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Preface

Over thirty years have elapsed since the publication of Fox & Parker’s 1968
text Chebyshev Polynomials in Numerical Analysis. This was preceded by
Snyder’s brief but interesting 1966 text Chebyshev Methods in Numerical Ap-
proximation. The only significant later publication on the subject is that by
Rivlin (1974, revised and republished in 1990) — a fine exposition of the
theoretical aspects of Chebyshev polynomials but mostly confined to these
aspects. An up-to-date but broader treatment of Chebyshev polynomials is
consequently long overdue, which we now aim to provide.

The idea that there are really four kinds of Chebyshev polynomials, not
just two, has strongly affected the content of this volume. Indeed, the prop-
erties of the four kinds of polynomials lead to an extended range of results in
many areas such as approximation, series expansions, interpolation, quadra-
ture and integral equations, providing a spur to developing new methods. We
do not claim the third- and fourth-kind polynomials as our own discovery,
but we do claim to have followed close on the heels of Walter Gautschi in first
adopting this nomenclature.

Ordinary and partial differential equations are now major fields of applica-
tion for Chebyshev polynomials and, indeed, there are now far more books on
‘spectral methods’ — at least ten major works to our knowledge — than on
Chebyshev polynomials per se. This makes it more difficult but less essential
to discuss the full range of possible applications in this area, and here we have
concentrated on some of the fundamental ideas.

We are pleased with the range of topics that we have managed to in-
clude. However, partly because each chapter concentrates on one subject
area, we have inevitably left a great deal out — for instance: the updating of
the Chebyshev–Padé table and Chebyshev rational approximation, Chebyshev
approximation on small intervals, Faber polynomials on complex contours and
Chebyshev (L∞) polynomials on complex domains.

For the sake of those meeting this subject for the first time, we have
included a number of problems at the end of each chapter. Some of these, in
the earlier chapters in particular, are quite elementary; others are invitations
to fill in the details of working that we have omitted simply for the sake of
brevity; yet others are more advanced problems calling for substantial time
and effort.

We have dedicated this book to the memory of two recently deceased col-
leagues and friends, who have influenced us in the writing of this book. Geoff
Hayes wrote (with Charles Clenshaw) the major paper on fitting bivariate
polynomials to data lying on a family of parallel lines. Their algorithm retains
its place in numerical libraries some thirty-seven years later; it exploits the
idea that Chebyshev polynomials form a well-conditioned basis independent
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of the spacing of data. Lev Brutman specialised in near-minimax approxima-
tions and related topics and played a significant role in the development of
this field.

In conclusion, there are many to whom we owe thanks, of whom we can
mention only a few. Among colleagues who helped us in various ways in the
writing of this book (but should not be held responsible for it), we must name
Graham Elliott, Ezio Venturino, William Smith, David Elliott, Tim Phillips
and Nick Trefethen; for getting the book started and keeping it on course, Bill
Morton and Elizabeth Johnston in England, Bob Stern, Jamie Sigal and others
at CRC Press in the United States; for help with preparing the manuscript,
Pam Moore and Andrew Crampton. We must finally thank our wives, Moya
and Elizabeth, for the blind faith in which they have encouraged us to bring
this work to completion, without evidence that it was ever going to get there.

This book was typeset at Oxford University Computing Laboratory, using
Lamport’s LATEX2ε package.

John Mason
David Handscomb

April 2002
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Chapter 1

Definitions

1.1 Preliminary remarks

“Chebyshev polynomials are everywhere dense in numerical anal-
ysis.”

This remark has been attributed to a number of distinguished mathematicians
and numerical analysts. It may be due to Philip Davis, was certainly spoken
by George Forsythe, and it is an appealing and apt remark. There is scarcely
any area of numerical analysis where Chebyshev polynomials do not drop
in like surprise visitors, and indeed there are now a number of subjects in
which these polynomials take a significant position in modern developments
— including orthogonal polynomials, polynomial approximation, numerical
integration, and spectral methods for partial differential equations.

However, there is a different slant that one can give to the quotation above,
namely that by studying Chebyshev polynomials one is taken on a journey
which leads into all areas of numerical analysis. This has certainly been our
personal experience, and it means that the Chebyshev polynomials, far from
being an esoteric and narrow subject, provide the student with an opportunity
for a broad and unifying introduction to many areas of numerical analysis and
mathematics.

1.2 Trigonometric definitions and recurrences

There are several kinds of Chebyshev polynomials. In particular we shall in-
troduce the first and second kind polynomials Tn(x) and Un(x), as well as
a pair of related (Jacobi) polynomials Vn(x) and Wn(x), which we call the
‘Chebyshev polynomials of the third and fourth kinds’; in addition we cover
the shifted polynomials T ∗

n(x), U
∗
n(x), V

∗
n (x) and W ∗

n(x). We shall, however,
only make a passing reference to ‘Chebyshev’s polynomial of a discrete vari-
able’, referred to for example in Erdélyi et al. (1953, Section 10.23), since this
last polynomial has somewhat different properties from the polynomials on
which our main discussion is based.

Some books and many articles use the expression ‘Chebyshev polynomial’
to refer exclusively to the Chebyshev polynomial Tn(x) of the first kind. In-
deed this is by far the most important of the Chebyshev polynomials and,
when no other qualification is given, the reader should assume that we too
are referring to this polynomial.
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Clearly some definition of Chebyshev polynomials is needed right away
and, as we shall see as the book progresses, we are spoiled for a choice of
definitions. However, what gives the various polynomials their power and
relevance is their close relationship with the trigonometric functions ‘cosine’
and ‘sine’. We are all aware of the power of these functions and of their
appearance in the description of all kinds of natural phenomena, and this
must surely be the key to the versatility of the Chebyshev polynomials. We
therefore use as our primary definitions these trigonometric relationships.

1.2.1 The first-kind polynomial Tn

Definition 1.1 The Chebyshev polynomial Tn(x) of the first kind is a poly-
nomial in x of degree n, defined by the relation

Tn(x) = cosnθ when x = cos θ. (1.1)

If the range of the variable x is the interval [−1, 1], then the range of the
corresponding variable θ can be taken as [0, π]. These ranges are traversed in
opposite directions, since x = −1 corresponds to θ = π and x = 1 corresponds
to θ = 0.

It is well known (as a consequence of de Moivre’s Theorem) that cosnθ
is a polynomial of degree n in cos θ, and indeed we are familiar with the
elementary formulae

cos 0θ = 1, cos 1θ = cos θ, cos 2θ = 2 cos2 θ − 1,
cos 3θ = 4 cos3 θ − 3 cos θ, cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, . . . .

We may immediately deduce from (1.1), that the first few Chebyshev
polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, . . . .

(1.2)

Coefficients of all polynomials Tn(x) up to degree n = 21 will be found in
Tables C.2a, C.2b in Appendix C.

In practice it is neither convenient nor efficient to work out each Tn(x)
from first principles. Rather by combining the trigonometric identity

cosnθ + cos(n− 2)θ = 2 cos θ cos(n− 1)θ
with Definition 1.1, we obtain the fundamental recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . , (1.3a)

which together with the initial conditions

T0(x) = 1, T1(x) = x (1.3b)
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recursively generates all the polynomials {Tn(x)} very efficiently.
It is easy to deduce from (1.3) that the leading coefficient (that of xn) in

Tn(x) for n > 1 is double the leading coefficient in Tn−1(x) and hence, by
induction, is 2n−1.

Figure 1.1: T5(x) on range [−1, 1] Figure 1.2: cos 5θ on range [0, π]

What does the polynomial Tn(x) look like, and how does a graph in the
variable x compare with a graph of cosnθ in the variable θ? In Figures 1.1
and 1.2 we show the respective graphs of T5(x) and cos 5θ. It will be noted
that the shape of T5(x) on [−1, 1] is very similar to that of cos 5θ on [0, π], and
in particular both oscillate between six extrema of equal magnitudes (unity)
and alternating signs. However, there are three key differences — firstly the
polynomial T5(x) corresponds to cos 5θ reversed (i.e., starting with a value of
−1 and finishing with a value of +1); secondly the extrema of T5(x) at the end
points x = ±1 do not correspond to zero gradients (as they do for cos 5θ) but
rather to rapid changes in the polynomial as a function of x; and thirdly the
zeros and extrema of T5(x) are clustered towards the end points ±1, whereas
the zeros and extrema of cos 5θ are equally spaced.

The reader will recall that an even function f(x) is one for which

f(x) = f(−x) for all x

and an odd function f(x) is one for which

f(x) = −f(−x) for all x.

All even powers of x are even functions, and all odd powers of x are odd
functions. Equations (1.2) suggest that Tn(x) is an even or odd function,
involving only even or odd powers of x, according as n is even or odd. This
may be deduced rigorously from (1.3a) by induction, the cases n = 0 and
n = 1 being supplied by the initial conditions (1.3b).

1.2.2 The second-kind polynomial Un

Definition 1.2 The Chebyshev polynomial Un(x) of the second kind is a poly-
nomial of degree n in x defined by

Un(x) = sin(n+ 1)θ/ sin θ when x = cos θ. (1.4)
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The ranges of x and θ are the same as for Tn(x).

Elementary formulae give

sin 1θ = sin θ, sin 2θ = 2 sin θ cos θ, sin 3θ = sin θ (4 cos2 θ − 1),
sin 4θ = sin θ (8 cos3 θ − 4 cos θ), . . . ,

so that we see that the ratio of sine functions (1.4) is indeed a polynomial in
cos θ, and we may immediately deduce that

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x, . . . .

(1.5)

Coefficients of all polynomials Un(x) up to degree n = 21 will be found in
Tables C.3a, C.3b in Appendix C.

By combining the trigonometric identity

sin(n+ 1)θ + sin(n− 1)θ = 2 cos θ sinnθ
with Definition 1.2, we find that Un(x) satisfies the recurrence relation

Un(x) = 2xUn−1(x) − Un−2(x), n = 2, 3, . . . , (1.6a)

which together with the initial conditions

U0(x) = 1, U1(x) = 2x (1.6b)

provides an efficient procedure for generating the polynomials.

A similar trigonometric identity

sin(n+ 1)θ − sin(n− 1)θ = 2 sin θ cosnθ
leads us to a relationship

Un(x)− Un−2(x) = 2Tn(x), n = 2, 3, . . . , (1.7)

between the polynomials of the first and second kinds.

It is easy to deduce from (1.6) that the leading coefficient of xn in Un(x)
is 2n.

Note that the recurrence (1.6a) for {Un(x)} is identical in form to the
recurrence (1.3a) for {Tn(x)}. The different initial conditions [(1.6b) and
(1.3b)] yield the different polynomial systems.

In Figure 1.3 we show the graph of U5(x). It oscillates between six ex-
trema, as does T5(x) in Figure 1.1, but in the present case the extrema have
magnitudes which are not equal, but increase monotonically from the centre
towards the ends of the range.

From (1.5) it is clear that the second-kind polynomial Un(x), like the first,
is an even or odd function, involving only even or odd powers of x, according
as n is even or odd.
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Figure 1.3: U5(x) on range [−1, 1]

1.2.3 The third- and fourth-kind polynomials Vn and Wn (the air-
foil polynomials)

Two other families of polynomials Vn and Wn may be constructed, which are
related to Tn and Un, but which have trigonometric definitions involving the
half angle θ/2 (where x = cos θ as before). These polynomials are sometimes1

referred to as the ‘airfoil polynomials’, but Gautschi (1992) rather appropri-
ately named them the ‘third- and fourth-kind Chebyshev polynomials’. First
we define these polynomials trigonometrically, by a pair of relations parallel
to (1.1) and (1.4) above for Tn and Un. Again the ranges of x and θ are the
same as for Tn(x).

Definition 1.3 The Chebyshev polynomials Vn(x) and Wn(x) of the third
and fourth kinds are polynomials of degree n in x defined respectively by

Vn(x) = cos(n+ 1
2 )θ/ cos

1
2θ (1.8)

and
Wn(x) = sin(n+ 1

2 )θ/ sin
1
2θ, (1.9)

when x = cos θ.

To justify these definitions, we first observe that cos(n + 1
2 )θ is an odd

polynomial of degree 2n+1 in cos 1
2θ. Therefore the right-hand side of (1.8) is

an even polynomial of degree 2n in cos 1
2θ, which is equivalent to a polynomial

of degree n in cos2 1
2θ =

1
2 (1 + cos θ) and hence to a polynomial of degree n

in cos θ. Thus Vn(x) is indeed a polynomial of degree n in x. For example

V1(x) =
cos(1 + 1

2 )θ
cos 1

2θ
=
4 cos3 1

2θ − 3 cos 1
2θ

cos 1
2θ

= 4 cos2 1
2θ−3 = 2 cos θ−1 = 2x−1.

We may readily show that

V0(x) = 1, V1(x) = 2x− 1, V2(x) = 4x2 − 2x− 1,
V3(x) = 8x3 − 4x2 − 4x+ 1, . . . .

(1.10)

1See for example, Fromme & Golberg (1981).
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Similarly sin(n + 1
2 )θ is an odd polynomial of degree 2n + 1 in sin 1

2θ.
Therefore the right-hand side of (1.9) is an even polynomial of degree 2n in
sin 1

2θ, which is equivalent to a polynomial of degree n in sin
2 1

2θ =
1
2 (1−cos θ)

and hence again to a polynomial of degree n in cos θ. For example

W1(x) =
sin(1 + 1

2 )θ
sin 1

2θ
=
3 sin 1

2θ − 4 sin3 1
2θ

sin 1
2θ

= 3−4 sin2 1
2θ = 2 cos θ+1 = 2x+1.

We may readily show that

W0(x) = 1, W1(x) = 2x+ 1, W2(x) = 4x2 + 2x− 1,
W3(x) = 8x3 + 4x2 − 4x− 1, . . . .

(1.11)

The polynomials Vn(x) andWn(x) are, in fact, rescalings of two particular
Jacobi2 polynomials P (α,β)

n (x) with α = − 1
2 , β =

1
2 and vice versa. Explicitly(

2n
n

)
Vn(x) = 22nP

(− 1
2 , 1

2 )
n (x),

(
2n
n

)
Wn(x) = 22nP

( 1
2 ,− 1

2 )
n (x).

Coefficients of all polynomials Vn(x) and Wn(x) up to degree n = 10 will
be found in Table C.1 in Appendix C.

These polynomials too may be efficiently generated by the use of a recur-
rence relation. Since

cos(n+ 1
2 )θ + cos(n− 2 + 1

2 )θ = 2 cos θ cos(n− 1 + 1
2 )θ

and
sin(n+ 1

2 )θ + sin(n− 2 + 1
2 )θ = 2 cos θ sin(n− 1 + 1

2 )θ,

it immediately follows that

Vn(x) = 2xVn−1(x)− Vn−2(x), n = 2, 3, . . . , (1.12a)

and
Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2, 3, . . . , (1.12b)

with
V0(x) = 1, V1(x) = 2x− 1 (1.12c)

and
W0(x) = 1, W1(x) = 2x+ 1. (1.12d)

Thus Vn(x) and Wn(x) share precisely the same recurrence relation as
Tn(x) and Un(x), and their generation differs only in the prescription of the
initial condition for n = 1.

2See Chapter 22 of Abramowitz and Stegun’s Handbook of Mathematical Functions
(1964).
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It is immediately clear from (1.12) that both Vn(x) and Wn(x) are poly-
nomials of degree n in x, in which all powers of x are present, and in which
the leading coefficients (of xn) are equal to 2n.

In Figure1.4 we show graphs of V5(x) and W5(x). They are exact inverted
mirror images of one another, as will be proved in the next section (1.19).

Figure 1.4: V5(x) and W5(x) on range [−1, 1]

1.2.4 Connections between the four kinds of polynomial

We already have a relationship (1.7) between the polynomials Tn and Un. It
remains to link Vn and Wn to Tn and Un. This may be done by introducing
two auxiliary variables

u = [12 (1 + x)]
1
2 = cos 1

2θ, t = [12 (1− x)]
1
2 = sin 1

2θ. (1.13)

Using (1.8) and (1.9) it immediately follows, from the definitions (1.1) and
(1.4) of Tn and Un, that

Tn(x) = T2n(u), Un(x) = 1
2u

−1U2n+1(u), (1.14)

Vn(x) = u−1T2n+1(u), Wn(x) = U2n(u). (1.15)

Thus Tn(x), Un(x), Vn(x), Wn(x) together form the first- and second-kind
polynomials in u, weighted by u−1 in the case of odd degrees. Also (1.15)
shows that Vn(x) andWn(x) are directly related, respectively, to the first- and
second-kind Chebyshev polynomials, so that the terminology of ‘Chebyshev
polynomials of the third and fourth kind’ is justifiable.

From the discussion above it can be seen that, if we wish to establish
properties of Vn andWn, then we have two main options: we can start from the
trigonometric definitions (1.8), (1.9) or we can attempt to exploit properties
of Tn and Un by using the links (1.14)–(1.15).

Note that Vn and Wn are neither even nor odd (unlike Tn and Un). We
have seen that the leading coefficient of xn is 2n in both Vn and Wn, as it is
in Un. This suggests a close link with Un. Indeed if we average the initial
conditions (1.12c) and (1.12d) for V1 and W1 we obtain the initial condition
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(1.6b) for U1, from which we can show that the average of Vn andWn satisfies
the recurrence (1.6a) subject to (1.6b) and therefore that for all n

Un(x) = 1
2 [Vn(x) +Wn(x)]. (1.16)

The last result also follows directly from the trigonometric definitions (1.4),
(1.8), (1.9) of Un, Vn, Wn, since

sin(n+ 1)θ
sin θ

=
sin(n+ 1

2 )θ cos
1
2θ + cos(n+

1
2 )θ sin

1
2θ

2 sin 1
2θ cos

1
2θ

= 1
2

[
cos(n+ 1

2 )θ
cos 1

2θ
+
sin(n+ 1

2 )θ
sin 1

2θ

]
.

Equation (1.16) is not the only link between the sets {Vn}, {Wn} and
{Un}. Indeed, by using the trigonometric relations

2 sin 1
2θ cos(n+

1
2 )θ = sin(n+ 1)θ − sinnθ,

2 cos 1
2θ sin(n+

1
2 )θ = sin(n+ 1)θ + sinnθ

and dividing through by sin θ, we can deduce that

Vn(x) = Un(x) − Un−1(x), (1.17)

Wn(x) = Un(x) + Un−1(x). (1.18)

Thus Vn and Wn may be very simply determined once {Un} are available.
Note that (1.17), (1.18) are confirmed in the formulae (1.5), (1.10), (1.11)
and are consistent with (1.16) above.

From the evenness/oddness of Un(x) for n even/odd, we may immediately
deduce from (1.17), (1.18) that

Wn(x) = Vn(−x) (n even);
Wn(x) = −Vn(−x) (n odd). (1.19)

This means that the third- and fourth-kind polynomials essentially transform
into each other if the range [−1, 1] of x is reversed, and it is therefore sufficient
for us to study only one of these kinds of polynomial.

Two further relationships that may be derived from the definitions are

Vn(x) + Vn−1(x) =Wn(x) −Wn−1(x) = 2Tn(x). (1.20)

If we were asked for a ‘pecking order’ of these four Chebyshev polynomials
Tn, Un, Vn and Wn, then we would say that Tn is clearly the most important
and versatile. Moreover Tn generally leads to the simplest formulae, whereas
results for the other polynomials may involve slight complications. However,
all four polynomials have their role. For example, as we shall see, Un is useful
in numerical integration, while Vn andWn can be useful in situations in which
singularities occur at one end point (+1 or −1) but not at the other.
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1.3 Shifted Chebyshev polynomials

1.3.1 The shifted polynomials T ∗
n , U∗

n, V ∗
n , W ∗

n

Since the range [0, 1] is quite often more convenient to use than the range
[−1, 1], we sometimes map the independent variable x in [0, 1] to the variable
s in [−1, 1] by the transformation

s = 2x− 1 or x = 1
2 (1 + s),

and this leads to a shifted Chebyshev polynomial (of the first kind) T ∗
n(x) of

degree n in x on [0, 1] given by

T ∗
n(x) = Tn(s) = Tn(2x− 1). (1.21)

Thus we have the polynomials

T ∗
0 (x) = 1, T ∗

1 (x) = 2x− 1, T ∗
2 (x) = 8x

2 − 8x+ 1,
T ∗

3 (x) = 32x
3 − 48x2 + 18x− 1, . . . .

(1.22)

From (1.21) and (1.3a), we may deduce the recurrence relation for T ∗
n in

the form
T ∗

n(x) = 2(2x− 1)T ∗
n−1(x)− T ∗

n−2(x) (1.23a)

with initial conditions

T ∗
0 (x) = 1, T ∗

1 (x) = 2x− 1. (1.23b)

The polynomials T ∗
n(x) have a further special property, which derives from

(1.1) and (1.21):

T2n(x) = cos 2nθ = cosn(2θ) = Tn(cos 2θ) = Tn(2x2 − 1) = T ∗
n(x

2)

so that
T2n(x) = T ∗

n(x
2). (1.24)

This property may readily be confirmed for the first few polynomials by com-
paring the formulae (1.2) and (1.22). Thus T ∗

n(x) is precisely T2n(
√
x ), a

higher degree Chebyshev polynomial in the square root of the argument, and
relation (1.24) gives an important link between {Tn} and {T ∗

n} which com-
plements the shift relationship (1.21). Because of this property, Table C.2a
in Appendix C, which gives coefficients of the polynomials Tn(x) up to de-
gree n = 20 for even n, at the same time gives coefficients of the shifted
polynomials T ∗

n(x) up to degree n = 10.

It is of course possible to define T ∗
n , like Tn and Un, directly by a trigono-

metric relation. Indeed, if we combine (1.1) and (1.24) we obtain

T ∗
n(x) = cos 2nθ when x = cos2 θ. (1.25)
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This relation might alternatively be rewritten, with θ replaced by φ/2, in the
form

T ∗
n(x) = cosnφ when x = cos2 φ/2 = 1

2 (1 + cosφ). (1.26)

Indeed the latter formula could be obtained directly from (1.21), by writing

Tn(s) = cosnφ when s = cosφ.

Note that the shifted Chebyshev polynomial T ∗
n(x) is neither even nor odd,

and indeed all powers of x from 1 = x0 to xn appear in T ∗
n(x). The leading

coefficient of xn in T ∗
n(x) for n > 0 may be deduced from (1.23a), (1.23b) to

be 22n−1.

Shifted polynomials U∗
n, V

∗
n ,W

∗
n of the second, third and fourth kinds may

be defined in precisely analogous ways:

U∗
n(x) = Un(2x− 1), V ∗

n (x) = Vn(2x− 1), W ∗
n(x) =Wn(2x− 1). (1.27)

Links between U∗
n, V ∗

n ,W ∗
n and the unstarred polynomials, analogous to (1.24)

above, may readily be established. For example, using (1.4) and (1.27),

sin θ U2n−1(x) = sin 2nθ = sinn(2θ) = sin 2θ Un−1(cos 2θ)

= 2 sin θ cos θ Un−1(2x2 − 1) = sin θ {2xU∗
n−1(x

2)}
and hence

U2n−1(x) = 2xU∗
n−1(x

2). (1.28)

The corresponding relations for V ∗
n and W ∗

n are slightly different in that
they complement (1.24) and (1.28) by involving T2n−1 and U2n. Firstly, using
(1.13), (1.15) and (1.27),

V ∗
n−1(u

2) = Vn−1(2u2 − 1) = Vn−1(x) = u−1T2n−1(u)

and hence (replacing u by x)

T2n−1(x) = xV ∗
n−1(x

2). (1.29)

Similarly,

W ∗
n−1(u

2) =Wn−1(2u2 − 1) =Wn−1(x) = U2n(u)

and hence (replacing u by x)

U2n(x) =W ∗
n(x

2). (1.30)

Because of the relationships (1.28)–(1.30), Tables C.3b, C.2b, C.3a in Ap-
pendix C, which give coefficients of Tn(x) and Un(x) up to degree n = 20, at
the same time give the coefficients of the shifted polynomials U∗

n(x), V
∗
n (x),

W ∗
n(x), respectively, up to degree n = 10.
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1.3.2 Chebyshev polynomials for the general range [a, b]

In the last section, the range [−1, 1] was adjusted to the range [0, 1] for conve-
nience, and this corresponded to the use of the shifted Chebyshev polynomials
T ∗

n , U∗
n, V ∗

n , W ∗
n in place of Tn, Un, Vn, Wn respectively. More generally we

may define Chebyshev polynomials appropriate to any given finite range [a, b]
of x, by making this range correspond to the range [−1, 1] of a new variable
s under the linear transformation

s =
2x− (a+ b)

b− a
. (1.31)

The Chebyshev polynomials of the first kind appropriate to [a, b] are thus
Tn(s), where s is given by (1.31), and similarly the second-, third- and fourth-
kind polynomials appropriate to [a, b] are Un(s), Vn(s), and Wn(s).

Example 1.1: The first-kind Chebyshev polynomial of degree three appropriate
to the range [1, 4] of x is

T3

(
2x − 5

3

)
= 4

(
2x − 5

3

)3

− 3

(
2x − 5

3

)
=

1

27
(32x3 − 240x2 + 546x − 365).

Note that in the special case [a, b] ≡ [0, 1], the transformation (1.31) be-
comes s = 2x−1, and we obtain the shifted Chebyshev polynomials discussed
in Section 1.3.1.

Incidentally, the ‘Chebyshev Polynomials Sn(x) and Cn(x)’ tabulated by
the National Bureau of Standards (NBS 1952) are no more than mappings of
Un and 2Tn to the range [a, b] ≡ [−2, 2]. Except for C0, these polynomials all
have unit leading coefficient, but this appears to be their only recommending
feature for practical purposes, and they have never caught on.

1.4 Chebyshev polynomials of a complex variable

We have chosen to define the polynomials Tn(x), Un(x), Vn(x) and Wn(x)
with reference to the interval [−1, 1]. However, their expressions as sums
of powers of x can of course be evaluated for any real x, even though the
substitution x = cos θ is not possible outside this interval.

For x in the range [1,∞), we can make the alternative substitution

x = coshΘ, (1.32)
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with Θ in the range [0,∞), and it is easily verified that precisely the same
polynomials (1.2), (1.5), (1.10) and (1.11) are generated by the relations

Tn(x) = coshnΘ, (1.33a)

Un(x) =
sinh(n+ 1)Θ

sinhΘ
, (1.33b)

Vn(x) =
cosh(n+ 1

2 )Θ
cosh 1

2Θ
, (1.33c)

Wn(x) =
sinh(n+ 1

2 )Θ
sinh 1

2Θ
. (1.33d)

For x in the range (−∞,−1] we can make use of the odd or even parity of
the Chebyshev polynomials to deduce from (1.33) that, for instance,

Tn(x) = (−1)n coshnΘ

where
x = − coshΘ.

It is easily shown from (1.33) that none of the four kinds of Chebyshev
polynomials can have any zeros or turning points in the range [1,∞). The
same applies to the range (−∞,−1]. This will later become obvious, since we
shall show in Section 2.2 that Tn, Un, Vn and Wn each have n real zeros in
the interval [−1, 1], and a polynomial of degree n can have at most n zeros in
all.

The Chebyshev polynomial Tn(x) can be further extended into (or initially
defined as) a polynomial Tn(z) of a complex variable z. Indeed Snyder (1966)
and Trefethen (2000) both start from a complex variable in developing their
expositions.

1.4.1 Conformal mapping of a circle to and from an ellipse

For convenience, we consider not only the variable z but a related complex
variable w such that

z = 1
2 (w + w−1). (1.34)

Then, if w moves on the circle |w| = r (for r > 1) centred at the origin,
we have

w = reiθ = r cos θ + ir sin θ, (1.35)

w−1 = r−1e−iθ = r−1 cos θ − ir−1 sin θ, (1.36)

and so, from (1.34),
z = a cos θ + ib sin θ (1.37)
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where
a = 1

2 (r + r−1), b = 1
2 (r − r−1). (1.38)

Hence z moves on the standard ellipse

x2

a2
+

y2

b2
= 1 (1.39)

centred at the origin, with major and minor semi-axes a, b given by (1.38). It
is easy to verify from (1.38) that the eccentricity e of this ellipse is such that

ae =
√

a2 − b2 = 1,

and hence the ellipse has foci at z = ±1.
In the case r = 1, where w moves on the unit circle, we have b = 0 and

the ellipse collapses into the real interval [−1, 1]. However, z traverses the
interval twice as w moves round the circle: from −1 to 1 as θ moves from −π
to 0, and from 1 to −1 as θ moves from 0 to π.

Figure 1.5: The circle |w| = r = 1.5 and its image in the z plane

Figure 1.6: The circle |w| = 1 and its image in the z plane

The standard circle (1.35) and ellipse (1.39) are shown in Figure 1.5, and
the special case r = 1 is shown in Figure 1.6. See Henrici (1974–1986) for
further discussions of this mapping.
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From (1.34) we readily deduce that w satisfies

w2 − 2wz + 1 = 0, (1.40)

a quadratic equation with two solutions

w = w1, w2 = z ±
√

z2 − 1. (1.41)

This means that the mapping from w to z is 2 to 1, with branch points at
z = ±1. It is convenient to define the complex square root √z2 − 1 so that it
lies in the same quadrant as z (except for z on the real interval [−1, 1], along
which the plane must be cut), and to choose the solution

w = w1 = z +
√

z2 − 1, (1.42)

so that |w| = |w1| ≥ 1. Then w depends continuously on z along any path
that does not intersect the interval [−1, 1], and it is easy to verify that

w2 = w−1
1 = z −

√
z2 − 1, (1.43)

with |w2| ≤ 1.

If w1 moves on |w1| = r, for r > 1, then w2 moves on |w2| =
∣∣w−1

1

∣∣ =
r−1 < 1. Hence both of the concentric circles

Cr := {w : |w| = r} , C1/r :=
{
w : |w| = r−1

}
transform into the same ellipse defined by (1.37) or (1.39), namely

Er :=
{
z :

∣∣∣z +√
z2 − 1

∣∣∣ = r
}
. (1.44)

1.4.2 Chebyshev polynomials in z

Defining z by (1.34), we note that if w lies on the unit circle |w| = 1 (i.e. C1),
then (1.37) gives

z = cos θ (1.45)

and hence, from (1.42).

w = z +
√

z2 − 1 = eiθ. (1.46)

Thus Tn(z) is now a Chebyshev polynomial in a real variable and so by
our standard definition (1.1), and (1.45), (1.46),

Tn(z) = cosnθ = 1
2 (e

inθ + e−inθ) = 1
2 (w

n + w−n).

This leads us immediately to our general definition, for all complex z,
namely

Tn(z) = 1
2 (w

n + w−n) (1.47)
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where
z = 1

2 (w + w−1). (1.48)

Alternatively we may write Tn(z) directly in terms of z, using (1.42) and
(1.43), as

Tn(z) = 1
2{(z +

√
z2 − 1)n + (z −

√
z2 − 1)n}. (1.49)

If z lies on the ellipse Er, the locus of (1.48) when |w| = r > 1, then it
follows from (1.47) that we have the inequality

1
2 (r

n − r−n) ≤ |Tn(z)| ≤ 1
2 (r

n + r−n). (1.50)

In Fig. 1.7 we show the level curves of the absolute value of T5(z), and it can
easily be seen how these approach an elliptical shape as the value increases.

Figure 1.7: Contours of |T5(z)| in the complex plane

We may similarly extend polynomials of the second kind. If |w| = 1, so
that z = cos θ, we have from (1.4),

Un−1(z) =
sinnθ
sin θ

.

Hence, from (1.45) and (1.46), we deduce the general definition

Un−1(z) =
wn − w−n

w − w−1
(1.51)

where again z = 1
2 (w + w−1). Alternatively, writing directly in terms of z,

Un−1(z) = 1
2

(z +
√
z2 − 1)n − (z −√

z2 − 1)n√
z2 − 1 . (1.52)

If z lies on the ellipse (1.44), then it follows directly from (1.51) that

rn − r−n

r + r−1
≤ |Un−1(z)| ≤ rn + r−n

r − r−1
; (1.53)
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however, whereas the bounds (1.50) on |Tn(z)| are attained on the ellipse, the
bounds (1.53) on |Un−1(z)| are slightly pessimistic. For a sharp upper bound,
we may expand (1.51) into

Un−1(z) = wn−1 + wn−3 + · · ·+ w3−n + w1−n (1.54)

giving us

|Un−1(z)| ≤
∣∣wn−1

∣∣+ ∣∣wn−3
∣∣+ · · ·+ ∣∣w3−n

∣∣+ ∣∣w1−n
∣∣

= rn−1 + rn−3 + · · ·+ r3−n + r1−n

=
rn − r−n

r − r−1
, (1.55)

which lies between the two bounds given in (1.53). In Fig. 1.8 we show the
level curves of the absolute value of U5(z).

Figure 1.8: Contours of |U5(z)| in the complex plane

The third- and fourth-kind polynomials of degree n in z may readily be
defined in similar fashion (compare (1.51)) by

Vn(z) =
wn+ 1

2 + w−n− 1
2

w
1
2 + w− 1

2
, (1.56)

Wn(z) =
wn+ 1

2 − w−n− 1
2

w
1
2 − w− 1

2
(1.57)

where w
1
2 is consistently defined from w. More precisely, to get round the

ambiguities inherent in taking square roots, we may define them by

Vn(z) =
wn+1 + w−n

w + 1
, (1.58)

Wn(z) =
wn+1 − w−n

w − 1 (1.59)

It is easily shown, by dividing denominators into numerators, that these give
polynomials of degree n in z = 1

2 (w + w−1).
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1.4.3 Shabat polynomials

Shabat & Voevodskii (1990) introduced the concept of ‘generalised Chebyshev
polynomials’ (or Shabat polynomials), in the context of trees and number
theory. The most recent survey paper in this area is that of Shabat & Zvonkin
(1994). They are defined as polynomials P (z) with complex coefficients having
two critical values A and B such that

P ′(z) = 0 =⇒ P (z) = A or P (z) = B.

The prime example of such a polynomial is Tn(z), a first-kind Chebyshev
polynomial, for which A = −1 and B = +1 are the critical values.

1.5 Problems for Chapter 1

1. The equation x = cos θ defines infinitely many values of θ corresponding
to a given value of x in the range [−1, 1]. Show that, whichever value
is chosen, the values of Tn(x), Un(x), Vn(x) and Wn(x) as defined by
(1.1), (1.4), (1.8) and (1.9) remain the same.

2. Determine explicitly the Chebyshev polynomials of first and second
kinds of degrees 0, 1, 2, 3, 4 appropriate to the range [−4, 6] of x.

3. Prove that
Tm(Tn(x)) = Tmn(x)

and that

Um−1(Tn(x))Un−1(x) = Un−1(Tm(x))Um−1(x) = Umn−1(x).

4. Verify that equations (1.33) yield the same polynomials for x > 1 as the
trigonometric definitions of the Chebyshev polynomials give for |x| ≤ 1.

5. Using the formula

z = 1
2 (r + r−1) cos θ + 1

2 i(r − r−1) sin θ, (r > 1)

which defines a point on an ellipse centred at 0 with foci z = ±1,
(a) verify that

√
z2 − 1 = 1

2 (r − r−1) cos θ + 1
2 i(r + r−1) sin θ

and hence

(b) verify that
∣∣z +√

z2 − 1∣∣ = r.

© 2003 by CRC Press LLC



6. By expanding by the first row and using the standard three-term recur-
rence for Tr(x), show that

Tn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x −1 0 0 · · · 0 0 0
−1 2x −1 0 · · · 0 0 0
0 −1 2x −1 · · · 0 0 0
...

...
...

. . . . . . . . .
...

...
0 0 0 0 · · · −1 2x −1
0 0 0 0 · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n× n determinant)

.

Write down similar expressions for Un(x), Vn(x) and Wn(x).

7. Given that the four kinds of Chebyshev polynomial each satisfy the same
recurrence relation

Xn = 2xXn−1 −Xn−2,

with X0 = 1 in each case and X1 = x, 2x, 2x+ 1, 2x− 1 for the four
respective families, use these relations only to establish that

(a) Vi(x) +Wi(x) = 2Ui(x),

(b) Vi(x) −Wi(x) = 2Ui−1(x),

(c) Ui(x) − 2Ti(x) = Ui−2(x),

(d) Ui(x) − Ti(x) = xUi−1(x).

8. Derive the same four formulae of Problem 7, this time using only the
trigonometric definitions of the Chebyshev polynomials.

9. From the last two results in Problem 7, show that

(a) Ti(x) = xUi−1(x)− Ui−2(x),

(b) Ui(x) = 2xUi−1(x) − Ui−2(x).
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Chapter 2

Basic Properties and Formulae

2.1 Introduction

The aim of this chapter is to provide some elementary formulae for the manip-
ulation of Chebyshev polynomials and to summarise the key properties which
will be developed in the book. Areas of application will be introduced and
discussed in the chapters devoted to them.

2.2 Chebyshev polynomial zeros and extrema

The Chebyshev polynomials of degree n > 0 of all four kinds have precisely n
zeros and n + 1 local extrema in the interval [−1, 1]. In the case n = 5, this
is evident in Figures 1.1, 1.3 and 1.4. Note that n − 1 of these extrema are
interior to [−1, 1], and are ‘true’ alternate maxima and minima (in the sense
that the gradient vanishes), the other two extrema being at the end points
±1 (where the gradient is non-zero).

From formula (1.1), the zeros for x in [−1, 1] of Tn(x) must correspond to
the zeros for θ in [0, π] of cosnθ, so that

nθ = (k − 1
2 )π, (k = 1, 2, . . . , n).

Hence, the zeros of Tn(x) are

x = xk = cos
(k − 1

2 )π
n

, (k = 1, 2, . . . , n). (2.1)

Example 2.1: For n = 3, the zeros are

x = x1 = cos
π

6
=

√
3

2
, x2 = cos

3π

6
= 0, x3 = cos

5π

6
= −

√
3

2
.

Note that these zeros are in decreasing order in x (corresponding to in-
creasing θ), and it is sometimes preferable to list them in their natural order
as

x = cos
(n− k + 1

2 )π
n

, (k = 1, 2, . . . , n). (2.2)
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Note, too, that x = 0 is a zero of Tn(x) for all odd n, but not for even n, and
that zeros are symmetrically placed in pairs on either side of x = 0.

The zeros of Un(x) (defined by (1.4)) are readily determined in a similar
way from the zeros of sin(n+ 1)θ as

x = yk = cos
kπ

(n+ 1)
, (k = 1, 2, . . . , n) (2.3)

or in their natural order

x = cos
(n− k + 1)π

n+ 1
, (k = 1, 2, . . . , n). (2.4)

One is naturally tempted to extend the set of points (2.3) by including the
further values y0 = 1 and yn+1 = −1, giving the set

x = yk = cos
kπ

(n+ 1)
, (k = 0, 1, . . . , n+ 1). (2.5)

These are zeros not of Un(x), but of the polynomial

(1− x2)Un(x). (2.6)

However, we shall see that these points are popular as nodes in applications
to integration.

The zeros of Vn(x) andWn(x) (defined by (1.8), (1.9)) correspond to zeros
of cos(n+ 1

2 )θ and sin(n+ 1
2 )θ, respectively. Hence, the zeros of Vn(x) occur

at

x = cos
(k − 1

2 )π
n+ 1

2

, (k = 1, 2, . . . , n) (2.7)

or in their natural order

x = cos
(n− k + 1

2 )π
n+ 1

2

, (k = 1, 2, . . . , n), (2.8)

while the zeros of Wn(x) occur at

x = cos
kπ

n+ 1
2

, (k = 1, 2, . . . , n) (2.9)

or in their natural order

x = cos
(n− k + 1)π
n+ 1

2

, (k = 1, 2, . . . , n). (2.10)

Note that there are natural extensions of these point sets, by including the
value k = n + 1 and hence x = −1 in (2.7) and the value k = 0 and hence
x = 1 in (2.9). Thus the polynomials

(1 + x)Vn(x) and (1− x)Wn(x)
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have as zeros their natural sets (2.7) for k = 1, . . . , n + 1 and (2.9) for k =
0, 1, . . . , n, respectively.

The internal extrema of Tn(x) correspond to the extrema of cosnθ, namely
the zeros of sinnθ, since

d
dx
Tn(x) =

d
dx

cosnθ =
d
dθ

cosnθ
/

dx
dθ

=
−n sinnθ
− sin θ

.

Hence, including those at x = ±1, the extrema of Tn(x) on [−1, 1] are

x = cos
kπ

n
, (k = 0, 1, . . . , n) (2.11)

or in their natural order

x = cos
(n− k)π

n
, (k = 0, 1, . . . , n). (2.12)

These are precisely the zeros of (1− x2)Un−1(x), namely the points (2.5)
above (with n replaced by n − 1). Note that the extrema are all of equal
magnitude (unity) and alternate in sign at the points (2.12) between −1 and
+1, as shown in Figure 1.1.

The extrema of Un(x), Vn(x), Wn(x) are not in general as readily deter-
mined; indeed finding them involves the solution of transcendental equations.
For example,

d
dx
Un(x) =

d
dx

sin(n+ 1)θ
sin θ

=
−(n+ 1) sin θ cos(n+ 1)θ + cos θ sin(n+ 1)θ

sin3 θ

and the extrema therefore correspond to values of θ satisfying the equation

tan(n+ 1)θ = (n+ 1) tan θ �= 0.

All that we can say for certain is that the extreme values of Un(x) have
magnitudes which increase monotonically as |x| increases away from 0, until
the largest magnitude of n+ 1 is achieved at x = ±1.

On the other hand, from the definitions (1.4), (1.8), (1.9), we can show
that √

1− x2 Un(x) = sin(n+ 1)θ,
√
1 + xVn(x) =

√
2 cos(n+ 1

2 )θ,√
1− xWn(x) =

√
2 sin(n+ 1

2 )θ;

Hence the extrema of the weighted polynomials
√
1− x2 Un(x),

√
1 + xVn(x),√

1− xWn(x) are explicitly determined and occur, respectively, at

x = cos
(2k + 1)π
2(n+ 1)

, x = cos
2kπ

2n+ 1
, x = cos

(2k + 1)π
2n+ 1

(k = 0, 1, . . . , n).
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2.3 Relations between Chebyshev polynomials and powers of x

It is useful and convenient in various applications to be able to express Cheb-
yshev polynomials explicitly in terms of powers of x, and vice versa. Such
formulae are simplest and easiest to derive in the case of the first kind poly-
nomials Tn(x), and so we concentrate on these.

2.3.1 Powers of x in terms of {Tn(x)}

The power xn can be expressed in terms of the Chebyshev polynomials of
degrees up to n, but, since these are alternately even and odd, we see at once
that we need only include polynomials of alternate degrees, namely Tn(x),
Tn−2(x), Tn−4(x), . . . . Writing x = cos θ, we therefore need to express cosn θ
in terms of cosnθ, cos(n − 2)θ, cos(n − 4)θ, . . . , and this is readily achieved
by using the binomial theorem as follows:

(eiθ + e−iθ)n = einθ +
(
n

1

)
ei(n−2)θ + · · ·+

(
n

n− 1

)
e−i(n−2)θ + e−inθ

= (einθ + e−inθ) +
(
n

1

)
(ei(n−2)θ + e−i(n−2)θ) +

+
(
n

2

)
(ei(n−4)θ + e−i(n−4)θ) + · · · . (2.13)

Here we have paired in brackets the first and last terms, the second and
second-to-last terms, and so on. The number of such brackets will be

�n/2�+ 1

where �m� denotes the integer part of m. When n is even, the last bracket in
(2.13) will contain only the one (middle) term e0θ [= 1].

Now using the fact that

(eiθ + e−iθ)n = (2 cos θ)n = 2n cosn θ

we deduce from (2.13) that

2n−1 cosn θ =
�n/2�∑′

k=0

(
n

k

)
cos(n− 2k)θ,

where the dash (
∑′) denotes that the kth term in the sum is to be halved if

n is even and k = n/2. Hence, from the definition (1.1) of Tn(x),

xn = 21−n

�n/2�∑′

k=0

(
n

k

)
Tn−2k(x), (2.14)

© 2003 by CRC Press LLC



Figure 2.1: x4 (full curve) and its decomposition into Chebyshev polynomials
(broken curves)

where the dash now denotes that the term in T0(x), if there is one, is to be
halved.

Example 2.2: Taking n = 4 [see Figure 2.1]:

x4 = 2−3

2∑′

k=0

(
4

k

)
T4−2k(x)

= 2−3

[
T4(x) +

(
4

1

)
T2(x) +

1
2

(
4

2

)
T0(x)

]

=
1

8
T4(x) +

1

2
T2(x) +

3

8
T0(x).

2.3.2 Tn(x) in terms of powers of x

It is not quite as simple to derive formulae in the reverse direction. The
obvious device to use is de Moivre’s Theorem:

cosnθ + i sinnθ = (cos θ + i sin θ)n.

Expanding by the binomial theorem and taking the real part,

cosnθ = cosn θ −
(
n

2

)
cosn−2 θ sin2 θ +

(
n

4

)
cosn−4 θ sin4 θ + · · · .

If sin2 θ is replaced by 1 − cos2 θ throughout, then a formula is obtained for
cosnθ in terms of cosn θ, cosn−2 θ, cosn−4 θ, . . . . On transforming to x = cos θ,
this leads to the required formula for Tn(x) in terms of xn, xn−2, xn−4, . . . .
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We omit the details here, but refer to Rivlin (1974), where the relevant result
is obtained in the form

Tn(x) =
�n/2�∑
k=0


(−1)k �n/2�∑

j=k

(
n

2j

)(
j

k

)
xn−2k. (2.15)

However, a rather simpler formula is given, for example, by Clenshaw
(1962) and Snyder (1966) in the form

Tn(x) =
�n/2�∑
k=0

c
(n)
k xn−2k (2.16)

where

c
(n)
k = (−1)k2n−2k−1

[
2
(
n− k
k

)
−

(
n− k − 1

k

)]
(2k < n) (2.17a)

and
c
(2k)
k = (−1)k (k ≥ 0). (2.17b)

This formula may be proved by induction, using the three-term recurrence
relation (1.3a), and we leave this as an exercise for the reader (Problem 5).

In fact the term in square brackets in (2.17a) may be further simplified,
by taking out common ratios, to give

c
(n)
k = (−1)k2n−2k−1 n

n− k
(
n− k
k

)
. (2.18)

Example 2.3: For n = 6 we obtain from (2.17b), (2.18):

c
(6)
0 = 25 = 32; c

(6)
1 = (−1)123 6

5

(
5

1

)
= −48;

c
(6)
2 = (−1)221 6

4

(
4

2

)
= 18; c

(6)
3 = (−1)32−1 6

3

(
3

3

)
= −1.

Hence
T6(x) = 32x

6 − 48x4 + 18x2 − 1.

For an alternative derivation of the results in this section, making use of
generating functions, see Chapter 5.
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2.3.3 Ratios of coefficients in Tn(x)

In applications, recurrence formulae which link pairs of coefficients are often
more useful than explicit formulae (such as (2.18) above) for the coefficients
themselves since, using such formulae, the whole sequence of coefficients may
be assembled rather more simply and efficiently than by working them out
one by one.

From (2.18),

c
(n)
k = (−1)k2n−2k−1n

k

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)
1 · 2 · · · (k − 1)

;

c
(n)
k+1 = (−1)k+12n−2k−3 n

k + 1
(n− k − 2)(n− k − 3) · · · (n− 2k − 1)

1 · 2 · · ·k .

Hence, on dividing and cancelling common factors,

c
(n)
k+1 = − (n− 2k)(n− 2k − 1)

4(k + 1)(n− k − 1)
c
(n)
k (2.19)

where c(n)
k denotes the coefficient of xn in Tn(x). Formula (2.19) is valid for

n > 0 and k ≥ 0.

2.4 Evaluation of Chebyshev sums, products, integrals and deriva-
tives

A variety of manipulations of Chebyshev polynomials and of sums or series
of them can be required in practice. A secret to the efficient and stable exe-
cution of these tasks is to avoid rewriting Chebyshev polynomials in terms of
powers of x and to operate wherever possible with the Chebyshev polynomials
themselves (Clenshaw 1955).

2.4.1 Evaluation of a Chebyshev sum

Suppose that we wish to evaluate the sum

Sn =
n∑

r=0

arPr(x) = a0P0(x) + a1P1(x) + · · ·+ anPn(x) (2.20a)

where {Pr(x)} are Chebyshev polynomials of either the first, second, third or
fourth kinds. We may write (2.20a) in vector form as

Sn = aTp, (2.20b)
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where aT and p denote the row- and column-vectors

aT = (a0, a1, . . . , an), p =



P0(x)
P1(x)

...
Pn(x)


 .

In each of the four cases, from (1.3a), (1.6a), (1.12a), (1.12b) above, the
recurrence relation between the polynomials takes the same form

Pr(x)− 2xPr−1(x) + Pr−2(x) = 0, r = 2, 3, . . . . (2.21a)

with P0(x) = 1 and, respectively,

P1(x) = T1(x) = x, P1(x) = U1(x) = 2x,

P1(x) = V1(x) = 2x− 1, P1(x) =W1(x) = 2x+ 1. (2.21b)

Equations (2.21) may be written in matrix notation as




1
−2x 1
1 −2x 1

1 −2x 1
. . . . . . . . .

1 −2x 1
1 −2x 1







P0(x)
P1(x)
P2(x)
P3(x)

...
Pn−1(x)
Pn(x)




=




1
X
0
0
...
0
0




(2.22a)
or (denoting the (n+ 1)× (n+ 1) matrix by A)

Ap = c (2.22b)

where

c =




1
X
0
...
0




with X = −x, 0, −1, 1, respectively in the four cases.

Let

bT = (b0, b1, . . . , bn)
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be the row vector satisfying the equation

(b0, b1, . . . , bn)




1
−2x 1
1 −2x 1

1 −2x 1
. . . . . . . . .

1 −2x 1
1 −2x 1




=

= (a0, a1, . . . , an) (2.23a)

or
bTA = aT . (2.23b)

Then we have
Sn = aTp = bTAp = bT c = b0 + b1X. (2.24)

If we write bn+1 = bn+2 = 0, then the matrix equation (2.23a) can be seen
to represent the recurrence relation

br − 2xbr+1 + br+2 = ar, r = 0, 1, . . . , n. (2.25)

We can therefore evaluate Sn by starting with bn+1 = bn+2 = 0 and
performing the three-term recurrence (2.25) in the reverse direction,

br = 2xbr+1 − br+2 + ar, r = n, . . . , 1, 0, (2.26)

to obtain b1 and b0, and finally evaluating the required result Sn as

Sn = b0 + b1X. (2.27)

For the first-kind polynomials Tr(x), it is more usual to need the modified
sum

S′
n =

n∑′

r=0

arTr(x) = 1
2a0T0(x) + a1T1(x) + · · ·+ anTn(x),

in which the coefficient of T0 is halved, in which case (2.27) is replaced (re-
membering that X = −x) by

S′
n = Sn − 1

2a0

= (b0 − b1x) + 1
2 (b0 − 2xb1 + b2),

or
S′

n = 1
2 (b0 − b2). (2.28)
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Note that, for a given x, carrying out the recurrence requires only O(n)
multiplications, and hence is as efficient as Horner’s rule for evaluating a
polynomial as a sum of powers using nested multiplication.

In some applications, which we shall refer to later, it is necessary to eval-
uate Chebyshev sums of a large number of terms at an equally large number
of values of x. While the algorithm described above may certainly be used in
such cases, one can often gain dramatically in efficiency by making use of the
well-known fast Fourier transform, as we shall show later in Section 4.7.1.

Sums of even only or odd only polynomials, such as

S(0)
n =

n∑′

r=0

ā2rT2r(x) and S(1)
n =

n∑
r=0

ā2r+1T2r+1(x)

may of course be evaluated by the above method, setting odd or even co-
efficients (respectively) to zero. However, the sum may be calculated much
more efficiently using only the given even/odd coefficients by using a modified
algorithm (Clenshaw 1962) which is given in Problem 7 below.

Example 2.4: Consider the case n = 2 and x = 1 with coefficients

a0 = 1, a1 = 0.1, a2 = 0.001.

Then from (2.21b) we obtain

b3 = b4 = 0

b2 = a2 = 0.01

b1 = 2b2 − b3 + 0.1 = 0.12

b0 = 2b1 − b2 + 1 = 1.23.

Hence

2∑′

r=0

arTr(1) =
1
2
(b0 − b2) = 0.61

2∑
r=0

arUr(1) = b0 = 1.23

2∑
r=0

arVr(1) = b0 − b1 = 1.11

2∑
r=0

arWr(1) = b0 + b1 = 1.35.

To verify these formulae, we may set θ = 0 (i.e., x = 1) in (1.1), (1.4), (1.8),
(1.9), giving

Tn(1) = 1, Un(1) = n+ 1, (2.29a)
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Vn(1) = 1, Wn(1) = 2n+ 1. (2.29b)

Hence

2∑′

r=0

arTr(1) =
1
2
a0 + a1 + a2 = 0.61

2∑
r=0

arUr(1) = a0 + 2a1 + 3a2 = 1.23

2∑
r=0

arVr(1) = a0 + a1 + a2 = 1.11

2∑
r=0

arWr(1) = a0 + 3a1 + 5a2 = 1.35.

Incidentally, it is also useful to note that, by setting θ = π, 1
2
π in (1.1), (1.4),

(1.8), (1.9), we can find further special values of the Chebyshev polynomials at
x = −1 and x = 0, similar to those (2.29) at x = 1, namely

Tn(−1) = (−1)n, Un(−1) = (−1)n(n+ 1), (2.30a)

Vn(−1) = (−1)n(2n+ 1), Wn(−1) = (−1)n, (2.30b)

T2n+1(0) = U2n+1(0) = 0, T2n(0) = U2n(0) = (−1)n, (2.30c)

−V2n+1(0) = W2n+1(0) = (−1)n, V2n(0) = W2n(0) = (−1)n. (2.30d)

We leave the confirmation of formulae (2.29) and (2.30) as an exercise to the reader

(Problem 8 below).

2.4.2 Stability of the evaluation of a Chebyshev sum

It is important to consider the effects of rounding errors when using recur-
rence relations, and specifically (2.26) above, since it is known that instability
can sometimes occur. (By instability, we mean that rounding errors grow
unacceptably fast relative to the true solution as the calculation progresses.)
Three-term recurrence relations have two families of solutions, and it is possi-
ble for contributions from a relatively larger but unwanted solution to appear
as rounding errors; so we need to take note of this. A brief discussion is given
by Clenshaw (1962); a more detailed discussion is given by Fox & Parker
(1968).

In the case of the recurrence (2.26), suppose that each bs is computed with
a local rounding error εs, which local errors together propagate into errors δr
in br for r < s, resulting in an error ∆ in Sn or ∆′ in S′

n. Writing b̄r for the
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computed br and S̄n or S̄′
n for the Sn or S′

n computed without further error
from (2.24) or (2.28), then from (2.26) (for fixed x)

b̄r = 2xb̄r+1 − b̄r+2 + ar − εr (2.31)

while
br − b̄r = δr. (2.32)

Also

S̄n = b̄0 + b̄1X,

S̄′
n = 1

2 (b̄0 − b̄2),
and

Sn − S̄n = ∆, S′
n − S̄′

n = ∆′.

From (2.26), (2.31), (2.32) we deduce that

δr = 2xδr+1 − δr+2 + εr (r < s) (2.33)

while

∆ = δ0 + δ1X,

∆′ = 1
2 (δ0 − δ2).

Now the recurrence (2.33), is identical in form to (2.26), with εr replacing
ar and δr replacing br, while obviously δn+1 = δn+2 = 0. Taking the final
steps into account, we deduce that

∆ =
n∑

r=0

εrPr(x), (2.34)

where Pr is Tr, Ur, Vr or Wr, depending on the choice of X , and

∆′ =
n∑′

r=0

εrTr(x). (2.35)

Using the well-known inequality∣∣∣∣∣
∑

r

xryr

∣∣∣∣∣ ≤
(∑

r

|xr|
)
max

r
|yr| ,

we deduce the error bounds

|∆′| ≤
( n∑′

r=0

|εr|
)

n
max
r=0

|Tr(x)| ≤
n∑′

r=0

|εr| (2.36)
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and

|∆| ≤
(

n∑
r=0

|εr|
)

n
max
r=0

|Pr(x)| ≤ Cn

n∑
r=0

|εr| , (2.37)

where Cn = 1, n + 1, 2n + 1, 2n + 1 when Pr is Tr, Ur, Vr or Wr, respec-
tively. (Note that the εr in these formulae are the absolute, not relative, errors
incurred at each step of the calculation.)

2.4.3 Evaluation of a product

It is frequently necessary to be able to multiply Chebyshev polynomials by
each other, as well as by factors such as x, 1 − x and 1 − x2, and to re-
express the result in terms of Chebyshev polynomials. Such products are
much less readily carried out for second-, third- and fourth-kind polynomials,
as a consequence of the denominators in their trigonometric definitions. We
therefore emphasise Tn(x) and to a lesser extent Un(x).

Various formulae are readily obtained by using the substitution x = cos θ
and trigonometric identities, as follows.

Tm(x)Tn(x) = cosmθ cosnθ = 1
2 (cos(m+ n)θ + cos |m− n| θ),

giving
Tm(x)Tn(x) = 1

2 (Tm+n(x) + T|m−n|(x)). (2.38)

xTn(x) = cos θ cosnθ = 1
2 (cos(n+ 1)θ + cos |n− 1| θ),

xUn(x) sin θ = cos θ sin(n+ 1)θ = 1
2 (sin(n+ 2)θ + sinnθ),

giving
xTn(x) = 1

2 (Tn+1(x) + T|n−1|(x)) (2.39)

and
xUn(x) = 1

2 (Un+1(x) + Un−1(x)), (2.40)

(provided that we interpret U−1(x) as sin 0/ sin θ = 0).

More generally, we may also obtain expressions for xmTn(x) (and similarly
xmUn(x)) for any m, by expressing xm in terms of Chebyshev polynomials by
(2.14) and then using (2.38). (See Problem 4 below.)

In a similar vein,

(1− x2)Tn(x) = sin2 θ cosnθ = 1
2 (1− cos 2θ) cosnθ

= 1
2 cosnθ − 1

4 (cos(n+ 2)θ + cos |n− 2| θ),
(1− x2)Un(x) sin θ = sin2 θ sin(n+ 1)θ = 1

2 (1− cos 2θ) sin(n+ 1)θ

= 1
2 sin(n+ 1)θ − 1

4 (sin(n+ 3)θ + sin(n− 1)θ),
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giving
(1− x2)Tn(x) = − 1

4Tn+2(x) + 1
2Tn(x) − 1

4T|n−2|(x) (2.41)

and
(1− x2)Un(x) = − 1

4Un+2(x) + 1
2Un(x) − 1

4Un−2(x) (2.42)

where we interpret U−1(x) as 0 again, and U−2(x) as sin(−θ)/ sin θ = −1.
Note that the particular cases n = 0, n = 1 are included in the formulae

above, so that, specifically

xT0(x) = T1(x),

xU0(x) = 1
2U1(x),

(1− x2)T0(x) = 1
2T0(x)− 1

2T2(x),

(1− x2)T1(x) = 1
4T1(x)− 1

4T3(x),

(1− x2)U0(x) = 3
4U0(x) − 1

4U2(x),

(1− x2)U1(x) = 1
2U1(x) − 1

4U3(x).

2.4.4 Evaluation of an integral

The indefinite integral of Tn(x) can be expressed in terms of Chebyshev poly-
nomials as follows. By means of the usual substitution x = cos θ,∫

Tn(x) dx =
∫

− cosnθ sin θ dθ

= − 1
2

∫
(sin(n+ 1)θ − sin(n− 1)θ) dθ

= 1
2

[
cos(n+ 1)θ
n+ 1

− cos |n− 1| θ
n− 1

]

(where the second term in the bracket is to be omitted in the case n = 1).

Hence

∫
Tn(x) dx =




1
2

[
Tn+1(x)
n+ 1

− T|n−1|(x)
n− 1

]
, n �= 1;

1
4T2(x), n = 1.

(2.43)

Clearly this result can be used to integrate the sum

Sn(x) =
n∑′

r=0

arTr(x)
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in the form

In+1(x) =
∫
Sn(x) dx

= constant + 1
2a0T1(x) + 1

4a1T2(x) +
n∑

r=2

ar

2

[
Tr+1(x)
r + 1

− Tr−1(x)
r − 1

]

=
n+1∑′

r=0

ArTr(x) (2.44)

where A0 is determined from the constant of integration, and

Ar =
ar−1 − ar+1

2r
, r > 0, (2.45)

with an+1 = an+2 = 0.

Example 2.5: Table 2.1 gives 5-decimal values of Ar computed from values of

ar, obtained from an infinite expansion of the function ex, after each value of ar

had been rounded to 4 decimals (numbers taken from Clenshaw (1962)). Each Ar

would be identical to ar for an exact calculation, but it is interesting to observe

that, although there is a possible rounding error of ±0.00005 in each given ar, all

the computed Ar actually have errors significantly smaller than this.

Table 2.1: Integration of a Chebyshev series

r ar Ar |error in Ar|
0 2.53213 — —
1 1.13032 1.13030 0.00002
2 0.27150 0.27150 0.00000
3 0.04434 0.04433 0.00001
4 0.00547 0.00548 0.00001
5 0.00054 0.00055 0.00001
6 0.00004 0.00004 0.00000

There is an interesting and direct integral relationship between the Cheb-
yshev polynomials of the first and second kinds, namely∫

Un(x) dx =
1

n+ 1
Tn+1(x) + constant (2.46)
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(which is easily verified by substituting x = cos θ). Hence, the sum

Sn(x) =
n∑

r=1

brUr−1(x)

can be integrated immediately to give∫
Sn(x) dx =

n∑
r=1

br
r
Tr(x) + constant. (2.47)

2.4.5 Evaluation of a derivative

The formula for the derivative of Tn(x) in terms of first-kind polynomials is
not quite as simple as (2.43). From (2.46) we deduce that

d
dx
Tn+1(x) = (n+ 1)Un(x), (2.48)

so that it is easily expressed in terms of a second-kind polynomial. Then from
(1.6b) and (1.7) it follows that

d
dx
Tn(x) = 2n

n−1∑′

r=0
n−r odd

Tr(x). (2.49)

However, the derivative of a finite sum of first-kind Chebyshev polynomials
is readily expressible as a sum of such polynomials, by reversing the process
used in the integration of (2.44). Given the Chebyshev sum (of degree n+ 1,
say)

In+1(x) =
n+1∑′

r=0

ArTr(x),

then

Sn(x) =
d
dx
In+1 =

n∑′

r=0

arTr(x) (2.50)

where the coefficients {ar} are derived from the given {Ar} by using (2.45) in
the form

ar−1 = ar+1 + 2rAr , (r = n+ 1, n, . . . , 1) (2.51a)

with
an+1 = an+2 = 0. (2.51b)

Explicitly, if we prefer, we may say that

ar =
n+1∑

k=r+1
k−r odd

2kAk. (2.52)
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Example 2.6: Table 2.2 shows 4-decimal values of ar computed from 4-decimal

values of Ar, for the same example as in Table 2.1. Each ar would be identical

to Ar in an exact computation, and we see this time that the derivative Sn(x)

is less accurate than the original polynomial In+1(x) by nearly one decimal place.

The contrast between these results is consistent with the principle that, in general,

numerical integration is a stable process and numerical differentiation an unstable

process. The size of the errors in the latter case can be attributed to the propagation,

by (2.51a), of the error inherent in the assumptions (2.51b).

Table 2.2: Differentiation of a Chebyshev series

r Ar ar |error in ar|
0 2.53213 2.5314 0.0007
1 1.13032 1.1300 0.0003
2 0.27150 0.2708 0.0007
3 0.04434 0.0440 0.0003
4 0.00547 0.0050 0.0005
5 0.00054 0.0000 0.0005

There is another relatively simple formula for the derivative of Tn(x),
which we can obtain as follows.

d
dx
Tn(x) =

d
dθ

cosnθ
/ d
dθ

cos θ

=
n sinnθ
sin θ

=
1
2n(cos(n− 1)θ − cos(n+ 1)θ)

sin2 θ

=
1
2n(Tn−1(x)− Tn+1(x))

1− x2
.

Thus, for |x| �= 1,

d
dx
Tn(x) =

n

2
Tn−1(x) − Tn+1(x)

1− x2
. (2.53)

Higher derivatives may be obtained by similar formulae (see Problem 17
for the second derivative).

© 2003 by CRC Press LLC



2.5 Problems for Chapter 2

1. Determine the positions of the zeros of the Chebyshev polynomials of
the second and third kinds for the general interval [a, b] of x.

2. From numerical values of the cosine function (from table, calculator or
computer), determine the zeros of T4(x), U4(x), V4(x), W4(x) and the
extrema of T4(x).

3. Show that

(a) 1
2U2k(x) = 1

2T0(x) + T2(x) + T4(x) + · · ·+ T2k(x);

(b) 1
2U2k+1(x) = T1(x) + T3(x) + · · ·+ T2k+1(x);

(c) xU2k+1(x) = T0(x) + 2T2(x) + · · ·+ 2T2k−2(x) + T2k(x).

[Hint: In (3a), multiply by sin θ and use 2 sinA cosB = sin(A − B) +
sin(A+B). Use similar ideas in (3b), (3c).]

4. Obtain the expression

xmTn(x) = 2−m
m∑

r=0

(
m

r

)
Tn−m−2r(x) (m < n)

(a) by applying the formula (2.39) m times;

(b) by applying the expression (2.14) for xm in terms of Chebyshev
polynomials and the expression (2.38) for products of Chebyshev
polynomials.

5. Prove by induction on n that

Tn(x) =
�n/2�∑
k=0

cnkx
n−2k,

where

cnk = (−1)k2n−2k−1

[
2
(
n− k
k

)
−

(
n− k − 1

k

)]
(n, k > 0)

cn0 = 2n−1 (n > 0)

c00 = 1.

[Hint: Assume the formulae are true for n = N − 2, N − 1 and hence
derive them for n = N , using Tn = 2xTn−1 − Tn−2.]

6. Derive formulae for T ∗
m(x)T ∗

n(x) and xT
∗
n(x) in terms of {T ∗

r (x)}, using
the ideas of Section 2.4.3.
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7. Suppose

S(0)
n =

n∑′

r=0

a2rT2r(x), S(1)
n =

n∑
r=0

a2r+1T2r+1(x)

are sums of even-only/odd-only Chebyshev polynomials.

(a) Show that S(0)
n may be efficiently determined by applying the re-

currence (2.26) followed by (2.28), with x replaced by (2x2−1) and
ar replaced by a2r;

(b) Show that S(1)
n may be efficiently determined by applying the re-

currence (2.26), with x replaced by (2x2 − 1) and ar replaced by
a2r+1, and then taking

S(1)
n = x(b0 − b1).

[Hint: From (1.14) and (1.15), we have T2r(x) = Tr(2x2 − 1) and
T2r+1(x) = xVr(2x2 − 1).]

8. Derive the formulae (2.29a)–(2.30d) for the values of Tn, Un, Vn, Wn at
x = −1, 0, 1, using only the trigonometric definitions of the Chebyshev
polynomials.

9. Use the algorithm (2.21b) to evaluate

3∑′

r=0

crTr(x),
3∑

r=0

crUr(x),
3∑

r=0

crVr(x),
3∑

r=0

crWr(x)

at x = −1, 0, 1 for c0 = 1, c1 = 0.5, c2 = 0.25, c3 = 0.125. Check your
results using correct values of Tr, Ur, Vr , Wr at 0, 1.

10. Illustrate the algorithms (7a), (7b) of Problem 7 by using them to eval-
uate at x = −1

2∑′

0

crTr(x),
2∑′

0

crT2r(x),
2∑′

0

crT2r+1(x),

where c0 = 1, c1 = 0.1, c2 = 0.001. Check your results using correct
values of Tr at x = −1.

11. Discuss the stability of the summation formulae for sums of Chebyshev
polynomials Ur, Vr, Wr when the size of each sum is

(a) proportional to unity,

(b) proportional to the largest value in [−1, 1] of Un, Vn, Wn, respec-
tively (where the sums are from r = 0 to r = n).

© 2003 by CRC Press LLC



12. Show that

(a) 2(1− x2)Un−2(x) = Tn(x) − Tn−2(x);

(b) (1 + x)Vn−1(x) = Tn(x) + Tn−1(x);

(c) (1− x)Wn−1(x) = Tn(x) − Tn−1(x);

(d) (1 + x)Vm(x)Vn(x) = T|m−n|(x) + Tm+n+1(x);

(e) (1− x)Wm(x)Wn(x) = T|m−n|(x)− Tm+n+1(x).

13. Show that Tm(x)Un−1(x) = 1
2{Un+m−1(x) + Un−m−1(x)}, and deter-

mine an expression for xmUn−1(x) in terms of {Uk} by a similar proce-
dure to that of Problem 4.

14. Show that (ignoring constants of integration)

(a)
∫
(1 − x2)−

1
2Tn(x) dx = n−1(1− x2)

1
2Un−1(x);

(b)
∫
(1 − x)− 1

2 Vn(x) dx = (n+ 1
2 )

−1(1 − x) 1
2Wn(x);

(c)
∫
(1 + x)−

1
2Wn(x) dx = (n+ 1

2 )
−1(1 + x)

1
2 Vn(x).

15. Show that, for n > 0,

d
dx
Un(x) =

(n+ 2)Un−1(x) − nUn+1(x)
2(1− x2)

.

16. Using (2.52), show that if

n+1∑′

r=0

ArTr(x) = In+1(x)

and
n−1∑′

r=0

arTr(x) =
d2

dx2
In+1(x),

then

ar =
n+1∑

k=r+2
k−r even

(k − r)k(k + r)Ak.

Show further that

d2

dx2
Tn(x) =

n−2∑′

r=0
n−r even

(n− r)n(n + r)Tr(x).
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17. Using (2.53) and (1.3a), prove that, for n > 1,

d2

dx2
Tn(x) =

n

4
(n+ 1)Tn−2(x) − 2nTn(x) + (n− 1)Tn+2(x)

(1− x2)2
.

18. Show that
n∑′

j=0

Tj(x)Tj(y) = 1
4

{
Wn

(
xy +

√
(1− x2)(1− y2)

)
+

+Wn

(
xy −

√
(1− x2)(1 − y2)

)}
.

19. Show that

(1− x2)
∞∑′

j=0

cjTj(x) = 1
4

∞∑
j=0

(cj − cj+2)(Tj(x)− Tj+2(x)).
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Chapter 3

The Minimax Property and Its Applications

3.1 Approximation — theory and structure

One area above all in which the Chebyshev polynomials have a pivotal role
is the minimax approximation of functions by polynomials. It is therefore
appropriate at the beginning of this discussion to trace the structure of the
subject of approximation and to present some essential theoretical results,
concentrating primarily on uniform (or L∞) approximation and introducing
the minimax property of the Chebyshev polynomials.

It is very useful to be able to replace any given function by a simpler
function, such as a polynomial, chosen to have values not identical with but
very close to those of the given function, since such an ‘approximation’ may
not only be more compact to represent and store but also more efficient to
evaluate or otherwise manipulate. The structure of an ‘approximation prob-
lem’ involves three central components: (i) a function class (containing the
function to be approximated), (ii) a form (for the approximating function)
and (iii) a norm (of the approximation error), in terms of which the problem
may be formally posed. The expert’s job is to make appropriate selections
of these components, then to pose the approximation problem, and finally to
solve it.

By a function class, we mean a restricted family F of functions f to which
any function f(x) that we may want to fit is assumed to belong. Unless oth-
erwise stated, we shall be concerned with real functions of a real variable, but
the family will generally be narrower than this. For example we may consider
amongst others the following alternative families F of functions defined on
the real interval [a, b]:

1. C[a, b]: continuous functions on [a, b];

2. L∞[a, b]: bounded functions on [a, b];

3. L2[a, b]: square-integrable functions on [a, b];

4. Lp[a, b]: Lp-integrable functions on [a, b], namely functions f(x) for
which is defined ∫ b

a

w(x) |f(x)|p dx, (3.1)

where w(x) is a given non-negative weight function and 1 ≤ p < ∞.
Note that L2[a, b] is a special case (p = 2) of Lp[a, b].
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The reason for defining such a family of functions, when in practice we may
only in fact be interested in one specific function, is that this helps to isolate
those properties of the function that are relevant to the theory — moreover,
there is a close link between the function class we work in and the norms we
can use. In particular, in placing functions in one of the four families listed
above, it is implicitly assumed that we neither care how the functions behave
nor wish to approximate them outside the given interval [a, b].

By form of approximation we mean the specific functional form which
is to be adopted, which will always include adjustable coefficients or other
parameters. This defines a family A of possible approximations f∗(x) to the
given function f(x). For example, we might draw our approximation from
one of the following families:

1. Polynomials of degree n, with

A = Πn = {f∗(x) = pn(x) = c0 + c1x + · · ·+ cnx
n} (parameters {cj})

2. Rational functions of type (p, q), with

A =
{
f∗(x) = rp,q(x) =

a0 + a1 + · · · + apx
p

1 + b1 + · · · + bqxq

}
(parameters {aj}, {bj})

For theoretical purposes it is usually desirable to choose the function class
F to be a vector space (or linear space). A vector space V comprises elements
u, v, w, . . . with the properties (which vectors in the conventional sense are
easily shown to possess):

1. (closure under addition)
u + v ∈ V for any u, v ∈ V ,

2. (closure under multiplication by a scalar)
αu ∈ V for any u ∈ V and for any scalar α.

When these elements are functions f(x), with f + g and αf defined as the
functions whose values at any point x are f(x) + g(x) and αf(x), we refer
to F as a function space. This space F typically has infinite dimension, the
‘vector’ in question consisting of the values of f(x) at each of the continuum
of points x in [a, b].

The family A of approximations is normally taken to be a subclass of F :

A ⊂ F

— in practice, A is usually also a vector space, and indeed a function space.
In contrast to F , A is a finite dimensional function space, its dimension being
the number of parameters in the form of approximation. Thus the space Πn of
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polynomials pn(x) of degree n has dimension n + 1 and is in fact isomorphic
(i.e., structurally equivalent) to the space �

n+1 of real vectors with n + 1
components:

{c = (c0, c1, . . . , cn)}.
(Note that the family of rational functions rp,q of type (p, q) is not a vector
space, since the sum of two such functions is in general a rational function of
type (p + q, 2q), which is not a member of the same family.)

The norm of approximation ‖·‖ serves to compare the function f(x) with
the approximation f∗(x), and gives a single scalar measure of the closeness of
f∗ to f , namely

‖f − f∗‖ . (3.2)

Definition 3.1 A norm ‖·‖ is defined as any real scalar measure of elements
of a vector space that satisfies the axioms:

1. ‖u‖ ≥ 0, with equality if and only if u ≡ 0;

2. ‖u + v‖ ≤ ‖u‖ + ‖v‖ ( the ‘triangle inequality’);

3. ‖αu‖ = |α| ‖u‖ for any scalar α.

Such a definition encompasses all the key features of distance or, in the case
of a function, size. Standard choices of norm for function spaces are the
following:

1. L∞ norm (or uniform norm, minimax norm, or Chebyshev norm):

‖f‖ = ‖f‖∞ = max
a≤x≤b

|f(x)| ; (3.3)

2. L2 norm (or least-squares norm, or Euclidean norm):

‖f‖ = ‖f‖2 =

√∫ b

a

w(x) |f(x)|2 dx, (3.4)

where w(x) is a non-negative weight function;

3. L1 norm (or mean norm, or Manhattan norm):

‖f‖ = ‖f‖1 =
∫ b

a

w(x) |f(x)| dx; (3.5)

4. The above three norms can be collected into the more general Lp norm
(or Hölder norm):

‖f‖ = ‖f‖p =

[∫ b

a

w(x) |f(x)|p dx

] 1
p

, (1 ≤ p < ∞), (3.6)
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where w(x) is a non-negative weight function.

With suitable restrictions on f , which are normally satisfied in practice,
this Lp norm corresponds to the L∞, L2 and L1 norms in the cases
p → ∞, p = 2, p = 1, respectively.

5. The weighted minimax norm:

‖f‖ = max
a≤x≤b

w(x) |f(x)| (3.7)

(which does not fall into the pattern of Hölder norms) also turns out to
be appropriate in some circumstances.

The Lp norm becomes stronger as p increases, as the following lemma
indicates.

Lemma 3.1 If 1 ≤ p1 < p2 ≤ ∞, and if a, b and
∫ b

a
w(x) dx are finite, then

Lp2 [a, b] is a subspace of Lp1 [a, b], and there is a finite constant kp1p2 such
that

‖f‖p1
≤ kp1p2 ‖f‖p2

(3.8)

for every f in Lp2 [a, b].

This lemma will be deduced from Hölder’s inequality in Chapter 5 (see
Lemma 5.4 on page 117).

A vector space to which a norm has been attached is termed a normed
linear space. Hence, once a norm is chosen, the vector spaces F and A of
functions and approximations become normed linear spaces.

3.1.1 The approximation problem

We defined above a family of functions or function space, F , a family of
approximations or approximation (sub)space, A, and a measure ‖f − f∗‖ of
how close a given function f(x) in F is to a derived approximation f∗(x)
in A. How then do we more precisely judge the quality of f∗(x), as an
approximation to f(x) in terms of this measure? In practice there are three
types of approximation that are commonly aimed for:

Definition 3.2 Let F be a normed linear space, let f(x) in F be given, and
let A be a given subspace of F .

1. An approximation f∗(x) in A is said to be good (or acceptable) if

‖f − f∗‖ ≤ ε (3.9)

where ε is a prescribed level of absolute accuracy.
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2. An approximation f∗
B(x) in A is a best approximation if, for any other

approximation f∗(x) in A,

‖f − f∗
B‖ ≤ ‖f − f∗‖ . (3.10)

Note that there will sometimes be more than one best approximation to
the same function.

3. An approximation f∗
N (x) in A is said to be near-best within a relative

distance ρ if
‖f − f∗

N‖ ≤ (1 + ρ) ‖f − f∗
B‖ , (3.11)

where ρ is a specified positive scalar and f∗
B(x) is a best approximation.

In the case of the L∞ norm, we often use the terminology minimax and near-
minimax in place of best and near-best.

The ‘approximation problem’ is to determine an approximation of one of
these types (good, best or near-best). In fact, it is commonly required that
both ‘good’ and ‘best’, or both ‘good’ and ‘near-best’, should be achieved —
after all, it cannot be very useful to obtain a best approximation if it is also
a very poor approximation.

In defining ‘good’ in Definition 3.2 above, an absolute error criterion is
adopted. It is, however, also possible to adopt a relative error criterion,
namely ∥∥∥∥1 − f∗

f

∥∥∥∥ ≤ ε. (3.12)

This can be viewed as a problem of weighted approximation in which we
require

‖w (f − f∗)‖ ≤ ε, (3.13)

where, in this case,
w(x) = 1/ |f(x)| .

In approximating by polynomials on [a, b], it is always possible to obtain a
good approximation by taking the degree high enough. This is the conclusion
of the following well-known results.

Theorem 3.2 (Weierstrass’s theorem) For any given f in C[a, b] and for
any given ε > 0, there exists a polynomial pn for some sufficiently large n
such that ‖f − pn‖∞ < ε.

Proof: A proof of this will be given later (see Corollary 5.8A on page 120). ••
Corollary 3.2A The same holds for ‖f − pn‖p for any p ≥ 1.
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Proof: This corollary follows directly by applying Lemma 3.1. ••
But of course it is a good thing from the point of view of efficiency if we

can keep the degree of polynomial as low as possible, which we can do by
concentrating on best or near-best approximations.

3.2 Best and minimax approximation

Given a norm ‖·‖ (such as ‖·‖∞, ‖·‖2 or ‖·‖1), a best approximation as defined
by (3.10) is a solution of the problem:

minimise
f∗∈A

‖f − f∗‖ . (3.14)

In the case of polynomial approximation:

f∗(x) = pn(x) = c0 + c1x + · · · + cnx
n, (3.15)

to which we now restrict our attention, we may rewrite (3.14) in terms of the
parameters as:

minimise
c0,...,cn

‖f − pn‖ . (3.16)

Can we always find such a pn? Is there just one?

Theorem 3.3 For any given p (1 ≤ p ≤ ∞), there exists a unique best
polynomial approximation pn to any function f ∈ Lp[a, b] in the Lp norm,
where w(x) is taken to be unity in the case p → ∞.

We refrain from giving proofs, but refer the reader to Cheney (1966), or
other standard texts, for details.

Note that best approximations also exist in Lp norms on finite point sets,
for 1 ≤ p ≤ ∞, and are then unique for p 	= 1 but not necessarily unique for
p = 1. Such Lp norms are defined by:

‖f − f∗‖p =

[
m∑

i=1

wi |f(xi) − f∗(xi)|p
] 1

p

where {wi} are positive scalar weights and {xi} is a discrete set of m fitting
points where the value of f(xi) is known. These are important in data fitting
problems; however, this topic is away from our central discussion, and we shall
not pursue it here.

It is possible to define forms of approximation other than polynomials,
for which existence or uniqueness of best approximation holds — see Cheney
(1966) for examples. Since polynomials are the subject of this book, however,
we shall again refrain from going into details.
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Note that Theorem 3.3 guarantees in particular the existence of a unique
best approximation in the L∞ or minimax norm. The best L∞ or minimax
approximation problem, combining (3.3) and (3.15), is (in concise notation)

minimise
c0,...,cn

max
a≤x≤b

|f(x) − pn(x)| . (3.17)

It is clear from (3.17) why the word ‘minimax’ is often given to this problem,
and why the resulting best approximation is often referred to as a ‘minimax
approximation’.

Theorem 3.3 is not a constructive theorem and does not characterise (i.e.
describe how to recognise) a minimax approximation. However, it is possible
to do so rather explicitly, as the following powerful theorem asserts.

Theorem 3.4 (Alternation theorem for polynomials) For any f(x) in
C[a, b] a unique minimax polynomial approximation pn(x) exists, and is uniquely
characterised by the ‘alternating property’ (or ‘equioscillation property’) that
there are n + 2 points (at least) in [a, b] at which f(x) − pn(x) attains its
maximum absolute value (namely ‖f − pn‖∞) with alternating signs.

This theorem, often ascribed to Chebyshev but more properly attributed
to Borel (1905), asserts that, for pn to be the best approximation, it is both
necessary and sufficient that the alternating property should hold, that only
one polynomial has this property, and that there is only one best approxima-
tion. The reader is referred to Cheney (1966), for example, for a complete
proof. The ‘sufficient’ part of the proof is relatively straightforward and is set
as Problem 6 below; the ‘necessary’ part of the proof is a little more tricky.

Example 3.1: As an example of the alternation theorem, suppose that the function
f(x) = x2 is approximated by the first-degree (n = 1) polynomial

f∗(x) = p1(x) = x − 0.125 (3.18)

on [0, 1]. Then the error f(x)− pn(x), namely

x2 − x+ 0.125,

has a maximum magnitude of 0.125 which it attains at x = 0, 0.5 and 1. At

these points it takes the respective values +0.125, −0.125 and +0.125, which have
alternating signs. (See Figure 3.1.) Hence p1(x), given by (3.18), is the unique

minimax approximation.

Define C0
2π to be the space of functions which are continuous and 2π-

periodic (so that f(2π+θ) = f(θ)). There is a theorem similar to Theorem 3.4
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Figure 3.1: Minimax linear approximation to x2 on range [0, 1]

which holds for approximation of a continuous function by a trigonometric
polynomial, such as

qn(θ) = a0 +
n∑

k=1

(ak cos kθ + bk sinkθ) (3.19)

on the range [−π, π] of θ.

Theorem 3.5 (Alternation theorem for trigonometric polynomials)
For any f(θ) in C0

2π, the minimax approximation qn(θ) of form (3.19) exists
and is uniquely characterised by an alternating property at 2n + 2 points of
[−π, π]. If b1, . . . , bn (or a0, . . . , an) are set to zero, so that qn(θ) is a sum of
cosine (or sine) functions alone, and if f(θ) is an even (or odd) function, then
the minimax approximation qn(θ) is characterised by an alternating property
at n + 2 (or respectively n + 1) points of [0, π].

Finally, we should mention recent work by Peherstorfer (1997, and else-
where) on minimax polynomial approximation over collections of non-over-
lapping intervals.

3.3 The minimax property of the Chebyshev polynomials

We already know, from our discussions of Section 2.2, that the Chebyshev
polynomial Tn(x) has n + 1 extrema, namely

x = yk = cos
kπ

n
(k = 0, 1, . . . , n). (3.20)

Since Tn(x) = cosnθ when x = cos θ (by definition), and since cosnθ
attains its maximum magnitude of unity with alternating signs at its extrema,
the following property holds.

Lemma 3.6 (Alternating property of Tn(x)) On [−1, 1], Tn(x) attains
its maximum magnitude of 1 with alternating signs at precisely (n+1) points,
namely the points (3.20).
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Clearly this property has the flavour of the alternation theorem for minimax
polynomial approximation, and indeed we can invoke this theorem as follows.
Consider the function

f(x) = xn,

and consider its minimax polynomial approximation of degree n−1 on [−1, 1],
pn−1(x), say. Then, by Theorem 3.4, f(x) − pn−1(x) = xn − pn−1(x) must
uniquely have the alternating property on n + 1 points. But Tn(x) has a
leading coefficient (of xn) equal to 2n−1 and hence 21−nTn(x) is of the same
form xn − pn−1(x) with the same alternating property. It follows that

xn − pn−1(x) = 21−nTn(x). (3.21)

We say that 21−nTn(x) is a monic polynomial, namely a polynomial with
unit leading coefficient. The following two corollaries of the alternation theo-
rem now follow.

Corollary 3.4A (of Theorem 3.4) The minimax polynomial approximation
of degree n− 1 to the function f(x) = xn on [−1, 1] is

pn−1(x) = xn − 21−nTn(x). (3.22)

Corollary 3.4B (The minimax property of Tn) 21−nTn(x) is the mini-
max approximation on [−1, 1] to the zero function by a monic polynomial of
degree n.

Example 3.2: As a specific example of Corollary 3.4B, the minimax monic poly-
nomial approximation of degree n = 4 to zero on [−1, 1] is

2−3T4(x) = 2
−3(8x4 − 8x2 + 1) = x4 − x2 + 0.125.

This polynomial has the alternating property, taking extreme values +0.125, −0.125,
+0.125, −0.125, +0.125, respectively, at the 5 points yk = cos kπ/4 (k = 0, 1, . . . , 4),
namely

yk = 1,
1√
2
, 0, − 1√

2
, −1. (3.23)

Moreover, by Corollary 3.4A, the minimax cubic polynomial approximation to the
function f(x) = x4 on [−1, 1] is, from (3.22),

p3(x) = x4 − (x4 − x2 + 0.125) = x2 − 0.125, (3.24)

the error f(x)−p3(x) having the alternating property at the points (3.23). Thus the
minimax cubic polynomial approximation in fact reduces to a quadratic polynomial
in this case.

It is noteworthy that x2−0.125 is also the minimax quadratic polynomial (n = 2)
approximation to x4 on [−1, 1]. The error still has 5 extrema, and so in this case the
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alternation theorem holds with n+3 alternation points. It is thus certainly possible
for the number of alternation points to exceed n+ 2.

If the interval of approximation is changed to [0, 1], then a shifted Chebyshev
polynomial is required. Thus the minimax monic polynomial approximation of de-
gree n to zero on [0, 1] is

21−2nT ∗
n(x). (3.25)

For example, for n = 2, the minimax monic quadratic is

2−3T ∗
2 (x) = 2

−3(8x2 − 8x+ 1) = x2 − x+ 0.125.

This is precisely the example (3.18) that was first used to illustrate Theorem 3.4

above.

3.3.1 Weighted Chebyshev polynomials of second, third and fourth
kinds

We saw above that the minimax property of Tn(x) depended on the alternating
property of cosnθ. However, an alternating property holds at n + 1 points θ
in [0, π] for each of the trigonometric polynomials

sin(n + 1)θ , at θ =
(k + 1

2 )π
n + 1

(k = 0, . . . , n),

cos(n + 1
2 )θ, at θ =

kπ

n + 1
2

(k = 0, . . . , n),

sin(n + 1
2 )θ , at θ =

(k + 1
2 )π

n + 1
2

(k = 0, . . . , n).

The following properties may therefore readily be deduced from the defi-
nitions (1.4), (1.8) and (1.9) of Un(x), Vn(x), Wn(x).

Corollary 3.5A (of Theorem 3.5) (Weighted minimax properties of Un,
Vn, Wn)

The minimax approximations to zero on [−1, 1], by monic polynomials of
degree n weighted respectively by

√
1 − x2,

√
1 + x and

√
1 − x, are

2−nUn(x), 2−nVn(x) and 2−nWn(x).

The characteristic equioscillation may be seen in Figure 3.2.
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Figure 3.2: Equioscillation on [−1, 1] of T5(x),
√

1 − x2U5(x),
√

1 + xV5(x)
and

√
1 − xW5(x)
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3.4 The Chebyshev semi-iterative method for linear equations

The minimax property of the Chebyshev polynomials Tn has been exploited to
accelerate the convergence of iterative solutions of linear algebraic equations
(Varga 1962, p.138), (Golub & van Loan 1983, p.511).

Let a set of linear equations be written in matrix form as

Ax = b. (3.26)

Then a standard method of solution is to express the square matrix A in the
form A = M−N, where the matrix M is easily inverted (e.g., a diagonal or
banded matrix), to select an initial vector x0, and to perform the iteration

Mxk+1 = Nxk + b. (3.27)

This iteration will converge to the solution x of (3.26) if the spectral radius
ρ(G) of the matrix G = M−1N (absolute value of its largest eigenvalue) is
less than unity, converging at a geometric rate proportional to ρ(G)k.

Now suppose that we replace each iterate xk by a linear combination of
successive iterates:

yk =
k∑

j=0

νj(k)xj (3.28)

where
k∑

j=0

νj(k) = 1, (3.29)

and write

pk(z) :=
k∑

j=0

νj(k)zj,

so that pk(1) = 1.

From (3.26) and (3.27), we have M(xj+1 − x) = N(xj − x), so that

xj − x = Gj(x0 − x)

and, substituting in (3.28) and using (3.29),

yk − x =
k∑

j=0

νj(k)Gj(x0 − x) = pk(G)(x0 − x), (3.30)

where pk(G) denotes the matrix
∑k

j=0 νj(k)Gj .

Assume that the matrix G = M−1N has all of its eigenvalues {λi} real
and lying in the range [α, β], where −1 < α < β < +1. Then pk(G) has
eigenvalues pk(λi), and

ρ(pk(G)) = max
i

|pk(λi)| ≤ max
α≤λ≤β

|pk(λ)| . (3.31)
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Let F denote the linear mapping of the interval [α, β] onto the interval
[−1, 1]:

F (z) =
2z − α− β

β − α
(3.32)

and write
µ = F (1) =

2 − α− β

β − α
. (3.33)

Choose the coefficients νj(k) so that

pk(z) =
Tk(F (z))
Tk(µ)

. (3.34)

Then pk(1) = 1, as required, and

max
α≤λ≤β

|pk(λ)| =
1

|Tk(µ)| =
1

cosh(k argcoshµ)
∼ 2e−k argcosh µ, (3.35)

using (1.33a) here, rather than (1.1), since we know that µ > 1. Convergence
of yk to x is therefore rapid, provided that µ is large.

It remains to show that yk can be computed much more efficiently than
by computing xk and evaluating the entire summation (3.28) at every step.
We can achieve this by making use of the recurrence (1.3a) in the forms

Tk−1(µ) = 2µTk(µ) − Tk+1(µ)

Tk+1(Γ) = 2ΓTk(Γ) − Tk−1(Γ) (3.36)

where
Γ = F (G) =

2
β − α

G− β + α

β − α
. (3.37)

From (3.30) we have

yk+1 − yk−1 = (yk+1 − x) − (yk−1 − x)

= pk+1(G)(x0 − x) − pk−1(G)(x0 − x)

=
(
Tk+1(Γ)
Tk+1(µ)

− Tk−1(Γ)
Tk−1(µ)

)
(x0 − x);

yk − yk−1 =
(
Tk(Γ)
Tk(µ)

− Tk−1(Γ)
Tk−1(µ)

)
(x0 − x).

Define

ωk+1 = 2µ
Tk(µ)

Tk+1(µ)
. (3.38)

Then, using (3.36), the expression

(yk+1 − yk−1) − ωk+1(yk − yk−1)
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simplifies to

2(Γ− µ)
Tk(Γ)

Tk+1(µ)
(x0 − x) = ωk+1

Γ− µ

µ
(yk − x)

= ωk+1γ(G− 1)(yk − x) = ωk+1γzk

where
γ = 2/(2 − α− β) (3.39)

and where zk satisfies

Mzk = M(G− 1)(yk − x)

= (N−M)(yk − x) = A(x − yk) = b−Ayk. (3.40)

The successive iterates yk can thus be generated by means of the three-
term recurrence

yk+1 = ωk+1(yk − yk−1 + γzk) + yk−1, k = 1, 2, . . . , (3.41)

starting from
y0 = x0, y1 = y0 + γz0, (3.42)

where
ωk+1 = 2µ

Tk(µ)
Tk+1(µ)

, µ =
2 − α− β

β − α
, γ =

2
2 − α− β

,

and zk is at each step the solution of the linear system

Mzk = b−Ayk. (3.43)

Using (1.3a) again, we can generate the coefficients ωk most easily by means
of the recurrence

ωk+1 =
1

1 − ωk/4µ2
(3.44)

with ω1 = 2; they converge to a limit ωk → 2µ(µ−
√

µ2 − 1) as k → ∞.

In summary, the algorithm is as follows:

Given the system of linear equations Ax = b, with A = M−N,
where Mz = b is easily solved and all eigenvalues of M−1N lie on
the real subinterval [α, β] of [−1, 1]:

1. Let γ :=
2

2 − α− β
and µ :=

2 − α− β

β − α
;

2. Take an arbitrary starting vector y0 := x0;
Take ω1 := 2;
Solve Mz0 = b−Ay0 for z0;
Let y1 := x0 + γz0 (3.42);
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3. For k = 1, 2, . . .:

Let ωk+1 :=
1

1 − ωk/4µ2
(3.44);

Solve Mzk = b−Ayk for zk (3.43);
Let yk+1 := ωk+1(yk − yk−1 + γzk) + yk−1 (3.41).

3.5 Telescoping procedures for power series

If a function f(x) may be expanded in a power series which converges on
[−1, 1] (possibly after a suitable transformation of the x variable), then a
plausible approximation may clearly be obtained by truncating this power
series after n+1 terms to a polynomial pn(x) of degree n. It may be possible,
however, to construct an nth degree polynomial approximation better than
this, by first truncating the series to a polynomial pm(x) of some higher degree
m > n (which will usually be a better approximation to f(x) than pn(x)) and
then exploiting the properties of Chebyshev polynomials to ‘economise’ pm(x)
to a polynomial of degree n.

The simplest economisation technique is based on the idea of subtracting a
constant multiple of a Chebyshev polynomial of the same degree, the constant
being chosen so as to reduce the degree of the polynomial.

Example 3.3: For f(x) = ex, the partial sum of degree 7 of the power series
expansion is given by

p7(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ x7

7!

= 1 + x+ 0.5x2 + 0.1666667x3 + 0.0416667x4 +

+ 0.008333x5 + 0.0013889x6 + 0.0001984x7 , (3.45)

where a bound on the error in approximating f(x) is given, by the mean value
theorem, by

|f(x)− p7(x)| =
∣∣∣∣x

8

8!
f (8)(ξ)

∣∣∣∣ =
∣∣∣∣x

8

8!
eξ
∣∣∣∣ ≤ e

8!
= 0.0000674 for x in [−1, 1]. (3.46)

(The actual maximum error on [−1, 1] in this example is in fact the error at x = 1,
|f(1)− p7(1)| = 0.0000279.)
Now (3.45) may be economised by forming the degree-6 polynomial

p6(x) = p7(x)− 0.0001984 [2−6T7(x)]

= p7(x)− 0.0000031 T7(x). (3.47)

Since 2−6T7(x) is the minimax monic polynomial of degree 7, this means that p6 is
the minimax 6th degree approximation to p7 on [−1, 1], and p7 has been economised
in an optimal way.
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From (3.45), (3.47) and the coefficients in Table C.2, we obtain

p6(x) = p7(x)− 0.0001984(64x7 − 112x5 + 56x3 − 7x)/26

= p7(x)− 0.0001984(x7 − 1.75x5 + 0.875x3 − 0.109375x).
Thus

p6(x) = 1 + 1.0000217x + 0.5x
3 + 0.1664931x3 +

+ 0.0416667x4 + 0.0086805x5 + 0.0013889x6 . (3.48)

(Since T7(x) is an odd function of x, coefficients of even powers of x are unchanged
from those in p7(x).) An error has been committed in replacing p7 by p6, and, from
(3.47), this error is of magnitude 0.0000031 at most (since |T7(x)| is bounded by 1
on the interval). Hence, from (3.46), the accumulated error in f(x) satisfies

|f(x)− p6(x)| ≤ 0.0000674 + 0.0000031 = 0.0000705. (3.49)

A further economisation leads to the quintic polynomial

p5(x) = p6(x)− 0.0013889 [2−5T6(x)]

= p6(x)− 0.0000434 T6(x). (3.50)

Here p5 is the minimax quintic polynomial approximation to p6. From (3.48), (3.50)
and Table C.2, we obtain

p5(x) = p6(x)− 0.0013889(32x6 − 48x2 + 18x2 − 1)/25

= p6(x)− 0.0013889(x6 − 1.5x4 + 0.5625x2 − 0.03125).
Thus

p5(x) = 1.0000062 + 1.0000217x + 0.4992188x
2 +

+ 0.1664931x3 + 0.0437500x4 + 0.0086805x5 (3.51)

and, since T6(x) is an even function of x, coefficients of odd powers are unchanged
from those in p6(x). The error in replacing p6 by p5 is, from (3.50), at most
0.0000434. Hence, from (3.49), the accumulated error in f(x) now satisfies

|f(x)− p5(x)| ≤ 0.0000705 + 0.0000434 = 0.0001139. (3.52)

Thus the degradation in replacing p7 (3.45) by p5 (3.51) is only marginal, increasing
the error bound from 0.000067 to 0.000114.

In contrast, the partial sum of degree 5 of the power series (3.45) has a mean-
value-theorem error bound of

∣∣x6eξ/6!
∣∣ ≤ e/6! ∼ 0.0038 on [−1, 1], and the actual

maximum error on [−1, 1], attained at x = 1, is 0.0016. However, even this is about
15 times as large as (3.52), so that the telescoping procedure based on Chebyshev
polynomials is seen to give a greatly superior approximation.

The approximation (3.50) and the 5th degree partial sum of the Taylor series are
both too close to ex for the error to be conveniently shown graphically. However, in
Figures 3.3 and 3.4 we show the corresponding approximations of degree 2, where
the improved accuracy is clearly visible.
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Figure 3.3: The function ex on
[−1, 1] and an economised polyno-
mial approximation of degree 2

Figure 3.4: The function ex on
[−1, 1] and its Taylor series trun-
cated at the 2nd degree term

An alternative technique which might occur to the reader is to rewrite the poly-
nomial p7(x), given by (3.45), as a sum of Chebyshev polynomials

p7(x) =

7∑
k=0

ckTk(x), (3.53)

where ck are determined by using, for example, the algorithm of Section 2.3.1 above
(powers of x in terms of {Tk(x)}). Suitable higher order terms, such as those in T6

and T7, could then be left out of (3.53) according to the size of their coefficients ck.
However, the telescoping procedure above is exactly equivalent to this, and is in fact
a somewhat simpler way of carrying it out. Indeed c7 and c6 have been calculated
above, in (3.47) and (3.50) respectively, as

c7 = 0.0000031, c6 = 0.0000434.

If the telescoping procedure is continued until a constant approximation p0(x) is

obtained, then all of the Chebyshev polynomial coefficients ck will be determined.

3.5.1 Shifted Chebyshev polynomials on [0, 1]

The telescoping procedure may be adapted to ranges other than [−1, 1], pro-
vided that the Chebyshev polynomials are adjusted to the range required.
For example, the range [−c, c] involves the use of the polynomials Tk(x/c).
A range that is often useful is [0, 1] (or, by scaling, [0, c]), and in that case
the shifted Chebyshev polynomials T ∗

k (x) (or T ∗
k (x/c)) are used. Since the

latter polynomials are neither even nor odd, every surviving coefficient in the
polynomial approximation changes at each economisation step.
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Example 3.4: Suppose that we wish to economise on [0, 1] a quartic approximation
to f(x) = ex:

q4(x) = 1 + x+ 0.5x2 + 0.1666667x3 + 0.0416667x4

in which the error satisfies

|f(x)− q4(x)| = x5

5!
eξ ≤ e

5!
= 0.0227. (3.54)

Then the first economisation step leads to

q3(x) = q4(x)− 0.0416667 [2−7T ∗
4 (x)]

= q4(x)− 0.0003255 T ∗
4 (x). (3.55)

From Table C.2:

q3(x) = q4(x)− 0.0416667(128x4 − 256x3 + 160x2 − 32x + 1)/27

= q4(x)− 0.0416667(x4 − 2x3 + 1.25x2 − 0.25x + 0.0078125).

Thus

q3(x) = 0.9996745 + 1.0104166x + 0.4479167x
2 + 0.25x3. (3.56)

Here the maximum additional error due to the economisation is 0.0003255, from

(3.55), which is virtually negligible compared with the existing error (3.54) of q4. In

fact, the maximum error of (3.56) on [0, 1] is 0.0103, whereas the maximum error of

the power series truncated after the term in x3 is 0.0516.

The economisation can be continued in a similar way for as many steps as
are valid and necessary. It is clear that significantly smaller errors are incurred
on [0, 1] by using T ∗

k (x) than are incurred on [−1, 1] using Tk(x). This is to
be expected, since the range is smaller. Indeed there is always a reduction in
error by a factor of 2m, in economising a polynomial of degree m, since the
respective monic polynomials that are adopted are

21−mTm(x) and 21−2mT ∗
m(x).

3.5.2 Implementation of efficient algorithms

The telescoping procedures above, based on Tk(x) and T ∗
k (x) respectively, are

more efficiently carried out in practice by implicitly including the computation
of the coefficients of the powers of x in Tk or T ∗

k within the procedure (so that
Table C.2 does not need to be stored). This is best achieved by using ratios
of consecutive coefficients from formula (2.19) of Section 2.3.3 above.
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Consider first the use of the shifted polynomial T ∗
k (x/d) on a chosen range

[0, d]. Suppose that f(x) is initially approximated by a polynomial pm(x) of
degree m, where for each � ≤ m,

p�(x) =
�∑

k=0

a
(�)
k xk = a

(�)
0 + a

(�)
1 x + · · · + a

(�)
� x�. (3.57)

Then the first step of the telescoping procedure replaces pm by

pm−1(x) = pm(x) − a(m)
m 21−2mdmT ∗

m(x/d). (3.58)

(The factor dm is included, to ensure that 21−2mdmT ∗
m(x/d) is monic.)

Now, write
T ∗

m(x/d) = 22m−1d−m
∑

d
(m)
k xkdm−k (3.59)

where 22m−1d
(m)
k is the coefficient of xk in T ∗

m(x). Then, by (3.57), (3.58),
(3.59):

a
(m−1)
k = a

(m)
k − a(m)

m d
(m)
k (k = m− 1,m− 2, . . . , 0). (3.60)

The index k has been ordered from k = m − 1 to k = 0 in (3.60), since the
coefficients d

(m)
k will be calculated in reverse order below.

Now T ∗
m(x) = T2m(x

1
2 ) and hence, from (2.16),

T ∗
m(x) =

m∑
k=0

c
(2m)
k xm−k (3.61)

where c
(2m)
k is defined by (2.17a). Hence, in (3.59),

d
(m)
k = c

(2m)
m−k21−2m. (3.62)

Now, from (2.19)

c
(n)
k+1 = − (n− 2k)(n− 2k − 1)

4(k + 1)(n− k − 1)
c
(n)
k (3.63)

and hence, from (3.62),

d
(m)
m−k−1 = − (2m− 2k)(2m− 2k − 1)

4(k + 1)(2m− k − 1)
d
(m)
m−k.

Thus
d
(m)
r−1 =

−2r(2r − 1)
4(m− r + 1)(m + r − 1)

d(m)
r (3.64)

where d
(m)
m = 1.

In summary, the algorithm is as follows:
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Given pm(x) of form (3.57), with coefficients a
(m)
k :

1. With d
(m)
m = 1, determine d

(m)
m−1, . . . , d

(m)
0 , using (3.64);

2. Determine a
(m−1)
k , using (3.60), and hence pm−1(x) of form

(3.57), with coefficients a
(m−1)
k .

However, if a telescoping procedure is based on the range [−d, d] and the
standard polynomials Tk(x/d), then it is more appropriate to treat even and
odd powers of x separately, since each Tk involves only one or the other, and
so the algorithm is correspondingly more complicated, but at the same time
more efficient.

Suppose f(x) is initially approximated by the polynomial p2M+1(x) of odd
degree, where (for each � ≤ M)

p2�+1(x) =
�∑

k=0

b
(�)
k x2k+1 +

�∑
k=0

c
(�)
k x2k (3.65a)

and

p2�(x) =
�−1∑
k=0

b
(�−1)
k x2k+1 +

�∑
k=0

c
(�)
k x2k. (3.65b)

Then the first two (odd and even) steps of the telescoping procedure replace
p2M+1(x) by p2M (x) and p2M (x) by p2M−1(x), where

p2M (x) = p2M+1(x) − b
(M)
M 2−2Md2M+1T2M+1(x/d), (3.66a)

p2M−1(x) = p2M (x) − c
(M)
M 21−2Md2MT2M (x/d). (3.66b)

Now, let 22Me
(M)
k and 22M−1f

(M)
k denote respectively the coefficients of x2k+1

in T2M+1(x) and of x2k in T2M (x).

Then, from (2.16),

T2M+1(x/d) = 22Md−2M−1
M∑

k=0

e
(M)
k x2k+1d2M−2k =

=
M∑

k=0

b
(M)
M−kx

2k+1d−2k−1 (3.67a)

T2M (x/d) = 22M−1d−2M
M∑

k=0

f
(M)
k x2kd2M−2k =

=
M∑

k=0

c
(M)
M−kx

2kd−2k (3.67b)
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Hence, from (3.65)–(3.67),

b
(M−1)
k = b

(M)
k − b

(M)
M e

(M)
k (k = M − 1,M − 2, . . . , 0), (3.68a)

c
(M−1)
k = c

(M)
k − c

(M)
M f

(M)
k (k = M − 1,M − 2, . . . , 0). (3.68b)

Formulae for generating the scaled Chebyshev coefficients e
(M)
k and f

(M)
k

may be determined from (3.63) and (3.67) (by replacing n by 2M + 1, 2M ,
respectively) in the form

e
(M)
M−k−1 = − (2M − 2k + 1)(2M − 2k)

4(k + 1)(2M − k)
e
(M)
M−k,

f
(M)
M−k−1 = − (2M − 2k)(2M − 2k − 1)

4(k + 1)(2M − k − 1)
f

(M)
M−k.

Thus e
(M)
M = f

(M)
M = 1, and

e
(M)
r−1 = − (2r + 1)(2r)

4(M − r + 1)(M + r)
e(M)

r , (3.69a)

f
(M)
r−1 = − (2r)(2r − 1)

4(M − r + 1)(M + r − 1)
f (M)

r . (3.69b)

In summary, the algorithm is as follows:

Given p2M+1(x) of form (3.65a), with coefficients b
(M)
k and

c
(M)
k :

1. With e
(M)
M = 1, determine e

(M)
M−1, . . . , e

(M)
0 , using (3.69a);

2. Determine b
(M−1)
k , using (3.68a), and hence p2M (x) of form

(3.65b), with coefficients b
(M−1)
k and c

(M)
k ;

3. With f
(M)
M = 1, determine f

(M)
M−1, . . . , f

(M)
0 , using (3.69b);

4. Determine c
(M−1)
k , using (3.68b), and hence p2M−1(x) of form

(3.65a), with coefficients b
(M−1)
k and c

(M−1)
k .

We should add as a postscript that Gutknecht & Trefethen (1982) have
succeeded in implementing an alternative economisation method due to Cara-
théodory and Fejér, which yields a Chebyshev sum giving a much closer ap-
proximation to the original polynomial.
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3.6 The tau method for series and rational functions

Sometimes a power series converges very slowly at a point of interest, or even
diverges, so that we cannot find a suitable partial sum to provide an initial
approximation for the above telescoping procedure. However, in some cases
other approaches are useful, one of which is the ‘tau’ (τ) method1 of Lanczos
(1957).

Consider for example the function

y(x) =
1

1 + x

which has the power series expansion

1 − x + x2 − x3 + · · · + (−1)nxn + · · · .

This series has radius of convergence 1, and since it does not converge for
|x| ≥ 1, cannot be used on [0, 1] or wider ranges. However, y(x) is the solution
of the functional equation

(1 + x)y(x) = 1 (3.70)

and may be approximated on [0, 1] by a polynomial pn(x) of degree n in the
form

pn(x) =
n∑′

k=0

ckT
∗
k (x) (3.71)

(where, as previously, the dash denotes that the first term in the sum is
halved), by choosing the coefficients {ck} so that pn approximately satisfies
the equation

(1 + x)pn(x) = 1. (3.72)

Equation (3.72) can be perturbed slightly into one that can be satisfied
exactly, by adding to the right-hand side an undetermined multiple τ (say) of
a shifted Chebyshev polynomial of degree n + 1:

(1 + x)pn(x) = 1 + τT ∗
n+1(x). (3.73)

Since there are n + 2 free parameters in (3.71) and (3.73), namely ck (k =
0, 1, . . . , n) and τ , it should be possible to determine them by equating coeffi-
cients of powers of x in (3.73) (since there are n+2 coefficients in a polynomial
of degree n+ 1). Equivalently, we may equate coefficients of Chebyshev poly-
nomials after writing the two sides of (3.73) as Chebyshev summations; this
can be done if we note from (2.39) that

(2x− 1)Tk(2x− 1) = 1
2 [Tk+1(2x− 1) + T|k−1|(2x− 1)]

1A slightly different but related approach, also known as the ‘tau method’, is applied to
solve differential equations in a later chapter (see Chapter 10).
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and hence, since T ∗
k (x) = Tk(2x− 1),

(1 + x)T ∗
k (x) = 1

4 [T ∗
k+1(x) + 6T ∗

k (x) + T ∗
|k−1|(x)]. (3.74)

Substituting (3.74) into (3.71) and (3.73),
n∑′

k=0

1
4ck[T ∗

|k−1|(x) + 6T ∗
k (x) + T ∗

k+1(x)] = T ∗
0 (x) + τT ∗

n+1(x).

On equating coefficients of T ∗
0 , . . . , T ∗

n+1, we obtain
1
4 (3c0 + c1) = 1,

1
4 (ck−1 + 6ck + ck+1) = 0 (k = 1, . . . , n− 1),

1
4 (cn−1 + 6cn) = 0,

1
4cn = τ.

These are n + 2 equations for c0, c1, . . . , cn and τ , which may be readily
solved by back-substituting for cn in terms of τ , hence (working backwards)
determining cn−1 , cn−2, . . . , c0 in terms of τ , leaving the first equation to
determine the value of τ .

Example 3.5: For n = 3, we obtain (in this order)

c3 = 4τ,

c2 = −6c3 = −24τ,

c1 = −6c2 − c3 = 140τ,

c0 = −6c1 − c2 = −816τ,

3c0 + c1 = −2308τ = 4.
Hence τ = −1/577 and, from (3.71),

y(x) � p3(x)

= 1
577
[408T ∗

0 (x)− 140T ∗
1 (x) + 24T

∗
2 (x)− 4T ∗

3 (x)]

= 0.707106T ∗
0 (x)− 0.242634T ∗

1 (x) +

+ 0.041594T ∗
2 (x)− 0.006932T ∗

3 (x). (3.75)

The error ε(x) in (3.75) is known from (3.70) and (3.73) to be

ε(x) = y(x)− p3(x) =
τT ∗

4 (x)

1 + x
.

Since 1/(1 + x) and T ∗
4 (x) are both bounded by 1 in magnitude, we deduce the

bound
|ε(x)| ≤ |τ | = 0.001704 � 0.002 on [0, 1]. (3.76)

This upper bound is attained at x = 0, and we would expect the resulting approxi-

mation p3(x) to be reasonably close to a minimax approximation.
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3.6.1 The extended tau method

Essentially the same approach has been proposed by Fox & Parker (1968) for
the approximation on [−1, 1] of a rational function a(x)/b(x) of degrees (p, q).
They introduce a perturbation polynomial

e(x) =
n+q∑

m=n+1

τm−nTm(x), (3.77)

in place of the single term τTn+1(x) used above, to give

a(x) + e(x) = b(x)
n∑′

k=0

ckTk(x). (3.78)

The number and degrees of the terms in (3.77) are chosen so that (3.78) is
uniquely solvable for {ck} and {τm}.

For example, for
a(x)
b(x)

=
1 − x + x2

1 + x + x2

we need two tau terms and (3.78) becomes

(1 − x + x2) +
n+2∑

m=n+1

τm−nTm(x) = (1 + x + x2)
n∑′

k=0

ckTk(x). (3.79)

Both sides of (3.79) are then written in terms of Chebyshev polynomials, and
on equating coefficients, a set of equations is obtained for ck and τm. Back-
substitution in terms of τ1 and τ2 leads to a pair of simultaneous equations
for τ1 and τ2; hence ck are found.

Example 3.6: For n = 2, (3.79) becomes, using (2.38) to transform products into
sums,

( 3
2
T0(x) − T1(x) +

1
2
T2(x)) + τ1T3(x) + τ2T4(x)

= ( 3
2
T0(x) + T1(x) +

1
2
T2(x))(

1
2
c0T0(x) + c1T1(x) + c2T2(x))

= ( 3
4
c0 +

1
2
c1 +

1
4
c2)T0(x) + (

1
2
c0 +

7
4
c1)T1(x) +

+ ( 1
4
c0 +

1
2
c1 +

3
2
c2)T2(x) + (

1
4
c1 +

1
2
c2)T3(x) +

1
4
T4(x).

Equating coefficients of the Chebyshev polynomials T0(x), . . . , T4(x) yields the
equations

c2 = 4τ2

c1 + 2c2 = 4τ1

c0 + 2c1 + 6c2 = 2


 (3.80)

2c0 + 7c1 = −4
3c0 + 2c1 + c2 = 6

}
(3.81)

© 2003 by CRC Press LLC



Back-substituting in (3.80):

c2 = 4τ2, c1 = 4τ1 − 8τ2, c0 = 2− 8τ1 − 8τ2.

Now (3.81) gives

3τ1 − 16τ2 = −2
9τ1 + 4τ2 = 0

and hence
τ1 = −18/91, τ2 = 8/91

so that
c0 = 262/91, c1 = −136/91, c2 = 32/91.

Thus

y(x) =
a(x)

b(x)
=
1− x+ x2

1 + x+ x2
� p3(x) = 1.439 T0(x)− 1.494 T1(x) + 0.352 T2(x)

and the error is given by

ε(x) = y(x)− p3(x) = − τ1T3(x) + τ2T4(x)

1 + x+ x2

=
0.198 T3(x)− 0.088 T4(x)

1 + x+ x2
.

On [−1, 1], 1/(1 + x+ x2) is bounded by 4
3
and |T3| and |T4| are bounded by 1.

Hence we have the bound (which is not far from the actual maximum error)

|ε(x)| < 1.333 (0.198 + 0.088) = 0.381.

With an error bound of 0.381, the approximation found in this example is not

particularly accurate, and indeed a much higher degree of polynomial is needed

to represent such a rational function at all reasonably, but the method does give

credible and measurable results even in this simple case (see Figure 3.5).

We may note that an alternative approach to the whole calculation is to
use the power form for the polynomial approximation

pn(x) =
n∑

k=0

akx
k (3.82)

and then to replace (3.79) by

(1 − x + x2) +
n+2∑

m=n+1

τm−nTm(x) = (1 + x + x2)
n∑

k=0

akx
k. (3.83)

We then equate coefficients of powers of x and solve for τ1 and τ2.
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Figure 3.5: Rational function and a quadratic approximation obtained by the
extended τ method

Example 3.7: For n = 2, equation (3.83) takes the form

(1− x+ x2) + τ1(4x
3 − 3x) + τ2(8x

4 − 8x2 + 1) = (1 + x+ x2)(a0 + a1x+ a2x
2),

and on equating coefficients of 1, x, . . . , x4,

a0 = 1 + τ2

a1 + a0 = −1− 3τ1

}
(3.84)

a2 + a1 + a0 = 1− 8τ2

a2 + a1 = 4τ1

a2 = 8τ2


 (3.85)

Back-substituting in (3.85):

a2 = 8τ2, a1 = 4τ1 − 8τ2, a0 = 1− 4τ1 − 8τ2.

Now (3.84) gives

4τ1 + 9τ2 = 0

3τ1 − 16τ2 = −2
and hence

τ1 = −18/91, τ2 = 8/91

(the same values as before) so that

a0 = 99/91, a1 = −136/91, a2 = 64/91.

Thus

y(x) =
a(x)

b(x)
=
1− x+ x2

1 + x+ x2
� p3(x) = 1.088 − 1.495x + 0.703x2.

It is easily verified that this is precisely the same approximation as was obtained

previously, but expressed explicitly as a sum of powers of x.
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For the degrees n of polynomial likely to be required in practice, it is not
advisable to use the power representation (3.82), even though the algebra ap-
pears simpler, since the coefficients ak tend to become large as n increases,
whereas the Chebyshev coefficients ck in the form (3.71) typically tend to con-
verge with n to the true coefficients of an infinite Chebyshev series expansion
(see Chapter 4).

3.7 Problems for Chapter 3

1. Verify the axioms of a vector space for the following families of functions
or data:

(a) F = C[a, b];

(b) F = {{f(xk), k = 1, . . . ,m}} (values of a function at discrete
points).

What are the dimensions of these spaces?

2. Verify, from the definition of a norm, that the following is a norm:

‖f‖ = ‖f‖p =

[∫ b

a

|f(x)|p dx

] 1
p

(1 ≤ p < ∞),

by assuming Minkowski’s continuous inequality:

(∫
|f + g|p dx

) 1
p

≤
(∫

|f |p dx
) 1

p

+
(∫

|g|p dx
) 1

p

.

Prove the latter inequality for p = 1, 2, and show, for p = 2, that equality
does not occur unless f(x) = λg(x) (‘almost everywhere’), where λ is
some constant.

3. For what values of p does the function f(x) = (1 − x2)−1/2 belong to
the function space Lp[−1, 1], and what is its norm?

4. Prove Minkowski’s discrete inequality:

(∑
k

|uk + vk|p
) 1

p

≤
(∑

k

|uk|p
) 1

p

+

(∑
k

|vk|p
) 1

p

in the case p = 2 by first showing that

(∑
ukvk

)2

≤
∑

(uk)2
∑

(vk)2.

© 2003 by CRC Press LLC



Deduce that

‖f‖p =

[
m∑

k=1

|f(xk)|p
] 1

p

(1 ≤ p < ∞)

is a norm for space (b) of Problem 1.

Find proofs in the literature (Hardy et al. 1952, for example) of both
continuous and discrete Minkowski inequalities for general p. Can equal-
ity occur for p = 1?

5. Find the minimax constant (i.e., polynomial of degree zero) approxi-
mation to ex on [−1, 1], by assuming that its error has the alternating
property at −1, +1. Deduce that the minimax error in this case is sinh 1.

Generalise the above approach to determine a minimax constant ap-
proximation to any monotonic continuous function f(x).

6. Prove the sufficiency of the characterisation of the error in Theorem 3.4,
namely that, for a polynomial approximation pn of degree n to a contin-
uous f to be minimax, it is sufficient that it should have the alternating
property at n + 2 points x1 < · · · < xn+2.

[Hint: Assume that an approximation p′n exists with smaller error norm
than pn, show that pn − p′n changes sign between each pair xi and xi+1,
and hence obtain the result.]

7. Consider the function

f(x) =
∞∑

i=0

ciTbi(x), (∗)

where {ci} are so defined that the series is uniformly convergent and
where b is an odd integer not less than 2. Show that, for every i > n with
n fixed, Tbi has the alternating property on a set of bn + 1 consecutive
points of [−1, 1]. Deduce that the partial sum of degree bn of (*) (namely
the sum from i = 0 to n) is the minimax polynomial approximation of
degree bn to f(x).

[Note: A series in {Tk(x)} such as (*) in which terms occur progressively
more rarely (in this case for k = 0, b, b2, b3, . . . ) is called lacunary; see
Section 5.9 below for a fuller discussion.]

8. For f(x) = arctanx, show that (1 + x2)f ′(x) = 1, and hence that

(1+x2)f (n)(x)+2x(n−1)f (n−1)(x)+(n+1)(n+2)f (n−2)(x) = 0 (n ≥ 2).

Deduce the Taylor–Maclaurin expansion

f(x) ∼ x− x3

3
+

x5

5
− x7

7
+ · · · + (−1)n x2n+1

2n + 1
+ · · · . (∗∗)
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Estimate the error in the partial sum P7(x) of degree 7 of (**) for x in
[−0.3, 0.3].

Telescope P7, into polynomials P5 of degree 5 and P3 of degree 3 by
using Chebyshev polynomials normalised to [−0.3, 0.3], and estimate
the accumulated errors in P5 and P3.

9. Given

f(x) = log(1 + x) = x− x2

2
+

x3

3
− · · · + (−1)n−1x

n

n
+ · · · , (∗ ∗ ∗)

use the mean value theorem to give a bound on the error on [0, 0.1] of the
partial sum Pn of degree n of (***). Telescope P4 into polynomials P3 of
degree 3 and P2 of degree 2, respectively, using a Chebyshev polynomial
adjusted to [0, 0.1], and estimate the accumulated errors in each case.

10. (Programming Exercise) Write a computer program (in a programming
language of your own choice) to implement the telescoping algorithm of
Section 3.5, either

(a) based on T ∗
k (x/d) and using (3.60)–(3.64) or

(b) based on Tk(x/d) and using (3.68)–(3.69).

11. Apply the tau method of Section 3.6 to determine a polynomial approx-
imation of degree 3 to x/(1 + x) on [0, 1] based on the equation

(1 + x)y = x

and determine a bound on the resulting error.

12. Apply the extended tau method of Section 3.6.1 to determine a polyno-
mial approximation of degree 2 to (1+x+x2)−1 on [−1, 1] and determine
a bound on the resulting error.

13. Show that 2−n
√

1 − x2Un(x), 2−n
√

1 + xVn(x) and 2−n
√

1 − xWn(x)
equioscillate on (n + 2), (n + 1) and (n + 1) points, respectively, of
[−1, 1], and find the positions of their extrema. Deduce that these are
minimax approximations to zero by monic polynomials of degree n with
respective weight functions

√
1 − x2,

√
1 + x,

√
1 − x. Why are there

more equioscillation points in the first case?
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Chapter 4

Orthogonality and Least-Squares Approximation

4.1 Introduction — from minimax to least squares

The Chebyshev polynomials have been shown in Chapter 3 to be unique
among all polynomials in possessing a minimax property (Corollaries 3.4B,
3.5A), earning them a central role in the study of uniform (or L∞) approxima-
tion. This property is remarkable enough, but the four families of Chebyshev
polynomials have a second and equally important property, in that each is
a family of orthogonal polynomials. Thus, the Chebyshev polynomials have
an important role in L2 or least-squares approximation, too. This link with
L2 approximation is important in itself but, in addition, it enables ideas of
orthogonality to be exploited in such areas as Chebyshev series expansions
and Galerkin methods for differential equations.

Orthogonal polynomials have a great variety and wealth of properties,
many of which are noted in this chapter. Indeed, some of these properties
take a very concise form in the case of the Chebyshev polynomials, making
Chebyshev polynomials of leading importance among orthogonal polynomi-
als — second perhaps to Legendre polynomials (which have a unit weight
function), but having the advantage over the Legendre polynomials that the
locations of their zeros are known analytically. Moreover, along with the Leg-
endre polynomials, the Chebyshev polynomials belong to an exclusive band
of orthogonal polynomials, known as Jacobi polynomials , which correspond
to weight functions of the form (1 − x)α(1 + x)β and which are solutions of
Sturm–Liouville equations.

The Chebyshev polynomials have further properties, which are peculiar
to them and have a trigonometric origin, namely various kinds of discrete
orthogonality over the zeros of Chebyshev polynomials of higher degree. In
consequence, interpolation at Chebyshev zeros can be achieved exceptionally
inexpensively (Chapter 6) and Gauss quadrature methods based on Cheby-
shev zeros are extremely convenient (Chapter 8).

The continuous and discrete orthogonality of the Chebyshev polynomials
may be viewed as a direct consequence of the orthogonality of sine and cosine
functions of multiple angles, a central feature in the study of Fourier series. It
is likely, therefore, that a great deal may be learned about Chebyshev series
by studying their links with Fourier series (or, in the complex plane, Laurent
series); this is considered in Chapter 5.

Finally, the Chebyshev polynomials are orthogonal not only as polynomi-
als in the real variable x on the real interval [−1, 1] but also as polynomials in
a complex variable z on elliptical contours and domains of the complex plane
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(the foci of the ellipses being at −1 and +1). This property is exploited in
fields such as crack problems in fracture mechanics (Gladwell & England 1977)
and two-dimensional aerodynamics (Fromme & Golberg 1979, Fromme &
Golberg 1981), which rely on complex-variable techniques. More generally,
however, many real functions may be extended into analytic functions, and
Chebyshev polynomials are remarkably robust in approximating on [−1, 1]
functions which have complex poles close to that interval. This is a conse-
quence of the fact that the interval [−1, 1] may be enclosed in an arbitrarily
thin ellipse which excludes nearby singularities.

4.2 Orthogonality of Chebyshev polynomials

4.2.1 Orthogonal polynomials and weight functions

Definition 4.1 Two functions f(x) and g(x) in L2[a, b] are said to be orthog-
onal on the interval [a, b] with respect to a given continuous and non-negative
weight function w(x) if

∫ b

a

w(x)f(x)g(x) dx = 0. (4.1)

If, for convenience, we use the ‘inner product’ notation

〈f , g〉 =
∫ b

a

w(x)f(x)g(x) dx, (4.2)

where w, f and g are functions of x on [a, b], then the orthogonality condition
(4.1) is equivalent to saying that f is orthogonal to g if

〈f , g〉 = 0. (4.3)

The formal definition of an inner product (in the context of real functions
of a real variable — see Definition 4.3 for the complex case) is as follows:

Definition 4.2 An inner product 〈· , ·〉 is a bilinear function of elements
f, g, h, . . . of a vector space that satisfies the axioms:

1. 〈f , f〉 ≥ 0 with equality if and only if f ≡ 0;

2. 〈f , g〉 = 〈g , f〉;

3. 〈f + g , h〉 = 〈f , h〉+ 〈g , h〉;

4. 〈αf , g〉 = α 〈f , g〉 for any scalar α.
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An inner product defines an L2-type norm

‖f‖ = ‖f‖2 :=
√
〈f , f〉. (4.4)

We shall adopt the inner product (4.2) (with various weight functions) and
the associated L2 norm (4.4), which is identical to that defined in Chapter 3
(3.4), through most of the remainder of this chapter.

Here we shall in particular be concerned with families of orthogonal poly-
nomials {φi(x), i = 0, 1, 2, . . .} where φi is of degree i exactly, defined so
that

〈φi , φj〉 = 0 (i �= j). (4.5)

Clearly, since w(x) is non-negative,

〈φi , φi〉 = ‖φi‖2
> 0. (4.6)

The requirement that φi should be of exact degree i, together with the or-
thogonality condition (4.5), defines each polynomial φi uniquely apart from a
multiplicative constant (see Problem 3). The definition may be made unique
by fixing the value of 〈φi , φi〉 or of its square root ‖φi‖. In particular, we say
that the family is orthonormal if, in addition to (4.5), the functions {φi(x)}
satisfy

‖φi‖ = 1 for all i. (4.7)

4.2.2 Chebyshev polynomials as orthogonal polynomials

If we define the inner product (4.2) using the interval and weight function

[a, b] = [−1, 1], w(x) = (1− x2)−
1
2 , (4.8)

then we find that the first kind Chebyshev polynomials satisfy

〈Ti , Tj〉 =
∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx

=
∫ π

0

cos iθ cos jθ dθ (4.9)

(shown by setting x = cos θ and using the relations Ti(x) = cos iθ and dx =
− sin θ dθ = −√

1− x2 dθ).

Now, for i �= j,∫ π

0

cos iθ cos jθ dθ = 1
2

∫ π

0

[cos(i+ j)θ + cos(i− j)θ] dθ

= 1
2

[
sin(i+ j)θ

i+ j
+

sin(i− j)θ
i− j

]π

0

= 0.
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Hence
〈Ti , Tj〉 = 0 (i �= j), (4.10)

and {Ti(x), i = 0, 1, . . .} forms an orthogonal polynomial system on [−1, 1]
with respect to the weight (1− x2)−

1
2 .

The norm of Ti is given by

‖Ti‖2 = 〈Ti , Ti〉

=
∫ π

0

(cos iθ)2 dθ

= 1
2

∫ π

0

(1 + cos 2iθ) dθ

= 1
2

[
θ +

sin 2iθ
2i

]π

0

(i �= 0)

= 1
2π, (4.11a)

while
‖T0‖2 = 〈T0 , T0〉 = 〈1 , 1〉 = π. (4.11b)

The system {Ti} is therefore not orthonormal. We could, if we wished, scale
the polynomials to derive the orthonormal system

√
1/π T0(x),

{√
2/π Ti(x), i = 1, 2, . . .

}
,

but the resulting irrational coefficients usually make this inconvenient. It is
simpler in practice to adopt the {Ti} we defined initially, taking note of the
values of their norms (4.11).

The second, third and fourth kind Chebyshev polynomials are also orthog-
onal systems on [−1, 1], with respect to appropriate weight functions:

• Ui(x) are orthogonal with respect to w(x) = (1− x2)
1
2 ;

• Vi(x) are orthogonal with respect to w(x) = (1 + x)
1
2 (1− x)−

1
2 ;

• Wi(x) are orthogonal with respect to w(x) = (1 + x)−
1
2 (1− x)

1
2 .

These results are obtained from trigonometric relations as follows (using the
appropriate definition of 〈· , ·〉 in each case):

〈Ui , Uj〉 =
∫ 1

−1

(1− x2)
1
2 Ui(x)Uj(x) dx

=
∫ 1

−1

(1− x2)−
1
2 (1− x2)

1
2Ui(x) (1− x2)

1
2Uj(x) dx
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=
∫ π

0

sin(i+ 1)θ sin(j + 1)θ dθ

(since sin θ Ui(x) = sin(i+ 1)θ)

= 1
2

∫ π

0

[cos(i− j)θ − cos(i+ j + 2)θ] dθ

= 0 (i �= j).

〈Vi , Vj〉 =
∫ 1

−1

(1 − x)−
1
2 (1 + x)

1
2 Vi(x)Vj(x) dx

=
∫ 1

−1

(1 − x2)−
1
2 (1 + x)

1
2 Vi(x) (1 + x)

1
2Vj(x) dx

= 2
∫ π

0

cos(i+ 1
2 )θ cos(j + 1

2 )θ dθ

(since (1 + x)
1
2 = (1 + cos θ)

1
2 = (2 cos2 1

2θ)
1
2 =

√
2 cos 1

2θ

and (1 + x)
1
2 Vi(x) =

√
2 cos(i+ 1

2 )θ)

=
∫ π

0

[cos(i+ j + 1)θ + cos(i− j)θ] dθ

= 0 (i �= j).

〈Wi , Wj〉 =
∫ 1

−1

(1 + x)−
1
2 (1− x)

1
2 Wi(x)Wj(x) dx

=
∫ 1

−1

(1− x2)−
1
2 (1 − x)

1
2Wi(x) (1 − x)

1
2Wj(x) dx

= 2
∫ π

0

sin(i+ 1
2 )θ sin(j + 1

2 )θ dθ

(since (1− x)
1
2 = (1− cos θ)

1
2 = (2 sin2 1

2θ)
1
2 =

√
2 sin 1

2θ

and (1− x)
1
2Wi(x) =

√
2 sin(i+ 1

2 )θ)

=
∫ π

0

[cos(i− j)θ − cos(i+ j + 1)θ] dθ

= 0 (i �= j).

The normalisations that correspond to these polynomials are as follows
(for all i ≥ 0):

〈Ui , Ui〉 = ‖Ui‖2 =
∫ π

0

sin2(i+ 1)θ dθ = 1
2π; (4.12)
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〈Vi , Vi〉 = ‖Vi‖2 = 2
∫ π

0

cos2(i+ 1
2 )θ dθ = π; (4.13)

〈Wi , Wi〉 = ‖Wi‖2 = 2
∫ π

0

sin2(i+ 1
2 )θ dθ = π. (4.14)

(Remember that each of these three identities uses a different definition of the
inner product 〈· , ·〉, since the weights w(x) differ.)

4.3 Orthogonal polynomials and best L2 approximations

In Chapter 3, we characterised a best L∞ (minimax) polynomial approxima-
tion, by way of Chebyshev’s theorem, and this led us to an equioscillation
property. Now we consider the best L2 polynomial approximation of a given
degree, which leads us to an orthogonality property.

The theorems in this section are valid not only for the inner product (4.2),
but for any inner product 〈· , ·〉 as defined by Definition 4.2.

Theorem 4.1 The best L2 polynomial approximation pB
n (x) of degree n (or

less) to a given (L2-integrable) function f(x) is unique and is characterised
by the (necessary and sufficient) property that〈

f − pB
n , pn

〉
= 0 (4.15)

for any other polynomial pn of degree n.

Proof: Write
eB

n := f − pB
n .

1. (Necessity) Suppose that, for some polynomial pn,〈
eB

n , pn

〉
�= 0.

Then, for any real scalar multiplier λ,∥∥∥f − (pB
n + λpn)

∥∥∥2 =
∥∥∥eB

n − λpn

∥∥∥2
=
〈
eB

n − λpn , e
B
n − λpn

〉
=
〈
eB

n , e
B
n

〉
− 2λ

〈
eB

n , pn

〉
+ λ2 〈pn , pn〉

=
∥∥∥eB

n

∥∥∥2 − 2λ
〈
eB

n , pn

〉
+ λ2 ‖pn‖2

<
∥∥∥eB

n

∥∥∥2 for some small λ of the same sign as
〈
eB

n , pn

〉
.

Hence pB
n + λpn is a better approximation than pB

n for this value of λ, con-
tradicting the assertion that pB

n is a best approximation.
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2. (Sufficiency) Suppose that (4.15) holds and that qn is any specified polynomial
of degree n, not identical to pB

n . Then

‖f − qn‖2 −
∥∥∥f − pB

n

∥∥∥2 =
∥∥∥eB

n + (pB
n − qn)

∥∥∥2 − ∥∥∥eB
n

∥∥∥2
=
〈
eB

n + (pB
n − qn) , eB

n + (pB
n − qn)

〉
−
〈
eB

n , e
B
n

〉
=
〈
pB

n − qn , pB
n − qn

〉
+ 2
〈
eB

n , p
B
n − qn

〉
=
∥∥∥pB

n − qn
∥∥∥2 + 0, from (4.15)

> 0.

Therefore ‖f − qn‖2 >
∥∥f − pB

n

∥∥2.
Since qn is arbitrary, pB

n must be a best L2 approximation. It must also be
unique, since otherwise we could have taken qn to be another best approxi-
mation and obtained the last inequality as a contradiction. ••

Corollary 4.1A If {φn} (φi being of exact degree i) is an orthogonal poly-
nomial system on [a, b], then:

1. the zero function is the best L2 polynomial approximation of degree (n−
1) to φn on [a, b];

2. φn is the best L2 approximation to zero on [a, b] among polynomials of
degree n with the same leading coefficient.

Proof:

1. Any polynomial pn−1 of degree n− 1 can be written in the form

pn−1 =

n−1∑
i=0

ciφi.

Then

〈φn − 0 , pn−1〉 =

〈
φn ,

n−1∑
i=0

ciφi

〉

=

n−1∑
i=0

ci 〈φn , φi〉

= 0 by the orthogonality of {φi}.

The result follows from Theorem 4.1.
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2. Let qn be any other polynomial of degree n having the same leading coefficient
as φn. Then qn − φn is a polynomial of degree n− 1. We can therefore write

qn − φn =

n−1∑
i=0

ciφi

and deduce from the orthogonality of {φi} that

〈φn , qn − φn〉 = 0. (4.16)

Now we have

‖qn‖2 − ‖φn‖2 = 〈qn , qn〉 − 〈φn , φn〉
= 〈qn − φn , qn − φn〉 − 2 〈φn , qn − φn〉
= ‖qn − φn‖2 , using (4.16)

> 0.

Therefore φn is the best approximation to zero. ••
The interesting observation that follows from Corollary 4.1A is that every

polynomial in an orthogonal system has a minimal L2 property — analogous
to the minimax property of the Chebyshev polynomials. Indeed, the four kinds
of Chebyshev polynomials Tn, Un, Vn, Wn, being orthogonal polynomials,
each have a minimal property on [−1, 1] with respect to their respective weight
functions

1√
1− x2

,
√

1− x2,

√
1 + x

1− x
,

√
1− x

1 + x

over all polynomials with the same leading coefficients.

The main result above, namely Theorem 4.1, is essentially a generalisation
of the statement that the shortest distance from a point to a plane is in the
direction of a vector perpendicular to all vectors in that plane.

Theorem 4.1 is important in that it leads to a very direct algorithm for
determining the best L2 polynomial approximation pB

n to f :

Corollary 4.1B The best L2 polynomial approximation pB
n of degree n to f

may be expressed in terms of the orthogonal polynomial family {φi} in the
form

pB
n =

n∑
i=0

ciφi,

where

ci =
〈f , φi〉
〈φi , φi〉 .
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Proof: For k = 0, 1, . . . , n

〈
f − pB

n , φk

〉
=

〈
f −

n∑
i=0

ciφi , φk

〉

= 〈f , φk〉 −
n∑

i=0

ci 〈φi , φk〉

= 〈f , φk〉 − ck 〈φk , φk〉
= 0, by definition of ck. (4.17)

Now, any polynomial pn can be written as

pn =

n∑
i=0

diφi,

and hence 〈
f − pB

n , pn

〉
=

n∑
i=0

di

〈
f − pB

n , φi

〉

= 0 by (4.17).

Thus pB
n is the best approximation by Theorem 4.1. ••

Example 4.1: To illustrate Corollary 4.1B, suppose that we wish to determine
the best L2 linear approximation pB

1 to f(x) = 1 − x2 on [−1, 1], with respect to

the weight w(x) = (1 − x2)−
1
2 . In this case {Ti(x)} is the appropriate orthogonal

system and hence
pB
1 = c0T0(x) + c1T1(x)

where, by (4.17),

c0 =
〈f , T0〉
〈T0 , T0〉 =

∫ 1

−1
(1− x2)−

1
2 (1− x2) dx

π
,

c1 =
〈f , T0〉
〈T0 , T0〉 =

∫ 1

−1
(1− x2)−

1
2 (1− x2)xdx

1
2
π

.

Substituting x = cos θ,

c0 =
1

π

∫ π

0

sin2 θ dθ =
1

2π

∫ π

0

(1− cos 2θ) dθ = 1
2
,

c1 =
2

π

∫ π

0

sin2 θ cos θ dθ =
2

π

[
1
3
sin3 θ

]π
0
= 0

and therefore
pB
1 = 1

2
T0(x) + 0T1(x) =

1
2
,

so that the linear approximation reduces to a constant in this case.
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4.3.1 Orthogonal polynomial expansions

On the assumption that it is possible to expand a given function f(x) in a
(suitably convergent) series based on a system {φk} of polynomials orthogonal
over the interval [a, b], φk being of exact degree k, we may write

f(x) =
∞∑

k=0

ciφi(x), x ∈ [a, b]. (4.18)

It follows, by taking inner products with φk, that

〈f , φk〉 =
∞∑

k=0

ci 〈φi , φk〉 = ck 〈φk , φk〉 ,

since 〈φi , φk〉 = 0 for i �= k. This is identical to the formula for ck given in
Corollary 4.1B. Thus (applying the same corollary) an orthogonal expansion
has the property that its partial sum of degree n is the best L2 approximation
of degree n to its infinite sum. Hence it is an ideal expansion to use in the
L2 context. In particular, the four Chebyshev series expansions have this
property on [−1, 1] with respect to their respective weight functions (1 +
x)±

1
2 (1− x)±

1
2 .

We shall have much more to say on this topic in Chapter 5.

4.3.2 Convergence in L2 of orthogonal expansions

Convergence questions will be considered in detail in Chapter 5, where we
shall restrict attention to Chebyshev polynomials and use Fourier series the-
ory. However, we may easily make some deductions from general orthogonal
polynomial properties.

In particular, if f is continuous, then we know (Theorem 3.2) that ar-
bitrarily accurate polynomial approximations exist in C[a, b], and it follows
from Lemma 3.1 that these are also arbitrarily accurate in L2[a, b]. However,
we have shown in Section 4.3.1 that the nth degree polynomial, Pn(x) say,
obtained by truncating an orthogonal polynomial expansion is a best L2 ap-
proximation. Hence (a fortiori) Pn must also achieve an arbitrarily small L2

error ‖f − Pn‖2 for sufficiently large n. This gives the following result.

Theorem 4.2 If f is in C[a, b], then its expansion in orthogonal polynomials
converges in L2 (with respect to the appropriate weight function).

In Chapter 5, we obtain much more powerful convergence results for Cheb-
yshev series, ensuring L2 convergence of the series itself for f in L2[a, b] and
L∞ convergence of Cesàro sums of the series for f in C[a, b].
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4.4 Recurrence relations

Using the inner product (4.2), namely

〈f , g〉 =
∫ b

a

w(x)f(x)g(x) dx,

we note that

〈f , g〉 = 〈g , f〉 , (4.19)

〈xf , g〉 = 〈f , xg〉 . (4.20)

The following formulae uniquely define an orthogonal polynomial system
{φi}, in which φi is a monic polynomial (i.e., a polynomial with a leading
coefficient of unity) of exact degree i.

Theorem 4.3 The unique system of monic polynomials {φi}, with φi of exact
degree i, which are orthogonal on [a, b] with respect to w(x) are defined by

φ0(x) = 1,
φ1(x) = x− a1,
φn(x) = (x− an)φn−1(x) − bnφn−2(x),

(4.21)

where

an =
〈xφn−1 , φn−1〉
〈φn−1 , φn−1〉 , bn =

〈φn−1 , φn−1〉
〈φn−2 , φn−2〉 .

Proof: This is readily shown by induction on n. It is easy to show that the
polynomials φn generated by (4.21) are all monic. We assume that the polynomials
φ0, φ1, . . . , φn−1 are orthogonal, and we then need to test that φn, as given by
(4.21), is orthogonal to φk (k = 0, 1, . . . , n− 1).

The polynomial xφk is a monic polynomial of degree k + 1, expressible in the
form

xφk(x) = φk+1(x) +
k∑

i=1

ciφi(x),

so that, using (4.20),

〈xφn−1 , φk〉 = 〈φn−1 , xφk〉 = 0 (k < n− 2),

〈xφn−1 , φn−2〉 = 〈φn−1 , xφn−2〉 = 〈φn−1 , φn−1〉 .

For k < n− 2, then, we have

〈φn , φk〉 = 〈xφn−1 , φk〉 − an 〈φn−1 , φk〉 − bn 〈φn−2 , φk〉 = 0,
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while

〈φn , φn−2〉 = 〈xφn−1 , φn−2〉 − an 〈φn−1 , φn−2〉 − bn 〈φn−2 , φn−2〉
= 〈φn−1 , φn−1〉 − 0− 〈φn−1 , φn−1〉 = 0,

〈φn , φn−1〉 = 〈xφn−1 , φn−1〉 − an 〈φn−1 , φn−1〉 − bn 〈φn−2 , φn−1〉
= 〈xφn−1 , φn−1〉 − 〈xφn−1 , φn−1〉 − 0 = 0.

Starting the induction is easy, and the result follows. ••
We have already established a recurrence relation for each of the four

kinds of Chebyshev polynomials. We can verify that (4.21) leads to the same
recurrences.

Consider the case of the polynomials of the first kind. We convert Tn(x)
to a monic polynomial by writing φ0 = T0, φn = 21−nTn (n > 0). Then we
can find the inner products:

〈T0 , T0〉 =
∫ 1

−1

1√
1− x2

dx =
∫ π

0

dθ = π,

〈xT0 , T0〉 =
∫ 1

−1

x√
1− x2

dx =
∫ π

0

cos θ dθ = 0,

〈Tn , Tn〉 =
∫ 1

−1

Tn(x)2√
1− x2

dx =
∫ π

0

cos2 nθ dθ = 1
2π,

〈xTn , Tn〉 =
∫ 1

−1

xTn(x)2√
1− x2

dx =
∫ π

0

cos θ cos2 nθ dθ = 0.

Therefore a1 = 0, an = 0 (n > 1), and

b2 =
〈φ1 , φ1〉
〈φ0 , φ0〉 =

〈T1 , T1〉
〈T0 , T0〉 = 1

2 ,

bn =
〈φn−1 , φn−1〉
〈φn−2 , φn−2〉 =

〈
22−nTn−1 , 22−nTn−1

〉
〈23−nTn−2 , 23−nTn−2〉 = 1

4 (n > 2).

So

φ0 = 1,

φ1 = x,

φ2 = xφ1 − 1
2φ0,

φn = xφn−1 − 1
4φn−2 (n > 2).

Hence the recurrence (1.3) for Tn.

We may similarly derive the recurrences (1.6) for Un and (1.12) for Vn and
Wn, by using their respective weight functions to obtain the appropriate an

and bn (see Problem 5).
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4.5 Rodrigues’ formulae and differential equations

If {φi} is a set of polynomials orthogonal on [−1, 1] with respect to w(x), with
φi of degree i, then

∫ 1

−1

w(x)φn(x)qn−1(x) dx = 0 (4.22)

for any polynomial qn−1 of degree n− 1.

Now suppose that rn(x) is an nth integral of w(x)φn(x), so that

r(n)
n (x) = w(x)φn(x). (4.23)

Then (4.22) gives, on integration by parts,

0 =
∫ 1

−1

r(n)
n (x)qn−1(x) dx

=
[
r(n−1)(x)qn−1(x)

]1

−1
−

∫ 1

−1

r(n−1)
n (x)q′n−1(x) dx

=
[
r(n−1)(x)qn−1(x) − r(n−2)(x)q′n−1(x)

]1

−1
+

∫ 1

−1

r(n−2)
n (x)q′′n−1(x) dx

= · · ·
=

[
r(n−1)(x)qn−1(x) − r(n−2)(x)q′n−1(x) + · · ·+ (−1)n−1rn(x)q

(n−1)
n−1 (x)

]1

−1
+

+ (−1)n
∫ 1

−1

rn(x)q
(n)
n−1(x) dx.

Hence, since q
(n)
n−1(x) ≡ 0, it follows that

[
r(n−1)(x)qn−1(x) − r(n−2)(x)q′n−1(x) + · · ·+ (−1)n−1rn(x)q

(n−1)
n−1 (x)

]1

−1
= 0

(4.24)
for any polynomial qn−1 of degree n− 1.

Now φ
(n+1)
n (x) ≡ 0, since φn is of degree n; hence, because of (4.23), rn is

a solution of the (2n+ 1)st order homogeneous differential equation

dn+1

dxn+1

(
w(x)−1 dn

dxn
rn(x)

)
= 0. (4.25)

An arbitrary polynomial of degree n−1 may be added to rn, without affecting
the truth of (4.23) and (4.25). Hence we may without loss of generality arrange
that rn(−1) = r′n(−1) = · · · = r

(n−1)
n (−1) = 0, when the fact that (4.24) is
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valid for all qn−1 implies that rn(+1) = r′n(+1) = · · · = r
(n−1)
n (+1) = 0, so

that rn satisfies the 2n homogeneous boundary conditions

rn(±1) = r′n(±1) = · · · = r(n−1)
n (±1) = 0. (4.26)

One function satisfying (4.26), for any real α > −1, is

rn(x) = (1− x2)n+α. (4.27)

If we then choose
w(x) = (1− x2)α (4.28)

then (4.25) is satisfied, and r
(n)
n is of the form (4.23) with φn(x) a polynomial

of degree n.

Since φn, as defined by (4.22), is unique apart from a multiplicative con-
stant, it follows from (4.25), (4.27) and (4.28) that (for α > −1)

φn(x) = P (α)
n (x) := cn

1
(1 − x2)α

dn

dxn
(1 − x2)n+α, (4.29)

where cn is a constant, defines a system of polynomials {P (α)
n (x)} orthogonal

with respect to w(x) = (1 − x2)α on [−1, 1]. These polynomials are known
as the ultraspherical (or Gegenbauer) polynomials, and the formula (4.29) for
them is known as Rodrigues’ formula.

It immediately follows that the Chebyshev polynomials of the first and
second kinds are ultraspherical polynomials and, by comparing their leading
coefficients with those in (4.29), we may readily deduce (see Problem 12) that,
taking α = − 1

2 and α = + 1
2 ,

Tn(x) =
(−1)n 2n n!

(2n)!
(1− x2)

1
2

dn

dxn
(1− x2)n−

1
2 , (4.30)

Un(x) =
(−1)n 2n (n+ 1)!

(2n+ 1)!
(1− x2)−

1
2

dn

dxn
(1− x2)n+ 1

2 . (4.31)

(In the standard notation for Gegenbauer polynomials, as in Abramowitz
and Stegun’s Handbook of Mathematical Functions (1964) for example, P (α)

n (x)

is written as Cα+ 1
2

n (x), so that Tn(x) is proportional to C
(0)
n (x) and Un(x) to

C
(1)
n (x).)

The well-known Legendre polynomials Pn(x), which are orthogonal with
weight unity, are ultraspherical polynomials for α = 0 and are given by

Pn(x) =
(−1)n2−n

n!
dn

dxn
(1 − x2)n. (4.32)
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Note that the Chebyshev polynomials of third and fourth kinds are not
ultraspherical polynomials, but only Jacobi polynomials. Their Rodrigues’
formulae are

Vn(x) =
(−1)n 2n n!

(2n)!

(
1− x

1 + x

) 1
2 dn

dxn

{
(1 − x2)n

(
1 + x

1− x

) 1
2
}
, (4.33a)

Wn(x) =
(−1)n 2n n!

(2n)!

(
1 + x

1− x

) 1
2 dn

dxn

{
(1− x2)n

(
1− x

1 + x

) 1
2
}
. (4.33b)

From the general formula (4.29) it can be verified by substitution (see
Problem 13) that P (α)

n (x) is a solution of the second-order differential equation

(1− x2)y′′ − 2(α+ 1)xy′ + n(n+ 2α+ 1)y = 0. (4.34)

Thus Tn(x), Un(x), Pn(x) are solutions of

(1− x2)y′′ − xy′ + n2y = 0 (α = − 1
2 ), (4.35a)

(1 − x2)y′′ − 3xy′ + n(n+ 2)y = 0 (α = 1
2 ), (4.35b)

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0 (α = 0), (4.35c)

respectively.

The differential equations satisfied by Vn(x) and Wn(x) are, respectively,

(1− x2)y′′ − (2x− 1)y′ + n(n+ 1)y = 0, (4.36a)

(1− x2)y′′ − (2x+ 1)y′ + n(n+ 1)y = 0. (4.36b)

4.6 Discrete orthogonality of Chebyshev polynomials

It is always possible to convert a (continuous) orthogonality relationship, as
defined in Definition 4.1, into a discrete orthogonality relationship simply by
replacing the integral with a summation. In general, of course, the result is
only approximately true. However, where trigonometric functions or Cheb-
yshev polynomials are involved, there are many cases in which the discrete
orthogonality can be shown to hold exactly. We give here a few of the dis-
crete orthogonality relations that exist between the four kinds of Chebyshev
polynomials. Further relations are given by Mason & Venturino (1996) (see
also Problem 14).

4.6.1 First-kind polynomials

Consider the sum

s(1)
n (θ) =

n+1∑
k=1

cos(k − 1
2 )θ = cos 1

2θ + cos 3
2θ + · · ·+ cos(n+ 1

2 )θ. (4.37)
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By summing the arithmetic series

z
1
2 (1 + z + z2 + · · ·+ zn),

substituting z = eiθ and taking the real part of the result, it is easily verified
(see Problem 4) that

s(1)
n (θ) =

sin(n+ 1)θ
2 sin 1

2θ
(4.38)

and hence that s
(1)
n (θ) vanishes when θ =

rπ

n+ 1
, for integers r in the range

0 < r < 2(n+ 1). Further, we can see directly from (4.37) that

s(1)
n (0) = n+ 1, s(1)

n (2π) = −(n+ 1). (4.39)

Now consider

aij =
n+1∑
k=1

Ti(xk)Tj(xk) (0 ≤ i, j ≤ n) (4.40)

where xk are the zeros of Tn+1(x), namely

xk = cos θk, θk =
(k − 1

2 )π
n+ 1

. (4.41)

Then

aij =
n+1∑
k=1

cos iθk cos jθk

= 1
2

n+1∑
k=1

[cos(i+ j)θk + cos(i− j)θk]

= 1
2

[
s(1)

n

(
(i+ j)π
n+ 1

)
+ s(1)

n

(
(i− j)π
n+ 1

)]
.

Hence
aij = 0 (i �= j; i, j ≤ n), (4.42a)

while, using (4.39),

aii = 1
2 (n+ 1) (i �= 0; i ≤ n) (4.42b)

and
a00 = n+ 1. (4.42c)

It follows from (4.42a) that the polynomials {Ti(x), i = 0, 1, . . . , n} are or-
thogonal over the discrete point set {xk} consisting of the zeros of Tn+1(x).
Specifically, the orthogonality is defined for the discrete inner product

〈u , v〉 =
n+1∑
k=1

u(xk)v(xk) (4.43)
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in the form
〈Ti , Tj〉 = 0 (i �= j; i, j ≤ n),

with 〈T0 , T0〉 = n+ 1 and 〈Ti , Ti〉 = 1
2 (n+ 1) (0 < i ≤ n).

This is not the only discrete orthogonality property of {Ti}. Indeed, by
considering instead of (4.37) the sum

s(2)
n (θ) =

n∑′′

k=0

cos kθ = 1
2 sinnθ cot 1

2θ (n > 0)

(see Problem 4), where the double dash in
∑′′ denotes that both first and

last terms in the sum are to be halved, we deduce that

s(2)
n (rπ/n) = 0

for 0 < r < 2n, while
s(2)

n (0) = s(2)
n (2π) = n.

If we now consider the extrema yk of Tn(x), namely

yk = cosφk, φk =
kπ

n
(k = 0, 1, . . . , n) (4.44)

(note that these {yk} are also the zeros of Un−1(x) together with the end
points ±1), and define

bij =
n∑′′

k=0

Ti(yk)Tj(yk), (4.45)

then we have

bij = 0 (i �= j; i, j ≤ n) (4.46a)

bii = 1
2n (0 < i < n) (4.46b)

b00 = bnn = n. (4.46c)

In this case the inner product is

〈u , v〉 =
n∑′′

k=0

u(yk)v(yk) (4.47)

and we have again

〈Ti , Tj〉 = 0 (i �= j; i, j ≤ n),

but this time with 〈T0 , T0〉 = 〈Tn , Tn〉 = n and 〈Ti , Ti〉 = 1
2n, (0 < i < n).
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4.6.2 Second-kind polynomials

In a similar way, we can establish a pair of discrete orthogonality relationships
for the weighted second-kind polynomials {√1− x2 Ui(x)} corresponding to
the point sets {xk} and {yk} defined in (4.41) and (4.44)).

Define

a
(2)
ij =

n+1∑
k=1

(1− x2
k)Ui(xk)Uj(xk) (0 ≤ i, j ≤ n) (4.48)

where {xk} are zeros of Tn+1(x). Then we note that

a
(2)
ij =

n+1∑
k=1

sin(i+ 1)θk sin(j + 1)θk

= 1
2

n+1∑
k=1

[cos(i− j)θk − cos(i+ j + 2)θk]

= 1
2

[
s(1)

n

(
(i− j)π
n+ 1

)
− s(1)

n

(
(i+ j + 2)π

n+ 1

)]
.

Hence
a
(2)
ij = 0 (i �= j; 0 ≤ i, j ≤ n) (4.49a)

and
a
(2)
ii = 1

2 (n+ 1) (0 ≤ i < n), (4.49b)

while
a(2)

nn = n+ 1. (4.49c)

Thus {√1− x2 Ui(x), i = 0, 1, . . . , n} are orthogonal for the inner product
(4.43).

Similarly, considering the zeros {yk} of (1− x2)Un−1(x),

b
(2)
ij =

n∑′′

k=0

(1− y2
k)Ui(yk)Uj(yk)

=
n∑′′

k=0

sin(i+ 1)φk sin(j + 1)φk. (4.50)

Then

b
(2)
ij = 0 (i �= j; i, j ≤ n− 1) (4.51a)

b
(2)
ii = 1

2n (0 ≤ i < n− 1) (4.51b)

b
(2)
n−1,n−1 = 0 (4.51c)

and {√1− x2 Ui(x), i = 0, 1, . . . , n− 1} are orthogonal for the inner product
(4.47).
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4.6.3 Third- and fourth-kind polynomials

Surprisingly, perhaps, the same discrete abscissae and inner products (4.43)
and (4.47) provide orthogonality for the weighted third- and fourth-kind poly-
nomials

{√1 + xVi(x)}, {√1− xWi(x)}.
For we have

a
(3)
ij =

n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk) (0 ≤ i, j ≤ n)

= 2
n+1∑
k=1

cos(i+ 1
2 )θk cos(j + 1

2 )θk

=
n+1∑
k=1

[cos(i+ j + 1)θk + cos(i− j)θk],

giving us

a
(3)
ij = 0 (i �= j; i, j ≤ n) (4.52a)

a
(3)
ii = n+ 1 (0 ≤ i ≤ n), (4.52b)

while

b
(3)
ij =

n∑′′

k=0

(1 + yk)Vi(yk)Vj(yk) (0 ≤ i, j ≤ n)

= 2
n∑′′

k=0

cos(i+ 1
2 )φk cos(j + 1

2 )φk

=
n∑′′

k=0

[cos(i+ j + 1)φk + cos(i− j)φk],

giving

b
(3)
ij = 0 (i �= j; i, j ≤ n) (4.53a)

b
(3)
ii = n (0 ≤ i ≤ n). (4.53b)

The same formulae (4.52)–(4.53) hold for a(4)
ij and b

(4)
ij , where

a
(4)
ij =

n+1∑
k=1

(1− xk)Wi(xk)Wj(xk) and b
(4)
ij =

n∑′′

k=0

(1− yk)Wi(yk)Wj(yk).

(4.54)
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4.7 Discrete Chebyshev transforms and the fast Fourier transform

Using the values of a function f(x) at the extrema {yk} of Tn(x), which are
also the zeros of (1− x2)Un−1(x), given as in (4.44) by

yk = cos
kπ

n
(k = 0, . . . , n), (4.55)

we can define a discrete Chebyshev transform f̂(x), defined at these same
points only, by the formula

f̂(yk) :=
√

2
n

n∑′′

j=0

Tk(yj)f(yj) (k = 0, . . . , n). (4.56)

These values f̂(yk) are in fact proportional to the coefficients in the interpolant
of f(yk) by a sum of Chebyshev polynomials — see Section 6.3.2.

Using the discrete orthogonality relation (4.45), namely

n∑′′

k=0

Ti(yk)Tj(yk) =




0 (i �= j; i, j ≤ n),
1
2n (0 < i = j < n),
n (i = j = 0 or n),

(4.57)

we can easily deduce that the inverse transform is given by

f(yj) =
√

2
n

n∑′′

k=0

Tk(yj)f̂(yk) (j = 0, . . . , n). (4.58)

In fact, since

Tk(yj) = cos
jkπ

n
= Tj(yk),

which is symmetric in j and k, it is clear that the discrete Chebyshev transform
is self-inverse.

It is possible to define other forms of discrete Chebyshev transform, based
on any of the other discrete orthogonality relations detailed in Section 4.6.

The discrete Chebyshev transform defined here is intimately connected
with the discrete Fourier (cosine) transform. Defining

φk =
kπ

n

(the zeros of sinnθ) and

g(θ) = f(cos θ), ĝ(θ) = f̂(cos θ),
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the formula (4.56) converts to the form

ĝ(φk) :=
√

2
n

n∑′′

j=0

cos
jkπ

n
g(φj) (k = 0, . . . , n). (4.59)

Since cos θ and therefore g(θ) are even and 2π-periodic functions of θ,
(4.59) has alternative equivalent expressions

ĝ

(
kπ

n

)
=

√
1
2n

n∑′′

j=−n

cos
jkπ

n
g

(
jπ

n

)
(k = −n, . . . , n) (4.60)

or

ĝ

(
kπ

n

)
=

√
1
2n

n∑′′

j=−n

exp
ijkπ
n

g

(
jπ

n

)
(k = −n, . . . , n) (4.61)

or

ĝ

(
kπ

n

)
=

√
1
2n

2n−1∑
j=0

exp
ijkπ
n

g

(
jπ

n

)
(k = 0, . . . , 2n− 1). (4.62)

The last formulae (4.61) and (4.62) in fact define the general discrete
Fourier transform, applicable to functions g(θ) that are periodic but not nec-
essarily even, whose inverse is the complex conjugate transform

g

(
jπ

n

)
=

√
1
2n

n∑′′

k=−n

exp
−ijkπ

n
ĝ

(
kπ

n

)
(j = −n, . . . , n) (4.63)

or

g

(
jπ

n

)
=

√
1
2n

2n−1∑
k=0

exp
−ijkπ

n
ĝ

(
kπ

n

)
(j = 0, . . . , 2n− 1). (4.64)

4.7.1 The fast Fourier transform

Evaluation of (4.56) or (4.58) for a particular value of k or j, respectively,
requires a number O(n) of arithmetic operations; the algorithm described in
Section 2.4.1 is probably the most efficient. If we require their values to be
calculated for all values of k or j, however, use of this scheme would call
for O(n2) operations in all, whereas it is possible to achieve the same results
in O(n log n) operations (at the slight cost of working in complex arithmetic
rather than real arithmetic, even though the final result is known to be real)
by converting the Chebyshev transform to the equivalent Fourier transform
(4.62) or (4.64), and then computing its 2n values simultaneously by means
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of the so-called fast Fourier transform (FFT) algorithm (Cooley & Tukey
1965, Gentleman & Sande 1966). The required n+1 values of the Chebyshev
transform may then be extracted. (The remaining n−1 computed results will
be redundant, by reason of the symmetry of g and ĝ.)

While there are versions of this algorithm that apply when n is a product
of any small prime factors (Kolba & Parks 1977, Burrus & Eschenbacher 1981,
for instance), it is easiest to describe it for the original and most useful case
where n is a power of 2; say n = 2m. Then, separating the even and odd
terms of the summation, (4.62) becomes

ĝ

(
kπ

n

)
=

√
1
2n

2n−2∑
j=0

j even

exp
ijkπ
n

g

(
jπ

n

)
+

√
1
2n

2n−1∑
j=1

j odd

exp
ijkπ
n

g

(
jπ

n

)

=
√

1
2n

n−1∑
j=0

exp
2ijkπ
n

g

(
2jπ
n

)
+

+
√

1
2n exp

ikπ
n

n−1∑
j=0

exp
2ijkπ
n

g

(
(2j + 1)π

n

)
. (4.65a)

while

ĝ

(
(k + n)π

n

)
=

√
1
2n

n−1∑
j=0

exp
2ijkπ
n

g

(
2jπ
n

)
−

−
√

1
2n exp

ikπ
n

n−1∑
j=0

exp
2ijkπ
n

g

(
(2j + 1)π

n

)
. (4.65b)

Now, if for j = 0, . . . , n− 1 we define

g1

(
2jπ
n

)
:= g

(
2jπ
n

)
and g2

(
2jπ
n

)
:= g

(
(2j + 1)π

n

)
,

we can further rewrite (4.65a) and (4.65b) as

ĝ

(
kπ

n

)
= 1√

2 ĝ1

(
2kπ
n

)
+ 1√

2 exp
ikπ
n

ĝ2

(
2kπ
n

)
, (4.66a)

ĝ

(
(k + n)π

n

)
= 1√

2 ĝ1

(
2kπ
n

)
− 1√

2 exp
ikπ
n

ĝ2

(
2kπ
n

)
, (4.66b)

(k = 0, . . . , n− 1)

where the discrete Fourier transforms from g1 to ĝ1 and from g2 to ĝ2 each
take a set of n values into another set of n values, whereas that from g to ĝ
takes 2n values into 2n.
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Thus, once we have performed the two transforms of order n, it requires
fewer than Kn further arithmetic operations (where K denotes a small fixed
integer) to compute the transform of order 2n. Similarly it requires fewer
than 2×K n

2 = Kn operations to derive these two transforms of order n from
four transforms of order n/2, fewer than 4 ×K n

4 = Kn operations to derive
these four transforms of order n/2 from eight transforms of order n/4, and so
on. If n = 2m, therefore, (a transform of order 1 being just the identity and
therefore trivial) the discrete Fourier transform of order 2n may be performed
in (m+ 1) stages, each requiring fewer than Kn operations, so that the total
number of operations is less than (m+ 1)Kn = O(n log n), as claimed above.

We do not propose to discuss in detail how this computation is best or-
ganised, but refer the reader to the extensive published literature (Canuto
et al. 1988, van Loan 1992, for instance). Reliable off-the-peg implementa-
tions of a fast Fourier transform algorithm can be found in any comprehensive
numerical subroutine library.

4.8 Discrete data fitting by orthogonal polynomials: the Forsythe–
Clenshaw method

In this section we consider a least-squares/orthogonal polynomial method,
in which Chebyshev polynomials fulfil what is essentially a supporting role.
However, this is one of the most versatile polynomial approximation algo-
rithms available, and the use of Chebyshev polynomials makes the resulting
approximations much easier to use and compute. Moreover, the algorithm, in
its Chebyshev polynomial form, is an essential tool in the solution of multi-
variate data-fitting problems for data on families of lines or curves.

We saw in Section 4.6 that an inner product may be defined on a discrete
data set just as well as on a continuum, and in (4.43) we defined such an inner
product based on Chebyshev polynomial zeros. However, we are frequently
given a set of arbitrarily spaced data abscissae

x = xk (k = 1, . . . ,m), (4.67)

and asked to approximate in a least-squares sense the corresponding ordinates

y = yk

by a polynomial of degree n, where the number (n+ 1) of free parameters is
no more than the number m of given data — typically much smaller.

Now

〈u , v〉 =
m∑

k=1

wku(xk)v(xk) (4.68)

defines an inner product over the points (4.67), where {wk} is a specified set
of positive weights to be applied to the data. From Corollary 4.1B, the best

© 2003 by CRC Press LLC



polynomial approximation of degree n in the least-squares sense on the point
set (4.67) is therefore

pB
n =

n∑
i=0

ciφi(x) (4.69)

where {φi} are orthogonal polynomials defined by the recurrence (4.21) with
the inner product (4.68) and where

ci =
〈y , φi〉
〈φi , φi〉

=

m∑
k=1

wkykφi(xk)

m∑
k=1

wk[φi(xk)]2
. (4.70)

This is precisely the algorithm proposed by Forsythe (1957) for approximating
discrete data yk at arbitrary points xk (k = 1, . . . , n).

The Forsythe algorithm, as we have described it so far, does not explicitly
involve Chebyshev polynomials (or, for that matter, any other well-known set
of orthogonal polynomials). However, if the data are distributed uniformly
and very densely over an interval of x, [−1, 1] say, then we expect the resulting
polynomials to be very similar to conventional orthogonal polynomials defined
on the continuum [−1, 1]. For example, if all the wk are equal to unity,
then {φk} should closely resemble the Legendre polynomials (orthogonal with
respect to w(x) = 1), and if

wk = (1− x2
k)

− 1
2

then {φk} should resemble the Chebyshev polynomials of the first kind. In
spite of this resemblance, we cannot simply use the Legendre or Chebyshev
polynomials in place of the polynomials φk in (4.69) and (4.70), since on these
points they are only approximately orthogonal, not exactly, and so we have
to consider some other approach.

The goal is a formula for pB
n based on Chebyshev polynomials of the first

kind, say, in the form

pB
n (x) =

n∑′

i=0

d
(n)
i Ti(x), (4.71)

the new set of coefficients d(n)
i being chosen so that (4.71) is identical to (4.69).

This form has the advantage over (4.69) that the basis {Ti(x)} is independent
of the abscissae (4.67) and therefore more convenient for repeated computa-
tion of pB

n (x). (This is a very useful step in the development of multivariate
polynomial approximations on lines or curves of data.) An efficient algorithm

© 2003 by CRC Press LLC



for deriving the coefficients d
(n)
i from the coefficients ci is due to Clenshaw

(1959/1960); it makes use of the recurrence relations for Chebyshev polyno-
mials as well as those for the discretely orthogonal polynomials {φi}. We shall
not give more details here.

4.8.1 Bivariate discrete data fitting on or near a family of lines or
curves

Formula (4.71), which gives an approximation pB
n to data unequally spaced

along one line, may readily be extended to much more general situations
in two or more dimensions (Clenshaw & Hayes 1965). In two dimensions,
for example, suppose that data are given at unequally-spaced and different
locations on each of a family of lines parallel to the x-axis, say at the points

(xk�, y�), k = 1, . . . ,m1�; � = 1, . . . ,m2.

We suppose too that all of these points lie within the square [−1, 1]× [−1, 1].
Then the data on each line y = y� may be approximated, using Clenshaw’s
algorithm, in the form (4.71), giving us a set of approximations1

pB
n1,�(x) =

n1∑′

i=0

d
(n1)
i� Ti(x), � = 1, . . . ,m2. (4.72)

The set of ith coefficients d
(n1)
i� , � = 1, . . . ,m2, may then be treated as data

on a line parallel to the y-axis and may be approximated in a similar manner,
for each i from 0 to n1, giving approximations

di(y) =
n2∑′

j=0

d
(n1,n2)
ij Tj(y). (4.73)

We thus arrive at the overall approximation

n1∑′

i=0

n2∑′

j=0

d
(n1,n2)
ij Ti(x)Tj(y). (4.74)

Ifm1,m2, n1, n2 all = O(n), then the algorithm involvesO(n4) operations—
compared with O(n3) for a meshed data polynomial (tensor product) algo-
rithm. It is important (Clenshaw & Hayes 1965) to ensure that there are data
located close to x = ±1 and y = ±1, if necessary by changing variables to
transform boundary curves into straight lines.

1If the number of data points on any line is less than the number of degrees of freedom,
m1� ≤ n1, then instead of approximating we can interpolate with a polynomial of minimal

degree by requiring that d
(n1)
i� = 0 for i ≥ m1�.
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This algorithm has been extended further by Bennell & Mason (1991) to
data on a family of curves. The procedure is to run secant lines across the
family of curved lines and interpolate the data on each curve to give values
at the intersections, which are then approximated by using the method just
described. The algorithm involves only about twice as many operations as
that for data on lines, which would appear very satisfactory.

Other writers have developed similar algorithms. For example, Anderson
et al. (1995) fit data lying ‘near’ a family of lines, using an iteration based on
estimating values on the lines from the neighbouring data.

Algorithms such as these have considerable potential in higher dimensions.
An application to modelling the surfaces of human teeth has been successfully
carried out by Jovanovski (1999).

4.9 Orthogonality in the complex plane

Formulae for Chebyshev polynomials in terms of a complex variable z have
been given in Section 1.4; we repeat them here for convenience.

Given any complex number z, we define the related complex number w to
be such that

z = 1
2 (w + w−1). (4.75)

Unless z lies on the real interval [−1, 1], this equation for w has two solutions

w = z ±
√

z2 − 1, (4.76)

one of which has |w| > 1 and one has |w| < 1; we choose the one with |w| > 1.
Then we have:

Tn(z) = 1
2 (w

n + w−n); (4.77)

Un(z) =
wn+1 − w−n−1

w − w−1
; (4.78)

Vn(z) =
wn+

1
2 + w−n− 1

2

w
1
2 + w− 1

2
=

wn+1 + w−n

w + 1
; (4.79)

Wn(z) =
wn+

1
2 − w−n− 1

2

w
1
2 − w− 1

2
=

wn+1 − w−n

w − 1
. (4.80)

For any r > 1, the elliptical contour Er given by

Er :=
{
z :

∣∣∣z +
√

z2 − 1
∣∣∣ = r

}
(r > 1) (4.81)

has foci at z = ±1, and is the image under (4.75) of the circle

Cr := {w : |w| = r} (4.82)
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of radius r.

The Chebyshev polynomials have useful orthogonality properties on the
ellipse Er. In order to describe them, we need first to extend our definition
(Definition 4.2) of the idea of an inner product to allow for functions that take
complex values. Let z denote the complex conjugate of z.

Definition 4.3 An inner product 〈· , ·〉 is defined as a bilinear function of
elements f, g, h, . . . of a vector space that satisfies the axioms:

1. 〈f , f〉 is real and ≥ 0, with equality if and only if f ≡ 0;

2. 〈f , g〉 = 〈g , f〉 (note the complex conjugate);

3. 〈f + g , h〉 = 〈f , h〉+ 〈g , h〉;
4. 〈αf , g〉 = α 〈f , g〉 for any scalar α.

(Hence 〈f , αg〉 = α 〈f , g〉.)

This definition agrees with the earlier one if everything is real.

Now define an inner product

〈f , g〉 :=
∮

Er

f(z)g(z) |µ(z)| | dz| , (4.83)

where µ(z) is a weighting function (|µ(z)| is real and positive) and
∮ · · · | dz|

denotes integration with respect to arc length around the ellipse in an an-
ticlockwise direction. This inner product corresponds to a norm ‖·‖2 on Er

defined by

‖f‖2
2 := 〈f , f〉 =

∮
Er

|f(z)|2 |µ(z)| |dz| . (4.84)

Then we can show, using this inner product, that

〈Tm , Tn〉 =




0 (m �= n)
2π (m = n = 0)
1
2π(r

2n + r−2n) (m = n > 0)

if µ(z) =
1√

1− z2
, (4.85a)

〈Um , Un〉 =
{

0 (m �= n)
1
2π(r

2n+2 + r−2n−2) (m = n ≥ 0)

if µ(z) =
√

1− z2, (4.85b)

〈Vm , Vn〉 =
{

0 (m �= n)
π(r2n+1 + r−2n−1) (m = n ≥ 0)
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if µ(z) =

√
1 + z

1− z
, (4.85c)

〈Wm , Wn〉 =
{

0 (m �= n)
π(r2n+1 + r−2n−1) (m = n ≥ 0)

if µ(z) =

√
1− z

1 + z
. (4.85d)

Proof: Taking the first of these orthogonalities, for example, we have

z = 1
2
(w + w−1) = 1

2
(reiθ + r−1e−iθ),

dz = 1
2
(1− w−2) dw = 1

2
i(reiθ − r−1e−iθ) dθ,

Tm(z) = 1
2
(wm + w−m) = 1

2
(rmeimθ + r−me−imθ),

µ(z) =
2√

2− w2 − w−2
=

2

±i(w − w−1)
= ± 2i

reiθ − r−1e−iθ
,

|µ(z)| |dz| = dθ,

Tm(z)Tn(z) = 1
4
(rm+nei(m−n)θ + rm−nei(m+n)θ +

+ r−m+ne−i(m+n)θ + r−m−ne−i(m−n)θ).

Now ∫ 2π

0

eimθ dθ = 0 (m �= 0), = 2π (m = 0).

Hence we easily show that 〈Tm , Tn〉 = 0 for m �= n and is as stated for m = n. ••
The other results (4.85) may be proved similarly (Problem 19), after noting

that ∣∣1− z2
∣∣ =

1
4 |w|2

∣∣1− w2
∣∣2 ,

|1 + z| = 1
2 |w| |1 + w|2 ,

|1− z| = 1
2 |w| |1− w|2 .

Note that ‖f‖2, as defined in (4.84), as well as being a norm on the space
of functions square integrable round the contour Er, can be used as a norm
on the space of functions which are continuous on this contour and analytic
throughout its interior. This may be shown using the maximum-modulus
theorem (Problem 21).

Alternatively, we may define an inner product (and a corresponding norm)
over the whole of the interior Dr of the ellipse Er

〈f , g〉 =
∫∫

Dr

f(z)g(z) |µ(z)| dx dy, (4.86)
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where z = x+iy. Remarkably, the Chebyshev polynomials are orthogonal with
respect to this inner product too, defining µ(z) for each kind of polynomial
as in equations (4.85).

Proof: Take the first-kind polynomials, for example, when µ(z) = 1/
√
1− z2. If

z = 1
2
(w + w−1) and w = seiθ, then z runs over the whole ellipse Dr when s runs

from 1 to r and θ runs from 0 to 2π. We have

x = 1
2
(s+ s−1) cos θ,

y = 1
2
(s− s−1) sin θ,

so that

dx dy =
∂(x, y)

∂(s, θ)
ds dθ

with

∂(x, y)

∂(s, θ)
= det

(
1
2
(1− s−2) cos θ − 1

2
(s+ s−1) sin θ

+ 1
2
(1 + s−2) sin θ 1

2
(s− s−1) cos θ

)

=
1

4

(s2 + 2s cos θ + 1)(s2 − 2s cos θ + 1)

s3

while

|µ(z)| = 4s2

(s2 + 2s cos θ + 1)(s2 − 2s cos θ + 1)

Thus,

〈f , g〉 =

∫∫
Dr

f(z)g(z) |µ(z)| dx dy

=

∫ r

s=1

∫ 2π

θ=0

f(z)g(z) |µ(z)| ∂(x, y)
∂(s, θ)

ds dθ

=

∫ r

s=1

∫ 2π

θ=0

f(z)g(z)s−1 ds dθ

=

∫ r

s=1

s−1 ds

{∫ 2π

θ=0

f(z)g(z) dθ

}
.

But the inner integral is simply the inner product around the ellipse Es, which we

have already shown to vanish if f(z) = Tm(z) and g(z) = Tn(z), with m �= n.

Therefore, the whole double integral vanishes, and 〈Tm , Tn〉 = 0 for m �= n. ••
Orthogonality of the other three kinds of polynomial may be proved in the

same way (Problem 20).

4.10 Problems for Chapter 4

1. Verify that the inner product (4.2) satisfies the axioms of Definition 4.2.

© 2003 by CRC Press LLC



2. Using only the properties of an inner product listed in Definition 4.2,
show that the norm defined by (4.4) satisfies the axioms of Definition 3.1.

3. If φn and ψn are two polynomials of degree n, each of which is orthogonal
to every polynomial of degree less than n (over the same interval and
with respect to the same weight function), show that φn(x) and ψn(x)
are proportional.

4. Derive the summations

n+1∑
k=1

cos(k − 1
2 )θ =

sin(n+ 1)θ
2 sin 1

2θ

n+1∑
k=1

sin(k − 1
2 )θ =

1− cos(n+ 1)θ
2 sin 1

2θ

n∑′′

k=0

cos kθ = 1
2 sinnθ cot 1

2θ

n∑′′

k=0

sin kθ = 1
2 (1− cosnθ) cot 1

2θ.

5. Using a similar analysis to that in Section 4.4, derive from (4.21) and
the trigonometric formulae for Un(x), Vn(x) and Wn(x) the recurrence
relations which are satisfied by these polynomials. Show that these
relations coincide.

6. Using the recurrence (4.21), obtain formulae for the monic (Legendre)
polynomials of degrees 0, 1, 2, 3, 4, which are orthogonal on [−1, 1] with
respect to w(x) = 1.

7. If {φr} is an orthogonal system on [−1, 1], with φr a polynomial of exact
degree r, prove that the zeros of φr−1 separate those of φr; that is to
say, between any two consecutive zeros of φr there lies a zero of φr−1.
[Hint: Consider the signs of φr as x → +∞ and at the zeros of φr−1,
using the recurrence (4.21).]

8. A simple alternative to the recurrence (4.21) for the generation of a
system of monic orthogonal polynomials is the Gram–Schmidt orthogo-
nalisation procedure:

Given monic orthogonal polynomials φ0, φ1, . . . , φn−1, define
φn in the form

φn(x) = xn +
n−1∑
k=0

ckφk(x)
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and determine values of ck such that φn is orthogonal to φ0,
φ1, . . . , φn−1.

Use this recurrence to generate monic polynomials of degrees 0, 1, 2

orthogonal on [−1, 1] with respect to (1 + x)−
1
2 (1 − x)

1
2 . What is the

key disadvantage (in efficiency) of this algorithm, compared with the
recurrence (4.21)?

9. By using the trigonometric formulae for Tn(x) and Un(x), under the
transformation x = cos θ, verify that these Chebyshev polynomials sat-
isfy the respective differential equations (4.35a), (4.35b).
Show similarly that Vn(x) and Wn(x) satisfy the differential equations
(4.36a), (4.36b).

10. The second order differential equation (4.35a)

(1− x2)y′′ − xy′ + n2y = 0

has Tn(x) as one solution. Show that a second solution is
√
1− x2Un−1(x).

Find a second solution to (4.35b)

(1 − x2)y′′ − 3xy′ + n(n+ 2)y = 0,

one solution of which is Un(x).

11. By substituting Tn(x) = t0+t1x+· · ·+tnx
n into the differential equation

that it satisfies, namely

(1− x2)y′′ − xy′ + n2y = 0,

and equating coefficients of powers of x, show that tn−1 = 0 and

tk(n2 − k2) + tk+2(k + 2)(k + 1) = 0, k = 0, . . . , n− 2.

Deduce that

tn−2m = (−1)m
n

n−m

(
n−m

m

)
2n−2m−1

where (
n

k

)
=

n(n− 1) · · · (n− k + 1)
k!

.

12. Writing

dr

dxr
(1 − x2)n+α = (1− x2)n−r+α(Arx

r + lower degree terms),

show that Ar+1 = −(2n− r + 2α)Ar and deduce that

An = (−1)n(2n+ 2α)(2n+ 2α− 1) · · · (n+ 2α).

Hence, verify the formulae (4.30), (4.31) for Tn(x), Un(x), determining
the respective values of cn in (4.29) by equating coefficients of xn.
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13. Verify that P
(α)
n (x), given by (4.29), is a solution of the second order

equation

(1− x2)y′′ − 2(α+ 1)xy′ + n(n+ 2α+ 1)y = 0.

[Hint: Write

ψn(x) := c−1
n (1− x2)αP (α)

n (x) = Dn(1− x2)n+α,

where D stands for d/ dx. Then derive two expressions for ψ′
n+1(x):

ψ′
n+1(x) = Dn+2(1− x2)n+α+1

= Dn+2[(1− x2)(1− x2)n+α],

ψ′
n+1(x) = Dn+1D(1− x2)n+α+1

= −2(n+ α+ 1)Dn+1[x(1 − x2)n+α],

differentiate the two products by applying Leibniz’s theorem, and equate
the results. This should give a second-order differential equation for
ψn(x), from which the result follows.]

14. Determine which of the following four systems of n + 1 weighted poly-
nomials,

{Ti(x)}, {
√

1− x2 Ui(x)}, {√1 + xVi(x)}, {√1− xWi(x)}
(0 ≤ i ≤ n) is discretely orthogonal with respect to which of the four
following summations

∑
zeros of Tn+1(x)

,
∑′′

zeros of (1− x2)Un−1(x)

,

∑∗

zeros of (1 + x)Vn(x)
,

∑′

zeros of (1− x)Wn(x)
.

(Pay particular attention to the cases i = 0 and i = n.) Find the values
of 〈Ti, Ti〉, and similar inner products, in each case, noting that the
result may not be the same for all values of i.

15. Using the discrete inner product 〈u , v〉 =
∑

k u(xk)v(xk), where {xk}
are the zeros of T3(x), determine monic orthogonal polynomials of de-
grees 0, 1, 2 using the recurrence (4.21), and verify that they are identical
to {21−iTi(x)}.

16. If

fn(x) =
n∑

i=1

ciTi−1(x), (∗)

© 2003 by CRC Press LLC



where

ci =
1
n

n∑′

k=1

f(xk)Ti−1(xk),

and xk are the zeros of Tn(x), show that fn(xk) = f(xk).

What does the formula (*) provide?

What can we say about the convergence in norm of fn to f as n → ∞?

17. Using the values of a function f(x) at the zeros {xk} of Tn(x), namely

xk = cos
(2k + 1)π

2n
(k = 0, . . . , n− 1),

define another form of discrete Chebyshev transform by

f̂(xk) :=
√

2
n

n−1∑
j=0

Tk(xj)f(xj) (k = 0, . . . , n− 1).

Use discrete orthogonality to deduce that

f(xj) =
√

2
n

n−1∑
k=0

Tk(xj)f̂(xk) (j = 0, . . . , n− 1).

[See Canuto et al. (1988, p.503) for a fast computation procedure based
on sets of alternate f values.]

18. Using the values of a function f(x) at the positive zeros {xk} of T2n(x),
namely

xk = cos
(2k + 1)π

4n
(k = 0, . . . , n− 1),

define another (odd) form of discrete Chebyshev transform by

f̂(xk) :=
√

2
n

n−1∑
j=0

T2k+1(xj)f(xj) (k = 0, . . . , n− 1).

Deduce that

f(xj) =
√

2
n

n−1∑
k=0

T2k(xj)f̂(xk) (j = 0, . . . , n− 1),

and that this transform is self-inverse. [See Canuto et al. (1988, p.504)
for a fast computation procedure.]

19. Verify the orthogonality properties (4.85).
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20. Show that {Un}, {Vn} and {Wn} are orthogonal over the ellipse Er with
respect to the inner product (4.86) and the appropriate weights.

Evaluate 〈Tn , Tn〉, 〈Un , Un〉, 〈Vn , Vn〉 and 〈Wn , Wn〉 for this inner
product.

21. Prove that if Ar denotes the linear space of functions that are analytic
throughout the domain {z :

∣∣z +
√
z2 − 1

∣∣ ≤ r} (r > 1), then ‖·‖2,
as defined by (4.84), has all of the properties of a norm required by
Definition 3.1.
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Chapter 5

Chebyshev Series

5.1 Introduction — Chebyshev series and other expansions

Many ways of expanding functions in infinite series have been studied. In-
deed, the familiar Taylor series, Laurent series and Fourier series can all be
regarded as expansions in functions orthogonal on appropriately chosen do-
mains. Also, in the context of least-squares approximation, we introduced in
Section 4.3.1 polynomial expansions whose partial sums coincide with best L2

approximations.

In the present chapter we link a number of these topics together in the
context of expansions in Chebyshev polynomials (mainly of the first kind).
Indeed a Chebyshev series is an important example of an orthogonal polyno-
mial expansion, and may be transformed into a Fourier series or a Laurent
series, according to whether the independent variable is real or complex. Such
links are invaluable, not only in unifying mathematics but also in providing us
with a variety of sources from which to obtain properties of Chebyshev series.

5.2 Some explicit Chebyshev series expansions

Defining an inner product 〈f , g〉, as in Section 4.2, as

〈f , g〉 =
∫ 1

−1

w(x)f(x)g(x) dx, (5.1)

and restricting attention to the range [−1, 1], the Chebyshev polynomials
of first, second, third and fourth kinds are orthogonal with respect to the
respective weight functions

w(x) =
1√
1− x2

,
√
1− x2,

√
1 + x
1− x and

√
1− x
1 + x

. (5.2)

As we indicated in Section 4.3.1, the four kinds of Chebyshev series expansion
of f(x) have the form

f(x) ∼
∞∑
i=0

ciφi(x) (5.3)

where
ci = 〈f , φi〉/〈φi , φi〉 (5.4)

and
φi(x) = Ti(x), Ui(x), Vi(x) or Wi(x) (5.5)
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corresponding to the four choices of weight function (5.2). Values for 〈φi , φi〉
were given in (4.11), (4.12), (4.13) and (4.14).

In the specific case of polynomials of the first kind, the expansion is

f(x) ∼
∞∑′

i=0

ciTi(x) = 1
2c0T0(x) + c1T1(x) + c2T2(x) + · · · (5.6)

where

ci =
2
π

∫ 1

−1

(1− x2)−
1
2 f(x)Ti(x) dx, (5.7)

the dash, as usual, indicating that the first term in the series is halved. (Note
the convenience in halving the first term, which enables us to use the same
constant 2/π in (5.7) for every i including i = 0.)

There are several functions for which the coefficients ci in (5.6) may be
determined explicitly, although this is not possible in general.

Example 5.1: Expansion of f(x) =
√
1− x2.

Here

π

2
ci =

∫ 1

−1

Ti(x) dx =

∫ π

0

cos iθ sin θ dθ

= 1
2

∫ π

0

[sin(i+ 1)θ − sin(i− 1)θ] dθ

= 1
2

[
cos(i− 1)θ

i − 1
− cos(i+ 1)θ

i + 1

]π

0

(i ≥ 1)

= 1
2

(
(−1)i−1 − 1

i − 1
− (−1)i+1 − 1

i + 1

)

and thus

c2k = − 4

π(4k2 − 1)
, c2k−1 = 0 (k = 1, 2, . . .).

Also

c0 = 4/π.

Hence,

√
1− x2 ∼ − 4

π

∞∑′

k=0

T2k(x)

4k2 − 1

=
4

π

(
1
2
T0(x)− 1

3
T2(x)− 1

15
T4(x)− 1

35
T6(x)− · · ·) (5.8)
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Example 5.2: Expansion of f(x) = arccos x.

This time,

π

2
ci =

∫ 1

−1

(1− x2)−
1
2 arccos x Ti(x) dx

=

∫ π

0

θ cos iθ dθ

=

[
θ sin iθ

i

]π

0

−
∫ π

0

sin iθ

i
dθ (i ≥ 1)

=

[
θ sin iθ

i
+

cos iθ

i2

]π

0

=
(−1)i − 1

i2
,

so that

c2k = 0, c2k−1 = − 2

(2k − 1)2
(k = 1, 2, . . .).

Also

c0 = π.

Hence,

arccos x ∼ π

2
T0(x)− 4

π

∞∑
k=1

T2k−1(x)

(2k − 1)2

=
π

2
T0(x)− 4

π

(
T1(x) +

1
9
T3(x) +

1
25

T5(x) + · · ·) (5.9)

Example 5.3: Expansion of f(x) = arcsin x.

Here

π

2
ci =

∫ 1

−1

(1− x2)−
1
2 arcsin x Ti(x) dx

=

∫ π

0

(π
2
− θ
)
cos iθ dθ

=

∫ π/2

−π/2

φ cos i
(π
2
− φ
)
dφ.
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Now

π

2
c2k =

∫ π/2

−π/2

φ cos k(π − 2φ) dφ

= (−1)k
∫ π/2

−π/2

φ cos 2kφ dφ

= 0

(since the integrand is odd), while

π

2
c2k−1 =

∫ π/2

−π/2

φ [cos(k − 1
2
)π cos(2k − 1)φ+ sin(k − 1

2
)π sin(2k − 1)φ] dφ

= 2(−1)k−1

∫ π/2

0

φ sin(2k − 1)φdφ

= 2(−1)k−1

[
−φ cos(2k + 1)φ

2k − 1
+

sin(2k − 1)φ

(2k − 1)2

]π/2

0

=
2

(2k − 1)2
.

Hence,

arcsin x ∼ 4

π

∞∑
k=1

T2k−1(x)

(2k − 1)2
. (5.10)

Note that the expansions (5.9) and (5.10) are consistent with the relation-
ship

arccosx =
π

2
− arcsinx.

This is reassuring! It is also clear that all three expansions (5.8)–(5.10) are
uniformly convergent on [−1, 1], since |Ti(x)| ≤ 1 and the expansions are
bounded at worst by series which behave like the convergent series

∑∞
1 1/k2.

For example, the series (5.10) for arcsinx is bounded above and below by its
values at ±1, namely

± 4
π

∞∑
k=1

1
(2k − 1)2 .

Since the series is uniformly convergent, the latter values must be ±π/2.
The convergence of these examples must not, however, lead the reader to

expect every Chebyshev expansion to be uniformly convergent; conditions for
convergence are discussed later in this chapter.

To supplement the above examples, we list below a selection of other
explicitly known Chebyshev expansions, with textbook references. Some of
these examples will be set as exercises at the end of this chapter.
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• From Rivlin (1974)

sgnx ∼ 4
π

∞∑
k=1

(−1)k−1 T2k−1(x)
2k − 1 , (5.11)

|x| ∼ 2
π
T0(x) +

4
π

∞∑
k=1

(−1)k−1 T2k(x)
4k2 − 1 , (5.12)

1
a2 − x2

∼ 2
a
√
a2 − 1

∞∑′

k=0

(a−
√
a2 − 1)2kT2k(x) (a2 > 1), (5.13)

1
x− a ∼ − 2√

a2 − 1

∞∑′

i=0

(a−
√
a2 − 1)iTi(x) (a > 1). (5.14)

• From Snyder (1966)

arctan t ∼ π

8
+ 2

∞∑
k=0

(−1)k v
2k+1

2k + 1
T2k+1(x) (t in [0, 1]) (5.15)

where x =
(
√
2 + 1)t− 1

(
√
2− 1)t+ 1 , v = tan

π

16
, (5.16)

sin zx ∼ 2
∞∑
k=0

(−1)kJ2k+1(z)T2k+1(x) (5.17)

where Jk(z) is the Bessel function of the first kind,

ezx ∼ 2
∞∑′

k=0

Ik(z)Tk(x) (5.18)

sinh zx ∼ 2
∞∑
k=0

I2k+1(z)T2k+1(x), (5.19)

cosh zx ∼ 2
∞∑′

k=1

I2k(z)T2k(x), (5.20)

where Ik(z) is the modified Bessel function of the first kind,

1
1 + x

∼
√
2

∞∑′

i=0

(−1)i(3− 2
√
2)iT ∗

i (x) (x in [0, 1]), (5.21)

ln(1 + x) ∼ ln

(
3 + 2

√
2

4

)
T ∗

0 (x) + 2
∞∑
i=1

(−1)i+1 (3− 2
√
2)i

i
T ∗
i (x)

(x in [0, 1]), (5.22)
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δ(x) ∼ 2
π

∞∑′

i=0

(−1)iT2i(x) (5.23)

where δ(x) is the ‘Dirac delta function’ with properties:

δ(x) = 0 for x �= 0,∫ ε

−ε
δ(x) dx = 1 for ε > 0,

∫ 1

−1

δ(x)f(x) dx = f(0).

(The expansion (5.23) obviously cannot converge in any conventional
sense.)

• From Fox & Parker (1968)

arctanx
x

∼
∑′

a2kT2k(x) (5.24)

where a2k = (−1)k
∞∑
s=k

4
(
√
2− 1)2s+1

2s+ 1
.

5.2.1 Generating functions

At least two well-known Chebyshev series expansions of functions involve a
second variable (as did (5.17)–(5.20)), but in such a simple form (e.g., as
a power of u) that they can be used (by equating coefficients) to generate
formulae for the Chebyshev polynomials themselves. For this reason, such
functions and their series are called generating functions for the Chebyshev
polynomials.

• Our first generating function is given, by Snyder (1966) for example, in
the form

F (u, z) = ezu cos(u
√
1− z2) =

∞∑
n=0

un

n!
Tn(z) (5.25)

which follows immediately from the identity

Re[eu(cos θ+i sin θ)] =
∞∑
n=0

un

n!
cosnθ. (5.26)

Although easily derived, (5.25) is not ideal for use as a generating func-
tion. The left-hand side expands into the product of two infinite series:

∞∑
n=0

un

n!
Tn(z) = ezu cos(u

√
1− z2) =

∞∑
i=0

zi

i!
ui

∞∑
j=0

(z2 − 1)j
(2j)!

u2j .
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By equating coefficients of un, multiplying by n! and simplifying, it
is not difficult to derive the formula, previously quoted as (2.15) in
Section 2.3.2,

Tn(z) =
�n/2�∑
k=0


(−1)k �n/2�∑

j=k

(
n

2j

)(
j

k

)
 zn−2k, (5.27)

where �n/2� denotes the integer part of n/2. However, although it is
a compact expression, (5.27) is expensive to compute because of the
double summation.

• A second and much more widely favoured generating function, given in
Fox & Parker (1968), Rivlin (1974) and Snyder (1966), is

F (u, x) =
1− ux

1 + u2 − 2ux =
∞∑
n=0

Tn(x)un (|u| < 1) (5.28)

We follow the lead of Rivlin (1974) in favouring this. To obtain the
coefficients in Tn(x), we first note that

F (u, 1
2x) = (1− 1

2ux)
1

1− u(x− u) , (5.29)

and for any fixed x in [−1, 1] the function u(x − u) attains its greatest
magnitude on |u| ≤ 1

2 either at u =
1
2x (local maximum) or at one or

other of u = ± 1
2 . It follows that

− 3
4 ≤ u(x− u) ≤ 1

4 (|u| ≤ 1
2 , |x| ≤ 1)

and hence that the second factor in (5.29) can be expanded in a conver-
gent series to give

1
1− u(x− u) =

∞∑
n=0

un(x− u)n =
∞∑
n=0

cnu
n, say, (5.30)

for |u| ≤ 1
2 . On equating coefficients of u

n in (5.30),

cn = xn −
(
n− 1
1

)
xn−2 +

(
n− 2
2

)
xn−4 − · · ·+ (−1)k

(
n− k
k

)
xn−2k +

+ · · ·+ (−1)p
(
n− p
p

)
xn−2p (5.31)

where p = �n/2�. It is now straightforward to equate coefficients of un
in (5.28), replacing x by x/2 and using (5.29)–(5.31), to obtain

Tn(x/2) =
�n/2�∑
k=0

(−1)k
[(
n− k
k

)
− 1

2

(
n− k − 1

k

)]
xn−2k (5.32)
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where we interpret
(
n−k−1
k

)
to be zero in case n − k − 1 < k (which

arises when n is even and k = p = n/2). Since the polynomial equality
(5.32) holds identically for |x| ≤ 1, it must hold for all x, so that we can
in particular replace x by 2x to give

Tn(x) =
�n/2�∑
k=0

(−1)k2n−2k−1

[
2
(
n− k
k

)
−

(
n− k − 1

k

)]
xn−2k. (5.33)

Simplifying this, we obtain finally

Tn(x) =
�n/2�∑
k=0

(−1)k2n−2k−1 n

(n− k)
(
n− k
k

)
xn−2k (n > 0). (5.34)

Formula (5.34) is essentially the same as formulae (2.16) and (2.18) of
Section 2.3.2.

5.2.2 Approximate series expansions

The above special examples of explicit Chebyshev series generally correspond
to cases where the integrals (5.4) can be evaluated mathematically. However,
it is always possible to attempt to evaluate (5.4) numerically.

In the case of polynomials of the first kind, putting x = cos θ in (5.7) gives

ci =
2
π

∫ π

0

f(cos θ) cos iθ dθ =
1
π

∫ 2π

0

f(cos θ) cos iθ dθ, (5.35)

since the integrand is even and of period 2π in θ. The latter integral may be
evaluated numerically by the trapezium rule based on any set of 2n+1 points
spaced at equal intervals of h = π/n, such as

θ = θk =
(k − 1

2 )π
n

, k = 1, 2, . . . , 2n+ 1.

(With this choice, note that {cos θk} are then the zeros of Tn(x).) Thus

ci =
1
π

∫ 2π

0

gi(θ) dθ =
1
π

∫ θ2n+1

θ1

gi(θ) dθ 	 h

π

2n+1∑′′

k=1

gi(θk), (5.36)

where gi(θ) := f(cos θ) cos iθ and where the double dash as usual indicates
that the first and last terms of the summation are to be halved. But gi(θ1) =
gi(θ2n+1), since gi is periodic, and gi(2π − θ) = gi(θ) so that gi(θ2n+1−k) =
gi(θk). Hence (5.36) simplifies to

ci 	 2
n

n∑
k=1

gi(θk) =
2
n

n∑
k=1

f(cos θk) cos iθk, (i = 0, . . . , n), (5.37)
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or, equivalently,

ci 	 2
n

n∑
k=1

f(xk)Ti(xk) (5.38)

where {xk} = {cos θk} are the zeros of Tn(x).
Formula (5.37) is what is commonly known as a ‘discrete Fourier trans-

form’, and is a numerical approximation to the (continuous) Fourier transform
(5.35). In fact, if the infinite expansion (5.6) is truncated after its first n terms
(to give a polynomial of degree (n − 1)), then the approximate series coeffi-
cients (5.37) yield the polynomial of degree (k− 1) which exactly interpolates
f(x) in the zeros {xk} of Tn(x). So this approximate series method, based
on efficient numerical quadrature, is really not a series method but an inter-
polation method. This assertion is proved and the ‘Chebyshev interpolation
polynomial’ is discussed in depth in Chapter 6. The trapezium rule is a very
accurate quadrature method for truly periodic trigonometric functions of θ,
such as gi(θ). Indeed, it is analogous to Gauss–Chebyshev quadrature for
the original (x-variable) integral (5.7), which is known to be a very accurate
numerical method (see Chapter 8). (On the other hand, the trapezium rule
is a relatively crude method for the integration of non-trigonometric, non-
periodic functions.) Hence, we can justifiably expect the Chebyshev interpo-
lation polynomial to be a very close approximation to the partial sum (to the
same degree) of the expansion (5.6). Indeed in practice these two approxima-
tions are virtually identical and to all intents and purposes interchangeable,
as long as f is sufficiently smooth.

In Chapter 6, we shall state results that explicitly link the errors of a
truncated Chebyshev series expansion and those of a Chebyshev interpolation
polynomial. We shall also compare each of these in turn with the minimax
polynomial approximation of the same degree. The interpolation polynomial
will be discussed in this way in Chapter 6, but we give early attention to the
truncated series expansion in Section 5.5 below.

5.3 Fourier–Chebyshev series and Fourier theory

Before we go any further, it is vital to link Chebyshev series to Fourier series,
since this enables us to exploit a rich field as well as to simplify much of the
discussion by putting it into the context of trigonometric functions. We first
treat series of Chebyshev polynomials of the first kind, for which the theory
is most powerful.

Suppose that f(x) is square integrable (L2) on [−1, 1] with respect to the
weight function (1− x2)−

1
2 , so that

∫ 1

−1

(1 − x2)−
1
2 f(x)2 dx (5.39)
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is well defined (and finite). Now, with the usual change of variable, the
function f(x) defines a new function g(θ), where

g(θ) = f(cos θ) (0 ≤ θ ≤ π). (5.40)

We may easily extend this definition to all real θ by requiring that g(θ+2π) =
g(θ) and g(−θ) = g(θ), when g becomes an even periodic function of period
2π. The integral (5.39) transforms into∫ π

0

g(θ)2 dθ,

so that g is L2-integrable with unit weight. Thus, g is ideally suited to ex-
pansion in a Fourier series.

The Fourier series of a general 2π-periodic function g may be written as

g(θ) ∼ 1
2a0 +

∞∑
k=1

(ak cos kθ + bk sin kθ) (5.41)

where

ak =
1
π

∫ π

−π
g(θ) cos kθ dθ, bk =

1
π

∫ π

−π
g(θ) sin kθ dθ, (k = 0, 1, 2, . . .).

(5.42)
In the present case, since g is even in θ, all the bk coefficients vanish, and the
series simplifies to the Fourier cosine series

g(θ) ∼
∞∑′

k=0

ak cos kθ (5.43)

where
ak =

2
π

∫ π

0

g(θ) cos kθ dθ. (5.44)

If we now transform back to the x variable, we immediately deduce that

f(x) ∼
∞∑′

k=0

akTk(x) (5.45)

where

ak =
2
π

∫ 1

−1

(1− x2)−
1
2 f(x)Tk(x) dx. (5.46)

Thus, apart from the change of variables, the Chebyshev series expansion
(5.45) is identical to the Fourier cosine series (5.43) and, indeed, the coef-
ficients ak occurring in the two expansions, derived from (5.44) and (5.46),
have identical values.
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5.3.1 L2-convergence

A fundamental property of the Fourier series of any L2-integrable function
g(θ) is that it converges in the L2 norm. Writing the partial sum of order n
of the Fourier expansion (5.41) as

(SFn g)(θ) =
1
2a0 +

n∑
k=1

(ak cos kθ + bk sin kθ), (5.47)

this means that

∥∥g − SFn g∥∥2

2
=

∫ π

−π
[g(θ)− (SFn g)(θ)]2 dθ → 0 as n→ ∞. (5.48)

Lemma 5.1 The partial sum (5.47) simplifies to

(SFn g)(θ) =
1
2π

∫ π

−π
g(t+ θ)

sin(n+ 1
2 )t

sin 1
2 t

dt =
1
2π

∫ π

−π
g(t+ θ)Wn(cos t) dt,

(5.49)
where Wn(x) is the Chebyshev polynomial of the fourth kind.

This is the classical Dirichlet formula for the partial Fourier sum.

Proof: It is easily shown that

n∑′

k=0

cos kt = 1
2

sin(n+ 1
2
)t

sin 1
2
t

. (5.50)

Substituting the expressions (5.42) for ak and bk in (5.47), we get

(SF
n g)(θ) =

1

2π

∫ π

−π

g(t) dt+
1

π

n∑
k=1

∫ π

−π

g(t)(cos kt cos kθ + sin kt sin kθ) dt

=
1

2π

∫ π

−π

g(t) dt+
1

π

n∑
k=1

∫ π

−π

g(t) cos k(t− θ) dt

=
1

π

∫ π

−π

g(t)

n∑′

k=0

cos k(t − θ) dt

=
1

π

∫ π

−π

g(t+ θ)

n∑′

k=0

cos kt dt

=
1

2π

∫ π

−π

g(t+ θ)
sin(n+ 1

2
)t

sin 1
2
t

dt

=
1

2π

∫ π

−π

g(t+ θ)Wn(cos t) dt

as required. ••
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In the particular case of the function (5.40), which is even, the partial sum
(5.47) simplifies to the partial sum of the Fourier cosine expansion

(SFn g)(θ) = (S
FC
n g)(θ) =

n∑′

k=0

ak cos kθ. (5.51)

This is identical, as we have said, to the partial sum of the Chebyshev series,
which we write as

(STn f)(x) =
n∑′

k=0

akTk(x). (5.52)

From (5.48) we immediately deduce, by changing variables, that∫ 1

−1

(1 − x2)−
1
2 [f(x)− (STn f)(x)]2 dx→ 0 as n→ ∞, (5.53)

provided that f(x) is L2 integrable on [−1, 1] with weight (1 − x2)−
1
2 . Thus

the Chebyshev series expansion is L2-convergent with respect to its weight
function (1− x2)−

1
2 .

We know that the Chebyshev polynomials are mutually orthogonal on
[−1, 1] with respect to the weight (1 − x2)−

1
2 ; this was an immediate conse-

quence (see Section 4.2.2) of the orthogonality on [0, π] of the cosine functions∫ π

0

cos iθ cos jθ dθ = 0 (i �= j).

Using the inner product

〈f1 , f2〉 :=
∫ 1

−1

(1− x2)−
1
2 f1(x)f2(x) dx, (5.54)

so that
ak =

2
π
〈Tk , f〉 , (5.55)

we find that〈
f − STn f , f − STn f

〉
= 〈f , f〉 − 2 〈

STn f , f
〉
+

〈
STn f , S

T
n f

〉
= ‖f‖2 − 2

n∑′

k=0

ak 〈Tk , f〉+ 1
4a

2
0 〈T0 , T0〉+

+
n∑
k=1

a2k 〈Tk , Tk〉

(from (5.52))

= ‖f‖2 − 2
n∑′

k=0

ak
π

2
ak +

n∑′

k=0

a2k
π

2
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(from (5.55) and (4.11))

= ‖f‖2 − π

2

n∑′

k=0

a2k.

From (5.53), this expression must tend to zero as n→ ∞. Therefore ∑′∞
k=0 a

2
k

is convergent, and we obtain Parseval’s formula:

∞∑′

k=0

a2k =
2
π
‖f‖2 =

2
π

∫ 1

−1

(1− x2)−
1
2 f(x)2 dx. (5.56)

The following theorem summarises the main points above.

Theorem 5.2 If f(x) is L2-integrable with respect to the inner product (5.54),
then its Chebyshev series expansion (5.45) converges in L2, according to
(5.53). Moreover the infinite series

∑′∞
k=0 a

2
k is convergent to 2π−1 ‖f‖2

(Parseval’s formula).

It is worthwhile at this juncture to insert a theorem on Fourier series,
which, although weaker than the L2-convergence result, is surprisingly useful
in its own right. We precede it with a famous inequality.

Lemma 5.3 (Hölder’s inequality) If p ≥ 1, q ≥ 1 and 1/p+1/q = 1, and
if f is Lp-integrable and g is Lq-integrable over the same interval with the
same weight, then

〈f , g〉 ≤ ‖f‖p ‖g‖q .

Proof: See, for instance, Hardy et al. (1952). ••
From this lemma we may deduce the following.

Lemma 5.4 If 1 ≤ p1 ≤ p2 and f is Lp2-integrable over an interval, with
respect to a (positive) weight w(x) such that

∫
w(x) dx is finite, then f is

Lp1 -integrable with respect to the same weight, and

‖f‖p1 ≤ C ‖f‖p2
where C is a constant.

Proof: In Lemma 5.3, replace f by |f |p1 , g by 1 and p by p2/p1, so that q is
replaced by p2/(p2 − p1). This gives

〈|f |p1 , 1〉 ≤ ‖|f |p1‖p2/p1
‖1‖p2/(p2−p1)
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or, written out in full,∫
w(x) |f(x)|p1 dx ≤

(∫
w(x) |f(x)|p2 dx

)p1/p2
(∫

w(x) dx

)1−p1/p2

and therefore, raising this to the power 1/p1,

‖f‖p1
≤ C ‖f‖p2

where C =
(∫

w(x) dx
)p2−p1 . ••

We can now state the theorem.

Theorem 5.5 If g(θ) is L2-integrable on [−π, π], then its Fourier series ex-
pansion converges in the L1 norm. That is:∫ π

−π

∣∣g(θ)− (SFn g)(θ)∣∣ dθ → 0 as n→ ∞.

Proof: By Lemma 5.4, ∥∥∥g − SF
n g
∥∥∥

1
≤ C

∥∥∥g − SF
n g
∥∥∥

2

with C a constant. Since a Fourier series converges in L2, the right-hand side tends

to zero; hence, so does the left-hand side, and the result is proved. ••

5.3.2 Pointwise and uniform convergence

So far, although we have established mean convergence for the Chebyshev
series (4.24) in the sense of (5.53), this does not guarantee convergence at
any particular point x, let alone ensuring uniform (i.e., L∞) convergence.
However, there are a number of established Fourier series results that we can
use to ensure such convergence, either by making more severe assumptions
about the function f(x) or by modifying the way that we sum the Fourier
series.

At the lowest level, it is well known that if g(θ) is continuous apart from
a finite number of step discontinuities, then its Fourier series converges to g
wherever g is continuous, and to the average of the left and right limiting
values at each discontinuity. Translating this to f(x), we see that if f(x) is
continuous in the interval [−1, 1] apart from a finite number of step discon-
tinuities in the interior, then its Chebyshev series expansion converges to f
wherever f is continuous, and to the average of the left and right limiting
values at each discontinuity1. Assuming continuity everywhere, we obtain the
following result.

1If g or f has finite step discontinuities, then a further problem is presented by the
so-called Gibbs phenomenon: as the number of terms in the partial sums of the Fourier or
Chebyshev series increases, one can find points approaching each discontinuity from either
side where the error approaches a fixed non-zero value of around 9% of the height of the
step, appearing to magnify the discontinuity.
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Theorem 5.6 If f(x) is in C[−1, 1], then its Chebyshev series expansion is
pointwise convergent.

To obtain uniform convergence of the Fourier series, a little more than
continuity (and periodicity) is required of g(θ). A sufficient condition is that
g should have bounded variation; in other words, that the absolute sum of
all local variations (or oscillations) should not be unbounded. An alternative
sufficient condition, which is neater but perhaps more complicated, is the
Dini–Lipschitz condition:

ω(δ) log δ → 0 as δ → 0, (5.57)

where ω(δ) is a modulus of continuity for g(θ), such that

|g(θ + δ)− g(θ)| ≤ ω(δ) (5.58)

for all θ. The function ω(δ) defines a level of continuity for g; for example,
ω(δ) = O(δ) holds when g is differentiable, ω(δ) → 0 implies only that g
is continuous, while the Dini–Lipschitz condition lies somewhere in between.
In fact, (5.57) assumes only ‘infinitesimally more than continuity’, compared
with any assumption of differentiability. Translating the Fourier results to the
x variable, we obtain the following.

Theorem 5.7 If f(x) is continuous and either of bounded variation or satis-
fying a Dini–Lipschitz condition on [−1, 1], then its Chebyshev series expan-
sion is uniformly convergent.

Proof: We need only show that bounded variation or the Dini–Lipschitz condition
for f(x) implies the same condition for g(θ) = f(cos θ). The bounded variation is
almost obvious; Dini–Lipschitz follows from

|g(θ + δ)− g(θ)| = |f(cos(θ + δ))− f(cos θ)|
≤ ω(cos(θ + δ)− cos θ)

≤ ω(δ),

since it is easily shown that |cos(θ + δ)− cos θ| ≤ |δ| and that ω(δ) is an increasing

function of |δ|. ••
If a function is no more than barely continuous, then (Fejér 1904) we can

derive uniformly convergent approximations from its Fourier expansion by
averaging out the partial sums, and thus forming ‘Cesàro sums’ of the Fourier
series

(σFn g)(θ) =
1
n
(SF0 g + S

F
1 g + · · ·+ SFn−1g)(θ). (5.59)

Then (σFn g)(θ) converges uniformly to g(θ) for every continuous function g.
Translating this result into the Chebyshev context, we obtain not only uni-
formly convergent Chebyshev sums but also a famous corollary.
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Theorem 5.8 If f(x) is continuous on [−1, 1], then the Cesàro sums of its
Chebyshev series expansion are uniformly convergent.

Corollary 5.8A (Weierstrass’s first theorem) A continuous function may
be arbitrarily well approximated on a finite interval in the minimax (uniform)
sense by some polynomial of sufficiently high degree.

Proof: This follows immediately from Theorem 5.8, since (σT
n f)(x) is a polynomial

of degree n which converges uniformly to f(x) as n → ∞. ••

5.3.3 Bivariate and multivariate Chebyshev series expansions

Fourier and Chebyshev series are readily extended to two or more variables
by tensor product techniques. Hobson (1926, pages 702–710) gives an early
and unusually detailed discussion of the two-dimensional Fourier case and its
convergence properties, and Mason (1967) was able to deduce (by the usual
x = cos θ transformation) a convergence result for double Chebyshev series of
the first kind. This result is based on a two-dimensional version of ‘bounded
variation’ defined as follows.

Definition 5.1 Let f(x, y) be defined on D := {−1 ≤ x ≤ 1; −1 ≤ y ≤ 1};
let {xr} and {yr} denote monotone non-decreasing sequences of n+ 1 values
with x0 = y0 = −1 and xn = yn = +1; let

Σ1 :=
n∑
r=1

|f(xr , yr)− f(xr−1 − yr−1)| ,

Σ2 :=
n∑
r=1

|f(xr , yn−r+1)− f(xr−1 − yn−r)| .

Then f(x, y) is of bounded variation on D if Σ1 and Σ2 are bounded for all
possible sequences {xr} and {yr} and for every n > 0.

Theorem 5.9 If f(x, y) is continuous and of bounded variation in

S : {−1 ≤ x ≤ 1; −1 ≤ y ≤ 1},

and if one of its partial derivatives is bounded in S, then f has a double
Chebyshev expansion, uniformly convergent on S, of the form

f(x, y) =
∞∑′

i=0

∞∑′

j=0

aijTi(x)Tj(y).
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However, Theorem 5.9, based on bounded variation, is not a natural ex-
tension of Theorem 5.7, and it happens that the use of the Dini–Lipschitz
condition is much easier to generalise.

There are detailed discussions by Mason (1980, 1982) of multivariate Cheb-
yshev series, interpolation, expansion and near-best approximation formulae,
with Lebesgue constants and convergence properties. The results are generally
exactly what one would expect; for example, multivariate Lebesgue constants
are products of univariate Lebesgue constants. Convergence, however, is a
little different, as the following result illustrates.

Theorem 5.10 (Mason 1978) If f(x1, . . . , xN ) satisfies a Lipschitz condition
of the form

N∑
j=1

ωj(δj)
N∏
j=1

log δj → 0 as δj → 0,

where ωj(δj) is the modulus of continuity of f in the variable xj, then the
multivariate Fourier series of f , the multivariate Chebyshev series of f and
the multivariate polynomial interpolating f at a tensor product of Chebyshev
zeros all converge uniformly to f as nj → ∞. (In the case of the Fourier
series, f must also be periodic for convergence on the whole hypercube.)

Proof: The proof employs two results: that the uniform error is bounded by

C
∑

j

ωj

(
1

nj + 1

)

(Handscomb 1966, Timan 1963, Section 5.3) and that the Lebesgue constant is of

order
∏

log(nj + 1). ••

5.4 Projections and near-best approximations

In the previous section, we denoted a Chebyshev series partial sum by STn f ,
the symbol STn being implicitly used to denote an operator applied to f . In
fact, the operator in question belongs to an important family of operators,
which we term projections, which has powerful properties. In particular, we
are able to estimate how far any projection of f is from a best approximation
to f in any given norm.

Definition 5.2 A projection P , mapping elements of a vector space F onto
elements of a subspace A of F , has the following properties:

1. P is a bounded operator;

i.e., there is a finite constant C such that ‖Pf‖ ≤ C ‖f‖ for all f in F ;
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2. P is a linear operator;

i.e., P (λ1f1+λ2f2) = λ1Pf1+λ2Pf2, where λ1, λ2 are scalars and f1,
f2 are in F ;

3. P is idempotent;

i.e., P (Pf) = Pf for all f in F .
Another way of expressing this, writing P 2f for P (Pf), is to say that

P 2 = P. (5.60)

The last property is a key one, ensuring that elements of the subspace A
are invariant under the operator P . This is readily deduced by noting that,
for any g in A, there are elements f in F such that g = Pf , and hence

Pg = P (Pf) = Pf = g.

The mapping STn of C[−1, 1] onto the space Πn of polynomials of degree
n is clearly a projection. (We leave the verification of this as an exercise
to the reader.) In particular, it is clear that STn is idempotent, since the
Chebyshev partial sum of degree n of a polynomial of degree n is clearly that
same polynomial.

On the other hand, not all approximation operators are projections. For
example, the Cesàro sum operator defined in (5.47) is not idempotent, since
in averaging the partial sums it alters the (trigonometric) polynomial. Also
the minimax approximation operator Bn from C[−1, 1] onto a subspace An is
nonlinear, since the minimax approximation to λ1f1 + λ2f2 is not in general
λ1Bnf1 + λ2Bnf2. However, if we change to the L2 norm, then the best
approximation operator does become a projection, since it is identical to the
partial sum of an orthogonal expansion.

Since we shall go into detail about the subject of near-best approximations,
projections and minimal projections in a later chapter (Chapter 7), we restrict
discussion here to general principles and to Chebyshev series (and related
Fourier series) partial sum projections. In particular, we concentrate on L∞
approximation by Chebyshev series of the first kind.

How then do we link projections to best approximations? The key to this
is the fact that any projection (in the same vector space setting) takes a best
approximation into itself. Consider in particular the setting

F = C[−1, 1], A = Πn = {polynomials of degree ≤ n} ⊂ F .
Now suppose that Pn is any projection from F onto A and that Bn is the
best approximation operator in a given norm ‖·‖, and let I denote the identity
operator. Then the best polynomial approximation of degree n to any f in F
is Bnf and, since this is invariant under Pn,

(I − Pn)(Bnf) = Bnf − Pn(Bnf) = Bnf −Bnf = 0. (5.61)
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The error in the approximation Pnf , which we wish to compare with the error
in Bnf , is therefore given by

f−Pnf = (I−Pn)f = (I−Pn)f−(I−Pn)(Bnf) = (I−Pn)(f−Bnf), (5.62)
using the fact that I, Pn and hence (I − Pn) are linear. (Indeed, (I − Pn) is
another projection, since (I −Pn)2 = I − 2Pn+P 2

n = I −Pn, so that (I −Pn)
is also idempotent.)

In order to go further, we need to define the norm of a linear operator,
which we do in precisely the same way as the norm of a matrix. We also need
to be able to split up the norm of an operator applied to a function.

Definition 5.3 (Operator norm) If T is a linear operator from a normed
linear space into itself, or into another normed linear space, then the operator
norm ‖T ‖ of T is defined to be the upper bound (if it exists)

‖T ‖ = sup
f �≡0

‖Tf‖
‖f‖ (5.63)

or, equivalently,
‖T ‖ = sup

‖f‖=1

‖Tf‖ . (5.64)

Lemma 5.11
‖Tf‖ ≤ ‖T ‖ ‖f‖ . (5.65)

Proof: Clearly ‖T‖ ≥ ‖Tf‖ / ‖f‖ for any particular f , since ‖T‖ is the supremum

over all f by the definition (5.63). ••
We may now deduce the required connection between Pnf and Bnf .

Theorem 5.12 For Pn and Bn defined as above, operating from F onto A,
‖f − Pnf‖ ≤ ‖I − Pn‖ ‖f −Bnf‖ , (5.66a)

‖f − Pnf‖ ≤ (1 + ‖Pn‖) ‖f −Bnf‖ . (5.66b)

Proof: Inequality (5.66a) follows immediately from (5.62) and (5.65).

Inequality (5.66b) then follows immediately from the deduction that for linear
operators P and Q from F onto A

‖P +Q‖ = sup
‖f‖=1

‖(P +Q)f‖

= sup
‖f‖=1

‖Pf +Qf‖

≤ sup
‖f‖=1

(‖Pf‖+ ‖Qf‖)

≤ sup
‖f‖=1

‖Pf‖+ sup
‖f‖=1

‖Qf‖

= ‖P‖+ ‖Q‖ .

© 2003 by CRC Press LLC



Hence
‖I − Pn‖ ≤ ‖I‖+ ‖Pn‖ = 1 + ‖Pn‖ . ••

Both formulae (5.66a) and (5.66b) in Theorem 5.12 give bounds on the
error ‖f − Pnf‖ in terms of absolute magnification factors ‖I − Pn‖ or (1 +
‖Pn‖) on the best error ‖f −Bnf‖. Clearly minimisation of these factors is a
way of providing the best bound possible in this context. In particular Cheney
& Price (1970) give the following definitions.

Definition 5.4 (Minimal projection) A minimal projection is a projec-
tion Pn from F onto A for which ‖Pn‖ (and hence (1+ ‖Pn‖)) is as small as
possible.

Definition 5.5 (Cominimal projection) A cominimal projection is a pro-
jection Pn from F onto A for which ‖I − Pn‖ is as small as possible.

Sometimes we are able to establish that a given projection is minimal
(or cominimal) — examples of minimal projections include (in appropriate
settings) the partial sums of Fourier, Taylor and Laurent series. However,
even if a projection is not minimal, the estimates (5.66a) and (5.66b) are very
useful. In particular, from (5.66b), the value of ‖Pn‖ provides a bound on the
relative closeness of the error in the approximation Pnf to the error of the
best approximation. Mason (1970) quantified this idea in practical terms by
introducing a specific definition of a ‘near-best approximation’, reproduced
here from Definition 3.2 of Chapter 3.

Definition 5.6 (Near-best and near-minimax approximations) An ap-
proximation f∗N (x) in A is said to be near-best within a relative distance ρ
if

‖f − f∗N‖ ≤ (1 + ρ) ‖f − f∗B‖ ,
where ρ is a specified positive scalar and f∗B(x) is a best approximation. In
the case of the L∞ (minimax) norm, such an f∗ is said to be near-minimax
within a relative distance ρ.

Lemma 5.13 If Pn is a projection of F onto A ⊂ F , and f is an element of
F then, as an approximation to f , Pnf is near-best within a relative distance
‖Pn‖.

Proof: This follows immediately from (5.66b). ••
The machinery is now available for us to attempt to quantify the closeness

of a Fourier–Chebyshev series partial sum to a minimax approximation. The
aim is to bound or evaluate ‖Pn‖, and this is typically achieved by first finding
a formula for Pnf in terms of f .
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5.5 Near-minimax approximation by a Chebyshev series

Consider a function f(x) in F = C[−1, 1] (i.e., a function continuous for
−1 ≤ x ≤ 1) which has a Chebyshev partial sum of degree n of the form

(STn f)(x) =
n∑′

k=0

ckTk(x), ck =
2
π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx. (5.67)

If, as in Section 5.3, we define

g(θ) = f(cos θ)

then we obtain the equivalent Fourier cosine series partial sum

(SFCn g)(θ) =
n∑′

k=0

ck cos kθ, ck =
2
π

∫ π

0

g(θ) cos kθ dθ. (5.68)

The operator SFCn can be identified as the restriction of the Fourier projection
SFn to the space C0

2π,e of continuous functions that are both periodic of period
2π and even. Indeed, there is a one-to-one relation between f in C[−1, 1] and
g in C0

2π,e under the mapping x = cos θ, in which each term of the Chebyshev
series of f is related to the corresponding term of the Fourier cosine series of
g.

Now, from Lemma 5.1, we know that SFn may be expressed in the integral
form (5.49)

(SFn g)(θ) =
1
2π

∫ π

−π
g(t+ θ)

sin(n+ 1
2 )t

sin 1
2 t

dt. (5.69)

From this expression, bounding g by its largest absolute value, we get the
inequality ∣∣(SFn g)(θ)∣∣ ≤ λn ‖g‖∞ (5.70)

where

λn =
1
2π

∫ π

−π

∣∣∣∣sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt =
=
1
π

∫ π

0

∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt
[
=
1
π

∫ 1

−1

|Wn(x)|√
1− x2

dx
]
. (5.71)

Taking the supremum over θ of the left-hand side of (5.70),∥∥SFn g∥∥∞ ≤ λn ‖g‖∞ , (5.72)

whence from (5.63) it follows that∥∥SFn ∥∥
∞ ≤ λn (5.73)
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and, a fortiori, since

sup
g∈C0

2π,e

∥∥SFCn g
∥∥
∞

‖g‖∞
= sup
g∈C0

2π,e

∥∥SFn g∥∥∞
‖g‖∞

≤ sup
g∈C0

2π

∥∥SFn g∥∥∞
‖g‖∞

,

that ∥∥SFCn ∥∥
∞ ≤ ∥∥SFn ∥∥

∞ ≤ λn. (5.74)

As a consequence of the one-to-one relationship between every f(x) in
C[−1, 1] and a corresponding g(θ) in C0

2π,e, it also immediately follows that∥∥STn ∥∥
∞ =

∥∥SFCn ∥∥
∞ ≤ λn (on the space C[−1, 1]). (5.75)

From Theorem 5.12 we may therefore assert that (STn f)(x) is near-minimax
within a relative distance λn. So, how small or large is λn? Or, in other words,
have we obtained a result that is really useful? The answer is rather interest-
ing.

The constant λn is a famous one, the Lebesgue constant, and it is not
difficult to show that

λn >
4
π2
log n. (5.76)

So λn tends to infinity with n, which seems at first discouraging. However,
logn grows extremely slowly, and indeed λn does not exceed 4 for n ≤ 500.
Thus, although it is true to say that STn f becomes relatively further away
(without bound) from the best approximation Bnf as n increases, it is also
true to say that for all practical purposes STn f may be correctly described as
a near-minimax approximation. Some values of λn are given in Table 5.1.

Table 5.1: Values of the Lebesgue constant

n λn n λn n λn
1 1.436 10 2.223 100 3.139
2 1.642 20 2.494 200 3.419
3 1.778 30 2.656 300 3.583
4 1.880 40 2.770 400 3.699
5 1.961 50 2.860 500 3.789

More precise estimates than (5.76) have been derived by a succession of
authors; for instance, Cheney & Price (1970) give the asymptotic formula

λn =
4
π2
logn+ 1.2703 . . .+O(1/n). (5.77)
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5.5.1 Equality of the norm to λn

We have not yet fully completed the above analysis, since it turns out in fact
that we may replace ‘≤’ by ‘=’ in (5.73), (5.74) and (5.75). This does not
improve the practical observations above, but it does tell us that we cannot
find a better bound than that given by (5.71).

To establish equality, it suffices to show that one particular function g(θ)
exists in C0

2π,e, and one value of θ exists in [0, π], for which∣∣(SFn g)(θ)∣∣ > λn ‖g‖∞ − δ (5.78)

with δ arbitrarily small — for then we must have∥∥SFCn g
∥∥
∞ =

∥∥SFn g∥∥∞ ≥ λn ‖g‖∞ (5.79)

and hence, from (5.72),∥∥SFCn g
∥∥
∞ =

∥∥SFn g∥∥∞ = λn ‖g‖∞ (5.80)

and finally ∥∥STn ∥∥
∞ =

∥∥SFCn ∥∥
∞ =

∥∥SFn ∥∥
∞ = λn. (5.81)

Proof: First, define

gD(θ) := sgn

(
sin(n+ 1

2
)θ

sin 1
2
θ

)
. (5.82)

where

sgn(x) :=




+1, x > 0
0, x = 0

−1, x < 0.

Then
‖gD‖∞ = 1. (5.83)

Moreover gD is continuous apart from a finite number of step discontinuities, and
is an even periodic function of period 2π. It is now a technical matter, which we
leave as an exercise to the reader (Problem 6), to show that it is possible to find a
continuous function gC(θ), which also is even and periodic, such that

‖gC − gD‖1 :=

∫ π

−π

|gC(t)− gD(t)| dt < ε

and such that ‖gC‖∞ is within ε of unity, where ε is a specified small quantity.

Then, noting that n is fixed and taking θ as 0 in (5.69)

(SF
n gC)(0) =

1

2π

∫ π

−π

gC(t)
sin(n+ 1

2
)t

sin 1
2
t

dt

=
1

2π

∫ π

−π

(gC(t)− gD(t))
sin(n + 1

2
)t

sin 1
2
t

dt+
1

2π

∫ π

−π

gD(t)
sin(n+ 1

2
)t

sin 1
2
t

dt

=
1

2π

∫ π

−π

(gC(t)− gD(t))
sin(n + 1

2
)t

sin 1
2
t

dt+ λn, from (5.71),
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while∣∣∣∣ 12π
∫ π

−π

(gC(t)− gD(t))
sin(n+ 1

2
)t

sin 1
2
t

dt

∣∣∣∣ ≤ 1

2π

∥∥∥∥ sin(n+ 1
2
)t

sin 1
2
t

∥∥∥∥
∞

‖gC − gD‖1

=
1

2π
‖Wn‖∞ ‖gC − gD‖1

≤ 1

π
(2n+ 1)ε

since |Wn(x)| has a greatest value of 2n + 1 (attained at x = 1).

Thus ∣∣∣(SF
n gC)(0)

∣∣∣ ≥ λn − 1

π
(2n + 1)ε

and

λn ‖gC‖∞ ≤ λn(1 + ε).

For any small δ, we can then make ε so small that (5.78) is satisfied at θ = 0 by

g = gC . ••

5.6 Comparison of Chebyshev and other orthogonal polynomial
expansions

The partial sum (5.47) of a Fourier series represents a projection from the
space C0

2π onto the corresponding subspace of sums of sine and cosine func-
tions, that is both minimal and cominimal (in the minimax norm). This may
be shown (Cheney 1966, Chapter 6) by considering any other projection op-
erator P from C0

2π onto the space of linear combinations of sines and cosines
up to cosnθ and sinnθ, letting Tλ be the shift operator defined by

(Tλf)(θ) = f(θ + λ) for all θ

and showing that

1
2π

∫ π

−π
(T−λPTλf)(θ) dλ ≡ (SFn f)(θ). (5.84)

Since ‖Tλ‖∞ = ‖T−λ‖∞ = 1, we can then deduce that

‖P‖∞ ≥ ∥∥SFn ∥∥
∞ ,

so that SFn is minimal. It follows likewise, since (5.84) implies

1
2π

∫ π

−π
(T−λ(I − P )Tλf)(θ) dλ ≡ ((I − SFn )f)(θ), (5.85)

that SFn is cominimal.
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Thus we can say that the partial sums of the Fourier expansion of a con-
tinuous periodic function ‘converge faster’, in terms of their minimax error
bounds, than any other approximations obtained by projection onto subspaces
of trigonometric polynomials.

Remembering what we have successfully done on many previous occasions,
we might have supposed that, by means of the substitution x = cos θ, we could
have derived from the above a proof of an analogous conjecture that the par-
tial sums of a first-kind Chebyshev expansion of a continuous function on
[−1, 1] converge faster than any other polynomial approximations obtained
by projection; that is, than the partial sums of an expansion in polynomials
orthogonal with respect to any other weight. Unfortunately, this is not pos-
sible — to do so we should first have needed to show that SFn was minimal
and cominimal on the space C0

2π,e of even periodic functions, but the above
argument then breaks down since the shift operator Tλ does not in general
transform an even function into an even function.

The conjecture closely reflects practical experience, nevertheless, so that
a number of attempts have been made to justify it.

In order to show first-kind Chebyshev expansions to be superior to expan-
sions in other ultraspherical polynomials, Lanczos (1952) argued as follows:

Proof: The expansion of a function f(x) in ultraspherical polynomials is

f(x) =

∞∑
k=0

c
(α)
k P

(α)
k (x) (5.86)

with coefficients given by

c
(α)
k =

∫ 1

−1

(1− x2)αf(x)P
(α)
k (x) dx∫ 1

−1

(1− x2)α[P
(α)
k (x)]2 dx

. (5.87)

Using the Rodrigues formula (4.29), this gives us

c
(α)
k =

∫ 1

−1

f(x)
dk

dxk
(1− x2)k+α dx∫ 1

−1

P
(α)
k (x)

dk

dxk
(1− x2)k+α dx

(5.88)

or, integrating k times by parts,

c
(α)
k =

∫ 1

−1

dk

dxk
f(x) (1− x2)k+α dx∫ 1

−1

dk

dxk
P

(α)
k (x) (1− x2)k+α dx
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=

∫ 1

−1

f (k)(x) (1− x2)k+α dx

k!K
(α)
k

∫ 1

−1

(1− x2)k+α dx

, (5.89)

where K
(α)
k is the coefficient of the leading power xk in P

(α)
k (x).

As k → ∞, then claims Lanczos, the factor (1 − x2)k+α in each integrand
approaches a multiple of the delta function δ(x), so that

c
(α)
k ∼ f (k)(0)

k!K
(α)
k

. (5.90)

Since we have not yet specified a normalisation for the ultraspherical polynomials,
we may take them all to be monic polynomials (K

(α)
k = 1), so that in particular

P
(− 1

2 )

k (x) = 21−kTk(x). Then the minimax norm of the kth term of the expansion
(5.86) is given by ∣∣∣c(α)

k

∣∣∣ ∥∥∥P (α)
k

∥∥∥
∞

∼
∣∣∣∣f (k)(0)

k!

∣∣∣∣
∥∥∥P (α)

k

∥∥∥
∞

. (5.91)

But (Corollary 3.4B) P
(− 1

2 )

k (x) = 21−kTk(x) is the monic polynomial of degree k

with smallest minimax norm on [−1, 1]. Hence the terms of the first-kind Chebyshev

expansion are in the limit smaller in minimax norm, term by term, than those of

any other ultraspherical expansion. ••
This argument is not watertight. First, it assumes that f (k)(0) exists for all

k. More seriously, it assumes that these derivatives do not increase too rapidly
with k — otherwise the asymptotic form (5.90) cannot be justified. By use
of formulae expressing the ultraspherical polynomials as linear combinations
of Chebyshev polynomials, and by defining a somewhat contrived measure
of the rate of convergence, Handscomb (1973) was able to find a sense in
which the first-kind Chebyshev expansion converges better than ultraspherical
expansions with α > − 1

2 , but was unable to extend this at all satisfactorily
to the case where −1 < α < − 1

2 . Subsequently, Light (1978) computed the
norms of a number of ultraspherical projection operators, finding that they
all increased monotonically with α, so that the Chebyshev projection cannot
be minimal. However, this did not answer the more important question of
whether the Chebyshev projection is cominimal.

Later again, Light (1979) proved, among other results, that the first-kind
Chebyshev expansion of a function f converges better than ultraspherical
expansions with α > − 1

2 , in the conventional sense that

∥∥f − STn f∥∥∞ <

∥∥∥∥∥f −
n∑
k=0

c
(α)
k P

(α)
k

∥∥∥∥∥
∞
for sufficiently large n, (5.92)

provided that f has a Chebyshev expansion
∑
k bkTk with

2k |bk| → A as k → ∞. (5.93)
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Equation (5.93) is, in effect, a condition on the smoothness of the function f
sufficient to ensure that we cannot improve on the accuracy of the first-kind
Chebyshev expansion by expanding in ultraspherical polynomials P (α)

k for
any α > − 1

2 (and so, in particular, in Legendre polynomials or in second-kind
Chebyshev polynomials). Light’s analysis, however, still does not exclude the
possibility that we could get faster convergence to such a function f by taking
0 < α < − 1

2 , although we do not believe that anyone has yet constructed a
function f for which this is the case.

5.7 The error of a truncated Chebyshev expansion

There are many applications of Chebyshev polynomials, especially to ordinary
and partial differential equations, where we are approximating a function that
is continuously differentiable, finitely or infinitely many times. If this is the
case, then Chebyshev expansion converges very rapidly, as the following the-
orems show.

Theorem 5.14 If the function f(x) has m + 1 continuous derivatives on
[−1, 1], then ∣∣f(x) − STn f(x)∣∣ = O(n−m) for all x in [−1, 1].

We can prove this using Peano’s theorem (Davis 1961, p.70) as a lemma.

Lemma 5.15 (Peano, 1913) Let L be a bounded linear functional on the
space Cm+1[a, b] of functions with m + 1 continuous derivatives, such that
Lpm = 0 for every polynomial pm in Πm. Then, for all f ∈ Cm+1[a, b],

Lf =
∫ b

a

f (m+1)(t)K(t) dt (5.94)

where

K(t) =
1
m!
L(· − t)m+ . (5.95)

Here the notation (·)m+ means

(x− t)m+ :=
{
(x− t)m, x ≥ t
0, x < t.

(5.96)

Proof: (of Theorem 5.14)

Let f ∈ Cm+1[−1, 1]. If ST
n f , as in (5.67), is the Chebyshev partial sum of degree

n ≥ m of f , then the operator Ln, defined for any fixed value x ∈ [−1, 1] by the
relationship

Lnf := (ST
n f)(x)− f(x), (5.97)
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is a bounded linear functional on Cm+1[−1, 1]. Since ST
n pm ≡ pm for every poly-

nomial in Πm, it follows that Lnpm = 0 for every such polynomial. Using Peano’s
theorem, we deduce that

(ST
n f)(x)− f(x) =

∫ 1

−1

f (m+1)(t)Kn(x, t) dt (5.98)

where

Kn(x, t) =
1

m!
{ST

n (x − t)m+ − (x− t)m+}. (5.99)

We note that in (5.99) the operator ST
n must be regarded as acting on (x−t)m+ as

a function of x, treating t as constant; thus, explicitly, ST
n (x−t)m+ =

∑n
k=0 ckmTk(x)

where

ckm =
2

π

∫ 1

t

(x − t)mTk(x)√
1− x2

dx (5.100)

or, writing x = cos θ and t = cosφ,

Kn(cos θ, cos φ) =
1

m!

{
n∑′

k=0

ckm cos kθ − (cos θ − cosφ)m+

}
(5.101)

where

ckm =
2

π

∫ φ

0

(cos θ − cos φ)m cos kθ dθ. (5.102)

Now it can be shown that ckm = O(k−m−1) as k → ∞. It follows that

∣∣∣ST
n (x − t)m+ − (x− t)m+

∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

ckmTk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|ckm| = O(n−m)

and hence finally, using (5.99) and (5.98),∣∣∣(ST
n f)(x)− f(x)

∣∣∣ = O(n−m).

This completes the proof. ••
If f is infinitely differentiable, clearly convergence is faster than O(n−m)

however big we take m. In some circumstances we can say even more than
this, as the following theorem shows.

Theorem 5.16 If the function f(x) can be extended to a function f(z) ana-
lytic on the ellipse Er of (1.44), where r > 1, then

∣∣f(x)− STn f(x)∣∣ = O(r−n)
for all x in [−1, 1].

Proof: Suppose that
M = sup{|f(z)| : z ∈ Er}. (5.103)

The Chebyshev expansion will converge, so that we can express the error as

f(x)− (ST
n f)(x) =

∞∑
k=n+1

2

π

∫ 1

−1

(1− y2)−
1
2 f(y)Tk(y)Tk(x) dy. (5.104)
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Using the conformal mapping of Section 1.4.1, with

x = 1
2
(ξ + ξ−1), f(x) = g(ξ) = g(ξ−1)

(so that |g(ζ)| ≤ M for r−1 ≤ |ζ| ≤ r), and remembering that integration around
the unit circle C1 in the ξ-plane corresponds to integration twice along the interval
[−1, 1] in the x-plane (in opposite directions, but taking different branches of the
square root function), we get

f(x)− (ST
n f)(x) =

=

∞∑
k=n+1

1

4iπ

∮
C1

g(η)(ηk + η−k)(ξk + ξ−k)
dη

η

=

∞∑
k=n+1

1

4iπ

[∮
Cr

g(η)η−k(ξk + ξ−k)
dη

η
+

∮
C1/r

g(η)ηk(ξk + ξ−k)
dη

η

]

— since all parts of the integrand are analytic between Cr and C1/r

=

∞∑
k=n+1

1

2iπ

∮
Cr

g(η)η−k(ξk + ξ−k)
dη

η

— replacing η by η−1 in the second integral, and using g(η) = g(η−1)

=
1

2iπ

∮
Cr

g(η)

(
ξn+1η−n−1

1− ξη−1
+

ξ−n−1η−n−1

1− ξ−1η−1

)
)
dη

η
, (5.105)

where |ξ| = 1 when x ∈ [−1, 1]. Therefore∣∣∣f(x)− (ST
n f)(x)

∣∣∣ ≤ M

rn(r − 1)
. (5.106)

The Chebyshev series therefore converges pointwise at least as fast as r−n. ••

5.8 Series of second-, third- and fourth-kind polynomials

Clearly we may also form series from Chebyshev polynomials of the other
three kinds, and we would then expect to obtain results analogous to those
for polynomials of the first kind and, in an appropriate context, further near-
best approximations. First, however, we must consider the formation of the
series expansions themselves.

5.8.1 Series of second-kind polynomials

A series in {Ui(x)} can be found directly by using orthogonality as given by
(5.1)–(5.4). If we define a formal expansion of f(x) as

f(x) ∼
∞∑
i=0

cUi Ui(x), (5.107)

© 2003 by CRC Press LLC



then

cUi =
∫ 1

−1

(1 − x2)
1
2 f(x)Ui(x) dx

/ 〈Ui , Ui〉

where

〈Ui , Ui〉 =
∫ 1

−1

(1− x2)
1
2Ui(x)2 dx

=
∫ π

0

sin2(i+ 1)θ dθ

= 1
2π.

Thus

cUi =
1
π

∫ 1

−1

(1 − x2)
1
2 f(x)Ui(x) dx (5.108a)

=
2
π

∫ π

0

sin θ sin(i+ 1)θ f(cos θ) dθ. (5.108b)

For any given f(x), one of these integrals may be computed analytically or
(failing that) numerically, for each i, and hence the expansion (5.107) may be
constructed.

It is worth noting that from (5.108b) we can get the expression

cUi =
1
π

∫ π

0

{cos iθ − cos(i+ 2)θ}f(cos θ) dθ

= 1
2{cTi − cTi+2}, (5.109)

where {cTi } are the coefficients of the first-kind Chebyshev series (5.6) of f(x).
This conclusion could equally well have been deduced from the relationship
(1.7)

Un(x)− Un−2(x) = 2Tn(x).

Thus a second-kind expansion can be derived directly from a first-kind ex-
pansion (but not vice versa).

Another way of obtaining a second-kind expansion may be by differenti-
ating a first-kind expansion, using the relation (2.33)

T ′
n(x) = nUn−1(x).

For example, the expansion (5.18), for z = 1,

ex ∼ I0(1) + 2
∞∑
i=1

Ii(1)Ti(x)
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immediately yields on differentiation

ex ∼ 2
∞∑
i=0

(i+ 1)Ii+1(1)Ui(x), (5.110)

where Ii is the modified Bessel function.

(Note that we have
∑
and not

∑′ in (5.110) — that is, the U0 coefficient
is not halved in the summation. It is only in sums of first-kind polynomials
that this halving is naturally required.)

Operating in reverse, we may generate a first-kind expansion by integrat-
ing a given second-kind expansion. In fact, this is a good approach to the
indefinite integration of a given function, since it yields a first-kind expansion
of the integral and hence its partial sums are good approximations in the L∞
sense. We shall discuss this in more depth later.

It can also sometimes be advantageous to weight a second-kind expansion
by

√
1− x2. For example, the expansion

√
1− x2f(x) ∼

∞∑
i=0

cUi
√
1− x2Ui(x), (5.111)

where cUi are defined by (5.108a) or (5.108b), can be expected to have good
convergence properties provided that f(x) is suitably smooth, since each term
in the expansion has a minimax property among polynomials weighted by√
1− x2.

5.8.2 Series of third-kind polynomials

A function may also be directly expanded in third-kind polynomials in the
form

f(x) ∼
∞∑
i=0

cVi Vi(x). (5.112)

Now if x = cos θ then

Vi(x) =
cos(i+ 1

2 )θ
cos 1

2θ

and
dx = − sin θ dθ = 2 sin 1

2θ cos
1
2θ dθ.

Hence

cVi =

∫ 1

−1
(1 + x)

1
2 (1− x)− 1

2Vi(x)f(x) dx∫ 1

−1
(1 + x)

1
2 (1 − x)− 1

2 Vi(x)2 dx

=

∫ π
0 2 cos

1
2θ cos(i+

1
2 )θ f(cos θ) dθ∫ π

0 2 cos
1
2θ cos

2(i+ 1
2 )θ dθ

.
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Thus

cVi =
1
π

∫ π

0

{cos iθ + cos(i+ 1)θ}f(cos θ) dθ = 1
2{cTi + cTi+1} (5.113)

(which is consistent with (1.20)); the expansion coefficients may hence be
calculated either directly or indirectly.

For example, suppose

f(x) = 2−
1
2 (1 − x) 1

2 ,

so that f(cos θ) = sin 1
2θ. Then

cVi =
1
π

∫ π

0

sin θ cos(i+ 1
2 )θ dθ

=
1
π

∫ 1
2π

0

2 sin 2φ cos(2i+ 1)φdφ

=
1
π

∫ 1
2π

0

[sin(2i+ 3)φ− sin(2i− 1)φ] dφ.

Thus

cVi = − 1
π

(
1

2i− 1 − 1
2i+ 3

)
= − 4

π

1
(2i− 1)(2i+ 3) , (5.114)

and we obtain the expansion

2−
1
2 (1− x) 1

2 ∼ − 4
π

∞∑
i=0

1
(2i− 1)(2i+ 3)Vi(x). (5.115)

In fact, any third-kind expansion such as (5.115) can be directly related
to a first-kind expansion in polynomials of odd degree, as follows. Write
x = 2u2 − 1, so that u = cos 1

2θ. We observe that, since (1.15) holds, namely

Vn(x) = u−1T2n+1(u),

the third-kind expansion (5.112) gives

uf(2u2 − 1) ∼
∞∑
i=0

cVi T2i+1(u). (5.116)

Thus, since the function f(2u2 − 1) is an even function of u, so that the
left-hand side of (5.116) is odd, the right-hand side must be the first-kind
Chebyshev expansion of uf(2u2 − 1), all of whose even-order terms must
vanish.
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Indeed, for the specific example

f(x) = 2−
1
2 (1− x) 1

2 ,

we have
uf(2u2 − 1) = u

√
1− u2

and hence we obtain the expansion

x
√
1− x2 ∼

∞∑
j=0

cVi T2i+1(x) (5.117)

where cVi is given by (5.114).

Fourth-kind expansions may be obtained in a similar way to third-kind
expansions, simply by reversing the sign of x.

5.8.3 Multivariate Chebyshev series

All the near-minimax results for first-, second-, third- and fourth-kind polyno-
mials extend to multivariate functions on hypercubes, with the Lebesgue con-
stant becoming a product of the component univariate Lebesgue constants—
see Mason (1980, 1982) for details.

5.9 Lacunary Chebyshev series

A particularly interesting, if somewhat academic, type of Chebyshev series is
a ‘lacunary’ series, in which non-zero terms occur progressively less often as
the series develops. For example, the series

f(x) = T0(x) + 0.1T1(x) + 0.01T3(x) + 0.001T9(x) + 0.0001T27(x) + · · ·

= T0(x) +
∞∑
k=0

(0.1)k+1T3k(x) (5.118)

is such a series, since the degrees of the Chebyshev polynomials that occur
grow as powers of 3. This particular series is also uniformly convergent, being
absolutely bounded by the geometric progression

∞∑
k=0

(0.1)k = 10
9 .

The series (5.118) has the remarkable property that its partial sum of
degree N = 3n, namely

pN := T0(x) +
n∑
k=0

(0.1)k+1T3k(x), (5.119)
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is a minimax approximation of degree (3n+1 − 1) to f(x), since the error of
this approximation is

eN = f(x)− pN (x) =
∞∑

k=n+1

(0.1)k+1T3k(x),

and the equioscillating extrema of each of the polynomials T3k(x) for k > n+1
include 3n+1 + 1 extrema that coincide in position and sign with those of
T3n+1(x); therefore their sum has equioscillating extrema at these same points,
and we can apply the alternation theorem (Theorem 3.4).

Generalising the above result, we can prove the following lemma and the-
orem.

Lemma 5.17 If r is an odd integer greater than 2, the polynomials Trk(x),
(k = n, n+ 1, . . .) have a common set of rn + 1 extrema of equal (unit) mag-
nitude and the same alternating signs at the points x = cos kπ/rn, (k =
0, 1, . . . , rn).

Theorem 5.18 If r is an odd integer greater than 2, and
∑∞
k=0 |ak| is con-

vergent, then the minimax polynomial approximation of every degree between
rn and rn+1 − 1 inclusive to the continuous function

f(x) =
∞∑
k=0

akTrk(x) (5.120)

is given by the partial sum of degree rn of (5.120).

A similar result to Theorem 5.18, for L1 approximation by a lacunary
series in Urk−1(x) subject to restrictions on r and ak, based on Theorem 6.10
below, is given by Freilich & Mason (1971) and Mason (1984).

5.10 Chebyshev series in the complex domain

If the function f(z) is analytic within and on the elliptic contour Er (4.81) in
the complex plane, which surrounds the real interval [−1, 1] and has the points
z = ±1 as its foci, then we may define alternative orthogonal expansions in
Chebyshev polynomials, using the inner product (4.83)

〈f , g〉 :=
∮
Er

f(z)g(z) |µ(z)| | dz| , (5.121)

of Section 4.9 in place of (5.1).
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Specifically, in the case of polynomials of the first kind, we can construct
the expansion

f(z) ∼
∞∑′

k=0

ckTk(z) (5.122)

where (taking the value of the denominator from (4.85a))

ck =
〈f , Tk〉
〈Tk , Tk〉 =

2
π(r2k + r−2k)

∮
Er

f(z)Tk(z)
∣∣∣∣ dz√
1− z2

∣∣∣∣ . (5.123)

As in Section 4.9, we make the substitution (4.75)

z = 1
2 (w + w

−1), (5.124)

under which the ellipse Er in the z-plane is the image of the circle Cr of radius
r > 1 in the w-plane:

Cr = {w : w = reiθ, θ real}.

Then (4.77)
Tk(z) = 1

2 (w
k + w−k)

and hence, for w on Cr,

Tk(z) = 1
2 (w

k + w−k) = 1
2 (r

2kw−k + r−2kwk). (5.125)

For w on Cr, we also have ∣∣∣∣ dz√
1− z2

∣∣∣∣ = dθ =
dw
iw
. (5.126)

Define the function g such that for all w

g(w) = f(z) ≡ f(12 (w + w−1)); (5.127)

then we note that g(w) will be analytic in the annulus between the circles Cr
and Cr−1 , and that we must have g(w−1) = g(w).

Now we have

ck =
2

π(r2k + r−2k)

∮
Er

f(z)Tk(z)
∣∣∣∣ dz√
1− z2

∣∣∣∣
=

1
π(r2k + r−2k)

∮
Cr

g(w)(r2kw−k + r−2kwk)
dw
iw
. (5.128)

Since the function g(w) is analytic in the annulus between the circles Cr
and Cr−1 , and satisfies g(w−1) = g(w), we can show, by applying Cauchy’s
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theorem to this annulus and then changing variable from w to w−1, that∮
Cr

g(w)wk
dw
iw

=
∮
Cr−1

g(w)wk
dw
iw

=

=
∮
Cr

g(w−1)w−k dw
iw

=
∮
Cr

g(w)w−k dw
iw
. (5.129)

Combining (5.128) and (5.129), we get

ck =
1
iπ

∮
Cr

g(w)wk
dw
w
. (5.130)

The expansion (5.122) thus becomes

f(z) ∼
∞∑′

k=0

{
1
iπ

∮
Cr

g(w)wk
dw
w

}
Tk(z) (5.131)

or

g(ζ) ∼
∞∑′

k=0

{
1
2iπ

∮
Cr

g(w)wk
dw
w

}
(ζk + ζ−k)

=
∞∑

k=−∞

1
2iπ

{∮
Cr

g(w)wk
dw
w

}
ζk, (5.132)

making use of (5.129) again.

We may now observe that (5.132) is just the Laurent expansion of g(ζ) in
positive and negative powers of ζ. So, just as in the real case we were able
to identify the Chebyshev series of the first kind with a Fourier series, in the
complex case we can identify it with a Laurent series.

5.10.1 Chebyshev–Padé approximations

There is a huge literature on Padé approximants (Padé 1892)—rational func-
tions whose power series expansions agree with those of a given function to as
many terms as possible—mainly because these approximants often converge in
regions beyond the radius of convergence of the power series. Comparatively
little has been written (Gragg 1977, Chisholm & Common 1980, Trefethen &
Gutknecht 1987, for a few examples) on analogous approximations by ratios of
sums of Chebyshev polynomials. However, the Chebyshev–Padé approximant
seems closely related to the traditional Padé table (Gragg & Johnson 1974),
because it is most easily derived from the link to Laurent series via the prop-
erty

Tn(z) = 1
2 (z

n + z−n),
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w and z being related by (5.124), so that we may match

p∑′
k=0

ak
1
2 (w

k + w−k)

q∑′
k=0

bk
1
2 (w

k + w−k)
and

∞∑′

k=0

ck
1
2 (w

k + w−k)

up to the term in wp+q+1+w−(p+q+1), by multiplying through by the denom-
inator and equating the coefficients of positive (or, equivalently, negative) and
zero powers of w.

There has also been work on derivations expressed entirely in terms of
Chebyshev polynomials; the first that we are aware of is that of Maehly (1960)
and a more efficient procedure, based on only p+ q + 1 values of ck, is given
by Clenshaw & Lord (1974).

5.11 Problems for Chapter 5

1. Verify the Chebyshev expansions of sgnx, |x| and δ(x) quoted in (5.11),
(5.12) and (5.24).

2. If ĉi denotes the trapezium-rule approximation to ci defined by the right-
hand side of (5.38), xk being taken at the zeros of Tn(x), show that

ĉn = 0,

ĉ2n±i = −ĉi,
ĉ4n−i = ĉi.

3. Show that the mapping STn , defined so that S
T
n f is the nth partial sum

of the Chebyshev series expansion of f , is a projection.

4. Prove (5.50):

(a) directly;

(b) by applying (1.14) and (1.15) to Exercise (3a) of Chapter 2 to
deduce that

n∑′

k=0

Tk(x) = 1
2Wn(x)

and then making the substitution x = cos s.

5. If λn is given by (5.71) show, using the inequality
∣∣sin 1

2 t
∣∣ ≤ ∣∣ 1

2 t
∣∣, that

λn >
4
π2
logn.
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6. With gD as defined by (5.82), show that if τ is sufficiently small then
the function gC defined by

gC(t) :=
1
2τ

∫ t+τ

t−τ
gD(s) ds

has all the properties required to complete the proof in Section 5.5.1,
namely that gC is continuous, even and periodic, ‖gC‖∞ ≤ 1 + ε and
‖gC − gD‖1 < ε.

7. Assuming that f(z) is real when z is real, show that the coefficients ck
defined by (5.123) are the same as those defined by (5.7).

8. Consider the partial sum of degree n of the first kind Chebyshev series
expansion of a function f(z), analytic on the interior of the ellipse Er :∣∣z +√

z2 − 1∣∣ = r (r > 1) and continuous on Er. Show that this sum
maps under z = 1

2 (w + w
−1) into the partial sum of an even Laurent

series expansion of the form 1
2

∑n
−n ckw

k, where c−k = ck.

9. Obtain Cauchy’s integral formula for the coefficients ck and Dirichlet’s
formula for the partial sum of the Laurent series, and interpret your
results for a Chebyshev series.

10. Following the lines of argument of Problems 8 and 9 above, derive partial
sums of second kind Chebyshev series expansions of (z2−1) 1

2 f(z) and a
related odd Laurent series expansion with c−k = −ck. Again determine
integral formulae for the coefficients and partial sums.

11. Using the Dirichlet formula of Problem 9, either for the Chebyshev
series or for the related Laurent series, show that the partial sum is
near-minimax on Er within a relative distance λn.

12. Supposing that

G(x) = g1(x) +
√
1− x2 g2(x) +

√
1 + x
2

g3(x) +

√
1− x
2

g4(x),

where g1, g2, g3, g4 are continuously differentiable, and that

g1(x) ∼
n∑′

r=0

a2rTr(x) + · · · , g2(x) ∼
n∑
r=1

b2rUr−1(x) + · · · ,

g3(x) ∼
n−1∑
r=0

a2r+1Vr(x) + · · · , g4(x) ∼
n−1∑
r=0

b2r+1Wr(x) + · · · ,

determine the form of F (θ) = G(cos θ). Deduce that

F (2θ) =
2n∑′

k=0

(ak cos kθ + bk sin kθ) + · · · .
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Discuss the implications of this result in terms of separating a function
into four component singular functions, each expanded in a different
kind of Chebyshev series.
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Chapter 6

Chebyshev Interpolation

6.1 Polynomial interpolation

One of the simplest ways of obtaining a polynomial approximation of degree
n to a given continuous function f(x) on [−1, 1] is to interpolate between the
values of f(x) at n + 1 suitably selected distinct points in the interval. For
example, to interpolate at

x1, x2, . . . , xn+1

by the polynomial
pn(x) = c0 + c1x+ · · · + cnxn,

we require that

c0 + c1xk + · · · + cnxn
k = f(xk) (k = 1, . . . , n+ 1). (6.1)

The equations (6.1) are a set of n+1 linear equations for the n+1 coefficients
c0, . . . , cn that define pn(x).

Whatever the values of f(xk), the interpolating polynomial pn(x) exists
and is unique, since the determinant of the linear system (6.1) is non-zero.
Specifically

det




1 x1 x21 · · · xn
1

1 x2 x22 · · · xn
2

...
...

...
. . .

...
1 xn+1 x2n+1 · · · xn

n+1


 =

∏
i>j

(xi − xj) �= 0.

It is generally not only rather time-consuming, but also numerically unsta-
ble, to determine pn(x) by solving (6.1) as it stands, and indeed many more
efficient and reliable formulae for interpolation have been devised.

Some interpolation formulae are tailored to equally spaced points x1, x2,
. . ., xn+1, such as those based on finite differences and bearing the names of
Newton and Stirling (Atkinson 1989, for example). Surprisingly however, if
we have a free choice of interpolation points, it is not necessarily a good idea
to choose them equally spaced. An obvious equally-spaced set for the interval
[−1, 1] is given for each value of n by

xk = −1 +
2k + 1
n+ 1

(k = 0, . . . , n); (6.2)

these points are spaced a distance 2/(n + 1) apart, with half spacings of
1/(n+ 1) between the first and last points and the end points of the interval.

© 2003 by CRC Press LLC



(This set would provide equally spaced interpolation on (−∞,∞) if f(x) were
periodic with period 2.) However, the following example demonstrates that
the points (6.2) are not appropriate for all continuous functions f(x) when n
becomes large.

Theorem 6.1 (Runge phenomenon) If xk are chosen to be the points (6.2)
for each n ≥ 0, then the interpolating polynomial pn(x) does not converge uni-
formly on [−1, 1] as n→ ∞ for the function f(x) = 1/(1 + 25x2).

Figure 6.1: Interpolation to f(x) = 1/(1 + 25x2) by polynomials of degrees
4 to 8 at evenly-spaced points (above) and at Chebyshev polynomial zeros
(below)

Proof: We refer the reader to (Mayers 1966) for a full discussion. The function
f(z) has complex poles at z = ± 1

5
i, which are close to the relevant part of the

real axis, and it emerges that such nearby poles are sufficient to prevent uniform
convergence. In fact the error f(x) − pn(x) oscillates wildly close to x = ±1, for
large n. This is illustrated in the upper half of Figure 6.1.

See also (Trefethen & Weideman 1991), where it is noted that Turetskii (1940)

showed that the Lebesgue constant for interpolation at evenly-spaced points is

asymptotically 2n+1/(e n log n). ••
However, formulae are also available for unequally spaced interpolation,

notably Neville’s divided-difference algorithm or Aitken’s algorithm (Atkinson
1989) and the general formula of Lagrange quoted in Lemma 6.3 below.
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A better choice of interpolation points to ensure uniform convergence,
though still not necessarily for every continuous function, is the set of zeros
of the Chebyshev polynomial Tn+1(x), namely (as given in Section 2.2)

x = xk = cos
(k − 1

2 )π
n+ 1

(k = 1, . . . , n+ 1). (6.3)

This choice of points does in fact ensure convergence for the function of The-
orem 6.1, and indeed for any continuous f(x) that satisfies a Dini–Lipschitz
condition. Thus only a very slight restriction of f(x) is required. This is illus-
trated in the lower half of Fig. 6.1. See Cheney (1966) or Mason (1982) for a
proof of this. We note also from Theorem 6.5 that convergence in a weighted
L2 norm occurs for any continuous f(x).

By expressing the polynomial in terms of Chebyshev polynomials, this
choice of interpolation points (6.3) can be made far more efficient and stable
from a computational point of view than the equally-spaced set (6.2). So
we gain not only from improved convergence but also from efficiency and
reliability. We show this in Section 6.3.

Finally, we shall find that we obtain a near-minimax approximation by in-
terpolation at Chebyshev zeros, just as we could by truncating the Chebyshev
series expansion — but in this case by a much simpler procedure.

6.2 Orthogonal interpolation

If {φi} is any orthogonal polynomial system with φi of exact degree i then,
rather than by going to the trouble of computing an orthogonal polynomial
expansion (which requires us to evaluate the inner-product integrals 〈f , φi〉),
an easier way to form a polynomial approximation Pn(x) of degree n to a
given function f(x) is by interpolating f(x) at the (n + 1) zeros of φn+1(x).
In fact, the resulting approximation is often just as good.

The following theorem establishes for general orthogonal polynomials what
we already know in the case of Chebyshev polynomials, namely that φn+1(x)
does indeed have the required (n+ 1) distinct zeros in the chosen interval.

Theorem 6.2 If the system {φi}, with φi a polynomial of exact degree i, is
orthogonal on [a, b] with respect to a non-negative weight w(x), then φn has
exactly n distinct real zeros in [a, b], for every n ≥ 0.

Proof: (Snyder 1966, p.7, for example) Suppose that φn has fewer than n real
zeros, or that some of its zeros coincide. Then there are m points t1, t2, . . . , tm in
[a, b], with 0 ≤ m < n, where φn(x) changes sign. Let

Πm(x) :=
m∏

i=1

(x− ti), m ≥ 1; Π0(x) := 1.
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Then Πm is a polynomial of degree m < n, and so must be orthogonal to φn. But

〈Πm , φn〉 =
∫ b

a

w(x)Πm(x)φn(x) dx �= 0,

since this integrand w(x)Πm(x)φn(x) must have the same sign throughout the in-

terval (except at the m points where it vanishes). We thus arrive at a contradic-

tion. ••
Since an interpolant samples the values of the function in a discrete set

of points only, it is usual to require the function to be in C[a, b] (i.e., to be
continuous), even if we wish to measure the goodness of the approximation in
a weaker norm such as L2.

Some basic facts regarding polynomial interpolation are given by the fol-
lowing lemmas.

Lemma 6.3 The polynomial of degree n interpolating the continuous function
f(x) at the n+ 1 distinct points x1, . . . , xn+1 can be written as

pn(x) =
n+1∑
i=1

�i(x)f(xi) (6.4)

where �i(x) are the usual Lagrange polynomials

�i(x) =
n+1∏
k=1
k �=i

(
x− xk

xi − xk

)
. (6.5)

Lemma 6.4 If x1, . . . , xn+1 are the zeros of the polynomial φn+1(x), then
the Lagrange polynomials (6.5) may be written in the form

�i(x) =
φn+1(x)

(x− xi)φ′n+1(xi)
, (6.6)

where φ′(x) denotes the first derivative of φ(x).

In the special case of the first-kind Chebyshev polynomials, the preceding
lemma gives the following specific result.

Corollary 6.4A For polynomial interpolation at the zeros of the Chebyshev
polynomial Tn+1(x), the Lagrange polynomials are

�i(x) =
Tn+1(x)

(n+ 1)(x− xi)Un(xi)
,

or

�i(cos θ) =
cos(n+ 1)θ sin θi

(n+ 1)(cos θ − cos θi) sin(n+ 1)θi

= − sin(n+ 1)(θ − θi) sin θi
(n+ 1)(cos θ − cos θi)

. (6.7)
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The following general result establishes L2 convergence in this framework
of interpolation at orthogonal zeros.

Theorem 6.5 (Erdös & Turán 1937) If f(x) is in C[a, b], if {φi(x), i =
0, 1, . . .} is a system of polynomials (with φi of exact degree i) orthogonal
with respect to w(x) on [a, b] and if pn(x) interpolates f(x) in the zeros of
φn+1(x), then

lim
n→∞ (‖f − pn(x)‖2)2 = lim

n→∞

∫ b

a

w(x)(f(x) − pn(x))2 dx = 0.

Proof: The proof is elegant and subtle, and a version for Chebyshev polynomials
is given by Rivlin (1974). We give a sketched version.

It is not difficult to show that {�i} are orthogonal. By ordering the factors
appropriately, we can use (6.6) to write

�i(x)�j(x) = φn+1(x)ψn−1(x) (i �= j)

where ψn−1 is a polynomial of degree n− 1. This must be orthogonal to φn+1 and
hence

〈�i , �j〉 = 〈φn+1 , ψn−1〉 = 0.

Therefore
〈�i , �j〉 = 0 (i �= j). (6.8)

Now
‖f − pn‖2 ≤

∥∥∥f − pB
n

∥∥∥
2
+
∥∥∥pB

n − pn

∥∥∥
2

where pB
n is the best L2 approximation. Therefore, in view of Theorem 4.2, it suffices

to prove that

lim
n→∞

∥∥∥pB
n − pn

∥∥∥
2
= 0.

Since

pB
n (x) =

n+1∑
i=1

�i(x)p
B
n (xi)

it follows from (6.4) and (6.8) that

(∥∥∥pB
n − pn

∥∥∥
2

)2

=
n+1∑
i=1

〈�i , �i〉
[
f(xi)− pB

n (xi)
]2

.

Provided that 〈�i , �i〉 can be shown to be uniformly bounded for all i, the right-

hand side of this equality tends to zero by Theorem 4.2. This certainly holds in the

case of Chebyshev polynomials, where 〈�i , �i〉 = π

n+ 1
. ••

In the cases w(x) = (1+x)±
1
2 (1−x)± 1

2 , Theorem 6.5 gives L2 convergence
properties of polynomial interpolation at Chebyshev polynomial zeros. For
example, if xi are taken to be the zeros of Tn+1(x) then

lim
n→∞

∫ 1

−1

(1 − x2)−
1
2 (f(x) − pn(x))2 dx = 0.
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This result can be extended, and indeed Erdös & Feldheim (1936) have es-
tablished Lp convergence for all p > 1:

lim
n→∞

∫ 1

−1

(1 − x2)−
1
2 |f(x) − pn(x)|p dx = 0.

In the case of Chebyshev zeros we are able to make more precise compar-
isons with best approximations (see Section 6.5).

If the function f(x) has an analytic extension into the complex plane,
then it may be possible to use the calculus of residues to obtain the following
further results.

Lemma 6.6 If the function f(x) extends to a function f(z) of the complex
variable z, which is analytic within a simple closed contour C that encloses
the point x and all the zeros x1, . . . , xn+1 of the polynomial φn+1(x), then
the polynomial of degree n interpolating f(x) at these zeros can be written as

pn(x) =
1

2πi

∮
C

{φn+1(z) − φn+1(x)}f(z)
φn+1(z)(z − x) dz (6.9)

and its error is

f(x) − pn(x) =
1

2πi

∮
C

φn+1(x)f(z)
φn+1(z)(z − x) dz. (6.10)

In particular, if f(x) extends to a function analytic within the elliptical
contour Er of Figure 1.5, then we can get a bound on the error of interpolation
using the zeros of Tn+1(x), implying uniform convergence in this case.

Corollary 6.6A If the contour C in Lemma 6.6 is the ellipse Er of (1.34),
the locus of the points 1

2 (reiθ + r−1e−iθ) as θ varies (with r > 1, and if
|f(z)| ≤M at every point z on Er, then for every real x on [−1, 1] we can show
(see Problem 2) from (6.10), using (1.50) and the fact that |Tn+1(x)| ≤ 1, that

|f(x) − pn(x)| ≤ (r + r−1)M
(rn+1 − r−n−1)(r + r−1 − 2)

, x real, −1 ≤ x ≤ 1.

(6.11)

6.3 Chebyshev interpolation formulae

We showed in Section 4.6 that the Chebyshev polynomials {Ti(x)} of degrees
up to n are orthogonal in a discrete sense on the set (6.3) of zeros {xk} of
Tn+1(x). Specifically

n+1∑
k=1

Ti(xk)Tj(xk) =




0 i �= j (≤ n)
n+ 1 i = j = 0

1
2 (n+ 1) 0 < i = j ≤ n.

(6.12)
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This discrete orthogonality property leads us to a very efficient interpolation
formula. Write the nth degree polynomial pn(x), interpolating f(x) in the
points (6.3), as a sum of Chebyshev polynomials in the form

pn(x) =
n∑′

i=0

ciTi(x). (6.13)

Theorem 6.7 The coefficients ci in (6.13) are given by the explicit formula

ci =
2
n+ 1

n+1∑
k=1

f(xk)Ti(xk). (6.14)

Proof: If we set f(x) equal to pn(x) at the points {xk}, then it follows that

f(xk) =

n∑′

i=0

ciTi(xk).

Hence, multiplying by
2

n+ 1
Tj(xk) and summing,

2

n+ 1

n+1∑
k=1

f(xk)Tj(xk) =

n∑′

i=0

ci

{
2

n+ 1

n+1∑
k=1

Ti(xk)Tj(xk)

}

= cj ,

from (6.12), giving the formula (6.14). ••

Corollary 6.7A Formula (6.14) is equivalent to a ‘discrete Fourier trans-
form’ of the transformed function

g(θ) = f(cos θ).

Proof: We have

pn(cos θ) =

n∑′

i=0

ci cos iθ

with

ci =
2

n+ 1

n+1∑
k=1

g(θk) cos iθk, (6.15)

with

θk =
(k − 1

2
)π

n+ 1
. (6.16)

Thus {ci} are discrete approximations to the true Fourier cosine series coefficients

cS
i =

1

π

∫ π

−π

g(θ) cos iθ dθ, (6.17)
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obtained by applying a trapezoidal quadrature rule to the (periodic) function g(θ)
with equal intervals π/(n + 1) between the points θk. Indeed, a trapezoidal rule
approximation to (6.17), valid for any periodic function g(θ), is

cS
i � 1

π

π

n+ 1

n+1∑
k=−n

g

(
(k − 1

2
)π

n+ 1

)
cos

i(k − 1
2
)π

n+ 1
,

which gives exactly the formula (6.15) for ci (when we note that the fact that both

g(θ) and cos iθ are even functions implies that the kth and (1 − k)th terms in the

summation are identical). ••
Thus, Chebyshev interpolation has precisely the same effect as taking the

partial sum of an approximate Chebyshev series expansion, obtained by ap-
proximating the integrals in the coefficients of the exact expansion by changing
the independent variable from x to θ and applying the trapezoidal rule — thus
effectively replacing the Fourier transforms cSi by discrete Fourier transforms
ci. It is well known among practical mathematicians and engineers that the
discrete Fourier transform is a very good substitute for the continuous Fourier
transform for periodic functions, and this therefore suggests that Chebyshev
interpolation should be a very good substitute for a (truncated) Chebyshev
series expansion.

In Sections 4.6.2 and 4.6.3 we obtained analogous discrete orthogonality
properties to (6.12), based on the same abscissae xk (zeros of Tn+1) but
weighted, for the second, third and fourth kind polynomials. However, it
is more natural to interpolate a Chebyshev polynomial approximation at the
zeros of a polynomial of the same kind, namely the zeros of Un+1, Vn+1, Wn+1

in the case of second, third and fourth kind polynomials. We shall therefore
show that analogous discrete orthogonality properties also follow for these
new abscissae, and develop corresponding fast interpolation formulae.

6.3.1 Aliasing

We have already seen (Section 6.1) that polynomial interpolation at Cheb-
yshev polynomial zeros is safer than polynomial interpolation at evenly dis-
tributed points. Even the former, however, is unreliable if too small a number
of points (and so too low a degree of polynomial) is used, in relation to the
properties of the function being interpolated.

One mathematical explanation of this remark, particularly as it applies to
Chebyshev interpolation, is through the phenomenon of aliasing, described as
follows.

Suppose that we have a function f(x), having an expansion

f(x) =
∞∑′

j=0

cjTj(x) (6.18)
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in Chebyshev polynomials, which is to be interpolated between its values at
the zeros {xk} of Tn+1(x) by the finite sum

fn(x) =
n∑′

j=0

ĉjTj(x). (6.19)

The only information we can use, in order to perform such interpolation,
is the set of values of each Chebyshev polynomial at the interpolation points.
However, we have the following identity (where x = cos θ):

Tj(x) + T2n+2±j(x) = cos jθ + cos(2n+ 2 ± j)θ
= 1

2 cos(n+ 1)θ cos(n+ 1 ± j)θ
= 1

2Tn+1(x) Tn+1±j(x), (6.20)

so that
Tj(xk) + T2n+2±j(xk) = 0, k = 1, . . . , n+ 1. (6.21)

Thus T2n+2±j is indistinguishable from −Tj over the zeros of Tn+1. Figure 6.2
illustrates this in the case n = 9, j = 4 (2n+ 2 − j = 16).

Figure 6.2: T16(x) = −T4(x) at zeros of T10(x)

In consequence, we can say that fn(x) as in (6.19) interpolates f(x) as in
(6.18) between the zeros of Tn+1(x) when

ĉj = cj − c2n+2−j − c2n+2+j + c4n+4−j + c4n+4+j −· · · , j = 0, . . . , n. (6.22)

(Note that the coefficients cn+1, c3n+3, . . . do not figure in (6.22), as they
correspond to terms in the expansion that vanish at every interpolation point.)

In effect, the process of interpolation removes certain terms of the expan-
sion (6.18) entirely, while replacing the Chebyshev polynomial in each term
after that in Tn(x) by (±1×) a Chebyshev polynomial (its ‘alias ’) of lower
degree. Since the coefficients {cj} tend rapidly to zero for well-behaved func-
tions, the difference between cj and ĉj will therefore usually be small, but
only if n is taken large enough for the function concerned.

Aliasing can cause problems to the unwary, for instance in working with
nonlinear equations. Suppose, for instance that one has a differential equation

© 2003 by CRC Press LLC



involving f(x) and f(x)3, and one represents the (unknown) function f(x) in
the form

∑′n
j=0 ĉjTj(x) as in (6.19). Then one might be tempted to collocate

the equation at the zeros of Tn+1(x) — effectively carrying out a polynomial
interpolation between these points. Instances such as the following, however,
cast doubt on the wisdom of this.

In Figure 6.3 we have taken n = 4, and show the effect of interpolating
the function T3(x)3 at the zeros of T5(x). (The expansion of fn(x)3 includes
other products of three Chebyshev polynomials, of course, but this term will
suffice.) Clearly the interpolation is poor, the reason being that

T3(x)3 = 1
4 (T9(x) + 3T3(x)) ,

which aliases to
1
4 (−T1(x) + 3T3(x)) .

Figure 6.3: T3(x)3 interpolated at zeros of T5(x)

In contrast, if we could have taken n = 9, we could have interpolated
T3(x)3 exactly as shown in Figure 6.4. However, we should then have had

Figure 6.4: T3(x)3 interpolated (identically) at zeros of T10(x)

to consider the effect of aliasing on further products of polynomials of higher
order, such as those illustrated in Figures 6.5 and 6.6. There are ways of
circumventing such difficulties, which we shall not discuss here.

Much use has been made of the concept of aliasing in estimating quadra-
ture errors (see Section 8.4, where interpolation points and basis functions
other than those discussed above are also considered).
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Figure 6.5: T6(x)3 interpolated at zeros of T10(x)

Figure 6.6: T7(x)3 interpolated at zeros of T10(x)

6.3.2 Second-kind interpolation

Consider in this case interpolation by a weighted polynomial
√

1 − x2 pn(x)
on the zeros of Un+1(x), namely

yk = cos
kπ

n+ 2
(k = 1, . . . , n+ 1).

Theorem 6.8 The weighted interpolation polynomial to f(x) is given by

√
1 − x2 pn(x) =

√
1 − x2

n∑
i=0

ciUi(x) (6.23)

with coefficients given by

ci =
2
n+ 1

n+1∑
k=1

√
1 − y2kf(yk)Ui(yk). (6.24)

Proof: From (4.50), with n− 1 replaced by n+ 1,

n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk) =

{
0, i �= j (≤ n);

1
2
(n+ 1), i = j ≤ n.

(6.25)

If we set
√

1− y2
kpn(yk) equal to f(yk), we obtain

f(yk) =
√
1− y2

k

n∑
i=0

ciUi(yk),
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and hence, multiplying by
2

n+ 1

√
1− y2

k Uj(yk) and summing over k,

2

n+ 1

n+1∑
k=1

√
1− y2

kf(yk)Uj(yk) =

n∑
i=0

ci

{
2

n+ 1

n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk)

}

= ci

by (6.25). ••
Alternatively, we may want to interpolate at the zeros of Un−1(x) together

with the points x = ±1, namely

yk = cos
kπ

n
(k = 0, . . . , n).

In this case, however, we must express the interpolating polynomial as a sum
of first-kind polynomials, when we can use the discrete orthogonality formula
(4.45)

n∑′′

k=0

Ti(yk)Tj(yk) =




0, i �= j (≤ n);
1
2n, 0 < i = j < n;
n, i = j = 0; i = j = n.

(6.26)

(Note the double prime indicating that the first and last terms of the sum are
to be halved.)

The interpolating polynomial is then

pn(x) =
n∑′′

i=0

ciTi(x) (6.27)

with coefficients given by

ci =
2
n

n∑′′

k=0

f(yk)Ti(yk). (6.28)

Apart from a factor of
√

2/n, these coefficients make up the discrete Cheby-
shev transform of Section 4.7.

6.3.3 Third- and fourth-kind interpolation

Taking as interpolation points the zeros of Vn+1(x), namely

xk = cos
(k − 1

2 )π
n+ 3

2

(k = 1, . . . , n+ 1),

we have the orthogonality formula, for i, j ≤ n,
n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk) =
{

0 i �= j
n+ 3

2 i = j (6.29)

(See Problem 14 of Chapter 4.)
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Theorem 6.9 The weighted interpolation polynomial to
√

1 + x f(x) is given
by

√
1 + x pn(x) =

√
1 + x

n∑
i=0

ciVi(x) (6.30)

where

ci =
1

n+ 3
2

n+1∑
k=1

√
1 + xkf(xk)Vi(xk). (6.31)

Proof: If we set
√
1 + xk pn(xk) equal to

√
1 + xkf(xk), we obtain

√
1 + xk f(xk) =

√
1 + xk

n∑
i=0

ciVi(xk),

and hence, multiplying by
1

n+ 3
2

√
1 + xk Vj(xk) and summing over k,

1

n+ 3
2

n+1∑
k=1

(1 + xk)f(xk)Vj(xk) =
n∑

i=0

ci

{
1

n+ 3
2

n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk)

}

= ci

by (6.29). ••
The same goes for interpolation at the zeros of Wn+1(x), namely

xk = cos
(n− k + 2)π
n+ 3

2

(k = 1, . . . , n+ 1),

if we replace ‘V ’ by ‘W ’ and ‘1 + x’ by ‘1 − x’ throughout.

Alternatively, we may interpolate at the zeros of Vn(x) together with one
end point x = −1; i.e., at the points

xk = cos
(k − 1

2 )π
n+ 1

2

(k = 1, . . . , n+ 1),

where we have the discrete orthogonality formulae (the notation
∑∗ indicat-

ing that the last term of the summation is to be halved)

n+1∑∗

k=1

Ti(xk)Tj(xk) =




0 i �= j (≤ n)
n+ 1

2 i = j = 0
1
2 (n+ 1

2 ) 0 < i = j ≤ n.
(6.32)

The interpolating polynomial is then

pn(x) =
n∑′

i=0

ciTi(x) (6.33)
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with coefficients given by

ci =
2

n+ 1
2

n+1∑∗

k=1

f(xk)Ti(xk). (6.34)

6.3.4 Conditioning

In practice, one of the main reasons for the use of a Chebyshev polynomial
basis is the good conditioning that frequently results. A number of compar-
isons have been made of the conditioning of calculations involving various
polynomial bases, including {xk} and {Tk(x)}. A paper by Gautschi (1984)
gives a particularly effective approach to this topic.

If a Chebyshev basis is adopted, there are usually three gains:

1. The coefficients generally decrease rapidly with the degree n of polyno-
mial;

2. The coefficients converge individually with n;

3. The basis is well conditioned, so that methods such as collocation are
well behaved numerically.

6.4 Best L1 approximation by Chebyshev interpolation

Up to now, we have concentrated on the L∞ or minimax norm. However,
the L∞ norm is not the only norm for which Chebyshev polynomials can be
shown to be minimal. Indeed, a minimality property holds, with a suitable
weight function of the form (1−x)γ(1+x)δ, in the L1 and L2 norms, and more
generally in the Lp norm, where p is equal to 1 or an even integer, and this is
true for all four kinds of Chebyshev polynomials. Here we look at minimality
in the L1 norm.

The L1 norm (weighted by w(x)) of a function f(x) on [−1, 1] is

‖f‖1 :=
∫ 1

−1

w(x) |f(x)| dx (6.35)

and the Chebyshev polynomials have the following minimality properties in
L1.

Theorem 6.10 21−nTn(x) (n > 0), 2−nUn(x), 2−nVn(x), 2−nWn(x) are the
monic polynomials of minimal L1 norm with respect to the respective weight
functions

w(x) =
1√

1 − x2 , 1,
1√

1 − x,
1√

1 + x
. (6.36)
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Theorem 6.11 The polynomial pn−1(x) of degree n− 1 is a best L1 approxi-
mation to a given continuous function f(x) with one of the four weights w(x)
given by (6.36) if f(x) − pn−1(x) vanishes at the n zeros of Tn(x), Un(x),
Vn(x), Wn(x), respectively, and at no other interior points of [−1, 1].

(Note that the condition is sufficient but not necessary.)

Clearly Theorem 6.10 is a special case of Theorem 6.11 (with f(x) = xn),
and so it suffices to prove the latter. We first state a classical lemma on the
characterisation of best L1 approximations (Rice 1964, Section 4–4).

Lemma 6.12 If f(x)− pn−1(x) does not vanish on a set of positive measure
(e.g., over the whole of a finite subinterval), where pn−1 is a polynomial of
degree n − 1 in x, then pn−1 is a best weighted L1 approximation to f on
[−1, 1] if and only if

I(r)
n :=

∫ 1

−1

w(x) sgn[f(x) − pn−1(x)] φr(x) dx = 0 (6.37)

for r = 0, 1, . . . , n − 1, where each φr(x) is any given polynomial of exact
degree r.

Using this lemma, we can now establish the theorems.

Proof: (of Theorem 6.11 and hence of Theorem 6.10)

Clearly sgn(f(x) − pn−1(x)) = sgnPn(x), where Pr ≡ Tr, Ur, Vr, Wr, respec-
tively (r = 0, 1, . . . , n).

Then, taking φr(x) = Pr(x) in (6.37) and making the usual change of variable,

I(r)
n =




∫ π

0

sgn(cosnθ) cos rθ dθ,∫ π

0

sgn(sin(n+ 1)θ) sin(r + 1)θ dθ,∫ π

0

sgn(cos(n+ 1
2
)θ) cos(r + 1

2
)θ dθ,∫ π

0

sgn(sin(n+ 1
2
)θ) sin(r + 1

2
)θ dθ,

respectively. The proof that I
(r)
n = 0 is somewhat similar in each of these four cases.

Consider the first case. Here, since the zeros of cosnθ occur at (k − 1
2
)π/n for

k = 1, . . . , n, we have

I(r)
n =

∫ π/2n

0

cos rθ dθ +
n−1∑
k=1

(−1)k
∫ (k+

1
2
)π/n

(k− 1
2
)π/n

cos rθ dθ + (−1)n
∫ π

(n− 1
2
)π/n

cos rθ dθ

=
1

r
sin

rπ

2n
+

n−1∑
k=1

(−1)k
1

r

[
sin

(k + 1
2
)rπ

n
− sin

(k − 1
2
)rπ

n

]
+
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+ (−1)n−1 1

r
sin

(n− 1
2
)rπ

n

=
2

r

[
sin

rπ

2n
− sin

3rπ

2n
+ · · ·+ (−1)n−1 sin

(2n− 1)rπ

2n

]

=
1

r

[
sin

rπ

n
−
{
sin

rπ

n
+ sin

2rπ

n

}
+ · · ·+ (−1)n−1 sin

(n− 1)rπ

n

]/
cos

rπ

2n

= 0.

We can likewise show that I
(r)
n = 0 in each of the three remaining cases. Theo-

rems 6.11 and 6.10 then follow very easily from Lemma 6.12 ••
It follows (replacing n by n + 1) that the nth degree polynomial pn(x)

interpolating a function f(x) at the zeros of one of the Chebyshev polynomials
Tn+1(x), Un+1(x), Vn+1(x) or Wn+1(x), which we showed how to construct
in Section 6.3, will in many cases give a best weighted L1 approximation
— subject only to the condition (which we cannot usually verify until after
carrying out the interpolation) that f(x)−pn(x) vanishes nowhere else in the
interval.

6.5 Near-minimax approximation by Chebyshev interpolation

Consider a continuous function f(x) and denote the (first-kind) Chebyshev
interpolation mapping by Jn. Then

(Jnf)(x) =
n+1∑
k=1

f(xk)�k(x), (6.38)

by the Lagrange formula, and clearly Jn must be a projection, since (6.38) is
linear in f and exact when f is a polynomial of degree n. From Lemma 5.13,
Jn is near-minimax within a relative distance ‖Jn‖∞.

Now

|(Jnf)(x)| ≤
n+1∑
k=1

‖f‖∞ |�k(x)| .

Hence

‖Jn‖∞ = sup
f

‖Jnf‖∞
‖f‖∞

= sup
f

sup
x∈[−1,1]

|(Jnf)(x)|
‖f‖∞

≤ sup
f

sup
x∈[−1,1]

n∑
k=0

|�k(x)|

= µn (6.39)
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where

µn = sup
x∈[−1,1]

n+1∑
k=1

|�k(x)| . (6.40)

Now if
∑n

k=0 |�k(x)| attains its extremum at x = ξ, we can define a con-
tinuous function φ(x) such that

‖φ‖∞ ≤ 1,

φ(xk) = sgn(�k(ξ)).

Then, from (6.38),

(Jnφ)(ξ) =
n+1∑
k=1

|�k(ξ)| = µn,

whence
‖Jn‖∞ ≥ ‖Jnφ‖∞ ≥ µn. (6.41)

Inequalities (6.39) and (6.41) together give us

‖Jn‖∞ = µn.

What we have written so far applies to any Lagrange interpolation op-
erator. If we specialise to first-kind Chebyshev interpolation, where �k(x) is
as given by Corollary 6.4A, then we have the following asymptotic bound on
‖Jn‖∞.

Theorem 6.13 If {xk} are the zeros of Tn+1(x), then

1.

µn =
1
π

n+1∑
k=1

∣∣∣∣cot
(k − 1

2 )π
2(n+ 1)

∣∣∣∣ ,
2.

µn =
2
π

logn+ 0.9625 +O(1/n) as n→ ∞.

Proof: For the details of the proof, the reader is referred to Powell (1967) or Rivlin

(1974). See also Brutman (1978). ••
The following classical lemma then enables us to deduce convergence prop-

erties.

Lemma 6.14 (Jackson’s theorem) If ω(δ) is the modulus of continuity of
f(x), then the minimax polynomial approximation Bnf of degree n to f sat-
isfies

‖f −Bnf‖∞ ≤ ω(1/n).
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Corollary 6.14A If (Jnf)(x) interpolates f(x) in the zeros of Tn+1(x), and
if f(x) is Dini–Lipschitz continuous, then (Jnf)(x) converges uniformly to
f(x) as n→ ∞.

Proof: By the definition of Dini–Lipschitz continuity, ω(δ) log δ → 0 as δ → 0. By
Theorem 5.12

‖f − Jnf‖∞ ≤ (1 + ‖Jn‖)∞ ‖f −Bnf‖∞
≤ (1 + µn)ω(1/n)

∼ 2

π
ω(1/n) log n

= − 2

π
ω(δ) log δ (δ = 1/n)

→ 0 as δ → 0; i.e., as n → ∞. ••

In closing this chapter, we remind the reader that further interpolation
results have been given earlier in Chapter 4 in the context of orthogonality.
See in particular Sections 4.3.2 and 6.2.

6.6 Problems for Chapter 6

1. Prove Lemmas 6.3 and 6.4, and deduce Corollary 6.4A.

2. Prove Corollary 6.6A.

3. Find expressions for the coefficients (6.14) of the nth degree interpolat-
ing polynomial when f(x) = sgnx and f(x) = |x|, and compare these
with the coefficients in the Chebyshev expansions (5.11) and (5.12).

4. List the possibilities of aliasing in the following interpolation situations:

(a) Polynomials Uj of the second kind on the zeros of Tn+1(x),

(b) Polynomials Vj of the third kind on the zeros of Tn+1(x),

(c) Polynomials Uj on the zeros of (1 − x2)Un−1(x),

(d) Polynomials Tj on the zeros of (1 − x2)Un−1(x),

(e) Polynomials Vj on the zeros of (1 − x2)Un−1(x),

(f) Polynomials Uj on the zeros of Un+1(x),

(g) Polynomials Tj on the zeros of Un+1(x).

5. Give a proof of Theorem 6.11 for the case of the function Ur.
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6. Using Theorem 6.11, consider the lacunary series partial sum

fn(x) =
n∑

k=1

ckU2k−1(x).

Assuming that the series is convergent to f = limn→∞ fn, show that
f − fn, for instance, vanishes at the zeros of U2n−1. Give sufficient
conditions for fn to be a best L1 approximation to f for every n.

7. Show that the n+ 1 zeros of Tn+1(z) − Tn+1(z∗) are distinct and lie on
Er, for a suitable fixed point z∗ on Er (r > 1). Fixing r, find the zeros
for the following choices of z∗:

(a) z∗ = 1
2 (r + r−1),

(b) z∗ = − 1
2 (r + r−1),

(c) z∗ = 1
2 i(r − r−1),

(d) z∗ = − 1
2 i(r − r−1).

8. If fn(z) is a polynomial of degree n interpolating f(z), continuous on the
ellipse Er and analytic in its interior, find a set of interpolation points
zk (k = 1, . . . , n+ 1) on Er such that

(a) fn is near-minimax within a computable relative distance σn on
Er, giving a formula for σn;

(b) this result is valid as r→ 1; i.e., as the ellipse collapses to the line
segment [−1, 1].

To effect (b), show that it is necessary to choose the interpolation points
asymmetrically across the x-axis, so that points do not coalesce.
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Chapter 7

Near-Best L∞, L1 and Lp Approximations

7.1 Near-best L∞ (near-minimax) approximations

We have already established in Section 5.5 that partial sums of first kind
expansions

(ST
n f)(x) =

n∑′

k=0

ckUk(x), ck =
2
π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx (7.1)

yield near-minimax approximations within a relative distance of O(log n) in
C[−1, 1]. Is this also the case for other kinds of Chebyshev polynomial expan-
sions? The answer is in the affirmative, if we go about the expansion in the
right way.

7.1.1 Second-kind expansions in L∞

Consider the class C±1[−1, 1] of functions continuous on [−1, 1] but con-
strained to vanish at ±1. Let S(2)

n f denote the partial sum of the expansion
of f(x)/

√
1− x2 in Chebyshev polynomials of the second kind, {Uk(x) : k =

0, 1, 2, . . . , n}, multiplied by
√
1− x2. Then

(S(2)
n f)(x) =

√
1− x2

n∑
k=0

bkUk(x), bk =
2
π

∫ 1

−1

f(x)Uk(x) dx. (7.2)

If now we define

g(θ) =
{
f(cos θ) 0 ≤ θ ≤ π
−f(cos θ) −π ≤ θ ≤ 0

(g(θ) being an odd, continuous and 2π-periodic function since f(1) = f(−1) =
0), then we obtain the equivalent Fourier sine series partial sum

(SFS
n+1g)(θ) =

n∑
k=0

bk sin(k + 1)θ, bk =
2
π

∫ π

0

g(θ) sin(k + 1)θ dθ. (7.3)

The operator SFS
n+1 can be identified as the restriction of the Fourier projection

SF
n+1 to the space C0

2π,o of continuous functions that are both periodic of period
2π and odd; in fact we have SFS

n+1g = SF
n+1g for odd functions g, where

(SF
n+1g)(θ) =

1
2π

∫ π

−π

g(t+ θ)
sin(n+ 3

2 )t
sin 1

2 t
dt. (7.4)
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If λn is the Lebesgue constant defined in (5.71)

λn =
1
2π

∫ π

−π

∣∣∣∣ sin(n+
1
2 )t

sin 1
2 t

∣∣∣∣ dt
and partly tabulated in Table 5.1 on page 126, then, similarly to (5.75), we
may show that

∥∥∥S(2)
n

∥∥∥
∞

=
∥∥SFS

n+1

∥∥
∞ ≤ λn+1 (on the space C±1[−1, 1]). (7.5)

Therefore (S(2)
n f)(x) is near-minimax within a relative distance λn+1.

This constant λn+1 is not, however, the best possible, as has been shown
by Mason & Elliott (1995) — the argument of Section 5.5.1 falls down because
the function

sgn
(
sin(n+ 3

2 )θ
sin 1

2θ

)

is even, and cannot therefore be closely approximated by any function in C0
2π,o.

However, g being odd, we may rewrite (7.4) as

(SFS
n+1g)(θ) =

1
4π

∫ π

−π

{g(t+ θ)− g(−t− θ)} sin(n+
3
2 )t

sin 1
2 t

dt

=
1
4π

∫ π

−π

g(t)
{
sin(n+ 3

2 )(t− θ)
sin 1

2 (t− θ)
− sin(n+ 3

2 )(t+ θ)
sin 1

2 (t+ θ)

}
dt

=
1
4π

∫ π

−π

g(t)KFS
n+1(θ, t) dt. (7.6)

This kernel KFS
n+1(θ, t) is an odd function of θ and t, and an argument similar

to that in Section 5.5.1 can now be used to show that
∥∥∥S(2)

n

∥∥∥
∞

=
∥∥SFS

n+1

∥∥
∞ =

1
4π

sup
θ

∫ π

−π

∣∣KFS
n+1(θ, t)

∣∣ dt = λ(2)
n , say. (7.7)

Table 7.1: Lower bounds on λ(2)
n

n bound n bound n bound
1 1.327 10 1.953 100 2.836
2 1.467 20 2.207 200 3.114
3 1.571 30 2.362 300 3.278
4 1.653 40 2.474 400 3.394
5 1.721 50 2.561 500 3.484
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Mason & Elliott (1995) have actually computed values of λ(2)
n , which is no

straightforward task since the points where the integrand KFS
n+1(θ, t) changes

sign are not in general easily determined. For a lower bound to the supremum
for each n, however, we may evaluate the integral when θ = π/(2n+3), when
the sign changes occur at the precisely-known points t = 0, ±3π/(2n + 3),
±5π/(2n+ 3), . . . , ±π. This gives the values shown in Table 7.1.

7.1.2 Third-kind expansions in L∞

Following Mason & Elliott (1995) again, consider functions f in C−1[−1, 1],
continuous on [−1, 1] but constrained to vanish at x = −1. Then the nth
degree projection operator S(3)

n , such that S(3)
n f is the partial sum of the

expansion of f(x)
√
2/(1 + x) in Chebyshev polynomials of the third kind,

{Vk(x) : k = 0, 1, 2, . . . , n}, multiplied by
√
(1 + x)/2, is defined by

(S(3)
n f)(x) =

√
1 + x
2

n∑
k=0

ckVk(x)

=
n∑

k=0

ck cos(k + 1
2 )θ (7.8)

where x = cos θ and

ck =
1
π

∫ 1

−1

√
2

1− xf(x)Vk(x) dx

=
2
π

∫ π

0

g(θ) cos(k + 1
2 )θ dθ

=
1
2π

∫ 2π

−2π

g(θ) cos(k + 1
2 )θ dθ (7.9)

with g defined as follows:

g(θ) =




f(cos θ) 0 ≤ θ ≤ π
−g(2π − θ) π ≤ θ ≤ 2π

g(−θ) −2π ≤ θ ≤ 0.

The function g(θ) has been defined to be continuous (since g(π) = f(−1) = 0)
and 4π-periodic, and is even about θ = 0 and odd about θ = π. Its Fourier
expansion (in trigonometric functions of 1

2θ) therefore involves only terms in
cos(2k + 1) θ

2 = cos(k + 1
2 )θ and is of the form (7.8) when truncated. From

(7.8) and (7.9),

(S(3)
n f)(x) =

1
2π

∫ 2π

−2π

g(t)
n∑

k=0

cos(k + 1
2 )t cos(k +

1
2 )θ dt.
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Table 7.2: Values of λ(3)
n

n λ
(3)
n n λ

(3)
n n λ

(3)
n

1 1.552 10 2.242 100 3.140
2 1.716 20 2.504 200 3.420
3 1.832 30 2.662 300 3.583
4 1.923 40 2.775 400 3.700
5 1.997 50 2.864 500 3.790

We leave it as an exercise to the reader (Problem 1) to deduce that

(S(3)
n f)(x) =

1
π

∫ π

−π

g(t+ θ)
sin(n+ 1)t

sin 1
2 t

dt.

Thus ∣∣∣(S(3)
n f)(x)

∣∣∣ ≤ ‖g‖∞ λ(3)
n (7.10)

where

λ(3)
n =

1
π

∫ π

0

∣∣∣∣ sin(n+ 1)t
sin 1

2 t

∣∣∣∣ dt. (7.11)

Hence
∥∥∥S(3)

n

∥∥∥
∞

≤ λ(3)
n .

Arguing as in Section 5.5.1 as before, we again show that we have an
equality ∥∥∥S(3)

n

∥∥∥
∞

= λ(3)
n .

Numerical values of λ(3)
n are shown in Table 7.2, and clearly appear to

approach those of λn (Table 5.1) asymptotically.

A fuller discussion is given by Mason & Elliott (1995), where it is conjec-
tured that (as for λn in (5.77))

λ(3)
n =

4
π2

logn+A1 +O(1/n)

where A1 � 1.2703. (This follows earlier work by Luttman & Rivlin (1965)
and by Cheney & Price (1970) on the asymptotic behaviour of λn.) Once
more, then, we have obtained a near-minimax approximation within a relative
distance asymptotic to 4π−2 logn.

For further detailed discussion of Lebesgue functions and constants for
interpolation, see Brutman (1997).
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7.2 Near-best L1 approximations

From Section 6.4 we would expect Chebyshev series partial sums to yield near-
best L1 approximations with respect to the weights given in (6.36), namely
w(x) = 1/

√
1− x2, 1, 1/

√
1− x, 1/√1 + x, since they already provide best

L1 approximations for a function that is a polynomial of one degree higher. In
fact, this can be shown to hold simply by pre-multiplying and post-dividing
the functions expanded in Section 7.1 by the additional factor

√
1− x2. The

simplest case to consider here is that of the second-kind polynomials Un, since
the function expanded is then just the original function.

The partial sum of degree n of the second kind, for a continuous function
f(x), is defined by the projection

P (2)
n : (P (2)

n f)(x) =
n∑

k=0

bkUk(x), bk =
2
π

∫ 1

−1

√
1− x2f(x)Uk(x) dx. (7.12)

Defining the function g by

g(θ) = sin θ f(cos θ), (7.13)

which is naturally an odd periodic continuous function, we see that

bk =
2
π

∫ π

0

g(θ) sin(k + 1)θ dθ, (7.14)

as in (7.3), and (P (2)
n f)(cos θ) = (SFS

n+1g)(θ).

Now, treating f(x) as defined on [−1, 1] and g(θ) as defined on [−π, π] so
that

‖g‖1 =
∫ π

−π

|g(θ)| dθ =
∫ π

−π

|sin θ f(cos θ)| dθ = 2
∫ 1

−1

f(x) dx = 2 ‖f‖1 ,

we have ∥∥∥P (2)
n f

∥∥∥
1
= 1

2

∥∥SFS
n+1g

∥∥
1

= 1
2

∫ π

−π

∣∣∣∣ 1
4π

∫ π

−π

g(t)KFS
n+1(θ, t) dt

∣∣∣∣ dθ

≤ 1
2

∫ π

−π

|g(t)| dt 1
4π

sup
t

∫ π

−π

∣∣KFS
n+1(θ, t)

∣∣ dθ
= 1

2 ‖g‖1 λ
(2)
n

= ‖f‖1 λ
(2)
n ,

where λ(2)
n is the constant defined in (7.7) above.
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Hence ∥∥∥P (2)
n

∥∥∥
1
≤ λ(2)

n . (7.15)

Thus λ(2)
n is a bound on

∥∥∥P (2)
n

∥∥∥
1
, just as it was a bound on

∥∥∥S(2)
n

∥∥∥
∞

in Sec-

tion 7.1.1, and so (P (2)
n f)(x), given by (7.12), is a near-best L1 approximation

within the relative distance λ(2)
n defined in (7.7).

The discussion above is, we believe, novel. Freilich & Mason (1971) estab-
lished that

∥∥∥P (2)
n

∥∥∥
1
is bounded by λn, but the new bound (7.15) is smaller by

about 0.27.

If we define P (1)
n and P (3)

n to be the corresponding partial sum projections
of the first and third kinds,

(P (1)
n f)(x) =

1√
1− x2

n∑′

k=0

ckTk(x),

ck =
2
π

∫ 1

−1

f(x)Tk(x) dx, (7.16)

(P (3)
n f)(x) =

1
2
√
1− x

n∑
k=0

ckVk(x),

ck =
1
π

∫ 1

−1

√
2(1 + x)f(x)Vk(x) dx, (7.17)

then it is straightforward to show in a similar way (see Problem 2) that
∥∥∥P (1)

n

∥∥∥
1
≤ λn (classical Lebesgue constant)

and ∥∥∥P (3)
n

∥∥∥
1
≤ λ(3)

n (given by (7.11)).

7.3 Best and near-best Lp approximations

The minimal L∞ and L1 properties of the weighted Chebyshev polynomials,
discussed in Sections 3.3 and 6.4, are in fact special examples of general Lp

minimality properties, which are discussed by Mason & Elliott (1995).

Theorem 7.1 The monic polynomials 21−nTn(z), 2−nUn(z), 2−nVn(z),
2−nWn(z) minimise the Lp norm

[∫ 1

−1

w(x) |Pn(x)|p dx
] 1

p

(1 < p <∞) (7.18)
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over all monic polynomials Pn(x) with

w(x) = (1 − x) 1
2 (α−1)(1 + x)

1
2 (β−1)

for the respective values

(α, β) = (0, 0), (p, p), (0, p), (p, 0).

The proof of this result depends on the characterisation of the best Lp

approximation according to the following result, which we state without proof.

Lemma 7.2 The Lp norm (7.18) is minimised if and only if

∫ 1

−1

w(x) |Pn(x)|p−2
Pn(x)Pk(x) dx = 0, ∀k < n. (7.19)

Proof: (of Theorem 7.1)

We shall concentrate on the first case, that of the first kind polynomials Tn(x),
and leave the remaining cases as exercises for the reader (Problem 3).

Define
Pn(x) = Tn(x), w(x) = 1/

√
(1 − x2).

Then∫ 1

−1

w(x) |Pn(x)|p−2 Pn(x)Pk(x) dx =

∫ π

0

|cos nθ|p−2 cos nθ cos kθ dθ.

Now, for 0 ≤ y ≤ 1, define

Cn(θ, y) =

{
1 (|cos nθ| ≤ y),
0 (|cos nθ| > y).

Then if y = cos η we have Cn(θ, y) = 1 over each range

(r − 1)π + η

n
≤ θ ≤ rπ − η

n
, r = 1, 2, . . . , n.

Thus, for any integer j with 0 < j < 2n,

∫ π

0

Cn(θ, y) cos jθ dθ =
n∑

r=1

∫ (rπ−η)/n

((r−1)π+η)/n

cos jθ dθ

=
n∑

r=1

1

j

[
sin

j{(r − 1)π + η}
n

− sin
j{rπ − η}

n

]

=
2n∑

r=1

1

j
sin

j{(r − 1)π + η}
n

= 0.
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But now, for 0 ≤ k < n,

∫ 1

−1

w(x) |Pn(x)|p−2 Pn(x)Pk(x) dx

=

∫ π

0

|cos nθ|p−2 cos nθ cos kθ dθ

=

∫ π

0

|cos nθ|p−2 1
2
[cos(n + k)θ + cos(n − k)θ] dθ

=

∫ π

0

{
1

p − 1

∫ 1

0

yp−1(1 − Cn(θ, y)) dy

}
1
2
[cos(n + k)θ + cos(n − k)θ] dθ

=
1

p − 1

∫ 1

0

yp−1

{∫ π

0

(1 − Cn(θ, y)) 1
2
[cos(n + k)θ + cos(n − k)θ] dθ

}
dy

= 0.

The result then follows from Lemma 7.2. ••
(An alternative method of proof is to translate into polynomial terms

the result on trigonometric polynomials, due to S. N. Bernstein, given in
Achieser’s book (Achieser 1956, Section 10).)

7.3.1 Complex variable results for elliptic-type regions

It is possible to obtain bounds for norms of projections, and hence measures
of near-best Lp approximation, by using ideas of convexity over a family of Lp

measure spaces for 1 ≤ p ≤ ∞ (Mason 1983b, Mason 1983a). However, the
settings for which there are results have been restricted to ones involving gen-
eralised complex Chebyshev series — based on results for Laurent series. Ma-
son & Chalmers (1984) give Lp results for Fourier, Taylor and Laurent series;
moreover Chalmers & Mason (1984) show these to be minimal projections on
appropriate analytic function spaces. The settings, involving projection from
space X to space Y , where A(D) denotes the space of functions analytic in
D and continuous on D̄, are:

1. Chebyshev, first kind: X = A(Dρ), where Dρ is the elliptical domain
{z : ∣∣z +√

z2 − 1
∣∣ < ρ}; Y = Y1 = Πn (polynomials of degree n in z);

P = Gn

where Gn is the Chebyshev first-kind series projection of A(Dρ) into
Πn.

2. Chebyshev, second kind: X = {f(z) =
√
z2 − 1F (z), F ∈ A(Dρ)},

Y = Y2 = {f(z) = √
z2 − 1F (z), F ∈ Πn};

P = H∗
n−1 : H∗

n−1f =
√
z2 − 1Hn−1F,
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where Hn is the Chebyshev second kind series projection of A(Dρ) into
Πn.

3. Generalised Chebyshev: X = A({z : ρ1 <
∣∣z +√

z2 − 1
∣∣ < ρ2}) (annu-

lus between two ellipses); Y = Y1 ⊕ Y2;

P = Jn = Gn +H∗
n−1.

Then it is proved by Mason (1983b), using convexity arguments, that for each
of the three projections above

‖P‖p ≤ (σ2n)|2p−1−1| (1 ≤ p ≤ ∞) (7.20)

where

σn =
1
n

∫ π

0

∣∣∣∣sin(n+ 1)θ
sin θ

∣∣∣∣ dθ.
Note that σ2n = λn. So the generalised expansion is proved to be as close to
minimax as the (separated) first kind one.

For p = 1, p = ∞, we obtain bounds increasing as 4π−2 log n, while
‖P‖p → 1 as p→ 2.

It follows also (Chalmers & Mason 1984) that Jn is a minimal projection;
indeed, this appears to be the only such result for Chebyshev series. The
component projectionsGn andH∗

n−1 are essentially odd and even respectively,
and correspond to the cosine and sine parts of a full Fourier series. In contrast,
the projection Gn is not minimal.

The earliest near-best results for L∞ and L1 approximation on elliptic
domains appear to be those of Geddes (1978) and Mason (1978). See also
Mason & Elliott (1993) for detailed results for all individual cases.

We should also note that it has long been known that

‖P‖p ≤ Cp (7.21)

where Cp is some constant independent of n. Although this is superficially
stronger than (7.20) from a theoretical point of view, the bounds (7.20) are
certainly small for values of n up to around 500. Moreover, it is known that
Cp → ∞ as p→ ∞. See Zygmund (1959) for an early derivation of this result,
and Mhaskar & Pai (2000) for a recent discussion.

7.4 Problems for Chapter 7

1. Show that

cos(k + 1
2 )t cos(k +

1
2 )θ =

1
2 [cos(k +

1
2 )(t+ θ) + cos(k + 1

2 )(t− θ)]
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and that
n∑

k=0

cos(k + 1
2 )u =

sin(n+ 1)u
2 sin 1

2u
.

Hence prove that

1
π

∫ π

−π

g(t)
n∑

k=0

cos(k + 1
2 )t cos(k +

1
2 )θ dθ =

1
π

∫ π

0

g(t+ θ)
sin(n+ 1)t

sin 1
2 t

dt

by showing that the pair of integrals involved are equal.

(This completes the proof of Section 7.1.2, showing that the weighted
third-kind expansion has a partial sum which is near-minimax.)

2. Show that
∥∥∥P (1)

n

∥∥∥
1
≤ λn and

∥∥∥P (3)
n

∥∥∥
1
≤ λ(3)

n , where λn is the classical

Lebesgue constant and λ(3)
n is given by (7.11).

3. Prove Theorem 7.1 in the case of polynomials of the second and third
kinds.

4. If Sn is a partial sum of a Fourier series

(Snf)(θ) = 1
2a0 +

n∑
k=0

(ak cos kθ + bk sin kθ),

show how this may be written, for suitably defined functions, as a com-
bined first-kind and (weighted) second-kind Chebyshev expansion.

[Hint: f(θ) = F (cos θ) + sin θ G(cos θ) = even part of f + odd part of
f .]

5. Consider the Fejér operator F̃n, which takes the mean of the first n
partial sums of the Fourier series.

(a) Show that F̃n is not a projection.

(b) Show that

(F̃nf)(θ) =
1
nπ

∫ 2π

0

f(t)σ̃n(t− θ) dt

where

σ̃n(θ) =
sin 1

2 (n+ 1)θ sin 1
2nθ

2 sin 1
2θ

.

(c) Show that (F̃nf)(θ), under the transformation x = cos θ, becomes
a combined third-kind and fourth-kind Chebyshev-Fejér sum, each
part being appropriately weighted.

6. Derive the basic result for p = ∞, namely ‖P‖∞ ≤ σ2n = λn, for the
three projections listed in Section 7.3.1.
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7. Derive the corresponding basic results for p = 1.

Would it be possible to obtain a better set of results in this case by
using an odd kernel, like that used in (7.6)?

8. Note that ‖P‖2 = 1 in Section 7.3.1 and that it is known that ‖P‖p is
bounded for any fixed p in the range 1 < p <∞. Discuss whether there
is a ‘better’ result than the one quoted.

(You might like to consider both the practical case n ≤ 500 and the
theoretical case of arbitrarily large n.)

9. Investigate the validity of letting p → 1 in the results of Section 7.3.1,
when the interior of the ellipse collapses to the interval [−1, 1].

10. Compute by hand the bounds for
∥∥∥S(2)

n

∥∥∥
∞

in the case n = 0.

11. Compute some numerical values of λ(2)
n and compare them with the

lower bounds given in Table 7.1.
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Chapter 8

Integration Using Chebyshev Polynomials

In this chapter we show how Chebyshev polynomials and some of their funda-
mental properties can be made to play an important part in two key techniques
of numerical integration.

• Gaussian quadrature estimates an integral by combining values of the
integrand at zeros of orthogonal polynomials. We consider the special
case of Gauss–Chebyshev quadrature, where particularly simple proce-
dures follow for suitably weighted integrands.

• One can approximately integrate a function by expanding it in a series
and then integrating a partial sum of the series. We show that, for
Chebyshev expansions, this process — essentially the Clenshaw–Curtis
method — is readily analysed and again provides a natural procedure
for appropriately weighted integrands.

Although this could be viewed as an ‘applications’ chapter, which in an
introductory sense it certainly is, our aim here is primarily to derive further
basic properties of Chebyshev polynomials.

8.1 Indefinite integration with Chebyshev series

If we wish to approximate the indefinite integral

h(X) =
∫ X

−1

w(x)f(x) dx,

where −1 < X ≤ 1, it may be possible to do so by approximating f(x) on
[−1, 1] by an nth degree polynomial fn(x) and integrating w(x)fn(x) between
−1 and X , giving the approximation

h(X) � hn(X) =
∫ X

−1

w(x)fn(x) dx. (8.1)

Suppose, in particular, that the weight w(x) is one of the four functions

w(x) =
1√
1− x2

, 1,
1√
1− x

,
1√
1 + x

, (8.2)

and that we take fn(x) as the partial sum of the expansion of f(x) in Cheb-
yshev polynomials of the corresponding one of the four kinds

Pk(x) = Tk(x), Uk(x), Vk(x), Wk(x). (8.3)
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Then we can use the fact that (excluding the case where Pk(x) = Tk(x) with
k = 0) ∫ X

−1

w(x)Pk(x) dx = Ck(X)Qk(X)− Ck(−1)Qk(−1)

where
Qk(X) = Uk−1(X), Tk+1(X), Wk(X), Vk(X) (8.4a)

and

Ck(X) = −
√
1−X2

k
,

1
k + 1

, 2
√
1−X

k + 1
2

, −2
√
1 +X

k + 1
2

, (8.4b)

respectively. (Note that Ck(−1) = 0 in the first and fourth cases.) This
follows immediately from the fact that if x = cos θ then we have

d
dx
sin kθ = −k cos kθ

sin θ
,

d
dx
cos(k + 1)θ =

(k + 1) sin(k + 1)θ
sin θ

,

d
dx
sin(k + 1

2 )θ = − (k +
1
2 ) cos(k +

1
2 )θ

sin θ
,

d
dx
cos(k + 1

2 )θ =
(k + 1

2 ) sin(k +
1
2 )θ

sin θ
.

In the excluded case, we use

d
dx

θ = − 1
sin θ

to give
∫ X

−1

1√
1− x2

T0(x) dx = arccos(−1)− arccosX = π − arccosX.

Thus, for each of the weight functions (8.2) we are able to integrate the
weighted polynomial and obtain the approximation hn(X) explicitly. Suppose
that

fn(x) =
n∑′

k=0

akTk(x) [Pk = Tk] or
n∑

k=0

akPk(x) [Pk = Uk, Vk, Wk]. (8.5)

Then in the first case

hn(X) =
n∑′

k=0

ak

∫ X

−1

w(x)Tk(x) dx =

= 1
2a0(π − arccosX)−

n∑
k=1

ak

√
1−X2

k
Uk−1(X), (8.6)

© 2003 by CRC Press LLC



while in the second, third and fourth cases

hn(X) =
n∑

k=0

ak

∫ X

−1

w(x)Pk(x) dx =
n∑

k=0

ak [Ck(x)Qk(x)]
X
−1 . (8.7)

The above procedure is a very reliable one, as the following theorem
demonstrates.

Theorem 8.1 If f(x) is L2-integrable with respect to one of the weights w(x),
as defined by (8.2), and hn(X) is defined by (8.6) or (8.7) as appropriate, if
Qk(X) and Ck(X) are defined by (8.4), and if ak are the exact coefficients
of the expansion of f(x) in Chebyshev polynomials of the corresponding kind,
then hn(X) converges uniformly to h(X) on [−1, 1].

Proof: The idea of the proof is the same in all four cases. We give details of the
second case here, and leave the others as exercises (Problems 1 and 2).

For Pk = Uk, w = 1,

hn(X) =

∫ X

−1

fn(x) dx

=

∫ X

−1

n∑
k=0

ak sin(k + 1)θ dθ.

Thus the integrand is the partial Fourier sine series expansion of sin θf(cos θ), which
converges in L2 and hence in L1 (Theorems 5.2 and 5.5).

Now

‖h − hn‖∞ = max
X

∣∣∣∣
∫ X

−1

{f(x)− fn(x)}dx
∣∣∣∣

≤ max
X

∫ X

−1

|f(x)− fn(x)| dx

=

∫ 1

−1

|f(x)− fn(x)| dx

=

∫ π

0

∣∣∣∣∣sin θ f(cos θ)−
n∑

k=0

ak sin(k + 1)θ

∣∣∣∣∣ dθ
→ 0, n → ∞.

Hence hn converges uniformly to h. ••
The coefficients ak in (8.5) have been assumed to be exactly equal to the

relevant Chebyshev series coefficients. In practice, we most often approximate
these by the corresponding coefficients in a Chebyshev interpolation polyno-
mial (see Chapter 6) — effectively evaluating the integral that defines ak by

© 2003 by CRC Press LLC



the trapezoidal rule (see Section 6.2). In some circumstances, we may need
to calculate the Chebyshev coefficients more accurately than this.

The method followed above is equivalent to methods well known in the
literature. For the first choice (Pk = Tk) the method is that of Clenshaw &
Curtis (1960) and for the second choice (Pk = Uk) that of Filippi (1964).

The analysis of Section 8.1 is taken mainly from Mason & Elliott (1995,
and related papers).

8.2 Gauss–Chebyshev quadrature

Suppose that we now wish to calculate a definite integral of f(x) with weight
w(x), namely

I =
∫ b

a

f(x)w(x) dx. (8.8)

Suppose also that I is to be approximated in the form

I �
n∑

k=1

Akf(xk) (8.9)

where Ak are certain coefficients and {xk} are certain abscissae in [a, b] (all
to be determined). The idea of Gauss quadrature is to find that formula (8.9)
that gives an exact result for all polynomials of as high a degree as possible.

If Jn−1f(x) is the polynomial of degree n − 1 which interpolates f(x) in
any n distinct points x1, . . . , xn, then

Jn−1f(x) =
n∑

k=1

f(xk)�k(x) (8.10)

where �k is the Lagrange polynomial (as in (6.5))

�k(x) =
n∏

r=1
r �=k

(
x− xr

xk − xr

)
(8.11)

The polynomial Jn−1f(x) has the integral

In =
∫ b

a

Jn−1f(x)w(x) dx

=
n∑

k=1

f(xk)
∫ b

a

w(x)�k(x) dx

=
n∑

k=1

Akf(xk)
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provided that the coefficients Ak are chosen to be

Ak =
∫ b

a

w(x)�k(x) dx. (8.12)

With any n distinct abscissae, therefore, and with this choice (8.12) of coef-
ficients, the formula (8.9) certainly gives an exact result whenever f(x) is a
polynomial of degree n− 1 or less. We can improve on this degree, however,
by a suitable choice of abscissae.

Notice too that, for general abscissae, there is no control over the signs
and magnitudes of the coefficients Ak, so that evaluation of the formula (8.9)
may involve heavy cancellation between large terms of opposite signs, and
consequent large rounding error. When we choose the abscissae to maximise
the degree of exactness, however, it can be shown that this problem ceases to
arise.

Theorem 8.2 If xk (k = 1, . . . , n) are the n zeros of φn(x), and {φk : k =
0, 1, 2, . . .} is the system of polynomials, φk having the exact degree k, orthog-
onal with respect to w(x) on [a, b], then (8.9) with coefficients (8.12) gives an
exact result whenever f(x) is a polynomial of degree 2n−1 or less. Moreover,
all the coefficients Ak are positive in this case.

Proof: Since φn(x) is a polynomial exactly of degree n, any polynomial f(x) of
degree 2n − 1 can be written (using long division by φn) in the form

f(x) = φn(x)Q(x) + Jn−1f(x)

where Q(x) and Jn−1f(x) are polynomials each of degree at most n − 1. Then∫ b

a

f(x)w(x) dx =

∫ b

a

φn(x)Q(x)w(x)dx+

∫ b

a

Jn−1f(x)w(x) dx. (8.13)

Now φn(x) is orthogonal to all polynomials of degree less than n, so that the
first integral on the right-hand side of (8.13) vanishes. Thus∫ b

a

f(x)w(x) dx =

∫ b

a

Jn−1f(x)w(x) dx

=

n∑
k=1

AkJn−1f(xk)

since the coefficients have been chosen to give an exact result for polynomials of
degree less than n. But now

f(xk) = φn(xk)Q(xk) + Jn−1f(xk) = Jn−1f(xk),

since xk is a zero of φn(x). Hence∫ b

a

f(x)w(x) dx =

n∑
k=1

Akf(xk),
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and so (8.9) gives an exact result for f(x), as required.

To show that the coefficients Ak are positive, we need only notice that �k(x)
2 is

a polynomial of degree 2n − 2, and is therefore integrated exactly, so that

Ak ≡
n∑

j=1

Aj�k(xj)
2 =

∫ b

a

�k(x)
2w(x) dx > 0

for each k. ••
Thus we can expect to obtain very accurate integrals with the formula

(8.9), and the formula should be numerically stable.

When the interval [a, b] is [−1, 1] and the orthogonal polynomials φn(x)
are one of the four kinds of Chebyshev polynomials, then the weight function
w(x) is (1 − x2)−

1
2 , (1 − x2)

1
2 , (1 + x)

1
2 (1 − x)−

1
2 or (1 − x)

1
2 (1 + x)−

1
2 and

the zeros xk are known explicitly. It remains to determine the coefficients Ak,
which we may do by making use of the following lemma.

Lemma 8.3 ∫ π

0

cosnθ
cos θ − cosφ dθ = π

sinnφ
sinφ

,

∫ π

0

sinnθ sin θ
cos θ − cosφ dθ = −π cosnφ,

for any φ in [0, π], n = 1, 2, 3, . . ..

(We have stated this lemma in terms of the ‘Cauchy principal value’ in-
tegral

∫ · · · dθ since, if we allow φ to take an arbitrary value, the integrands
have a non-integrable singularity at θ = φ. However, when we come to apply
the lemma in this chapter, θ = φ will always turn out to be a zero of the
numerator, so that the singularity will in fact be removable and the principal
value integrals will be equivalent to integrals in the ordinary sense.)

Proof: The lemma can be proved by induction on n, provided that we first establish
the n = 0 case of the first result∫ π

0

1

cos θ − cos φ dθ = 0.

We may do this as follows. Since cos θ is an even function, we have∫ π

0

1

cos θ − cos φ dθ =

= 1
2

∫ π

−π

1

cos θ − cos φ dθ

=

∫ π

−π

eiθ dθ

(eiθ − eiφ)(eiθ − e−iφ)
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=

∫
|z|=1

−i dz
(z − eiφ)(z − e−iφ)

=
−i

eiφ − e−iφ

[∫
|z|=1

dz

z − eiφ −
∫
|z|=1

dz

z − e−iφ

]

=
−1
2 sinφ

[iπ − iπ] = 0.

We leave the subsequent induction as an exercise (Problem 3). ••
The evaluation of Ak can now be carried out.

Theorem 8.4 In the Gauss–Chebyshev formula

∫ 1

−1

f(x)w(x) dx �
n∑

k=1

Akf(xk), (8.14)

where {xk} are the n zeros of φn(x), the coefficients Ak are as follows:

1. For w(x) = (1 − x2)−
1
2 , φn(x) = Tn(x):

Ak =
π

n
.

2. For w(x) = (1 − x2)
1
2 , φn(x) = Un(x):

Ak =
π

n+ 1
(1− x2

k).

3. For w(x) = (1 − x)−
1
2 (1 + x)

1
2 , φn(x) = Vn(x):

Ak =
π

n+ 1
2

(1 + xk).

4. For w(x) = (1 − x)
1
2 (1 + x)−

1
2 , φn(x) =Wn(x):

Ak =
π

n+ 1
2

(1− xk).

Proof: We prove case 1 and leave case 2 as an exercise (Problem 4). We shall
prove cases 3 and 4 a little later.

In case 1, writing

xk = cos θk = cos
(k − 1

2
)π

n
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for the zeros of Tn(x),

Ak =

∫ 1

−1

Tn(x)

(x − xk) n Un−1(xk)

dx√
1− x2

=

∫ π

0

cosnθ sin θk

(cos θ − cos θk) n sin nθk
dθ

=
π

n
,

using Corollary 6.4A and Lemma 8.3. ••
Case 1 above is particularly convenient to use, since all weights are equal

and the formula (8.9) can thus be evaluated with just n−1 additions and one
multiplication.

Example 8.1: To illustrate the exactness of (8.9) for polynomials of degree≤ 2n−1,
consider n = 4 and f(x) = x2. Then

T4(x) = 8x
4 − 8x2 + 1

has zeros x1, . . . , x4 with

x2
1 = x2

4 =
2 +

√
2

4
, x2

2 = x2
3 =

2−√
2

4
.

Hence ∫ 1

−1

x2

√
1− x2

dx � π

4

∑
k

x2
k =

π

4
2

(
2 +

√
2

4
+
2−√

2

4

)
=

π

2

which is the exact value of the integral, as we expect. (See Problem 6 for a more

challenging example.)

Cases 3 and 4 of Theorem 8.4, namely the Chebyshev polynomials of the
third and fourth kinds, require a little more care. We first establish a lemma
corresponding to Lemma 8.3.

Lemma 8.5

1. ∫ π

0

cos(n+ 1
2 )θ

cos θ − cosφ cos
1
2θ dθ =

π

2
sin(n+ 1

2 )φ
sin 1

2φ
.

2. ∫ π

0

sin(n+ 1
2 )θ

cos θ − cosφ sin
1
2θ dθ = −π

2
cos(n+ 1

2 )φ
sin 1

2φ
.
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Proof: (of the Lemma) From the first equation of Lemma 8.3, if we replace cos θ
by x and cosφ by y, ∫ 1

−1

Tn(x)

x − y

dx√
1− x2

= πUn−1(y). (8.15)

Writing x = 2u2 − 1, y = 2v2 − 1, where u = cos 1
2
θ, v = cos 1

2
φ,

∫ 1

−1

(
1 + x

1− x

) 1
2 Vn(x)

x − y
dx =

∫ 1

0

2u√
1− u2

T2n+1(u)

u2 − v2
du

= 1
2

∫ 1

−1

T2n+1(u)

(
1

u+ v
+

1

u − v

)
du√
1− u2

=

∫ 1

−1

T2n+1(u)

u − v

du√
1− u2

= πU2n(v), by (8.15).

Rewriting this in terms of θ and φ, we get

∫ π

0

1

sin 1
2
θ

cos(n+ 1
2
)θ

cos θ − cos φ sin θ dθ = π
sin(2n+ 1) 1

2
φ

sin 1
2
φ

, (8.16)

and this proves part 1 of the Lemma.

Part 2 may be proved similarly, starting from the second equation of Lemma 8.3,
which gives ∫ 1

−1

(1− x2)
1
2

Un−1(x)

x − y
dx = πTn(y),

and making similar substitutions. ••
Proof: (of Theorem 8.4, case 3) Here

Ak =

∫ 1

−1

(
1 + x

1− x

) 1
2 ∏

r �=k

(
x − xr

xk − xr

)
dx

=

∫ 1

−1

(
1 + x

1− x

) 1
2 Vn(x)

(x − xk)V ′
n(xk)

=

∫ π

0

1

sin 1
2
θ

cos(n+ 1
2
)θ cos 1

2
θk sin θk sin θ

(cos θ − cos θk) (n+
1
2
) sin(n+ 1

2
)θk

dθ

=
2π

n+ 1
2

cos2 1
2
θk, by (8.16)

=
π

n+ 1
2

(1 + xk).

Thus case 3 is proved. Case 4 follows, on replacing x by −x. ••
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Example 8.2: To illustrate this case, consider, for example, f(x) = x2 and n = 2
for case 3, so that

I =

∫ 1

−1

(
1 + x

1− x

) 1
2

x2 dx.

Now V2(x) = 4x
2 − 2x − 1 has zeros x1, x2 =

1
4
(1±√

5), with x2
1, x2

2 =
1
8
(3±√

5).
Hence

I � 2π

5
[(1 + x1)x

2
1 + (1 + x2)x

2
2]

=
2π

5
[ 1
4
(5 +

√
5) 1

8
(3 +

√
5) + 1

4
(5−

√
5) 1

8
(3−

√
5)]

= 1
2
π.

This is exact, as we can verify:

I =

∫ π

0

cos 1
2
θ

sin 1
2
θ
(cos θ)2 sin θ dθ =

∫ π

0

1
2
(1 + cos θ)(1 + cos 2θ) dθ = 1

2
π.

The Gauss–Chebyshev quadrature formulae are the only Gauss formulae
whose nodes xk and weights Ak (given by Theorem 8.4) can be written down
explicitly.

8.3 Quadrature methods of Clenshaw–Curtis type

8.3.1 Introduction

The Gauss–Chebyshev quadrature method of Section 8.2 is based on the con-
tinuous orthogonality properties of the Chebyshev polynomials. However, as
we showed in Section 4.6, the four kinds of polynomials also have discrete
orthogonality properties, and it is this kind of property that was exploited in
the original quadrature method of Clenshaw & Curtis (1960). Their method
has been developed in a considerable literature of papers by many authors
(Piessens & Branders 1983, Adam 1987, Adam & Nobile 1991); a particularly
nice presentation is given by Sloan & Smith (1978), who provide a version
based on a general weight function together with a calculation of error esti-
mates. Our treatment here is based on Sloan and Smith’s formulation and
techniques, which we can extend to all four kinds of Chebyshev polynomials.

The basic idea is to replace the integrand by an interpolating polynomial,
and then to integrate this between the required limits. Suppose that we wish
to determine the integral

I(f) :=
∫ 1

−1

w(x)f(x) dx; (8.17)
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then we replace f(x) by the polynomial Jnf(x) of degree n which interpolates
f in abscissae {xk : k = 1, . . . , n+1}, and hence we obtain the approximation

In(f) :=
∫ 1

−1

w(x)Jnf(x) dx (8.18)

to evaluate, either exactly or approximately. So far, this only repeats what
we have said earlier. However, if Chebyshev polynomial abscissae are adopted
as interpolation points then, as we saw in Section 6.3, discrete orthogonal-
ity properties lead to very economical interpolation formulae, expressing the
polynomial Jnf(x) in forms which can readily be integrated — in many cases
exactly.

There are a few important cases in which Gauss–Chebyshev and Clenshaw–
Curtis quadrature lead to the same formulae, although they differ in general.

8.3.2 First-kind formulae

Suppose that

Jnf(x) =
n∑

j=0

bjTj(x) (8.19)

interpolates f(x) in the zeros {xk} of Tn+1(x). Then, using the discrete
orthogonality results (4.40) and (4.42), we have

dij :=
n+1∑
k=1

Ti(xk)Tj(xk) = 0, i �= j, i, j ≤ n (8.20a)

and

dii =
{
(n+ 1), i = 0,
1
2 (n+ 1), i �= 0. (8.20b)

Hence

n+1∑
k=1

f(xk)Ti(xk) =
n+1∑
k=1

Jnf(xk)Ti(xk) =
n∑

j=0

bj

n+1∑
k=1

Ti(xk)Tj(xk) = bidii

and so

bi =
1
dii

n+1∑
k=1

f(xk)Ti(xk). (8.21)

From (8.18)

In(f) =
n∑

j=0

bjaj , (8.22)
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where

aj =
∫ 1

−1

w(x)Tj(x) dx =
∫ π

0

w(cos θ) cos jθ sin θ dθ. (8.23)

Formulae (8.21)–(8.23) give the quadrature rule

In(f) =
n+1∑
k=1

wkf(xk), (8.24a)

wk =
n∑

j=0

aj

djj
Tj(xk) =

n∑′

j=0

2aj

n+ 1
Tj(xk). (8.24b)

Hence In is readily determined, provided that the integrals (8.23) defining aj

are straightforward to calculate.

• For the specific weighting
w(x) = (1 − x2)−

1
2 (8.25)

we have

aj =
∫ 1

−1

(1− x2)−
1
2 Tj(x) dx =

∫ π

0

cos jθ dθ =
{

π, j = 0,
0, j > 0, (8.26)

giving
wk =

a0

d00
T0(xk) =

π

n+ 1
.

Hence ∫ 1

−1

f(x)
dx√
1− x2

� In(f) =
π

n+ 1

n+1∑
k=1

f(xk). (8.27)

Thus we get the first-kind Gauss–Chebyshev formula of Theorem 8.4.

An alternative Clenshaw–Curtis formula may be obtained by defining
Jnf(x) to be the polynomial interpolating the values of f(x) at the abscissae

yk = cos
kπ

n
, k = 0, . . . , n,

which are the zeros of (1 − x2)Un−1(x). In this case we use the discrete
orthogonality results (4.45) and (4.46) to give us

dij :=
n∑′′

k=0

Ti(yk)Tj(yk) = 0, i �= j (8.28a)

and

dii =
{

n, i = 0, i = n,
1
2n, 0 < i < n.

(8.28b)
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We readily deduce, in place of (8.19), that

Jnf(x) =
n∑

j=0

bjTj(x) (8.29)

where in this case

bi =
1
dii

n∑′′

k=0

f(yk)Ti(yk), (8.30)

and that

In(f) =
n∑

j=0

bjaj

where aj are given by the same formula (8.23) as before. This gives us the
rule

In(f) =
n∑

k=0

wkf(yk) (8.31a)

wk =
n∑

j=0

aj

djj
Tj(yk) =

n∑′′

j=0

2aj

n
Tj(yk). (8.31b)

• For w(x) = (1 − x2)−
1
2 , this reduces to the formula

∫ 1

−1

f(x)
dx√
1− x2

� In(f) = πb0 =
π

n

n∑′′

j=0

f(yk). (8.32)

This is nearly equivalent to the second-kind Gauss–Chebyshev formula

of Theorem 8.4, applied to the function
f(x)
1− x2

, except that account

is taken of the values of f(x) at the end points x = ±1. This may
better reflect the inverse-square-root singularities of the integrand at
these points.

8.3.3 Second-kind formulae

It is clear that the key to the development of a Clenshaw–Curtis integration
method is the finding of a discrete orthogonality formula. In fact, there exist
at least sixteen such formulae, listed in Problem 14 of Chapter 4, some of
which are covered in Section 4.6.

An example of a second-kind discrete orthogonality formula, given by
(4.50) and (4.51), is

dij =
n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk) =

{
1
2 (n+ 2), i = j ≤ n,
0, i �= j,

(8.33)
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where {yk} are the zeros of Un+1(x):

yk = cos
kπ

n+ 2
, k = 1, . . . , n+ 1.

To make use of this, we again approximate the required integral I(f) of
(8.17) by the integral In(f) of the form (8.18), but now interpolating f(x) by
a function of the form

Jnf(x) = (1− x2)
1
2

n∑
j=0

bjUj(x); (8.34)

that is, a polynomial weighted by (1 − x2)
1
2 . There is thus an implicit as-

sumption that f(x) vanishes at x = ±1, and that it possibly has a square-root
singularity at these points (though this is not essential).

Now

bi =
2

n+ 2

n+1∑
k=1

(1− y2
k)

1
2 f(yk)Ui(yk) (8.35)

from (8.33). Integrating (8.18) gives us

In(f) =
n∑

j=0

bjaj (8.36)

where

aj =
∫ 1

−1

w(x)(1 − x2)
1
2Uj(x) dx =

∫ π

0

w(cos θ) sin(j + 1)θ sin θ dθ. (8.37)

This gives the rule

In(f) =
n+1∑
k=1

wkf(yk), (8.38a)

wk = (1− y2
k)

1
2

n∑
j=0

2aj

n+ 2
Uj(yk). (8.38b)

• In the special case where w(x) = 1,

aj =
∫ 1

−1

(1− x2)
1
2Uj(x) dx =

∫ π

0

sin(j +1)θ sin θ dθ =
{

1
2π, j = 0,
0, j > 0.

Hence, from (8.36), (8.37),

∫ 1

−1

f(x) dx = In(f) =
π

n+ 2

n+1∑
k=1

(1− y2
k)

1
2 f(yk). (8.39)
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This is equivalent to the second-kind Gauss–Chebyshev formula of The-
orem 8.4, applied to the function

f(x)√
1− x2

.

8.3.4 Third-kind formulae

A third-kind formula is obtained from the orthogonality formula

dij =
n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk) =
{

n+ 3
2 , i = j,

0, i �= j,
(8.40)

where {xk} are the zeros of Vn+1(x). (See Problem 14 of Chapter 4.)

In this case, we choose

Jnf(x) = (1 + x)
1
2

n∑
j=0

bjVj(x), (8.41)

a polynomial weighted by (1 + x)
1
2 (implicitly supposing that f(−1) = 0).

Now, from (8.39), we can show that

bi =
1

n+ 3
2

n+1∑
k=1

(1 + xk)
1
2 f(xk)Vi(xk). (8.42)

Integrating (8.18) gives us again

In(f) =
n∑

j=0

bjaj

where now

aj =
∫ 1

−1

w(x)(1 + x)
1
2Vj(x) dx. (8.43)

So we have the rule

In(f) =
n+1∑
k=1

wkf(xk) (8.44a)

wk = (1 + xk)
1
2

n∑
j=0

2aj

2n+ 3
Vj(xk). (8.44b)

• For the special case in which
w(x) = (1− x)−

1
2 , (8.45)
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then

aj =
∫ 1

−1

(1 + x)Vj(x)
dx

(1 − x2)
1
2
=

=
∫ π

0

2 cos(j + 1
2 )θ cos

1
2θ dθ =

{
π, j = 0,
0, j > 0.

Hence

∫ 1

−1

f(x)
dx√
1− x

= In(f) =
2π

2n+ 3

n+1∑
k=1

(1 + xk)
1
2 f(xk). (8.46)

This is equivalent to the third-kind Gauss–Chebyshev formula of Theo-
rem 8.4, applied to the function

f(x)√
1 + x

.

8.3.5 General remark on methods of Clenshaw–Curtis type

There are effectively two types of quadrature formula considered above.

• For special choices of weight function w(x), such that all but one of
the Chebyshev transforms bi vanish, the formula involves only a single
summation — such as (8.27) — and is identical or very similar to a
Gauss–Chebyshev formula.

• For a more general weight function, provided that the integral (8.23),
(8.37) or (8.43) defining aj can be exactly evaluated by some means, we
obtain a formula involving a double summation — such as (8.24) — one
set of summations to compute the weights wk and a final summation to
evaluate the integral.

8.4 Error estimation for Clenshaw–Curtis methods

There are a number of papers on error estimation in Clenshaw–Curtis methods
(Fraser & Wilson 1966, O’Hara & Smith 1968, Smith 1982, Favati et al. 1993,
for instance). However, we emphasise here the approach of Sloan & Smith
(1980), which seems to be particularly robust, depends on interesting proper-
ties of Chebyshev polynomials, and is readily extendible to cover all four kinds
of Chebyshev polynomial and the plethora of abscissae that were discussed in
Section 8.3.
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8.4.1 First-kind polynomials

Suppose that the function f(x) being approximated is continuous and of
bounded variation, and therefore has a uniformly convergent first-kind Cheb-
yshev expansion

f(x) ≈
∞∑′

j=0

βjTj(x). (8.47)

Then the error in the integration method (8.31) (based on {yk}) is

En(f) := I(f)− In(f)

= (I − In)


 ∞∑

j=n+1

βjTj(x)




=
∞∑

j=n+1

βj {I(Tj)− In(Tj)}. (8.48)

Now

I(Tj) =
∫ 1

−1

w(x)Tj(x) dx = aj (8.49)

and (Jn again denoting the operator interpolating in the points {yk})

In(Tj) =
∫ 1

−1

w(x)JnTj(x) dx. (8.50)

But
JnTj(yk) = Tj(yk) = Tj′(yk) (8.51)

where (as shown in Table 8.1) j′ = j′(n, j) is an integer in the range 0 ≤ j′ ≤ n
defined by

j′(n, j) = j, 0 ≤ j ≤ n
j′(n, j) = 2n− j, n ≤ j ≤ 2n

j′(n, 2n+ j) = j′(n, j)


 . (8.52)

This follows immediately from the observation that, j, k and n being integers,

Tj(yk) = cos
jkπ

n
= cos

(2n± j)kπ
n

= T2n±j(yk).

Thus the interpolation operator Jn has the so-called aliasing1 effect of
identifying any Chebyshev polynomial Tj with a polynomial Tj′ of degree at
most n, and it follows from (8.51) that, identically,

JnTj(x) = Tj′(x), (8.53)
1See Section 6.3.1.
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Table 8.1: Tj′(x) interpolates Tj(x) in the zeros of (1− x2)Un−1(x)

j = 0 1 2 → n− 1 n
2n 2n− 1 2n− 2 ← n+ 1 n
2n 2n+ 1 2n+ 2 → 3n− 1 3n
...

...
...

...
...

j′ = 0 1 2 · · · n− 1 n

and
In(Tj) = In(Tj′) = I(Tj′) = aj′ . (8.54)

Therefore

En(f) =
∞∑

j=n+1

βj(aj − aj′). (8.55)

Sloan & Smith (1980) assume that the weight function w(x) is smooth
enough for aj (8.23) to be neglected for j > 2n and that the integrand f(x)
itself is smooth enough for βj (8.47) to be neglected beyond j = 3n. Then
(8.55) yields, referring to Table 8.1,

|En(f)| ≤ |an+1 − an−1| |βn+1|+ |an+2 − an−2| |βn+2|+ · · ·
· · ·+ |a2n − a0| |β2n|+ |a1| |β2n+1|+ · · ·+ |an| |β3n| .

If we then assume a geometric decay in the βjs, say

|βn+j | ≤ cnr
j
n

for some cn, rn with rn < 1, then

|En(f)| ≤ cn{|an+1 − an−1| rn+ · · ·+ |a2n − a0| rn
n+ |a1| rn+1

n + · · ·+ |an| r2n
n }.

(8.56)

If we change the notation slightly, replacing bj by bnj , the additional sub-
script being introduced to show the dependence on n,

bnj =
2
π

n∑′′

k=0

f(yk)Tj(yk),

it is clear that bnj is an approximation to

βj =
2
π

∫ 1

−1

f(x)Tj(x)
dx√
1− x2

,

which becomes increasingly accurate with increasing n. Hence, a succession
of values of bnj (for various values of n) may be used to estimate βj . (For the
case j = n, βj would be approximated by 1

2bnj .)
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Sloan and Smith’s ‘second method’ is based on obtaining estimates of rn

and cn, and then using them in (8.56). Essentially, rn is estimated from ratios
of coefficients and cn from the coefficients themselves. One algorithm, which
takes account of the observed fact that odd and even coefficients tend to have
somewhat different behaviours, and which uses three or four coefficients to
construct each estimate, is as follows:

• Compute

z1 = max{ 1
2 |bnn| , |bn,n−2| , |bn,n−4| , |bn,n−6|},

z2 = max{|bn,n−1| , |bn,n−3| , |bn,n−5| .

• If z1 > z2 then if |bn,n−6| > · · · > 1
2 |bnn| then

r2n = max
{ 1

2 |bnn|
|bn,n−2| ,

|bn,n−2|
|bn,n−4| ,

|bn,n−4|
|bn,n−6|

}
, (8.57)

otherwise rn = 1.

• If z1 < z2 then if |bn,n−5| > · · · > |bn,n−1| then

r2n = max
{ |bn,n−1|
|bn,n−3| ,

|bn,n−3|
|bn,n−5|

}
, (8.58)

otherwise rn = 1.

• Set
cn = max{ 1

2 |bnn| , |bn,n−1| rn, . . . , |bn,n−6| r6n}. (8.59)

8.4.2 Fitting an exponential curve

A similar but somewhat neater procedure for estimating cn and rn is to fit
the coefficients

bnn, bn,n−1, bn,n−2, . . . , bn,n−k

(or the even or odd subsequences of them) by the sequence

cnr
n
n , cnr

n−1
n , cnr

n−2
n , . . . , cnr

n−k
n .

This is in effect a discrete approximation of a function g(x) = bnx by

cn(rn)x ≡ eA+Bx

at x = n, n− 1, n− 2, . . . , n− k, where A = ln cn and B = ln rn.

Then
g(x) = eA+Bx + e(x)
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where e(x) is the error. Hence

ln g(x) + ln(1− e(x)/g(x)) = A+Bx

so that, to the first order of approximation,

ln g(x)− e(x)/g(x) ≈ A+ Bx

and
g(x) ln g(x)− e(x) ≈ g(x)(A+Bx).

Hence a discrete least-squares fit of ln g(x) by A+Bx, weighted throughout
by g(x), can be expected to give a good model of the least-squares fitting of
g(x) by eA+Bx.

This is an example of an algorithm for approximation by a ‘function of a
linear form’ — more general discussion of such algorithms is given in Mason
& Upton (1989).

8.4.3 Other abscissae and polynomials

Analogous procedures to those of Section 8.4.1 can be found for all four kinds
of Chebyshev polynomials, and for all sets of abscissae that provide discrete
orthogonality.

For example:

• For first-kind polynomials on the zeros {xk} of Tn+1(x) (8.24), equations
(8.47)–(8.50) still hold, but now

JnTj(xk) = Tj(xk) = ±Tj′(xk)

where (as in Table 8.2)

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, j + 2n+ 2) = j′(n, j) (with changed sign)



.

(8.60)
This follows immediately from

Tj(xk) =




cos j′(k− 1
2 )π

n+1 (0 ≤ j ≤ n)

0 (j = n+ 1)

cos (2n+2−j′)(k− 1
2 )π

n+1 = − cos j′(k− 1
2 )π

n+1 (n+ 2 ≤ j ≤ 2n+ 2)

cos (2n+2+j′)(k− 1
2 )π

n+1 = − cos j′(k− 1
2 )π

n+1 (2n+ 3 ≤ j ≤ 3n+ 2)
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Table 8.2: ±Tj′(x) interpolating Tj(x) in the zeros of Tn+1(x)

j = 0 1 → n n+ 1 n+ 2 → 2n+ 1 2n+ 2
4n+ 4 4n+ 3 ← 3n+ 4 3n+ 3 3n+ 2 ← 2n+ 3 2n+ 2
4n+ 4 4n+ 5 → 5n+ 4 5n+ 5 5n+ 6 → 6n+ 5 6n+ 6
...

...
...

...
...

...
...

j′ = 0 1 · · · n n+ 1 n · · · 1 0
sign + + · · · + 0 − · · · − −

We now deduce that

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n+2|+ |a1| |β2n+3|+ · · ·
· · ·+ |an+1| |β3n+3| . (8.61)

• For second-kind polynomials on the zeros of Un+1 (8.38), we require an
expansion

f(x) =
∞∑

j=0

βjUj(x)

so that βj is approximated by bj from (8.35).

Then

En(f) =
∞∑

j=n+1

βj [I(Uj)− In(Uj)]

where now

I(Uj) =
∫ 1

−1

w(x)(1 − x2)1/2Uj(x) dx = aj (8.62)

and

In(Uj) =
∫ 1

−1

w(x)(1 − x2)1/2JnUj(x) dx. (8.63)

If {yk} are the zeros of Un+1(x), then

JnUj(yk) = Uj(yk) = ±Uj′(yk)
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where (taking U−1 ≡ 0)

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, 2n+ 3) = −1 (with zero coefficient)

j′(n, j + 2n+ 4) = j′(n, j) (with unchanged sign)



.

(8.64)
This is shown in Table 8.3, and follows from

yk = cos θk = cos
kπ

n+ 2
, k = 1, . . . , n+ 1.

For

Uj(yk) sin θk = sin(j + 1)θk (j = 0, . . . , n)

= sin(2n+ 2− j′ + 1)θk = − sin(j′ + 1)θk

= −Uj′(yk) sin θk (j′ = n+ 1, . . .)

and
sin(j + 2n+ 4 + 1)θk = sin(j + 1)θk.

Table 8.3: ±Uj′(x) interpolating Uj(x) in the zeros of Un+1(x)

j = 0 → n n+ 1 n+ 2 → 2n+ 2 2n+ 3
2n+ 4 → 3n+ 4 3n+ 5 3n+ 6 → 4n+ 6 4n+ 7
4n+ 8 → 5n+ 8 5n+ 9 5n+ 10 → 6n+ 10 6n+ 11
...

...
...

...
...

...
j′ = 0 · · · n n+ 1 n · · · 0 −1
sign + · · · + 0 − · · · − 0

From (8.62) and (8.63):

En(f) =
∞∑

j=n+1

βj(aj − aj′)

and

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n+2|+ |a0| |β2n+4|+ · · ·
· · ·+ |an+1| |β3n+5| . (8.65)
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• For third-kind polynomials on the zeros of Vn+1 (8.44), we use an ex-
pansion

f(x) = (1 + x)1/2
∞∑

j=0

βjVj(x). (8.66)

Then

En(f) =
∞∑

j=n+1

βj [I(Vj)− In(Vj)]

where

I(Vj) =
∫ 1

−1

w(x)(1 + x)1/2Vj(x) dx = aj (8.67)

and

In(Vj) =
∫ 1

−1

w(x)(1 + x)1/2JnVj(x) dx. (8.68)

Choose {xk} as the zeros of Vn+1(x). Then

JnVj(xk) = Vj(xk) = ±Vj′(xk)

where

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, j + 2n+ 3) = j′(n, j) (with changed sign)



.

(8.69)
This is shown in Table 8.4, and follows from

xk = cos θk = cos
(k − 1

2 )π
n+ 3

2

,

giving

cos 1
2θkVj(xk) = cos

(j + 1
2 )(k − 1

2 )π
n+ 3

2

= cos
(2n+ 2− j′ + 1

2 )(k − 1
2 )π

n+ 3
2

= cos
{2(n+ 3

2 )− (j′ + 1
2 )}(k − 1

2 )π
n+ 3

2

= − cos (j
′ + 1

2 )(k − 1
2 )π

n+ 3
2

and

cos
(j + 2n+ 3 + 1

2 )(k − 1
2 )π

n+ 3
2

= − cos (j +
1
2 )(k − 1

2 )π
n+ 3

2

.
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Table 8.4: ±Vj′ (x) interpolating Vj(x) in the zeros of Vn+1(x)

j = 0 → n n+ 1 n+ 2 → 2n+ 2
4n+ 5 ← 3n+ 5 3n+ 4 3n+ 3 ← 2n+ 3
4n+ 6 → 5n+ 6 5n+ 7 5n+ 8 → 6n+ 8
...

...
...

...
...

j′ = 0 · · · n n+ 1 n · · · 0
sign + · · · + 0 − · · · −

From (8.67) and (8.68):

En(f) =
∞∑

j=n+1

βj(aj − aj′)

and

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n|+ |a0| |β2n+3|+ · · ·
· · ·+ |an| |β3n+3| . (8.70)

We note that there are only very slight differences between Tables 8.2, 8.3
and 8.4 and between the corresponding error bounds (8.61), (8.65) and (8.70).

8.5 Some other work on Clenshaw–Curtis methods

There is now a significant amount of literature on Clenshaw–Curtis methods,
built up over about forty years, from which we shall draw attention to a
selection of items.

Of particular interest are applications to Bessel function integrals (Piessens
& Branders 1983), oscillatory integrals (Adam 1987), Fourier transforms of
singular functions (Piessens & Branders 1992), Cauchy principal-value inte-
grals (Hasegawa & Torii 1991) and Volterra integral equations (Evans et al.
1981).

Among contributions specific to error bounds and error estimates are the
early work of Chawla (1968), Locher (1969) and O’Hara & Smith (1968),
together with more recent work of Smith (1982) and Favati et al. (1993)—the
last being concerned with analytic functions.

Product integration (including error estimation) has been well studied, in
particular by Sloan & Smith (1978, 1980, 1982) and Smith & Paget (1992).

There has been an important extension of the Clenshaw–Curtis method
to integration over a d-dimensional hypercube, by Novak & Ritter (1996).
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8.6 Problems for Chapter 8

1. If w = (1 − x2)−
1
2 and Pk(x) = Tk(x) in Section 8.1, show that

‖h− hn‖∞ =
∫ 1

−1

(1− x2)−
1
2

∣∣∣∣∣f(x)−
n∑′

k=0

akTk(x)

∣∣∣∣∣ dx

=
∫ π

0

∣∣∣∣∣f(cos θ)−
n∑′

k=0

ak cos kθ

∣∣∣∣∣ dθ.

By considering the Fourier cosine series expansion of f(cos θ), deduce
Theorem 8.1 for the first case.

2. If w = [12 (1 − x)]−
1
2 and Pk(x) = Vk(x) in Section 8.1, show that

‖h− hn‖∞ =
∫ 1

−1

[12 (1− x)]−
1
2

∣∣∣∣∣f(x)−
n∑

k=0

akVk(x)

∣∣∣∣∣ dx

= 2
∫ π

0

∣∣∣∣∣cos 1
2θ f(cos θ)−

n∑
k=0

ak cos(k + 1
2 )θ

∣∣∣∣∣ dθ

= 4
∫ π/2

0

∣∣∣∣∣cosφ f(cos 2φ)−
n∑

k=0

ak cos(2k + 1)φ

∣∣∣∣∣ dφ.

By considering the Fourier cosine series expansion of cosφ f(cos 2φ)
(which is odd about φ = 1

2π), deduce Theorem 8.1 for the third case.

3. Complete the proof of Lemma 8.3, by performing an induction on n for
the pair of formulae together.

4. Use Lemma 8.3 to prove the second part of Theorem 8.4. Verify that
this quadrature formula is exact for n = 3 in the case of the integral∫ 1

−1

√
1− x2 x2 dx.

5. Prove in detail the second part of Lemma 8.5.

6. Verify the exactness of Gauss–Chebyshev quadrature using first-kind
polynomials, by testing it for n = 4 and f(x) = x6, f(x) = x7.

7. Verify the Gauss–Chebyshev rule for fourth-kind polynomials, by testing
it for n = 1 and f(x) = 1, f(x) = x.

8. Verify that there is a Gauss–Chebyshev quadrature rule based on the
zeros of (1 − x2)Un−1(x) and the polynomials Tn(x), and derive a for-
mula. (This type of formula, which uses both end points, is called a
Lobatto rule.) When would this rule be useful?
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9. Show that there is a Gauss–Chebyshev quadrature rule based on the
zeros of (1 + x)Vn(x) and the polynomials Tn(x), and derive a formula.
(This type of formula, which uses one end point, is called a Radau rule.)
When would this rule be useful?
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Chapter 9

Solution of Integral Equations

9.1 Introduction

In this chapter we shall discuss the application of Chebyshev polynomial tech-
niques to the solution of Fredholm (linear) integral equations, which are clas-
sified into three kinds taking the following generic forms:

First kind: Given functions K(x, y) and g(x), find a function f(y) on [a, b]
such that for all x ∈ [a, b]

∫ b

a

K(x, y)f(y) dy = g(x); (9.1)

Second kind: Given functions K(x, y) and g(x), and a constant λ not pro-
viding a solution of (9.3) below, find a function f(y) on [a, b] such that
for all x ∈ [a, b]

f(x) − λ
∫ b

a

K(x, y)f(y) dy = g(x); (9.2)

Third kind: Given a function K(x, y), find values (eigenvalues) of the con-
stant λ for which there exists a function (eigenfunction) f(y), not van-
ishing identically on [a, b], such that for all x ∈ [a, b]

f(x) − λ
∫ b

a

K(x, y)f(y) dy = 0. (9.3)

Equations of these three kinds may be written in more abstract terms as
the functional equations

Kf = g, (9.4)

f − λKf = g, (9.5)

f − λKf = 0, (9.6)

where K represents a linear mapping (here an integral transformation) from
some function space F into itself or possibly (for an equation of the first kind)
into another function space G, g represents a given element of F or G as
appropriate and f is an element of F to be found.

A detailed account of the theory of integral equations is beyond the scope
of this book — we refer the reader to Tricomi (1957), for instance. However,
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it is broadly true (for most of the kernel functions K(x, y) that one is likely to
meet) that equations of the second and third kinds have well-defined and well-
behaved solutions. Equations of the first kind are quite another matter—here
the problem will very often be ill-posed mathematically in the sense of either
having no solution, having infinitely many solutions, or having a solution f
that is infinitely sensitive to variations in the function g. It is essential that
one reformulates such a problem as a well-posed one by some means, before
attempting a numerical solution.

In passing, we should also mention integral equations of Volterra type,
which are similar in form to Fredholm equations but with the additional prop-
erty that K(x, y) = 0 for y > x, so that∫ b

a

K(x, y)f(y) dy

is effectively ∫ x

a

K(x, y)f(y) dy.

A Volterra equation of the first kind may often be transformed into one of the
second kind by differentiation. Thus∫ x

a

K(x, y)f(y) dy = g(x)

becomes, on differentiating with respect to x,

K(x, x)f(x) +
∫ x

a

∂

∂x
K(x, y)f(y) dy =

d
dx
g(x).

It is therefore unlikely to suffer from the ill-posedness shown by general Fred-
holm equations of the first kind. We do not propose to discuss the solution of
Volterra equations any further here.

9.2 Fredholm equations of the second kind

In a very early paper, Elliott (1961) studied the use of Chebyshev polynomials
for solving non-singular equations of the second kind

f(x) − λ
∫ b

a

K(x, y)f(y) dy = g(x), a ≤ x ≤ b, (9.7)

and this work was later updated by him (Elliott 1979). Here K(x, y) is
bounded in a ≤ x, y ≤ b, and we suppose that λ is not an eigenvalue of
(9.3). (If λ were such an eigenvalue, corresponding to the eigenfunction φ(y),
then any solution f(y) of (9.7) would give rise to a multiplicity of solutions of
the form f(y) + αφ(y) where α is an arbitrary constant.)
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For simplicity, suppose that a = −1 and b = 1. Assume that f(x) may be
approximated by a finite sum of the form

N∑′′

j=0

ajTj(x). (9.8)

Then we can substitute (9.8) into (9.7) so that the latter becomes the approx-
imate equation

N∑′′

j=0

ajTj(x) − λ
N∑′′

j=0

aj

∫ 1

−1

K(x, y)Tj(y) dy ∼ g(x), −1 ≤ x ≤ 1. (9.9)

We need to choose the coefficients aj so that (9.9) is satisfied as well as
possible over the interval −1 ≤ x ≤ 1. A reasonably good way of achieving
this is by collocation — requiring equation (9.9) to be an exact equality at
the N + 1 points (the extrema of TN(x) on the interval)

x = yi,N = cos
iπ

N
,

so that
N∑′′

j=0

aj(Pij − λQij) = g(yi,N ), i = 0, . . . , N, (9.10)

where

Pij = Tj(yi,N ), Qij =
∫ 1

−1

K(yi,N , y)Tj(y) dy. (9.11)

We thus have N + 1 linear equations to solve for the N + 1 unknowns aj .

As an alternative to collocation, we may choose the coefficients bi,k so that
KM (yi,N , y) gives a least squares or minimax approximation to K(yi,N , y).

If we cannot evaluate the integrals in (9.11) exactly, we may do so approx-
imately, for instance, by replacing each K(yi,N , y) with a polynomial

KM (yi,N , y) =
M∑′′

k=0

bi,kTk(y) (9.12)

for some1 M > 0, with Chebyshev coefficients given by

bi,k =
2
M

M∑′′

m=0

K(yi,N , ym,M )Tk(ym,M ), k = 0, . . . ,M, (9.13)

1There does not need to be any connection between the values of M and N .
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where
ym,M = cos

mπ

M
, m = 0, . . . ,M.

As in the latter part of Section 6.3.2, we can then show that

KM (yi,N , ym,M ) = K(yi,N , ym,M ), m = 0, . . . ,M,

so that, for each i, KM (yi,N , y) is the polynomial of degree M in y, interpo-
lating K(yi,N , y) at the points ym,M .

From (2.43) it is easily shown that

∫ 1

−1

Tn(x) dx =

{ −2
n2 − 1

, n even,

0, n odd.
(9.14)

Hence

Qij ≈
∫ 1

−1

KM (yi,N , y)Tj(y) dy

=
M∑′′

k=0

bi,k

∫ 1

−1

Tk(y)Tj(y) dy

= 1
2

M∑′′

k=0

bi,k

∫ 1

−1

{Tj+k(y) + T|j−k|(y)} dy

= −
M∑′′

k=0
j±k even

bi,k

{
1

(j + k)2 − 1
+

1
(j − k)2 − 1

}

= −2
M∑′′

k=0
j±k even

bi,k
j2 + k2 − 1

(j2 + k2 − 1)2 − 4j2k2
, (9.15)

giving us the approximate integrals we need.

Another interesting approach, based on ‘alternating polynomials’ (whose
equal extrema occur among the given data points), is given by Brutman
(1993). It leads to a solution in the form of a sum of Chebyshev polyno-
mials, with error estimates.

9.3 Fredholm equations of the third kind

We can attack integral equations of the third kind in exactly the same way as
equations of the second kind, with the difference that we have g(x) = 0.
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Thus the linear equations (9.10) become

N∑′′

j=0

aj(Pij − λQij) = 0, i = 0, . . . , N. (9.16)

Multiplying each equation by T�(yi,N ) and carrying out a
∑′′ summation

over i (halving the first and last terms), we obtain (after approximating K by
KM ) the equations

MN

4
a� = λ

N∑′′

j=0

aj ×

×

 M∑′′

k=0

N∑′′

i=0

M∑′′

m=0

T�(yi,N )K(yi,N , ym,M )Tk(ym,M )
∫ 1

−1

Tk(y)Tj(y) dy


 ,

(9.17)

which is of the form
MN

4
a� = λ

N∑
j=0

ajA�j (9.18)

or, written in terms of vectors and matrices,

MN

4
a = λAa. (9.19)

Once the elements of the (N+1)×(N+1) matrix A have been calculated, this
is a straightforward (unsymmetric) matrix eigenvalue problem, which may
be solved by standard techniques to give approximations to the dominant
eigenvalues of the integral equation.

9.4 Fredholm equations of the first kind

Consider now a Fredholm integral equation of the first kind, of the form

g(x) =
∫ b

a

K(x, y)f(y) dy, c ≤ x ≤ d. (9.20)

We can describe the function g(x) as an integral transform of the function
f(y), and we are effectively trying to solve the ‘inverse problem’ of determining
f(y) given g(x).

For certain special kernels K(x, y), a great deal is known. In particular,
the choices

K(x, y) = cosxy, K(x, y) = sinxy and K(x, y) = e−xy,
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with [a, b] = [0,∞), correspond respectively to the well-known Fourier cosine
transform, Fourier sine transform and Laplace transform. We shall not pursue
these topics specifically here, but refer the reader to the relevant literature
(Erdélyi et al. 1954, for example).

Smooth kernels in general will often lead to inverse problems that are
ill-posed in one way or another.

For example, if K is continuous and f is integrable, then it can be shown
that g = Kf must be continuous — consequently, if we are given a g that is
not continuous then no (integrable) solution f of (9.20) exists.

Uniqueness is another important question to be considered. For example
Groetsch (1984) notes that the equation∫ π

0

x sin y f(y) dy = x

has a solution
f(y) = 1

2 .

However, it has an infinity of further solutions, including

f(y) = 1
2 + sinny (n = 2, 3, . . .).

An example of a third kind of ill-posedness, given by Bennell (1996), is
based on the fact that, if K is absolutely integrable in y for each x, then by
the Riemann–Lebesgue theorem,

φn(x) ≡
∫ b

a

K(x, y) cosny dy → 0 as n→ ∞.

Hence∫ b

a

K(x, y)(f(y) + α cosny) dy = g(x) + αφn(x) → g(x) as n→ ∞,

where α is an arbitrary positive constant. Thus a small perturbation

δg(x) = αφn(x)

in g(x), converging to a zero limit as n→ ∞, can lead to a perturbation

δf(y) = α cosny

in f(y) which remains of finite magnitude α for all n. This means that the
solution f(y) does not depend continuously on the data g(x), and so the
problem is ill-posed.

We thus see that it is not in fact necessarily advantageous for the func-
tion K to be smooth. Nevertheless, there are ways of obtaining acceptable
numerical solutions to problems such as (9.20). They are based on the tech-
nique of regularisation, which effectively forces an approximate solution to be
appropriately smooth. We return to this topic in Section 9.6 below.
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9.5 Singular kernels

A particularly important class of kernels, especially in the context of the study
of Chebyshev polynomials in integral equations, comprises the Hilbert kernel

K(x, y) =
1

x− y (9.21)

and other related ‘Hilbert-type’ kernels that behave locally like (9.21) in the
neighbourhood of x = y.

9.5.1 Hilbert-type kernels and related kernels

If [a, b] = [−1, 1] and

K(x, y) =
w(y)
y − x,

where w(y) is one of the weight functions (1 + y)α(1 − y)β with α, β = ± 1
2 ,

then there are direct links of the form (9.20) between Chebyshev polynomials
of the four kinds (Fromme & Golberg 1981, Mason 1993).

Theorem 9.1

πUn−1(x) =
∫ 1

−1

K1(x, y)Tn(y) dy, (9.22a)

−πTn(x) =
∫ 1

−1

K2(x, y)Un−1(y) dy, (9.22b)

πWn(x) =
∫ 1

−1

K3(x, y)Vn(y) dy, (9.22c)

−πVn(x) =
∫ 1

−1

K4(x, y)Wn(y) dy (9.22d)

where

K1(x, y) =
1√

1 − y2 (y − x)
,

K2(x, y) =

√
1 − y2

(y − x)
,

K3(x, y) =
√

1 + y√
1 − y (y − x)

,

K4(x, y) =
√

1 − y√
1 + y (y − x)

,

and each integral is to be interpreted as a Cauchy principal value integral.
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Proof: In fact, formulae (9.22a) and (9.22b) correspond under the transformation
x = cos θ to the trigonometric formulae∫ π

0

cosnφ

cosφ − cos θ
dφ = π

sinnθ

sin θ
, (9.23)

∫ π

0

sinnφ sinφ

cosφ − cos θ
dφ = −π cosnθ, (9.24)

which have already been proved in another chapter (Lemma 8.3). Formulae (9.22c)

and (9.22d) follow similarly from Lemma 8.5. ••
From Theorem 9.1 we may immediately deduce integral relationships be-

tween Chebyshev series expansions of functions as follows.

Corollary 9.1A

1. If f(y) ∼ ∑∞
n=1 anTn(y) and g(x) ∼ π

∑∞
n=1 anUn−1(x) then

g(x) =
∫ 1

−1

f(y)√
1 − y2 (y − x)

dy. (9.25a)

2. If f(y) ∼ ∑∞
n=1 bnUn−1(y) and g(x) ∼ π

∑∞
n=1 bnTn(x) then

g(x) = −
∫ 1

−1

√
1 − y2 f(y)
(y − x)

dy. (9.25b)

3. If f(y) ∼ ∑∞
n=1 cnVn(y) and g(x) ∼ π

∑∞
n=1 cnWn(x) then

g(x) =
∫ 1

−1

√
1 + y f(y)√

1 − y (y − x)
dy. (9.25c)

4. If f(y) ∼ ∑∞
n=1 dnWn(y) and g(x) ∼ π

∑∞
n=1 dnVn(x) then

g(x) = −
∫ 1

−1

√
1 − y f(y)√

1 + y (y − x)
dy. (9.25d)

Note that these expressions do not necessarily provide general solutions to
the integral equations (9.25a)–(9.25d), but they simply show that the relevant
formal expansions are integral transforms of each other.

These relationships are useful in attacking certain engineering problems.
Gladwell & England (1977) use (9.25a) and (9.25b) in elasticity analysis and
Fromme & Golberg (1979) use (9.25c), (9.25d) and related properties of Vn

and Wn in analysis of the flow of air near the tip of an airfoil.

To proceed to other kernels, we note that by integrating equations (9.22a)–
(9.22d) with respect to x, after premultiplying by the appropriate weights, we
can deduce the following eigenfunction properties of Chebyshev polynomials
for logarithmic kernels. The details are left to the reader (Problem 4).
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Theorem 9.2 The integral equation

λφ(x) =
∫ 1

−1

1√
1 − y2

φ(y)K(x, y) dy (9.26)

has the following eigensolutions and eigenvalues λ for the following kernels
K.

1. K(x, y) = K5(x, y) = log |y − x|;
φ(x) = φn(x) = Tn(x), λ = λn = π/n.

2. K(x, y) = K6(x, y) = log |y − x| − log
∣∣∣1 − xy − √

(1 − x2)(1 − y2)
∣∣∣;

φ(x) = φn(x) =
√

1 − x2 Un−1(x), λ = λn = π/n.

3. K(x, y) = K7(x, y) = log |y − x| − log
∣∣2 + x+ y − 2

√
1 + x

√
1 + y

∣∣;
φ = φn(x) =

√
1 + xVn(x), λ = λn = π/(n+ 1

2 ).

4. K(x, y) = K8(x, y) = log |y − x| − log
∣∣2 − x− y − 2

√
1 − x√1 − y∣∣;

φ = φn(x) =
√

1 − xWn(x), λ = λn = π/(n+ 1
2 ).

Note that each of these four kernels has a (weak) logarithmic singularity
at x = y. In addition, K6 has logarithmic singularities at x = y = ±1, K7 at
x = y = −1 and K8 at x = y = +1.

From Theorem 9.2 we may immediately deduce relationships between for-
mal Chebyshev series of the four kinds as follows.

Corollary 9.2A With the notations of Theorem 9.2, in each of the four cases
considered, if

f(y) ∼
∞∑

k=1

akφk(y) and g(x) ∼
∞∑

k=1

λkakφk(x)

then

g(x) =
∫ 1

−1

1√
1 − y2

K(x, y)f(y) dy.

Thus again four kinds of Chebyshev series may in principle be used to solve
(9.26) for K = K5, K6, K7, K8, respectively.

The most useful results in Theorem 9.2 and its corollary are those relating
to polynomials of the first kind, where we find from Theorem 9.2 that

−π
n
Tn(x) =

∫ 1

−1

1√
1 − y2

Tn(y) log |y − x| dy (9.27)
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and from Corollary 9.2A that, if

f(y) ∼
∞∑

k=1

akTk(y) and g(x) ∼
∞∑

k=1

−π
k
akTk(x), (9.28)

then

g(x) =
∫ 1

−1

1√
1 − y2

log |y − x| f(y) dy. (9.29)

Equation (9.29) is usually referred to as Symm’s integral equation, and
clearly a Chebyshev series method is potentially very useful for such problems.
We shall discuss this specific problem further in Section 9.5.2.

By differentiating rather than integrating in (9.22a), (9.22b), (9.22c) and
(9.22d), we may obtain the further results quoted in Problem 5. The second
of these yields the simple equation

−nπUn−1(x) =
∫ 1

−1

√
1 − y2

(y − x)2
Un−1(y) dy. (9.30)

This integral equation, which has a stronger singularity than (9.22a)–(9.22d),
is commonly referred to as a hypersingular equation, in which the integral
has to be evaluated as a Hadamard finite-part integral (Martin 1991, for
example). A rather more general hypersingular integral equation is solved by
a Chebyshev method, based on (9.30), in Section 9.7.1 below.

The ability of a Chebyshev series of the first or second kind to handle
both Cauchy principal value and hypersingular integral transforms leads us
to consider an integral equation that involves both. This can be success-
fully attacked, and Mason & Venturino (2002) give full details of a Galerkin
method, together with both L2 and L∞ error bounds, and convergence proofs.

9.5.2 Symm’s integral equation

Consider the integral equation (Symm 1966)

G(x) = VF (x) =
1
π

∫ b

a

log |y − x|F (y) dy, x ∈ [a, b], (9.31)

which is of importance in potential theory.

This equation has a unique solution F (y) (Jorgens 1970) with endpoint
singularities of the form (y− a)−

1
2 (b− y)−

1
2 . In the case a = −1, b = +1, the

required singularity is (1 − y2)−
1
2 , and so we may write

F (y) = (1 − y2)−
1
2 f(y), G(x) = −π−1g(x),
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whereupon (9.31) becomes

g(x) = V∗f(x) =
∫ 1

−1

log |y − x|√
1 − y2

f(y) dy (9.32)

which is exactly the form (9.29) obtained from Corollary 9.2A.

We noted then (9.29) that if

f(y) ∼
∞∑

k=1

akTk(y)

then

g(x) ∼
∞∑

k=1

−π
k
akTk(x)

(and vice versa).

Sloan & Stephan (1992), adopt such an idea and furthermore note that

V∗T0(x) = −π log 2,

so that

f(y) ∼
∞∑′

k=0

akTk(y)

if

g(x) ∼ − 1
2a0π log 2 −

∞∑
k=1

π

k
akTk(x).

Their method of approximate solution is to write

f∗(y) =
n−1∑′

k=0

a∗kTk(y) (9.33)

and to require that
V∗f∗(x) = g(x)

holds at the zeros x = xi of Tn(x). Then

g(xi) = − 1
2a

∗
0π log 2 −

n−1∑
k=1

π

k
a∗kTk(xi), i = 0, . . . , n− 1. (9.34)

Using the discrete orthogonality formulae (4.42), we deduce that

a∗0 = − 2
nπ log 2

n−1∑
i=0

g(xi), (9.35)

a∗k = − 2k
nπ

n−1∑
i=0

g(xi)Tk(xi) (k > 0). (9.36)
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Thus values of the coefficients {a∗k} are determined explicitly.

The convergence properties of the approximation f∗ to f have been estab-
lished by Sloan & Stephan (1992).

9.6 Regularisation of integral equations

Consider again an integral equation of the first kind, of the form

g(x) =
∫ b

a

K(x, y)f(y) dy, c ≤ x ≤ d, (9.37)

i.e. g = Kf , where K : F → G and where the given g(x) may be affected by
noise (Bennell & Mason 1989). Such a problem is said to be well posed if:

• for each g ∈ G there exists a solution f ∈ F ;

• this solution f is always unique in F ;

• f depends continuously on g (i.e., the inverse of K is continuous).

Unfortunately it is relatively common for an equation of the form (9.37) to
be ill posed, so that a method of solution is needed which ensures not only that
a computed f is close to being a solution but also that f is an appropriately
smooth function. The standard approach is called a regularisation method ;
Tikhonov (1963b, 1963a) proposed an L2 approximation which minimises

I[f∗] :=
∫ b

a

[Kf∗(x) − g(x)]2 dx+ λ

∫ b

a

[p(x)f∗(x)2 + q(x)f∗′(x)2] dx (9.38)

where p and q are specified positive weight functions and λ a positive ‘smooth-
ing’ parameter. The value of λ controls the trade-off between the smoothness
of f∗ and the fidelity to the data g.

9.6.1 Discrete data with second derivative regularisation

We shall first make two changes to (9.38) on the practical assumptions that we
seek a visually smooth (i.e., twice continuously differentiable) solution, and
that the data are discrete. We therefore assume that g(x) is known only at n
ordinates xi and then only subject to white noise contamination ε(xi);

g∗(xi) =
∫ b

a

K(xi, y)f(y) dy + ε(xi) (9.39)

where each ε(xi) ∼ N(0, σ2) is drawn from a normal distribution with zero
mean and (unknown) variance σ2. We then approximate f by the f∗λ ∈ L2[a, b]
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that minimises

I[f∗] ≡ 1
n

n∑
i=1

[Kf∗(xi) − g∗(xi)]
2 + λ

∫ b

a

[
f∗′′(y)

]2
dy, (9.40)

thus replacing the first integral in (9.38) by a discrete sum and the second by
one involving the second derivative of f∗.

Ideally, a value λopt of λ should be chosen (in an outer cycle of iteration)
to minimise the true mean-square error

R(λ) ≡ 1
n

n∑
i=1

[Kf∗λ(xi) − g(xi)]
2 . (9.41)

This is not directly possible, since the values g(xi) are unknown. However,
Wahba (1977) has shown that a good approximation to λopt may be obtained
by choosing the ‘generalised cross-validation’ (GCV) estimate λ∗opt that min-
imises

V (λ) =
1
n ‖(I−A(λ)g‖2[

1
n trace(I−A(λ))

]2 , (9.42)

where
Kf∗λ = A(λ)g, (9.43)

i.e., A(λ) is the matrix which takes the vector of values g(xi) into Kf∗λ(xi).

An approximate representation is required for f∗λ . Bennell & Mason (1989)
adopt a basis of polynomials orthogonal on [a, b], and more specifically the
Chebyshev polynomial sum

f∗λ(y) =
m∑

j=0

ajTj(y) (9.44)

when [a, b] = [−1, 1].

9.6.2 Details of a smoothing algorithm (second derivative regular-
isation)

Adopting the representation (9.44), the smoothing term in (9.40) is

∫ 1

−1

[
f∗λ

′′(y)
]2

dy = âTBâ (9.45)

where â = (a2, a3, . . . , am)T and B is a matrix with elements

Bij =
∫ 1

−1

P ′′
i (y)P ′′

j (y) dy (i, j = 2, . . . ,m). (9.46)
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The matrix B is symmetric and positive definite, with a Cholesky decompo-
sition B = LLT , giving

∫ 1

−1

[
f∗λ

′′(y)
]2

dy =
∥∥LT â

∥∥2
.

Then, from (9.40),

I[f∗λ ] =
1
n
‖Ma− g∗‖2 + λ

∥∥LT â
∥∥2

(9.47)

where Mij =
∫ 1

−1K(xi, y)Tj(y) dy and a = (a1, a2, . . . , am)T .

Bennell & Mason (1989) show that a0 and a1 may be eliminated by con-
sidering the QU decomposition of M,

M = QU = Q
[
V
0

]
, (9.48)

where Q is orthogonal, V is upper triangular of order m+ 1 and then

U =
[
R1 R2

0 R3

]
(9.49)

where R1 is a 2 × 2 matrix.

Defining ã = (a0, a1)T ,

‖Ma− g∗‖2 = ‖QUa− g∗‖2

=
∥∥QT (QUa− g∗)

∥∥2

= ‖Ua − e‖2 , where e = QTg∗,

= ‖R1ã + R2â− ẽ‖2 + ‖R3â− ê‖2 . (9.50)

Setting ã = R−1
1 (ẽ−R2â),

I[f∗λ] =
1
n
‖R3â− ê‖2 + λ

∥∥LT â
∥∥2
. (9.51)

The problem of minimising I over â now involves only the independent
variables a2, . . . , am, and requires us to solve the equation

(HTH + nλI)b = HT ê (9.52)

where b = LT â and H = R3(LT )−1.

Hence
b = (HTH + nλI)−1HT ê (9.53)
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and it can readily be seen that the GCV matrix is

A(λ) = H(HTH + nλI)−1HT . (9.54)

The algorithm thus consists of solving the linear system (9.52) for a given
λ while minimising V (λ) given by (9.42).

Formula (9.42) may be greatly simplified by first determining the singular
value decomposition (SVD) of H

H = WΛXT (W, X orthogonal)

where

Λ =
[
∆
0

]
(∆ = diag(di)).

Then

V (λ) =
∑m−1

k=1 [nλ(d2
k + nλ)−1]2z2

k +
∑m−2

k=1 z
2
k∑m−1

k=1 λ(d2
k + nλ)−1 + (n−m− 1)n−1

(9.55)

where z = WT ê.

The method has been successfully tested by Bennell & Mason (1989) on a
number of problems of the form (9.37), using Chebyshev polynomials. It was
noted that there was an optimal choice of the numberm of basis functions, be-
yond which the approximation f∗λ deteriorated on account of ill-conditioning.
In Figures 9.1–9.3, we compare the true solution (dashed curve) with the
computed Chebyshev polynomial solution (9.44) (continuous curve) for the
function f(y) = e−y and equation∫ ∞

0

e−xy f(y) dy =
1

1 + x
, 0 < x <∞,

with

• ε(x) ∼ N(0, .0052) and m = 5,

• ε(x) ∼ N(0, .012) and m = 5,

• ε(x) ∼ N(0, .012) and m = 10.

No significant improvement was obtained for any other value of m.

9.6.3 A smoothing algorithm with weighted function regularisa-
tion

Some simplifications occur in the above algebra if, as proposed by Mason &
Venturino (1997), in place of (9.40) we minimise the functional

I[f∗] ≡ 1
n

n∑
i=1

[Kf∗(xi) − g(xi)]
2 + λ

∫ b

a

w(y)[f∗(y)]2 dy. (9.56)
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Figure 9.1: Data error N(0, 0.0052); 5 approximation coefficients

Figure 9.2: Data error N(0, 0.012); 5 approximation coefficients

Figure 9.3: Data error N(0, 0.012); 10 approximation coefficients
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This is closer to the Tikhonov form (9.38) than is (9.40), and involves weaker
assumptions about the smoothness of f .

Again we adopt an orthogonal polynomial sum to represent f∗. We choose
w(x) to be the weight function corresponding to the orthogonality. In par-
ticular, for the first-kind Chebyshev polynomial basis on [−1, 1], and the ap-
proximation

f∗λ(y) =
m∑

j=0

ajTj(y), (9.57)

the weight function is of course w(x) = 1/
√

1 − x2.

The main changes to the procedure of Section 9.6.2 are that

• in the case of (9.56) we do not now need to separate a0 and a1 off from
the other coefficients ar, and

• the smoothing matrix corresponding to B in (9.46) becomes diagonal,
so that no LLT decomposition is required.

For simplicity, we take the orthonormal basis on [−1, 1], replacing (9.57) with

f∗λ(y) =
m∑

j=0

ajφj(y) =
m∑

j=0

aj [Tj(y)/nj] , (9.58)

where

n2
j =

{
2/π, j > 0;
1/π, j = 0. (9.59)

Define two inner products (respectively discrete and continuous);

〈u , v〉d =
n∑

k=1

u(xk)v(xk); (9.60)

〈u , v〉c =
∫ 1

−1

w(x)u(x)v(x) dx. (9.61)

Then the minimisation of (9.56), for f∗ given by (9.58), leads to the system
of equations

m∑
j=0

aj 〈Kφi , Kφj〉d − 〈Kφi , g∗〉d + nλ
m∑

j=0

aj 〈φi , φj〉c = 0, i = 0, . . . ,m.

(9.62)
Hence

(QTQ + nλI)a = QTg∗ (9.63)
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(as a consequence of the orthonormality), where

Qk,j = (Kφj)(xk) (9.64)

and a, g∗ are vectors with components aj and g∗(xj), respectively.

To determine f∗ we need to solve (9.63) for aj , with λ minimising V (λ)
as defined in (9.42). The matrix A(λ) in (9.42) is to be such that

Kf∗ = A(λ)g∗. (9.65)

Now Kf∗ =
{∑

j ajKφj(xk)
}

= Qa and hence, from (9.63)

A(λ) = Q(QTQ + nλI)−1QT . (9.66)

9.6.4 Evaluation of V (λ)

It remains to clarify the remaining details of the algorithm of Section 9.6.3,
and in particular to give an explicit formula for V (λ) based on (9.66).

Let
Q = WΛXT (9.67)

be the singular value decomposition of Q, where W is n×n orthogonal, X is
(m+ 1) × (m+ 1) orthogonal and

Λ =
[
∆m

0

]
n×(m+1)

. (9.68)

Define
z = [zk] = WTg. (9.69)

From (9.68),
ΛTΛ = diag(d2

0, . . . , d
2
m). (9.70)

It follows that
A(λ) = WB(λ)WT (9.71)

where
B(λ) = Λ(ΛTΛ + nλI)−1ΛT (9.72)

so that B(λ) is the n× n diagonal matrix with elements

Bkk =
d2

k

d2
k + nλ

(0 ≤ k ≤ m); Bkk = 0 (k > m). (9.73)
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From (9.71) and (9.72)

‖(I−A(λ))g‖2 = ‖(I−A(λ))Wz‖2

=
∥∥WT (I−A(λ))Wz

∥∥2

=
∥∥(I−WTA(λ)W)z

∥∥2

= ‖(I−B(λ))z‖2

=
m∑

i=0

(
nλ

d2
i + nλ

)2

z2
i +

n−1∑
i=m+1

z2
i .

Thus

‖(I−A(λ))g‖2 =
m∑

i=0

n2e2i z
2
i +

n∑
i=m+1

z2
i (9.74)

where
ei(λ) =

λ

d2
i + nλ

. (9.75)

Also

trace(I−A(λ)) = traceWT (I−A(λ))W

= trace(I−B(λ))

=
m∑

i=0

nλ

d2
i + nλ

+
n−1∑

i=m+1

1.

Thus

trace(I−A(λ)) =
m∑

i=0

n2e2i + (n−m− 1). (9.76)

Finally, from (9.75) and (9.76), together with (9.42), it follows that

V (λ) =

m∑
0

ne2i z
2
i +

1
n

n∑
m+1

z2
i

[
m∑
0

ne2i +
n−m− 1

n

]2 . (9.77)

9.6.5 Other basis functions

It should be pointed out that Chebyshev polynomials are certainly not the
only basis functions that could be used in the solution of (9.37) by regulari-
sation. Indeed there is a discussion by Bennell & Mason (1989, Section ii) of
three alternative basis functions, each of which yields an efficient algorithmic
procedure, namely:
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1. a kernel function basis {K(xi, y)},

2. a B-spline basis, and

3. an eigenfunction basis.

Of these, an eigenfunction basis is the most convenient (provided that eigen-
functions are known), whereas a kernel function basis is rarely of practical
value. A B-spline basis is of general applicability and possibly comparable
to, or slightly more versatile than, the Chebyshev polynomial basis. See Ro-
driguez & Seatzu (1990) and also Bennell & Mason (1989) for discussion of
B-spline algorithms.

9.7 Partial differential equations and boundary integral equation
methods

Certain classes of partial differential equations, with suitable boundary con-
ditions, can be transformed into integral equations on the boundary of the
domain. This is particularly true for equations related to the Laplace oper-
ator. Methods based on the solution of such integral equations are referred
to as boundary integral equation (BIE) methods (Jaswon & Symm 1977, for
instance) or, when they are based on discrete element approximations, as
boundary element methods (BEM) (Brebbia et al. 1984). Chebyshev polyno-
mials have a part to play in the solution of BIEs, since they lead typically to
kernels related to the Hilbert kernel discussed in Section 9.5.1.

We now illustrate the role of Chebyshev polynomials in BIE methods for a
particular mixed boundary value problem for Laplace’s equation, which leads
to a hypersingular boundary integral equation.

9.7.1 A hypersingular integral equation derived from a mixed
boundary value problem for Laplace’s equation

Derivation

In this section we tackle a ‘hard’ problem, which relates closely to the hyper-
singular integral relationship (9.30) satisfied by Chebyshev polynomials of the
second kind. The problem and method are taken from Mason & Venturino
(1997).

Consider Laplace’s equation for u(x, y) in the positive quadrant

∆u = 0, x, y ≥ 0, (9.78)

subject to (see Figure 9.4)
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� x

�

y

a

b

L

u = 0

u = 0

u = 0

hu+ ux = g

↗ u bounded

Figure 9.4: Location of the various boundary conditions (9.79)

u(x, 0) = 0, x ≥ 0, (9.79a)

hu(0, y) + ux(0, y) = g(y), 0 < a ≤ y ≤ b, (9.79b)

u(0, y) = 0, 0 ≤ y < a; b < y, (9.79c)

u(x, y) is bounded, x, y → ∞. (9.79d)

Thus the boundary conditions are homogeneous apart from a window L ≡
[a, b] of radiation boundary conditions, and the steady-state temperature dis-
tribution in the positive quadrant is sought. Here the boundary conditions
are ‘mixed’ in two senses: involving both u and ux on L and splitting into two
different operators on x = 0. Such problems are known to lead to Cauchy sin-
gular integral equations (Venturino 1986), but in this case a different approach
leads to a hypersingular integral equation closely related to (9.30).

By separation of variables in (9.78), using (9.79a) and (9.79d), we find
that

u(x, y) =
∫ ∞

0

A(µ) sin(µy) exp(−µx) dµ. (9.80)

The zero conditions (9.79c) on the complement Lc of L give

u(0, y) = lim
x→0+

∫ ∞

0

A(µ) sin(µy) exp(−µx) dµ = 0, y ∈ Lc, (9.81)

and differentiation of (9.80) with respect to x in L gives

ux(0, y) = − lim
x→0+

∫ ∞

0

µA(µ) sin(µy) exp(−µx) dµ = 0, y ∈ L. (9.82)
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Substitution of (9.80) and (9.82) into (9.79b) leads to

lim
x→0+

∫ ∞

0

(h− µ)A(µ) sin(µy) exp(−µx) dµ = g(y), y ∈ L. (9.83)

Then (9.81) and (9.83) are a pair of dual integral equations for A(µ), and
from which we can deduce u by using (9.80).

To solve (9.81) and (9.83), we define a function B(y) as

B(y) := u(0, y) =
∫ ∞

0

A(µ) sin(µy) dµ, y ≥ 0. (9.84)

Then, from (9.81)
B(y) = 0, y ∈ Lc, (9.85)

and, inverting the sine transform (9.84) and using (9.85),∫
L

B(t) sin(st) dt = 1
2πA(s). (9.86)

Substituting (9.86) in the integral equation (9.83) gives us

hB(y) − 2
π

∫
L

I(t) dt = g(t), y ∈ L (9.87)

where

I(t) = lim
x→0+

∫ ∞

0

µ sin(µt) exp(−µx) dµ

= 1
2 lim

x→0+

∫ ∞

0

µ [cosµ(t− y) − cosµ(t+ y)] exp(−µx) dµ. (9.88)

This simplifies (see Problem 7) to

I(t) = 1
2 lim

x→0+

[
x2 − (t− y)2

(x2 + (t− y)2)2
− x2 − (t+ y)2

(x2 + (t+ y)2)2

]

= − 1
2

[
1

(t− y)2
− 1

(t+ y)2

]
. (9.89)

Substituting (9.89) into (9.87), we obtain the hypersingular integral equa-
tion, with strong singularity at t = y,

hB(y) +
1
π

∫
L

B(t)
[

1
(t− y)2

− 1
(t+ y)2

]
dt = g(y), y ∈ L, (9.90)

from which B(y) is to be determined, and hence A(s) from (9.86) and u(x, y)
from (9.80).
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Method of solution

Continuing to follow Mason & Venturino (1997), equation (9.90) can be rewrit-
ten in operator form as

Aφ ≡ (h+ H + K)φ = f (9.91)

where H is a Hadamard finite-part integral and K is a compact perturbation,
given by

(Hφ)(x) =
∫ 1

−1

φ(s)
(s− x)2

ds, −1 < x < 1, (9.92)

(Kφ)(x) ≡
∫ 1

−1

K(x, s)φ(s) ds =
∫ 1

−1

φ(s)
(s+ x)2

ds, −1 < x < 1, (9.93)

and
f(x) = g

(
1
2 (b− a)x+ 1

2 (b+ a)
)
. (9.94)

It is clear that φ(x) must vanish at the end points ±1, since it represents
boundary values, and moreover it should possess a square-root singularity
(Martin 1991). Hence we write

φ(x) = w(x)y(x), where w(x) =
√

1 − x2. (9.95)

We note also that the Hadamard finite-part operator maps second kind
Chebyshev polynomials into themselves, as shown by Mason (1993) and Mar-
tin (1992) and indicated in (9.30) above; in fact

H(wU�)(x) = −π(
+ 1)U�(x), 
 ≥ 0. (9.96)

Solution of (9.86) in terms of second-kind polynomials is clearly suggested,
namely

y(x) =
∞∑

�=0

c�U�(x), (9.97)

where the coefficients c� are to be determined, and we therefore define a
weighted inner product

〈u , v〉w :=
∫ 1

−1

w(t)u(t)v(t) dt

and observe that
‖U�‖2

w = 1
2π, 
 ≥ 0. (9.98)

We also expand both f(x), the right-hand side of (9.91), and K(x, t) in
second-kind polynomials

f(x) =
∞∑

i=0

fjUj(x), where fj =
2
π
〈f , Uj〉w , (9.99)
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K(x, t) =
∞∑

i=0

∞∑
j=0

KijUi(x)Uj(t), (9.100)

so that (9.93), (9.97) and (9.98) give

Kφ =
∞∑

i=0

∞∑
j=0

∞∑
�=0

c�Kij

∫ 1

−1

w(t)Ui(x)Uj(t)u�(t) dt

=
∞∑

i=0

∞∑
j=0

∞∑
�=0

c�KijUi(x) ‖Uj‖2
w δj�

= 1
2π

∞∑
�=0

c�

∞∑
i=0

Ki�Ui(x). (9.101)

Substituting (9.95), (9.97), (9.99), (9.101) and (9.99) into (9.91):

hw
∞∑

�=0

c�U�(x) − π
∞∑

�=0

(
+ 1)c�U�(x) + 1
2π

∞∑
�=0

c�

∞∑
i=0

Ki�Ui(x) =
∞∑

j=0

fjUj(x).

(9.102)

Taking the weighted inner product with Uj :

h

∞∑
�=0

c� 〈wU� , Uj〉w − π
∞∑

�=0

(
+ 1)c� 〈U� , Uj〉w +

+ 1
2π

∞∑
�=0

c�

∞∑
i=0

Ki� 〈Ui , Uj〉w =
1
2
πfj . (9.103)

Define

bjl := 〈wU� , Uj〉w =
∫ 1

−1

(1 − x2)U�(x)Uj(x) dx. (9.104)

Then it can be shown (Problem 8) that

bj� =




1
(
+ j + 2)2 − 1

− 1
(
− j)2 − 1

, j + 
 even,

0, otherwise.
(9.105)

Hence, from (9.103),

h

∞∑
�=0

bj�c� − 1
2π

2(j + 1)cj + (1
2π)2

∞∑
�=0

Kj�c� =
1
2
πfj , 0 ≤ j <∞. (9.106)

Reducing (9.106) to a finite system, to solve for approximate coefficients ĉ�,
we obtain

h

N−1∑
�=0

bj�ĉ�− 1
2π

2(j+1)ĉj+(1
2π)2

N−1∑
�=0

Kj�ĉ� =
1
2
πfj , 0 ≤ j < N−1. (9.107)
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Table 9.1: Results for K = 0, φ(x) =
√

1 − x2 expx
N condition number ‖eN‖∞
1 1.93
2 2.81 5 × 10−1

4 4.17 5 × 10−3

8 6.54 2 × 10−8

16 10.69 1.5 × 10−13

Example 9.1: The method is tested by Mason & Venturino (1997) for a slightly

different problem, where the well-behaved part K of the problem is set to zero and

the function f is chosen so that φ(x) ≡ √
1− x2 exp x. The condition number of the

matrix of the linear system (9.107) defining ĉj is compared in Table 9.1 with the

maximum error ‖eN‖∞ for various values of N , and it is clear that the conditioning

is relatively good and the accuracy achieved is excellent.

Error analysis

A rigorous error analysis has been carried out by Mason & Venturino (1997),
but the detail is much too extensive to quote here. However, the conclusion
reached was that, if f ∈ Cp+1[−1, 1] and the integral operator K satisfies
certain inequalities, then the method is convergent and

‖eN‖∞ ≤ C.N−(p+1) (9.108)

where the constant C depends on the smoothness of K and f but not on N .

For further studies of singular integral equations involving a Cauchy kernel,
see Elliott (1989) and Venturino (1992, 1993).

9.8 Problems for Chapter 9

1. Follow through all steps in detail of the proofs of Theorem 9.1 and
Corollary 9.1A.

2. Using Corollary 9.1A, find a function g(x) such that

g(x) = −
∫ 1

−1

√
1 − y2f(y)
(y − x)

dy

in the cases
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(a) f(y) = 1;
(b) f(y) = y6;
(c) f(y) = ey;

(d) f(y) =
√

1 − y2.

3. Using Corollary 9.1A, find a function g(x) such that

g(x) = −
∫ 1

−1

f(y)√
1 − y2(y − x)

dy

in the cases

(a) g(x) = ex;

(b) g(x) = (1 + x)
1
2 (1 − x)−

1
2 ;

(c) g(x) = x5;
(d) g(x) = 1.

4. Prove Theorem 9.2 in detail. For instance, the second kernel K6 in the
theorem is derived from

K6(x, y) =
∫ x

−1

K2(x, y)√
1 − x2

dx.

Setting x = cos 2φ, y = cos 2ψ and tanφ = t, show that K6 simplifies to

sin 2ψ
∫ t

∞

dt
sin2 ψ − t2 cos2 ψ

= log
∣∣∣∣ sin(φ+ ψ)
sin(φ− ψ)

∣∣∣∣ .
Then, by setting x = 2u2 − 1, y = 2v2 − 1 and noting that

√
1 − x2 =

2u
√

1 − u2,
√

1 − y2 = 2v
√

1 − v2, show that K6(x, y) simplifies to

log |x− y| − log
∣∣∣1 − xy −

√
(1 − x2)(1 − y2)

∣∣∣ .
5. By differentiating rather than integrating in (9.22a), (9.22b), (9.22c)

and (9.22d), and using the properties

[
√

1 − x2 Un−1(x)]′ = −nTn(x)/
√

1 − x2,

[Tn(x)]′ = nUn−1(x),

[
√

1 − xWn(x)]′ = (n+ 1
2 )Vn(x)/

√
1 − x,

[
√

1 + xVn(x)]′ = (n+ 1
2 )Wn(x)/

√
1 + x,

deduce that the integral equation

λφ(x) =
∫ 1

−1

1√
1 − y2

φ(y)K(x, y) dy

has the following eigensolutions φ and eigenvalues λ for the following
kernels K:
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(a) K(x, y) = K9(x, y) =
√

1 − x2

(y − x)2
− x√

1 − x2(y − x)
;

φ = φn(x) = Tn−1(x)/
√

1 − x2, λ = λn = −nπ.

(b) K(x, y) = K10(x, y) =
1 − y2

(y − x)2
;

φ = φn(x) = Un−1(x), λ = λn = −nπ.

(c) K(x, y) = K11(x, y) =

√
(1 − x)(1 + y)

(y − x)2
−

√
1 + y

2
√

1 − x(y − x)
;

φ = φn(x) = Vn(x)/
√

1 − x, λ = λn = −(n+ 1
2 )π.

(d) K(x, y) = K12(x, y) =

√
(1 + x)(1 − y)

(y − x)2
+

√
1 − y

2
√

1 + x(y − x)
;

φ = φn(x) = Wn(x)/
√

1 + x, λ = λn = −(n+ 1
2 )π.

6. (a) Describe and discuss possible amendments that you might make to
the regularisation methods of Section 9.6 in case K has any one
of the four singular forms listed in Theorem 9.1. Does the method
simplify?

(b) Discuss whether or not it might be better, for a general K, to use
one of the Chebyshev polynomials other than Tj(x) in the approx-
imation (9.44).

7. Show that∫ ∞

0

µ sinµt sinµy exp(−µx) dµ =
x2 − (t− y)2

(x2 + (t− y)2)2
− x2 − (t+ y)2

(x2 + (t+ y)2)2
.

(This completes the determination of I(t), given by (9.88), so as to
derive the hypersingular equation (9.90).)

8. Show that∫ 1

−1

(1 − x2)U�(x)Uj(x) dx =
1

(
+ j + 2)2 − 1
− 1

(
− j)2 − 1

for 
+ j even, and that the integral vanishes otherwise. (This is a step
required in the derivation of the solution of the hypersingular equation
(9.90).)
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Chapter 10

Solution of Ordinary Differential Equations

10.1 Introduction

While, historically, finite-difference methods have been and remain the stan-
dard numerical technique for solving ordinary differential equations, newer al-
ternative methods can be more effective in certain contexts. In particular we
consider here methods founded on orthogonal expansions—the so-called spec-
tral and pseudospectral methods—with special reference to methods based on
expansions in Chebyshev polynomials.

In a typical finite-difference method, the unknown function u(x) is repre-
sented by a table of numbers {y0, y1, . . . , yn} approximating its values at a set
of discrete points {x0, x1, . . . , xn}, so that yj ≈ u(xj). (The points are almost
always equally spaced through the range of integration, so that xj+1 −xj = h
for some small fixed h.)

In a spectral method, in contrast, the function u(x) is represented by an
infinite expansion u(x) =

∑
k ckφk(x), where {φk} is a chosen sequence of

prescribed basis functions. One then proceeds somehow to estimate as many
as possible of the coefficients {ck}, thus approximating u(x) by a finite sum
such as

un(x) =
n∑

k=0

ckφk(x). (10.1)

One clear advantage that spectral methods have over finite-difference meth-
ods is that, once approximate spectral coefficients have been found, the ap-
proximate solution can immediately be evaluated at any point in the range of
integration, whereas to evaluate a finite-difference solution at an intermediate
point requires a further step of interpolation.

A pseudospectral method, at least according to some writers, is one in
which u(x) is still approximated by a function of the form un(x) of (10.1), as
in a spectral method, but this approximation is actually represented not by
its coefficients but by its values un(xj) at a number (n+ 1 in this particular
instance) of discrete points {xj}. These points may be equally spaced, but
equal spacing gives no advantages, and other spacings are frequently better.

The oldest and probably the most familiar spectral methods are based on
the idea of Fourier series. Supposing for the moment, for convenience, that the
independent variable x is confined to the interval −π ≤ x ≤ π, the technique
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is to assume that the unknown function has an expansion in the form

u(x) = 1
2a0 +

∞∑
k=1

{ak cos kx+ bk sin kx} (10.2)

and to attempt to determine values for the coefficients {ak, bk} such that the
required differential equation and other conditions are satisfied.

Fourier methods may well be suitable when the problem is inherently peri-
odic; for instance where the function u(x) satisfies a second-order differential
equation subject to the periodicity boundary conditions u(π) = u(−π) and
u′(π) = u′(−π). If we have a second-order differential equation with the more
usual boundary conditions u(−π) = a and u(π) = b, however, with a �= b,
then obviously any finite partial sum

1
2a0 +

n∑
k=1

{ak cos kx+ bk sinkx}

of (10.2) is periodic and cannot satisfy both boundary conditions simultane-
ously; more importantly, very many terms are needed if this partial sum is
to represent the function u(x) at all closely near both ends of the range at
the same time. It is better in such a case to take for {φk} a sequence of
polynomials, so that the partial sum

n∑
k=0

ckφk(x)

is a polynomial of degree n.

From now on, we shall suppose that the independent variable x is confined
to the interval −1 ≤ x ≤ 1, so that a reasonable choice for φk(x) is the
Chebyshev polynomial Tk(x). The choice of basis is only the beginning of the
story, however; we are still left with the task of determining the coefficients
{ck}.

10.2 A simple example

For the purposes of illustration, we shall consider the simple linear two-point
boundary-value problem on the range [−1, 1]:

d2

dx2
u(x) = f(x), u(−1) = a, u(+1) = b, (10.3)

where the function f and the boundary values a and b are given.

We can start out in several ways, of which the two following are the sim-
plest:
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• We may write u(x) directly in the form

u(x) =
∞∑′

k=0

ckTk(x). (10.4)

Using the result quoted in Problem 16 of Chapter 2, namely

d2

dx2
Tk(x) =

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)Tr(x), (k ≥ 2), (10.5)

we express (10.3) in the form

∞∑
k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)ckTr(x) = f(x), (10.6a)

∞∑′

k=0

(−1)kck = a,

∞∑′

k=0

ck = b. (10.6b)

• An alternative procedure, incorporating the boundary conditions in the
representation itself, is to write u(x) in the form

u(x) = (1− x2)
∞∑

k=0

γkUk(x) +
1− x

2
a+

1 + x

2
b. (10.7)

Then, using a result given from Problem 12 of Chapter 3,

(1 − x2)Uk(x) = 1
2 (Tk(x) − Tk+2(x)),

together with (10.5), we get (10.3) in a single equation of the form

1
2

∞∑
k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)(γk − γk−2)Tr(x) = f(x). (10.8)

We should be treading on dangerous ground, however, if we went ahead
blindly with translating either of the above infinite systems of equations (10.6)
or (10.8) into an algorithm, since non-trivial questions arise relating to con-
vergence of the infinite series and the validity of differentiating term by term.
In any event, since one can never calculate the whole of an infinite sequence of
coefficients, the realistic approach is to accept the fact that we must perforce
approximate u(x) by a finite sum of terms, and to go on from there.

If we truncate the summation (10.4) or (10.7) after a finite number of
terms, we obviously cannot in general satisfy (10.6a) or (10.8) throughout
the range −1 ≤ x ≤ 1. We can, however, attempt to satisfy either equa-
tion approximately in some sense. We shall discuss two ways of doing this:
collocation methods and projection or tau (τ) methods.
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10.2.1 Collocation methods

Suppose that we approximate u(x) by

un(x) :=
n∑′

k=0

ckTk(x), (10.9)

involving n + 1 unknown coefficients {ck}, then we may select n − 1 points
{x1, . . . , xn−1} in the range of integration and require un(x) to satisfy the
differential equation (10.3) at just these n− 1 points, the so-called collocation
points, in addition to obeying the boundary conditions. This requires us to
solve just the system of n+ 1 linear equations

n∑
k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)ckTr(xj) = f(xj),

j = 1, . . . , n− 1, (10.10a)
n∑′

k=0

(−1)kck = a, (10.10b)

n∑′

k=0

ck = b, (10.10c)

These equations may be reduced to a simpler form, especially if the n −
1 points are carefully chosen so that we can exploit discrete orthogonality
properties of the Chebyshev polynomials. Suppose that we choose for our
collocation points the zeros of Tn−1(x), namely

xj = cos
(j − 1

2 )π
n− 1 . (10.11)

Multiply (10.10a) by 2T�(xj), where � is an integer with 0 ≤ � ≤ n − 2, and
sum from j = 1 to j = n − 1. We can then use the discrete orthogonality
relations (4.42) (for 0 ≤ r ≤ n− 2, 0 ≤ � ≤ n− 2)

n−1∑
j=1

Tr(xj)T�(xj) =




n− 1, r = � = 0,
1
2 (n− 1), r = � �= 0,

0, otherwise
(10.12)

to deduce that

n∑
k=�+2

(k−�) even

(k− �)k(k+ �)ck =
2

n− 1
n−1∑
j=1

T�(xj)f(xj), � = 0, . . . , n−2. (10.13)
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The matrix of coefficients on the left-hand side of equation (10.13) is upper
triangular, with elements



8 64 216 512 1000 · · ·
24 120 336 720 · · ·

48 192 480 960 · · ·
80 280 648 · · ·

120 384 840 · · ·
168 504 · · ·

224 640 · · ·
288 · · ·

360 · · ·
. . .




.

We now have the following algorithm for generating an approximate solu-
tion of the problem (10.3) by collocation.

1. Find the collocation points xj = cos
(j− 1

2 )π

n−1 , for j = 1, . . . , n−
1, and evaluate f(xj);

2. Use the recurrence (1.3) to evaluate T�(xj), for � = 0, . . . , n−2
and j = 1, . . . , n− 1;

3. Use equations (10.13), in reverse order, to determine the co-
efficients cn,. . . , c3, c2 one by one;

4. Use the boundary conditions (10.10b), (10.10c) to determine
c0 and c1.

This algorithm can be made considerably more efficient in the case where
n − 1 is a large power of 2, as we can then use a technique derived from the
fast Fourier transform algorithm to compute the right-hand sides of (10.13)
in O(n log n) operations, without going through step 2 above which requires
O(n2) operations (see Section 4.7).

Alternatively, we approximate u(x) by

un(x) := (1− x2)
n−2∑
k=0

γkUk(x) +
1− x

2
a+

1 + x

2
b, (10.14)

involving n − 1 unknown coefficients {γk} and satisfying the boundary con-
ditions automatically. With the same n− 1 collocation points {x1, . . . , xn−1}
we now solve the system of n− 1 linear equations

n∑
k=2

k−2∑′

r=0
(k−r) even

1
2 (k − r)k(k + r)(γk − γk−2)Tr(xj) = f(xj) (10.15)
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(with γn = γn−1 = 0). If the collocation points are again taken as the zeros
of Tn−1(x), discrete orthogonality gives the equations

n∑
k=�+2

(k−�) even

1
2 (k − �)k(k + �)(γk − γk−2) =

2
n− 1

n−1∑
j=1

T�(xj)f(xj) (10.16)

or, equivalently,

n−2∑
k=�

(k−�) even

(�2 − 3k2 − 6k − 4)γk =
2

n− 1
n−1∑
j=1

T�(xj)f(xj), � = 0, . . . , n− 2.

(10.17)

The matrix of coefficients on the left-hand side of equation (10.17) is upper
triangular, with elements




−4 −28 −76 −148 −244 · · ·
−12 −48 −108 −192 · · ·

−24 −72 −144 −240 · · ·
−40 −100 −184 · · ·

−60 −132 −228 · · ·
−84 −168 · · ·

−112 −208 · · ·
−144 · · ·

−180 · · ·
. . .




.

We then have the following algorithm.

1. Find the collocation points xj = cos
(j− 1

2 )π

n−1 , for j = 1, . . . , n−
1, and evaluate f(xj);

2. Use the recurrence (1.3) to evaluate T�(xj), for � = 0, . . . , n−2
and j = 1, . . . , n− 1;

3. Solve equations (10.17), in reverse order, to determine the
coefficients γn−2,. . . , γ1, γ0 one by one.

Example 10.1: Taking the differential equation

d2

dx2
u(x) + 6 |x| = 0, u(±1) = 0, (10.18)

whose known solution is u(x) = 1 − x2 |x|, and applying the above method with

n = 10, we get the results in Table 10.1, where we show the values of the exact
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and approximate solutions at the collocation points. (Both solutions are necessarily

even.)

Table 10.1: Solution of (10.18) by collocation, n = 10

xj u(xj) un(xj)
0.0000 1.0000 0.9422

±0.3420 0.9600 0.9183
±0.6427 0.7344 0.7129
±0.8660 0.3505 0.3419
±0.9848 0.0449 0.0440

10.2.2 Error of the collocation method

We may analyse the error of the preceding collocation algorithms by the use
of backward error analysis.

Here we shall look only at the first of the two alternative representations
of u(x). Let u(x) denote the true solution to the problem (10.3), let

un(x) :=
n∑′

k=0

ckTk(x)

be the approximate solution obtained by collocation and let fn(x) be the
second derivative of un(x). Then un(x) is itself the exact solution to a similar
problem

d2

dx2
un(x) = fn(x), un(−1) = a, un(+1) = b. (10.19)

Since equations (10.3) and (10.19) are both linear, and have the same bound-
ary conditions, the error e(x) := u(x) − un(x) must be the solution to the
homogeneous boundary-value problem

d2

dx2
e(x) = δf(x), e(−1) = e(+1) = 0, (10.20)

where
δf(x) := f(x)− fn(x). (10.21)

We can write down the solution of (10.20) in integral form

e(x) =
∫ 1

−1

G(x, ξ)δf(ξ) dξ, (10.22)
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where G(x, ξ) is the Green’s function for this problem

G(x, ξ) =
{ − 1

2 (1− x)(1 + ξ), ξ ≤ x,
− 1

2 (1 + x)(1 − ξ), ξ ≥ x.
(10.23)

Equation (10.22) may be used to derive bounds on the error e(x) from various
possible norms of the difference δf(x). In particular:

|e(x)| ≤ 1
2 (1− x2) ‖δf‖∞ , (10.24a)

|e(x)| ≤ 1√
6
(1 − x2) ‖δf‖2 , (10.24b)

|e(x)| ≤ 1
2 (1− x2) ‖δf‖1 . (10.24c)

We know that un(x) is a polynomial of degree n in x, so that its sec-
ond derivative fn(x) must be a polynomial of degree n − 2. The collocation
equations (10.10a), however, tell us that

fn(xj) =
d2

dx2
un(xj) = f(xj),

so that fn(x) coincides with f(x) at the n−1 points {x1, . . . , xn−1}. Therefore
fn(x) must be the unique (n− 2)nd degree polynomial interpolating f(x) at
the zeros of Tn−1(x), and ‖δf‖ must be the corresponding interpolation error.

Now we may apply one of the standard formulae for interpolation error,
for instance (Davis 1961, Chapter 3):

• [Hermite] Assuming that f(x) has an analytic continuation into the
complex plane, we have

δf(x) = f(x)− fn(x) =
1
2πi

∮
C

Tn−1(x)f(z) dz
Tn−1(z)(z − x)

(10.25)

where C is a closed contour in the complex plane, encircling the interval
[−1, 1] but enclosing no singularities of f(z).

• [Cauchy] Assuming alternatively that f(x) has (n−1) continuous deriva-
tives, we have

δf(x) = f(x)− fn(x) =
Tn−1(x)
2n(n− 1)!f

(n−1)(ξ) (10.26)

for some real ξ in the interval −1 ≤ ξ ≤ 1.

To take (10.25) a little further, suppose that the analytic continuation f(z)
of f(x) is regular on and within the ellipse Er defined in Section 1.4.1, with
foci at z = ±1. Then we know from (1.50) that

|Tn−1(z)| ≥ 1
2
(rn−1 − r1−n)
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for every z on Er, while |Tn−1(x)| ≤ 1 for every x in [−1, 1]. Therefore

|δf(x)| ≤ 1
π(rn−1 − r1−n)

∮
Er

|f(z)|
|z − x| | dz| = O(r−n) as n → ∞. (10.27)

Applying (10.24), we deduce that the collocation solution un(x) converges
exponentially to the exact solution u(x) in this case, as the number n + 1 of
terms and the number n− 1 of collocation points increase.

10.2.3 Projection (tau) methods

Just as collocation methods are seen to be related to approximation by in-
terpolation, so there are methods that are related to approximation by least
squares or, more generally, by projection.

• Approximating u(x) by

un(x) :=
n∑′

k=0

ckTk(x),

as in (10.9), suppose now that we select n−1 independent test functions
{ψ1(x), . . . , ψn−1(x)} and a positive weight function w(x), and solve for
the n+ 1 coefficients {ck} the system of n+ 1 linear equations

∫ 1

−1

w(x)
{
d2

dx2
un(x) − f(x)

}
ψ�(x) dx

=
∫ 1

−1

w(x)




n∑′

k=2

k−2∑
r=0

(k−r) even

(k − r)k(k + r)ckTr(x)− f(x)




ψ�(x) dx

= 0, � = 1, . . . , n− 1,
n∑′

k=0

(−1)kck = a,

n∑′

k=0

ck = b,

(10.28)
so that un satisfies the boundary conditions and the residual

d2

dx2
un(x) − f(x)

is orthogonal to each of the n− 1 test functions ψ1(x), . . .ψn−1(x) with
respect to the weight w(x).
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If we take ψ�(x) = T�−1(x) and w(x) = 2
π (1−x2)−1/2, this is equivalent

to saying that the residual may be represented in the form

d2

dx2
un(x) − f(x) =

∞∑
k=n

τk−1Tk−1(x),

for some sequence of undetermined coefficients {τk}. The method is for
this reason often referred to as the tau method1 (Ortiz 1969), although
differing slightly from Lanczos’s original tau method (see Section 10.3
below), in which the approximation un(x) was represented simply as a
sum of powers of x

un(x) =
n∑

k=0

akx
k.

In our case, we can use the orthogonality relations (4.9), (4.11) to reduce
the first n− 1 of these equations to

n∑
k=�+2

(k−�) even

(k − �)k(k + �)ck =
2
π

∫ 1

−1

T�(x)f(x)√
1− x2

dx, � = 0, . . . , n− 2.

(10.29)

The similarities between equations (10.29) and (10.13) are no coinci-
dence. In fact, the right-hand sides of (10.13) are just what we obtain
when we apply the Gauss–Chebyshev quadrature rule 1 of Theorem 8.4
(page 183) to the integrals on the right-hand sides of (10.29).

If we use this rule for evaluating the integrals, therefore, we get precisely
the same algorithm as in the collocation method; in many contexts we
may, however, have a better option of evaluating the integrals more
accurately—or even exactly.

• If we use the alternative approximation

un(x) := (1− x2)
n−2∑
k=0

γkUk(x) +
1− x

2
a+

1 + x

2
b,

as in (10.14), we are similarly led to the equations

n−2∑
k=�

(k−�) even

(�2 − 3k2 − 6k − 4)γk =
2
π

∫ 1

−1

T�(x)f(x)√
1− x2

dx, � = 0, . . . , n− 2,

(10.30)
and the same final remarks apply.

1Compare the tau method for approximating rational functions described in Section 3.6.

© 2003 by CRC Press LLC



§10.2: A simple example 241

Example 10.2: Taking same differential equation (10.18) as previously, and now

applying the above projection method with n = 10, we get the results in Table 10.2,

where for convenience we show the values of the exact and approximate solutions

at same points as in Table 10.1. It will be seen that the results are slightly more

accurate.

Table 10.2: Solution of (10.18) by projection, n = 10

xj u(xj) un(xj)
0.0000 1.0000 1.0017

±0.3420 0.9600 0.9592
±0.6427 0.7344 0.7347
±0.8660 0.3505 0.3503
±0.9848 0.0449 0.0449

10.2.4 Error of the preceding projection method

We may carry out a backward error analysis just as we did for the collocation
method in Section 10.2.2.

As before, let u(x) denote the true solution to the problem (10.3) and un(x)
the approximate solution, let fn(x) = d2un(x)/ dx2 and δf(x) = f(x)−fn(x).
Then the error bounds (10.24) still apply.

Assume now that the integrals in (10.29) are evaluated exactly. The func-
tion fn(x) will again be a polynomial of degree n − 2 but this time, instead
of interpolating f(x) at collocation points, it is determined by the integral
relations ∫ 1

−1

T�(x)δf(x)√
1− x2

dx = 0, � = 0, . . . , n− 2. (10.31)

In other words, fn(x) is a weighted least-squares approximation to f(x) with
respect to the weight w(x) = (1 − x2)−1/2; that is to say, it is the truncated
Chebyshev series expansion

fn(x) =
n−2∑′

k=0

dkTk(x)

of f(x).
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Then, for instance, applying the results of Section 5.7, we can say that if
the analytic continuation f(z) of f(x) is regular on and within the ellipse Er

then
|δf(x)| = ∣∣f(x)− (ST

n−2f)(x)
∣∣ ≤ M

rn−2(r − 1) , (10.32)

so that again
|δf(x)| = O(r−n) as n → ∞, (10.33)

and the projection solution converges as n increases at the same rate as the
collocation solution based on the zeros of Tn−1.

10.3 The original Lanczos tau (τ) method

The original ‘tau method’ for ordinary differential equations as described by
Lanczos (1938) approximated the unknown function by an ordinary polyno-
mial rather than by a truncated Chebyshev expansion — Chebyshev poly-
nomials made their appearance only in the residual. We illustrate this by a
simple example.

Example 10.3: Consider the equation

du

dx
+ 4xu = 0 (10.34)

on the interval −1 ≤ x ≤ 1, with the condition u(0) = 1, to which the solution is

u(x) = e−2x2
.

If we try the approximation

u6(x) = 1 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6, (10.35)

which satisfies the given condition, we come up with the residual

du6

dx
+ 4xu6 = a1 + (4 + 2a2)x + (4a1 + 3a3)x

2 + (4a2 + 4a4)x
3 +

+ (4a3 + 5a5)x
4 + (4a4 + 6a6)x

5 + 4a5x
6 + 4a6x

7.

The conventional technique (Frobenius method) for dealing with this residual would
be to ignore the last two terms (the highest powers of x), and to equate the remaining
terms to zero. This gives

a2 = −2, a4 = 2, a6 = − 4
3
, (10.36)

with all the odd-order coefficients vanishing.

Lanczos’s approach in the same case would have been to equate the residual to

τ6T6(x) + τ7T7(x).
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This gives τ6 = 0, and the odd-order coefficients again vanishing, while

τ7 = − 4

139
, a2 = −264

139
, a4 =

208

139
, a6 = − 64

139
. (10.37)

Thus the conventional approach gives the approximate solution

u6(x) = 1− 2x2 + 2x4 − 4
3
x6 (10.38)

while Lanczos’s method gives

u6(x) = 1− 264x2 − 208x4 + 64x6

139
. (10.39)

The improvement is clear—compare Figures 10.1 and 10.2.

Figure 10.1: Power series solution (10.38) compared with true solution on
[−1, 1]

Figure 10.2: Lanczos tau solution (10.39) compared with true solution on
[−1, 1]
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10.4 A more general linear equation

The methods used to attack the simple equation of Section 10.2 may be applied
with little alteration to the general linear two-point boundary-value problem

d2

dx2
u(x) + q(x)

d
dx

u(x) + r(x)u(x) = f(x), u(−1) = a, u(+1) = b,

(10.40)
where q(x) and r(x) are given continuous functions of x.

Approximating u(x) again by the finite sum (10.9)

un(x) =
n∑′

k=0

ckTk(x),

using the formula (10.5)

d2

dx2
Tk(x) =

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)Tr(x), (k ≥ 2),

for d2

dx2Tk(x) and the formula (2.49)

d
dx

Tk(x) =
k−1∑′

r=0
(k−r) odd

2kTr(x), (k ≥ 1)

for d
dxTk(x), we get linear equations similar to (10.6) but with the first equa-

tion (10.6a) replaced by

n∑
k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)ckTr(x) +

+ q(x)
n∑

k=1

k−1∑′

r=0
(k−r) odd

2kckTr(x) +

+ r(x)
n∑′

k=0

ckTk(x) = f(x). (10.41)

10.4.1 Collocation method

If we substitute x = x1, . . . , x = xn−1 in (10.41), we again get a system of
linear equations for the coefficients c0, . . . , cn, which we can go on to solve
directly.
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If q(x) and r(x) are polynomials in x, and therefore can be expressed as
sums of Chebyshev polynomials, we can go on to use the multiplication for-
mula (2.38) or that quoted in Problem 4 of Chapter 2 to reduce the products
q(x)Tr(x) and r(x)Tk(x) in (10.41) to simple sums of Chebyshev polynomi-
als Tk(x). We can then use discrete orthogonality as before to simplify the
equations to some extent.

Whether this is possible or not, however, collocation methods for linear
problems are straightforward to apply.

It should be noted that the error analysis in Section 10.2.2 does not extend
to this general case. The reason why it breaks down is that, where previously
we could say that fn(x) was an interpolating polynomial of degree n− 2, we
now have the more complicated expression

fn(x) =
d2

dx2
un(x) + q(x)

d
dx

un(x) + r(x)un(x).

We can therefore no longer appeal to formulae for polynomial interpolation
error.

10.4.2 Projection method

If q(x) and r(x) are polynomials in x, and we can therefore proceed as in the
collocation method to reduce q(x)Tr(x) and r(x)Tk(x) in (10.41) to simple
sums of Chebyshev polynomials Tk(x), then we can use integral orthogonality
relations (multiplying by 2

π (1−x2)−
1
2T�(x) and integrating, for � = 0, . . . , n−

2) to derive a set of linear equations to solve for the coefficients {ck}.
In more general circumstances, however, we may need either to approxi-

mate q(x) and r(x) by polynomials or to estimate the integrals
∫ 1

−1

Tl(x)q(x)Tk(x)√
1− x2

dx,
∫ 1

−1

Tl(x)r(x)Tk(x)√
1− x2

dx

numerically.

10.5 Pseudospectral methods — another form of collocation

In the collocation method we discussed earlier in Section 10.2.1, we approx-
imated u(x) by the truncated Chebyshev expansion un(x) of (10.9), an nth
degree polynomial. Instead of representing this polynomial by its n+1 Cheb-
yshev coefficients, suppose now that we represent it by its values at the two
boundary points (x0 and xn) and at n − 1 internal collocation points (x1,
. . . , xn−1); these n + 1 values are exactly sufficient to define the polynomial
uniquely. According to some writers, the coefficients yield a spectral and the
values a pseudospectral representation of the polynomial. To make use of such
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a representation, we need formulae for the derivatives of such a polynomial in
terms of these values.

10.5.1 Differentiation matrices

Suppose that we know the values of any nth degree polynomial p(x) at n+ 1
points x0,. . . ,xn. Then these values determine the polynomial uniquely, and
so determine the values of the derivatives p′(x) = dp(x)/ dx at the same
n+ 1 points. Each such derivative can, in fact, be expressed as a fixed linear
combination of the given function values, and the whole relationship written
in matrix form:




p′(x0)
...

p′(xn)


 =




d0,0 · · · d0,n

...
. . .

...
dn,0 · · · dn,n







p(x0)
...

p(xn)


 . (10.42)

We shall call D = {dj,k} a differentiation matrix.

Suppose now that the points xj are the n+1 zeros of some (n+1)st degree
polynomial Pn+1(x).

If for k = 0, . . . , n we let pk(x) = Pn+1(x)/(x − xk), which is an nth
degree polynomial since xk is a zero of Pn+1, then we can show without much
difficulty that

pk(xk) = P ′
n+1(xk)

pk(xj) = 0, j �= k

p′k(xk) =
1
2
P ′′

n+1(xk)

p′k(xj) =
P ′

n+1(xj)
xj − xk

, j �= k.

From this we can deduce (by setting p(x) = pk(x) in (10.42)) that the kth
column of the differentiation matrix D must have elements

dk,k =
1
2
P ′′

n+1(xk)
P ′

n+1(xk)
, (10.43a)

dj,k =
P ′

n+1(xj)
(xj − xk)P ′

n+1(xk)
, j �= k. (10.43b)

Notice that if p(x0) = p(x1) = · · · = p(xn) = 1 then we must have p(x) ≡ 1
and p′(x) ≡ 0. It follows that each row of the matrix D must sum to zero, so
that the matrix is singular, although it may not be easy to see this directly
by looking at its elements.
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Not only can we use the relationship


p′(x0)
...

p′(xn)


 = D




p(x0)
...

p(xn)




to connect the first derivatives with the function values, but we can repeat the
process (since p′ is an (n− 1)st degree polynomial, which may be regarded as
an nth degree polynomial with zero leading coefficient), to give us a similar
relationship for the second derivatives,


p′′(x0)
...

p′(xn)


 = D2




p(x0)
...

p(xn)


 ,

and so on.

10.5.2 Differentiation matrix for Chebyshev points

In particular, suppose that the n+1 points are the points yk = cos kπ
n , which

are the zeros of the polynomial Pn+1(x) = (1 − x2)Un−1(x) and the extrema
in [−1, 1] of Tn(x). Making the usual substitution x = cos θ gives us

Pn+1(x) = sin θ sinnθ.

Differentiating with respect to x, we then have

P ′
n+1(x) = −cos θ sinnθ + n sin θ cosnθ

sin θ
(10.44)

and

P ′′
n+1(x) = −cos

2 θ sinnθ − n sin θ cos θ cosnθ + (1 + n2) sin2 θ sinnθ
sin3 θ

.

(10.45)

However, we know that if θk = kπ
n then sinnθk = 0 and cosnθk = (−1)k.

Therefore (10.44) gives us

P ′
n+1(yk) =




−(−1)kn, 0 < k < n,
−2n, k = 0,
−2(−1)nn, k = n,

(10.46)

and (10.45) gives

P ′′
n+1(yk) =




(−1)kn yk

1− y2
k

, 0 < k < n,

−2n1 + 2n
2

3
, k = 0,

2(−1)nn1 + 2n
2

3
, k = n.

(10.47)
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(In each case, the values for k = 0 and k = n are obtained by proceeding
carefully to the limit as x → 1 and x → −1, respectively.)

Substituting (10.46) and (10.47) in (10.43a) and (10.43b) gives the follow-
ing as elements of the differentiation matrix D:

dj,k =
(−1)k−j

yj − yk
, 0 < j �= k < n, dk,k = − 1

2

yk

1− y2
k

, 0 < k < n,

d0,0 = 1
6 (1 + 2n

2) , dn,n = − 1
6 (1 + 2n

2) ,

d0,k = 2
(−1)k
1− yk

, 0 < k < n, dk,0 = − 1
2

(−1)k
1− yk

, 0 < k < n,

dk,n = 1
2

(−1)n−k

1 + yk
, 0 < k < n, dn,k = −2(−1)

n−k

1 + yk
, 0 < k < n,

d0,n = 1
2 (−1)n , dn,0 = − 1

2 (−1)n .
(10.48)

That is to say, we have D =




1
6
(1 + 2n2) −2

1

1− y1
2

1

1− y2
· · · 2

(−1)n−1

1− yn−1

1
2
(−1)n

1
2

1

1− y1
− 1

2

y1

1− y2
1

− 1

y1 − y2
· · · (−1)n−2

y1 − yn−1

1
2

(−1)n−1

1 + y1

− 1
2

1

1− y2
− 1

y2 − y1
− 1

2

y2

1− y2
2

· · · (−1)n−3

y2 − yn−1

1
2

(−1)n−2

1 + y2

...
...

...
. . .

...
...

− 1
2

(−1)n−1

1− yn−1

(−1)n−2

yn−1 − y1

(−1)n−3

yn−1 − y2
· · · − 1

2

yn−1

1− y2
n−1

− 1
2

1

1 + yn−1

− 1
2
(−1)n −2

(−1)n−1

1 + y1
−2

(−1)n−2

1 + y2
· · · 2

1

1 + yn−1
− 1

6
(1 + 2n2)




.

(10.49)

For instance

n = 1 (yk = 1, −1)

D =


 1

2 − 1
2

1
2 − 1

2


 , D2 =

(
0 0
0 0

)
;
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n = 2 (yk = 1, 0, −1)

D =




3
2 −2 1

2

1
2 0 − 1

2

− 1
2 2 − 3

2


 , D2 =


 1 −2 1

1 −2 1
1 −2 1


 ;

n = 3 (yk = 1, 1
2 , − 1

2 , −1)

D =




19
6 −4 4

3 − 1
2

1 − 1
3 −1 1

3

− 1
3 1 1

3 −1
1
2 − 4

3 4 − 19
6




, D2 =




16
3 − 28

3
20
3 − 8

3

10
3 − 16

3
8
3 − 2

3

− 2
3

8
3 − 16

3
10
3

− 8
3

20
3 − 28

3
16
3



;

n = 4 (yk = 1, 1/
√
2, 0, −1/√2, −1) (Fornberg 1996, p.164)2

D =




11
2 −4− 2√2 2 −4 + 2√2 1

2

1 + 1/
√
2 −1/√2 −√

2 1/
√
2 −1 + 1/√2

− 1
2

√
2 0 −√

2 1
2

1− 1/√2 −1/√2 √
2 1/

√
2 −1− 1/√2

− 1
2 4− 2√2 −2 4 + 2

√
2 − 11

2




,

D2 =




17 −20− 6√2 18 −20 + 6√2 5
5 + 3/

√
2 −14 6 −2 5− 3√2

−1 4 −6 4 −1
5− 3/√2 −2 6 −14 5 + 3

√
2

5 −20 + 6√2 18 −20− 6√2 17


 .

Notice that the matrices D and D2 are singular in each case, as expected.

10.5.3 Collocation using differentiation matrices

We return first to the simple example of (10.3)

d2

dx2
u(x) = f(x), u(−1) = a, u(+1) = b, (10.50)

2Fornberg numbers the nodes in the direction of increasing yk—we have numbered them
in order of increasing k and so of decreasing yk.

© 2003 by CRC Press LLC



250 Chapter 10: Solution of Ordinary Differential Equations

and suppose that the collocation points {xj} are chosen so that x0 = +1 and
xn = −1 (as will be the case if they are the Chebyshev points {yj} used in
Section 10.5.2.)

We know that
d2

dx2
un(xj) =

n∑
k=0

(D2)j,kun(xk).

The collocation equations thus become
n∑

k=0

(D2)j,kun(xk) = f(xj), j = 1, . . . , n− 1, un(xn) = a, un(x0) = b.

(10.51)

Partition the matrices D and D2 as follows, by cutting off the first and
last rows and columns:

D =




· · · · ·

e0 E en

· · · · ·


 ,D2 =




· · · · ·

e(2)
0 E(2) e(2)

n

· · · · ·


 (10.52)

and let u and f denote the vectors

u =




un(x1)
...

un(xn−1)


 , f =




f(x1)
...

f(xn−1)


 .

The collocation equations (10.51) can then be written in matrix notation as

un(x0)e
(2)
0 +E(2)u+ un(xn)e(2)

n = f ,

or
E(2)u = f − be(2)

0 − ae(2)
n , (10.53)

since the values of un(x0) and un(xn) are given by the boundary conditions.
We have only to solve (10.53) to obtain the remaining values of un(xk).

In order to obtain the corresponding Chebyshev coefficients, we can then
make use of discrete orthogonality relationships, as in Section 6.3.2.

Similarly, in the case of the more general equation (10.40)

d2

dx2
u(x) + q(x)

d
dx

u(x) + r(x)u(x) = f(x), u(−1) = a, u(+1) = b,

(10.54)
if we let Q and R denote diagonal matrices with elements q(xk) and r(xk)
(k = 1, . . . , n− 1), the collocation equations can be written as

(E(2) +QE+R)u = f − b(e(2)
0 +Qe0)− a(e(2)

n +Qe0). (10.55)
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10.6 Nonlinear equations

We mention briefly that the techniques discussed in the preceding Sections
can sometimes be extended to include nonlinear equations.

To take one simple example, using pseudospectral methods and following
the principles of (10.51) and (10.52), the problem

d2

dx2
u(x) = f(u(x)), u(−1) = u(+1) = 0, (10.56)

where f(u) is an arbitrary function of u, gives rise to the system of equations

n∑
k=0

(D2)j,kun(xk) = f(un(xj)), j = 1, . . . , n− 1, un(xn) = un(x0) = 0,

(10.57)
or, in matrix terms,

E(2)u = f(u), (10.58)

where f(u) denotes the vector with elements {f(un(xj))}.
Equations (10.58) may or may not have a unique solution. If they do, or

if we can identify the solution we require, then we may be able to approach
it by an iterative procedure. For instance:

simple iteration Assume that we have a good guess u(0) at the required
solution of (10.58). Then we can generate the iterates u(1), u(2), and so
on, by solving successive sets of linear equations

E(2)u(k) = f(u(k−1)), k = 1, 2, . . . . (10.59)

Newton iteration Provided that f(u) is differentiable, let f ′(u) denote the
diagonal matrix with elements {f ′(un(xj))}, and again assume that we
have a good guess u(0) at the required solution. Then generate successive
corrections (u(1) − u(0)), (u(2) − u(1)), and so on, by solving successive
sets of linear equations

(
E(2) − f ′(u(k−1))

)
(u(k) − u(k−1)) = f(u(k−1))−E(2)u(k−1),

k = 1, 2, . . . . (10.60)

There is no general guarantee that either iteration (10.59) or (10.60) will
converge to a solution — this needs to be studied on a case-by-case basis. If
both converge, however, then the Newton iteration is generally to be preferred,
since its rate of convergence is ultimately quadratic.
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10.7 Eigenvalue problems

Similar techniques to those of the preceding sections may be applied to eigen-
value problems in ordinary differential equations. One would not, of course,
think of applying them to the simplest such problem

d2

dx2
u(x) + λu(x) = 0, u(±1) = 0, (10.61)

since its solutions

u(x) = sin 1
2kπ(x + 1), λ = (12kπ)

2, k = 1, 2, . . . , (10.62)

can be written down analytically. This problem nevertheless has its uses as a
test case.

Less trivial is the slightly more general problem

d2

dx2
u(x) + q(x)u(x) + λu(x) = 0, u(±1) = 0, (10.63)

where q(x) is some prescribed function of x.

10.7.1 Collocation methods

If we approximate u(x) in the form (10.9)

un(x) :=
n∑′

k=0

ckTk(x), (10.64)

and select the zeros (10.11) of Tn−1(x)

xj = cos
(j − 1

2 )π
n− 1 , j = 1, . . . , n− 1, (10.65)

as collocation points, then the collocation equations for (10.63) become

n∑
k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)ckTr(xj) +

+ (q(xj) + λ)
n∑′

k=0

ckTk(xj) = 0,

j = 1, . . . , n− 1, (10.66a)
n∑′

k=0

(−1)kck = 0, (10.66b)

n∑′

k=0

ck = 0. (10.66c)
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Using discrete orthogonality wherever possible, as before, (10.66a) gives
us the equations

n∑
k=�+2

(k−�) even

(k − �)k(k + �)ck +
2

n− 1
n−1∑
j=1

n∑′

k=0

q(xj)T�(xj)Tk(xj)ck +

+ λc� = 0,

� = 0, . . . , n− 2. (10.67)

Using (10.66b) and (10.66c), we can make the substitutions

cn = −
n−2∑′

k=0
(n−k) even

ck, (10.68a)

cn−1 = −
n−3∑′

k=0
(n−k) odd

ck (10.68b)

to reduce (10.67) to the form of a standard matrix eigenvalue equation of the
form

A




c0
c1
...

cn−2


 = λ




c0
c1
...

cn−2


 , (10.69)

which we may solve by standard algebraic techniques.

This will yield n− 1 matrix eigenvalues {λ(j)}, with corresponding eigen-
vectors {c(j)}. These eigenvalues should approximate the n − 1 dominant
eigenvalues of (10.63), with

∑′

k=0

nc
(j)
k Tk(x)

approximating the eigenfunction u(j)(x) corresponding to the eigenvalue ap-
proximated by λ(j). (Equations (10.68) are used to obtain the coefficients c(j)n

and c
(j)
n−1.)

We illustrate this with the trivial example (10.61) in which q(x) ≡ 0, when
(10.67) becomes

n∑
k=�+2

(k−�) even

(k − �)k(k + �)ck + λc� = 0,

� = 0, . . . , n− 2. (10.70)
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Table 10.3: Eigenvalues of (10.70) and differential equation (10.61)

Matrix O.D.E.
eigenvalues eigenvalues

2.4674 2.4674
9.8696 9.8696
22.2069 22.2066
39.6873 39.4784
62.5951 61.6850
119.0980 88.8624
178.5341 120.9026
1991.3451 157.9136
3034.1964 199.8595

Results for n = 10 are shown in Table 10.3.

Note, incidentally, that if q(x) is an even function of x, so that

n−1∑
j=1

q(xj)T�(xj)Tk(xj) = 0, k − l even,

we can separate the odd-order coefficients ck from the even-order ones, thus
halving the dimensions of the matrices that we have to deal with.

10.7.2 Collocation using the differentiation matrix

The methods of Section 10.5.3 may be applied equally well to eigenvalue
problems. For instance, the problem posed in (10.63)

d2

dx2
u(x) + q(x)u(x) + λu(x) = 0, u(±1) = 0,

is the same as (10.54)

d2

dx2
u(x) + q(x)

d
dx

u(x) + r(x)u(x) = f(x), u(−1) = a, u(+1) = b,

with r(x) ≡ λ, f(x) ≡ 0 and a = b = 0.

Thus equation (10.55) becomes

(E(2) +QE+ λ)u = 0, (10.71)

where

Q =




q(x1)
. . .

q(xn−1)


 ,
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where E and E(2) are defined as in (10.52) on page 250 and where

u =




un(x1)
...

un(xn−1)


 .

Equation (10.71) is another standard matrix eigenvalue equation.

The test case (10.61) gives the simple eigenvalue problem

E(2)u+ λu = 0. (10.72)

We may use this to illustrate the accuracy of the computed eigenvalues. It
will be seen from the last example in Section 10.5.2 that the matrix E(2) will
not always be symmetric, so that it could conceivably have some complex
pairs of eigenvalues. However, Gottlieb & Lustman (1983) have shown that
its eigenvalues are all real and negative in the case where the collocation
points are taken as Chebyshev points (although not in the case where they
are equally spaced). Whether the same is true for the matrix E(2) + QE
depends on the size of the function q(x).

Table 10.4: Eigenvalues of differentiation matrices and differential equation,
Chebyshev abscissae

Matrix O.D.E.
eigenvalues eigenvalues

n = 5 n = 10
−2.4668 −2.4674 2.4674
−9.6000 −9.8696 9.8696
−31.1332 −22.2060 22.2066
−40.0000 −39.5216 39.4784

−60.7856 61.6850
−97.9574 88.8624
−110.8390 120.9026
−486.2513 157.9136
−503.3019 199.8595

We show in Table 10.4 the computed eigenvalues (which are indeed all
real and negative) of the (n − 1) × (n − 1) matrix E(2) corresponding to
the Chebyshev collocation points {yk}, for the cases n = 5 and n = 10,
together with the dominant (smallest) eigenvalues of (10.61). We see that
respectively three and five of these eigenvalues are quite closely approximated.
For general values of n, in fact, the lowest 
2n/π� eigenvalues are computed
very accurately.
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Table 10.5: Eigenvalues of differentiation matrices and differential equation,
evenly spaced abscissae

Matrix O.D.E.
eigenvalues eigenvalues

n = 5 n = 10
−2.4803 −2.4674 2.4674
−11.1871 −9.8715 9.8696
−15.7488 −22.3049 22.2066
−17.4587 −36.3672 39.4784

−48.5199 61.6850
(−57.6718 ± 88.8624

± 45.9830 i) 120.9026
(−58.2899 ± 157.9136

± 62.5821 i) 199.8595

Table 10.5 displays the corresponding results when the Chebyshev points
are replaced by points evenly spaced through the interval [−1, 1]. We see
that not only are the lower eigenvalues less accurately computed, but higher
eigenvalues can even occur in complex pairs.

The same phenomena are illustrated for n = 40 by Fornberg (1996, Fig-
ure 4.4-2).

10.8 Differential equations in one space and one time dimension

A general discussion of the application of Chebyshev polynomials to the solu-
tion of partial differential equations will be found in Chapter 11. A particular
class of partial differential equations does, however, fall naturally within the
scope of the present chapter—namely equations in two independent variables,
the first of which (t, say) represents time and the second (x, say) runs over a
finite fixed interval (which as usual we shall take to be the interval [−1, 1]).
We may then try representing the solution at any fixed instant t of time in
terms of Chebyshev polynomials in x.

For a specific example, we may consider the heat conduction equation

∂

∂t
u(t, x) = q(x)

∂2

∂x2
u(t, x), t ≥ 0, −1 ≤ x ≤ 1, (10.73a)

where q(x) > 0, with the boundary conditions

u(t,−1) = u(t,+1) = 0, t ≥ 0, (10.73b)

and the initial conditions

u(0, x) = u0(x), −1 ≤ x ≤ 1. (10.73c)
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10.8.1 Collocation methods

We try approximating u(t, x) in the form

un(t, x) :=
n∑′

k=0

ck(t)Tk(x), (10.74)

and again select the zeros (10.11) of Tn−1(x)

xj = cos
(j − 1

2 )π
n− 1 , j = 1, . . . , n− 1, (10.75)

as collocation points. The collocation equations for (10.73) become

n∑′

k=0

d
dt

ck(t)Tk(xj) = q(xj)
n∑

k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)ck(t)Tr(xj),

j = 1, . . . , n− 1, (10.76a)
n∑′

k=0

(−1)kck(t) = 0, (10.76b)

n∑′

k=0

ck(t) = 0. (10.76c)

Using discrete orthogonality as before, equations (10.76a) give

d
dt

c�(t) =
2

n− 1
n∑

k=2

k−2∑′

r=0
(k−r) even

(k − r)k(k + r)
n−1∑
j=1

q(xj)Tr(xj)T�(xj)ck(t),

� = 0, . . . , n− 2. (10.77)

We again make the substitutions (10.68) for cn−1(t) and cn(t), giving us a
system of linear differential equations for c0(t), . . . , cn−2(t), of the form

d
dt




c0(t)
c1(t)
...

cn−2(t)


 = A




c0(t)
c1(t)
...

cn−2(t)


 . (10.78)

The matrix A in (10.78) is not the same as the one appearing in (10.69);
however, if we can find its eigenvectors {c(j)} and eigenvalues {λ(j)}, then
we can write down the general solution of (10.78) as a linear combination of
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terms {expλ(j)t c(j)}, and hence find the solution corresponding to the given
initial conditions (10.73c).

We shall not discuss here the question of how well, if at all, the solution
to this system of differential equations approximates the solution to the orig-
inal partial differential equation (10.73). In particular, we shall not examine
the possibility that some λ(j) have positive real parts, in which case the ap-
proximate solution would diverge exponentially with time and therefore be
unstable and completely useless.

10.8.2 Collocation using the differentiation matrix

Once more, we have an alternative approach by way of differentiation matrices.
The heat conduction problem (10.73)

∂

∂t
u(t, x) = q(x)

∂2

∂x2
u(t, x), u(t,±1) = 0,

is another that can be derived from (10.54)

d2

dx2
u(x) + q(x)

d
dx

u(x) + r(x)u(x) = f(x), u(−1) = a, u(+1) = b,

by replacing u(x) and d
dx by u(t, x) and ∂

∂x , and setting q(x) ≡ r(x) ≡ 0,
a = b = 0 and

f(x) ≡ 1
q(x)

∂

∂t
u(t, x).

In place of equation (10.55) we thus find the system of differential equations

d
dt
u(t) = QE(2)u(t), (10.79)

where

Q =




q(x1)
. . .

q(xn−1)


 ,

where E(2) is defined as in (10.52) on page 250 and where

u(t) =




un(t, x1)
...

un(t, xn−1)


 .

As in the case of (10.78), we may write down the solution of this sys-
tem of equations as a linear combination of terms {expλ(j)t u(j)}, where the
matrix QE(2) has eigenvectors {u(j)} and eigenvalues {λ(j)}. In the spe-
cial case where q(x) is constant, q(x) ≡ q > 0 so that QE(2) = qE(2), we
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recall from Section 10.7.2 that the eigenvalues will all be real and negative
(Gottlieb & Lustman 1983), provided that collocation is at Chebyshev points;
consequently all of these terms will decay exponentially with time and the ap-
proximate solution is stable.

10.9 Problems for Chapter 10

1. Show that the two collocation algorithms of Section 10.2.1 should lead
to exactly the same result for any given value of n—likewise the two
projection algorithms of Section 10.2.3.

2. (a) Consider the problem

(1− x)y′ = 1 on [0, 1], y(0) = 0.

Obtain polynomial approximations yn(x) = c0 + c1 + · · · + cnx
n

to y(x), of degrees n = 1, 2, 3, by including a term τT ∗
n(x) on the

right-hand side of the equation. What is the true solution? Plot
the errors in each case.

(b) Consider the slightly modified problem

(1 − x)y′ = 1 on [0, 3
4 ], y(0) = 0.

How do we apply the tau method to this problem? Repeat the
exercise of the previous example using τT ∗

n(4x/3).

(c) Repeat the exercises again for the intervals [−1, 1] (using τTn(x))
and [− 3

4 ,
3
4 ] (using τTn(4x/3)). What effect does extending the

interval have on the approximate solution and the size of the error?

3. Where necessary changing the independent variable so that the interval
becomes [−1, 1], formulate and solve a (first-order) differentiation matrix
approximation to one of the parts of Problem 2.

4. Obtain a numerical solution to the differential equation (10.18) by the
standard finite-difference method

(uj−1 − 2uj + uj+1)/h2 + 6 |xj | = 0, u−n = un = 0,

where h = 1/n, xj = j/n (|j| ≤ n) and uj approximates u(xj).

For n = 10, say, how does the solution compare with the Chebyshev
solutions in Tables 10.1 and 10.2?

5. Verify formulae (10.44) and (10.45).

6. Justify the limiting values given in (10.46) and (10.47).
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7. Investigate the application of Chebyshev and conventional finite-difference
methods to the solution of the differential equation

(1 + 25x2)2
d2

dx2
u(x) = 50(75x2 − 1)u(x), u(±1) = 1

26 ,

whose exact solution is the function 1/(1 + 25x2) used to illustrate the
Runge phenomenon in Section 6.1.

8. Investigate similarly the non-linear equation

d2

dx2
u(x) +

1
1 + u(x)2

= 0, u(±1) = 0.

9. Verify the eigenvalues quoted in Tables 10.4, 10.5.
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Chapter 11

Chebyshev and Spectral Methods for Partial Differential
Equations

11.1 Introduction

Chebyshev polynomial applications to partial differential equations (PDEs)

Eu = 0 on a domain S, (11.1a)

subject to boundary conditions

Bu = 0 on ∂S, (11.1b)

where ∂S is the boundary of the domain S, are a natural progression of
the work of Lanczos (1938) and Clenshaw (1957) on ordinary differential
equations. However, the first formal publications in the topic of PDEs ap-
pear to be those of Elliott (1961), Mason (1965, 1967) and Fox & Parker
(1968) in the 1960s, where some of the fundamental ideas for extending one-
dimensional techniques to multi-dimensional forms and domains were first
developed. Then in the 1970s, Kreiss & Oliger (1972) and Gottlieb & Orszag
(1977) led the way to the strong development of so-called pseudo-spectral
methods, which exploit the fast Fourier transform of Cooley & Tukey (1965),
the intrinsic rapid convergence of Chebyshev methods, and the simplicity of
differentiation matrices with nodal bases.

Another important early contribution was the expository paper of Fin-
layson & Scriven (1966), who set the new methods of the 1960s in the context
of the established “method of weighted residuals” (MWR) and classified them
formally into the categories of Galerkin, collocation, and least squares meth-
ods, as well as into the categories of boundary, interior and mixed methods.

Let us first clarify some of this nomenclature, as well as looking at early
and basic approximation methods. We assume that the solution of (11.1a),
(11.1b) is to be approximated in the form

u � un = f(Ln) (11.2)

where

Ln =
n∑

k=1

ckφk (11.3)

is a linear combination of an appropriate basis of functions {φk} of the inde-
pendent variables (x and y, say) of the problem and where f is a quasi-linear
function

f(L) = A.L+B, (11.4)

where A, B are specified functions (of x and y).
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11.2 Interior, boundary and mixed methods

11.2.1 Interior methods

An interior method is one in which the approximation (11.2) exactly satisfies
the boundary conditions (11.1b) for all choices of coefficients {ci}. This is
typically achieved by choosing each basis function φi appropriately. If Bu in
(11.1b) is identically u, so that we have the homogeneous Dirichlet condition

u = 0 on ∂S, (11.5)

then we might well use the identity function for f , and choose a basis for
which every φi vanishes on ∂S. For example, if S is the square domain with
boundary

∂S : x = 0, x = 1, y = 0, y = 1. (11.6)

then one possibility would be to choose

φk = Φij = sin iπx sin jπx (11.7)

with
k = i+ n(j − 1)

and
ck = aij ,

say, so that the single index k = 1, . . . , n2 counts row by row through the
array of n2 basis functions corresponding to the indices i = 1, . . . , n and
j = 1, . . . , n. In practice we might in this case change notation from φk to
Φij and from un2 , Ln2 to unn, Lnn, setting

u � unn = f(Lnn)

where

Lnn =
n∑

i=1

n∑
j=1

aijΦij(x, y). (11.8)

It only remains to solve the interior problem (11.1a).

There is a generalisation of the above method, that is sometimes applicable
to the general Dirichlet boundary conditions

u = B(x, y) (11.9)

on the boundary
Γ : A(x, y) = 0,

where we know a formula A = 0 for the algebraic equation of Γ, as well as a
formula B = 0 for the boundary data. Then we may choose

u � unn = f(Lnn) = A(x, y)Lnn +B(x, y), (11.10)
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which automatically satisfies (11.5), whatever we take for Lnn. See Mason
(1967) for a successful application and early discussion of such techniques.

In the discussion that follows we assume unless otherwise stated that f is
the identity, so that un and Ln are the same function.

11.2.2 Boundary methods

A boundary method is one in which the approximation (11.2) exactly satisfies
the PDE (11.1a) for all choices of coefficients {ci}. If the PDE is linear, for
example, then this is achieved by ensuring that every basis function φk is a
particular solution of (11.1a). This method is often termed the “method of
particular solutions” and has a long history— see for example Vekua (1967)—
and indeed the classical method of separation of variables for PDEs is typically
of this nature. It remains to satisfy the boundary conditions approximately
by suitable choice of coefficients {ci}.

For example, consider Laplace’s equation in (r, θ) coordinates:

�u = r2 ∂
2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
= 0 (11.11a)

in the disk S : r ≤ 1, together with

u = g(θ) (11.11b)

on ∂S : r = 1, where g is a known 2π-periodic function of the orientation θ of
a general point, P say, on the boundary (Figure 11.1).

Then

u � un(r, θ) =
n∑′

k=0

[ak(rk cos(kθ)) + bk(rk sin(kθ))] (11.12)

is an exact solution of (11.11a) for all {ak, bk}, since rk cos(kθ) and rk sin(kθ)
are particular solutions of (11.11a), which may readily be derived by separa-
tion of variables in (11.11a) (see Problem 1).
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Substituting (11.12) into (11.11b) gives

u = g(θ) � un(1, θ) =
n∑′

k=0

[ak cos(kθ) + bk sin(kθ)]. (11.13)

Clearly we require the latter trigonometric sum to approximate g(θ). This
may theoretically be achieved by choosing ak and bk to be coefficients in the
full Fourier series expansion of g(θ), namely

ak = π−1

∫ 2π

0

g(θ) cos(kθ) dθ, bk = π−1

∫ 2π

0

g(θ) sin(kθ) dθ. (11.14)

These integrals must be replaced by numerical approximations, which may be
rapidly computed by the fast Fourier transform (FFT, see Section 4.7). The
FFT computes an approximate integral transform, by “exactly” computing
the discrete Fourier transform given by

ak = n−1

2n∑′′

i=0

g(θi) cos(kθi), bk = n−1

2n∑′′

i=0

g(θi) sin(kθi), (11.15)

where
θi = iπ/n (i = 0, . . . , 2n). (11.16)

Here the periodic formulae (11.14) have been approximated by Filon’s rule,
namely the Trapezoidal rule for trigonometric functions, which is a very ac-
curate substitute in this case.

Several examples of the method of particular solutions are given by Mason
& Weber (1992), where it is shown that the method does not always converge!
See also, however, Fox et al. (1967) and Mason (1969) where the “L-shaped
membrane eigenvalue problem” is solved very rapidly and accurately by this
method.

Boundary MWR methods are important because, when they are appli-
cable, they effectively reduce the dimension of the problem by restricting it
to the domain boundary. In consequence such methods can be very efficient
indeed. Moreover, because they normally incorporate precise features of the
solution behaviour, they are often very accurate too — see Mason (1969)
where the first L-shaped membrane eigenvalue is computed correct to 13 sig-
nificant figures for (n =)24 basis functions.

However, boundary MWR methods are not the only available techniques
for in effect reducing the problem dimension. The method of fundamental
solutions, which has been adopted prolifically by Fairweather & Karageorghis
(1998), uses fundamental PDE solutions as a basis. These solutions typically
have singularities at their centres, and so must be centred at points exterior
to S. This method is closely related to the boundary integral equation (BIE)
method and hence to the boundary element method (BEM) — for which
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there is a huge literature (Brebbia et al. 1984, for example), and indeed the
boundary integral equation method adopts the same fundamental solutions,
but as weight functions in integral equations. For example, functions behaving
like log r occur in both the method of fundamental solutions and the boundary
integral equation method for Laplace’s equation in two dimensions.

Both the BIE method and the BEM convert a PDE on a domain into
an integral equation over its boundary. They consequently have the possi-
bility for considerable improvements in efficiency and accuracy over classical
finite element methods for the original PDE, depending on the nature of the
geometry and other factors.

11.2.3 Mixed methods

A mixed method is one in which both the PDE (11.1a) and its boundary
conditions (11.1b) need to be approximated. In fact this is generally the case,
since real-life problems are usually too complicated to be treated as boundary
or interior problems alone. Examples of such problems will be given later in
this chapter.

11.3 Differentiation matrices and nodal representation

An important development, which follows a contrasting procedure to that of
the methods above, is to seek, as initial parameters, not the coefficients ck in
the approximation form Ln (11.3) but instead the values un(xi, yj) of un at
a suitable mesh of Chebyshev zeros. Derivatives can be expressed in terms of
these un values also, and hence a system of (linear) algebraic equations can
be formed for the required values of un. It is then possible, if required, to
recover the coefficients ck by a Chebyshev collocation procedure.

An example of the procedure was given in Chapter 10 (Section 10.5.1)
for ordinary differential equations (ODEs). In the case of PDEs it should be
noted that the procedure is primarily suited to rectangular regions.

11.4 Method of weighted residuals

11.4.1 Continuous MWR

The standard MWR, which we call the continuous MWR, seeks to solve an
interior problem by finding an approximation of the form (11.2) which min-
imises, with respect to ck (k = 1, . . . , n), the expression

〈Eun , Wk〉2 ≡
[∫

S

(Eun).Wk dS
]2

, (11.17)
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where Wk is a suitable weight function (Finlayson & Scriven 1966). Here we
assume that E is a linear partial differential operator. More specifically :

(i) MWR is a least squares method if

Wk ≡ w.Eun, (k = 1, . . . , n), (11.18)

where w is a fixed non-negative weight function. Then, on differentiating
(11.17) with respect to ck, we obtain the simpler form

〈Eun , w.Eφk〉 = 0, (k = 1, . . . , n). (11.19)

This comprises a linear system of n equations for ck.

(ii) MWR is a Galerkin method if

Wk ≡ w.φk. (11.20)

Note that, in this case, we can give a zero (minimum) value to (11.17) by
setting

〈Eun , w.φk〉 = 0, (k = 1, . . . , n), (11.21)

again a system of linear equations for ck. It follows from (11.21) that

〈Eun , w.un〉 = 0. (11.22)

More generally, we can if we wish replace φk in (11.21) by any set of test
functions ψk, forming a basis for uk and solve

〈Eun , w.ψk〉 = 0, (k = 1, . . . , n). (11.23)

(iii) MWR is a collocation method (interpolation method) at the points
P1, . . . , Pn if

Wk ≡ δ(Pk), (11.24)

where δ(P ) is the Dirac delta function (which is infinite at the point P , van-
ishes elsewhere and has the property that 〈u , δ(P )〉 = u(P ) for any well-
behaved function u). Then Eun in (11.17) will be set to zero at Pk, for every
k.

11.4.2 Discrete MWR — a new nomenclature

It is also possible to define a discrete MWR, for each of the three types of
methods listed above, by using a discrete inner product in (11.17). Commonly
we do not wish, or are unable, to evaluate and integrate Eun.Wk over a
continuum, in which case we may replace the integral in (11.17) by the sum∑

Sn

(Eun).Wk, (11.25)
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where Sn is a discrete point set representing S.

The discrete MWR, applied to an interior problem, is based on a discrete
inner product. It seeks an approximation of the form (11.2) which solves

min
ck




 p∑

j=1

Eun(xj)Wk(xj)




2

≡ (Eun,Wk)2


 , (11.26)

where xj (j = 1, . . . , p) are a discrete set of nodes in S, selected suitably
from values of the vector x of independent variables, and Wk are appropriate
weights.

(i) The discrete MWR is a discrete least-squares method if

Wk ≡ wEun. (11.27)

This is commonly adopted in practice in place of (11.18) for convenience and
to avoid integration.

(ii) The discrete MWR is a discrete Galerkin method if

Wk ≡ wφk (11.28)

or, equivalently,
(Eun, wψk) = 0. (11.29)

Note that the PDE operator Eun is directly orthogonal to every test function
ψk, as well as to the approximation un, so that

(Eun, wun) = 0. (11.30)

(iii) The discrete MWR is a discrete collocation method if (11.24) holds,
where {Pk} is contained within the discrete point set Sn.

11.5 Chebyshev series and Galerkin methods

The most basic idea in Chebyshev polynomial methods is that of expanding a
solution in a (multiple) Chebyshev series expansion, and using the partial sum
as an approximation. This type of approach is referred to as a spectral method
by Gottlieb & Orszag (1977). This type of ODE/PDE method had previously,
and still has, several other names, and it is known as (or is equivalent to) a
Chebyshev series method, a Chebyshev–Galerkin method, and the tau method
of Lanczos.

Before introducing PDE methods, we consider the Lanczos tau method:
one of the earliest Chebyshev methods for solving a linear ODE

Ey = 0
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in the approximate form yn.

Lanczos (1938) and Ortiz and co-workers (Ortiz 1969, Freilich & Ortiz
1982, and many other papers) observed that, if yn is expressed in the power
form

yn = b0 + b1x+ b2x
2 + · · ·+ bnx

n, (11.31)

then, for many important linear ODEs, Eyn can be equated to a (finite)
polynomial with relatively few terms, of the form

Eyn = τ1Tq+1(x) + τ2Tq+2(x) + · · ·+ τsTq+s(x), (11.32)

where q and s are some integers dependent on E. The method involves sub-
stituting yn (11.31) into the perturbed equation (11.32) and equating powers
of x from x0 to xq+s. The t (say) boundary conditions are also applied to yn,
leading to a total of q+ s+ t+1 linear equations for b0, . . . , bn, τ1, . . . , τs. We
see that for the equations to have one and only one solution we must normally
have

q + t = n. (11.33)

The equations are solved by first expressing b0, . . . , bn in terms of τ1, . . . , τs,
solving s equations for the τ values and hence determining the b values. Be-
cause of the structure of the resulting matrix and assuming s is small com-
pared to n, the calculation can routinely reduce to one of O(n) operations,
and hence the method is an attractive one for suitable equations.

The above method is called the (Lanczos) tau method - with reference to
the introduction by Lanczos (1938) of perturbation terms, with coefficients
τ1, . . . , τs, on the right hand side of Ey = 0 to enable the ODE to be exactly
solved in finite form. The nice feature of this approach is that the tau values
give a measure of the sizes of the contributions that the perturbation terms
make to the ODE — at worst,

|Eyn| ≤ |τ1|+ |τ2|+ · · ·+ |τs| . (11.34)

For some special cases, Lanczos (1957), Fox & Parker (1968), Mason (1965),
Ortiz (1980, 1986, 1987), Khajah & Ortiz (1991) and many others were able
to give quite useful error estimates based on the known form (11.32).

The tau method is also equivalent to a Galerkin method, since Eyn is
orthogonal with respect to (1− x2)−1/2 to all polynomials of degree up to q,
as a consequence of (11.32). Note that the Galerkin method proper is more
robust than equivalent tau or Chebyshev series methods, since, for example,
it is unnecessary to introduce τ terms or to find and use the form (11.32).
The Galerkin method directly sets up a linear system of equations for its
coefficients. For example, if we wish to solve

u′ − u = 0, u(0) = 1 (11.35)
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by a Galerkin procedure using Legendre polynomials P ∗
i (x) appropriate to

[0, 1], namely

u ∼ un =
n∑

i=0

ciP
∗
i (x), (11.36)

then we solve ∫ 1

0

(u
′
n − un).P ∗

i (x) dx = 0 (i = 0, 1, . . . , n− 1) (11.37)

and
n∑

i=0

ciP
∗
i (0) = 1. (11.38)

Here (11.37) and (11.38) comprise n + 1 equations for c0, . . . , cn. Note that
a snag in the Galerkin method is the need to evaluate the various integrals
that occur, which are likely to require a numerical treatment except in simple
problems such as (11.35).

It is worth remembering that Chebyshev series are also transformed Fourier
series, and so Chebyshev methods may be based on known methods for gen-
erating Fourier partial sums or Fourier transforms, based on integrals and
expansions.

11.6 Collocation/interpolation and related methods

We have seen, in Sections 5.5 and 6.5, that a Chebyshev series partial sum of
degree n of a continuous function is a near-minimax approximation on [−1, 1]
within a relative distance of order 4π−2 logn, whereas the polynomial of de-
gree n interpolating (collocating) the function at the n + 1 zeros of Tn+1(x)
is near-minimax within a slightly larger relative distance of order 2π−1 logn.
Thus, we may anticipate an error that is π/2 times as large in Chebyshev in-
terpolation compared with Chebyshev series expansion. In practice, however,
this is a very small potential factor, and polynomial approximations from
the two approaches are virtually indistinguishable. Indeed, since collocation
methods are simpler, more flexible and much more generally applicable, they
offer a powerful substitute for the somewhat more mathematically orthodox
but restrictive series methods.

The title pseudo-spectral method was introduced by Gottlieb & Orszag
(1977), in place of Chebyshev collocation method, to put across the role of this
method as a robust substitute for the spectral method. Both series (spectral)
and collocation (pseudo-spectral) methods were rigorously described by Ma-
son (1970) as near-minimax. Note that minimax procedures generally involve
infinite procedures and are not practicably feasible, while spectral, and more
particularly pseudo-spectral, methods are typically linear and very close to
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minimax and therefore provide an excellent and relatively very inexpensive
substitute for a minimax approximation method.

It has long been realised that collocation for differential equations is almost
identical to series expansion. Lanczos (1957) noted that the ODE error form
adopted in his tau method (11.32) could conveniently be replaced with nearly
identical results (though different τ coefficients) by

Eyn = Tq+1(x).(τ1 + τ2x+ · · ·+ τsx
s−1), (11.39)

where q+ s is the degree of Eyn. Note that the error in the ODE vanishes at
the zeros of Tq+1(x), and so the method is equivalent to a collocation method
(in the ODE). Lanczos called this method the selected points method, where
the zeros of Tq+1 are the points selected in this case. Lanczos sometimes also
selected Legendre polynomial zeros instead, since in practice they sometimes
give superior results.

We have already shown that the Chebyshev collocation polynomial, fn(x)
of degree n to a given f(x), may be very efficiently computed by adopting a
discrete orthogonalisation procedure

f(x) � fn(x) =
n∑′

i=0

ciTi(x), (11.40)

where

ci =
2
N

N∑
k=0

f(xk)Ti(xk) =
2
N

N∑
k=0

f(cos(θk)) cos(iθk), (11.41)

with

xk = cos(θk) = cos
(
(2k + 1)π
2(N + 1)

)
(k = 0, 1, . . . , n). (11.42)

For N = n, this yields the collocation polynomial, and this clearly mimics
the Chebyshev series partial sum of order n, which has the form (11.40) with
(11.41) replaced by

ci =
2
π

∫ 1

−1

(1− x2)−1/2f(x)Ti(x) dx =
2
π

∫ π

0

f(cos(θ)) cos(iθ) dθ. (11.43)

with x = cos(θ).

Note that the discrete Chebyshev transform in x and the discrete Fourier
transform in θ, that appear in (11.41), also represent an excellent numerical
method (Filon’s rule for periodic integrands) for approximately computing
the continuous Chebyshev transform and Fourier transform that appear in
(11.43). The fast Fourier transform (FFT), which is of course a very efficient
method of computing the Fourier transform, does in fact compute the discrete
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Fourier transform instead. However, (11.43) is typically replaced by (11.41)
for a value of N very much larger than n, say N = 1024 for n = 10. So
there are really two different discrete Fourier transforms, one for N = n
(collocation) and one for N � n (approximate series expansion).

11.7 PDE methods

We note that, for simplicity, the above discussions of nomenclature have been
based on ODEs, for which boundary conditions apply at just a few points,
usually only one or two. Typically these boundary conditions are imposed
exactly as additional constraints on the approximation, with only a little effect
on the number of coefficients remaining. For example, in the tau method for

Eu ≡ u′ − u = 0, u(0) = 1 in [0, 1], (11.44)

we determine
u ∼ un = c0 + c1x+ · · ·+ cnx

n

by equating coefficients of 1, x, x2, . . . , xn in

Eun ≡ (c1 − c0) + (2c2 − c1)x+ (3c3 − c2)x2 + · · · +
+ (ncn − cn−1)xn−1 − cnx

n = τT ∗
n(x). (11.45)

This yields n+1 linear equations for c0, . . . , cn, τ , and an additional equation
is obtained by setting c0 = 1 to satisfy the boundary (initial) condition.

In spectral and pseudo-spectral methods for PDEs, the boundary condi-
tions play a much more crucial role than for ODEs, and it becomes important
to decide whether to satisfy the boundary conditions implicitly, in the form
chosen for the basis functions, or to apply the boundary conditions as addi-
tional constraints. For this reason, Gottlieb & Orszag (1977) and Canuto et al.
(1988) differentiate between Galerkin and tau methods primarily in terms of
their treatment of boundary conditions — whereas we have above viewed
these methods as equivalent, one based on the orthogonality requirement and
the other based on the form of the ODE (perturbation) error. Canuto et al.
(1988) view a Galerkin method as a series method in which the boundary
conditions are included implicitly in the chosen solution form, whereas a tau
method is seen by them as a series method for which the boundary conditions
are applied explicitly through additional constraints.

The distinction made by Canuto et al. (1988) between Galerkin and tau
methods has virtues. In particular the number of free approximation coeffi-
cients needed to satisfy boundary conditions can be very large, whereas this
may be a peripheral effect if the boundary can be treated implicitly. So a
distinction is needed. But the words, Galerkin and tau, do not conjure up
boundary issues, but rather an orthogonality technique and tau perturbation
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terms. A better terminology, we would suggest, would be to refer to methods
which include/exclude boundary conditions from the approximation form as
implicit/explicit methods respectively. We could alternatively use the titles
interior/mixed methods, as discussed for the MWR above.

Nomenclature and methods become more complicated for PDEs in higher
dimensions. In the following sections we therefore give a number of exam-
ples of problems and methods to illustrate the formalisms that result from
approaches of the Galerkin, tau, collocation, implicit, explicit (&c.) variety.
We do not view spectral and pseudo-spectral methods, unlike Galerkin and
tau methods, as specifically definable methods, but rather as generic titles for
the two main branches of methods (series and collocation). A generalisation
of the Lanczos tau method might thus be termed a spectral explicit/mixed
tau method.

11.7.1 Error analysis

Canuto et al. (1988) and Mercier (1989), among others, give careful attention
to error bounds and convergence results. In particular, Canuto et al. (1988)
address standard problems such as the Poisson problem, as well as individu-
ally addressing a variety of harder problems. In practice, however, the main
advantage of a spectral method lies in the rapid convergence of the Chebyshev
series; this in many cases makes feasible an error estimate based on the sizes
of Chebyshev coefficients, especially where convergence is exponential.

11.8 Some PDE problems and various methods

It is simplest to understand, develop and describe spectral and pseudo-spectral
methods by working through a selection of problems of progressively increas-
ing complexity. This corresponds quite closely to the historical order of devel-
opment, which starts, from a numerical analysis perspective, with the novel
contributions of the 1960s and is followed by the fast (FFT-based) spectral
methods of the 1970s. Early work of the 1960s did establish fundamental
techniques and compute novel approximations to parabolic and elliptic PDEs,
based especially on the respective forms

u(x, t) ∼ un(x, t) =
n∑

i=0

cifi(t)Ti(x) (−1 ≤ x ≤ 1; t ≥ 0) (11.46)

for parabolic equations, such as uxx = ut, and

u(x, y) ∼ un(x, y) =
m∑

i=0

n∑
j=0

cijTi(x)Tj(y) (−1 ≤ x, y ≤ 1) (11.47)

for elliptic problems, such as ∆u ≡ uxx + uyy = f .
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An early paper based on (11.46) was that of Elliott (1961), who deter-
mined fi(t) as approximate solutions of a system of ODEs, in the spirit of the
“method of lines”. Another early paper based on (11.47) was that of Mason
(1967), which solves the membrane eigenvalue problem (see Section 11.8.2
below)

∆u+ λu = 0 in S, u = 0 on ∂S, (11.48)

for the classical problem of an L-shaped membrane (consisting of three squares
co-joined), based on a preliminary conformal mapping of the domain and an
approximation

u � A(x, y).φn(x, y), (11.49)

where A = 0 is the algebraic equation of the mapped boundary. Mason
(1969) also used an approximation of form (11.46) to solve a range of separable
PDEs including (11.48). Indeed the leading eigenvalue of the L-membrane was
computed to 13 significant figures by Mason (1969) (λ = 9.639723844022).

These early quoted papers are all essentially based on the collocation
method for computing coefficients ci or cij . It is also possible to develop
tau/series methods for the form (11.46), based on the solution by the Lanczos
tau method of the corresponding ODEs for fi(t) ; this has been carried out for
very basic equations such as the heat equation and Poisson equation (Berzins
& Dew 1987).

11.8.1 Power basis: collocation for Poisson problem

Consider the Poisson problem

∆u ≡ ∂2u

∂x2
+

∂2u

∂y2
= f(x, y) in S, u = 0 on ∂S, (11.50)

where S is the square with boundaries x = ±1, y = ±1. Suppose we approxi-
mate as

u � umn = φ(x, y)
m−2∑
i=0

n−2∑
j=0

aijx
iyj , (11.51)

where we adopt the power basis xiyj and include a multiplicative factor φ(x)
such that φ = 0 is the (combined) equation of the boundaries. In this case,

φ(x, y) = (x2 − 1)(y2 − 1). (11.52)

Then we may rewrite umn as

umn =
m−2∑
i=0

n−2∑
j=0

aij(xi+2 − xi)(yj+2 − yj) (11.53)
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and hence, applying ∆, obtain

∆umn =
m−2∑
i=0

n−2∑
j=0

aij

(
[(i+ 2)(i+ 1)x2 − i(i− 1)]xi−2yj(y2 − 1)

+ [(j + 2)(j + 1)y2 − j(j − 1)]xi(x2 − 1)yj−2
)
. (11.54)

Now set ∆umn equal to f(x, y) at the (m − 1)(n − 1) points (xk, yl) (k =
1, . . . ,m−1; l = 1, . . . , n−1), where {xk}, {yl} are the respective sets of zeros
of Tm−1(x), Tn−1(y), respectively, namely the points

xk = cos
(
(2k − 1)π
2(m− 1)

)
, yl = cos

(
(2l− 1)π
2(n− 1)

)
. (11.55)

This leads to a full linear algebraic system of (m−1)(n−1) equations for aij .
It is relatively straightforward to code a computer procedure for the above
algorithm.

We also observe that the approximation umn adopted in (11.53) above
could equally well be replaced by the equivalent form

umn =
m∑

i=2

n∑
j=2

aij(xi − xi mod 2)(yj − yj mod 2), (11.56)

where (i mod 2) is 0 or 1 according as i is even or odd, since x2−1 and y2−1
are in every case factors of umn. This leads to a simplification in ∆umn (as
in (11.54)), namely

∆umn =
m∑

i=2

n∑
j=2

aij

[
i(i− 1)xi−2(yj − yj mod 2)

+ j(j − 1)yj−2(xi − xi mod 2)
]
. (11.57)

The method then proceeds as before. However, we note that (11.51) is a more
robust form for more general boundary shapes ∂S and more general boundary
conditions Bu = 0, since simplifications like (11.56) are not generally feasible.

The above methods, although rather simple, are not very efficient, since no
account has been taken of special properties of Chebyshev polynomials, such
as discrete orthogonality. Moreover, (11.53) and (11.56) use the basis of power
functions xiyj which, form and n sufficiently large, can lead to significant loss
of accuracy in the coefficients aij , due to rounding error and poor conditioning
in the resulting linear algebraic system. We therefore plan to follow up this
discussion in a later Section by considering more efficient and well conditioned
procedures based on the direct use of a Chebyshev polynomial product as a
basis, namely Ti(x)Tj(y).

However, before we return to the Poisson problem, let us consider a more
difficult problem, where the form (11.51) is very effective and where a power
basis is adequate for achieving relatively high accuracy.
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11.8.2 Power basis: interior collocation for the L-membrane

Consider the eigenvalue problem

∆u+ λu = 0 in S, u = 0 on ∂S, (11.58)

where S is the L-shaped region shown (upside down for convenience) in Fig-
ure 11.2. It comprises three squares of unit sides placed together. To remove
the re-entrant corner atO, we perform the mapping, adopted by Reid &Walsh
(1965),

z′ = z2/3 (z′ = x′ + iy′, z = x+ iy), (11.59)

where x, y are coordinates in the original domain S (Figure 11.2) and x′, y′

are corresponding coordinates in the mapped domain S′ (Figure 11.3).
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Figure 11.3: Mapped domain

Note that the domain S′ is the upper half of a curved hexagon with corners
of angle π

2 shown in Figure 11.3, where the vertices A′, B′, C′, D′, E′ corre-
spond to A,B,C,D,E in Figure 11.2. (The lower half of the hexagon does
not concern us, but is included in Figure 11.3 to show the geometry and the
symmetry.) Now, from the mapping,

r′ = r2/3, θ′ = 2
3θ. (11.60)

Then

∆u + λu ≡ r−2

[
r2 ∂

2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
+ λu

]

= r−2

[
r
∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂θ2

]
+ λu

= (r′)−3

[
2
3

(
r′

∂

∂r′

)
2
3

(
r′
∂u

∂r′

)
+ 4

9

∂2u

∂θ′2

]
+ λu. (11.61)
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Hence
∆u+ λu = 4

9 (r
′)−1.(∆′u+ 9

4r
′λu) = 0, (11.62)

where dashes on ∆′, r′ indicate that dashed coordinates are involved. Thus
the problem (11.58) has transformed, now dropping dashes on r, u, to

∆u+ 9
4rλu = 0 in S′, u = 0 on ∂S′. (11.63)

Before proposing a numerical method, we need to find the algebraic equa-
tion of the boundary O′A′B′C′D′E′(O′) in Figure 11.3. This boundary has
two parts: the straight line E′O′A′, namely y′ = 0, and the set of four curves
A′B′C′D′E′ which correspond to (x2−1)(y2−1) = 0 in S. Thus the boundary
equation is

0 = A(x, y) = 4y′(x2 − 1)(y2 − 1) = 4y′(x2y2 − r2 + 1)

= y′(r4 sin2(2θ)− 4r2 + 4) = y′
[
(r′)6 sin2(3θ′)− 4(r′)3 + 4]

= y′
[
(y′)2{3(x′)2 − (y′)2}2 − 4{(x′)2 + (y′)2}3/2 + 4

]
. (11.64)

Dropping dashes again,

A(x, y) = y.
[
y2(3x2 − y2)2 − 4(x2 + y2)3/2 + 4

]
= 0. (11.65)

We now adopt as our approximation to u, using (11.65) for φ:

u � umn = A(x, y).
m∑

i=0

n∑
j=0

cijx
2i+tyj , (11.66)

where t = 0 or 1, according as we seek a solution which is symmetric or
anti-symmetric about OC. For the leading (i.e., largest) λ, we choose t = 0.

The rectangle TUVW , which encloses the mapped membrane, has sides
O′T , TU in the x, y directions, respectively, of lengths a, b, say, given by

a = O′T = O′B′ cos(π/6) = 21/331/2/2 = 2−2/331/2,

b = TU = O′C′ = (21/2)2/3 = 21/3. (11.67)

An appropriate ‘interior’ collocation method is now simply constructed. We
specify that the form of approximation (11.66) should satisfy the PDE (11.63)
at the tensor product of (m+1)(n+1) positive zeros of T ∗

m+1(x/a)T
∗
n+1(y/b),

where a, b are given in (11.67), namely the points

{x, y} =
{
a. cos2

(
(2k − 1)π
4(m+ 1)

)
, b. cos2

(
(2l − 1)π
4(n+ 1)

)}
(k = 1, . . . ,m+ 1; l = 1, . . . , n+ 1). (11.68)

© 2003 by CRC Press LLC



Table 11.1: Estimates of first 3 eigenvalues of L-membrane
m = n λ Rayleigh quotient

Functional form A(x, y)
∑m

0

∑n
0 x2iyj

4 9.6398 9.6723
6 9.6400 9.6397
8 9.6397 9.6397

Functional form xA(x, y)
∑m

0

∑n
0 x2iy2j

4 15.2159
5 15.1978 15.1980
6 15.1974 15.1974
7 15.1974 15.1974

Functional form A(x, y)
∑m

0

∑n
0 x2iy2j

4 19.8054
5 19.7394
6 19.7392 19.7392
7 19.7392 19.7392

This leads to a homogeneous system of (m+1)(n+1) linear equations, which
we may write in matrix form as A.c = 0, for the determination of c = {cij},
where A depends on λ. The determinant of A must vanish, thus defining
eligible values of λ, corresponding to eigenvalues of the PDE. We have applied
the secant method to find the λ nearest to a chosen guess. Results for the first
three eigenvalues, taken from Mason (1965), are shown in Table 11.1 together
with Rayleigh quotient estimates. Clearly the method is rather successful,
and the application serves as an interesting model problem.

Strictly speaking, the collocation method above is not an interior method,
since some collocation points are exterior to S although interior to the rect-
angle TUVW . However, the PDE solution does extend continuously across
the problem boundaries to these exterior points.

In fairness we should point out that, although the above collocation method
is probably at least as effective for this problem as the best finite difference
method, such as that of Reid & Walsh (1965), it is not the best method of
all. A better method for the present problem is the boundary method, based
on separation of variables, due to Fox et al. (1967) and further extended by
Mason (1969). This breaks down for regions with more than one re-entrant
corner, however, on account of ill-conditioning; a better method is the finite-
element/domain-decomposition method described by Driscoll (1997).
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11.8.3 Chebyshev basis and discrete orthogonalisation

In the remaining discussion, we concentrate on the use of a Chebyshev poly-
nomial basis for approximation and exploit properties such as discrete orthog-
onality and the FFT for efficiency. However, it is first appropriate to remind
the reader that the classical method of separation of variables provides both
a fast boundary method for Laplace’s equation and a superposition method,
combining interior and boundary methods for the Poisson equation with non-
zero boundary conditions.

Separation of variables: basic Dirichlet problem

Consider the basic Dirichlet problem for Laplace’s equation on a square,
namely

∆u = 0 in S, (11.69a)

u = g(x, y) on ∂S, (11.69b)

where ∂S is the square boundary formed by x = ±1, y = ±1, S is its interior
and g is defined only on ∂S. Then we may solve (11.69a) analytically for the
partial boundary conditions

u = g(−1, y) on x = −1; u = 0 on x = +1, y = −1, y = +1, (11.70)

in the form

u =
∞∑

k=1

ak sinh 1
2kπ(1 − x) sin 1

2kπ(1− y), (11.71)

where ak are chosen to match the Fourier sine series of g(−1, y) on x = −1.
Specifically

g(−1, y) =
∞∑

k=1

bk sin 1
2kπ(1− y), (11.72)

where

bk = 2
∫ 1

−1

g(−1, y) sin 1
2kπ(1− y) dy, (11.73)

and hence ak is given by

ak = bk[sinh kπ]−1. (11.74)

Clearly we can define three more solutions of (11.69a), analogous to (11.71),
each of which matches g(x, y) on one side of ∂S and is zero on the remainder
of ∂S. If we sum these four solutions then we obtain the analytical solution of
(11.69a) and (11.69b). For an efficient numerical solution, the Fourier series
should be truncated and evaluated by using the FFT [see Section 4.7].
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Chebyshev basis: Poisson problem

The Poisson Problem can be posed in a slightly more general way than in
Section 11.8.3, while still permitting efficient treatment. In particular we may
introduce two general functions, f as the right-hand side of the PDE, and g
as the boundary function, as follows.

∆u = f(x, y) in S, u = g(x, y) in ∂S, (11.75)

where S and ∂S denote the usual square {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and its
boundary. Then we may eliminate g (and replace it by zero) in (11.75), by
superposing two problem solutions

u = u1 + u2, (11.76)

where u1 is the solution of the Laplace problem ((11.75) with f ≡ 0) and u2

is the solution of the simple Poisson problem ((11.75) with g ≡ 0), so that

∆u1 = 0 in S, u1 = g(x, y) on ∂S, (11.77a)

∆u2 = f(x, y) in S, u2 = 0 on ∂S. (11.77b)

We gave details above of the determination of u1 from four Fourier sine series
expansions based on separation of variables, as per (11.71) above. We may
therefore restrict attention to the problem (11.77b) defining u2, which we now
rename u.

We now re-address (11.77b), which was discussed in Section 11.8.1 using
a power basis, and, for greater efficiency and stability, we adopt a boundary
method based on a Chebyshev polynomial representation

umn = (x2 − 1)(y2 − 1)
m−2∑′

i=0

n−2∑′

j=0

cijTi(x)Tj(y), (11.78)

or equivalently, again to ensure that u = 0 on ∂S,

umn =
m∑

i=2

n∑
j=2

aij [Ti(x) − Ti mod 2(x)] [Tj(y)− Tj mod 2(y)]. (11.79)

Now, as in Problem 16 of Chapter 2,

∂2

∂x2
Ti(x) =

i−2∑
r=0

i−r even

(i− r)i(i+ r)Tr(x), (11.80)

and hence

∆umn =
m∑

i=2

n∑
j=2

aij




i−2∑
r=0

i−r even

(i− r)i(i+ r)Tr(x) (Tj(y)− Tj mod 2(y)) +
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+
j−2∑
s=0

j−s even

(j − s)j(j + s)Ts(y) (Ti(x)− Ti mod 2(x))




= f (11.81)

Now define collocation points {xk(k = 1, . . . ,m−1)} and {yl(l = 1, . . . , n−
1)} to be, respectively, the zeros of Tm−1(x) and Tn−1(y). Then discrete
orthogonality gives, for p, r less than m− 1 and q, s less than n− 1,

2(m+ 1)−1
m−1∑
k=1

Tp(xk)Tr(xk) =



2, p = r = 0,
1, p = r 
= 0,
0, p 
= r,

(11.82a)

2(n+ 1)−1
n−1∑
l=1

Tq(yl)Ts(yl) =



2, q = s = 0,
1, q = s 
= 0,
0, q 
= s.

(11.82b)

Evaluating (11.81) at (xk, y�), multiplying by 4[(m− 1)(n− 1)]−1 and by
Tp(xk)Tq(y�) for p = 0, . . . ,m − 2; q = 0, . . . , n − 2, summing over k, 	, and
using discrete orthogonality, we obtain

Apq +Bpq = 4[(m− 1)(n− 1)]−1
m−1∑
k=1

n−1∑
�=1

f(xk, y�)Tp(xk)Tq(y�), (11.83)

where

Apq =




m∑
i=2

i−p even

aiq(i− p)i(i+ p), q ≥ 2,

−
m∑

i=2
i−p even

n∑
j=3

j odd

aij(i− p)i(i+ p), q = 1,

−2
m∑

i=2
i−p even

n∑
j=2

j even

aij(i− p)i(i+ p), q = 0,

Bpq =




n∑
j=2

j−q even

apj(j − q)j(j + q), p ≥ 2,

−
n∑

j=2
j−q even

m∑
i=3

i odd

aij(j − q)j(j + q), p = 1,

−2
n∑

j=2
j−q even

m∑
i=2

i even

aij(j − q)j(j + q), p = 0.

(11.84)
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This system of linear equations for aij is very sparse, having between 2 and
(m + n − 2)/2 entries in each row of the matrix for p, q ≥ 2. It is only the
equations where “boundary effects” enter (for p = 0, 1; q = 0, 1), that fill
out the matrix entries into alternate rows and/or columns. Note also that all
right-hand sides are discrete Chebyshev transforms, which could be evaluated
by adopting FFT techniques.

The border effects can be neatly avoided for this particular Poisson prob-
lem, by adopting instead a matrix method based on differentiation matrices, in
which the unknowns of the problem become the solution values at Chebyshev
nodes, rather than the solution coefficients. This approach was introduced
in Section 10.5.3 of Chapter 10 for ODEs and is particularly convenient for
some relatively simple problems. We now see its advantages for the present
problem.

11.8.4 Differentiation matrix approach: Poisson problem

To illustrate this approach, we follow the treatment of Trefethen (2000), set-
ting m = n and adopting as collocation points the tensor product of the zeros
of (1 − x2)Un−1(x) and the zeros of (1 − y2)Un−1(y). The reader is referred
to Section 10.5.2 for a detailed definition of the (n+ 1)× (n+ 1) differentia-
tion matrix D ≡ Dn, which transforms all u values at collocation points into
approximate derivative values at the same points, by forming linear combina-
tions of the u values. The problem is significantly simplified by noting that
the border elements of D, namely the first and last rows and columns of Dn,
correspond to zero boundary values and may therefore be deleted to give an
active (n− 1)× (n− 1) matrix D̃n.

For the Poisson problem

∆u = f(x, y) in S : {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, (11.85a)

u = 0 on ∂S : {x = ±1, y = ±1}, (11.85b)

the method determines a vector u of approximate solutions at the interior
collocation points (compare (10.52) with e0 = en = 0) by solving

Enu = fn (11.86)

where
En = I⊗ D̃2

n + D̃2
n ⊗ I (11.87)

and A⊗B is the Kronecker (tensor) product, illustrated by the example

(
a b
c d

)
⊗
(

α β
γ δ

)
=




aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ


 .
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For example, for n = 3, this gives (see (10.49) et seq.)

E3 = I⊗ D̃2
3 + D̃2

3 ⊗ I

=




−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14



+

+




−14 6 −2
−14 6 −2

−14 6 −2
4 −6 4

4 −6 4
4 −6 4

−2 6 −14
−2 6 −14

−2 6 −14




. (11.88)

Clearly the matrix En is sparse and easily calculable. Hence (11.86) may
readily be solved by Gauss elimination, using for example Matlab’s efficient
system. The right-hand side of (11.86) is simply obtained by evaluating f at
the interior collocation points. The shape (location of the non-zero terms) of

Figure 11.4: Shape of matrix En for n = 3


× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×

× × × × ×
× × × × ×

× × × × ×




the matrix En is illustrated in Figure 11.4 and consists of a diagonal of square
matrices, flanked by diagonal matrices. The matrix is very sparse in all rows,
having 2n− 3 non-zero entries out of (n− 1)2.
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This Differentiation Matrix method is very attractive and efficient for this
problem, and should always be given consideration in problems that respond
to it. We now turn our attention to a more general problem, with non-zero
boundary conditions.

11.8.5 Explicit collocation for the quasilinear Dirichlet problem:
Chebyshev basis

We now continue to exploit the better conditioning of a Chebyshev polynomial
basis, but we also consider the greater generality of a Dirichlet problem for a
quasilinear elliptic equation on a square, namely

Lu ≡ a.uxx+ b.uxy+ c.uyy+ d.ux+ e.uy = f in D : |x| ≤ 1, |y| ≤ 1, (11.89a)

u = g(x, y) on ∂D : {x = ±1, y = ±1}, (11.89b)

where a, b, c, d, e, f are functions of x and y defined in D, g(x, y) is defined on
∂D only, and where, to ensure ellipticity,

a.c ≥ b2 for all (x, y) in D. (11.90)

This is an extension of recent work by Mason & Crampton (2002).

For generality we do not attempt to include the boundary conditions
(11.89b) implicitly in the form of approximation, but rather we represent
them by a set of constraints at a discrete set of selected points, namely Cheb-
yshev zeros on the boundary. Moreover we adopt a Chebyshev polynomial
basis for u:

u � umn =
m∑′

i=0

n∑′

j=0

aijTi(x)Tj(y). (11.91)

As it happens, we find that the apparently most logical collocation pro-
cedure, similar to that of Section 11.8.1 above, for approximately solving
(11.89a), (11.89b) in the form (11.91), leads to a singular matrix and re-
quires modification. More details about this follow as the method develops.
The fundamental idea that we use is that, since umn, given by (11.91), has
(m + 1)(n + 1) undetermined coefficients, we expect to be able to generate
an appropriate set of equations for aij if we form (m − 1)(n − 1) equations
by collocating (11.89a) at a tensor product of Chebyshev zeros and a further
2m+2n equations by collocating (11.89b) at Chebyshev zeros on the bound-
ary. It is in the formation of the latter boundary equations that difficulties
arise, and so we consider these equations first, noting that they are completely
independent of the specification Lu = f of the elliptic equation (11.89a).

To form the 2m + 2n boundary equations for aij , we set umn equal to g
at the zeros, Xk (k = 1, . . . ,m) and Y� (	 = 1, . . . , n) of Tm(x) and Tn(y),
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respectively, on y = ±1 and x = ±1, respectively. This gives the two pairs of
equations

m∑′

i=0

n∑′

j=0

aijTi(Xk)Tj(±1) = g(Xk,±1),

m∑′

i=0

n∑′

j=0

aijTi(±1)Tj(Y�) = g(±1, Y�). (11.92)

If we add/subtract these pairs of equations, noting that Tj(1) = 1 and that
Tj(−1) = (−1)j, we deduce that

m∑′

i=0

n∑′

j=0
j even

aijTi(Xk) = Gk0 ≡ 1
2 (g(Xk, 1) + g(Xk,−1)), (k = 1, . . . ,m)

m∑′

i=0

n∑
j=1

j odd

aijTi(Xk) = Gk1 ≡ 1
2 (g(Xk, 1)− g(Xk,−1)), (k = 1, . . . ,m)

m∑′

i=0
i even

n∑′

j=0

aijTj(Y�) = H�0 ≡ 1
2 (g(1, Y�) + g(−1, Y�)), (	 = 1, . . . , n)

m∑
i=1

i odd

n∑′

j=0

aijTj(Y�) = H�1 ≡ 1
2 (g(1, Y�)− g(−1, Y�)), (	 = 1, . . . , n)

(11.93)

where the arrays Gkp, H�q are defined above for p = 0, 1; q = 0, 1.

Now, defining wi to be 2/(i+1) for all i, multiplying the first pair of equa-
tions in (11.93) by wmTr(Xk) and summing over k, multiplying the second
pair of equations by wnTs(Y�) and summing over 	, and exploiting discrete
orthogonality, it follows that

Rr0 ≡
n∑′

j=0
j even

arj = Jr0 ≡ wm

m∑
k=1

Tr(Xk)Gk0, (r = 0, . . . ,m− 1)

Rr1 ≡
n∑

j=1
j odd

arj = Jr1 ≡ wm

m∑
k=1

Tr(Xk)Gk1, (r = 0, . . . ,m− 1)

Cs0 ≡
m∑′

i=0
i even

ais = Ks0 ≡ wn

n∑
�=1

Ts(Y�)H�0, (s = 0, . . . , n− 1)
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Cs1 ≡
m∑

i=1
i odd

ais = Ks1 ≡ wn

n∑
�=1

Ts(Y�)H�1, (s = 0, . . . , n− 1) (11.94)

where R,C, J,K are defined to form left-hand sides (R,C) or right-hand sides
(J,K) of the relevant equations. In addition each R or C is a linear sum of
alternate elements in a row or column, respectively, of the matrix A = [aij ].

Now we claim that this set of 2m+2n linear equations (11.94) in a00, . . . , amn

is not of rank 2m+ 2n but rather of rank 2m+ 2n− 1. Indeed, it is easy to
verify that a sum of alternate rows of A equals a sum of alternate columns;
specifically

n−1∑′

i=0
n−i odd

Rip =
m−1∑′

j=0
m−j odd

Cjq =
m−1∑′

i=0
m−i odd

n−1∑′

j=0
n−j odd

aij , (11.95)

where p = 0, 1 for m− 1 even, odd, respectively, and q = 0, 1 for n− 1 even,
odd, respectively. For example, for m = n = 4,

R11 +R31 = C11 + C31 = a11 + a13 + a31 + a33, (11.96)

and, for m = n = 3,

1
2R00 +R20 = 1

2C00 + C20 = 1
2 (

1
2a00 + a02 + a20) + a22. (11.97)

Clearly we must delete one equation from the set (11.94) and add an
additional independent equation in order to restore full rank. For simplicity
we shall only discuss the cases where m,n are both even or both odd, leaving
the even/odd and odd/even cases to the reader.

Form,n both even, we delete C11 = K11 from (11.94) and add an averaged
“even/even” boundary collocation equation

1
4 [u(1, 1) + u(−1, 1) + u(−1,−1) + u(1,−1)] =
λ00 := 1

4 [g(1, 1) + g(−1, 1) + g(−1,−1) + g(1,−1)]. (11.98)

This simplifies to
m∑′

i=0
i even

Ri0 = λ00 (11.99)

where Rm0 is defined by extending the definition (11.94) of Rr0 to r = m and
where λ00 is as defined in (11.98). We may eliminate every R except Rm0

from this equation, by using (11.94), to give a simplified form for the extra
equation

Rm0 = Jm0 = λ00 −
m−2∑′

i=0
i even

Ji0 (11.100)
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where the right-hand side Jm0 is defined as shown.

For m,n both odd, we delete C00 = K00 from (11.94) and add an averaged
“odd/odd” boundary collocation equation

1
4 [u(1, 1)− u(−1, 1) + u(−1,−1)− u(1,−1)] =
λ11 := 1

4 [g(1, 1)− g(−1, 1) + g(−1,−1)− g(1,−1)]. (11.101)

This simplifies to
n∑

j=1
j odd

Cj1 = λ11 (11.102)

where Cn1 is defined by extending the definition (11.94) of Cs1 to s = n and
where λ11 is as defined in (11.101).

We may eliminate every C except Cn1 from this equation, by using (11.94),
to give a simplified form for the extra equation

Cn1 = Kn1 ≡ λ11 −
n−2∑
j=1

j odd

Kj1 (11.103)

where the right-hand side Kn1 is defined as shown.

We now have 2m+ 2n non-singular equations for the coefficients aij , and
it remains to handle the elliptic equation by collocation at (m − 1)(n − 1)
suitable Chebyshev points in D.

For a general quasilinear equation we should set Lu = f at a tensor product
of (m−1)×(n−1) Chebyshev zeros, giving the same number of linear algebraic
equations for {aij}, and these equations together with the 2m+2n boundary
collocation equations would then be solved as a full system.

For simplicity, and so that we can give fuller illustrative details, we concen-
trate on the Poisson equation, as a special example of (11.89a), corresponding
to the form

Lu ≡ ∆u ≡ uxx + uyy = f(x, y) in D. (11.104)

Now second derivatives of Chebyshev sums are readily seen (see Chapter 2)
to take the form

d2

dx2
Tk(x) =

k−2∑′

r=0
k−r even

(k − r)k(k + r)Tr(x) (k ≥ 2), (11.105a)

d2

dy2
T�(y) =

�−2∑′

s=0
�−s even

(	− s)	(	+ s)Ts(y) (	 ≥ 2). (11.105b)
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Hence, on substituting (11.91) into (11.104), we obtain

∆umn =
m∑

k=2

n∑′

�=0

ak�T�(y)
k−2∑′

r=0
k−r even

(k − r)k(k + r)Tr(x)

+
n∑

�=2

m∑′

k=0

ak�Tk(x)
�−2∑′

s=0
�−s even

(	− s)	(	+ s)Ts(y)

= Amn, say. (11.106)

Setting ∆umn equal to f(x, y) at the abscissae xi, yj , where xi are zeros of
Tm−1(x) and yj are zeros of Tn−1(y) (for i = 1, . . . ,m− 1; j = 1, . . . , n− 1),
multiplying by Tp(xi)Tq(yj), and summing over i, j, we deduce that, for every
p = 0, . . . ,m− 2; q = 0, . . . , n− 2:

Epq ≡
m−1∑
i=1

n−1∑
j=1

Amn(xi, yj)Tp(xi)Tq(yj)

=
m−1∑
i=1

n−1∑
j=1

f(xi, yj)Tp(xi)Tq(yj)

≡ fpq, (11.107)

where fpq represents the discrete Chebyshev transform of f with respect to
Tp(x)Tq(y). Substituting for Amn,

Epq =
m−1∑
i=1

n−1∑
j=1

m∑
k=2

n∑′

�=0

ak�T�(yj)Tq(yj)
k−2∑′

r=0

(k − r)k(k + r)Tr(xi)Tp(xi)

+
m−1∑
i=1

n−1∑
j=1

n∑
�=2

n∑′

k=0

ak�Tk(xi)Tp(xi)
�−2∑′

s=0

(	− s)	(	+ s)Ts(yj)Tq(jj)

=
m∑

k=2

n∑′

�=0

n−1∑
j=1

T�(yj)Tq(yj)ak�

k−2∑′

r=0
k−r even

(k − r)k(k + r)
m−1∑
i=1

Tr(xi)Tp(xi)

+
n∑

�=2

m∑′

k=0

m−1∑
i=1

Tk(xi)Tp(xi)ak�

�−2∑′

s=0
�−s even

(	− s)	(	+ s)
n−1∑
j=1

Ts(yj)Tq(yj).

(11.108)
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Using the discrete orthogonality property that, for example,

n−1∑
j=1

T�(yj)Tq(yj) =



0, 	 
= q
(n− 1)/2, 	 = q 
= 0
n− 1, 	 = q = 0

,

we deduce that

Epq =




m∑
k=p+2

k−p even

1
2 (n− 1)akq +

n−1∑
j=1

Tn−1(yj)Tq(yj)ak,n−1

+
n−1∑
j=1

Tn(yj)Tq(yj)akn


 1

2 (m− 1)(k − p)k(k + p)

+




n∑
�=q+2

�−q even

1
2 (m− 1)ap� +

m−1∑
i=1

Tm−1(xi)Tp(xi)am−1,�

+
m−1∑
i=1

Tm(xi)Tp(xi)am�

]
1
2 (n− 1)(	− q)	(	+ q).

(11.109)

Now, by the definition of xi, yj , we know that Tm−1(xi) and Tn−1(yj) are
zero. Also, using the three-term recurrence at xi,

Tm(xi) = 2xTm−1(x) − Tm−2(xi) = −Tm−2(xi), Tn(yj) = −Tn−2(yj).
(11.110)

Substituting these values into (11.109), using discrete orthogonality, and using
the Kronecker delta notation

δrs = 1 (r = s), δrs = 0 (r 
= s), (11.111)

we deduce that

Epq ≡ 1
4 (m− 1)(n− 1)




m∑
k=p+2

k−p even

(akq − δq,n−2akn) (k − p)k(k + p) +

+
n∑

l=q+2
l−q even

(apl − δp,m−2aml) (l − q)l(l+ q)




= fpq (p = 0, . . . ,m− 2; q = 0, . . . , n− 2). (11.112)
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For example, for m = n = 3 we have this set of four collocation equations:

E11 ≡ 4
4
[(a31 − a33) + (a13 − a33)]2.3.4

= 24(a13 + a31 − 2a33) = f11 = 24F11,

E10 ≡ a302.3.4 + (a12 − a32)2.2.2

= 8(a12 + 3a30 − a32) = f10 = 8F10,

E01 ≡ (a21 − a23)2.2.2 + a032.3.4

= 8(3a03 + a21 − a23) = f01 = 8F01,

E00 ≡ a202.2.2 + a022.2.2

= 8(a02 + a20) = f00 = 8F00, (11.113)

where Fij are defined as shown by scaling fij . For m = n = 4, the sys-
tem (11.112) gives the following nine equations, where we leave the reader to
confirm the details:

E22 ≡ 108(a24 + a42 − 2a44)

= f22 = 108F22,

E21 ≡ 54(a23 + 2a41 − a43)

= f21 = 54F21,

E20 ≡ 18(a22 + 8a24 + 6a40 − a42 − 8a44)

= f20 = 18F20,

E12 ≡ 54(2a14 + a32 − a34)

= f12 = 54F12,

E11 ≡ 54(a13 + a31)

= f11 = 54F11,

E10 ≡ 18(a12 + 8a12 + 3a30)

= f10 = 18F10,

E02 ≡ 18(6a04 + a22 − a24 + 8a42 − 8a44)

= f02 = 18F02,

E01 ≡ 18(3a03 + a21 + 8a41)

= f01 = 18F01,

E00 ≡ 18(a02 + 8a04 + a20 + 8a40)

= f00 = 18F00. (11.114)

For m = n = 4, the complete set of 25 collocation equations, 16 boundary
equations and 9 interior PDE equations, namely (11.94) for m = n = 4 and
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(11.114), may be written in the matrix form

Ma = b, (11.115)

where M is the matrix of equation entries and a is the column vector of
approximation coefficients

a = (a00, a01, . . . , a04, a10, a11, . . . , a14, a20, . . . , a30, . . . , a40, . . . , a44)′

(11.116)
and b is the set of right-hand sides, either boundary or PDE terms, in appro-
priate order. In Table 11.2 we display the matrices M, a, b for m = n = 4,
blank entries denoting zeros. The column of symbols to the left of M indi-
cates which equation has been used to construct each row. Note that we have
ordered the equations to give a structure inM as close to lower triangular as
possible. The order used is based on:

R4∗, R3∗, E2∗, R2∗, E1∗, R1∗, E0∗, R0∗, C3∗, C2∗, C1∗, C0∗ (11.117)

where ∗ is a wild subscript, E indicates a PDE term, and R,C indicate bound-
ary conditions.

On studying Table 11.2, some important facts emerge. The coefficients
aij appearing in any equation are exclusively in one of the four symmetry
classes: i, j both even, i, j both odd, i odd and j even, and i even and j odd.
Thus the set of 25 equations can be separated into four wholly independent
subsystems, respectively involving 4 subsets of aij . These four subsystems are
shown in Table 11.3 for m = n = 4, and they consist of 8,5,6,6 equations in
9,4,6,6 coefficients aij , respectively.

This immediately confirms that we have a surplus equation in the odd/odd
subsystem (for a11, a13, a31, a33) and one too few equations in the even/even
subsystem. As proposed in earlier discussions, we therefore delete equation
C11 and replace it by equation R40, as indicated in Table 11.2.

The extremely sparse nature of the matrixM is clear from Table 11.2, and
moreover the submatrices formed from even and/or odd subsystems remain
relatively sparse, as is illustrated in Tables 11.3 to 11.6.

The odd/odd subsystem (form = n = 4) (in Table 11.6) is remarkably easy
to solve in the case g ≡ 0 of zero boundary conditions, when J∗∗ = K∗∗ = 0.
The solution is then

−a11 = a13 = a31 = −a33 = 1
2F11. (11.118)

In Table 11.7, we also show the full algebraic system for the odd degrees
m = n = 3, and in Tables 11.8 to 11.11 the equations are separated into their
four even/odd subsystems. The equation C00 is noted and is to be deleted,
while the equation C31 has been added. Equations are again ordered so as to
optimise sparsity above the diagonal. The m = n = 3 subsystems are easily
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Table 11.2: Full collocation matrix—Poisson problem: m = n = 4

R40

R31

R30

E22

E21

E20

R21

R20

E12

E11

E10

R11

R10

E02

E01

E00

R01

R00

C30

C31

C21

C20

C10

C11

C01

C02




1
2 0 1 0 1

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 1 0 0 1 0 −2

0 0 0 1 0 0 2 0 −1 0

0 0 1 0 8 6 0 −1 0 −8

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 2 0 0 1 0 −1

0 0 0 1 0 0 1 0 0 0

0 0 1 0 8 3 0 0 0 0

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 6 0 0 1 0 −1 0 0 8 0 −8

0 0 0 3 0 0 1 0 0 0 0 8 0 0 0

0 0 1 0 8 1 0 0 0 0 8 0 0 0 0

0 1 0 1 0

1
2 0 1 0 1

0 0 0 1
2 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 0 1
2 0 0 0 0 1 0 0 0 0 1 0 0

0 1
2 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0

1
2 0 0 0 0 1 0 0 0 0 1 0 0 0 0







a00

a01

a02

a03

a04

a10

a11

a12

a13

a14

a20

a21

a22

a23

a24

a30

a31

a32

a33

a34

a40

a41

a42

a43

a44




=




J40

J31

J30

F22

F21

F20

J21

J20

F12

F11

F10

J11

J10

F02

F01

F00

J01

J00

K30

K31

K21

K20

K10

K11

K01

K02



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Table 11.3: m = n = 4, partial system odd/even in x/y

R30

E12

E10

R10

C21

C01




1
2 1 1

0 0 2 0 1 −1

0 1 8 3 0 0

1
2 1 1

0 1 0 0 1 0

1 0 0 1 0 0







a10

a12

a14

a30

a32

a34




=




J30

F12

F10

J10

K21

K01




Table 11.4: m = n = 4, partial system even/odd in x/y

E21

R21

E01

R01

C30

C10




0 1 2 −1

1 1

0 3 1 0 8 0

1 1

0 1
2 0 1 0 1

1
2 0 1 0 1 0







a01

a03

a21

a23

a41

a43




=




F21

J21

F01

J01

K30

K10




Table 11.5: m = n = 4, partial system even/even in x/y

R40

E22

E20

R20

E02

E00

R00

C20

C00




1
2 1 1

0 0 1 0 1 −2

0 1 8 6 −1 −8

1
2 1 1

0 0 6 0 1 1 0 8 −8

0 1 8 1 0 0 8 0 0

1
2 1 1

0 1
2 0 0 1 0 0 1 0

1
2 0 0 1 0 0 1 0 0







a00

a02

a04

a20

a22

a24

a40

a42

a44




=




J40

F22

F20

J20

F02

F00

J00

K20

K00




Table 11.6: m = n = 4, partial system odd/odd in x/y

R31

E11

R11

C31

C11




1 1

0 1 1 0

1 1

0 1 0 1

1 0 1 0







a11

a13

a31

a33




=




J31

F11

J11

K31

K11



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Table 11.7: Full collocation matrix—Poisson problem: m = n = 3 (blank
spaces contain zero entries)

C31

R21

R20

E11

E10

R11

R10

E01

E00

R01

R00

C20

C21

C11

C10

C00

C01




0 0 0 1 0 0 0 1

0 1 0 1

1
2 0 1 0

0 0 0 1 0 1 0 −2

0 0 1 0 3 0 −1 0

0 1 0 1

1
2 0 1 0

0 0 0 3 0 1 0 −1

0 0 1 0 1 0 0 0

0 1 0 1

1
2 0 1 0

0 0 1
2 0 0 0 1 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1
2 0 0 0 1 0 0

1
2 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0







a00

a01

a02

a03

a10

a11

a12

a13

a20

a21

a22

a23

a30

a31

a32

a33




=




K31

J21

J20

F11

F10

J11

J10

F01

F00

J01

J00

K20

K21

K11

K10

K00

K01




solved to give explicit formulae in the case g ≡ 0, as we now show. We leave it
as an exercise to the reader to generate a set of tables for the case m = n = 5.

We may readily determine formulae for all coefficients aij form = n = 3 by
eliminating variables in Tables 11.8 to 11.11, and we leave this as an exercise
to the reader (Problem 7).

We deduce from Table 11.8 that, for g ≡ 0, and hence J∗∗ = K∗∗ = 0, the
even/even coefficients are

−a00 = 2a02 = 2a20 = −4a22 = F00. (11.119)

From Table 11.9, for g ≡ 0, the odd/odd coefficients are

−a11 = a13 = a31 = −a33 = 1
4F11. (11.120)

From Table 11.10, for g ≡ 0, the even/odd coefficients are

−a01 = a03 = 2a21 = −2a23 = 1
4F01. (11.121)

From Table 11.11, for g ≡ 0, the odd/even coefficients are

−a10 = 2a12 = a30 = −2a32 = 1
4F10. (11.122)
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Table 11.8: m = n = 3, partial system even/even in x/y

R20

E00

R00

C20

C00




1
2 1

0 1 1 0

1
2 1

0 1
2 0 1

1
2 0 1 0







a00

a02

a20

a22




=




J20

F00

J00

K20

K00




Table 11.9: m = n = 3, partial system odd/odd in x/y

C31

E11

R11

C11




0 1 0 1

0 1 1 −2

1 1

1 0 1 0







a11

a13

a31

a33




=




K31

F11

J11

K11




Table 11.10: m = n = 3, partial system even/odd in x/y

R21

E01

R01

C10




1 1

0 3 1 −1

1 1

1
2 0 1 0







a01

a03

a21

a23




=




J21

F01

J01

K10




Table 11.11: m = n = 3, partial system odd/even in x/y

E10

R10

C21

C01




0 1 3 −1

1
2 1

0 1 0 1

1 0 1 0







a10

a12

a30

a32




=




F10

J10

K21

K01



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Thus for zero boundary conditions, the approximate solution u is given
very simply for m = n = 3. Indeed we see, not surprisingly, (Problem 8) that
umn can be written exactly in the form

umn = (x2 − 1)(y2 − 1)(a+ bx+ cy + dxy). (11.123)

If J∗∗ and K∗∗ are not both zero, then no simplification such as (11.123)
occurs, but we still obtain four separate sparse subsystems to solve for the
coefficients aij for all m, n.

An alternative but closely related approach to the special case of the Pois-
son problem is given by Haidvogel & Zang (1979).

11.9 Computational fluid dynamics

One of the most important PDE problems in computational fluid dynamics
is the Navier–Stokes equation

∂v
∂t
+ v · ∇v = −∇p+ ν∆v, ∇ · v = 0 (11.124)

where v is the velocity vector, p is the pressure divided by the (constant) den-
sity, ν is the kinematic viscosity and ∆ denotes the Laplacian. This problem
is studied in detail in the lecture notes by Deville (1984), as well as in Canuto
et al. (1988). Deville considers, as preparatory problems, the Helmholtz equa-
tion, the Burgers equation and the Stokes problem. We shall here briefly
discuss the Burgers equation.

The Burgers equation is the nonlinear equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (11.125)

which we shall take to have the boundary and initial conditions

u(−1, t) = u(1, t) = 0, u(x, 0) = u0(x). (11.126)

The general procedure for solution is to discretise (11.125) into a first-order
system of ordinary differential equations in t, which is solved by a scheme that
is explicit as regards the nonlinear part and implicit for the linear part. Using
Chebyshev collocation at the n + 1 points {yj}, the discretisation can be
written (Canuto et al. 1988) as

Zn

(
∂un

∂t
+UnDnun − νD2un

)
= 0, (11.127)

where Dn is the appropriate Chebyshev collocation differentiation matrix,
un is a vector with elements un(yj , t), Un is a diagonal matrix with the
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elements of un on its diagonal and Zn is a unit matrix with its first and
last elements replaced by zeros. The boundary conditions are imposed by
requiring un(y0, t) = un(yn, t) = 0. The method as it stands involves O(n2)
operations at each time step for the implicit term, but this can be reduced to
O(n log n) operations by using FFT techniques.

A Chebyshev tau method may instead be applied, defining

〈f , Tk〉 = 2
πck

∫ 1

−1

f(x)Tk(x)√
1− x2

dx. (11.128)

Then, defining

un(x, t) =
n∑′

k=0

ak(t)Tk(x),

we have 〈
∂un

∂t
+ un

∂un

∂x
− ν

∂2un

∂x2
, Tk

〉
= 0, (11.129)

which reduces to

dak

dt
+
〈
un

∂un

∂x
, Tk

〉
− νa

(2)
k = 0. (11.130)

Again a mixed explicit/implicit method may be adopted for each time step,
the inner product being evaluated explicitly.

For discussion of the Stokes and Navier–Stokes equations, the reader is re-
ferred to Deville (1984), Canuto et al. (1988), Fornberg (1996), and Gerritsma
& Phillips (1998, 1999).

11.10 Particular issues in spectral methods

It is important to remember that the key advantages of spectral and pseu-
dospectral methods lie in

1. the rapid (e.g., exponential) convergence of the methods for very smooth
data and PDEs, which makes Chebyshev methods so powerful;

2. the use of discrete orthogonality, which greatly simplifies collocation
equations;

3. the use of the FFT, which speeds up computations typically from O(n2)
to O(n log n) operations;

4. the possibility of a matrix representation of derivatives, which simplifies
the representation of the solution and boundary conditions in certain
problems.
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For the reasons above, the method will always be restricted to somewhat
special classes of problems if it is to compete with more general methods like
the finite element method. However, the spectral method shares with the
finite element method a number of common features, including the pointwise
and continuous representation of its solution (as in the differentiation matrix
method) and the possibility of determining good preconditioners (Fornberg &
Sloan 1994).

We now raise some further important issues that arise in spectral/pseudo-
spectral methods. We do not have the scope to illustrate these issues in detail
but can at least make the reader aware of their significance.

Aliasing (see Section 6.3.1) is an interesting feature of trigonometric and
Chebyshev polynomials on discrete meshes. There is a potential for ambiguity
of definition when a Chebyshev or Fourier series attempts to match a PDE
on too coarse a grid. Fortunately, aliasing is not generally to be regarded
as threatening, especially not in linear problems, but nonlinear problems do
give cause for some concern on account of the possible occurrence of high-
frequency modes which may be misinterpreted as low-frequency ones. Canuto
et al. (1988, p.85) note that aliases may be removed by phase shifts, which
can eliminate special relationships between low and high frequency modes.

Preconditioners are frequently used in finite-element methods to improve
the conditioning of linear equations. Their use with finite differences for Cheb-
yshev methods is discussed for example by Fornberg (1996), Fornberg & Sloan
(1994) and Phillips et al. (1986). The idea is, for example, to take a system of
linear equations whose matrix is neither diagonally dominant nor symmetric,
and to find a multiplying matrix that yields a result that is strictly diagonally
dominant, and therefore amenable to Gauss–Seidel iteration. More broadly,
it improves the conditioning of the system matrix.

Basis functions in spectral methods may be not only Chebyshev polyno-
mials, but also Legendre polynomials or trigonometric polynomials (Canuto
et al. 1988). Legendre polynomials are sometimes preferred for Galerkin meth-
ods and Chebyshev polynomials for collocation methods (because of discrete
orthogonality). Trigonometric polynomials are versatile but normally suitable
for periodic functions only, because of the Gibbs phenomenon (see page 118,
footnote). Clearly we are primarily interested in Chebyshev polynomials here,
and so shall leave discussion of Legendre polynomials and other possible bases
to others.

11.11 More advanced problems

The subject of partial differential equations is a huge one, and we cannot in
this broadly-based book do full credit to spectral and pseudospectral methods.
We have chosen to illustrate some key aspects of the methods, mainly for linear
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and quasilinear problems, and to emphasise some of the technical ideas that
need to be exploited.

For discussion of other problems and, in particular, more advanced PDE
problems including nonlinear problems, the reader is referred to such books
as:

• Canuto et al. (1988) — for many fluid problems of varying complexity
and solution structures, as well as an abundance of background theory;

• Trefethen (2000) — for a very useful collection of software and an easy-
to-read discussion of the spectral collocation approach;

• Boyd (2000) — for a modern treatment including many valuable results;

• Guo Ben-yu (1998) — for an up-to-date and very rigorous treatment;

• Fornberg (1996) — as it says, for a practical guide to pseudospectral
methods;

• Deville (1984) — for a straightforward introduction mainly to fluid prob-
lems;

• Gottlieb & Orszag (1977) — for an early and expository introduction
to the spectral approach.

11.12 Problems for Chapter 11

1. Apply the method of separation of variables in (r, θ) coordinates to

∆u = r2 ∂
2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
= 0

(see (11.11a) above) in the disc S : r ≤ 1, where u(1, θ) = g(θ) on
∂S : r = 1, and g(θ) is a known 2π-periodic function of the orientation
of a point P of the boundary. Determine the solution as a series in the
cases in which

(a) g(θ) = π2 − θ2;

(b) g(θ) =
{ −1, −π ≤ θ ≤ 0
+1, 0 ≤ θ ≤ π.

2. In addition to satisfying (m−1)(n−1) specified linear conditions in the
interior of the square domain D : {|x| < 1, |y| < 1}, the form

m+1∑′

i=0

n+1∑′

j=0

aijTi(x)Tj(y)
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is collocated to a function g(x, y) at 2(m + n) points on its boundary
∂D. The latter points are chosen at the zeros of (1 − x2)Um−2(x) on
y = ±1 and at the zeros of (1−y2)Un−2(y) on x = ±1, where each of the
four corners of the boundary (which occur in both sets of zeros) is only
counted once. Investigate whether or not the resulting linear system is
singular and determine its maximum rank.

(This question is an analogue of a result in Section 11.8.5, where the
zeros of Tm(x) and Tn(y) were adopted.)

3. The diagram shows a square membrane with a slit from the midpoint
A of one side to the centre O. We wish to determine solutions of the
eigenvalue problem

∆u+ λu = 0 in S,

u = 0 on ∂S.

�S A
B

F

C

E

D

O

Follow the style of Section 11.8.2 to transform the domain and problem
into one which may be approximated by Chebyshev collocation. Use
the mapping z′ = z

1
2 about O to straighten the cut AOB, determine

equations for the mapped (curved) sides of the domain, determine the
mapped PDE and deduce the form of approximation umn to u. Describe
the method of solution for λ and u.

[Note: The boundary equation is again y′(x2y2 − r2 + 1) = 0 before
mapping.]

4. Investigate whether or not there is any gain of efficiency or accuracy in
practice in using the Chebyshev form

∑∑
cijT2i+t(x/a)Tj(y/b) rather

than
∑∑

cijx
2i+tyj in the L-membrane approximation of Section 11.8.2

and, similarly, for the relevant forms in the method for Problem 3 above.
Is it possible, for example, to exploit discrete orthogonality in the col-
location equations?
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5. As a variant on the separation of variables method, consider the solution
of

∆u = f(x, y) in the ellipse D :
x2

a2
+

y2

b2
≤ 1, (A)

u = g(x, y) on ∂D : φ(x, y) ≡ x2

a2
+

y2

b2
= 1, (B)

where f ≡ 0 and g is given explicitly on ∂D.

Then the form

un = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ)rk,

where x = r cos θ and y = r sin θ, satisfies (A) for all coefficients a0, ak,
bk. Compute a0, . . . , an, b1, . . . , bn so that (B) is collocated at 2n + 1
suitably chosen points of ∂D. It is suggested that equal angles of θ
should be used on [0, 2π]; discuss some of the possible choices. What
set of points would remain distinct as b → 0, if the ellipse has a small
eccentricity?

�

��

��

[Hint: Start at θ = 1
2π/(2n+1); the nodes for n = 2 are then chosen as

in the figure and occur at π/10, 5π/10, 9π/10, 13π/10, 17π/10. Choose
simple non-polynomial functions for g; e.g., g(x, y) = cosh(x+ y).]

6. Repeat Problem 5, but with g ≡ 0 and f given explicitly on D, using
the Chebyshev polynomial approximation

umn = φ(x, y).
m∑′

i=0

n∑′

j=0

aijTi(x)Tj(y)

and collocating the PDE at a tensor product of the zeros of Tm+1(x/a)
and Tn+1(y/b) on the rectangle

R : {−a ≤ x ≤ a;−b ≤ y ≤ b}.
Compute results for small choices of m, n.

[Note: This is a method which might be extended to more general
boundary φ(x, y), and φ does not need to be a polynomial in x, y.]

7. Generate a set of tables similar to Tables 11.7–11.11 for the odd/odd
case m = n = 5, showing the 36× 36 linear algebraic system for {aij}
and the four subsystems derived from this.
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8. For m = n = 3 (see Section 11.8 above) show that the approximate
solution umn of (11.75) with g ≡ 0, given by (11.91) with coefficients
(11.119)–(11.122), may be simplified exactly into the form

umn = (1− x2)(1− y2)[a+ bx+ cy + dxy].

What are the values of a, b, c, d?

Derive umn directly in this form by collocating the PDE at the Cheby-
shev zeros. (Note that this method cannot be applied unless g(x, y) ≡
0.)

9. For m = n = 3 in (11.75), in the case where g is not identically zero,
obtain formulae for the coefficients aij in umn from Tables 11.8–11.11,
namely the four linear subsystems that define them.
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Chapter 12

Conclusion

In concluding a book that is at least as long as originally intended, we are
painfully aware of all that we have left out, even though we have tried to
include as much extra material in the Problem sets as we reasonably could.
The reader is therefore referred to other texts for more advanced material,
including the excellent book of Rivlin (1990), who includes fascinating ma-
terial on various topics, such as the density of the locations of the zeros of
Chebyshev polynomials of all degrees. We were also inspired by the book of
Fox & Parker (1968), not only because it made the most up-to-date statement
of its time but also, and even more, because it was extremely well written and
stimulated major research. We hope that we are following in this tradition,
and that there are numerous places in this book that future researchers might
take as a starting point.
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Villars, Paris.

Boyd, J. P. (2000), Chebyshev and Fourier Spectral Methods, 2nd ed., Dover,
New York.

Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. (1984), Boundary Element
Techniques, Springer-Verlag, Berlin.

Brutman, L. (1978), On the Lebesgue function for polynomial interpolation,
SIAM J. Numer. Anal. 15, 694–704.

Brutman, L. (1988), Alternating polynomials associated with the Chebyshev
extrema nodes, J. Approx. Theory 53, 33–40.

Brutman, L. (1993), An application of the generalised alternating polynomi-
als to the numerical solution of Fredholm integral equations, Numerical
Algorithms 5, 437–442.

Brutman, L. (1997), Lebesgue functions for polynomial interpolation—a sur-
vey, Ann. Numer. Math. 4, 111–127.

Burrus, C. S. & Eschenbacher, P. W. (1981), An in-place, in-order prime
factor FFT algorithm, IEEE Trans. on ASSP 29, 806–817.

Butzer, P. L. & Jongmans, F. (1999), P. L. Chebyshev [1821–1894], a guide
to his life and work, J. Approx. Theory 96, 111–138.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. (1988), Spectral
Methods in Fluid Dynamics, Springer-Verlag, Berlin.

Chalmers, B. L. & Mason, J. C. (1984), Minimal Lp projections by Fourier,
Taylor and Laurent series, J. Approx. Theory 40, 293–297.

Chawla, M. M. (1968), Error estimates for the Clenshaw–Curtis quadrature,
Math. Comp. 22, 651–656.
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allélogrammes, Mémoires présentés à l’Académie Impériale des Sciences
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Birkhäuser, Basel, pp. 153–165.

© 2003 by CRC Press LLC



Mason, J. C. & Venturino, E. (1997), Numerical analysis of a boundary hy-
persingular integral equation, in L. Elliott, D. B. Ingham & D. Lesnic,
Eds., First UK Conference on Boundary Integral Methods, Leeds Univ.
Press, Leeds, pp. 224–235.

Mason, J. C. & Venturino, E. (2002), A fully-discrete Chebyshev–Galerkin
method for Hadamard finite-part integral equations, J. Integral Equa-
tions . (To appear).

Mason, J. C. & Weber, R. O. (1992), Particular solution methods for free
and moving boundary problems, Proc. Centre for Maths and its Appl.,
Australian National University 30, 87–107.

Mayers, D. F. (1966), Convergence of polynomial interpolation, in D. C.
Handscomb, Ed., Methods of Numerical Approximation, Pergamon, Ox-
ford, chapter 3, pp. 15–26.

Mercier, B. (1989), An Introduction to the Numerical Analysis of Spectral
Methods, number 318 in Lecture Notes in Physics, Springer-Verlag,
Berlin.

Mhaskar, H. N. & Pai, D. V. (2000), Fundamentals of Approximation Theory,
Narosa Publishing Co., Delhi. (Available from Alpha Beta Publishing
Co. in Europe and from CRC Press in the U.S.A.).

NBS (1952), Tables of Chebyshev Polynomials Sn(x) and Cn(x), number 9 in
Applied Mathematics Series, National Bureau of Standards, Washington.

Novak, E. & Ritter, K. (1996), High-dimensional integration of smooth func-
tions over cubes, Num. Math. 75, 79–97.

NPL (1961), Modern Computing Methods, number 16 in National Physical
Laboratory: Notes on Applied Science, HMSO, London.

O’Hara, H. & Smith, F. S. (1968), Error estimation in the Clenshaw–Curtis
quadrature formula, Computer J. 11, 213–219.

Ortiz, E. L. (1969), The tau method, SIAM J. Numer. Anal. 6, 480–492.

Ortiz, E. L. (1980), Polynomial and rational approximation of boundary layer
problems with the tau method, in J. J. H. Miller, Ed., Boundary and
Interior Layers — Computational and Asymptotic Methods, Boole Press,
Dun Laoghaire, pp. 387–391.

Ortiz, E. L. (1987), Singularity treatment in the bidimensional tau method
with an application to problems defined on L-shaped domains, in J. Ball-
mann, Ed., Effiziente numerische Verfahren für partielle Differential-
gleichungen, Teubner, Stuttgart.

© 2003 by CRC Press LLC



Ortiz, E. L. & Pun, K.-S. (1986), A bi-dimensional tau-elements method for
the numerical solution of nonlinear partial differential equations with an
application to Burgers’ equation, Computers and Maths with Applica-
tions 12, 1225–1240.
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Appendix A

Biographical Note

Pafnuty Lvovich Chebyshev was born in Okatovo in the Kaluga region
of Russia on 16th May [4th May, Old Style] 1821.

He studied mathematics at Moscow University from 1837 to 1846, then
moved to St Petersburg (as it then was and has now again become), where
he became an assistant professor at Petersburg University in 1847 and a full
professor in 1851, in which post he remained until 1882. It is he who was
principally responsible for founding, directing and inspiring the ‘Petersburg
school’ of mathematical research, noted for its emphasis on drawing its prob-
lems for study from practical necessities rather than from mere intellectual
curiosity. He was elected a foreign associate of the Institut de France in 1874,
and a fellow of the Royal Society of London in 1877.

He worked in many fields outside approximation theory, including number
theory (the distribution of primes), integration of algebraic functions, geomet-
ric theory of hinge mechanisms (the subject which led to his special interest
in minimax approximation of functions), the moment problem, quadrature
formulae and probability theory (limit theorems).

The Chebyshev polynomials Tn which now bear his name (the symbol ‘T ’
deriving from its continental transliterations as ‘Tchebycheff’, ‘Tschebyscheff’
&c.) were first introduced by him in a paper on hinge mechanisms (Chebyshev
1854) presented to the St Petersburg Academy in 1853. They were discussed
in more mathematical depth in a second paper (Chebyshev 1859) presented
in 1857; see also (Chebyshev 1874). Somewhat surprisingly, in the light of
what seems today the obvious connection with Fourier theory, his discussion
makes no use of the substitution x = cos θ.

He died in St Petersburg on 8th December [26th November, Old Style]
1894.

A much more extensive biography, from which these facts were extracted,
is to be found in the Dictionary of Scientific Biography (Youschkevitch 1981).
See also a recent article by Butzer & Jongmans (1999).
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Appendix B

Summary of Notations, Definitions and Important
Properties

B.1 Miscellaneous notations

∑′ finite or infinite summation with first (T0) term halved,
∞∑′

r=0

arTr = 1
2
a0T0 + a1T1 + a2T2 + · · ·

∑′′ finite summation with first and last terms halved,
n∑′′

r=0

arTr = 1
2
a0T0 + a1T1 + · · · + an−1Tn−1 + 1

2
anTn∑∗ finite summation with last term halved,

n∑∗
r=1

arPr = a1P1 + · · · + an−1Pn−1 + 1
2
anPn∮

integral round a closed contour
∫

Cauchy principal value integral

�· · ·� largest integer ≤ · · ·
‖·‖ a norm (see page 43)

〈· , ·〉 an inner product (see pages 72, 97)

A(D) the linear space of functions analytic on the (complex) domain D
and continuous on its closure D̄

Bnf the minimax nth degree polynomial approximation to f on the
interval [−1, 1]

C[a, b] the linear space of functions continuous on the interval [a, b]

Cn[a, b] the linear space of functions continuous and having n continuous
derivatives on the interval [a, b]

C0
2π the linear space of continuous periodic functions with period 2π

C0
2π,e the subspace of C0

2π consisting of even functions only

Cr the circular contour {w : |w| = r} in the complex plane

Dr the elliptic domain {z : 1 ≤ ∣∣z +√
z2 − 1

∣∣ < r}
Er the elliptic contour {z :

∣∣z +√
z2 − 1

∣∣ = r}
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= the image of Cr under z = 1
2 (w + w−1)

Jnf the nth degree polynomial interpolating f at n+ 1 given points

Lp[a, b] the linear space of functions on [a, b] on which the norm ‖·‖p can
be defined

Πn the linear space of polynomials of degree n

SF
n f the nth partial sum of the Fourier expansion of f

SFC
n f the nth partial sum of the Fourier cosine expansion of f

SFS
n f the nth partial sum of the Fourier sine expansion of f

ST
n f the nth partial sum of the first-kind Chebyshev expansion of f

λn Lebesgue constant (see page 125)

ω(δ) the modulus of continuity of a function (see page 119)

∂S the boundary of the two-dimensional domain S
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B.2 The four kinds of Chebyshev polynomial

Figure B.1: Plots of the four kinds of Chebyshev polynomial: Tn(x), Un(x),
Vn(x), Wn(x) for values of x in the range [−1, 1] and n running from 0 to 6
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Table B.2: Key properties of the four kinds of Chebyshev polyno-
mial

kind 1st 2nd 3rd 4th

Pn = Tn Un Vn Wn

Pn(cos(θ)) = cosnθ
sin(n+ 1)θ

sin θ
cos(n+ 1

2 )θ
cos 1

2θ

sin(n+ 1
2 )θ

sin 1
2θ

Pn(1
2 (w + w−1)) = 1

2 (w
n + w−n)

wn+1 − w−n−1

w − w−1

wn+ 1
2 + w−n− 1

2

w
1
2 + w− 1

2

wn+ 1
2 − w−n− 1

2

w
1
2 − w− 1

2

P0(x) = 1

P1(x) = x 2x 2x− 1 2x+ 1

recurrence Pn(x) = 2xPn−1(x)− Pn−2(x)

xn coefficient 2n−1 (n > 0) 2n

zeros xk,n := cos
(k − 1

2 )π
n

cos
kπ

n+ 1
cos

(k − 1
2 )π

n+ 1
2

cos
kπ

n+ 1
2

extrema yk,n := cos
kπ

n
no closed form

‖Pn‖∞ = 1 n+ 1 2n+ 1
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Table B.3: Orthogonality properties of the four kinds of Chebyshev
polynomial

kind 1st 2nd 3rd 4th

Pn = Tn Un Vn Wn

weight w(x) =
1√

1− x2

√
1− x2

√
1 + x

1− x

√
1− x

1 + x

orthogonality 〈Pm , Pn〉 =
∫ 1

−1

w(x)Pm(x)Pn(x) dx

= 0 (m �= n)

〈Pn , Pn〉 = 1
2π (n > 0) 1

2π π

contour
orthogonality

〈Pm , Pn〉 =
∮

Er

Pm(z)Pn(z) |w(z) dz|
= 0 (m �= n)

[Er = locus of 1
2 (re

iθ + r−1e−iθ)]

〈Pn , Pn〉 = 1
2π(r

2n + r−2n) (n > 0) 1
2π(r

2n+2 + r−2n−2) π(r2n+1 + r−2n−1)
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Table B.4: Discrete orthogonality of the four kinds of Chebyshev
polynomial

kind 1st 2nd 3rd 4th

Pn = Tn Un Vn Wn

weight w(x) =
1√

1− x2

√
1− x2

√
1 + x

1− x

√
1− x

1 + x

abscissae xk,N+1 = cos{(k − 1
2 )π/(N + 1)}

discrete
orthogonality

〈Pm , Pn〉 =
N+1∑
k=1

Pm(xk,N+1)Pn(xk,N+1)w(xk,N+1)
√
1− x2

k,N+1

= 0 (m �= n ≤ N)

〈Pn , Pn〉 = 1
2 (N + 1) (0 < n ≤ N) 1

2 (N + 1) (N + 1)

abscissae yk,N = cos{kπ/N}

discrete
orthogonality

〈Pm , Pn〉 =
N∑′′

k=0

Pm(yk,N )Pn(yk,N )w(yk,N )
√
1− y2

k,N

= 0 (m �= n ≤ N)

〈Pn , Pn〉 = 1
2N (0 < n < N) 1

2N N
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Appendix C

Tables of Coefficients

Each of the following five Tables may be used in two ways, to
give the coefficients of two different kinds of shifted or unshifted
polynomials.

Table C.1: Coefficients of xk in Vn(x) and of (−1)n+kxk in Wn(x)

n = 0 1 2 3 4 5 6 7 8 9 10

k = 0 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 2 −2 −4 4 6 −6 −8 8 10 −10
2 4 −4 −12 12 24 −24 −40 40 60
3 8 −8 −32 32 80 −80 −160 160
4 16 −16 −80 80 240 −240 −560
5 32 −32 −192 192 672 −672
6 64 −64 −448 448 1792
7 128 −128 −1024 1024
8 256 −256 −2304
9 512 −512

10 1024
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Table C.2a: Coefficients of x2k in T2n(x) and of xk in T ∗
n(x)

n = 0 1 2 3 4 5 6 7 8 9 10

k = 0 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 2 −8 18 −32 50 −72 98 −128 162 −200
2 8 −48 160 −400 840 −1568 2688 −4320 6600
3 32 −256 1120 −3584 9408 −21504 44352 −84480
4 128 −1280 6912 −26880 84480 −228096 549120
5 512 −6144 39424 −180224 658944 −2050048
6 2048 −28672 212992 −1118208 4659200
7 8192 −131072 1105920 −6553600
8 32768 −589824 5570560
9 131072 −2621440
10 524288
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Table C.2b: Coefficients of x2k+1 in T2n+1(x) and of xk in V ∗
n (x)

n = 0 1 2 3 4 5 6 7 8 9 10

k = 0 1 −3 5 −7 9 −11 13 −15 17 −19 21
1 4 −20 56 −120 220 −364 560 −816 1140 −1540
2 16 −112 432 −1232 2912 −6048 11424 −20064 33264
3 64 −576 2816 −9984 28800 −71808 160512 −329472
4 256 −2816 16640 −70400 239360 −695552 1793792
5 1024 −13312 92160 −452608 1770496 −5870592
6 4096 −61440 487424 −2723840 12042240
7 16384 −278528 2490368 −15597568
8 65536 −1245184 12386304
9 262144 −5505024

10 1048576
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Table C.3a: Coefficients of x2k in U2n(x) and of xk in W ∗
n(x)

n = 0 1 2 3 4 5 6 7 8 9 10

k = 0 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 4 −12 24 −40 60 −84 112 −144 180 −220
2 16 −80 240 −560 1120 −2016 3360 −5280 7920
3 64 −448 1792 −5376 13440 −29568 59136 −109824
4 256 −2304 11520 −42240 126720 −329472 768768
5 1024 −11264 67584 −292864 1025024 −3075072
6 4096 −53248 372736 −1863680 7454720
7 16384 −245760 1966080 −11141120
8 65536 −1114112 10027008
9 262144 −4980736

10 1048576
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Table C.3b: Coefficients of x2k+1 in U2n+1(x) and of xk in 2U∗
n(x)

n = 0 1 2 3 4 5 6 7 8 9 10

k = 0 2 −4 6 −8 10 −12 14 −16 18 −20 22
1 8 −32 80 −160 280 −448 672 −960 1320 −1760
2 32 −192 672 −1792 4032 −8064 14784 −25344 41184
3 128 −1024 4608 −15360 42240 −101376 219648 −439296
4 512 −5120 28160 −112640 366080 −1025024 2562560
5 2048 −24576 159744 −745472 2795520 −8945664
6 8192 −114688 860160 −4587520 19496960
7 32768 −524288 4456448 −26738688
8 131072 −2359296 22413312
9 524288 −10485760
10 2097152
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