES ) NOT NEW. The results of this search include pages that contain hath
the words MEXIC(} and UNIVEFRSTTIES but do not contain the word NEW. |

LOGIC AND BIT OPERATIONS

Computers represent information using bits, A bit has two possible values, namwely. O
{zero)and 1 (one). This meaning of (he word bit comes from binary digit, simee zeros and
ones are the digits used 1n binary representations of numbets, The well-known statisu-
cian John Tukey introduced this terminclogy in 1946, A bit can be used to represent a
truth value, since there are two truth valoes, namely, true and false. As is customartly
done, we will use a 1 bit to represent true and a 0 bit to represem false. That is. 1 rep-
resents T (true), G represents F (false). A vanable is called a Boolean variahe if it
value 1s either true or false. Consequently, a Boolean variable can be represented using
a bt.

Computer bit operations correspond tu the logical counectives. By replacing true
by a one and false by a sere in the muth tables for the aperators /.y, and &3, the tables
shown in Table 7 for the corresponding bit operations are obtained. We will also use
the notation OR, AND, and XOR for the operators »,', ™. and . as 18 done in varous
programming languages.

Information is often represented using bil striags, which are sequences of zeros
and ones. When this 1§ done, operations on the bit strings can be used to manipulate
this information.

DEFINITION 7. A bit siring is a sequence of zero or more bits. The length of this
siring is the number of bits in the string.
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1O10LO01 [ 1s a bit string of length aing, [ |

We can extend bitoperations to bit strings. We define the bitwise OR, bitwise AND,
and bitwise XOR of two strings of the same length 1o be the strings that have as their bits
the OR, AND, and XOR of the corresponding bits in the 1wo strings, respectively. We
use the symbols . A, and & o represent the bilwise OR, biiwise AND, and bitwise
XOK operations, respectively. We illustrate bitwise operations on bit strings with the
following example.

Find the bitwise OR, bitwise AND, and bitwise XOK of the bit strings 01 1011 0110
and 11 0001 1101, (Here, and throughout this book, bit strings will be split inte blocks
of tour bits 1 make them easier to read s

Solution: The bitwise OR. britwise AND, and bitwise XOR of these strings are obtained
by taking the OR, AND, and XOR of the corresponding bits, respectively. This gives us

Hitorical Note: There were soveral other wuggested words for a binary digit. including binir and bigrr,
that never wete widely secepted. The adoption of the word b2t may e doe w0 its meaning as 4 commen
English word For an aceount of Tukey's cormnyg of the word bit, sce the April 1984 1ssuc of Annals of the
Huistory of Compuiing,

John Wilder Tukey iborn 19151 Tukey. bomn in New Bedford, Massachusells, was an only child. His
parents, both wachers. decided bume sehooling would best develop s potential. His Formal education
began at Brown Liinversily, where he stodied mathematics and chemistry. He received @ master”s degree
i chemustry fram Brewn and continued his studies at Ponceton Universiiy, changing hus field of swdy
frwm chemistey to matbematos. He recerved fus P D trom Princetont m 1939 for work in topalogy. when
he was apporated an anstructor y maihiematics ar Princeton. With the start of Warld Wa 11, he joined the
Fire Cantrol Research Office, where he began working in statistucs Tukey found statistical research t his
Lhing and mmpressed several leading statisucians with bis skills. In 1945, at die conclusion of the war,
Tukey returned 40 the mathemanes department at Princeton as a protessor of statistics, and he also took 4
position at AT&T Bell Laboratoncs. Tukey founded the Statistics Department at Princeton m 1966 and was
s first churmian, Tukey made significant contibutions to many acess of statistics, 1nelding the arralyss
of varjanee, the esamation of specira of time series, inferences about the values of 4 set ot parameters from
4 single experiment, and the philosephy of stubistics. However, he is best haown for his invention, with }
¥ Coodey, of the fast Fouder truosform,

Tukey vontributed Iyis insight and expertise by serving on the President’s Seience Advisory Commat-
fee He chared severad importani conuinitees deahng with the enviroament, education, and chemicals and
frealih. He also served on commitees working on nuclear disarmarment “Fakey has received many gwards.,

avluding the National Medal of Seience
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Exercises

Whoen ol the folluwing senlences are pronositions?

What are the trath values of those that are propositions”

a) Boston s the capital of Massachusetts

B Miami s the capital of Flonda

L‘) : t 3-8

dr 5+ 7 - 10

e v 12 =1i.

) Answer s questinn,

gy ¢+ v . v — & lor overy pair of real pumbers x
and v

. Which of the following are propositions? What are the

sruth values of these that are propositions”?
a) Du not pass go.

h) What time s 17

ot There are no brack fies i Maine,

d) 4+ . -5,

e, =%y = 1,

fharvr- ve-ife - o,

. What v the neguanone o cach of the {nilow iy proposi-

tions”!
ar Tadav is Thurday
b) There s we pollietion o New Jersey.
L A
d) The stminer 11 Miune 18 hot and suany.
Let g and ¢ be the propusitions
P . | bought i loflery ucket this weck.
1 wotishe mithen dollar jackpot on [riday.

Express cach of the following propusiiions 2s an En-
plisk sentenue,

ay ap by fyoa
ap— dr py

e prry fi =p— g
g oo oy W —p (pag

 Let pand ¢ e the propoesitions

poodoas below freezing.
g Mo snowing.

Write the follow ing propositions using p and ¢ and jog-
wal conpectives,

a) Itis helow freezing and seowing,

b) It 15 below freezing but not <nowing,

¢) it is oot below freczing and it is not snowiig,

d} Tt i< either snowing of below freezing (or both)

e) If it is below freezing, it is also snowing.

1 1t is either below freezing or il 18 snowing, but 1t 1s
not seowing 1f 1l 1s below freezing.

g} That 11 is below freezing is necessary and sufficient
for 1t to be snowing.

. Let p. 4. and r be the propositions

. You have the fu.
g : You mss the final examinarion.
v You pass the course.

Express each of the following proposinons as an En-
glish sentence.

8 p -~ g b) g —r

gg-c oo A pugyr

el (p -~ 2 yig =~ )

Riphgivi-ghn

. Lot 7 and g be the propositions

for Youdove over 03 miles per hour,
¢ You get g speeding ticket.

Write the following propositions using p and ¢ and log-

ical cennectives.

a) You do uot drive over 65 miles per heur.

Bl Youdnve over 65 oules per hour, but you de not get
a speedng ticket,

¢} You will et a speeding ticket if you drve over
&% mules per hour.

d) If vou do not erive over 63 miles per hour, then you
will not get a speeding ticket.

¢} Drnvg over 63 miles per hour is sufficient for get-
ing a speeding ticket

3 You get a speeding ticket. but you de not drive over
63 miles per hour.

@) Whenever you get a speeding ticket, yoo ate driving
nver 65 males per hour. .

. Let p, g, and r he the propositions

p . You get an A on the final exam.

g : You do every exercise in this book,

r . You getan A in this class.
Wrile the following propositions using p, g, and r and
logical coaneciives.
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a) You get an A n this class, but you do net do eveny
exercise in this book.

b) You pet an A on the tival. you de every exercise in
this book. and you get an A in this class.

¢) To get an A in this class, it is necessary for you
get an A on the final.

d} You get an A on the final, but you don’t do every
exercise 1o this book: nevertheiess. you get an A in
this elass.

e} Gething an A on the final and doing every excroise
e this book 15 sufficient tor getting an A in this
class.

£} You will get an A in ihis class if and only i you
either do every exercise in this book or you get an
A on the final.

- Determine whether cach of the followrng implications

is true or false,

a) [+ 1 =2then2 +2= 5

hy IFi+1 - 3, then2 +2 = 4.

o W1+ 1=3then? +2=35

¢) Ifpigscan fly then [ - 1 = 3,

e) 161 + 1 = 3, then God exists,

NIt . then pigs can fly

g) If 1+ F = 2 then pigs can fly,

W H2~-2=4then!l+2 -3

For cach of the foffowing sentences, deicrmine whether

an inclusive or or an exclusive or is intended. Explain

VOUF ANswer,

a) Expenence with C+ 4 or Java is required.

b} Lunch includes soup or salad

¢} Toenter the country vou peed a passport or a vater
regestration card,

d) Publish or perish

For each ol the following senicnces. state what the

sentence means if the or is an inclusive or (that is, a

disjunction) versus an excivsive or. Which of these

meanings of or do you thiok is intended?

a) To take discrete mathematics, you must have taken
calcujus or a course i computer science.

b} When vou buy a new car from Acme Motor Com-
pany, you get $2000 back 1 cash or a 2% car loan.

¢} Dinner for two includes two items from column A
or threg items from column B.

d) School is closed if more than 2 feei of snow falls or
if the wind chill is below — 100,

An ancient Swcilian lepend says that the barber

h a remote town who can be reached only by

traveling 2 dangerous mountain road shaves those

people, and only those people, who do not shave them-

selves. Can there be such a harber?

Each inbabitant of a remote village always tells the

truth or always lies. A vitlager will only give a *Yes™”

or a "No” response to a guestion a tourist asks, Sup-

Pose you are z tourist visiting this area and cormne to a

fork m the road. One branch leads to the runs you want

to vasi the other branch leads deep wnto the jungle. A

Il
e
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villager is standing at the fork mn the rhad. What one

guestion can you ask the villager 1o determine which

branch to take?

An cxplerer is captured by a group of canmibals There

are two types of cannibals—those who always tell

the truth and those who always lie. The cannibais will

barbecue the explorer unless he can determine whether

i partictlar cannibal always les or glways tells

the iruth, He 15 allowed o ask the cannibal exactly one

question.

aj Explain why the question “Are vou a liar™ does not
work,

b) Find a question thar the explorer can wse w deter-
mine whether the cannibal aiways lics or always
tells the truth.

. Wnite cach of the foliowing statements in the form i

p. then ¢ in English. (Hine: Refer to the list of common

wary s W express implicatons histed in thiy seclion. )

a) It snows whenever the wind blows from the north-
gast,

b) The apple trees will bloom if it stays warm for a
week,

¢) That the Pistons win the chammionship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get o the top of
Long’s Peak.,

¢j To get tenure as a professor, it is sufficient to be
workd-famous.

£ If you drive more than 400 miles, you will need to
buy gasoline.

g} Your guaraniee js goud only if vou bought your CD
player less than 90 days ago.

Write each of the foliowing statements in the form it

pthen g™ in Enghsh. (Hini Refer to the list of common

wdys o express implications listed in this section. )

a) [will remember to send you the address only 1f yeu
send me an e-inail message.

b) To be a cinzen of this country, it is sufficient that
you were born in the Uniled States.

c) If you keep your textbook. it will be a vseful refer-
ence in your futurc courses.

d) The Red Wings will win the Stanley Cup if ther
goalic plays well.

¢} That you get the job implics that you had the besl
credentials.

D) The beavh erodes whenever there 15 a stormt

g) It1s necessary w have a valid password to log on to
the server.

Write each of the following propositions in the torm

il and only if 4 in Eoghsh.

a) If itis hot oulside you buy an ice cream cone, and
if you buy an ice cream cone it is hot outside.

b} For you 10 win the contest it is necessary and sufti-
crent that you have the only winntng ticket.

¢} You ger promoted only if you have connections, and
you have connections only i you et promoted.
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d) It you watch television yow mind will decay, and
conversely.

£) Thetrainsrunlate onexactly thuse days when lake st

Wnite cach of the following propositions in the form “p

if and only if 47 in English.

a) For you 1o get an A in this course, it is necessary
and sufficient that you leam how to solve discrete
mathematics problems.

bt If you read the newspaper every day. you will be
miormed, and conversely.

¢) It raans it is a weekend day, and it is a weekend
day el it raing,

dj You can sec the wizard only if the wizard 15 not in,
and the wizard is not in only if you can sce him.

State the converse and contrapositive of each of the fol-

lowing implicaticns.

a) 1f it snowss today, T will ski tomerrow.

b) Icome o class whenever there is gomg (0 be 4 quiz.

c) A positive mteger is a prime only if it has no divi-
sors other than 1 and iself,

State the converse and contrapositive of cach of the

following inplications.

a) If 1t snows tonaghi, then 1 wall stay at home.

b) Tgotothebeach whepeveritisasunny summer day.

€ When I stay up late, it Is necessary that 1 sleep unul
nood.

Construct a truth table for each of the foliowing com-
pound propesition..

aj pyop b) py, = p

. gy dy (p', g} -~ (p2 q)

e p gr—iag-—~ap
Hhip—a)—iw—p

Construct @ truth table for each of the following
compuund proposiions.
A pEp bi pdi-p

¢) pb gy d) pS -y

e} ipbeghviip T 1y N ipEy ips -gi
Construct a truth table fur each of the following com-
poind propositions,

ar poo- oy

bi --p =g

e ghving g

&} ip = i-p =g

el (p gy {=p o g)

Do(-ip e -y = (p = g

. Comstruet a truth wble for cach of the following com-

pound pripositions.
al (peoyingr
£)ip )y

e} (P g N

b) (pryg)or
d) (pp. 7. gy N
£l (p gy -y

. Congiriet a teuth table for each of the following com-

pound proposiiuns.
ay p o (g,
by vp— g -ri
Chip = iy {=p 1)
dy ip— g3 cimp =

26,
27,
28.

I3

1.1 Exercises

el lp = gy ing <1}

B mp—ngpeig—n

Construct a truth table for ((p — ¢) — r} — s
Construct a truth table for {p < ¢} — (r ~5).

What is the value of x after each of the following state-
ments is encountered in a computer program. if ¢ = 1
before the stalement 15 reached?

ayif]l -2 = 3thena:= x + |

by if{l + 1 =3)0OR(2+2 =3thenx:=x+ |
)2 +3=5AND{(3+4 = Tithen x:= 1 + |
a)if(l -1 =2X0R(1+2 =3 thenx:= 1+ 1

¢ fr<2thenx:= x+1

. Find the bitwise OR, bitwise AND. and bitwise XOFK of

each of the tollowing pairs of bit strings.
ap 101 1HI0L (O 0001

b} 1101 0000, 1010 1010

¢) 000111 Q001 100100 L1000

dy IEITET TEIT, OR) €M) (KGO

My Evaluate each of the following expressions

a) 11060 A 0100y 1 101D
by (O 1010 EOH0) )y O 1000
oy (0 100E 1 101E)y 0 1000
df (LIOLL 0101038 e 0001, | IDTE

 Fuzzy logic is used in antficial intelligence In fuzzy bogic,

a propositton has a truth value that is a number berween
O and 1, inclusive. A proposition with a truth value of (15
false and one with a truth value of 115 true. Truth values that
are between O and 1 indicate varving degrees of muth, For
instance, the truth value 0.8 can be assigned to the statement
“Fred is happy,” sinc e Fred is happy most of the time, and
the truth value .4 can be assigned to the statement “John is
happy,” since John is happy slightly less than half the time.

31, The truth value of the negation of & proposition in tuzzy

T
b

Iogic is | minus the truth value of the proposition.
What are the truth values of the statements “Fred 1 not
happy™ and “John is not happy™!

The iruth value of the conjunction of two propestiions
in lu2zy dogic is the minimum of the truth v alues ot the
TWO prupesittons What are the truth valoes of the state-
mients “Fred and Johm are happy™ and “Neither Fred nor
John is happy™?

. The truth value of the diguncton ol Two propositions

in fussy logic v the maximum of the tuth values of
the two propositions. What are (he truth values of the
statements “Fred is iappy, or John is happy' and “Fred
is not happy. or John 1s not happy™

*34. s the assertion ~This staternent 1s false” a proposition”

A set of propositional expressions is consistent if there 1
an assignment of truth values o the variables in the expres-
sions that makes each expression true. When giving sys-
tem specitications it is important that these specifications
be conxistent

35. Are the following specilicaions consistent” “The sys-

term is m multiuser state if and only if it 1s operating
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nuemally. I the system 15 operatinyg normally, the ker- the relutive satares of Fred. Maggie, and Janice from
nel s tunctioning The kel is not functioning or the whut Steve kinows? If so, who is paid the most and who
~ysient is in mterrupt ode. the system is oo in mul- Lhe teast” Fxplain your reasoning.
fiuser state, then it is i interrupt mode. The vystemis 40, Five fmends have aceess to a chat room. Is i possible o
not in interrupt moda.” deterimine who is chatting if the following iformalion
Mo, e the following speciticalions consistent? "I the is known” Either Kevin or Heather. or beth. are chat-
tife system i not docked, then new messages will be ting. Either Randy or Vijay. but not bath, are chatting
gueued. If the file system e nut locked. then the sysrem I Abby i chatung, v is Randy. Vijay and Kevin are
s functioming normally, and conversely, Tt new mes- either both chatting or netther 5. If Heather 1 chatting,
sages are notquened then they will e sent 1o the mes- then 50 are Abby and Kevin. Explain your reasoming.
sage bufter. If the file system s not locked. then few 41. A detective has interviewed four witnesses 10 3 crime,
messares will be semt e the message butfer, New mes- From the stenics of the witnesses the detective hay con-
sapey wall not be sent o the message butfer.” cluded that if the buder is welling the truth then su iy the
3Wwha froolean search wauld you use o ook tui Web cook; the cook and the gardener catinot both be telling
maces bt Aeaches in New Jersey™ What 1f yoeu the truth; the gardener and the handyman aze not both
woted 10 e wWeb pages aboat beachies on the isle of iying: and it the pandyman 18 telling the truth then the
Joraey i 1w FaEt s Chenpein! ek ba dving For cach of the four wimesses, can the
3B Whae Boclean seareh would you ke 1o ook fur Web detective determitie whether that person is telling the
puges about hiking i West Viegrma? Whar i you truth o [ying ! Bxpiain your reasoning.
woamtcd 10 find Web pages about buking wn Vivmonaa, bur - 42, Four triends have been dentitied as suspects for an
et ot West Virginga? anauthorized access into a computer systems. They have

made stalements 1o the nvestigating athonhes. Al-
we suud *Carlos did 0™ John said ©1 did not do 1w
Carjos said “Diana did " Diana said "Carlos hed
when he savd that T dad it

Pacivews W-i2 e puasles that can be selved by transJat-
W St ke lomcal expressicits Jnd reasoning from
showp o piossnms using tth ehley

Wostewe wouid hhe 0 detesrie the sefartve salarices ot a} if the authoritics also know that exactty une of the
el enorhers asing twu facts, First, e krows thar if foursispects i tellimg the truth, wheo did it? Explaim
Fied i oot he bighest pael of the theee then Tsmice 1n, VOUT FEdsoning
secoand be Kwaws that it Jansee s nnt the Towesi pasd. b 1 the antharities also know that exactly ane s Iving,
e Rebagene1a paid the sost il pessotic so dedormine who did A7 Baplara your teesoning,

l M

Propositional Equivalences

INTRODUCTION

ANty rant tipe of step used in o mathernesead wrgument s the replacement of o
satement with unother statement with the same tth ~alus. Because of this, methods
than produce propostticns with the same tnath value as & given compound proposition
GrC used eagensisely wnr the conctroction of mathematical arguments,

Yoo nepia our discussion with a classibication of copound propositions according
Lo iheir possibie Tiuthn s alags.

DEFINITION 1, A compound proposition that is always trie, no matter what the
truth valaes of the propositions thai occur in it, is calied a tautology. A compound
proposition that is always false is called a contradiciion. Finally, a proposition that
1 nexther a taatelogy nor a contradiction is called a contingency.

Tutologies and contradicbisze are nfter irgportant in mathematica) reasomny. The
indiowing exwnple itustrates these types of proposilions.
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EXAMPLE 2
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TABLE 1 Examples of a Taatology
and a Contradiction.

P ap Py P | plp

Ty ]

F
F|TiT iF

We can construct examples of tautologies and contradictions using just one proposition.
Consider the truth tables of py/ = pand p ™ -~ p, shown in Table 1. Since py/ ~pis
always true, it is a tautology. Since p /A — p is always false, it 1s a contradiction [ |

LOGICAL EQUIVALENCES

Compound propositions that have the same truth values in all possible cases arc calied
logically equivalent. We cun also define this notion as follows.

DEFINITION 2. The propositions p and g are called logically equivalent
if p <> q is a tautology. The notation p < ¢ denotes that p and ¢ ate logicatly
equivalent.

Onc way to determine whether two propositions are equivalent 15 (0 use a truth
table. In particular. the propositions p and ¢ are eguivaleni if and only if the columns
giving their truth vajues agree. The following example illustrates this method.

Show thal ~(p/g) and = p /A -1 ¢ are Jogically equivalent, This equivalence is one of
De Morgan’s laws for propositions, named after the English mathematician Augustus
De Morgan, of the mid-mineteenth century.

Selution: The truth tables for these propositions are displayed in Table 2. Since the trugh
values of the propositions —(p*,/ ¢) and - p .\ g agree for all possible combinations
of the truth values of p and g, it follows that these propositions are logically equivalent.

m

TABLE 2 Truth Tables for —(p -/ ¢} and —p " —gq.
P ¢ | pig | nipyg) || -p _[-ﬁq { P g
T °t T E ‘ F ! F ll F
T F | T F F T F
F T | T E ‘ T | F . F
FF|F T I R
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EXAMPLE 3

EXAMPLE 4

web

E TABLE Y  Trath Tables for -p qgand p — 4.

i

i I i ‘

poq ' -p ap g | P—q {

T ‘ E ‘ T | T ‘
T F | F F | F

BT } T T | T ‘

S T [

Show that the propositions ¢ = ¢ and - p v/ ¢ are logically equivalent.

Solution: We construct the truth table for these propositions in Table 3, Since the truth
vilues of —p vy g and p — g agree, these propositions are logically equivalent. W

Show that the propositions p v/ (g~ rYand (g, g} A (p' r) are logically equivalent.
This 1s the distributive law of disjunction over conjuaction.

Selution: We construct the truth table for these propositions in Table 4. Since the truth
values of p oy (g ryand (pry/ ¢) / (p \/ r) agree, these propositions are logically
eqinvalent. |

Remark: A truth table of a compound proposition involving three different proposi-
tions requires eight rows, ong for each possible combination of truth values of the three
propositions. In general, 2" rows are required if @ compound proposition involves #
propositions.

Augustus De Morgan (180618715, Augusius De Morgan was born wn [ndia. where his father was a
volonel in the Indian army, De Murgan's family moved to England whei he was 7 months old, He attended
private schools, where he developed u strong witerest in mathematics in his carly teens, De Morgarl studied
af Trnity College, Camhndge, graduating in 1827. Although he considered entering medicine or law, he
decwled o & career in mathemnatics, He won a position at University College, London. in 1828, but reigned
when the college dismissed a fellow professar without grving reasom However he resumed this position
ut 1836 when bug successor died, staymyg there unuld 1366

D Morgan was a noted teacher who stressed principles over techmgues, His students inetuded many
tamous mathematicians, including Ada Augusta, Countess of Lovelace, who was Charles Babbage's cal-
faborator in us work on computing machines {see page 1¢ for bographical notes on Ada Augusta) (De
Morgan cautioned the countess agamst studying too much mathematics. since it might interiere wth het
childbearmg atnlmes")

D Morgan was an extremely prolific writer. He wrote more than 1000 articles for more than 15 e
rivdicals De Muotgan lso wrote textbooks on many sebjects, including logie. probubility, calculus, and
Algebra. In 1838 he presented what was perhaps the first clear explanation of an important proof technique
known as mathematicad induction (discussed 1n Section 3.2 of this text), a term he comned In the 18405 De
Morgan made fundamental comributions to the deselopment of symbolie logic, He mvented potations that
helped him prove propositional equivalences, such as the laws that are named after tnm. [n 1842 De Morgan
presented what was perhaps the first previse definmion of a lime and developed some tests for canvergenic.
of infimte seees. De Morgan was also interested in the history of mathemances and wrote bingraphies of
Newtan and Halley.

In 1837 De Murgan married Sephia Frend. who wrote his biography in 1882, De Motgan's research,
wnitmg. and teachmg ieftlittle time for his family or social life. Nevertheless, he was noted for s kindness,
bummor, and wide range of knowledge.
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TABLE 4 A Demonstration That p s (g /7 r) and (p 7 )} /\ (p\, ri Are Logically
Equivalent.

p g r i g FAVACTAYS! VK N P gy pyr)
T T 1 | T T T T T

T T F '] F T T T T

T F T ‘ F T T T T

T F F F T T T T

FT T | T T T T T

F TF F F T F F

F F T | F F F T + F

F + F F F F F [ F

Table 5 contains some important equivalences.* In these equivalences, T denotes
any proposition that is always true and F denotes any proposition that is always false.
The reader is asked to verify these equivalences in the exercises at the end of the section.

The associative law for disjunction shiows that the expression p\/ g, r is well
defined, in the sense that it does not master whether we first take the disjunction of p and

TABLES Logical Equivalences. |
Equivalence | Name

p T e Identity laws

g F P |

puT =T Demination laws

p l,.\F :j F

pup = p Idempotent taws
pitp = p

~fnp) = op Double negation law
PG g p Coemmutative laws
plg—qgtp

(v g r &= pryig/ Associative laws
(phgrihr e= piigir

PG = (pyghipyr) Distributive Jaws
PG ) = (phg)viphor)

Alp ) =2 apy g " De Morgan’s laws

dpy g) 2 aphi-g |

*These identities are a special case of idemitics that hold for any Boolean algebra Compare them with set
identitzes in Table | in Section 1.5 and with Boolean 1dentities in Table 5 in Section 9.1
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EXAMPLE 5

EXAMPLE 6

TABLE 6 Some Useful
Logical Equivalences.
pyape=T

p/\ -p <> F
(p—q) = (=pg)

g and then the disjunction of p\/g with r. or if we first take the disjonction of ¢ and r and
then take the disjunction of p and ¢ /r. Stmilarly, the expression pr* ¢."r is well defined.
By extending this reasoning. it follows that p; v pav - peand py 7 pa v *op,
are well defined whenever py, pa.. . p,, are propositions. Furthermore. note that De
Morgan’s laws extend to

_|{p] - Jr?'.? - \\.-': p"} T (_]pl . __1'”? J.r .- ’,.f‘\ _\rfj,[)

and

(P Ny ) ST Lapey AP )
{Methods for proving these identities will be grven in Chapter 3.)

The logical equivalences in Table 5, as well as any others that have been cstab-
lished (such as those shown in Table 6), can be used to construct additional lugical
equivalences. The reason for this is that a proposition in a compound propusition can
be replaced by one that is logically equevalent to 1t without changing the truth valuc
of the compound propesition. This technigue is illastrated in Examples S and 6. where
we also use the fact thai it p and ¢ are logically equivalent and ¢ and r are logically
equivalent, then p and r are Jogically equivalent (see Exercise 40).

Show that ~{(p*v { ~pAgnand —p." g are logically equivalent,

Solution: We could use a truth table to show that these compound propusitions are
equivalent. Instead. we will establish this equivalence by developmg a series of Jogical
equivalences, using one of the equivalences in Table 5 at a time, starting with (n,
t 1p /" ¢)) and ending with — p  ~ 4. We have the following cquivalences.

—{pyap g <= apAialap g [rom the second De Morgan's law
= ip N=(apiy gl from the first De Morgan™s 1w
<= apNipv g) {rom the duuble negation laiw
= (—pApry (p g o the distributive law
<D Foy(aphag) sige pd o p o F
S i gy, F fromn the L for Jdisponcie
S api g tromn the identity law T F

Conscquently —(p s imp "ghand —p /N g are Jogically cquivalent, |

Show that 7p M) ——(p Fy) s aautology.

Selunon: To show that thic statement 15 2 tantology, we will use logical cquivatences
to demonstrate that it is logically equivalent to T. {Nare- This coold alse be done using
a truth table.}
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(p gy —>ip Syl <= (g gt e, gl by Example 1
Deg [N £ Py 4
=% (ap | cconn/ie g by the st De Morgan's Taw
<= {ap /(g g) by the assoctative and commuta-
tive laws for disfunction
— TvT by Example 1 and the commuta-
itve law for disjuncuon
«— T by (he domination faw n

A truth table can be used o determine whether a compound proposition is a tau -
tology. This can be dune by hand far 4 proposition with a small number of variables,
but when the number of variables grows. this becomes impractical. For instance. there
are 2% = 1,048,576 sows in the truth value table for a proposition with 20 variables
Clearly, you need a cotnpuec: 1 help vou determine, in this way, whether i compoun
proposition in 200 vagable, s 4 tautvlogy, But when there are 1000 vanables. can even
o computer determing in 4 reasonable amount of time whether a compound proposition
1 a taulology? Checking ¢ very one of the 2'™ (a number with more than 300 decimat
digits) possible combinations of truth valves simply cannot be dane by a computer in
even trillions of years. Furthermore, no other procedures are known that 2 computer can
tollow to determine in a reasonable amount of time whether a compound peoposition in
such a large number of variables is a tawntology. We will study questions such as this in
Chapter 2. when wr studv the conplexty of alvortms.

- .
Exercises
1, Use trurh tables o venfy the following equivalences, 6. U'se a uwh table m venlh the eguivalence -
ayprT &= p  bhp, Koo (P e g s g
by Ve F diop, T =21 7. Show that earh of the foflowing tmplications 4 tau-
g prp s fp . pep tolugy by wang truth ables,
2. Show that —i—=pyand pare logweally eyuivalent aj fpugy e om hyp—itp,qp
3. e teuth iables ro venfy the commutsgiv e Taws £ R ot ap o d) (pgy - ip -
a) p g g p e) dprg)—mp Do — gl — g
b} plig &= ¢ o p 8. Shuw that each of the follewwng unphicanions iy a tau-
4 Lise nruth tables o venify the associative Loas tology by rinng truth ables,
Ay gl e ST R iy n) 2=y o g
byap sqtor ¢ pe (g by [(p = g g =+ )b~ e
A Tl ruth wbles to veridy the distobutive faw p 7 chfp p oyl ooy
(s b0 TP gl s, d) o ity oty — oo

wel

Ada Augusta, Countess of Linetace (1815-1852),  Ada Augustz was the only ctuld from the T
ot the famous poet Lond Byron and Annsheliz Millbanke, who separated when Ada was | month old She
wdin rarsed by her mother. whe encouraged et [ntellectual talents. She was taught by the mathematicians
Wiliiam Frend and Angustus De Morgan, T 1838 she marwd Lord Keng, later clevated to Earl of Lovelace,
Together they had three cluldren.

Ada Augasts continied her mathematicas) sludies atiet her ragriage. asisting Charles Babbage 1n
s work on an early computing machne, catbed the Anatyue Enyine. The must complete accounts ot thys
e are feund i her wiatmgs Alter 1145 whe and Babbage sorked toward the development of a syetem
t predict herse raves Unforumately, therr system dul not work wel' icaving Ada heavily i debr at the nme
Fher death. The programmming Janguage Ada is named m honot of the Countess of Lovelace
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9. Show that each wmplicanen in Exercise 715 a lautology
without using truth tables,

1 Show that each implicaton tn Exercise 8 is o tantology
without uslng trath tables,

11. Venty the following equivalences, which are known as
the absorption laws.
ar[pyotplgl <> p

by [ iprsg)l == p

12, Determine whether t=p Aip -~ g)) - = - is a tab-
wlogy.

13, Determine whether t g/ (p — ) — —pis a tau-
oy,

I4, Showthat p — gand(p.g) /[~ p" —g) are equiv-
alent,

ES Show that ¢p -+ gy — rand p — {g — r} are not
© equivaleni.

16, Show that p =+ gund -1g — - p are logically equiv-

alent.

L7. Show that — p — g and p — —1g are logicaily equiv-
alent

I8, Show that —(p £ gy und p — § are logically equiva-
tent.

1%, Show that —(p — g} and -p ~ ¢ arc logically
equivalent.

The dual of 4 cornpound proposition that contains only the
logical vperators ..~ and 1 18 the proposition obtained
by replacing cach y, by . each /A by /. each T by E. and
cach F by T. The dual of proposition s is denoted by &°.

20. Find the dual of cach of the following propositions.
al pl g N by ip “glry s
ciipe FY g, D

21. Show that (x7) = 4,

22, Show thai the logical equivalences in Table 5, except

for the double negation Jaw, come in pairs, where each

pair contains propositions that are duals of cach other.

Why are the duals of two equivalent compound prope-

siiany alse equivalent, where these compound propo-

sitions contain only the operators v/, and =7

2. Find 4 compound propesition involving the proposi-
tions 1, . and r that is true when p and g are true and r
is false, but 1s false otherwise (Hine: Use a conjunction
of gach proposition or 1ts negation )

25. Find & compound proposition involving the proposi-
tons g g, and rthat is true when exactly two of p. g,
and roare true and is false otherwise. (Hiny: Form a
disjunction of conjunctions. Include 2 conjunction for
each combination of values for which the proposition is
true. Each conjunction should include each of the three
propesitions or their negations )

26. Suppose that a truth table in » propositional variables
1» spevitied. Show that a compound propositton with
thiy truth table can be fermed by taking the disjunc-
ton of comgunctions of the variables or their negatjons,
with one conjunction included for each combination of
values for which the compound propasition 1s true. The

#ELY,

cesulting compound proposition is said to be 1 dis-
junctive normal form.

A collection of logrcal operators is called functionally com-
plete it every compound proposition is Ingically equivalent
to a cornpound proposition involving only these logical op-
EraluTs.

27. Show that . N, and -, feorin a functivially complete
cotlection of togical operators. (Hine: Use the fact that
every proposition is logically equivalent 1o one in dis-
Junctive normal tormy, as shown in Exercise 26.)

*28. Show that — and / form a functionally eomplete collec-
tion of logical vperators. (Hirr: First use De Morgan's
law to show that pv, g1s equivalent to = (-1 p." = gh)

*29. Show that - and *, form a functionally complete col-
lection of togical operators.

The following exercises invobve the logical operators NAND
and NOR. The proposition p NAND g1~ true when cither por
q.orboth, are false; and itis false when both p and ¢ are true.
The propesition p NOR ¢ is true when both p and g are false,
and it is false otherwise. The propositions p NAND ¢ and pr
NOR garcdenoted by p | gand p § g, respectively (The op-
crotors | and § are called the Shelfer stroke and the Peirce
arrow after H M, Shetfer and C. 8. Peirce, respectively )

30. Construct a truth table for the logical operator NAND
31. Show that p | ¢ is logically equivalent to ~{p " g).
32, Construct a truth (able for the logical operator NOR.
33. Show that p | ¢ is logically equivaient to ~:(p~/ ¢l
34. In this exercise we will show that {)} is a functionally
complete collection of logical operators.
a) Show that p | pis logically equivalent to = p,
b) Show that (p | g1 L{p ] g)is logically equivalent
107y .
¢j Conclude frem parts {a) and (b), and Exercise 29
that {{} is a functionally complete collection of lug-
wal operators.
*35. Find a proposition equivalent 1e p — g using only the
logical operator |,
Jo. Show that { } iy a functionally complete collection of
logical operators,
37. Show that p | 4 and g | p are equivalent.
38. Shew that p|iq|r)and (p| )| r are oot equivalent.
s that the logical operator | is not associative,
*39. How many different truth tables of compound proposi-
nons are there that involve the propositions p and g7
40. Show that if p, ¢, and r are compound propositions such
that p and ¢ are logicaily equivalent and ¢ and r arc log-
ically equivalent, then p and r are logically cquivalent
41. 'The tollowing sentence is taken from the specification of
atelephone system: “If the directory data base isopened,
thent the monitor is put in a closed state, 1f the system
ts not in its nitial state.” This specification is hard to
understand sinee it involves two implications, Find an
equivalent. caster-to-understand specitication that in-
volvesdisjunctions and negations but not implications,
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Predicates and Quantifiers

EXAMPLE 1

web

INTRODUCTION
Satements involving variables, such as
"3 oty =y 43" and Cx by =7

are uiten found in mathematical assertions and i computer programs. These slatements
arc neither true nor false when the values of the variables are not specified. In this sec-
tion we will discuss the ways that propositions cat be produced from such statements.

The statement “x is greater than 3™ has two parts. The first part. the variable x, is the
subject of the staiement. The second part—the predicate, “is greater than 3" refers to
a property that the subject of the statement can have. We can denote the statement “x is
greater than 3 by P(x). where P denotes the predicate “is greater than 37 and v 1s the
variahle. The statement P(x) is also suid to be the value of the propositienal function
# utx. Once a value has been assigned to the variable 1, the statement P{x) becomes a
propasition and has a truth value. Consider the following example.

[t Pix) denote the statement “x > 3,” What are the truth values of Pty and P(2)?

Charles Sanders Peirce (8839-19141.  Many consider Charfes Peirce the most original and versaule in-
teltect from the United States, he was born in Cambnidge, Massachusetts. His father. Benjamin Perree. was
a prafessor of mathematics and natural philosophy 2t Harvard. Peirce attended Harvard {1855 -1859) and
received a Harvard master of arts degree 11862) and an advanced degree in chemistry from the lawrence
Scientific School (1863). His tather encouragsd fum 1o pursuc a carcer in science. but instead he chose to
study logre and sciemific methodalogy

tn 1861, Peirce becamc an aide in the Unired States Coast Survey, with the goal of better understanding
seicnnfie methodology. His service far the Survey exempted him from military service duting the Crnl War
While working for the Survey, Peirce carried out astronormical and geodesic work. He made tundamental
contnbutiens to the design of pendulums and 10 map projections. applying new mathematical develspment
1 the theory of elliptic functions. He was the first person to use the wavelength ol light as a unit of mea-
sucemient Peirce rose o the position of Assistani for the Survey, a position he held uniil he was larced o
resignn 1X91 when he disagreed with the direction taken by the Surveys new adiinistraton.

Although making his living from work i the physical sciences, Peiree developed a hierarchy ot sci-
ences. with mathematics at the top rung, in which the methods of ore science could he adapted for use by
these sciences under it in the hewrarchy He was also the founder ol the American philosophical theary of
Pragadism,

The omly acadenic posinon Peirce ever held was as a lecturer m logic at Johns Hopkins Uriversits in
Baltimore trom [879 o 1884, His mathematical work during this ume mcluded contributions fo logic. set
theory, abstract algebra, and the philosophy of mathematics. His work iy »tifl relesant today . some of his work
o logic has been recently applied to aificial intelbgence. Pence believed that the study of mathematics
could develop the mind's powers of imagination, abstraction, and generalization His diverse actuvities after
retiteng from the Survey included witing fur newspapers and journals. contributing to scholarly dictionanes,
translating scientfic papers guest lectuning, and lexibouk writing, Unfortunately, the meome from these
pursuits was insutficient o protect bim and his second wife from abject poverty. He was supported in his
Jaer ycars by a fund created by his many adrmorers and administered by the philosopher Wikliam James,
his, lifelong friend. Although Peirce wrote and published voluminossly 1t a vast range of subjects. he leht
more than 10G.000 pages of unpublrshed manuscripts Becawse of the difficuity of siudying hrs srpublished
writings, scholars have only recently started to understand seme of hes vaned contributions. A group of
peeple 1 devoted to making his wark available over the Intemet w bring a better appreciation of Peirce's
aceomplishments to the world
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4
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Sotution: The statement P(4) is obtained by setting x = 4 (n the statement “'x > 17
Hence, P(4), which is the statement 4 = 3,7 is true. However, P(2), which is the state-
ment 2 > 3,7 15 false. |

We can also have statements that involve more than one variable. For instance.
consider the statement “x = y + 3. We can denote this statlement by (3, v}, where x
and v arc variables and Q is the predicate. When values are assigned to the variables v
and v, the statemnent Q02 v} has a truth value,

Let O(x. v) denote the statement "x = v + 3. What are the truth values of the propo-
sitions {1, 2} and O3, ?

Solution. To obtain 1, 2), set + = 1 and vy = 2 in the statement (i, vi. Hence,
Ol 2) s the statement Y = 2 4+ 37 winch is false. The statement 93, () i the propo-
sition "3 = (1 + 3.7 which is true, n

Similarly, we can let R(x, v, z) denot the statement “y + y = .7 When values are
assigned to the variables . v, and -. this statement bas a truth vajue,

What are the truth values of the aropositions R(1.2, 3y and R0, (0, 117

Sco'utron: The proposition R(1, 7. 3yis obtainad by setting v - [ v = 2 and . = 3w

the statement R(x, v, o). We see that A(1, 2, 3) b the statement ! + 2 = 3." which ts
true. Also note that RiG, O, 1), which is the statemient “0 - 0 = 1,7 i< false. n

in general, a statement involving the # variables 1., « ..., ¢, can be denoted by
Plxy, xo ..., 1y

A statement of the forp Plxy, xp, .., 1118 the valuc of the propositienal function P
at the a-tuple (xy, 1z, ..., 1,5, and P is also called a predicate.

Propositional functions occur in computer programs, as the following example
detnonstrates.

Consider the statzment
ifrx=0thenx:= x+ |

When this statement is encountered n a program. the valte of the vargble 1 at thar
peint i the execution of the program is inserted inte £oxy ahichas v =0 IF Pl
true for this value ol x, the assigoment statement £ 0= 1+ | s executed. so the vahue
of x is increased by 1 If P} is false tor this value of x. the assignment statement is
not exccuted, v the valae of v iy ot changed »
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1.3 Predicates and (uaniifiers

QUANTIFIERS

When all the variables 1 a propositional function are assigned values. the resuliing
statement has a truth value. However, there is another important way, called quantifi-
cation, to create a proposition from a propositional function. Two types of quantification
wili be discussed here. narnely, universal quantification and existential guantification.

Many mathe matical statermnents assert that a property is true for all values of a van-
able in a particular domain, called the universe of discourse, Such a staternent is ex-
pressed using a universal guantification. The universal quantification of a propositional
function 1s the proposition that asserts that £(x) is true for all values of x in the uni-
verse of discourse. The universe of discourse specities the possible values of the vari-
uble x.

DEFINITION 1. The universal quantification of P(x) is the proposition

“P(x) is true for all values of x in the universe of discourse.”

The notation
Vi Plx)

denotes the universal quantification of £(x). Here ¥ is called the universal quantifier.
The proposition ¥Vx P11} is also expressed as

“torall v A(x)" or “forevery x £(x).

Remark: 1015 best to aveid the word “any™ since il is often ambigucus s to whether
1t means “every” or “some.” In some cases. “any” is unambiguous. such us when it is
used in negatives, tor example. “there is not any reason not to study hard.”

Express the statement
“Every student in this class has studied caleulus™

as 4 universal quantification,

Sulunon: Let P ) denote the statement
“x has studied calcujus.™

Then the statement “Every student in this class has studied calculus™ can be written as
¥ P{vd. where the universe of discourse consists of the students in this class.
This statement can slso be expressed as

YarSin) — oo
where S{xdis the stalement
“x 15 1in this ¢lass.”

Pl y) is as before, and the universe of discourse is the cet of all students. |

Example 5 illustrates that there i often more than one good way to express a quan-
tification
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EXAMPLE 7
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Ler Plad be the statement “x + 1 2 x.” What is the truth value of the quantification
Y v Pa). where the universe of discourse is ibe set of real numbers?

Solution: Since P(x) 15 true for ali real numbers <. the quantification
LAWY

1y true. . |

Let x) be the statement “x < 2. What is the truth value of the quantification Y Q(x ),
wlhcre the universe of discourse 15 the set of real numbers?

Sedwrion: O(x) 1s not true for all real numbers x. since, for instance., O0331s false. Thus
Y x)
is false. a

Whenall o the elements in the universe of discovrse can be hsted-—say, 1. 1, ...
to—it follows that the universal quantification ¥.x P 0) is the same as the conjunction

P{M)f\ P(.t:] f’\ cen P(.\’n).

since this congunction is true if and only of P{x ) Pla-). ..., Py, are all true,

What is the truth value of ¥a P{x), where Plx) is the statement “x° < 10” and the
uniiverse of discourse consists of the positive integers not exceeding 4/
Solurton: The statement ¥x Pix) is the same as the conunction

Pl AP PR P4

sinee the universe of discourse consists of the integers 1. 2. 3, and 4. Since £14). which
Is the statement =37 <2 10, is talse, it follows that ¥x £rx} is False [ |

Many mathematical statements assert that there is un element with a certain prop-
crty. Such statements are expressed vsing existential quantification. With existential
guantitication. we formn a propesition that is true i and only if P(x) is true for at least
one vaiue of x tn the universe of discourse.

DEFINFITON 2. The existential quantification of P{x) is the propositivn

““There exists an element x in the unjverse of discourse such that Pix)is true.”

We use the notanion
I Piad

for Ihe existential quantificadon of P(x). Here 3 15 called the existential quantifier,
The existential quantification 3x P{x) is also expressed as

“There 15 an x such that A0,
“There 1s at least one x such that Pix),”
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of

“For some x P(x)."”

Let Pix) denate the statement “x > 3.” What is the truth value of the quantification
Ax P{x). where the universe of discourse is the set of real numbers?

Solution: Since *x > 37 is true—for instance, when x = 4—the existential quantti-
cation of P(x), which is 2x Pix). is truc. ||

Let Q4 xy denote the statement “x = 1+ 1.7 What s the truth value of the quanification
dx Q) where the universe of discovrse is the sct of real numbers?

Sodution: Since Q(x) is false for every real number a. the existential quantification of
Oy, which is 3 () x), is false. [ ]

When all of the elements in the universe of discourse can be {isted—say, xy, 5., ...
t,—the existential quantification J3x P{x) 15 the same as the disjunction

Plyg) sy Pl sy o Pla),

since this disjuncticn is true if and only if at leastone of P(x(), Ptas), ..., Pl 15 true

What is the truth value of 3x P(x} where P{x) is the statemen “x° > 107 and the
untverse of discourse consists of the positive integers not exceeding 47

Solution: Since the vniverse of discourse 15 {1. 2, 3, 4}, the proposition 31 Pix) 1 the
same as the disjunction

P(1y, P21 POy oy PLA)

Since P(4), which is the statement "4 > 10, is true. it follows that 3x P(x) is true. |

Table I summarnzes the meaning of the universal and the existential quantifiers.

It is sometimes helpful 1o think in terms of looping and searching when determining
the truth value of a quantification. Suppose that there are n objects in the universe of
discourse for the vanable x. To determine whether ¥x P{x) is true. we can loop through
all 7 values of x to see if Plx)is slways truc. If we encounter a value x for which Fix)
is false, then we have shown that Vi P{x) is false, Otherwise, ¥ v P( 1) is true. To see
whether Jx P(x} is true, we loop through the n values of x searching tor a value for

l

TABRE ! Quantifiers,

i
Statement | When True? ' When False?
_;_
Y1 Pix) | PixVis troe for every x, ‘ There is an x for which Plx; s false,
ERFLEY | There 18 an x for which Plx) is true. l Plx)is false for every .
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which P{xy iy troe. If we iind one, then Jx P{u) s liue IF we never {imd such an x,
we fave determined that 3x P{x)1s talse, (Note that this searching procedvie does not
apply of there are infinitely many vilues in the universe of disceurse. However. 1t s sull
a usefu! way of thinking about the truth values of quantifications. )

Sumetimes expressions invelving quantifers van be quite complicated. Translating
acoreplicated expression into English helps understanding of its meaning, The first step
it tha s translation is tr wiite out what each quantifier means. The next step is to express
this meaning in a simpler sertence, Cousider the following examples.

Transtate the statement
Yol(C{x)y, IOy “Flgyp
info English, where C{xy 15 "4 has a compuier,” Fix, )15 Vv and v are fnends,” and

the uinverse of discourse for both x and v is the ~et of all sradents 11 your schonl.

Sofutron: The statement savs that for every student x in your school x has 1 computer
ortherz 1s a student v such that ¥ has a computer and x and »+ are friends. In other words,
cvery student in your school has a computer or has a friend who has a computer. H

Translate the statement
VI A F( S 0 = 0 - Ao
into tinulish, where Fia, &1 means ¢ and # are triends and the universe of discourse for

voroand o is the set of all students in yoeur schoal.

Sodstion. This statemen: suy e thai there is a student 1 ~uch that for all studenis y and
Al students - other than i v and v are friends snd » and 7 are friends, then v and -
are et fricnds, In othet words, there iy a student none of whose friends are also Inends
with cach ofwr |

Complicated 2xpressions mvolving quantifiers also arise in mathematical state-
ments, [his s illustrated in the following example.

Assume thar the universe of discourse for the variables 1 and v is the set of all real
numbers. fhe statement

WalViin 4+ — 4 4

say~ thai v~ y = v + x Jor all real numbers ¢ anet v. This is the commutative taw for
add;lom ot real numbers. Likewise, the stalerient

vedwin + 4 = ()

says thal tor every real number 1 ther 15 4 real aumnber v such that & + v = 0. This
states tha every real number has an additive inverse. Similarly, the statemeni

VavaWelo ~(v+ 2 —ix by 1 2

Is thie associative law for addition of read vinmbers [ ]
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1.3 Predlicates and Quantifiers

TRANSLATING SENTENCES INTO LOGICAL EXPRESSIONS

Tn Section 1.1 we illustrated the process of transtating Engiish sentences into logical ex-
pressions invelving propositions and logical connectives. Now that we have discussed
quantifiers, we can express a wider vanety of English sentences using fogical expres-
sions. Doing so eliminates ambiguity and makes it possible to reason with these sen-
tences. (Section 3.1 covers rules of inference for reasoning with logical expressions.}

The following examples show how to use logical operators and quantifiers to ex-
press English sentences. similar to the kind that cccur frequently in mathematical state-
ments. in logic programming, and in artificial intelligence.

Express the statements “Some student in this class has visited Mexico™ and “Every
student in this class has visited either Canada or Mexico™ using quantifiers.

Solution: Let the universe of discourse for the variable x be the set of students in your
class. et M(x} be the statement “x has visited Mexico” and C(x) the statement ~x has
visited Canada.” The statement “Somc student in this class has visied Mexico™ can be
written as xM(x). The statement “Every student in this class has visited either Canada
or Mexico” can be written as Vx(C(1 ) M{x)) (assuming that the inclusive. rather than
the exclusive. or is what is meant here). ]

Express the statenent “Everyone has exactly ene best friend™ as a logical expredsion.

Solution: Let Bix, y) be the statement “y is the best friend of x.” To translate the sen-
tence in the example, note that it says that for every person x there is another person v
such that v is the best fricnd of r and that if 7 is a person other than v, then : is not the
hest friend of x. Consequently. we can translate the sentence as

ViIyVo(Blx. Az =y — =B o). L

Express the statement "It somebody is fernale and is a parent, then this person is some-
one’s mother™ as a logical expression,

Solution: Let F(x} be the statement *x s female.” let £(x} be the statement “x is a
parent,” and et M(x, ¥} be the statement “x 1s the mother of ¥.” Since the statement n
the exaraple pertains to all people. we can wrile it symbolically as

Yx ((F(x) A Plx)) — Iy Mix, v ]

Use quantifiers to express the statement “There 15 a woman who has taken a flight on
every airline in the world.”

Sofution: Let P{w. f) be "w has taken {7 and Q(f, a) be “f 15 a flight on 2.” We can
express the statement as
IweVYaIF(P(w, FYNQUS an,

where the universes of discourse for w, f, and a consist of all the women in the world,
all sirplane flights, and all airlines, respectively.
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“

web

The statement could also be expressed as
w¥adf Riw, f a),

where R(w, f, @) 15 “w has taken f on 4. Although this is more compact. it some-
what obscures the relationships between the variables. Consequently, the first solution
is nsually preferable. |

As mentioned earlier, quantifiers are oficn used in the definition of mathematical
concepts. One example that you may be familiar with is the concept of limit, which 15
important in caleulus.

(Calculus required)  Express the definition of a limit using quantifiers,

Solution; Recall that the definition of the statement

lim ftx) = L
1s: For every real number € > 0 there exists a real number & > 0 such that | £(x) —
L] < e whenever 0 < |x — g/ < &. This definition of a limit can be phrased in terms of
yuantifiers by

Ye38Yx(l< x ol <8 — |flx)—L
where the universe of discourse for the variables § and € is the set of positive real
numbers and for x 15 the set of real numbers.

This defigition can also be expressed as

Ve > 036 > 0¥x(0<|x~a|<d — |[flx) - L| <€)

when the universe of discourse for the variables € aad § 15 the set of all real numbers,
rather than the set of positive real numbers. u

<),

EXAMPLES FROM LEWIS CARROLL (optional)

Lewis Carroll (realty C. L. Dodgson writing under a pseudonym), the auther of Alice
Wanderland, is also (he author of several works on symbolic logic. His books comain
many examples of reasoning using quantifiers. The next two examples come from s
bock Symbolic Logic; other exaroples from that book are given in the exercise set at
the end of this section. These examples illustrate how quantifiers are ascd 1o express
various types of statements.

Charles Lutwidge Dodgson 13832-1898).  We know Charles Dodgsen as Lewis Carroli—ihe pseudonym
he used in his writings on logie Dodgson, the son of a clergyman. was the third of 11 children, all of whom
stuttered. He was uncomfortable in the company of adults and is saxd to have spoken without stuttenng un@L
o young girls. many of whom he entertained. Lomesponded with, and photopraphed foften in the nudet,
Although attracted 10 young girls. he was extremely puntanical and religious. His friendship with the three
young daughtets of Dean Liddeil led to s writing Alice in Wonderland. which brought tim money and
tame.

Dodgson graduated from Oxford in 1854 and vblained his master of arts degree m 1857 He was ap-
posnted ieclurer in mathematics at Christ Church College, Oxford, in 18535, He was ordained in the Church
of England in 1861 but never practiced tis miusiry. His writings include articles and books on geome-
try. determinants, and the mathematics of tournaments and elections, (He also used the pseudonym Lews
Carrodl for his many works on recreational fogie §
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Consider the following statements. The first two are called premises and the third is
catled the conclusion. The entire set is called an argument.

“All lions are fierce.”
"“Some lhions do nol driink coffee.”
»Some flerce creatures do not drink coffee.”

{In Section 3.1 we will discuss the issue of determining whether the conclusion is a
valid consequence of the premises. [n this example, it is.) Let P(x), O{x), and R(x) be
the statements “x is a lion,” “x is fierce.” and “x drinks coffee,” respectively. Assuming
that the universe of discourse is the set of all creatures, express the statements in the
argument using quantifiers and P(x), @(x), and R(x).

Sofution: We can express these statements as:

¥ P(xy — OGlx))

At Plx) " = RN

Ax(Mx) ™ 2 R,
Notice that the second statement cannot be written a» 3x{ £(x) — -+ R(x)). The reason
is that P(x} -— = R(x) is true whenever x is not a lion. so that x(Plx) — R(x))1s

true as iong as there is at lcast one ¢reature that is not a lon. even if cvery ton drinks
coffee. Similarly, the third statement cannot be writien as

F Q) — =R |

Consider the following statements. of which the first three are premises and the fourth
is a valid conclusion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that de not live on honey arc dull in color.”

“Hummingbirds are small.”
Let P{x), O(x), R(x), and S(x) be the statements “x is a hummingbird,” *x is large,”
“xlives on honey,” and "k is richly colored,” respectively. Assuming that the universe of
discourse is the set of all birds, cxpress the statements n the argument using quantifiers
and P{x}, O(x), R(x), and S(x),

Solution: We can express the statements in the argument as;

Y Px) — 5(x)).

3O N REe)

Yo =R — -8

Yx(P(x) — = 0(x)).
{Note we have assumed that “‘small” is the same as “not large”™ and that “dull in color™ 15
the same as “not richly colored.” To show that the fourth statement is a valid conclusion

of the first three, we need to use rules of inference that will be discussed in Section 3.1.)
|

BINDING VARIABLES

When a quantifier is used on the variable x or when we assign a valueo this variable. we
say that this occurrence of the variable is bound. An occurrence of a variable that is not
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EXAMPLE 22

EXAMPLE 23

bound by a quantifier ot set equal to a particular value is said to be free. All the variables
that occur in a propasitional function must be bound to turn it into a propesition. This
can he done usinig a combination of universal quantifiers, existential quantifiers, and

value assignments.

Many mathematical statements involve multiple quantifications of propositional
functions invelving more than one variable. It is timportant to note that the order of the
quantifiers is important, unless all the quantifiers are universal quantifiers or all are
existential quantifiers. Thesc remarks are illustrated by Examples 22, 23, and 24. In
each of these examples the universe of discourse for each variable is the set of real

numbers.

Let Pix, y)bethestatement “x +v = v+ x.” What is the truth value of the quantification
Yoy Pix, v)?
Sofution: The gquantification
Yoy Plx, v)
denotes the proposition
“For all real numbers x and for all real numbers v it istrue that x +y = v 4+ 1.7

Since P(x, v)is true for all real numbers ¥ and v, the proposition ¥x ¥y P(x, v) is true.
a

Let (Xa v) denote “x + 3 = 0.7 What arc the truth values of the quantifications
Ay¥xQlx, vy and Yx Ay Qix, v}?

Sotunion: The quantification
Ve v
denotes the propesition »
“There is a real number v such that for every real number x, @t x, y) is true.”

No matter what value of y is chosen, therc is only one value of x for which x + y = Q.
Since there is no real number v such that x + y = {1 for all real numbers x, the statement
Ay Vi O(x, v)is false.

The quantification

Y3y Olx, v
denotes the propositien
“For every real number x there is a real number y such that Q(x, ¥} is true,”

Gitven a real number x, there {s a real number v such that x + y = 0: namely, y = —x.
Hence, the statcrment Vx 3y ((x, ¥) is true.

Example 23 illustrates that the order in which quantificrs appear makes a differ-
ence. The statement Iy Vx P(x, viand ¥x Iy P(x, v) are not logically equivalent. The
statement Jy ¥x Pix, y) is true if and only if there is a ¥ that makes P(x, y} true for
every X. So, for this statement to be true, there must be a particular value of v for
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which P(x, ¥} is true regardless of the choice of x. On the other hand, ¥x Ay P(x, ¥) 13
true if and only if for every vatue of x there is a value of y for which P(x, y) is true. So,
for this statement to be true, no matter wiich x you choose, there must be a value of ¥
{possibly depending on the x you choose) for which P(x, v} is true. In other words, in
the second case y can depend on x, whereas mn the first case y 1s a constant independent
of x.

From thesc observations, it follows that if 3y ¥ P{x, y)is true, then ¥x 3y £{x, ¥)
must also be true. However, if Y Iy P(x, ¥) is true, it is not necessary for 3y Vx P(x, y)
10 be true. (See Supplementary Exercises § and 10 at the end of this chapter.)

In working with quantifications of more than one variable, it is sometimes helpful
to tinnk in terms of nested loops. (Of course, if there are infinitely many elements in
the universe of discourse of some variable, we cannot actually loop through all values.
Nevertheless, this way of thinking is helpful in understanding nested quantifiers,) For
example, 10 see whether YaVy P(x, ¥) is true, we loop through the vatues for x, and for
each x we loop through the values for v, If we find that P(x, y) is true for all values for x
and y, we have determined that ¥x ¥y P(x, v} is true. If we ever hit a value x for which
we hit a value y for which P(x, y) is false, we have shown that ¥x ¥y P(x, y) is false.

Similarly, to determine whether ¥x 3y P(x, y) is true, we loop through the values
for x. For each x we loop through the values for y until we find a v for which P(x, v) is
true. If for all x we hit such a v, then ¥x 3y P(x, v is true; if for some x we never hit
such a v, then ¥.x 3y Plx, v)is false,

To see whether 2x ¥y P(x, y} is true, we loop through the values for x until we find
an x for which P(x, ¥} is always true when we-loop through all values for v. Once we
find such an x, we know that Ax Yy P(x, v} is true. If we never hit such an x, then we
know that Jx ¥y Pix, y)is false.

Finally, 10 see whether 3x3y P(x, y) is true, we loop through the values for x,
where for each x we loop through the values for y until we hit an x for which we hit a v
for which P(x. ¥) is true, The statement 3x 3y P(x, y) is false only if we never hit an x
for which we hit a y such that P(x, v) is true.

Table 2 summarizes the meanings of the different possible quantifications involving
two variables.

Quantifications of more than two vartables arc also common, as Example 24 illus-

trates.

TABLE 2 Quantifications of Two Variables.
Statement | When True? When False?
YiVyPlr v P(x, ¥} s true for every pair | There is a pair x, y for
Yy VX Py v) X, ¥, which P{x, v) is false.
Y3y Plx, v ‘ For every x there is a v lor There is an x such that
| which P{x, yyis true. Pix, v} is false for every v,
Ax¥v Pl ¥) | There is an a lor wehich P{x. v} Fer every x there is a y for
Il- 15 true for every v. which P{x, y) is false.
|
! |
Jxdy Pix, ¥} . Thercis apair x, y for which . P(x, ¥} is false for every
AvIcPixy | Pl yisimne, ] pair x, y.
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Let Qx, v, 2y be the stalement "x + vy = 2.7 What are the truth values of the stalements
Yx¥ya: Q(x, v, odand 3z¥xVyQfx v, 2)?

Solutton: Suppose that x and y are assigned s alues. Then, there exists a real number 2
such thal ¥ + y = z. Consequently. the quantification
VaV¥y 3z 00x v, 2)
which is the statement
“Far all real numbers x and for all real numbers y there 15 a real number ; such
that x + vy = 2.7
15 true. The order of the quantification here iy important. since the quantification
AWV Oix, v 2),
which is the statement

“There is g real number 2 such that for all real numbers x and for all rcal numbers
yitis truethat x + 3 = 2.7

1 false, since there is no valoe of ¢ (hat satisfies the equation x + v = z for all values
of xand v. [ |

NEGATIONS
We will often want to consider the negation of a guantified expression. For instance,
consider the negation of the statement
“Every student in the class has taken a course in calculus.”
This statement is a universal quantification, namely,
Vi Pix),

where P(1) 15 the statement “x has taken a course in calculus.” The negation of this
statement )5 “Tr (s not the case that every student in the class has waken a course n
caleulus.” This is equivalent lo “There is a student in the class who has not taken a
course in calculus.”™ And this is simply the cxistential quantification of the negation ol
the original propositional function, namely,

x Pla)

Thig example illustrates the following equivalence:
Y1 Plx) < Jx - P(x)

Suppose we wish to negate an existential quantification, For instance, consider the
proposition “There 15 a student in this class who has laken a course in calcolus.” This
i5 the existential guantification

dx QJfx),

whete (X(x) ts the statement “'x has take « course in calculus.” The negation of this
statement 15 the proposition "It is not the case that there is a student in this class who
has taken a course in cafculus.” This is equivalent to “Every student in this class has
not taken calculus,” which is just the universal quantification of the negation of the
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TABLE} Negating Quantifiers,
Negation Eguivalent Statement When Is Negation True? When False?
—dx P{xn) Yx-Plx) | P{x} is false for every x, There is an x for which
Plx) is true.
-¥xP(x) | Fx-Plx) There is an x for which P(x} is rue for every x.
| ' Pla) s false.

original propositional function. or, phrased in the language of quantifiers,

Y —{Xx)

This example illustrates the equivalence
=42 Q{x) = ¥Yx -0(x).

Negations of quantifiers are summarized in Table 3.

Exercises

ks

. Let F(x) denote the statement “x = 4. What are the

7. Let Wi, ¥) mean that x has visited y, where the uni-

truth values of the following?

a) P b P4 ¢y P

Let Pfx} be the statement “the word x contains the letter
«.” What are the truth values of the following?

4) Piorange} b} P(iemon)

¢) Pirue) d) Fifalse)

+ Let Q. v) denote the statement “x is the capital of 3.

What are the truth valucs of the following?
a) O(Denver, Colorady)

b} Q(Detroit, Michigan)

¢) {HMassachusetts, Boston)

d) QiNew York, New York)

. Sate the value of x after the statement if Piy) then

A= Loas executed, where P(x) is the statement “x =
L. 1T the value of x when this statement is reached 15
av=0 b}xr=] ¢ x =2

. Let P{x) be the statement “x spends more thar five

hours every weekday in class,” where the universe of
discourse for x is the set of students. Express each of
the fellowing quantificalions in English.

ay Jx P(x) b) ¥xP(x)

¢) JxP(x) d) ¥2-P{x)

. Let P(x,v) be the statement “x has taken class v.”

where the umverse of discourse for 1 15 the set of all
students in your class and for v is the set of ail com-
puter seience courses al your school. Express each of
the following quantifications 1n English.
ay 3y Pix vy by Ax¥y P(x, y)
e} ¥adyPlx v d} IvVePixv)
e) V131 P(x v) Yy ¥xVyPix, v)

verse of discourse for x is the set of all students in your

school and the universe of discourse for y is the set of

all Web sites. Express each of the following statements

by a simple English sentence.

a) W(Sarah Smith, www.ait.com)

b) Jx W(x, www.imdb.org)

¢) dy W{lose Orez. y)

d) 3y (W(Ashok Puri, ¥)/A W{Cindy Yoon, v))

€} AyWz(y # {David Belcher)\(W{David Belcher, 7
— Wiy )

f) eIy Val(x » AWz, 1) = W Dn

. Let C(x, ) mean that x is enrelled in v, where the uni-

verse of discourse for x is the set of all students in your
school and the universe of discourse for y is the set of
all classes being given at your school. Express each of
the following statements by a simple English sentence.
a) C{Randy Goidberg, CS 252)

b) 3x Clx. Math 695)

¢) Ay C{Carol Sitea, y)

d) Ax(Clx, Math 2220/ C(x, 45 252))

€) Ix 3y Valx # A0 2) = Cly, )

B x Iy Vailx # ») MC(x 2) < Clrv 2

. Let P{x) be the statement “x can speak Russian” and

iet Q{x) be the statentent “x knows the computer fan-

guage C+ +.” Express cach of the following sentences

in terms of P{x), Q(x), quantifiers, and logical connec-

tives. For the untverse of discourse for quantifiers use

the set of all students at your school.

a} There is a student at your school who can speak
Russian and who knows C+ +.
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b) There 15 a student at your school who can speak
Russian but who doesn't know C+ +.

¢) Every student at vour school exther ¢an speak Rus-
sian or knows C+ 4+,

d) No student at your school can speak Russian or
knpws O+ +,

Let €4 x. vy be the statement “r has been a contestant on

¥ " Express each of the {ollowing sentences in terms of

((x, v), quantifiers, and logical connectives, where the

universe of discourse for x is the set of all students ar

your school and for y 1s the set of all quiz shows on

television.

a} There is a student al your sebool who has heen a
contestant on a television quiz show,

b} No student at your school has ever been a contestant
on a television guir show,

¢} Theie 1s @ student at vour school who hay been a
cuntestant on feopardv and on Whee! of Fortune

d} Every television quiz show has bad a student from
your school as a contestant,

e} Al least two students from your school have been
contestants on feopardy.

Let Li ¢, v) be the statement “x loves v.” where the uni-

verse of discourse for both x and 3 15 the set of all peo-

ple tn the world. Use quanitfiers to express each of the

following statements:

a} Everybody loves Jerry.,

b} Bverybody loves somebody.

¢) There 15 somebody whom everybody Joves,

d) Nobody loves everybody,

e} There 1 somebody whom Lydia does not love.

f) Therc is semebody whom no one loves,

gt There s exacily onc person whom everybody loves.

k} There are exactly two people whom Lynn loves,

i1 Everyone loves himself or hersell.

jb tThere 1 someone who loves no one besides himself
or herself.

Let F{x, v be the statement “x can fool v.” where the

universe ¢f discourse 1s the set of all peopte in the

world. Use quantifiers to express each of the following

sldternents:

a) FEverybody car foo! Fred.

bj Evelvn can fool everybody.

¢) Evervbody can fool somebody.

d) There ws no one who can fon] everybody,

et Tveryone can be fooled by somebody,

) Noone can fool both Fred and Jerry,

g) Nancy can fool exactly two people.

b} There 15 exactly one persen whom evervbody can
loul,

i} Noone can fool himself or herself,

Jb There 15 womeone who can fool exactly one person
besides himself or herself,

Let Sta) be the predicate “ais a student,” F(x) the

predicate “+ 15 & facuity member.” and Afx, v) the pred-

icate **v has asked v a question,” where the untverse of

—

14

15

-

discourse 15 the set of all people associated with your

school. Use quantifiers t express cach of the following

statements,

a} Lois has asked Professor Michaels a question.

b) Every studeni ha asked Professor Gross a question,

¢) Every faculty member has cither asked Professor

Miller 2 question or been asked a question by Pro-

fessor Miller.

Some student has aot asked any faculty member a

question,

e) There 15 a faculty member who has never heen
asked g question by a student

f) Some student has asked every faculty member a
guestion.

g) There is a faculty member who has asked every

other faculty member a guestion.

Seme student has never been asked a question by a

faculity member

Let f{x} be the stalement ~x has an [nternet connec-

rion” and C(x, y) be the statement “x and v have chai-

ted over the [nternet.” where the universe of discourse

for the variables x and v 15 the ser of all students in your

class Use quantifiers to express cach of the following

statcments.

a) Jerry does nwot have an Internet connection.

b} Rachel has noi chatted over the Tnternct with
Chelses.

¢) Jan and Sharon have never chatted over the Inter-
nel.

d) Ne one in the class has chatred with Bob

e} Sanjay has chatted with everyone except Joseph,

f) Someone in your class does not have an Internet

connection.

Mot everyone in your ¢lass has an Intemnet connee-

tion.

Exactly one student i your class has an Internet

connection,

i) Everyone except one student in your class has an
Internct conmection,

J) Everyone in your class with an Internet connection

has chatted over the Internet with at least one other

student in your class.

Someone in your class has an Inlemet connection

but has not chatted with anyone else in your class,

There are two students in your class who have not

chatted with over the Intermet,

m) There is a student in your clasy who has chatied with
everyone in your class over the Inlernet

n} Therz are at least two students in your ¢lass who
have ot chanied with the same person in vour class,

o) There are two students in the class who beotween
them have chatted with evervone else in the class.

Let M{x, ¥) be "x has sent y an e-mail message™ and

f{x, ¥) be v has telephoned v,” where the universe of

discourse 15 the set ot all students in your class. Use

quantifiers to express each of the following statements,

d}

h

s

k)

—_—
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{Assume at all c-mail niessuges that were sent are
received. which 1s oot the way things otten work.)

a) Chou has never sent an e-mail message o Koko.
b Arlene bas never sent an e-mail nessage 0 o tele-
phoned Sargh.

Jose has never recetved an e-mal message from
Deborah

very student in your class bas sent e-imail ressage
e Ken

e) Noone in your ciass has telephoned Nina.

fi Everyone in class has cither telephoned Avi or sent
him an c-mail message.

There 15 a student in your class who has sentevery-
one ¢lse in your cluys an e-mail message.

There is someone 10 your class who has esther sent
an ¢ thessage of telephoned everyone ¢lse in
YOur class,

There are two students in vour class wha have sent
each other e-mail mewsages.

9

d

g

h

§) There iz a student who has sent himsell or henelf

an e-mail message.

There is a student in your class who has not received

an e-mail message from anvone else in the ¢lass and

who has not been called by any other student in the
clavs.

Every student in the class has either received an e-

mall message vr receised a telephone cafl from an-

other student 'n the class

m} There are at Teast twe studems 1 vour class such
that une student has sent the other e-mail and the
sevond student bias elephoned the first stadent,

i There are two students m vour class who berween
them have sent an e-mail message to or relephoned
everyone else m the class.

Use quantifiers to express each of the following state-

ments.

a} Theve s a student in this ckass who can speak Hind:,

b) Every studentan this class knows how to drive a car.

¢} Sewme student in this class has visited Alaska but

has nol visued Hawail.

All students in this class have learned at feast one

programming languase

There 14 a ~tudent 1a this class who has taken ev-

ery comrse ollered by one of the departmenits in thys

schuld,

1 Some student m tis class grew up in the same twwn

av exactly one uther student i this class,

Every siudent in this class has charied with at least

vne other student in at least one on-tine chat group,

Live quamiiniers 1o express the following statements.

4} Every compuier scicace student needs 4 course 1n
diserete mathemadgs,

by There 1 astudent in this elass who owns 4 personal
coinputer.

€} Every student in this class has taken at least one
L‘l!!T]pUlt‘l’ SUIETICL COUTSE

k

—
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1.3 Exercises

There 1s 3 student in this class who has laken at least

One COUEsE in compuer science.

Every student in this class has been in every build-

lng on campus.

1 Therc s a student in this class who has becn in ev-

ery roum of at least one building on campus.

Every student in this class has been in at least one

tovm of every building on campus.

A discrete mathematics class contains 1 mathematics

major who is a freshman, 12 mathematics majors who

are sophomores. 15 computer sciency majors whu are

sophomores, 2 mathematics majors who are juniors, 2

computer sclence majors who are juniors, and 1 com-

puter seienee major who is a senior. Express cach of the

following statements in lerms of quantifiers and then

determing ils truth value,

a) There is a studens in the class who 15 a junior,

b Every student in the class is a computer science ma-
Jor.

¢t Thercis a student in the clasy who is serther 3 math -
CMIAILCS Major Nor a Jurior.

d) Ehery student in the cluss is either a sophomore or
A cComputer science major.

€} There 15 a major such that there 1s a student in the
class in gvery year of study wilh that major.

Let Pr1ybe (he statement *4 = ¥ if the universe of

discaurse (s the set of integers, what are the trurh valies

of the tollowing?

ay P(ih by P 1) e) P

dy P10 g) dr Pt I ¥xPixy

Let ra v pbe the statement " v F v = 1 - " I the

universc of discourse for both variables 15 the set of -

tegers, what are the truth values of the following”

a) Q1 1) b) Q2.0

¢ ¥v il d) 3.0 2}

e) da 3y ) ) ¥xdy Olx v

g) v ) hy ¥v3dx Qia )

I VoVe iy

Determnine the iruth value of each of the following

staternents if the universe of discourse for all variables

is the set of all intevers.

a) Yarn = 0)

) Vn{n: = )

e} Anmin < m?)

gl AnYminm = m)

d

—

€

o

g)

by 3n(n: = 1
d)y ¥ Amin® <2 )
£ ¥ndmin t m=1h

h) ArAmin” + m? = §y

i) dpdmin’ t m* = 6)
P andmin+m -d5n—m =1
K}y dndmin+m = 4 \n—m = 2)

I ¥n¥mdplp — (m+ a)2)

Determine the truth value of each of the fullowing
statetneitts if the universe of discourse of each varishle
is the set of real numbers,
a) a0’ =2

o) Ye3u(x" — v

e) IxVuixy = (B
Y = 0iey — 1)

b) Ix{(x> = - )

d) Yr3vr = 9

fi dx3via+v<10y)
) x¥y=0ny = N
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D ¥adwa v = 1)

P Eaduc+y - 2420+ 4y = 5)
K ¥idwe by =2 2r—v=1)
[} Va¥vedos = (v — v)¥2)

. Suppose the universe of discourse of the propos-

tonal function Plx, v) consists of pairs x and ¥, where
v 12 or 3and voas L 20 or 30 Wrilte out the
fotlowing propositions using disjunctions and ¢on-
junctions.

al dx P 3) b) Yy Pl v}

¢l Ya¥yPa oy d) 3x3vPix v

ey eV FPlay) 0 Yy3IxPix )

Rewrite each of the following staterments so that nega-
tions appear only within predicates (that is, so that no
negation 1y outside a quantifier or an expression involv-
g logicad connectives).

ab o dvdxPiruvl

by =¥y 3v Play

c) A3vi(ivy T Yy — Riaay)

d} —3vide Ry, YxSyd)

eb AV Ao Tixoy )y e vo Uiy o))

Rewrnte cach ot the following statements so that nega-
tions appedr only within predicates (that 15, <o that no
negation 1s outside a quantifier or an expression involy-
ing logieal connectives),

ah O VrV¥y Pl

h Ay 34 Pla )

¢ -y Yu Py, Ola v

di -3y 3y G PLES YoV Ol vl

e Vv Pl ATy Pl oy

. Expiess cach of the following statements using quan-

thers Then form the negation of the stalement so that

no negatwn s (o the left of a quantifier. Nexl, express

the negatien in simple English. (Do not simply usc the

words "1t 15 not the case that.”)

al Al dogs have fleas.

by No one has lost more than one thousand doljars
playing the lottery.

¢} “There v a stedent 1 this class who has chatted with

exactls onc other student.

Nu student n this ¢lass has sent e-mail 1o exactly

two other students m this class.

¢} Some <udent has solved every exercise in this

hook

No student has solved at least one exercise in every

section of this book.

[xpress each of the following staterents using quanti-

fiers Then form the negation of the statement, so that

nn negaton is to the left of a quaanfier. Next, express

the negation in simple English. {Da not vimply use the

words It is not the case that.™)

a) There s no dog that can talk,

B! There 1s no one in this class who knows French and
Russian.

¢} Every student in this class has aken exacily two
mathematics classes at this school,

d

f

weh
28,
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d} Someonc has visited every country" in the world
except Libya.

€) No one has climbed every mountain in the Hi-
malayas.

f) Every movie actor has either been in a movie with
Kevin Bacon or has been in a movie with someonc
who has been in a movie with Kevin Bacon.

Express the negations of the following propositions us-

ing quanttfiers, and 1n English,

al} Bvery student in this class likes mathematics.

b} There 15 a student in this class who has never seen
d computer.

¢} There is a student in this class who has taken every
mathematics course offered at this school,

d} There is a student n this class who has been in at
least one room of every building on campus.

Usc quantifiers to express the associative law for mul-

tiplication of rcal numbers.

Use guantifiers o express the distributive laws of mul-

tiplication over addition for real numbers.

Exercises 31-34 arc based on questions found in the hook
Swvmbolic Logic by Lewis Carroll,

31

32

33

Let Pted. ¢t v), and Rix) be the statements "x 1% a pro-

fessor,” "a i ignorant.” and “x is vain,” respectively

Express each of he following statements using quan-

tifiers: logical connectives: and P{x}. O{x), and Rix).

where the universe of discourse is the set of all people.

a} No professors ure ignorant.

b) Allignorant people are vain.

c) No professors are vain,

d} Dees {¢i follow trom (a) and (b}? If not. 15 there a
correct conclusion?

Let #(x). (X x). and R x) be the staternents “x 15 a clear

explanation,” x is satisfactory,” and "x s an excuse.”

respectively. Suppose that the universe of discourse for

1 is the set of all English text. Express each of the

following stalernents using quantifiers; logical connec-

tives; and P{x}, Q(x), and Rix).

a} All clear explanations are sansfactory.

b} Some excuses are unsatisfactory,

) Some cxcuses are nol clear explagations.

*d) Does (c) follow from (a) and (b)? It not, is there a

correct conclusion?

Let Plx). Q(x), £{x), and 3(x) be the statements “xis a

baby.” “x is logicai,” “x 1s able 1w manage a crocedile.”

and 'x is despised,” respectively. Suppose that the uni-

verse of discourse is the set of all people. Express each

of the following statements using yuantitiers: logical

connectives; and Pley, (x), R{x). and Six).

&} Babies are illogical.

b) Nobody is despised who can inanage a crocodile,

) Wogical persons are despised.

d} Babres cannot nuanage crocodiles

*e} Docs (d) follow from (a), (k), and (c)? If not. 1s there

a correct conclusion?
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*47.

Let Pix), Orx), R(x), and S(x) be the statements “x
is & duck.” "1 is one of my pouliry,” “x is an officer,”
and Vv s walling 1o waltz,” respectively. Express each
of the foliowing statements using quantifiers; logical
connectives; and Pl Q00 R(3), and St
a) No ducks are willing 10 walts.
b} Mo officers ever decline w waliz,
¢} Al my poultry are ducks.
d) My poulny are not officers.
*e)1 Does {d) follow from (a). (b}, and (¢)? I not, 1s there
a correct conclusion?
Show that the statements —3x ¥y Plx v
Vx Jv = P(x, v) bave the same truth value,
Show that Vx (P11 O{xh and ¥x P{x) M ¥ Q)
have the same truth value
Show that v (P(x) i)y and 3x Py Tx(a)
have the same ruth value,
Establish the following logical equivalences, where A
15 & proposition not involving any quanti fiers.
g) (¥ Playiy, A <= ValPix, A)
By 3y Plaxn A &2 3xPloy, A)
Establish the following logical equivalences, where A
i 2 proposition not invalving any quantifiers.
al (VP A = Y Pla) A
bj 13y POan A A & I, A)
Show that ¥ PO Yy Q) and ¥ PO Qx)) are
not logically equivalent.
Show that Ta P AT Q) and Ix0 P A Ox)) are
not logically equivalent,
Show that ¥ Pix) vy YaO(x) and Y ¥y (Pix), O(x)
are logically equivalent. {The new variable v is used to
combine Ut quantifications correcily.)
a) Show that ¥x Puxy S I (N x) and Wa Iy (Pl
¢ ane equivalent
hy Show that ¥ Pla)y 32000 and Yx 3y (Pra)
{21 1) are cquivalent,

and

. The notation 3! v £(x} denotes the proposition

"There exists 4 unique x such that P{x) iy true.”

If the universe of discowrse s the set of mteger. what
are the teuth valies of the following?

a) I{y - 1}

B 3t = 1)

) Iv(v--3 = 2x)

d) F'afy =3+ 1}

What arc the rruth values of the foilowing statements?
a) dla Py — Pl

by ¥ Px) -+ Fx Pa)

) AvMe) — ¥ Py

Write out the quanufication Alx Pix). where the uni-
verse of discourse consists of the integers 1, 2, and 3,
in terms of negations, conjunctions, and disjunctions.
Express the guantification 3le Py v} using umiversal
guandifications, existential quantifications, and logical
np-::ramrrs.

#*40,
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A statement s in prenex normal form (PNF) if and only
if it 15 of the form

Ora(hne - Pl s

where each Q.1 = 1.2,.... & is cither the exi:tentad
quantifier or the universal guantifier, and Fa).
15 a predicate nvolving no quanifiers. For chample,
Je¥v(Pix, vy M V) is in prenex normal torm. whereas
Jx Py, ¥ Qix) is not (since the quantifiers do net all
aceur lirst)

Every statement formed from propositional variables,
predicates. T, and F using logical connectives and quan-
tifiers is equavalent w a statement in prenex normal form.
Exercise 49 asks for a proof of this fact.

*48. Put the following statements in prenex normal form.

{Hint- Use logical equivalence from Tables 5 and 6 in

Secuon 1.2, Table 2 in this section, and Exercises 36—

39 and 42 .43 in this section.)

a) dv PUx) 3 Q{xy v A where A is a proposition
not involving any quantifiers.

b} =iy Plx) o Ve QU

¢} A Plx) — 3z Oix)

Show how to transform an arbitrary staiement to a state-

ment 10 prenex normal form that is equivalent to the

given statement,

il

R S

A real number x iy called an upper bound of a set § of real
numbers if 1 is greater than or equal 1o every member of 5.
The real number 2 15 called the least upper bound of a set
5 of real numbers if ¢ ks an upper bound of S and x 15 less
than ot equal to every upper bound of §: if the least upper
bound of a sel § exiss. itis unigue.

50. a) Using quantifiers, express the fact that x 15 an uppe
bound of' 5.
b) Using quantifiers, express the fact that x is the least
upper bound of 5.
51. (Calculus required) Using quantifiers. express the fact
that lim, - ., f{x} does not exist.

‘The statement lim,—. «, = L means that for cvery posi-
tive real number € there 15 4 positive integer N such that
e — L ~ € whenever s = V.

52, tCalcutus required) Use quantifiers to express the state-
ment that lim,—. g, - L.
53. ({Calcuius reguired) Use quantifiers to express the state-
ment that lim,, - . &, docs pot exXist.
(Calculus required) Use quantifiers to express the foi-
lowing definition: A sequence {a,) s a Cauchy se-
quence 1f for every real number € = () there exists a
positive integer N such that a,,  an: < € forevery pan
of positive integers mand » withm > Nandn - &.
{Calculus required} Use quantifiers and logicat connee-
tives to express the following delininon: A number L is
the limit superior of 2 sequence {a,} if for every real
number € > 0, g, > L — ¢ for infimtely many » and
e = L+ € for only finitely many ».

54

T
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INTRODUCTION

We will study a wide variety of discrete structures in this book. These include rela-
tions. which consist of ordered pairs of elements: combinations, which are unordered
collections of elements; and graphs, which are scts of vertices and edges connecting
vertices. Moreover, we will illustrate how these and other diserete struciures are used
in modeling and problem solving. In particular, many examples of the use of discrete
structures in the storage, communication, and manipulation of data will be deseribed. In
this section we study the fundamental discrete structure upon which all vther discrete
structures are built, namely. the set.

Scts are used to group objects together. Often, the objects in a set have sunilar
properties. For instance. all the students who are currently enrolled in your school make
up a set. Likewise, all the students currently taking a course in discrete mathematics at
any school make up a set. In addition, those students enrolled in your school who are
taking a course in discrete mathemnatics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study
such collections in an organized fashion.

Note that the term object has been used without specifying whal an object is. This
descniption of a set as a collection of objects. based on the intuitive notion of an ubject,
was first stated by the German mathematician Georg Cantor in 1895. The theory that
results {rom this intuitive definition of a set leads to paradoxes, or logical inconsisten-
cies, as the English philosopher Bertrand Russcll showed in 1902 (sce Exercise 26 fora
description of one of these paradoxes). Thesc lugical inconsistencies can be avoided by
building set theory starting with basic assumptions, called axioms, We will use Can-
tor’s original version of set theory. known as naive set theory, without developing an
axiomatic version of set theory, since all scts considered in this book can be treated
consistently using Cantor’s original theory.

We now proceed with our discussion of sets.

DEFINITION 1. ‘The objects in a set are also called the elements, or members, of
the set. A set is said to conrain its elements.

Georg Cantor (1845-1918).  Gewrg Canlor was born in $t Petershury, Rusaia, where his tather was a
suevessful merchant Cantor developed his interest in mathematics in his teens. He began tus umversicy
studhes :a Zurich in 1862, but when hes father died he leh Zurich. He continued his university studics at the
Liniversiy of Beelin in 1363, where he studied under the eminent mathematicians Weierstrags, Kunimer,
and Kronecker He received his doctor's depree in 1867 after having wntten a dissertauon on number theory
Cantor assumed a position ar the University ot Halle i 1369, where he continucd working until s death
Cantor 1~ vonsidered the founder vl set theory His contributions im thix aren nclude the discosery thar
the set of real numbers is uncountable. He is also noted for his mamy, imporrant contributions t) analysis
Cantor alsu was interested in philesophy and wrote papers relating has theary of sets with nietaphy s ics.
Cantor married in 1874 and had five children. His melancholy temperament was balanced by his
wile's huppy dispositun. Although he recerved a large inhenitance fzom his father, he way poorly trod as
a professor To mitigate this, he tried te obtain u better-paying position at the Universty of Berlin, His
wppamtment there was blocked by Kromecker, who did nut agree with Cantor's views on et theory Cantor
suftered trom mentsl lness throughout the iater years of his life, He died in 1918 102 poyehiatine cimic
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There are several ways to describe a set. One way is to list all the members of a set,
when this is possible. We use a notation where all members of the set are listed between
braces. For cxampie. the notation {¢. &, ¢, d} represents the sct with the four elements
a, boc and d.

The set V of all vowels in the English ulphabet can writtenas V = {a, ¢, {. 2. u). ||

The set O of odd positive integers less than 10 can be expressed by @ = {1, 3,5,7. 9}
|

Although sets are usually used 1o group together elements with common properties,
there 1s nuthing that prevents a set from having seemingly unrelated elements. For in-
stance, {a, 2, Fred, New Jersey} is the set containing the four elements o, 2, Fred, and
New Jersey. ]

Uppercase letters are usually used to denote sets. The boldface letters N, Z. and R
will be reserved to represent the set of natural numbers {0, 1, 2.3, . . }. the set of integers
Lo .=2 L0 L2 ..} and the setof real numbers, respectivelv, We will occasionallv
use the notation Z* to denote the set of positive integers. {Some people do not consider
0 anatural number, so be careful (o check how the term naniral numbers is used when
you read other books.)

Sometimes the brace notation is used to describe a set without listing all its mem-
bers. Some members of the set are tisted. and then elfipses (...} are used when the
general pattern of the elements is obvious.

The set of positiy & integers less than 100 can be denoted by {1.2,3, ..., 99}, [ |

Since many mathematical statements assert that two differently specified collec-
tions of objects are really the same sef, we need to understand what it means Ior two
sets to be equal.

Bertrand Russell 18721970k Bertrund Russe]l was bom inte a prominent Enghish famely acuve i the
prigressive movement and having ¢ strong comnuiment ta hiberty. He became an orphan at an early age and
wirs pliced m the care of his tather's parents. who had him educated at home He entered Trinity College,
Cambridge, w 1890, where be excelled e matheniatics and in morat science. He won a fellowship on the
huais of hes work on the foundations of geometry. In 1910 Trnity College appeinted him 1o a lectureship in
Ingic and the philosaphy of mathematics.

Russell fought for progressive causes thrrughour s life, He held strong pacifist views, and s protests
against World War 1 led o dismissal fram his position at Trinity College He was jmprisoned for 6 months
@ 1918 because of an article he wrote that was branded a5 seditions. Russelt fought for women's suffrage
in Grear Britain in 1961, at the age of 89, he way imprisoned for the second time for his protests advocating
nuckear disarmament.

Russell’s greutest work was in his development of principles that could be used as a foundation for 2t
of mathernatics. His most fameus work is Principie Muthematice, writien with Alfred North Whitchead,
which atiemprs 16 deduce all of mathemanes vsing a ser of praimitive axioms. He wiie many bonks on
philosophy. physics. and his politcal ideas, Russell won the Nobel Prize for literature in 1950,
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DEFINITION 2. Two sets are equal if and only if they have the same elemzsnts.

The sets 41, 3,5} and {3, 5, 1} are equal, since they have the same clements. Note that
the order in which the elements of a set are listed does not matter. Noie also that 1t does
not matter if an clement of a set 1s listed roore than once, so that {1, 3. 3,3, 5, 5 3. 5} is
the same as the set {1, 3, 5} since they have the same elements. o

Another way to describe a st is to ase set builder notation. We churacrerizc all
thowe elements in the set by staling the property or properties they must have o be
members. For instance, the set ¢ of all odd positive itegers Tess than 10 can be writ-
ten a8

(} = {x | x1s an odd positive integer less than 10k

We often use this type of notation to describe sets when it 15 impossibie o list o)l the
elements of the set. For instance, the set of all real numbers can be written as

R — {11 v1s a real number},

Sets can also be represented graphically using Venn diagrams, named aiter the
Lnglhish mathematician John Yenn. who introduced theiruse m 1881, In Venn diagrams
the universal set L, which contains all the objects under coasideration, is represented
by a rectangle. Inside-this rectangle. circles or other geometrical figures are used 1o
represent sets. Sometimes points are used to represent the particular elements of the
sor Venn diagrams are often used to indicate the relationships berween sets. We show
how a Venn diagram can be used in the following example.,

braw a Vean diagram that represents V. the set of vowels in the Enghsh alphaber.

Solurion. We draw a rectangle to indwcate the universal set U, which i the set of the
26 letlers of the English alphabet. Inside this rectungle we draw a circle to represent V.,
luside this circle we indicate the clements ot V with points (see Figute 1), a

We will now introduce notation used o describe membership 1 sets. We write
o € A4 W denvte that ¢ 15 an element of the set A, The notation & € A denotes thai g
35 not & member of the set A, Nete that lowercase letters are usually used w denote
clements of sets.

dobn Vern (218319230 Jolin Venn was bom o x Londen suburban Eatmby noted for s philan thropy
He attended London whools and got his muthematies degree from Caus College, Cumbndge, in 1857 He
was elected a feblow or this college and heid his fellowatap there until his death. By toak holy arders 1n 1559
and, after ¢ brict sunt of weligious wark, retumed 1o Cambridge. where he developed programs in the mora?
~cienees. Besides his mathematical work, Venn hadd an interest 1 histery and wrote extensively about his
wallege and fanuly,

Vean's hook Symbolic Logis elanfivs ideas onpinally presented by Buoole. In this book, Yenn prosents
i sysictndbe development of a method that uses peumeme fipures, known now as Fenn diagrams. fincliy
ihese diagrams are primarily used 10 anatyse logical argumenis and to Hlustrate relanonships betwecn sets
In addinon 1o his work on syinbelic logic. Vern made contributions ke prokabality theon, described in hix
widely wsed textbook on thar subject,
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FIGURE 1  Venn Diagram for the Setof  FIGURE I Venn Diagram Showing
Yowels. That A Is a Subset of B,

There is a special set that has no elements. This set 1s called the empty set, or nuld
set, and is denoted by . The empty set can also be denoted by { } (that i3, we represent
the empty set with a pair of braces thal encloses all the clements in this set). Often, a
sef of elements with certain properties turns out to be the null set. For instance, the set
of all positive integers that are greater than their sguares 1s the null set,

DEFINITION 3. ‘'The set A is said to be a subser of B if and only if every element
of A is aiso an element of B. We use the notation A C B to indicate that A is a subset
of the set B.

We see that A C Bf and only 1f the quantification
Yiuyxed—xeh

s [rire. For instance, the set of all odd positive integers less than 10 1s a subset of the
set of ail positive integers tess than #0. The set of all computer science majors at your
school is a subset of the set of all students at vour school.

The null set is a subset of every set, thal is,

R O

whenever §is a set. To establish that the null st 18 a subset of §, we must show thateven
element of the null set 1» alse in S, Tn other words, we must show that the implication
“if v € 0 then 1 € 57 18 always trues We need only note that the hypothesis of thiy
mmplication—-namely, "+ € (™15 always false to see that this implication 1s always
true. Hence. the eropty setis a subset of every set. Furthermore. note that every setis a
subset of itself (the reader should verify this), Consequently, if s 4 set, we know that
GCPand PC P

When we wish to emphuasize that a set A ix a subset of the set Bbul that A £ B, we
write A C F and say that A is a proper subset of B, Venn diagrams can be used to show
that a set A is a subset of & sct & We draw the universal ~el I/ a5 a rectangle. Within
this rectangle we draw a circle for £, Since A 15 a subset of B, we draw he circle for A
within the circle for 8. This relationchip is shown in Figure 2.

One way to show that two seis have the same elements is to show that each set 1> a
subsat ol the other. In other words, we can show that if 4 and B are sets with A < B and
B C Al then A = B. This umns out 10 be a usetul way to show thal two sets are equal.

Sets may have other sets as members, For instance, we have the sets

{4, {u}, (b} {a, B} and {x | x is a subset of the set {g, b}

Note thal these two sets are equal.
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Sets are used extensively in countimg problems, and for such applications we need

1o discuss the size of sets.

DEFINITION4. Let § be a set. If there are exactly n distinct elements in S where
7 is a nonnegative integer, we say that S is a fimite set and that # is the cardinality of
S. The cardinality of S is denoted by |S].

EXAMPLE 7 Let A be the ser of odd positive integers less than 10. Then L) = 5, [ ]
EXAMPLE S Let § be the set of letters in the Enghish alphabet. Then 5| = 26, ]
EXAMPLE 9 Since the null set has ao clements, it folfows that | | ~ 0. ]
We will also be interested in sois thay are not finite.
DEFINITION 5. A set is said to be infinite if it is not finite.
]

EAMAMPLE M} The set of positive inlegers s infinite

The cardinality of wfinite sets will be discassed in Scction 1.7, In that section.
we will discuss what it means for a set 10 be countable and show that certam sels are

countable while others are not,

THE POWER SET

Muny problems involve testing all combrmanions of elements of a set o see if they saristy
some property o consider all such combinations of elements of a set S, we build a new
set that has as ity members all the subsets of S.

DEFINITION 6. Given a set S, the power set of § is the set of all subsets of the
sel 8. The power set of § is denoted by P(S).

EXAMPLE 11 Whitt 15 the power set ol the set {0. {, 2}?

Sodution. The power sel P({0, 1, 2}) 15 the set of all subsets of {0, 1, 2}. Hence.

PUO 2D = {22, 00 {1h {21 {0, 1140, 20, 41, 2. {0, 1. 2.

Note that the empty set and the set itself are members of this set of subsets, [
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What is the power set of the empty set? What is the power set of the set {27

Solurion; The empty set has exactly one subset, namely, itseif. Consequently.
P = {2},
The set {iJ} has exactly two subsets, namely, £F and the set {} itself. Therefore,

PURA) = {24420, .

If & set has n elements, then its power set has 2" elements. We will demonstrate this
fact in several ways in subsequent sections of the rext,

CARTESIAN PRODUCTS

The order of elements in a collection is often important. Since sets are unordered, a dif-
fevent structure 1s needed to represent ordered collections. This is provided by ordered
n-tuples.

DEFINITION7. Theordered n-tuple(a,, ay, . .., a,)is the ordered collection that
has o as its first element, ; as its second element, . . ., and a, as its nth element.

We suy that two ordered a-tuples are equal if and only if each corresponding pair
of their elements is equal. Tn other words, (a), @, ..., an) = (by, s, ..., by} if and only
ifa; = b, fori = 1,2,....n In particular, 2-uples are called ordered pairs. The
ordered patrs (a, by and (¢, d)are equal if and only if 2 = rand b = d. Note that (o, &)
and (b, ) are not equal unless a = b.

Many of the discrete structures we will study in later chapters are based on the
notion of the Cartesian praduct of sets (named after René Descartes). We first define
the Cartesian product of two <ets.

Ren¢ Descartes (i596-16501.  René Nescartes was born mnto a noble tanuly near Tours, France. abour
200 miles southwest of Parts. He was the third child of his father’s first wife: she died several days after his
birth. Because of René’s poor health, his father, a provinciad judge, let his son's formal iessons slide unbi, at
the age of 8, René entered the Jesuit college at La Fieche. The rector of the school took a liking o him and
penmitted him 1o stay in bed until laie in the moming becawse of his frail health. From then on, Descanies
spent his memings in bed; he considered these lunes his most productive howrs tor thinking.

Descartes left school in 1612, moving 1o Parts, where he spent 2 years studying mathematics, He curned
u law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted wath studying and
decided to see the world. He moved to Pans and becarme o successful gambler However, he grew trad of
bawdy living amdt moved 1o the suburb of Saint-Germain, where he deveted himsell o mathematics! study.
When tus gambling friends found him, he decided te teave France and undertake 3 military career. However,
ke never did any Aghting. One day, while escaping the cold in an overheated room at a wulitary encampment.
be bad several feverish dreams. which revealed his future career as a matbemancian and philosopher

After ending his military career, he traveled throughout Europe. He then spert several vears in Puris,
where he stirdied mathematics and philesophy and constructed optical instruments, Descartes decided tn
rieve 10 Holland. where he spent 20} years wandering around the couniry, accomplishing his most important
work. During this time he wrote several books, including the Discours, which contains his conigbutions to
analytic geomelry, for which he is best known. He also inade fundamental contributions to philosophy

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in phrioso-
phy. Although he was reluctant to live ip what he called “the land of bears amongst rocks and ice.™ he finally
accepted the invitation and moved tw Sweden Unfortunately, the winter of 1649-1650 was extremely biner.
Descartes caught pnewmonia and died in mid February.
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FXAMPLE )3

EXAMPLE 14

EXAMPLE 15

EXAMPLE 16

DEFINITIONS. Let A and B be sets. The Cartesian product of A askl 8 déotsd
by A X B, is the set of all ordered pairs (@, b} where a € A and b € B. Heace,

AXB={ab|la€ANbLE B}

Let A represent the set of a1l students at a university, and let B represent the set of all
courses offered at the university. What is the Cartesyan product A X B?

Serlurion: The Cartesaan product A > B consists of all the ordered pairs of the fonn
(@, b}, where a is a student at the university and & is a course offered at the university.
The set A X B can be used to represent all possible enrollments of students in conrses

at the university. |

What is the Cartesian product of A = {1, 2}and 8 = {a. &, ¢}?

Solution: The Cartesian product A X B 1s
A B ={ila) (Lby (1, e) (2,002 5,2 )t |

The Cartesian products A X B and B X A are not equal. unless 4 = Por B~ &
(sothat A X B = P)orunless A = 8 {see Exercise 24, at the end of this section). This
15 illustrated in the following example.

Show that the Cartesian product B x A is not equal 1o the Cartesian product 4 X B.
where 4 and B are as i1 Example 14.
Sedution: The Cartesian product B X A is

BxA = {(a1(,2)(6 )52 (1) ic 2

Thixs s not equal to A X B, which was found m Example 14 |

The Cartesian product of more than twe sets can also be defined.

DEFINITION 9. The Cartesian product of the sets A, Ay, ..., Ay, denoted by
A X Az X -+ X Ay, is the set of ondered n-tuples (ay, a;, . . ., a,), where a; belongs
to A; fori = 1,2,..., 1 In other words

A XA X XAy ={la,ay....8,0 & €A fori=12_ . n

What is the Cartesian product 4 X 8 X (', where A = 0,1}, # = {12}, and ¢ =
{0,122

Solution: The Caresian produci A X B X C consists of all ordered triples (e. b, ). where
a €A b€ B and ¢ € C Hence,

AXBXC = {0100, 1L, D0 1,2).60.2,0.40.2, D0.2,25 (1, 1,05.(1, 1. 1}
(L1L23(L2,00(12.1)(1,2.2) |
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Exercises

1.

%]

£,
11.

. What ~ the cardinality of cach ot the followmyg sets?

List the members of the following sets.

at {a 1 isareal number such that x° = 1}

bi {x| x is a positive integer fess than 123

¢) {x| x is the square of an integer and v < 100}
d) {v| v is an intwger such that A° — 2}

. Use set builder notation te give a description of each of

the fullowing sets.

a) {0,3,6.9, 12}

by {-2- 210123
om0 p)

. Determuince whether each of the following pasrs ot sets

i3 equal

a) {1.3.3,3,5,5.5 550,53 1}
by fE AL

) WA

. Supposethat A - {2,4,6} 8 = {26} C = {4,6},and

13 = {4 & 8 Determine which of these sels are sub-
sets of which other of these sets.

« For each of the following sets. determine whether 2 i«

an element of that set.

a) {4 < R|.xis aninteger greatet than 1}
B {2 € R|x is the square of an intcger}
o) 12.{2h

dy 42R{2h

e} 2022

fy {42t

. For cach of the sets in Exercise 5, determine whether

12} i a#n element of that set,

. Determing whether cach of the tollow Ing slatements is

true or false

a) x & {3} by (it o {xtel

d) (Jefidl e dcl DI E

Use a Venn diggram woillustrate the relationship A C 8
ad A O

. Suppose that A B and C ate sets such that A C B and

B CC Showthat A C C.

Find two sets A and Bsuchthat A € Fand A © K.
What s the candinality of each of the following sets?
al {u’lr

by {lutl

¢ {a {at}
d) L, o el
\
a) &
by
o {5 I
dy {05 {e8) {3 i
Find the power set of each of the tollowing sets
a) {at
h) {a p}
DGR AIT

14,

16.

17,

i8.

1%,

20.

21,

A

N

23.

24,

*26.

wek

*27

Can you conclude that A = B 1f A and B are two sets
wilh the same power set?

. How many elements does each of the following sets

have”

a8) Pila, b la b

by PUZ, o {a} {{allD

¢} PP

Detertnine whether each of the following seis s the
power set of a sci.

a) &

b) {2 {al}

) A ) D al}

d) {25 {a}. {h}, {a, B}

{etA = d{u b o diand B = {y, 2} Find

al A B

by B A

What 15 the Cartesian product A X 8, where A 15 ihe set
of courses offered by the mathernatics department a4
university and B is the set of mathemaucs professors at
this untversity "/

What 16 the: Cartesian product A X 8 ¥ C, where A 1~
the set of all airlines and B and € are both the set of all
citics in the United States?

Suppose that A} B = I, where A and B are se(s. Whut
can you conchude?

LetAbcaset, Showthat @ = A = AKX = &
Letd = da b b, B = {x. v} and C = {{} 1] Find

ay Ay ExC

by O B A

) CXxAXSE

d) B~ B XE

How many diiferent clements does A x 8 have if A has
m elements and B has r elements?

Show thal AX R £ B XA, when A und £ are nonempiy
giless A4+ B

. Show that the ordered pair (. &) can be defined in

terms of sets as {{a}, {a. b} \Hing: First show that

fed fa b)) = dich e, d}} it and only if @ = ¢ and

b =d)

In tius exercise Russell’s paradox is presented. Lot S

be the set that contains a selx if the sels does not belong

toilsell, so that § = {x ] x & v

a) Show that the assumption that § is a member of &
leads 10 % contradiction.

by Show that the assumption that 5 is not 2 member of
8 leads 10 a contradiction.

Frorm parts {ay and (b) it follows that the set § canno

be defined as it was. This paradox can be avoided by

restricting the types of elements that sets can have.

. Deseribe a procedure for listing all the <subsets of a fi-

nite set
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1.5

Set Operations

EXAMPLE 1

EXAMPLE 2

INTRODUCTION

Two sets can be combined in many different ways. For instance, starting with the set
of mathematics majors and the set of computer science majors at your school, we can
form the set of students who are mathematics majors or computer science majors, the
se1 of students who are joint majors in mathematics and computer science, the set of all
studenls not majoring in mathematics, and so on.

DEFINITION 1. Let A and B be sets. The union of the sets A and B, denoted by
A U B, is the set that contains those elements that are either in A o in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x
belongs to B. This tells us that

AUB={x|xEAvrEB}
The Venn diagram shown in Figure | represents the vnion of two sets 4 and B. The
shaded area within the circle representing A or the circle representing B is the area that

represents the union of A and A.
We will give some examples of the union of sets.

The union of the sets {1,3.5} and {1, 2,3} is the set {1,2,3,5}; that is, {1,3,5} U
{1,2.3} =1{1.23 5L |

The union of the set of all computer science majors at your school and the set of all
mathematics najors at your school is the set of students at your school who are majoring
either in mathematics or in computer science {or in both). [ |

DEFINITION 2. Let A and B be sets. The intersection of the sets A and B, denoted
by A N B, is the set containing those elements in both A and B,

£ u

N

A U 8 1is shaded. A M B is shaded.

FIGURE ! Venn Diagram Representing FIGURE 2 Venn Diagram Representing
the Union of 4 and B. the Intersection of A and B,




EXAMPLE 3

EXAMPLE 4

EXAMPLE 5
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An element x belongs to the intersection of the sets A and B if and onty if x belongs
te A and x belongs to B. This tells us that

ANB={x|x€ANXEB}

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B.
The shaded area that is within both the circles representing the sets A and B 1s the area
that represents the intersection of A and B.

We give some examples of the intersection of sets.

The intersection of the sets {1, 3,5} and {1, 2, 3} is the set {1, 3}; that is. {L, 3,5}
{1,2,3} = {1,3} [ ]

The intersection of the set of all computer science majors at your school and the set of
all mathematics majors is the set of all students who are joint majers in mathematics
and computer science. ]

PEFINITION 3. Two sets are called disjoint if their intersection is the empty set.

LetA ={1,3,57 9 and B = {2,4,6,8, 10}. Since A N B = (J, A and B are disjoint.
a

We often are interested in finding the cardinality of the union of sets. To find the
number of elements in the union of two finite sets A and B, note that |A| + |B| counts
each element that is in A but notin B or in B but net in A exactly ence, and each element
that is in both A and B exactly twice. Thus, if the number of elements that are in both A
and B is subtracted from |A} + | B, elements in A N B will be counted only once. Hence,

JAUB| = A +1B - |AN Bl

The generalization of this result to uniens of an arbitrary number of seis is calied the
principle of Inclusion—exclusion, The principle of inclusion—exclusion is an impor-
tant technique used in the art of enumeration. We will discuss this principle and other
counting techniques in detail in Chapters 4 and 5.

There are other important ways to combine sets,

DEFINITION 4. PetA and B be sets. The difference of A and B, denoted by A~ B,
is the set containing those elements that are in A but not in 8. The difference of A
and B is also called the complement of B with respect to A.

An element x belongs to the difference of A and B if and only if x € Aand x & B.
Thus tells us that

A-B={x|xEAAx&B)

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The
shaded area inside the circle that represents A and cutside the circle that represents 8
is the area that represents A — B.

We give some examples of differences of sets.
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EXAMPLE 6

EXAMPLE 7

EXAMPLE 8

FXAMPLE 9

A - Bis shuded. A is shaded,
FIGURE 3 Yenn Diagram for the Dif- FIGURE 4 Venn Diagram for the
Terence of 4 and 5. Complement of the Set A.

The difference of {1. 3.5} and {1, 2, 3} is the set {5}; that is, {1,3,5} — {1,2 3} = {5}
This 1s different from the difference of {1, 2, 3} and {1, 3, 5}. which is the set {2} [ |

The difierence of the set of computer science majors at your scheol and the set of math-
ematics majors at your school is the set of all computer science majors at your schoof
who are not also mathematics majors. |

Ongce the universal st &7 has been specified. the complement of a set can be de-
fined.

DEFINITIONSS.  Let I/ be the universal set. The complement of the set 4, denoted

by 4, is the complement of A with respect to U. In other wards, the complement of
thesetAis I/ — 4.

An element belongs to A if and only if x & A. Thus tells us that

A={x|x& A}
In Figure 4 the shaded area outside the circie that represents A is the area represent-
ing A.

We give some examples of the complement of a set.

LerA = la e 0, uy {(where the universal set is the set of letters of the Lnglish alpha-
het). Then A = {b,c.d. f.g h j kil m n pyrs.tvwxyzh N

Let A be the set of positive integers greater than 10 {with universal sct the sei of al
pusitive wtegers). Then 4 = {1,2,3.4,5,6,7,8,9, 10}. ]

SET IDENTITIES

Table 1 lists the most important set identities, We will prove several of these identi-
ties here, using three different methods. These methods arc presented to illustrate that
there are often many different approaches 1o the solution of a problem. The proofs of
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TABLE 1 Set Identities,

Identity | Name

|
AU = A 1 ldentity baws
ANU =4 |

|
Al =U i Domination [aws
AN =4
AUA=A Idempotent laws
ATA = A |
ﬁ =A Complementation law
AUB=BUA | Commutative laws
ANMB=EMA

Associative laws

AUBUCI={AUBUC
ANBNO ={ANHNTC

ANBUCY=(ANKBUANC) Distributive laws

AJIBNCI = (AUBIN(AU)

i——— +——

-
o

%

M

De Morgan’s laws

el
ol

M
U

e
[w]

the remaining identities will be left as exercises, The reader should note the similar-
ity between these set identities and the logical equivalences discussed in Section 1.2,
[n fact, the set identities given can be proved directly from the corresponding logical
equivalences. Furthermore, both are special cases of identities that hold for Beolean
algebra {discussed in Chapter 9).

One way to prove that twao sets are equal is to show that one of the sets is a subset
of the other and vice versa. We illustrate this type of proof by establishing the second
of De Morgan’s laws,

Prove that A B = A U B by showing that each set is a subset of the other.

Solution: First, suppose that x € A 1 B, It follows that x € A N B. This implies that
x & Aorx & B, Hence, x € A orx € B. Thus, x € A U B. This shows that A 1B C
AUB.

Now suppose that x € AUEB. Then x € Aorx € B. [t follows that x & Aorx € 8.
Hence. x & ANB. Therefore, x € A" B. This demonstrates that AUS C A N B. Since
we have demonstrated that each set is a subset of the other. these two sets must be equal
and the identity 15 proved. n

Another way (o verify sct identities is o use set builder notation and the rules of
togic. Consider the following proof of the second of De Morgan’s laws.
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EXAMPLE 11

EXAMPLE 12

EXAMPLE 13

Use set builder notation and logical equivalences to show that AN B = AU B.

Sofution: The following chain of equalities provides a demonstration of this identity:

ANB={x|x&ANB)
={x'-(xE@AN MY
={x|~(xgA 1 E B}
={x i x&Ayxe B
={x, xEAxE B}

={x|xe AUB}
Note that the second De Morgan’s law for logical equivalences was used in the fourth
equality of this chain. [

Set identities can also be proved using membership tables. We consider each com-
binaction of sets that an element can belong to and verify that elements in the same com-
binations of sets beiong to both the sets in the identity. To indicate that an element is
in a set. a 1 is used: to indicate that an ¢lement is net in a set, a 0 is used. {The reader
should note the similarnity between membership tables and truth tables.)

Use a membership table to show that AN(BUCY = (AN BIU(ANC).

Solution: The membership table for these combinations of sets is shown in Tuble 2.
This table has eight rows. Since the columns for AN{B U CYand (A N BYU (A M )
are the same, the identity is valid. |

Additional set identities can be established using those that we have already proved.
Consider the following example.

Let A, B, and C be sets. Show that
AUBNT) = (CUBNA

TARLE 2 A Membership Table for the Distributive Property.

=T - T
A B ¢ | BuC | An@dug T ANB © ANC | (ANB)JANC)

|

i
f |
I

! ! 1 | 1 |
bodoo | ) 0 !
O | [0 Lol fo
1 0o 0 | 0 o | o 0 |0
611 0 I o 0 |0
01 0 i 0 0 o o
oo 1| L0 0 0 |0
e 0 0, 0 0 ;0 0 0
| L L |
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—— — ; |
3}

£ £

)
B8

lat AU @ L Cos shaded. by A1 B s shaded

FIGURE 5 (a) AURUC Is Shaded, (b) A7 BN Ts Shaded. The Union and Intersection
of A, B,and C.

Selurion: We have

AUBNC) = AN(BNC) by the tirst De Morgan's law
= AMN(BUC) by the second De Morgan's luw

(BUCOYNA by the comumutative law for intersechions

= (CUBNA bythe commutanye law for unions. n

GENERALIZED UNIONS AND INTERSECTIONS

since unions and intersections of sets satisfy associative laws, the sets AU 8 U C and
A B N C are well defined when A. B, and C are sets. Note that A U B U € contains
those elements that are in at least one of the sets A, B, and C, and that AN BN C contains
those elements that are in all of A, B, and €. These combinations of the three sets. A, B,
and €. are shown in Figure 5.

LetA = {0.246,8L 8 ={0,1.2, 3 4 and " = {0.3, 6,9} Whatarc A U U C and
ANBNC?

Solution: The set AU 810 € vontains those elements 1n at least one of 4, B, and C.
Hence.

AUBULC =10.1.2,3,4,6 8, 9
The set A M BN C contains those elements in all three of A, B, and €. Thus,

ANBNC =10} =

We can also consider unions and intersections of an arbitrary number of sets. We
use the following definitions.

DEFINITION 6. The union of a collection of sets is the set that contains those
elements that are members of at least one set in the collection.
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ENAMPLE 15

EXAMPLE 16

We use the notation

1t
{1| Uf\} U--- UAn = UA;

1=

to denote the union of the sets 4), A5, ..., A,

DEFINITION 7. 'The intersection of a coliection of seis is the set that contains
those elements that are members of all the sets in the collection.

We use the notation
AnANNA, = A

(o denote the intersection of the scts Ay, A, ., A,. We illustrate generalized vaoions
and intersections with the following example.

Letd, =i i+1i{+2.. .} Then

"

U 0:1’+l,i+2,...}={],2,3, h

and

YA = Y+ Li+2, d={nn+ln+2. L u

! =1

COMPUTER REPRESENTATION OF SETS

There are varions ways to represent scts using a compuier. One method is to store the
clements of the set in an unordered fashion. However, if this is done, the operations of
computsng the union. intersecnon, or difference of two sets would be time-consuming,
since each of these operations would require a large amount of searching for elements.
We will present a method for storing elements using an arbitrary ordering of the ele-
ments of the umversal set. This method of representing sets makes computing combi-
nations of sets easy.

Assume that the universal set U/ is finite (and of reasonable size so that the number
of elements of U is not larger than the memory size of the computer being used). First,
specify an arbitrary ordering of the elements of U, for instance a), aa. . . ., a,,. Represent
a subset 4 of U/ with the bit string of length n, where the ith bit in this string is | if g,
belongs to A and is 0 if @; does not belong to A. The following example illustrates this
rechnique.

Lett/ = {1,2,3.4,5,6,7,8 9, 10}, and the ordering of clements of I/ has the clements
1 increasiag order; i.e., o; = i. What bit sirings represent the subset of all edd integers
m U, the subset of all even integers in U, and the subset of integers not exceeding
Sin N
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EXAMPLE 18
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Solution: The bit string that represents the set of odd integers in {/, namely. {1, 3, 5.7, 9}.
has o one bit in the first, third, fifth, scventh, and ninth positions, and a zero elsewhere.
Itis

10 10106 1010.

{We have split this bit stiring of length 1{)into two bjocks of length five for easy reading
since Jong bit strings arce difficudt to read.) Similarly, we represent the subset of all even
intcgers in {J, namely, {2, 4, 6, 8, 10}, by the string

(1 G101 0101,

The sef of all integers in U that do nol exceed 3, namely, {1, 2, 3, 4, 5], is represented by
the string

i1 1110 0000, B

Using bit strings to represcnt sets, it is easy tadind complements of sets and unions,
intersections, and differences of sets. To find the bit string for the complement of a set
from the bit siring for that set, we simply change each | to a 0 and each 0 to ). since
x € Aifandonly if x & A. Note that this operation corresponds to taking the negation
of each bit when we associate a bit with a truth valve—with | representing true and 0,
false.

We have seen that the bit siring for the set {1, 3, 5,7, 9} (with universal set {1,2 3,4,
567,89, 100 is

10 1010 1010.

What is the bit string for the complement of this set?

Sofution: The bit string for the complement of this set is obtained by replacing 0s with
ls and vice versa. This yields the string

01 6101 0101,

which corresponds o the set {2, 4. 6, 8. 10} N

To ebtain the bit string for the union and intersection of two sets we perform bitwise
Boolean operations on the bit strings representing the two sets. The bit in the jth position
of the bt stming of the union is 1 if either of the bits in the th position in the two strings
is 1 {or both are 1) and 1s O when both bits are 0. Hence, the bat string for the union
15 the bitwise OR of the bit strings for the two sets. The bit in the ith position of the
bit string of the intersection is 1 when the bits in the corresponding position in the two
strings are hoit; | and s 0 when either of the two bits is Q (or both are}. Hence, the bit
string for the intersection is the bitwise AND of the bit strings for the two sets,

The bit strings for the sets {1, 2.3, 4. 5} and {1, 3, 5. 7. Qb are 11 {110 0000 and {0 1010
1010, respectively. Use bit strings to find the union and intersection of these sets.



which corresponds to the set {1. 2, 3,4, 5, 7, 9}. The bit string tor the intersection of these
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Solution. The bit string for the union of these sets is
U O O000 10 1010 1010 = 11 1110 1010,
sels 1%
111100000 A 10 1010 1030 = 10 1010 0000,
which cotresponds 1o the set {1, 3, 5.
Exercises

10.

. et 4 be the set of students who live within one mile

ol scheol and Tet B be the set of students who walk o
ciasses. Describe the students 1n each of the following
sets

a ANA
crA-R

by AURB
di - A

+ Suppose that A is the set of sophomores at your school

and 8 is the set of students in discrete mathematics at

your school. Express cach of the following sets in terms

of A and B

a) the set of sophomores taking discrete mathematics
in your school

by the sct of sophomores at your school who are not
taking discrcte mathemancs

c) the set of smdents at your school whe either are
sophomores or are laking discrete mathematics

d) the set of students at your school who either are not
sophomores or are ot taking discrefe mathematics

Letd = {12,345 and B = {0, 3, 6}. Find

a) AL R h) AN B.
cr A - B dl B-- A
et A= fjahodeland B ={aboede fgh.
Find
a AuB h) AMB
g4 B d) 5§- A

. LetA be aset. Show that 4 = A
. Let A be a wel Show that

ay AUG = A by Ani =
A4 = A d)y And=A
e A - - A ) AVL = [
g) AN = 4 h) d-4A=01

. Let A and A be sers. Show that

ay AUB = BuUA by ANB =B A

. Findthesets Aand Bif A B ={1578L8B—4 =

{2100 and AN B = {3, 6,9}

. Show that if A and Bare sets, then AL B = AN K.

a) by showing cach side is 4 subset of the other side
by using a membership table

Let 4 and B be sets, Show that

arf(AnM T A b ACAUBL

11,

12,

13,
14,

15.

16.

17.

18.

19,

20,

21

) A-BCA dy AN(B-4)=0,

e} ALB—~AY=AUB,

Show that if A, B, and C are sets, then A 1 BT =
AUBUC

a) by showing each side is & subset of the other side.
b} using 2 membership table.

Let A, B, and C be sets. Show that

N ALBCAUBLC),

B} (ANENCYC AN B)
Ad{A-B-CCA-(.

d) (A-CynilC -8y =,

€ B-HU[C-A) =(BLUC) - A

Show that if 4 and B are sets, then A — B = A N B
Show thal if A and B are sets, then (A M B) U
(ANB = A

Let A, B, and C be sets. Show that

a AUBUC=(AUBUC.

by ANBNCY= (ANBINC

¢ AUBNC)=(AUBINIAVO).

et A, B and € be wes. Show that (A - B) - (7 =
{A-C)—(B -0

Let A ={02,46% 10, B ={0.1.23.45,6}, and
(" =1{4351,7 89, 10} Find

a) ANRENC, by AUBLC.

) {AUBRINC. d) (ANBLC

Draw the Venn diagrams for each of the following com-
binations of the sets A, B, and €,

a) AN(BUC) M ANBAC

A -Bud-C1UEB O

What can you say about the sets A and B if the following
are true”

aj AUB = 4

e A-B=A

e} A-B~-B—A
Can you conclude that 4 = Bif A, R, and € .re sets
such that

al AU =RU¢7

by ANC =BNLC?

et A and £ be subsets of a universal set 7' Show that
A Bitand onlyif B C A.

b) APE = 4
d) ANB =BnNA



The symmetric difference of A and B, denoted by A B B,
is the set containing those elements in either A or &, but not
in both 4 and B.

22, Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.

23. Find the symmetnc difference of the set of computer
science majors at a school and the set of mathematics
mgjors at this school.

24. Draw a Venn diagram for the symmetric difference of
the sets 4 and B.

25, Show that AR E = (AUB - (AN B

26. Showthat AD B = (A - B U (B - A).

27. Show that if A is a subset of a universal set {7, then
A ASA=0C. b ADI = A
c ABU =A  d) ARA =10

28. Show that if A and B are sets. then
) AGE=B0A b)) (ADBBGE = A

29. What can you say about the sets A and B if ABB = A7

*30. Determine whether the symmetric difference is asso-

clative; that is, if A, B, and C are sets, does it follow
that

ABBEC) = (ADBISO?

*31. Suppose that A, B, and C are sets such that A§ C =
B . Must it be the case that A = B?
32. It A B. C, and {7 are sets, does it follow that (A @ By
(Co ) =AbCOID (BB D)
33, IfA, B, C, and [ are sets, does it follow that (A B B) &
(CD D ={ASMEBEC]
*3d. Show that if A, B. and C are sets, then

AL BLC = Al + B|+|C —|AN B

—ANC —BNCI+ANBNCL

(This is a special case of the inclusion—exclusion prin-
ciple, whwh will be studied in Chapter 5.)
35 LetA, ={L23 . difori=1,23.... Find

a | JA. b (A
=1 =
3o, letd —{i+1.i+2. .} Find

a) 0.’1_.. b] h/"l,,
IR [

37. Let A, be the set of all aonempty hit strings (that is, bit
strings of length at teast one) of length not exceeding i
Find

w UA,, b hA,.
1= =1

38. Suppose that the universal set 15 U = {i,2,3.4
5.6.7.89, 10, Express each of the foltowing seis
with bit strings where the ith bil in the string is [ if § is
in the set and 0 otherwise.

a) {345 b {1.36 10}
€} 12,3.4.7,89}

39_ Ulsing the same uptversal set as in the last problem, find
the set specified by each of the following bit stings.
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a) 1111001111 b} 010111 1000

c) 14 0000 0001

40, What subsets of a finite universal set do the following
bit strings represent?

a} the string with ali zeros
b) the sting with ali ones

41. What is the bit string corresponding to the difference

of two sets?

What is the hit string corresponding to the symmetric

difference of two sets?

43. Show how bitwise operations on bit strings can
be used 1o find the following combinations of
A= {abedel, B ={bhcdgpty,, C =
jveiowxvzehadD = {dehinotaxy)
a) AJSB b} A8
QiAuDBUC d)yAuBuCuD

44. How can the union and intersection of n sets that ali
are subsets of the universal set {7 be found usmg bt
strings”?

45, The successor of the set A is the set A U {A}. Find the
suceessors of the following sets.

2 {L23} WY o 4213

46, How many elements does the successor of a set with »#

elements have?

42

Sometimes the number of times that an element eccurs in an
unordered collection matters. Multisets are unordered col-
lections of elements where an ejement can occur as & mem-
ber more than once. The notation {m; @, mz @, .. m,-a,}
denotes the multiset with element a; cceurring 7 times. el-
emenl a; occuIming i times, and so on. The numbers m,.
i = 1,2, ., rarecalled the multiplicities of the elements
a i — L2 o

et P and @ be multisets. The union of the multisets P
and (2 s the multiset where the multiplicity of an clement
is the maximum of its multiplicities in P and 2. The inter-
section of P and ( is the multiset where the muitiplicity of
an element {5 the minimum of its multiplicities in P and Q.
The difference of P and ¢ is the multiset where the multi-
plicity of an element is the multiplicity of the element in P
less s multiplicity i Q unless this difference is negative,
in which case the multplicity is 0. The sum of P and @ is
the muitiset where the multiplicity of an element is the sum
of multiplicities in # and . The union, intersection, and
difference of P and { are denoted by P U Q, F i (2, and
P — @, respectively (where these operations should not be
confused with the analogous cperations for sets). The sum
of Pand Q is denoted by £ + .

47. Let A and B be the multisets (34,2 b, 1 - cland {2 -
a.3 - b4 d}, respectively. Find
a) AUE. by ANB. ¢} A-B
d) b-A e} A+ B

48. Suppose that A is the muliiset that has as is ele-
ments the types of computer equipment needed by one
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department of 4 umversity where the multiplicines are
the nymber uf picees of each type needed, and B is the
analogous muitiset for 4 second department of the uni-
versity. Formslance, 4 could be the multiset {107 + per-
sonal compurers, 4 - youters. 6 - servers} and 8 could
be the mwltset {14 - persenal computers. 6 - routers,
2 - mainframes).
a) What combination of A and K represents the equip-
ment the university should buy assuming both de-
partments nse the same equipment !
What combination of A and B represents the equip-
ment thai wilk be used by both departments if both
departments use the same equipment?
What combination of A and B represents the equip-
ment that the second department uses, but the first
department does not, if both departments use the
same equipment?
d} What combinauon ol A and & represents the equip-
ment that the university should purchase if the de-
partnents do mol share equrpment?

b

—

LS

wen FuZZY seLS are used in antificial intelhigence. Each element
im the universal ser £ has a degree of membership, which
ts o Tedl number berween 0 and [ (ncluding O and ).
atusry set b The fussy set § s denoted by histing the cl-
cments with their degregs of membership (elements with

1.6

Functions

INTRODUCTION

0 degree of membership are not listed). For instance, we
write {016 Alice, 0.9 Brian, 0.4 Fred, 0.1 Oscar, (4.5 Rita}
for the set F (of famous people) to indicate that Alice has 4
0.6 degree of membership in F, Briae has a 0.9 degree of
membership in F. Fred bas a (0.4 degree of membership in
F. Oscar has a 0.1 degree of membership in F, and Rita has
a{.5 degree of membership in F (so that Beian i< the rrost
famous and Oscar s the least famous of these people), Alsw
suppose thal £ 15 the set of rich people with 8 = {0.4 Alice,
(L8 Brian, (.2 Fred, 0.9 Oscar, 1.7 Rita).

49, The complement of a fuzzy set S is the set §, with the
degree of the membership of an element in § equal o
! minus the degree of membership of this element in
5. Find F tthe fuszy set of people who are net famoens)
and R (the furzy set of people who are not rich).
50, The mnion of two fuzzy scts § and 7 is the fuzzy set
§ U T, where the degree of membership of an elemeznt
n $ U T is the maximun uf the degrees of niembership
of this element in § and in 7. Find the fuzzy set £ U R
of rich ot Famous people,
The intersection of two fuzzy sets § and T s the tuvs)
sei § (1 T where the degree of membership o an cle-
ment s 7 F is the minimoum of the degrees of mem-
bership of this element m 8 and in 7. Find the turzy set
F 1 R of rich and famous people

51

In many instances we assign to each element of a set a particular clement of a second
set (which may be the same as the tirst). For cxample, suppose that each student in a
discrete mathemalics class is assigned a letter grade from the set{A, £, C 1. F). And
suppose that the grades arc A for Adams. C for Chou, B for Goodfriend. 4 for Rodriguez,
and F'tor Stevens. This assignment of grades is illustrated in Figure 1.

Adama L —_— e - ol R |
Ed

. o
Chom .- e -t

S o

el

s T

Guodtrend & -~ el ¥4
-~

Rodrigues o - )
Slevens . -— —— e a

FIGURE T  Assignment of Grades in a Discrete Mathematics Class.



EXAMPLE 1

EXAMPLE 2

L6 Functions 37

This assignment is an example of a function. The concept of a function is extremely
impertant in discrete mathematics. Functions are used in the definition of such discrete
structures as seguences and strings. Functions are also used to represent how long il
takes a computer to solve problems of a given size. Recursive functions, which are
functions defined in terins of themselves, are used throughout computer scicnee; they
will be studied in Chapter 3. This section reviews the basic concepts involving functions
needed in discrete mathematics,

DEFINFTION 1.  1.etA and B be sefs. A fumction ffrom A to 8 is an assignment of
exactly one ciernent of B to each element of A. We write f(a) = bif b is the unique
element of B assigned by the function f to-the element g of A. If f is a function from
Ato B, wewrite f: 4 — 8.

Functions are specified in many different ways. Sometimes we explicitly state the as-
signments. Often we give a formula, such as f(x) = x ~ 1. to define a function. Other
tmes we Use a compuler program to specify a function.

DEFINITION 2. If f is a function from A to B, we say that A is the domain of f
and B is the codomain of f. If f(a) = b, we say that b is the imageof aand ais a
pre-image of b. The range of f is the set of all images of elements of A. Also, if f is
a function from A to B, we say that fmaps Ato B.

Figure 2 represents a function f from A 0 B,

Consider the example that began this scetion. Let ¢ be the function that assigns
a grade to a student in our discrete mathematics class. Note that G{Adams) = A, for
instance. The domatn of G is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens},
and the codomain isthe set{4, B , D, F}. The rangeof G is the set{A, B, £, F}, because
there are students who are assigned each grade except D. Also consider the following
examples.

Letf be the function that assigns the last two bits of a bit string of length 2 or greater 1v
thar string. Then. the domain of £ 1s the sel of all bit strings of length 2 or greater, and
both the codomain and range are the set {00, 01, 10, 11}. [ ]

Let f be the function from Z to Z that assigns the square of an integer to this imeger.
Then, f(x) = x, where the domain of £ is the set of all integers, the codomain of / can
be chosen to be the set of all integers. and the range of £ is the set of all normegative

integers that are perfect squares, namely. {0.1,4.9,. .}, [ ]
// \ { B _
i 8
r —f{aJ

\A_/’ \

FIGURE2 The anclmn S Maps A to B,
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EXAMPLE 3

EXAMPLE 4

EXAMPLE 3

{For studenls fammiliar with Pascal) The domuin and codomain of functions are often
specified in programming languages. For instance, the Pascal statement

function floorx: realk integer

states that the domain of the Roor function 1% the set of real numbers and its codomain
is the set of integers. [ |

Two real-valued functions with the same domain can be added and multiplied.

DEFINTTION 3. Let f; and £, be functions from A to R. Then f; + f; and £, f»
are also functions from A to R defined by

h+ A0 = filx)+ A,
(fi f2)x) = f{x) A2,

Notu that the functions f] + f; and f| /> have been defined by specifying their values
atyin terms of the values of £ and f> atx.

Let f and f; be functions from R to R such that /1{x) = x?and £(x) = x — x%. What
are the functions f; + fand £ />
Selution: From the definition of the sum and product of functions, it follows that
Ch+ A0 = Ao+ ol = 4 (e~ xT) = ¢
and
ifdn = F(x -3 =x o -

When f is a function from a set A to a set B, the image of a subset of 4 can also be
defined.

DEFINITION4. Letf be a function from the set A to the set 8 and let Sbe a subset
of A. The image of § is the subset of B that cousists of the images of the elements of
3. We denote the image of S by f(5), so that

f5) ={fi9)|s€5)

LetA = {a. b e d etand B = {1,2,3, 4} with f(a) = 2, fib) = 1 fley = 4, fd) =
l.und f(e} — 1. The image of the subset § = {b, ¢, d}is the set f(§) = {1, 4} [ |

ONE-TO-ONE AND ONTO FUNCTIONS

Some functions have distinet images at distinct members of their domain, These func-
tions are said to be one-to-one.



EXAMPLE 6

EXAMPLE 7

EXAMPLE 8

1.6 Functions 59

DEFINITION 5. A fonction f is said to be one-to-one, of injective, if and only if
£(x) = f(y)implies that x = y for all x and y in die dongin of f. A finction is said
to be amn injection if it is one-to-one,

Remark: A function f is one-to-one if and only if fix) # f{y) whenever x # y. This
way of expressing that f is one-to-one is obtained by taking the contrapositive of the
implication in the definition.

We illusirate this concept by giving examples of functions that are one-to-one and
other functions that are not one-te-one.

Determine whether the function £ from {a, b, ¢, d} to {1,2,3,4, 5} with f(a} = 4,
f(BY = 5, fle) = 1,and f(d) = 3 is one-to-one.

Solution: The function f is one-to-one since f takes on different values at the four ele-
ments of its demain. This is illustrated in Figure 3. |

Determine whether the function f(x) = X from the set of integers to the set of integers
is ong-to-onc.

Sofution: The fuaction f(x} = x° is not one-to-one because, for instance, f(1) =
F{=11=1,but1 # -1, [ |

Determine whether the function f{x) = x + 1 is one-to-one.

Solution: The function f{x) = x + | is a one-to-one function. To demonstrate this,
note that x + 1 # y 4 [ when x # y. a

We now give some conditions that guarantee that a function is one-to-ene.

DEFINITION 6. A function f whose domain and codomain are subsets of the set
of real numbers is calied strictly increasing if f{x} < f(y)whenever x < yand x
and y are in the domain of f. Similarly, f is called strictly decreasing if f(x) > f(y)
whenever x < y and x and y are in the domain of 1.

a® L
e L
" [
d [ I

#5

FIGURE 3 A One-to-One Function.
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EXAMPLE ¢

EXAMPLE 10

EXAMPLE 11

EXAMPLE 12

o

7% L
. » L I
4. T

FIGURE 4 An Onto Function.

From these definitions, we see that a function that is either strictly increasing or strictly
decreasing must be one-to-one.

For some functinns the range and the codomain are equal. That is, every member of
the codomain is the 1mage of some element of the domain, Functions with this properiv

are called onto functions.

DEFINITEON7. A function f from A to B is called onto, or surjective, if and only
if for every element b € B there is an element a € A with f(g) = b. A function /
is called a surjection if it is onto.

We now give examples of onto functions and functions that are not onto.
Let f be the funcuon from {a, k. o, d} to {1, 2,3} delined by f(a) = 3, fib) = 2.
firy = 1, and fld) = 3.Is £ an onto function”?
Sofution: Since all three elements of the codomain are images of elements 1n the do-
main, we see that f is onto. This is illustrated in Figure 4. ]
Is the tunction fia) = x* from the set of inegers to the set of integers onlo?
Sofution: "The function f 1 not onto since there is no integer x with x> — — 1. for in-
stance. u
Is the function f{x) = x + | from the set of integers te the sct of imegers ontn”
Sotution: This function is onto, since for cvery integer y there is an inieger 1 such that

Fta) = v. To see this, note that f{x) = vifandonlyif x - | = y, which holds if and
onlyift v = v- 1 [ |

DEFINITION 8.  The function f is & one-fo-one correspondence, or a bijection, if
1t is both one-to-one and onto. '

The following examples illustraie the concept of a bijection.

[etf be the function from {&, b, ¢, ¢} w {1, 2, 3, 4} with f(a) = 4, Fihy =2 fley = 1,
and ftdy = 3. Is f a bijection?
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{ar One-to-one, ()] Ontes, (¢} One-to-one, (d} Nether one-to~ane (e} Nuta funcuon
it ot R ohe-Eo-ime d.l']Lj oo nor oaio

el uw e ol aw ®l el
ae sl >< ae

o2 b >‘< be o2 be 2 .2
he .l / bm

ei e >< ce el <cw el L
N L XI / I

[ de ad de- e wi
FIGURE 5 Exampies of Different Types of Correspondences.

EXAMPLE 13

Seluzion: The function f 15 one-to-one and onto. It is one-to-one since the function
takes on distinct values. It is onto since all four elements of the codomain are images
of elements in the domain. Hence, { is a bijection. n

Figuse 5 displays four functions where the first 15 one-to-one but not onto, the sec-
ond is onle but not one-to-one, the third is both one-to-one and onto, and the fourth s
neither one -lo-one nor onto, The fifth eorrespeondence in Figure 5 is not a function, since
it sends an element 16 two different elements,

Suppose that {15 & function from a set .4 to itscit, H A is finiie, then f is one-fo-
one if and only if it i5 onto. (This follows from the result in Exercisc 58 a4t the end of
this section.} This is not necessarily the case 1if A is infinite (as will be shown in Sec-
tion 1.70.

Let A be a set. The wdentiny fmcnion on A s the function 1y 1 A — A where

alx) = x

where v € A, In other words, the identity function ¢4 is the function that assigus each
element to itsclf. The function t4 is onc-te-one and onte. so what it is a bijection. [ |

INVERSE FUNCTIONS AND COMPOSITIONS OF FUNCTIONS

Now consider a one-lo-one correspondence f from the set A to the set B Since f is
an onto fusction, every clement of B is the image of sume element in A. Furthermaore.,
because f 1s also a one-te-one function, every clement of B 15 the image of a unique
clement of A. Consequently, we can define a new function from 5B to A that reverses the
correspondence given by /. This leads to the fullowing definition.

DEFINITION 9.  Letf be a one-to-one correspondence from the set A to the set B.
The inverse function of f is the function that assigns to an element b belonging to B
the unigue element a in A such that f{g} = b. The inverse function of f is denoted
by 7!, Hence, f'(b) = a when f(a) = b.

Figure 6 illustrates the concept of a an inverse function.

If a function f is not a one-to-one correspondence, we cannol define an inverse
function of /. When f ts not a one-to-one correspordence, either it is not une-to-one or it
18 not onto, If £ s not one-to-vne, soroe element & in the codomain is the image of more
than one element in the domain. If £ is not onto, for some clement b in the codomam.
no element @ in the domain exists for which f(a) = ». Consequeatly, if £ is not a
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EXAMPLE 14

EXAMPIE IS

EXAMPLE 16

FIGURE 6 The Function f ! Is the Inverse of Function f.

ong-to-one correspondence, we cannot assign o each element b in the codomain a
snique element a in the domain such that f{a) = & (because for some b there 1s e1-
ther more than one such a or no such a).

A one-to-one correspondence is called invertible since we can define an inverse
of this function. A funciion is not invertible it it is not a one-to-one correspondence.
since the inverse of such a function does not exist.

Let f be the function from {a. b, ¢} 1w {},2 3} such that fia) = 2. fiby = 3. and
Flo) = 1. Isf invertible, and if it is, what is its inverse?

Sedwion: The function f is wnvertible since it is a one-to-one correspondence. The
inverse functien £~ ! reverses the correspondence given by f. so that f (1) = c.
FU2 = acand £7(3) = b u

Lct f be the tunction from the sef of integers to the set of integers such that f{1) = x+ 1.
ls # invertible. and if it is, what is ity inverse?

Sefution: The function { has an inverse since it iv a one-to-one correspondence. as we
have shown. To reverse the correspondence, suppose that v is the image of x, 50 that
v = x + . Ther x = ¥~ 1. This means that ¥ — | 1s the unique element of Z that is
senl 10 v by f. Conseguently, £ (3} = v - L. |

Let f be the function from Z 1o Z with f(4) = ¥°. Is f invertible?

Solution: Since fi -1) = {1y = L, f is not one-to-one. If an inverse function were
detined, it would have to assign two element. to 1. Hence, { is not invertibic. |

DEFINITION 10, Let g2 be a function from the set A fo the set B and let f be 2
function from the set B to the set C. The composition of the functions f and g, denoted
by f ¢ g, is defined by

(fopdm = f(glm).

In other words, £ o g s the [uactdon that assagns o the element ¢ of A the element
assigned by f to g{u). Note that the composition f © ¢ cannoi be delined unless the
range of g 15 a subset of the domain of /. In Figure 7 the composition of functions s
shown.
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fog

FIGURE 7 The Composition of the Functions f and g.

Let g be the function from the set {g, &, ¢} to uself such that gla) = b, g(b) = ¢,
and gic} = a. Let f be the function from the set {a, b, ¢} to the set {1, 2, 3} such that
flay = 3, f(b) = 2,and f(c) = 1. What is the composition of f and g, and what is
the composition of g and 7

Solution: The composition f © g is defined by (f © gla) = f(gla)} = fiby = 2,
(fogr()y = flg(h)) = fle) = 1, and (fogic) = flgle)) = fla) = 3.
Note that g © f is not defined, because the range of f is not a subset of the domain

of g. [

Let f and g be the functions from the set of integers te the set of mtegers defined by
f(x) = 2x + 3 and g{x) = 3x + 2. What is the composition of f and g7 What is the
composition of g and /7

Solution: Both the compositions f ¢ g and g © f are defined. Moreover,
(Fog)x) = flgx) = fBx+2)=2Bx+23+3=6x+7
and
(g0 fx) = g(f(x) = g2x+3) =32x+3N+2 =6x+ 11 -

Remark: Note that even though f o g and go f are defined for the functions f and g in
Example 18, f © g and g © f are not equal. [a other words, the cormutative law does
not hold for the composition of functions.

When the composition of a function and its inverse 1s formed, 1n either order, an
identity function is obtained. To see this, suppose that / is a one-to-ene correspondence
from the sct A to the set B. Then the inverse function f~' exists and is a one-to-one
correspondence from B to A. The inverse function reverses the correspondence of the
orginal function, so that f~'(h) = awhen f{a) = b,and f(a) = bwhen FUb) = a.
Hence,

(f'o ey = fU(f@n = b = a,
and

(fof Wby = fUf by = fla) = b
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EXAMPLE 19

EXAMPLE 20

Consequently f~ "¢ f = vqund fo f ' = ty. where t, and 15 are the identity func-
tions on the sets A and . respectively. Thatis. (f ') = f.

THE GRAPHS OF FUNCTIONS

We can associate a sct of pairs in 4 X 8 to each (unction from A to B. This set of pairs s
called the graph of the function and is often displayed pictorially to aid in understanding
the behavior of the function.

DEFINITION 11. Let f be a function from the set A to the set B. The graph of the
function f is the set of ordered pairs {(2, b} | a € A and fa) = b}

Fromthe definition, the graph of a function f from A to Bis the subset of AX B containing
the ordercd pairs with the second cotry equal to the element of B assigned by / to the

tirst entry.

Display the graph of the function f(n} = 2a - | from the set of integers to the set of
inlegers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1) where # iy
an mteger, This graph is displayed in Figure 8, |
Display the graph of the function f{x) = x* {rom the set of integers to the set of inte-

gers.

Solution: The graph of f is the set of ordered pairs of the form (x, f(x)) = (x. )
where x 15 an integer. This graph is displayed in Figure 9. |
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FIGURE S The Graph of the FIGURE Y The Graph of f(x} = &
Function f(n} = 2n + 1from Z to Z. from Z to Z.
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SOME IMPORTANT FUNCTIONS

Next, we introduce two impottant fanctions in discrete mathematics, namely, the floor
and ceiling functions. Let x be a real number. The floor function rounds x down to
the closest imteger iess than or equal to x, and the ceiling function rounds x up 1o the
closest integer greater than or equal to x. These functions are often used when objects
are counted, They play an important role in the analysis of the number of steps used by
procedures tv selve problems of a particular size.

DEFINKTION 12. The floor function assigns to the seal number x the largest
integer that is less than or equal to x. The value of the floor function at x is de-
noted by | x|. The ceiling function assigns t the real aumber x the smallest integer
that is greater than or equal to x. The value of the ceiling function at x is denoted

by [x].

Remark: The floor function is often also called the greutest integer function. It 15 piten

denoted by [x].
L-XAMPLE 2] The following are some valtues of the floor and ceiling functions:
d=0 -t d=-n I-{=0
=3 [Bll=4 =7 [7=7 .

We display the graphs of the floor and ceiling functions in Figure 19,

The floor and ceiling functions are useful in a wide variety of applications, inciud-
ing those mvolving data storage and data transmission. Consider the following exam-
ples, typical of basic calculations done when database and data communications prob-
lems are studied.

14 3+ o—
2 T - e
| &= I
A ——+ —— —t—
3 2 =1 1 2 i a -2 1 1 2 3
.——'1—%1- —h ] —
*——i 7 1 [ —y 14
-— 1 4. -3 4
{a} v = x| fhy =[x}

FIGURE 10 Graphs of the (a} Floor and (h) Ceiling Fonctions.
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EXAMPLE 22

EXAMPLE 23

Data stored on a computer disk or transmitted over a data network are usuaily repre-
sented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required
to encode 100 bits of data?

Solution; To determine the nurnber of bytes needed, we determine the smallest integer
that is at least as large as the quotient when 100 is divided by 8, the number of bits in
a byte. Consequently, [100/8] = [{2.5] = 13 bytes is required. [ |

In asynchronous transfer mode (ATM} {a communications protocol used on backbone
networks), data are organized into cells of 53 bytes. How many ATM cells can be trans-
mitted in | minute over a connection that transmits data at the rate of 500 kilobits per

second?

Sefution: In | minule, this connection can transmit 500,000 - 60 = 30,000,000 bits.
Each ATM cell is 53 bytes long, which means that itis 53-8 = 424 bits Jong. To deter-
mine the number of cells that can be transmitted in 1 minute, we determine the largest
integer not exceeding the quotient when 30,000,000 is divided by 424. Consequently,
[30.000,000/424] = 70,754 ATM cells can be transmitted in 1 minute over a 500 kilobit
pet second connection, |

Table !, with x denoting a real number, displays some simple but important prop-
erties of the fioor and ceiling functions. Since these functions appear so frequently in
discrete mathematics, it is vseful fo look over these identities. Each property in this ta-
bie can be established using the definitions of the floor and ceiling furctions. Properties
(1a), {Ib), (tc), and (1d) follow directly from these definitions. For example, (1a) states
that {x] = »n if and only if the integer » is Jess than or equal to x and » + | is larger
than x. This is precisely what it means for n to be the greatest integer not exceeding
x, which is the definition of [ x] = n, Properties (1b), (1¢), and (1d) can be established
stmilarly,

We will show that (4a) is true. To show that (4a) is true, suppose that | x| = n where
n is aninteger, By (1a) it follows that 1 = x < n+ 1. Adding m to this inequality shows
thatntm = x+m < n+m+1. Using {1a) again, we see that| x +m) = n+m = |x|+m.

TABLE 1 Usefu] Properties of the Floor and Ceiling Functions.

(layty] = nifandonlyif # = x < n+ 1 where nis an integer
(1b)[x; - nifandonlyifn - 1 < 1 < n where nis an integer
teilxy = mifandonly if x — 1 << n = ¢ where ris an integer
(Idvixl = aifand only if x = m < 2 + 1 where n is an integer

e

(2t~ 1<l s xr=fx]<x+!

(Ra) |- %[ = —[y
(3m]--1l = —f1

4] [+ m| =[x + m when m is an integer

¢ 14biie « ] — [ + mwhen m is an integer

L
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which is what we wanted to show. We defer establishing the other properties to the

exercises.

There are certain types of functions that will be used throughout the text. These in-
clude polynomial, logarithmic, and exponentiaj functions. A brief review of the prop-
erties of these functions needed in this text s given in Appendix 1. In this book the
notation log x will be used to denote the logarithm to the base 2 of x, since 2 is the base
that we will usually use for logarithms. We will denote logarithms to the base b, where
b is any real number greater than 1, by log, x.

Exercises
1. Why 1s f not a function from R to R in the following
eguations?
a) fisi=Ux B flx)=Jx

L
¥

¢ f(x) =2 J(xt+ 1)

Determine whether f is a function from Z to R if

ay f{n) = *a. b fir) = 2+ 1.

o) fin) = Wn? - 4.

Betermine whethet £ 15 a function from the set of all bit

strings to the set of integers if

a) f{5)is the position of a 0 bit in §.

b} f(S) is the number of ! bits in 5.

el f(8}is the smallest integer § such that the ith bit of
Sis 1 and F(S) = 0 when §is the empty string. the
string with no bits.

Find the domain and range of the fellowing funciions.

a) the function that assigns to each nonnegative inte-
ger its {ast digit

b) the function that assigns the nexi largest integer 1o
a positive infeger

¢} the function that assigns 10 a bit string the number
of one bits in the string

d) the function that assigns to a bit string the number
of bits in the string

Find the domain and range of the following functions.

a) the function that assigns to each bit string the differ-
ence between the number of ones and the number
of zeros

b} the function that assigns to each bit string twice the
number of zeros in that string

¢) the function that assigns the number of bits left over
when a bit string is split into bytes (which ase blocks
of 8 bits)

d} the function that assigns to each positive integer the
largest perfect square not exceeding this integer

Find the following values,

a) [1.1] b) {1.1] ¢) |-0.1]
d[-01] e [29] f) [-2.99]
g 1z +131 W [+ + 5]

. Find the following values.

& (-}
) |5 -[3]

b} 3]
b (-1

) [-1]
g [§+131

a) 3]
&) {3]

. Determine whether each of the following functions

from {a, &, c, d} to itself is one-to-one.

a) fla)=b, fib)=a, flc) = ¢, fld) = d
b flay=86fiby=5bflc)=d, fldy=c
& fa)=d fih =5, fley=r¢ fld)=d

. Which functions in Exercise 8 are onto?

11,

12

13

-

h

14.

15,

. Determine whether each of the following funciions

from Z. 10 Z 1s one-to-one.

a) fim=n—1 b)Y finy=nt+1

o fin)y=nd d) finy ={n/2}

Which functiens in Exercise 10 are onta”

Give an example of a function from N to N that is

a) one-to-one but not onto,

b} onto but rot one-to-one.

¢} both onto and one-te-one {but different from the
identity function).

d) neither one-to-one nor onto.

Give an explicit formula for a function from the set of

integers to the set of positive integers that is

a) one-lo-one, but not onto.

b) onto, but not one-to-one.

¢} one-to-cne and onto.

d)} neither one-to-one ror onto.

Determine whether each of the following functions is a

bijection from R to R,

a) fix) = —3x+4

b) Ffixy = -3.a247

¢ flO=(x+ DA+

d) fix) =21 +1

Determine whether each of the following functions is a
bifection from R to R.

a) flx)=2x+1

b) f(x) = 22 +1

e) flxy = x?

d) flx) = (&7 +1¥ixt +2)
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18,
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fer§ = {-1.0,2,4 7% Find f(§yif

ar fier = L, by fixp=2x+1

¢) Hx ="usl d) puo =t s 183

Let fia) = %3] Find fe8) 1t

ay {2 L0235k h) § =

¢S {L&T I d) § =

Tet f{a - 21, What 1s

& S(Zy by SNV o f(R)?

Seppose that g 15 a function from A o 8 and £ 15 a fune-

tiow trem B w (.

at Show rhat if bath £ and ¢ are one-w-one functions,
then o g is alse one-lo-one,

by Show that if bath [ and ¢ are onto functions, then
f ey 1s ulso nato,

It fand ! < g are one-to-one. does it follow that g 15

une-te-one T Justy your answer.

It f and f = g ace onwe, does it follow that g is onto?

Justity your answer

0,1
(2,6, 10, 14},

. Find fegand go fwhere f(x) = ¥% + {and g(x} =

A b 2 ure tunctions from R o R,

. Fimd ¢+ ¢ and fg for the fonctions £ and g given in

Exorcige 22

et fin = avtband g{x) = cx+d wherea b, o, and

o are constants. Determine for which constants a. &, ¢
and d1nistrue that fog = go .

. Show that the function f{x) = ax + bfrom R to R is

invertible, where g and & arc constants. witha = 0, and
{ind the i erse of f

. Letf be a function from the set A o the ser B, Let § and

7 be subets of 4, Show that
ay fSo = fi85 U T
by fiSm by C fHi510 LT

27, Give an example to show that the inclusion i part (b)

n Exeree 26 may be proper.

Let # be a function from the set A to the set B. Let S he a
subset of B, We define the inverse image of § to be the
subset ot A contamning al]l pre-images of all elements of
5 We denote the myverse image of § by £ (5, so that

y

28.

29,

2. Shew tha v -

W9y = dau s 4| flr e SL

Let f be the functien from R 10 R defined by fi1)
v Find

al 7 Wb mofTHx 0w x <

cl oMl = 4h,

Let gea) = 2! Find

ai g athe blog 1d—L0 1

(o IR C RO VR | V9

. Let ) be a function from A w B. Let S and T be subsels

of B, Show that
a fFUSGTis f NS ufT
bt f STy = SN 4T,

. Tetf bed tunction from A o B. Let § be g subset of B,

FE.

L1 the closest imteger to the integer .
eacept when 1 is mdway between two integers, when
it i the Larger of these two integers.,

Show that 7 18

L2 3.4, 5

33

M.

35.

™
=

37.

38

40.

41,

42,

43

47.

49,

. Draw the graph of the funczon fin)

Show that [x -~ }]is the closest integer 10 the integer x.
cxcepl when v Is pudway between two infegers. when
it 1s the smaller of these two integers.

Show that if a 15 a rea) number, then [vj— 3] = Lifa
is ot an integer and Tx; — x| = O3 x iy an integer,
Show that if x is a real number. then « 1 < |y
x=]t]<xt 1

Show that il 18 & real number and m 15 an integer. then
le+ ] =[x+ m

Show that f v 15 a real number and 15 an integer, then
a) ¥ < mif and only if {3] > m,

b) n < aifund only if m < {x).

Show that1f x 13 a real number and # is an integer, then
a) x = nifandonly if[ € = n.

b} n = sifandonly if n = (1]

. Let x be a real number, Show that [2x) = xi+]v= 1

Prove that if x iy arcal number, theni- x! = | x]and
[—xi= iy

The function INT is found on some caleulators. where
INT(x) = v when tis a nonnegative real number and
INT(x} = [2] when ¢ is & pegative real number. Show
that this INT function satishes the identity INT{ -x) =
=INT{x).

Let ¢ and & be real numbers with @ < b Use the ftoor
ar/yr cerling functions to express the number of inte-
gers n that satisty the inequality e = n < b,

Let a and b be real numbers with a < A. Use the floor
and/or ceiling functions (o expeess the qumber of inte-
gers # that satisfy the mequality e < n <2 b

. How many bytes are required to encode r bits of dat

where r equals
a) 47 by 13? o 5007 d) 30007

How many bytes are required to encode n bits of day
where o equals
ay 77 by 177

ch IDCET?  d) 288007

. How many ATM cells (described in Example 23) can

be transmitted in 10 seconds over a link operating at
the lollowing rates?

al |28 kilnbits per second (1 kilobit = 1K) bits)

b} 300 kilobits per second

¢j 1 megabit persecond (! megabit = [ GO0.06 bits)
Data are transmitted over a particular Ethernet netwurk
in blocks of 1500 octets {hlocks of § bits). How mans
blucks are required to transmit the tollowing amounte
of data over this Ethernet network? (Note that a bytc iy
a synonym for an octet, a kilobyte is 1000 byies., and o
megabyte 15 1,000,000 bytes.)

a) 130 kilobytes of data

b) 384 kilobytes of data

¢} .34 megabytes of data

dy 45.3 megabytes of data

“ - fum 7
w7

Draw the graph ol the function fix) =
o R

2x) from R



50, Draw the graph of the function f(x) = {x/2] from R
to R

51, Draw the graph of the function f{x) = |z} +{&2 from
Ruw R

52, Draw the graph of the function fix) = T1j+ 272/ from
RiwcR

53. Draw graphs of each ot the following functions.
a) Sl - Lo+t b) fixy =[2x+
e) fix) = [x/3] d) f{v) =[]
e) S =]xr—24.x42 0 fioy = |2x), /2]
2 fun - g4 ]

54, Draw graphs of each of the following functiens.
a) ftoy =[3:-12] b) flx) — [0.2x]
¢ fix) = M d) fixs = !x?
€) f{u =[x2}x2] B [lx) - <2+ ix2
B fiy - 12[v2 + 1

35. Find the inverse function of fix) = x* = L

56. Suppose tai f is an invertible function from ¥ to Z and
#1s an invertible function from X to V. Show that the
inverse uf the eomposition fogis givenby(fog) ! =
g lop L

57. Ler 8 he o subset of & universal set [7. The charac-
feristic function £, of § in the function from {7 to the
set {0. 17 such that fe(x) = 1 i x belengs to S and
folx) = (0 of r does not helong 10 5. Let 4 and 8 be
sets. Show that for all x
a) fiople) = falrd- fuin)
B foon(x) = fata) + falad — falx) - fr(x)
¢ iy = 1
d) fazu(2) = Fox)+ frte) - 2f0020) fata)

58, Suppese that f i« afunction from A to B. wherc 4 and 8
are finrte sets with |A] = 8. Show that f s one-to-one
if and only 1if 1t 15 onte.

A program desigeed 10 evaluate a function may not pro-
duce the comect value of the function for alt clements in the

1.7 -
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domain of this fupction, For example, a program may not
produce a correcl value becanse evaluating the function
may lead to an infinite loop or an overflow.

To study such situations, we use the concept of a partial
function. A partial function f f'rom a set 4 (v a set B 1
an assignment to cach element o in a subset of A, called
the domain of definition of £, of a unique element 5 in 8.
{he sets A and B are called the domain and codomain of
£ respectively. We say that £ 1» undefined for clements in
A that are not in the domain of definivon of 7. We write
J 1A = B denote that £ is a partial function from A 1o
8. (Thrs is the same notation as is used for functions. The
context in which the notation is used determnes whether f
is 4 partal functivn or a total function.) When the domain
of definition of f equals A, we say that f is a total function.

59. For each of the following partial funclions. determine
its doman, codomain, domain of definiton, and the set
of values for which it 15 undefined. Also. determme
whether it is o toral tunction.

a) {4 — R, fin) = I/n

b) f: & ~Z tin) =[ni2l

¢} frE)ZE —Q, fimr) = min

d) f:LXZ =L fimn) = mn

e I EXZ L fimmy=m-nifm>n

60. a} Show thar a pattial function from A to 8 can he

viewed as a function [~ from A to 8 U {u} where
u 1% net an element of 8 and

| flay 1f e belongs to the domann
HHay = of definimws of f
7 if f 15 undefiped at o

by Using the constraction 1n (2}, tind the funchon £~
corresponding to euch partial function in Excrcise
39

Sequences and Summations

INTRODUCTION

Sequences are used fo represent ordered lists of elements. Sequences are used in discrete
mathematics in many ways. They can be used to represent solutions to certain counting
preblems, as we will see in Chapter 5. They are alse an importani data structure in
computer science. This section contains a review of the concept of a function. as well
as the notation used to represent sequences and sums of terms of sequences.

When the clements of an infinite set can be listed, the sct is called countabie. We
will conclude this section with a discussion of both countable and uncountabie sets,

SEQUENCES

A sequence is a discrete structure used 10 represent an ordered {ist.
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EXAMPLE 5

EXAMPLE 6

EXAMPLE 7
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different sequences that start with any finite set of iritial terms), knowing the first few
terms may help you make an educated conjecture about the identity of your seguence.
Once you have made this conjecture, you can try to verify that yow bave the correct
sequence,

When trying to deduce a possible formula or rule for the terms of a sequence from
the initial terms, try to find a pattern in these terms. You might also see whether you
can determine how a term might have been produced from those preceding it. There
are many questions yeu could ask, but sorme of the more useful are;

1 Are there runs of the same value?

w Are terms obtained from previous terms by adding the same amount or an amount
that depends on the position in the sequence?

¥ Are terms obtained from previous terms by multiplying by a particular amount?
% Are terms obtained by combining previous terms in a certain way”?

The following examples illustrate how this type of problem might be attacked.

What is a rule that can produce the terms of a sequence if the first 10 terms are 1, 2. 2,
33,344,447

Solution: Note that the integer 1 appears once, the integer 2 appears twice, the integer
3 appears three times. and the integer 4 appears four times. A reasonable rule for gen-
erating this sequence 1s that the integer » appears exactly s times. so the next five times
of the sequence would all be 5, the fullowing six 1erms would all be 6, and so on. The
sequence generated this way is a possible match. ]

What is a rule that can produce the teims of a sequence if the first 10 terms are 5, 11,
17,23.29,35. 41,47, 53,597

Solution: Note that each of the firsi 10 terms of this sequence after the first is obtained
by adding 6 to the previous term. {We could see this by noticing that the difference
between consccutive terms is 6.) Consequently, the nth term could be produced by
starting with 5 and adding 6 a total of # - 1 times; that is, a reasonable guess is that the
nthtermis S+ 6{n ~ 1) = 60 - | |

The sequence in the solution of Example 6 is an arithmetic progression, which
is asequence of theformw. ¢ +d. g +2d.a + 3d. ..., a + ad, .. .. In panticular, this
sequence has @ = Sand d = 6.

Another useful technigue for finding a rule for generating the terms of a sequence
1s to corpare the terms of a sequence of interest with the terms of 2 well-known integer
sequence, such as 1erms of an anthmetic progression. terms of a geomeltric progression
(see Example 123, perfect squares, perfect cubes. and 5o on. The first 10 terms of some
sequences you may want to keep in mind are displayed in Table |,

Comecture a simple lermula for ¢, if the first 10 1erins of the sequence {a,} are 1, 7,
25,79, 341,727, 2185, 6559, 19681, 59047

Sotunon: To attack this problem, we begin hy looking at the difference of consecutive
terms. but we do not see a pattern. Whent we form the ratio of consecutive terms to see
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web

web

TABLE T Some Lisefu! Sequences,

nth Term First I} Terms
n* i.4,9 16,25, 36,49, 64, 81, 100. ..
n I, 8, 27,64, 125, 216. 343, 512, 729, 1000, ...
n 1, 16, §1. 256, 625, 1296, 2401, 40956, 6561, X0, ...
2 2,04, 8,16, 32, 64, 128, 296, 512, 1024, . .
3" poo3 9 27 81,243,729, 2187, 6561, 19683, 59049, ..

i n! l 1,2, 6,24 120, 720, 5040, 40320, 362880, 3628800, . .. J

whether each term is a multiple of the previous term, we find that this ratio, aithough not
a constant. is close to 3. So it is reasonable to suspect that the terms of this sequence are
generated by a formula involving 3. Comparing these terms with the corresponding
terms of the sequence {3%}. we notice that the nth term is 2 less than the corresponding
power of 3. We see thata, = 3" ~ 2 for | = n = [0 and conjecture that this formula

helds for all #. [ ]

We will see throughout this text that infeger sequences appear in a wide runge of
contexts in discrete mathemnatics. Sequences we will encounter include the sequence
of prime numbers (Chapier 2), the number of ways to order # discrete objects (Chapter
4). the number of the moves required to solve the famous Tower of Hanoi puzzie with
nt disks (Chapter 5), the number of rabbits on an island after n months (Chapter 5}, and
the number of comparisons needed to sort # numbers (Chapter 8).

Integer sequences appear in a fabuiously wide range of subject areas besides dis-
crete mathematics, including biology, physics, engineering. chemistry, and physics, as
well as in puzzles. A wonderfully diverse coliection of over 8000 different integer se-
quences has been constructed over the past 20 years by the mathematician Neil Sloane.
who has teamed up with Simon Plouffe, to produce The Encyclopedia of Integers Se-
guences ([SiPI93]). An extended list of the sequences is available on the Web, with new
sequences added regularly. There is aiso a program accessible via the Web that you cap
use to find sequences from the encyclopedia that match initial terms you provide.

Neil Moane thorn [93).  Neil Sloane studied mathematics and electrical engineenng ar the Uriversaty
of Methourne on 2 schelarship from the Austealian state telephone company. He mastered many telephane-
related jobs. such as erecting telephone poles, in bis summer work. After graduating, he designed minimal
vost telephone setworks in Australia. In 1962 he came to the United States and studsed electrical engineering
at Comell University. His Ph.D. thesis was on what are now called neural networks. He took a joh at Bell
Labs o 1969, working in many arcas, including network design, ceding theery. and sphere packing. He
now works for AT&T Labs, moving there from Bell Labs when AT&T split up in 1996. One of his favorite
problems is the kissing problem (a name he coined), which asks how many spheres can be arranged in
dimensions so that they ali touch a central sphere of the same size. (In twe dimensions the answer is 6, since
6 pennies can be placed <o they touch a ceaal penny. In theee dimensions, 12 billiasd balls can be placed
<0 that they touch a venmal hilliard ball. Twe bulliard balis that just woch are said te “kiss,” giving rise to the
terminology “kissing problem™ and “kissmg number.”) Sloanc, together with Andrew Odlyzko. showed that
in 8 and 24 dimensions the optimal kissing numbers are, respectavely, 240 and 196,560, The kissing number
s known in dimensions 1, 2, 3, 8, and 24, but not 1 any other dimensions. Sloane's books include Sphere
Packings, Latces and Groaps, 3d ed., with John Conway; The Theary of Error-Correcting Coder with
Jessie MacWilliams, The Encyclopedia of Integer Sequences with Simon Plouffe; and The Rock-Climbing
Guide to New Jersey ( rags with Paul Nick. The last ook dernonstrates his interest in rock climbing:
includes more than 50 climbing sites in New Jersey.
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SUMMATIONS

Next. we introduce summaltion notation. We begin by describing the notation used to
express the sum of the terms

armam-.-ll A ‘luﬂ

from the sequence {a,}. We use the notation
M
>

Jom
o represent
Ay Tty + 000+ g

Hete, the variable f1s called the index of summation, angd the choice of the letter ; as
the variable is arbitrary: that is, we could have used any other lesier. such as { or . Or.
in notation,

Al
-

I H
J=m r-m k=m
Here, the index of summation tuns through all integers starting with its lower limit
m and eading with its upper limit #z. The uppercase Greek leiter sigma, 2., is used to
denote summation. We give some examples of summation notation.

Express the sum of the first 100 terms of the sequence {a,}, where g, = 1/n for n =
1,23 ..

Solution: The lower limit for the index of summation is 1, and the upper limit is 100,
We write 1his sum as

e
R
=/
»
What is the value of > *_| ;27
Solution. We have
S 2+ 44§
S S 1 449416425
= 55, -

What is the value of Y§ (-~ 1)F?

Salution: We have

8
G R T AR G S B S LR C LA B
ki T+(—Dr i+ (=D +1

- [

[
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EXAMPLE 11

EXAMPLE 12

Sometimes it is useful to shift the index of surnmation in a sum. This is often done
when two sums need 1o be added hut their indices of summatior do not match. When
shifting an index of summation, it is important to make the approprate changes in the
corresponding summand. This is illustrated by the following example.

Suppose we have the sum

2

J

—_

i
but want the mdex of summation to run between ) and 4 rather than from 1 to 5. To do
this, we let £ = j — [. Then the new summation index runs from 0 to 4, and the term
j? becomes (k + 1)°. Hence

5 4
S D+ 1R
-1 k=0
It is easily checked that both sumsare I +4+9 + 16 + 25 = 55. [ |

A geometric progression is a sequence of the form

R
a ar,dr ar, ... art,

where a, the initial term, and r. the commuon ratio, are real rumbers. Sums of terms
of geometric progressions commonly arise; such sums are called geometric series. We
will find a formula for . the sum of the fitst » + I terms of a geometric progression
with initial term a and commor nenzero ratio 7, that is,

S = Zari.

g =0

To compute §, first multiply both sides of the equality by ¢ and then mantpulate the
resuiting sum as follows:

"
rs=r> ar
i=0

n

= N grt!

= :\_: ar* + (ar"'! — g {Thi» equality is obtained by shilling the index of

-

k=t surnmation, setting & = j + 1.)

S+armt— o

From these equalities, we see that

rS =5+ (ar"t! — a).
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Solving for § shows that if r = |

S = ar"+]__~_c_4‘
r—1
It r = I, then clearty the sum equals (7 + 1)a. =

Deuble summations arise In many contexts (as in the analysis of nested loops in com-
puter programs). An example of  double summaticn is

4 3
2,24
el
To evaluate the dowble sum, first expand the inner summation and then continue by
cornputing the outer summation:

4 3 ]
DINif = D42+ 3)

r=14-1 i=1
4
= > 6i
i—1
=6+ 12+ 18 +24 = 60 B

We can also use summation notation to add all values of & function, or terms of an
indexed set. where the index of summation reng over all values i a sct, That is. we
wIiie

D fs

JES

1w represent the sum of the values f(a), for all members 5 of 5.

What is the value of & o5 4, 87

Sofution: Since 2 14 8 represents the sum of the values of 5 for all the members
of the set {0, 2, 4}, it follows that

D s=0+2+4=6 .
W n2,4y

Certatn sums arise repeatedly throughout discrete mathematics. Having a collection
of formulae for such sums can be useful, s0 Table 2 provides a small table of formulae
for comimonly occurring sums.

We derived the first formula in this table in Example 12, The remaining three for-
muiae give us the sum of the first n positive intergers, the sum of their squares, and
the sum of their cubes. These three formulae can be derived in many different ways
(for example, see Exercises 2f and 22 at the end of this section). Alse note that gach
formula, once known, can easily be proved vsing mathematical induction, the subject
of Section 3.2.

Example 15 illustrates how the formulae i Table 2 can be useful.
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EXAMPLE 15

EXAMPLE 16

TABLE 2  Some Usefil Summation
Formulae.
Sum r Closed Form
+f _
Shpart ] ar’;h S
~R nn+ l]
Tk k ‘ { :
gy nin+ 1020 + ]
Dy K ‘ (—'_‘5(___}
o w1
A R

Find > % k2.

_ . . 100 - - 16K
Solution: First note that since 2, 1 ke = Lf{ 11.’3 + lk=541k2» we have

W e B
SE=DE-SE
h =50 k=1 ko=

Using the formula X 7_, &% = ntn + 1)(2n + 1)/6 from Table 2, we see that

100 . .2 S50 -
SUE - @9—1—(—)—1—“0}— 39509 = 338,350 — 40,425 = 297925,

P 6 6 [

CARDINALITY (optional)

Recall that in Section 1.4, the cardinality of a finite set was defined to be the number
of elements in the set. It is possible to extend the concept of cardinality to all sets, both
finite and infinite. with the following definition.

DEFINITION 2.  The sets A and B have the same candinadity if and only if there
is & one-to-one correspondence from A to B.

Tu see that this definition agrees with the previous definition of the cardinality of a finite
set as the number of elements in that set, note that there is a ane-to-one correspondence
between any two finite sets with a elements, where 1 is a nonnegative integer.

We will now split infinite sets inte two groups, those with the same cardinality as
the set of natural numbers and those with different cardinality.

DEFINITION 3. A set that is either finite or has the same cardinality as the set of
natural numbers is called countable. A set that is not countable is called uncountable.

We now give exampies of countable and uncountable sets.

Show that the set of odd positive integers is a countable set.

Sofution: To show that the set of odd positive integers is countable, we will exhibit a
one-to-one correspondence between this set and the set of natural numbers. Consider
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FIGURE1 A One-to-One Correspondence Between ¥ and the Set of Odd Pesitive
Integers.

the funclion

fin) = 2n - |
from N to the set of odd positive integers. We show that £ is 4 one-to-one correspondence
by showing that it is both one-to-one and onta. To see that it is one-to-one, suppose that
finh = fim). Then2n — 1 = 2m — 1, so that & = m. To see that it is onto, SUPpPOSE
that 1 is an odd positive integer. Then fis | less than an even integer 24, where k is @
natural number. Hence 1 = 2k—1 = f{k). We display this one-to-one correspondence
in Figure 1, |

An infiute set is countable 1f und onlv it it is possible to list the elements of the set
in 4 sequence (indexed by the naiural numbers). The reason for this is that a one-to-one
correspondence f from the set of natural numbers to a set S can be expressed in terms
of asequence ay, @y, ..., a4y, .. . wherea; = f(I),a2 = f(2),. .,an = f(n),.... Far
instance, the set of odd integers can be listed in a sequence ay, az, ... 4, . . ., where
ay = 2n— 1.

We now give un example of an uncountable set.

Stow that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the
set of real nombers 15 countable and atrive at a contradiction. Then, the subset of all
real numbers that fall between 0 and | would also be countable (since any subset of
a countable set is also countable; see Exercise 32 at the end of the section). Under
this assumption, the real numbers between 0 ard 1 can be listed in some order, say.
#1. t3, ra, ... Let the decimal representation of these real rumbers he

ry = 0dpdpdiady . ..
r» = Qdydndyday ..

Fy = 0.d31d32d33(f34. ..
ri = Qdydapdpdy

where dj; €10, 1,2,3,4,5,6,7, 8 9} (For example, it r; = 0.23794102. _, we have
d) = 2,d;; = 3,dy3 = 7, and so on.) Then, form a new real number with decimal ex-
pansion r = Q. dpdsdy . . ., where the decimal thgits are determined by the following
rle:

4 ifdy =4

4=0s ifd #a
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{As an example. suppose that ry = 0.23794102.., r; = 0.44590138..., r; =
0.09118764 ..., ry = 0.8G553900. ., and so on. Then we have r = 0.djchdsdy ... =
14544, whete d) = 4since d)) # 4. dy = Ssince dp = 4, d; = dsince dyy # 4,
dy = 4since dy = 4, and so on,)

Every real number has a unique decimal expansion (when the possibility that the
expansion has a tail end that consists entirely of the digit 9 is excluded). Then, the
real number r is not equal to any of r1. rs, .. ., since the decimal expansion of r differs
from the decimal expansion of 1, in the /th place to the right of the decimal point, for
cach i,

Since there is a real number r between 0 and | that is not in the List, the assumption
that all the real numbers between 0 and 1 could be listed must be false, Therefore, ail the
real numbers between 0 and 1 cannot be listed, so that the set of real numbers between
and | is uncountable. Any set with an uncountable subset is uncountable {sec Exercise

35 at the end of this section). Hence, the set of real numbers is uncountable. [ ]

Exercises

. Find the following terms of the sequence {a,} where

g = (=3 + 5"

al a b d) as

)y

» What is the term ay of the sequence {g,} if ¢, equals

by 77
dy — (=2

a) 2t
¢l 1 =1y

- What ure the temis ay. ;. g, and ay of the sequence

{a,}, where a, equals
ai 24 1 by in+ bt
o) |nf2)? d) (#12 + nf2)?

. Whai me the terms gy, ¢y, a;, and a3 of the sequence

{aa}. where a, equals
aj (—2y7 by 37
o T+477 0 d) 2" R (=2

< List the first 10 terms of cach of the following sc-

quences.,

a) the sequence that begins with 2 and in which each
successive ferm is 3 more than the preceding term

B the sequence that lists cach positive integer three
times., tn Increasing order

¢} the sequence that lists the odd positive integers in
ncreasing order, listing each odd integer twice

d) the sequence whose nth term 15 pl — 27

€} 1he sequence that begins with 3, where each suc-
ceeding term s twice the preceding term

D the sequence whose first two terms are 1 and cach
scceedmg term 1y the sum of the two preced-
ing termus (This is the famous Fibonacci sequence,
which we will stody [ager in this teat.)

gl the sequence whose nth term is the number of bis
in the binarv eapansion of the number # (defined in
Seetion 2.3)

h} the sequence where the ath term is the number of
fetters i the English word for the index »

6. List the first 10 terms of each of the following ve-

quences.

a) the sequence obtained by starting with 10 and ob-
taining each term by subtracting 3 from the previous
term

b} the sequence whose nth term is the sum of the first
r positive integers

¢} the sequence whose aih term is 37 — 27

d) the sequence whose nth term is | /n]

€) the sequence whose first two terms are 1 and 2 2nd
cach succeeding term 15 the sum of the two previous
terms

f) the sequence whose ath term is the largest integer
whose binary expansion (defined in Section 2.3) has
n hits. {Write your answer in decimal notation, )

g) the sequence whose terms are constructed sequen-
tially as follows: start with 1, thep add |, then mul-
Hply by 1, then add 2, then multiply by 2, and
0 On

h) the sequence whose mh term is the largest integer
ksuchthat k! = n

- Find at least theee differem sequences beginning with

the terms 1. 2. 4 whose teons are generated by a simple
formula or rule.

. Find at teast three different sequences beginning with

the terms 3. 5, 7 whose terms are generated by a simple
formula or rule.

» For each of the following lists of integers, provide a

simple formula ot rule that gencrates the terms of an
integer sequence that begins with the given list,

) LOLLOO L LLG001,..

b 1,2,2,3,4.4.56.6,7.8,8,. .

¢ L0.2,0,4,080,16,0,. ..

d} 3.6,12,24, 48, 96,192,
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-

*11.

*12.

13.

14,

15,

16.

17.

e) 15,8.1, -6, -13, 20, -27. ...

0 3.5812,17,23,30,38,47.. ..

gy 2. 16,54, 128, 250, 432, 688, . ..

by 2.3, 7,25, 121,721, 5041, 40321, ...

For each of the following lists of integers, provide a

simple formula or mle that generates the terms of an

integer sequence that beginy with the given list.

ay 3.6, 11, 18,27, 38,51, 66, §3, 102,

by 7.11.15. 19,23, 27, 31, 35, 39,43, . ..

el [, 10, 11, 104, 101, 110, 111, 1000, 1001,
i, ...

dy 1,2,2,2,3,3,3.3,355,55555,...

e} 0,2, 8, 26, BQ. 242, 728, 2186, 6360, 19682, ..

fr 1. 3, 15, 105, 945, 10395, 133135, 2027025,
34459425, ..

o 1001, L0400 1, L1 L1, ...

b) 2. 4. 16, 236, 65536, 4294967296, ..

Show that if &, denotes the nth positive integer that is

not a perfect square, then a, = n+ {./n}, where {x}

denoles the integer closest to the real number x.

Let a,. be the nth term of the sequence 1,2, 2.3, 3, 3,

4.4.4.4.5.5 5,5, 5,6,6.6,6,6, 6, .. constnicted

by including the integer k exactly k times. Show that

@y = [\V2r+ 5]

What are the values of the following sums?

1014,

5 4
a Mk+1D by Y (-2¥¢

L= =

I F
QY3 d) St -2)

- r=0
What are the values of the following sums, where § =
{1,2.5,71

al ™ b N
JC8 jEs
O M dy M
ey JEX

What is the value of each of the following sums of terms
of a gcomenu. progressmn“

) }, ‘2 h) \ 2
i _,l=]
X g

0> 1—W dy > 2-(-3
; B 0

Find IhL value of each of the h)l}cwmg Sums.

a) 1(1+(—1V) h) ,\_1(31—21}
;=D su
3

d) > (27 =29

FER

b
Q N2 +3)
=1

Compute each of the following double sums.
L 2 3

a) 2 NG+ b) I X(2i+3))
1olg=t =0 =0
o2 2 3

> N dy 5> i
-1y I 1=0y=1

18.

19.

21.

*22.

23

24,
*25.

*26.

L7 Exercises 70

Compute each of the following double sums.
32 32
a) 2 NG by 2 Y (3i+2)

f=1)=1 1=0 =0
3- 2 B 2- 3‘\ .2 .3

) 2> d) > X
i=1;=0 =0 =t

Show that }_‘,jﬂ(a_, ~ a,-|) = a; ~ ag Where

dn. d). ..., e 8 3@ sequence of real numbers, This type
of sum is called telescoping.

. Use the identity 1/(k(k + 1)) = 1/k ~ 1/(k + 1) and

Exercise 19 to compute >y _, 1/(k(k + 1)).

Sum hoth sides of the identity k2 — (k—1)2 = 2k — 1

from & = 1to £ = n and use Exercise 19 to find

a) aformula for 3 7_,(2k — 1) (the sum of the first n
odd natural numbers),

b) a formula for 2 7 lk

Use the technique given in Exercise 19, together

wiLh ﬂ'me2 result of Exercise 13b, 10 find a formula for

- 1;c

Find Lk:lmk_ {Use Table 2.)

Find ¥ %, &%, (Use Table 2.)

Find a formula for >°7_ | k], when m is a positive -

teger. (Hint: Use the formula for 3°5_ k°.)

Find a formula for 37, [ k|, when m is a positive

integer. (Hint: Use the formiula ’ror Sk

There is also a special notation for products. The product of

Qm, Aot

27,

.., @, 18 Tepresented by

nl
[Ta,
j=m

Whal are the values of lhe following produces?
a) ﬂ. 0 i b} l_[I s
o MYy @ IE,2

The value of the factorial function at a positive integer .
denoted by n'. 15 the product of the positive integers from 1
w0 7, Inclusive. Also, we specify that &' = 1

28,
29,

30.
3.

*32

Express ! using product notation.

Find >3 jt.

Find [T}_, /1.

Deterrmine whether cach of the following sets is count-
able or uncountable. For those that are countable, ex-
hihit a one-to-one correspondence between the set of
natural numbers and that set.

a} the negative integers

b) the even inlegers

©) the real numbers between 0 and

d} integers that are multiples of 7

Determine whether each of the following sets is count-
dble or uncountable. For those thal are countable, ex-
hibit 4 one-to-one correspondence between the set of
natural numbers and that set.

a) integers not divisible by 3

b) integers divisible by 3 but not by 7
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¢) the real numbers with decimal representations con-
sisting of all 1

d} thereal numbers with decimal representations of 4ll
15 or s

*39.
*40.

Show that the set of all bit strings is countable.

Show that the set of real rumbers that are solutions of
quadratic equations ax? + bx + ¢ = 0, where o, b, and
¢ are inkegers. is countabla.

33. 1fAisanuncountable set and B is a countable set, must  #41. Show that the set of all computer programs in 4 par-
A -~ B be uncourrable® ticular programming language is countable. (Hint: A
34, Show that a subset of a countable set is also count- computer program writteh in a programming language
able can be thought of as & soring of symbols from a finite
35, Show that if A is an uncountable set and A C B, then alphabet.)
B is uncountable. *42. Show that the set of functions from the positive integers
36, Show that the union of two countable sets is countable. wtheset{. 1, 2 3,4, 5,6, 7, 8, 9}is uncountable, (Hiny.

. Show that the umon of 4 countable number of countable

sets is countable.

First set up a one-to-one correspondence between the
set of real numbers between 0 and 1 and a subset of

*38. A real number is called rational if it can be written as these functions. Do this by associating to the real num-
the quetient of two integers, Show that the ser of ratio- ber O.dydy . d, ... the function f with f(n) = 4,,.)
nal numbers between (+ and 1 is countable. (Hint; List  *43. We say that a function is computable if there is 4 com-

the elements of this set in order of increasing p + g,
where p is the numerator and g i< the denominator of a

puter program that finds the values of this function. Use
Exercises 41 and 42 (o0 show that there are functions

fraction ply in lowest terms.) that are not computable.

1 8

INFTRODUCTION

Suppose that a computer program reorders any list of » integers into a list where the
integers arc in increasing order. One importani consideration concerning the practi-
cality of this program is how long a computer takes to solve this problem. An anal-
ysis may show that the time used w reorder a list of » integers (where these inte-
gers are less than some specified size) is less than f{n) microseconds, where f{n} =
100nlogn + 258 + 9. To analyze the practicality of the program, we need to under-
stand how quickly this function grows as n grows. This section reviews some important
methods used in cstimating the growth of functions. We will introduce the notation
most coromonly used in the analysis of the growth of functions, namely, big-0 no-
tation. We will develop some useful results about the growth of functions using this
notation.

BlG:-0 NOTATION

The growth of functions is often described using a special notation. The following def-
inition describes this notation.

DEFINITION 1. Letf and g be functions from the set of integers of the set of real
numbers to the set of real numbers. We say that f(x)}is O(g(x:i) if thiere At Coustants
C and k such that

[f(x) = Clg(x)}
whenever x > k. (This is read as * f(x) is big-oh of g(x).”)
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Remark: To show f(x)is O(g(x}), we need only find one pair of constants C and & such
that | f (x)| = Clg(x)|if x > k. However, a pair C, & that satisfies the definition is never
unique. Moreovcr, if one such pair exists, there are infinitely many such pairs. A simple
way to see this is to note that if C, k is one such pair, any pair C', k' with C < C'
and k < & also satisfies the definition, since {f(x)| = Clg(x)| = C'|g(x}| whenever
x>k =k

Show that f{x) = x? + 2x + 1 is O(x%).

Solution: Since
D= +2x+1 = 2 +28 + %5 =4x°

whenever x > 1, it follows that f{x)is O(x*). (To apply the definition of big-O notation
here, take O = 4 and & = 1. It 15 not necessary (o use absolute values here since all
functions in these equalities are positive when x is positive.)

Another approach is to note that when x > 2, it follows that 2x = x* Conse-
quently, if x > 2, we see that

0= +2x+1 = 22+ + 22 =38

{We apply the definition with C = Jand k = 2.)

Observe that in the relationship £(x) is O(x%), x* can be replaced by any function
with larger values than 1, for example, fix} is Q(x’}). f{x}is O(x* +2x + 7). and o
on. It 15 also true that x* is O(x* + 2x + 1), since x2 < x2 + 2x + | whenever x = 1,

Figure | illustrates that x* + 2x + 1is O(x?). n

Note that in Example ! we have two functions, f(x) = x* + 2x+ | and g(x) =
%, such that f(x) is O(g(x)) and g(x} is O(f(x)}—the latter fact following from the
inequality x* = x% + 2x + I, which holds for all nonnegative real numbers x. We say
that two functions f(x) and g{x) that satisfy both of these big-O retationships are of the
sume order. (See pages 88-90.;

1 Vilirledx?  forasd

1 iy
! 2

FIGURE 1 The Function 12 + 2r + 1 Is ({22).
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Remark: The fact that f{x) is O(g(x)) is sometimes written f{x) = Og(x)). How-
ever, the equals sign In this notation does not represent a genuine equality. Rather, this
notation tclls us that an inequality holds relating the values of the functions f and g for
sufficiently large nurbers in the domains of these functions.

Big-( notation has been used in mathematics for almost a century. In computer
science 1t is widely used in the analysis of algorithms, as will be seen in Chapter 2.
The German mathematician Paul Bachmann first introduced big-O notation in 1892 in
an important book on number theory. The big-Q symbo! is sometimes called a Lan-
dau symbel after the German mathematician Edmund Eandau, who used this notation
throughout his work. The use of big-( notation in computer science was popularized
by Donald Knuth, who also introduced the big-Omega and big-Theta notations defined
later in this section.

When f(x) is O(g(x)). and h(x) is 2 function that has larger absolute values than
g(x)}does for safficiently large values of x, it follows that £{x) is O(A{x)). In other words,
the function g{x) in the relationship f{x) is O(g(x)) can be replaced by a function with
larger absclute values. To see this, note that if

0 = Clgxy x>k
and if jA{x)| > |g(x)! for all x > k, then
lfix)] < Clh(x)|  if x> k.

Hence, f{x)is OCh(x)).

When big-O notation is used. the function g in the velationship f{x) is O(g(x)} is
chosen to be as small as possible (sometimes from a set of reference fusctions, such as
functions of the form x”, where n is a positive integer}.

In subsequent discussions, we will almost always deai with functions that take on
only posilive values. All references to absolute values can be dropped when working
with big-( estimates for such functions. Figure 2 illustrates the relationship £(x) is

O(g(x)).
The following example illustrates how big-O notation is used to estimate the growth

of functions.

Paul Gustav Heinrich Bachmann (1837-1926).  Paul Bachmann, the son of a Lutheran pastor, shared his
father’s pious lifestyle and love of music. His mathematical talent was discovered by one of his teachers,
even though he had difficulties with some of hus early mathematical smdies. After recuperating from -
berculosis in Switzerland, Bachmann studied mathewatics. first at the University of Berlin and later at
Gottingen, where he attended lectures presented by the famous number theorist Dirchlet. He received
his destorate under the German number theorist Kummer in 1862; his thesis was on group theery. Bach-
manh was a professor at Breslau and later at Miinster. After he retired from his professorship, he con-
unued his mathernarical writing, played the pisno, and served as 2 music critic for newspapers. Bach-
mann’s mathematical writings inclide a five-volume survey of results and methods in number theory, a
two-volume work on elementary number theory. 2 book o lrational numbers, and a book on the famous
conjecture known as Fermat’s Last Theorem. He introduced hig-2 notation 1t his 1892 book Anafytische
Zahlentheorie

Edmuend | andau {1877-1938).  Fdmond Lande, the son of 2 Berlin gynecologist, attended high school
and university in Berlin, He received his doctorate in 1899, under the direction of Frobenius. Landau first
taught at the University of Beriin and then moved (0 Gitiingen, where he was a full professor unti) the
Naris forced him ta stop feaching. Landau’s main coniributions to mathematics were in the field of analytic
nupmber theory, in particular, he established several wmportant results concerning the distribution of primes.
He authored a three-volume expositton on nurmber theory as well as other books on number theory and
rnathematical analysts,
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Cglx)
Flx

gix)

Jur<Cglnd fora>k

1
k

FIGURE 2 The Function f{x) Is O{g{x)).

Donald E. Knuth (barn 1938).  Knuth grew up in Milwankee, where his father taught bookkeepeng at a
Lutheran high school and owned a small printing business. He was an cxcellent student, sething academic
achigvement awards. He applied his intelligence in unconventional ways, winming a contest when he was
in the cighth grade by finding over 4,500 words that could be formed from the letters m “Ziepler’s Giant
Bar." This won a television set for his school and a candy bas for evesyone in his class,

Knuth had a difficult time choosing physics over music as his major af the Case Institute of Technology,
He then switched from physics 10 mathematics, and in 1960 he received his bachelor of science degree,
simultaneously receiving a master of science degree by a special award of the facalty who considered his
work outstanding. At Case, he managed the basketbai! teatn and applied his 1alents by constructing a formula
for the value of each player. This novel approach was cavered by Newsweek and by Walter Cronkite on the
CBS television network, Knuth began graduate work at the California Institute of Technology in 1960 and
received his Ph.D. there in 1963, During this ime he worked as a consuliant, writing compilers for different
COMpPUTETS.

Kruth jeined the staff of the Califoraua Institute of Technology i 1963, whers he remained until 1968,
when he teok a job as a full professor at Stanford University. He retired as Professor Emeritus in 1992 to
concentrate on writing. He is especially interested wm npdatmg and completing new volumes of his seies The
At of Computer Programming, a work that hag had a profound jnfluence on the development of computer
science, which he began writing as a graduate student 1n 1962, focusing on compilers. In common jargon,
“Knuth,” referring te The Art of Computer Programmiing, has come to mean the reference that answers all
questions about such topics as data structures and algorithms

Knuth is the founder of the modem study of computational complexity. He has made fundamental
cofitributivns to the subject of compilers, His dissatisfaction with mathematics typography sparked him tu
invent the now widely used TeX and Metatont <ysterns. TeX has become a standard language for computer
typegraphy. Two of the many awards Knuth has recesved are the 1974 Turing Award and the 1979 Natonal
Medal of Technology, awarded to him by Pressdent Carter.

Knuth has written for a wide range of professtonal journals in computer science and m mathematics
However, his first publicanon, in Y957, when he was a college freshman, was a parody of the meme system
calted “The Potrzebie Systems of Weights and Measures.” which appeared in MAD Mugazine and has been
n reprint several times. He is a church orgamst, as his father was He 15 also a composer of music for the
organ. Knuth believes that writing computer programs can be an aesthetic #xperience, much like writing
poeiry or COmposing muosic.

Knuih pays $2.56 for the first person 1o find each ey in his beoks and $0.32 for significant sugges-
tons. ! you send him a letter with an error {you will need to use regular mail, since he has given up reading
c-mail}. he will eventually inform you whether you were the fitst person to tell him abowm this error. Be
prepared for 3 long wail, since he receives an overwhelming amount of mail, {The author received a letter
years afier sending an error report 10 Kruth, noting that this report amived several months after the first

report of this error}
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EXAMPLE 2

FXAMPLE 3

THEOREM 1

EXANPLE 4

Show that 747 is O x>).

Solution: The inequality 71° < &* holds whenever x > 7. (We see this by dividing
both sides of this inequality by x%.) Hence, 7x” is O(x*), 1aking ¢ = land & = 7in
the detinition of big-O notation. 2

Example 2 shows that 7x* is O(x%). Is it also true that x? is O(7x%)?

Solution: To determine whether * is (7x7), it is necessary to determine whether
there arc constants C and k such that x* < C(7x”} whenever v > &. This inequality is
cquivalent to the inequality x < 7C, which is obtained by dividing bath sides by 2,
No such (' can exist since x can be made arbitrarily large. Hence <2 is nor O(74%). B

Polynomials can often be used to estimate the growth of functions. Instead of ana-
lyzing the growth of pelynomials each time thev occur, we would like a result that can
always be used to estimate the growth of a polynomial. The following theorem does
this. It shows that the leading term of a polynomial dominates its growth by asserting
that a polynomial of degree » or less is O(x").

Let f(x) = aux® + g x* 7 4 -+ + arx + do, where ag, ay, . . ., 4,1, Gy are reat
numbers. Then f(x) is O(x").

Progf: Using the triangle inequality, if x > | we have

(o

lagx" +a, (3 Vb ga gy

1A

;“n“h + lan—l|-‘”_| tore- |"5"i|r + |”{}'|

A" Mt + e (M 4 et o |agi’a’x”}

= Man] +lay 4o+ o]+ ag)).
This shows that
ol = Cx"
where C = |a, + |ag-i|+ - 1 |ap| whenever x > 1. Herce, f{x}is O{x"), Q

We now give some examples involving functions that have the set of positive inte-
gers as their domains.

How can big-0 notation be used o estimate the sum of the first » positive ntegers”
Solution: Since each of the integers in the sum of the first n positive integers does not
exceed a, it follows that

l+2 -4 n=n+n+ - 4n=n".

From this inequality it follows that | + 2+ 3 + -~ + 4 {s O(n?), taking ¢ = 1 and
k = 1in the definition of big-( notation. (In this example the domains of the functions
int the big-O relationship are the set af positive integers. ) |
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In the next example big-O estimates will be developed for the factorial function
and its Jogarithm. These estimates will be important in the analysis of the number of
steps used in sorting procedures.

Give big-( estimates for the factorial function and the logarithm of the factorial func-
tion. where the factorial function f(r) = n! 15 defined by

al=1-2:3-+n
whenever n is a positive integer, and 0! = 1. For example,
=1 2=12=2  3=12-3=6  41=1-2.3-4-24
Note that the function »! grows rapidty. For instance,
201 = 2,432,902,008,176,640,000.
Solution: A big-0 estimate for ! can be obtaned by notmg that each term in the prod-
uct dees not exceed n. Henee,
nl=1-2-3-n
< p-n R R
= n.

This inequality shows that n! is O(s"). Taking logarithms of both sides of the mequality
established for n!, we obtain

logn! = logn" = nlogn.

This implies that log n! is X{nlog n). [ |

In Section 3.2 we will show that
n< 2"

whenever s is a positive integer. Using this inequality we can conclude that 7 is O{2%).
(Take k = € = 1 in the definition of big-O notation.) Since the logarithm function is
increasing, taking logarithms (base 2} of both sides of this inequality shows that

logn < n
I1 follows that
log nis ((n).

{Again we take C = & = 1 in the definition of big- notation.)
If we have logarithms to a base b, where # is different from 2, we still have log, n
is (Nn} since

logn i
logé logh

log, n =

whenever # is a positive integer. (We have used Theorem 3 in Appendix 1 to see that
log, n = lognflog b). n
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THYOREM 2

COROLLARY

THE GROWTH OF COMBINATIONS OF FUNCTIONS

Many algorithms are made up of two or more separate subprocedures. The number
of steps used by a computer to solve a problem with input of a specified size using
such an algonthm is the sum of the number of steps used by these subprocedures. To
give a big-@ estimate for the number of sleps needed, it is necessary to find big-©
estimates for the number of steps used by each subprocedure and then combine these
estimates.

Big-O estimates of combinatiens of fanctions can be provided if care is taken when
different big-© estimaies are cembined. In particuiar, 1t is often necessary to estimate
the growth of the sum and the product of two functions. What can be said if big-Q
estimates for each of two functions are known? To see what sort of estimates hoid for
the sum and the product of two functions, suppose that fi{x) 15 O(g;(x)) and fr(x) s

Glga(x).
From the definition of big-€ notation, there are constants C, €y, &, and &> such

that
ALx) = Cilg(x)]
when x > kp, and
LAlxl = Gylga(x)
when x > ks. To estimate the sum of fi{x) and f3(x), note that
[ + 230 = Al + falx)
= {filx) + |A00] (using triangle inequality ja + &| = la| + b,

When x 1s greater than both &y and k3, it foilows from the inequalities for | f{ x)! and
| /200 that
it + LA < Cilgi ()] + Colgalx)]
= Ciig(x)| + Calg(x)|
= (C) + O)lgla
= Clg(x)

where C = €~ (s and g(x) = max(|g1(x)|,|ga( x)|). (Here max(a, &) denotes the max-
imnum. or larger, of & and b.)

This inequality shows that {(f; + f2)x)| = Clg(x)| whenever x > &, where & =
max(ky. k). We state this useful result as the following theorem.

Suppose that fi(x) is O(gi(x)) and fo(x) is Ofgz(x)). Then (£, + HXx) is
O{max(g;(x), g22(x))).

We often have big-O estimates for f; and /; in terms of the same function g. In
thiy situation, Theorem 2 can be used to show that (fy + /2)(x) is also Olelx)), since
max(g(x}hg(x)) = glx}). This result is stated 1n the following corollary.

Suppose that f;(x) and f3(x) are both O(g(x)). Then (f; + f,)x}is Ofgix))
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[n a similar way big-O estimates can be derived for the product of the functions f|
and f3. When x is greater than max(k;, &) it follows that

(ALY = [A A0
Crgr (I ga ()|
CiCallgrga)x)]

= Clig1£2)(x)].

where ¢ = CyCy. From this inequality, it follows that fi(x}f(x) is Ofg) g2}, since
there are constants Cand k—namely, C = C,Cz and k = max(%,, k), since [( f; £)(x)!
= Clgi(x)g2(x)f whenever x > k. This result is stated in the following theorem.

A

tA

Suppose that £ (x}is Kgr(x)}and fo(x}is O(gz(x). Then (f1 f2X(x)is O(g1{x)gz(x)).

The goal 1n using big-O notation to estimate functions is to choosc a function gt x)
that grows relatively slowly so that f(x) is O(g{x)}. The following examples illustrate
how to use Theorems 2 and 3 to do this. The type of analysis given in these examples is
often used in the analysis of the time used to solve problems using computer programs.

Give a big-O estimate for f{n) = 3nlog(n!) + (#° + 3)logn. where n is a positive
integer.

Solution: First, the product 3rJogia!) will be estimated. From Exampie 5 we know
that log(n?) is Otrlog n). Using this estimate and the fact that 3n is O(n), Theorem 3
gives the estimate that 3n log(n‘) is O(n’ log n).

Next, the product (n° + 3) log nn will be estimated. Since (n? 4 3y < 21? when
n 2, 11 follows that n? + 3 is O(n?). Thus, from Theorem 3 it follows that (n* +3)logn
is O(n" log n). Using Theorem 2 to combine the two big-€ estimates for the products
shows that f{n} = 3nlog(n!) + n’ log a is O(n-log n). |

Give a big-0 estimate for f{x) = (x+ Dlogtx® + 1) - 3x2.

Solution: First, a big- 0 estimate for (x + 1) log¢x? + 1) will be found. Note that (x + 1)
is Ofx). Furthermore, £* + 1 = 2+? when x > 1. Hence,

logta® + 1) = log(2x*) = log2 + log x* = log2 + 2logx = 3lngy,

if x > 2. This shows that log(x* + 1 is O(log x).

From Theorem 3 it follows that (x + 1) log(x? + 1) is O(x log x). Since 3x? is Oy,
Theorem 2 tells us that f(x) 1s O(max{xlog x, x5, Since rlogx = X2 forx > I, it
follows that f(x)is O(x). |

As mentioned before. big-€J notation is used to estimate the number of operations
needed to solve a problem using a specified procedure or algorithm. The functions used
in these cstimates often inclwde the following:

1. loga. n nlogn n’ 27 gl
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FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-0 Estimates.

Using culculus it can be shown that each function in the list is smaller than the suc-
ceeding function, in the sense that the ratio of a function and the succeeding function
tends to zero as n grows without bound. Figure 3 displays the graphs of these funciions,
using a scale for the values of the functions that doubles for each successive marking

on the graph.

BIG-OMEGA AND BIG-THETA NOTATION

Big-0 notation 1s used extensively to describe the growth of functions, but it has limi-
tations. In particular, when f{x) is Ofg{x)}. we have an upper bound, in terms of g(x},
for the size of {{x) for large values of x. However, big-(? notation does not provide
a lower bound for the size of f(x) for large x. For this, we use big-Omega notation.
When we want to give both an apper and a lower bound on the size of a function f(x).
relative to a reference function g(x), we use big-Theta notation. Both big-Omega and
big-Theta notation were introduced by Donald Knuth in the 1970s. His motivation tor
introducing these notations was the common misuse of big-O notation when both an
upper and a lower bound on the size of a function are needed.

We now define big-Omega notation and tilustrate its use. After doing so, we wili
do the same for big-Theta notation.

There s a strong connection between big-O and big-Omega notation. In particular.
S0y is Q(g(xn if and only if glx) s O f(x)). We leave the verification of this fact as
a straightforward exercise for the reader.

DEFINITION 2.  Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers, We say that f(x) is 2 (g(x)) if there are positive
constants C and k such that

[FOH = Clglx)
whenever x > k. (This is read as “ f (x) is big-Omega of g(x)").
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The function f{x) = 8x° + 5x% + 7 is §2(g{x)), where gi x) is the function g{x) = 1
This 15 easy (o see since f(x) = 83° 4 5x% + 7 = 8x7 forall positive real nutnbers x.
This is cquivalent to saying that g{x) = x’ is O(8x’ +5x?+7), which can be established
directly by turning the mequality around. [ |

Ofiten, it is important 16 know the order of growth of’ a function in terms of some
relatively simple reference function such as x” when # is a positive integer or ¢*, wliere
¢ > 1. Knowing the order of growth requires that we have both an upper bound and
a lower bound for the size of the function. That is. given a function f{x}, we want
a reference function g(x} such that £(x) is O(g(x)) and F(x) is 2(g(x)). Big-Theta
riotation, defined as follows, is used to express both of these relationships, providing
hoth an upper and a lower bound on the size of a function.

DEFINITION 3. Let f and g be functions from the set of integers or the set of real
nambers to the set of real numbers. We say that f(x) is &g(x)) if f(x)is O{g(x))
and f(x)is {2(g(x)). When f(x) is &{g(x)), we say that “f is big-Theta of g(x)”
and we also say that f{x) is of order g(x).

When f(¢) is &(glx)). it is also the case that g(x) is B f{x)). Usually, when big-
Theta notation is used, the function g(x) in ®(g(x}) is a relatively simple reference
functien, such as x”, ¢*. log x. and so on, while f(x) can be relatively complicated.

We showed (in Example 4} that the sum of the first n positive integers is O(n°). Is this
sum of order #*?

Solution: Let f(n) = 1+2+3+---+ 5, Since we already know that f(n)